Science.gov

Sample records for methyl salicylate transforted

  1. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    SciTech Connect

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  2. Methyl salicylate overdose

    MedlinePLUS

    Methyl salicylate is a wintergreen-scented chemical found in many over-the-counter products, including muscle ache creams. Methyl salicylate overdose occurs when someone accidentally or intentionally takes ...

  3. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    PubMed

    2003-01-01

    Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent--miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents--miscellaneous (Capryloyl, 0.1% to 1%; C12-15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents--miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD(50) in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl

  4. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  5. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    PubMed Central

    Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite. PMID:26457083

  6. Potential dangers from topical preparations containing methyl salicylate.

    PubMed

    Chan, T Y

    1996-09-01

    Methyl salicylate (oil of wintergreen) is widely available in many over-the-counter liniments, ointments, lotions or medicated oils for the relief of musculoskeletal aches and pains. Ingestion of methyl salicylate poses the threat of severe, rapid-onset salicylate poisoning because of its liquid, concentrated form and lipid solubility. Excessive usage of these preparations in patients receiving warfarin may result in adverse interactions and bleedings. Methyl salicylate in topical analgesic preparations may cause irritant or allergic contact dermatitis and anaphylactic reactions. Physicians should fully appreciate the potential dangers from topical preparations containing methyl salicylate. PMID:8880210

  7. [Pharmacokinetic study of percutaneous absorption of salicylic acid from baths with salicylate methyl ester and salicylic acid].

    PubMed

    Pratzel, H G; Schubert, E; Muhanna, N

    1990-01-01

    Percutaneous uptake of methyl salicylate was investigated by use of Leukona-Rheumabad (Dr. Atzinger) in 10 volunteers. Percutaneous uptake of salicylic acid was investigated by use of Contrheuma-Bad (Spitzner) in 15 volunteers. By use of bathing concentration of 0.03 g/l of methyl salicylate, plasma levels of 220-820 ng/ml were found 1 h after beginning, and 46-193 ng/ml after 6 h. 2.3-8.7 mg of salicyluric acid was eliminated on the first day, and 0.47 to 1.48 mg on the second day. By use of bathing concentration of 0.33 g/l of salicylic acid constant plasma levels of 10 +/- 1.27 ng/ml were found in a period of 24 h. The renal elimination of 0.92 +/- 0.14 at first day, 0.72 +/- 0.11 at second day, and 0.50 +/- 0.08 mg salicyluric acid at third day was found. Salicylic acid was eliminated 0.086 +/- 0.009 resp. 0.079 +/- 0.007 resp. 0.043 +/- 0.011 mg by those days. The half-time of elimination in urine after methyl salicylate bathing is (as with injected salicylic acid) between 2.4 to 4 h. Conversely half-time of elimination in urine by salicylic acid bathing is between 30 to 50 h, and is greater with salicylic acid bathing than with other application forms. This is in agreement with earlier examinations and results which point out the deposition of salicylic acid in skin. Any definitive deposition of salicylic acid in skin by methyl salicylate bathing was not found.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2238859

  8. Are one or two dangerous? Methyl salicylate exposure in toddlers.

    PubMed

    Davis, Jonathan E

    2007-01-01

    Serious toxicity can result from exposure to small amounts of methyl salicylate. Methyl salicylate is widely available as a component in many over-the-counter brands of creams, ointments, lotions, liniments and medicated oils intended for topical application to relieve musculoskeletal aches and pains. Among the most potent forms of methyl salicylate is oil of wintergreen (98% methyl salicylate). Other products with varying concentrations of methyl salicylate are ubiquitous throughout many parts of the world, including a number of products marketed as Asian herbal remedies. The toxic potential of all of these formulations is often underestimated by health care providers and the general public. A comprehensive review of the existing medical literature on methyl salicylate poisoning was performed, and data compiled over the past two decades by the American Association of Poison Control Centers (AAPCC) was examined. Methyl salicylate continues to be a relatively common source of pediatric exposures. Persistent reports of life-threatening and fatal toxicity were found. In children less than 6 years of age, a teaspoon (5 mL) or less of oil of wintergreen has been implicated in several well-documented deaths. More needs to be done to educate both health care providers and the general public regarding the dangers of these widely available formulations. PMID:17239735

  9. Acute methyl salicylate toxicity complicating herbal skin treatment for psoriasis.

    PubMed

    Bell, Anthony J; Duggin, Geoffrey

    2002-06-01

    We present an interesting case of salicylism arising from the use of methyl salicylate as part of a herbal skin cream for the treatment of psoriasis. A 40-year-old man became quite suddenly and acutely unwell after receiving treatment from an unregistered naturopath. Methyl salicylate (Oil of Wintergreen) is widely available in many over the counter topical analgesic preparations and Chinese medicated oils. Transcutaneous absorption of the methyl salicylate was enhanced in this case due to the abnormal areas of skin and use of an occlusive dressing. The presence of tinnitus, vomiting, tachypnoea and typical acid/base disturbance allowed a diagnosis of salicylate toxicity to be made. Our patient had decontaminated his skin prior to presentation, limiting the extent of toxicity and was successfully treated with rehydration and establishment of good urine flow. PMID:12147116

  10. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

  11. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or...

  12. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or...

  13. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or...

  14. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or...

  15. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or...

  16. Energetics and Vibrational Analysis of Methyl Salicylate Isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela

    2009-08-01

    Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.

  17. Theoretical investigation of the photophysics of methyl salicylate isomers

    NASA Astrophysics Data System (ADS)

    Massaro, Richard D.; Blaisten-Barojas, Estela

    2011-10-01

    The photophysics of methyl salicylate (MS) isomers has been studied using time-dependent density functional theory and large basis sets. First electronic singlet and triplet excited states energies, structure, and vibrational analysis were calculated for the ketoB, enol, and ketoA isomers. It is demonstrated that the photochemical pathway involving excited state intramolecular proton transfer (ESIPT) from the ketoB to the enol tautomer agrees well with the dual fluorescence in near-UV (from ketoB) and blue (from enol) wavelengths obtained from experiments. Our calculation confirms the existence of a double minimum in the excited state pathway along the O-H-O coordinate corresponding to two preferred energy regions: (1) the hydrogen belongs to the OH moiety and the structure of methyl salicylate is ketoB; (2) the hydrogen flips to the closest carboxyl entailing electronic rearrangement and tautomerization to the enol structure. This double well in the excited state is highly asymmetric. The Franck-Condon vibrational overlap is calculated and accounts for the broadening of the two bands. It is suggested that forward and backward ESIPT through the barrier separating the two minima is temperature-dependent and affects the intensity of the fluorescence as seen in experiments. When the enol fluoresces and returns to its ground state, a barrier-less back proton transfer repopulates the ground state of methyl salicylate ketoB. It is also demonstrated that the rotamer ketoA is not stable in an excited state close to the desired emission wavelength. This observation eliminates the conjecture that the near-UV emission of the dual fluorescence originates from the ketoA rotamer. New experimental results for pure MS in the liquid state are reported and theoretical results compared to them.

  18. Photodegradation of methyl salicylate in poly(methylmethacrylate)

    SciTech Connect

    Renschler, C.L.

    1984-01-01

    Methyl salicylate (MS) has been found to undergo photo-induced decarboxylation to form phenol. The process is first order and has a reaction quantum yield of ca. 8 x 10/sup -5/ and an activation energy of 1.2 kcal./mol (5.0 kJ/mol). Kinetic data were used in computer simulations of photodegradation of MS in poly(methylmethacrylate) (PMMA) solar lenses. It was predicted that typical MS concentrations would provide effective uv screening protection for less than 2 years.

  19. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  20. Methyl salicylate production in tomato affects biotic interactions.

    PubMed

    Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

    2010-04-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses. PMID:20059742

  1. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    PubMed

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. PMID:26775020

  2. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    PubMed

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B.?subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B.?subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus?subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-?-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-?-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B.?subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B.?subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B.?subtilis and host plants in the rhizosphere. PMID:25181478

  3. Photorotamerization of methyl salicylate and related compounds in cryogenic matrices

    SciTech Connect

    Orton, E.; Morgan, M.A.; Pimentel, G.C. )

    1990-10-04

    Spectroscopic studies of methyl salicylate (MS), salicylamide (SAM), and o-hydroxyacetophenone (OHAP) isolated in 12 K matrices of, variously, SF{sub 6}, Ar, Kr, or Xe are presented. Irradiation in the S{sub 1} electronic absorption bands of the normal intramolecularly hydrogen bonded conformers generates matrix-stabilized rotamers. Ground-state photorotamer conformations deduced from infrared spectra are correlated with steady-state electronic absorption, excitation, and emission spectra, as well as with emission lifetime data. Matrix-isolated SAM and OHAP photolyze to yield phosphorescent, nonintramolecularly hydrogen bonded rotamers via photochemically reversible pathways. In contrast, irradiation of MS in SF{sub 6} proceeds via a photochemically irreversible pathway to generate a rotamer with a weak intramolecular hydrogen bond between the phenol hydrogen and the methoxy oxygen of the ester moiety. The MS photorotamer exhibits both UV fluorescence and visible phosphorescence.

  4. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    ERIC Educational Resources Information Center

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  5. Environmental persistence and toxicity of dimethyl malonate and methyl salicylate

    SciTech Connect

    Fellows, R.J.; Harvey, S.D.; Ligotke, M.W.; Cataldo, D.A.; Li, S.W.; Van Voris, P. ); Wentsel, R.S. )

    1991-03-01

    To determine the potential environmental persistence and toxic effects of agent simulants Diethyl Malonate (DEM) and Methyl Salicylate (MS), plants, soils, earthworms, and oil microbial populations were exposed to projected aerosolized simulant concentrations of {approximately}100 (low) and {approximately}1000 (high) mg/m{sup 3}. Both simulants exhibited biphasic residence times on foliar and soil surfaces following aerosol exposure. Half-times of DEM on soil and foliar surfaces were 1 to 3 h and 5 to 22 H, respectively, and 2 to 2 h and 5 to 31 h for the MS, respectively. Persistence was longer on the foliar surfaces than that of the soils. Both simulants proved phytotoxic to vegetation with a lower threshold of 1 to 2 {mu}m/cm{sup 2} for the MS versus that of 10 {mu}g/cm{sup 2} for the DEM. However, neither significantly affected chloroplast electron transport in vitro at concentrations of up to 100 {mu}g/mL. Results from in vitro testing of DEM indicated concentrations below 500 {mu}g/g dry soil generally did not adversely impact soil microbial activity, while the theshold was 100 {mu}g/g dry soil for MS. Earthworm bioassays indicated survival rates of 66% at soil doses of 204 {mu}g DEM/cm{sup 2} soil and 86% at soil doses of 331 {mu}g MS/cm{sup 2}. 8 refs., 1 fig., 8 tabs.

  6. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    SciTech Connect

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc; Engle, Nancy L; Chern, Mawsheng; Ronald, Pamela; Tschaplinski, Timothy J; Chen, Feng

    2010-01-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  7. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    SciTech Connect

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  8. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  9. Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. The impacts of MeSA in the strawberry system were unknown and examined in this study. Strawberry plots contained no lures (contr...

  10. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils. PMID:15969485

  11. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P.?brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P.?brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids. PMID:25135243

  12. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  13. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato fruits exposed to chilling temperatures suffer aroma loss prior to visual chilling injury (CI) symptoms. Methyl salicylate (MeSA) and methyl jasmonate (MeJA) treatments were reported to alleviate the development of visual CI, however, it is unknown if the treatments alleviate internal CI in t...

  14. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA), an herbivore induced plant volatile, can potentially elicit control of pests through attraction of beneficial arthropods. This study evaluates the effect of synthetic MeSA lures (PredaLure) on arthropod populations during the 2009 and 2010 seasons in two Oregon vineyards (...

  15. THE DUAL EFFECTS OF METHYL SALICYLATE ON RIPENING AND EXPRESSION OF ETHYLENE BIOSYNTHESIS GENES IN TOMATO FRUIT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato fruit (Lycopersicon esculentum Mill. cv. Sun Bright) at three ripening stages (mature green, breaker and turning) were treated with three different concentrations of methyl salicylate (MeSA) vapor to investigate the impact on ripening and ethylene production. The tomato ripening process, incl...

  16. Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial...

  17. Consumption study and identification of methyl salicylate in spicy cassava chips

    NASA Astrophysics Data System (ADS)

    Nirjana, Marlene; Anggadiredja, Kusnandar; Damayanti, Sophi

    2015-09-01

    Spicy cassava chips is a popular snack. However, some news in electronic media reported addition of balsam which is a banned food additives in that product to give extra spicy flavor. This study aimed to determine ITB students' pattern of consumption, health problems caused by spicy chips consumption, and knowledge about illicit use of food additives in that product, and identify the main content of balsam namely methyl salicylate in 10 samples of spicy cassava chips taken from inside and outside about ITB campus. A total of 300 questionnaires distributed to ITB students then data processing was performed. Spicy cassava chips sample macerated in 50 mL of methanol for 24 hours at room temperature, filtered and analyzed using gas chromatography capillary column with OV-1, nitrogen carrier gas and flame ionization detector. Based on questionnaires, 292 (97%) of 300 respondents had consumed spicy chips. A total of 247 (85%) from 292 respondents spicy chips consumed less than 3 times a week. A total of 195 respondents (67%) had experienced health problems after eating spicy chips. There were 137 (47%) of the 292 respondents who knew about the illicit addition of food additives into spicy chips; only 35 respondents (12%) who knew about balsam's addition. There were 126 respondents (43%) who did not pay attention to their health because they will keep eating spicy chips despite the addition of banned food additives. Through the verification of the standard addition method in gas chromatography system with a hydrogen pressure of 1.5 bar, injector temperature 200 °C, detector temperature 230 °C, oven temperature 60 °C for 2 minutes and then increased to 230 °C with rate 6 °C/menit; linearity, limit of detection, limit of quantitation, accuracy, precision, and specificity parameters met the acceptance limits. From 10 spicy cassava chips samples which were analyzed, they did not reveal any content of methyl salicylate. Methyl salicylate contained in the positive control was 1.273 mg/mL.

  18. Embedded Piezoresistive Microcantilever Sensors Functionalized for the Detection of Methyl Salicylate

    SciTech Connect

    Porter, T. L.; Venedam, R. J.

    2013-03-01

    Sensors designed to detect the presence of methyl salicylate (MeS) have been tested. These sensors use a sensor platform based on the embedded piezoresistive microcantilever (EPM) design. Sensing materials tested in this study included the polymer poly (ethylene vinyl acetate), or PEVA as well as a composite sensing material consisting of the enzyme SA-binding protein 2, or SABP-2. The SABP-2 was immobilized within a biocompatible Hypol gel matrix. The PEVA-based sensors exhibited slower but reversible responses to MeS vapors, recovering fully to their initial state after the analyte was removed. SABP-2 sensors exhibited faster overall response to the introduction of MeS, responding nearly instantly. These sensors, however, do not recover after exposures have ended. Sensors using the SABP-2 sensing materials act instead as integrating sensors, measuring irreversibly the total MeS dose obtained.

  19. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    PubMed

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated. PMID:21981047

  20. The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum

    PubMed Central

    Mumm, Roland; Poelman, Erik H.; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9787-1) contains supplementary material, which is available to authorized users. PMID:20407809

  1. [Acute salicylate poisoning].

    PubMed

    Reingardiene, Dagmara; Lazauskas, Robertas

    2006-01-01

    Although aspirin (acetylsalicylic acid) has become widely available without prescription, cases of self-poisoning due to overdose of salicylates are quite uncommon, with a low reported mortality. However, severe poisoning with these preparations is life threatening. Besides the aspirin, there are other sources of salicylate poisoning, such as an excessive application of topical agents, ingestion of salicylate containing ointments, use of keratolytic agents or agents containing methyl salicylate (e.g. oil of wintergreen). Most of these preparations are liquid, highly concentrated and lipid soluble, and, therefore, they are able to provoke a severe, rapid salicylate poisoning. On the basis of clinical and metabolic features or salicylate concentration in plasma it is very important to diagnose severe poisoning with salicylates in time and prescribe an adequate treatment. In the present review article various aspects of salicylate poisoning and its treatment are discussed: epidemiology, pharmacokinetics and pharmacodynamics of salicylates, clinical manifestations of their toxicity, management, enhanced elimination and prognosis. PMID:16467617

  2. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon).

    PubMed

    Siboza, Xolani Irvin; Bertling, Isa; Odindo, Alfred Oduor

    2014-11-15

    Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10μM MJ, 2mM SA or 10μM MJ plus 2mM SA, waxed, stored at -0.5, 2 or 4.5°C for up to 28 days plus 7 days at 23°C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10μM MJ plus 2mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10μM MJ plus 2mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD. PMID:25216124

  3. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. PMID:24817050

  4. Calcium oxalate crystals and methyl salicylate as toxic principles of the fresh leaves from Palicourea longiflora, an endemic species in the Amazonas state.

    PubMed

    Coelho, Euricléia Gomes; Amaral, Ana Claudia F; Ferreira, José Luiz P; dos Santos, Adriane G; Pinheiro, Maria Lúcia B; Silva, Jefferson Rocha de A

    2007-03-01

    The species of the genus Palicourea (Rubiaceae family) is well-known for its toxicity towards animals, particularly livestock. This work reports the occurrence of skin irritation during the manipulation of Palicourea longiflora, considering the prevalence of the monofluoracetic acid (MFAA) and another toxic compound: methyl salicylate. The MFAA was identified by 19F-NMR and methyl salicylate by gas chromatography linked to mass spectrometry (GC/MS) analysis. Additionally, an anatomical study of leaves had been used to explain the mechanism of penetration of the toxic principles. PMID:17161444

  5. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    PubMed

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-06-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents. PMID:26339920

  6. Evaluation of Airborne Methyl Salicylate for Improved Conservation Biological Control of Two-Spotted Spider Mites and Hop Aphid in Oregon Hop Yards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  7. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mites and hop aphid in Oregon hop yards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...

  8. Optical bar code recognition of methyl salicylate (MES) for environmental monitoring using fluorescence resonance energy transfer (FRET) on thin films

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Tatineni, Balaji; Anderson, John; Tepper, Gary

    2006-10-01

    Fluorescence resonance energy transfer (FRET) is a process in which energy is transferred nonradiatively from one fluorophore (the donor) in an excited electron state to another, the chromophore (the acceptor). FRET is distinctive in its ability to reveal the presence of specific recognition of select targets such as the nerve agent stimulant Methyl Salicylate (MES) upon spectroscopic excitation. We introduce a surface imprinted and non-imprinted thin film that underwent AC-Electrospray ionization for donor-acceptor pair(s) bound to InGaP quantum dots and mesoporous silicate nanoparticles. The donor-acceptor pair used in this investigation included MES (donor) and 6-(fluorescein-5-(and-6)- carboxamido) hexanoic acid, succinimidyl ester bound to InGaP quantum dots (acceptor). MES was then investigated as a donor to various acceptor fluorophore: InGaP: mesoporous silicate nanoparticle layers.

  9. Effective photosensitized energy transfer of nonanuclear terbium clusters using methyl salicylate derivatives.

    PubMed

    Omagari, Shun; Nakanishi, Takayuki; Seki, Tomohiro; Kitagawa, Yuichi; Takahata, Yumie; Fushimi, Koji; Ito, Hajime; Hasegawa, Yasuchika

    2015-03-12

    The photophysical properties of the novel nonanuclear Tb(III) clusters Tb-L1 and Tb-L2 involving the ligands methyl 4-methylsalicylate (L1) and methyl 5-methylsalicylate (L2) are reported. The position of the methyl group has an effect on their photophysical properties. The prepared nonanuclear Tb(III) clusters were identified by fast atom bombardment mass spectrometry and powder X-ray diffraction. Characteristic photophysical properties, including photoluminescence spectra, emission lifetimes, and emission quantum yields, were determined. The emission quantum yield of Tb-L1 (?(??*) = 31%) was found to be 13 times larger than that of Tb-L2 (?(??*) = 2.4%). The photophysical characterization and DFT calculations reveal the effect of the methyl group on the electronic structure of methylsalicylate ligand. In this study, the photophysical properties of the nonanuclear Tb(III) clusters are discussed in relation to the methyl group on the aromatic ring of the methylsalicylate ligand. PMID:25671396

  10. Crystal structure of 2,5-di-methyl-anilinium salicylate.

    PubMed

    Mani, A; Kumar, P Praveen; Chakkaravarthi, G

    2015-09-01

    The title mol-ecular salt, C8H12N(+)·C7H5O3 (-) arose from the proton-transfer reaction between 2,5-xylidine and salicylic acid. In the anion, the dihedral angle between the planes of the aromatic ring and the -CO2 (-) group is 11.08?(8)°; this near planarity is consolidated by an intra-molecular O-H?O hydrogen bond. In the crystal, the components are connected by N-H?O hydrogen bonds, with all three O atoms in the anion acting as acceptors; the result is a [100] chain. The structure also features weak C-H?O bonds and aromatic ?-? stacking [centroid-to-centroid distance = 3.7416?(10)?Å] inter-actions, which lead to a three-dimensional network. PMID:26396881

  11. Crystal structure of tris­(N-methyl­salicyl­aldiminato-?2 N,O)chromium(III)

    PubMed Central

    Hilbert, Jessica; Kabus, Sven; Näther, Christian; Bensch, Wolfgang

    2015-01-01

    The crystal structure of the title compound, [Cr(C8H8NO)3], is isotypic with the vanadium(III) analogue. The asymmetric unit consists of one Cr3+ cation and three N-methyl­salicylaldiminate anions. The metal cation is octa­hedrally coordinated by three N,O-chelating N-methyl­salicylaldiminate ligands, leading to discrete and neutral complexes. In the crystal, neighbouring complexes are linked via C—H?O hydrogen-bonding inter­actions into chains propagating parallel to the c axis. PMID:26870448

  12. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.

    PubMed

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-02-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. PMID:25527285

  13. Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots.

    PubMed

    Hao, Xiaolong; Shi, Min; Cui, Lijie; Xu, Chao; Zhang, Yanjie; Kai, Guoyin

    2015-01-01

    Tanshinone is a group of active diterpenes, which are widely used in the treatment of cardiovascular disease. In this study, methyl jasmonate (MJ) and salicylic acid (SA) were used to investigate their effects on tanshinone accumulation and biosynthetic gene expression in the hairy roots of geranylgeranyl diphosphate synthase (SmGGPPS) overexpression line (G50) in Salvia miltiorrhiza. High-performance liquid chromatography analysis showed that total tanshinone content in G50 was obviously increased by 3.10-fold (11.33 mg/g) with MJ at 36 H and 1.63 times (5.95 mg/g) after SA treatment for 36 H in comparison with their mimic treatment control. Furthermore, quantitative reverse-transcription PCR analysis showed that the expression of isopentenyl-diphosphate delta-isomerase (SmIPPI), SmGGPPS, copalyl diphosphate synthase (SmCPS), and kaurene synthase-like (SmKSL) increased significantly with MJ treatment. However, the expression of SmIPPI reached the highest level at 144 H, whereas those of SmGGPPS, SmCPS, and SmKSL only increased slightly with SA treatment. The two elicitor treatments suggested that tanshinone accumulation positively correlated to the expression of key genes such as SmGGPPS, SmCPS, and SmKSL. Meanwhile, the study also indicated that it was a feasible strategy to combine elicitor treatment with transgenic technology for the enhancement of tanshinone, which paved the way for further metabolic engineering of tanshinone biosynthesis. PMID:24779358

  14. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  15. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk.

    PubMed

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-Zheng; Hicks, Derrick; Souza, Amancio de; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-03-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  16. Encapsulation of methyl and ethyl salicylates by beta-cyclodextrin HPLC, UV-vis and molecular modeling studies.

    PubMed

    Filippa, Mauricio; Sancho, Matías I; Gasull, Estela

    2008-11-01

    The complexation of methyl salicylate (MS) and ethyl salicylate (ES), non-steroidal analgesic, anti-inflammatory and antirrheumatic drugs with beta-cyclodextrin (betaCD) has been studied from thermodynamic and structural points of view. The complexation with betaCD has been investigated using reversed-phase liquid chromatography. Retention behavior has been analyzed on a reverse-phase column Luna 18(2) 5 microm. The mobile-phase was methanol:water in different ratios (55:45 to 70:30) in which betaCD (1-9 mM) was incorporated as a mobile-phase additive. The decrease in retention times with increasing concentrations of betaCD enables the determination of the apparent stability constant of the complexes. Values at 30 degrees C with 55% methanol were K(MS:betaCD): 15.84 M(-1) and K(ES:betaCD): 12.73 M(-1) for MS and ES, respectively. The apparent stability constants decrease as the polarity of the solvent decreases. The low solubility of MS and ES in aqueous solution has been improved by complexation with betaCD (1-9 mM). The stability constants of the complexes obtained from the phase-solubility diagrams using a UV-vis spectrophotometric method were K(MS:betaCD): 229 M(-1) and K(ES:betaCD): 166 M(-1). In addition, semi-empirical quantum mechanics calculations using AM1 and PM3 methods in vacuum were performed. The energetically favorable inclusion structures were identified and the most favorable orientation for the inclusion process was found to be the head-down orientation for both complexes. Enthalpy for encapsulation processes was found to be favorable (DeltaH degrees <0), while entropy (DeltaS degrees <0) and Gibbs free energy were unfavorable (DeltaG degrees >0). By means of HPLC and UV-vis measurements and quantum mechanics calculations, it was found that MS and ES form a 1:1 inclusion complex with betaCD. The theoretical results are in agreement with the experimental parameters associated with the encapsulation process. PMID:18650048

  17. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  18. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  19. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae?

    PubMed

    Hountondji, Fabien C C; Hanna, Rachid; Sabelis, Maurice W

    2006-01-01

    Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of herbivore-induced plant volatiles (HIPV) as well as that of mite-infested cassava. Here, we investigated the effect of methyl salicylate in its pure form on the production of pre-infective spores (conidia), and the germination of these spores into infective spores (capilliconidia), by a Brazilian isolate and a Beninese isolate of N. tanajoae. Mummified mites previously infected by the fungal isolates were screened under optimal abiotic conditions for sporulation inside tightly closed boxes with or without methyl salicylate diffusing from a capillary tube. Production of conidia was consistently higher (37%) when the Beninese isolate was exposed to MeSA than when not exposed to it (305.5 +/- 52.62 and 223.2 +/- 38.13 conidia per mummy with and without MeSA, respectively). MeSA, however, did not promote conidia production by the Brazilian isolate (387.4 +/- 44.74 and 415.8 +/- 57.95 conidia per mummy with and without MeSA, respectively). Germination of the conidia into capilliconidia was not affected by MeSA for either isolate (0.2%, 252.6 +/- 31.80 vs. 253.0 +/- 36.65 for the Beninese isolate and 4.2%, 268.5 +/- 37.90 vs. 280.2 +/- 29.43 for the Brazilian isolate). The effects of MeSA on the production of conidia were similar to those obtained under exposure to the complete blends of HIPV for the case of the Beninese isolate, but dissimilar (no promoting effect of MeSA) for the case of the Brazilian isolate. This shows that MeSA, being one compound out of many HIPV, can be a factor promoting sporulation of N. tanajoae, but it may not be the only factor as its effect varies with the fungal isolate under study. PMID:16680566

  20. The Vasodilator Effect of a Cream Containing 10% Menthol and 15% Methyl Salicylate on Random-Pattern Skin Flaps in Rats

    PubMed Central

    Dölen, Utku Can; Sungur, Nezih; Koca, Gökhan; Ertunç, Onur; Bağcı Bosi, Ayşe Tülay; Koçer, Uğur

    2015-01-01

    Background It is still difficult to prevent partial or full-thickness flap necrosis. In this study, the effects of a cream containing menthol and methyl salicylate on the viability of randompattern skin flaps were studied. Methods Forty female Sprague-Dawley rats were divided into two equal groups. Caudally based dorsal random-pattern skin flaps were elevated, including the panniculus carnosus. In the study group, 1.5 mL of a cream containing menthol and methyl salicylate was applied to the skin of the flap, and saline solution (0.9%) was used in the control group. Upon completion of the experiment, flap necrosis was analyzed with imaging software and radionuclide scintigraphy. Histopathological measurements were made of the percentage of viable flaps, the number of vessels, and the width of the panniculus carnosus muscle. Results According to the photographic analysis, the mean viable flap surface area in the study group was larger than that in the control group (P=0.004). According to the scintigrams, no change in radioactivity uptake was seen in the study group (P>0.05). However, a significant decrease was observed in the control group (P=0.006). No statistically significant differences were observed between the groups in terms of the percentage of viable flaps, the number of vessels, or the width of the panniculus carnosus muscle (P>0.05). Conclusions Based on these results, it is certain that the cream did not reduce the viability of the flaps. Due to its vasodilatory effect, it can be used as a component of the dressing in reconstructive operations where skin perfusion is compromised. PMID:26618115

  1. Methyl salicylate lactoside inhibits inflammatory response of fibroblast-like synoviocytes and joint destruction in collagen-induced arthritis in mice

    PubMed Central

    Xin, Wenyu; Huang, Chao; Zhang, Xue; Xin, Sheng; Zhou, Yiming; Ma, Xiaowei; Zhang, Dan; Li, Yongjie; Zhou, Sibai; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

    2014-01-01

    BACKGROUND AND PURPOSE Methyl salicylate 2-O-?-d-lactoside (MSL), whose chemical structure is similar to that of salicylic acid, is a natural product derivative isolated from a traditional Chinese herb. The aim of this study was to investigate the therapeutic effect of MSL in mice with collagen-induced arthritis (CIA) and explore its underlying mechanism. EXPERIMENTAL APPROACH The anti-arthritic effects of MSL were evaluated on human rheumatoid fibroblast-like synoviocytes (FLS) in vitro and CIA in mice in vivo by obtaining clinical scores, measuring hind paw thickness and inflammatory cytokine levels, radiographic evaluations and histopathological assessments. KEY RESULTS Treatment with MSL after the onset of arthritis significantly prevented the progression and development of rheumatoid arthritis (RA) in CIA mice without megascopic gastric mucosa damage. In addition, MSL inhibited the production of pro-inflammatory mediators, the phosphorylation and translocation of NF-?B, and cell proliferation induced by TNF-? in FLS. MSL non-selectively inhibited the activity of COX?in vitro, but was a more potent inhibitor of COX-2 than COX-1. MSL also inhibited the phosphorylation of inhibitor of NF-?B kinase, I?B? and p65, thus blocking the nuclear translocation of NF-?B in TNF-?-stimulated FLS. CONCLUSION AND IMPLICATIONS MSL exerts therapeutic effects on CIA mice, suppressing the inflammatory response and joint destruction by non-selectively inhibiting the activity of COX and suppressing activation of the NF-?B signalling pathway, but without damaging the gastric mucosa. Therefore, MSL has great potential to be developed into a novel therapeutic agent for the treatment of RA. PMID:24712652

  2. Isolation and characterization of novel defence-related genes induced by copper, salicylic acid, methyl jasmonate, abscisic acid and pathogen infection in Brassica carinata.

    PubMed

    Zheng, Z; Uchacz, T M; Taylor, J L

    2001-05-01

    Summary To examine the defence response in Brassica carinata we differentially screened a cDNA library made from CuCl(2)-treated (Cu) leaves. The sequence of 17 of the 27 cDNA clones examined that showed Cu-induction had a high similarity to defence genes from other plant species. Among other clones that showed higher expression in the Cu leaves were two cDNAs encoding polypeptides of 351 and 250 amino acids, designated BcCJS1 and BcCJAS1. BcCJS1 had similarity to S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase from Clarkia breweri. However, the enzyme activity was not found in extracts from E. coli expressing BcCJS1. BcCJAS1 did not show extensive similarity to any genes with known function in the databases but it did contain three regions of amino acid sequence that are frequently found in amidotransferases. A third Cu-induced mRNA, Bcp6PGL, showed very high (86%) similarity to a putative 6-phosphogluconolactonase (6PGL) from Arabidopsis thaliana. In addition to Cu induction, BcCJS1 expression was induced by methyl jasmonate (MeJA) and salicylic acid (SA), BcCJAS1 expression by MeJA, SA and abscisic acid and Bcp6PGL expression by MeJA. The expression of all three genes increased after Alternaria brassicae infection. BcCJS1 and BcCJAS1 were induced within 1 h after MeJA- but not until 3 h after SA-treatment. The expression of both genes was systemically induced after infection with a compatible or incompatible fungal pathogen. SA systemically induced only BcCJAS1. The effects of various inhibitors of signalling pathways on expression of the three genes were studied. PMID:20573003

  3. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  4. Paramagnetic metal effect on the ligand localized S/sub 1/. -->. T/sub 1/ intersystem crossing in the rare-earth-metal complexes and methyl salicylate

    SciTech Connect

    Tobita, S.; Arakawa, M.; Tanaka, I.

    1985-01-01

    The electronic relaxation processes in the chelates of La/sup 3 +/, Gd/sup 3 +/, Tb/sup 3 +/, and Lu/sup 3 +/ with methyl salicylate have been investigated by measurements of picosecond fluorescence, nanosecond transient absorptions, and quantum yields. The quantum yields of the S/sub 1/ ..-->.. T/sub 1/ intersystem crossing are not appreciably altered by a change in the central metal ions. However, the fluorescence lifetimes are decreased dramatically in the paramagnetic Gd/sup 3 +/ (240 ps) and Tb/sup 3 +/ (<10 ps) complexes compared with those in the diamagnetic La/sup 3 +/ (2.2 ns) and Lu/sup 3 +/ (2.4 ns) complexes. The rate constants derived from these results for the S/sub 1/ ..-->.. T/sub 1/ intersystem crossing, k/sub TM/, in ligands are 5.5 x 10/sup 7/, 7.5 x 10/sup 8/, and 7.9 x 10/sup 7/ s/sup -1/ for the La/sup 3 +/, Gd/sup 3 +/, and Lu/sup 3 +/ complexes, respectively. A large increase of k/sub TM/ is observed in the paramagnetic Gd/sup 3 +/ complexes, which can be attributed to the electron exchange mechanism with ligand ..pi.. electrons. 27 references, 8 figures, 3 tables.

  5. Salicylic acid, ethephon, and methyl jasmonate enhance ester regeneration in 1-MCP-treated apple fruit after long-term cold storage.

    PubMed

    Li, Da-Peng; Xu, Yun-Feng; Sun, Li-Ping; Liu, Li-Xia; Hu, Xiao-Li; Li, De-Quan; Shu, Huai-Rui

    2006-05-31

    Volatile esters, primarily synthesized in peel tissues, are major aromatic components of apple fruits [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. The use of cold storage combined with 1-methylcyclopropene (1-MCP) treatment prolongs the life of apples but represses the regeneration of esters during poststorage ripening. In this study, the regeneration of total esters was significantly increased in apple fruits treated with salicylic acid (SA) and Ethephon (ETH) that had been treated once or twice with 1-MCP. However, methyl jasmonate (MeJA) treatment resulted in regeneration of total esters after a single 1-MCP treatment. To determine the mechanism by which SA, ETH, and MeJA regulate ester regeneration, the apple alcohol acyltransferase gene (MdAAT2) was investigated at the mRNA, protein, and enzyme activity levels. Genes associated with ethylene perception were also investigated by RT-PCR. The results suggest that MdAAT2 controls ester regeneration and that MdETR1 plays a key role in ethylene perception and regulation of downstream MdAAT2 gene expression during poststorage. Ester compounds and concentrations differed in peels treated with different signal molecules, indicating that regulation of the pathway upstream of straight-chain ester biosynthesis depended on the regulation of lipoxygenase (LOX) and alcohol dehydrogenase (ADH) activity by SA, ETH, and MeJA during poststorage ripening. PMID:16719511

  6. Salicylic acid triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in root meristem cells of Allium cepa L.

    PubMed

    Patra, Jita; Sahoo, Malaya K; Panda, Brahma B

    2005-03-01

    Salicylic acid (SA), 0.01 mM, a signalling phytohormone, was tested for induction of adaptive response against genotoxicity of methyl mercuric chloride (MMCl), 0.013 mM; ethylmethane sulfonate (EMS), 2.5 mM, or maleic hydrazide (MH), 5 mM, in root meristem cells of Allium cepa. Induction of adaptive response to EMS by hydrogen peroxide (H2O2), 1 mM, and yet another secondary signal molecule was tested for comparison. Assessed by the incidence of mitoses with spindle and/or chromosome aberration and micronucleus, the findings provided evidence that SA-conditioning triggered adaptive response against the genotoxic-challenges of MMCl and EMS, but failed to do so against MH. H2O2, which is known to induce adaptive response to MMCl and MH, failed to induce the same against EMS in the present study. The findings pointed to the possible role of signal transduction in the SA-induced adaptive response to genotoxic stress that perhaps ruled out an involvement of H2O2. PMID:15725616

  7. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  8. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors

    PubMed Central

    Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine

    2010-01-01

    Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H2O2 treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108

  9. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation*

    PubMed Central

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-01-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  10. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards.

    PubMed

    Woods, J L; James, D G; Lee, J C; Gent, D H

    2011-12-01

    The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and hop aphid, Phorodon humuli (Schrank) (Homoptera: Aphididae). A 2-year study was conducted to evaluate the recommended commercial use of MeSA in hop yards in Oregon. Slow-release MeSA dispensers were stapled to supporting poles in 0.5 ha plots and these plots were compared to a paired non-treated plot on each of three farms in 2008 and 2009. Across both years, there was a trend for reduced (range 40-91%) mean seasonal numbers of T. urticae in five of the six MeSA-baited plots. Stethorus spp., key spider mite predators, tended to be more numerous in MeSA-baited plots compared to control plots on a given farm. Mean seasonal densities of hop aphid and other natural enemies (e.g., Orius spp. and Anystis spp.) were similar between MeSA-treated and control plots. Variability among farms in suppression of two-spotted spider mites and attraction of Stethorus spp. suggests that the use of MeSA to enhance CBC of spider mites in commercial hop yards may be influenced by site-specific factors related to the agroecology of individual farms or seasonal effects that require further investigation. The current study also suggests that CBC of hop aphid with MeSA in this environment may be unsatisfactory. PMID:22020782

  11. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors.

    PubMed

    Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine

    2010-03-01

    Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H(2)O(2) treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108

  12. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd

    PubMed Central

    2010-01-01

    Background Many studies have been done to find out the molecular mechanism of systemic acquired resistance (SAR) in plants in the past several decades. Numbers of researches have been carried out in the model plants such as arabidopsis, tobacco, rice and so on, however, with little work done in woody plants especially in fruit trees such as apple. Components of the pathway of SAR seem to be extremely conserved in the variety of species. Malus hupehensis, which is origin in China, is strong resistance with rootstock. In the study, we attempted to make the expression pattern of pathogenesis related (PR) genes which were downstream components of the SAR pathway in response to salicylic acid(SA), methyl jasmonate(MeJA) and 1-aminocyclopropane-1-carboxylic acid(ACC) in Malus hupehensis. Findings In order to analyze the expression pattern, the partial sequence of three PR genes from Malus hupehensis, MhPR1, MhPR5 and MhPR8 was isolated. These three PR genes were induced by SA, MeJA and ACC. However, MhPR1, MhPR5 and MhPR8 performed a distinct pattern of expression in different plant organs. MhPR5 and MhPR8 were basal expression in leaves, stems and roots, and MhPR1 was basal expression only in stems. The expression of MhPR1, MhPR5 and MhPR8 was enhanced during the first 48 h post-induced with SA, MeJA and ACC. Conclusions The results showed that a distinct pattern of expression of PR genes in Malus hupehensis which differed from the previous reports on model plants arabidopsis, tobacco and rice. MhPR1, MhPR5 and MhPR8 were induced by SA, MeJA and ACC, which were regarded as the marker genes in the SAR response in Malus hupehensis. In contrast with herbal plants, there could be specific signal pathway in response to SA, JA and ET for woody plants. PMID:20659347

  13. Salicylate increases the gain of the central auditory system.

    PubMed

    Sun, W; Lu, J; Stolzberg, D; Gray, L; Deng, A; Lobarinas, E; Salvi, R J

    2009-03-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. PMID:19154777

  14. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; K?pczy?ska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici, so it can be applied in practice. PMID:25867625

  15. Salicylic Acid Topical

    MedlinePLUS

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  16. Candy flavoring as a source of salicylate poisoning.

    PubMed

    Howrie, D L; Moriarty, R; Breit, R

    1985-05-01

    Methyl salicylate (oil of wintergreen) in the form of candy flavoring was ingested by a 21-month-old male infant who subsequently developed vomiting, lethargy, and hyperpnea. A "swallow" of the solution resulted in a serum salicylate concentration of 81 mg/dL six hours after ingestion. The infant was treated with parenteral fluids and sodium bicarbonate and he recovered rapidly. Hazards associated with salicylate use in this form include lack of parental awareness of the substance's toxic potential, the attractiveness of the candy-like odor, and the availability of the liquid in non-child-resistant packaging containing potentially lethal quantities. PMID:3991273

  17. Salicylate toxicity from ingestion of traditional massage oil

    PubMed Central

    Muniandy, Rajesh Kumar; Sinnathamby, Vellan

    2012-01-01

    A 16-month-old child developed a brief generalised tonic–clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1?week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome. PMID:22922924

  18. Mechanisms of salicylate ototoxicity.

    PubMed

    Stypulkowski, P H

    1990-06-01

    The ototoxic effects of salicylates, reversible hearing loss and tinnitus, are well documented. However, the pharmacological mechanisms underlying these changes in cochlear function are not well understood. The studies reported here were an investigation of the site and mechanism of salicylate ototoxicity through an examination of its effects on ionic, neural and mechanical aspects of cochlear transduction. Salicylate administration produced an intensity dependent reduction of the AP and SP, with the predominant effects occurring at low stimulus levels. In direct contrast, a significant increase was observed for corresponding CM responses, independent of stimulus intensity. Salicylates also reduced the magnitude of efferent induced shifts in the AP, CM and EP. Cochlear mechanics were altered as evidenced by the reduction in two-tone distortion products, electrically evoked emissions, and electrophonic APs. These changes in cochlear function are attributed to a salicylate mediated increase in the membrane conductance of the outer hair cells. This change in membrane permeability interferes with the reverse transduction process, effectively reducing the gain of the cochlear amplifier. Results of single unit recordings suggest parallels between salicylate intoxication and noise trauma, which are discussed with regard to potential mechanisms of tinnitus generation. PMID:2380120

  19. Efficient scavenging of ?-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of ?-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9?:?1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the ?-carotene radical cation by the three salicylates is supported by DFT-calculations. PMID:24336797

  20. Biosynthesis and metabolism of salicylic acid.

    PubMed Central

    Lee, H I; León, J; Raskin, I

    1995-01-01

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. PMID:11607533

  1. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  2. The risk of severe salicylate poisoning following the ingestion of topical medicaments or aspirin.

    PubMed

    Chan, T Y

    1996-02-01

    Apart from isolated reports of severe salicylate poisoning after ingesting an unusually large amount of a medicinal oil, there are no published data on the threat arising from attempted suicide with topical medicaments containing methyl salicylate or wintergreen oil compared with aspirin tablets. In this retrospective study, the admission plasma salicylate concentrations and clinical presentations were compared in 80 subjects who had taken aspirin tablets (n = 42) or topical medicaments (n = 38). The proportions of subjects being symptomatic were similar in the two groups. Although the admission plasma salicylate concentrations were generally higher in subjects who had ingested aspirin tablets, the two highest readings (4.3 and 3.5 mmol/1) belonged to two of the subjects who had taken topical medicaments. Because of its liquid, concentrated form and lipid solubility, methyl salicylate poses the threat of severe, rapid-onset salicylate poisoning. The toxic potential of topical medicaments containing methyl salicylate or wintergreen oil should be fully appreciated by both physicians and the general public. PMID:8871462

  3. Salicylate activity. 2. Potentiation of atrazine.

    PubMed

    Silverman, F Paul; Petracek, Peter D; Heiman, Daniel F; Ju, Zhiguo; Fledderman, Christina M; Warrior, Prem

    2005-12-14

    Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] inhibits photosystem II (PSII) and is commonly used to control weeds in maize. It has been found that addition of sodium salicylate (sodium 2-hydroxybenzoate; NaSA) increased the postemergence herbicidal activity of atrazine against dicotyledonous weeds. NaSA also potentiated the activity of bentazon, another PSII-inhibiting herbicide. NaSA increased atrazine activity when applied either as a tank mix or up to 96 h prior to atrazine application. Other salicylates and the plant disease resistance inducers acibenzolar-S-methyl [benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester] and 2,6-dichloroisonicotinic acid also increased atrazine activity. Among the compounds tested, 3-chloro-5-fluorosalicylate, 4-chlorosalicylate, or 2,6-dichloroisonicotinic acid combined with atrazine yielded the greatest increase in herbicidal activity. Potentiation of atrazine by NaSA was greater at higher temperatures (35 and 25 > 15 degrees C). Also, greater potentiation was observed as the light level decreased. In darkness, NaSA alone or in combination with atrazine caused plant death, whereas atrazine alone had little effect. NaSA increased atrazine activity on npr1-2, an Arabidopsis mutant compromised in SA-induced disease resistance. Atrazine activity was also potentiated by NaSA on the ethylene insensitive mutant ein2-1. This indicates that atrazine potentiation is independent of either salicylate-induced disease resistance or ethylene perception. PMID:16332129

  4. Salicylate toxicity model of tinnitus.

    PubMed

    Stolzberg, Daniel; Salvi, Richard J; Allman, Brian L

    2012-01-01

    Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ?14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed. PMID:22557950

  5. Salicylate toxicity model of tinnitus

    PubMed Central

    Stolzberg, Daniel; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ?14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed. PMID:22557950

  6. Acetylsalicylate and salicylates in foods.

    PubMed

    Janssen, P L; Katan, M B; van Staveren, W A; Hollman, P C; Venema, D P

    1997-03-19

    Acetylsalicylic acid is effective in the prevention of cardiovascular disease. It was suggested that fruits and vegetables provide unknown amounts of acetylsalicylic acid. We could not find any acetylsalicylic acid in 30 foods using HPLC with fluorescence detection (detection limits: 0.02 mg/kg for fresh, and 0.2 mg/kg for dried products). We showed that urinary excretion of salicylates is a valid indicator for intake, and found a median salicylate excretion of 10 micromol (1.4 mg) in 24 h urine of 17 volunteers eating a variety of diets. Our data suggest that the content of (acetyl)salicylic acid of diets may be too low to affect disease risk. PMID:9103279

  7. 21 CFR 556.590 - Salicylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and... Residues of New Animal Drugs § 556.590 Salicylic acid. A tolerance of zero is established for residues of salicylic acid in milk from dairy animals....

  8. Microwave spectrum of salicylic acid

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Tang, Shouyuan; Velino, Biagio; Caminati, Walther

    2009-03-01

    The rotational spectra of salicylic acid and of three OD deuterated species have been investigated by free jet millimiter-wave absorption spectroscopy. Only lines of the most stable conformer, the one with an intramolecular hydrogen bond between the phenolic hydrogen and the carbonyl oxygen, have been observed. The positions of the phenolic and carboxylic hydrogens have been precisely derived.

  9. Inhibition of Ethylene Biosynthesis by Salicylic Acid

    PubMed Central

    Leslie, Charles A.; Romani, Roger J.

    1988-01-01

    Salicylic acid inhibited ethylene formation from ACC in self-buffered (pH 3.8) pear (Pyrus communis) cell suspension cultures with a K1app of about 10 micromolar after 1 to 3 hours incubation. Inhibition appeared noncompetitive. Among 22 related phenolic compounds tested, only acetylsalicylic acid showed similar levels of inhibition. Inhibition by salicylic acid was inversely dependent on the pH of the culture medium and did not require a continuous external supply of salicylate. When compared to known inhibitors of the ethylene forming enzyme, cobalt, n-propyl gallate, and dinitrophenol, inhibition by salicylic acid most closely resembled that by dinitrophenol but salicylic acid did not produce the same degree of respiratory stimulation. Results are discussed in terms of other known effects of salicylic acid on plants, pH-dependency, and the possible influence of salicylic acid on electron transport. PMID:16666393

  10. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

  11. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    PubMed

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level. PMID:25636249

  12. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats.

    PubMed

    Ralli, M; Troiani, D; Podda, M V; Paciello, F; Eramo, S L M; de Corso, E; Salvi, R; Paludetti, G; Fetoni, A R

    2014-06-01

    Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The present study confirms the role of cochlear NMDA receptors in the induction of salicylate-induced tinnitus. PMID:24882929

  13. Might salicylate exert benefits against childhood cancer?

    PubMed Central

    Morgan, G; Johnsen, JI

    2010-01-01

    Childhood cancers are a broad range of diseases. Research on the chemopreventive potential of non-steroidal anti-inflammatory drugs, such as aspirin (acetylsalicylate) has yet to be fully directed towards childhood cancers. A prima facie hypothesis on salicylate and childhood cancer would therefore be based on several factors. Firstly, salicylate inhibits the production of inflammatory prostaglandins, which have been shown to stimulate the growth of cancer cells. Secondly, salicylate inhibits the growth of cancer cells in pre-clinical models. Thirdly, salicylate is a natural component of fruits and vegetables so it is consumed within the diet. Further research, of which some possibilities are identified, is recommended. PMID:22276025

  14. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area

    PubMed Central

    WU, HAO; XU, FENG-LEI; YIN, YONG; DA, PENG; YOU, XIAO-DONG; XU, HUI-MIN; TANG, YAN

    2015-01-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation. PMID:25873216

  15. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  16. Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli

    SciTech Connect

    Rosner, J.L.; Aumercier, M. )

    1990-12-01

    The toxicity of Cd{sub 2+} in Escherichia coli K-12 was potentiated by salicylate and several related compounds. The efficiency of plating on Luria broth plates was reduced by more than 10(5)-fold when 10 mM salicylate and 200 microM CdCl{sub 2} were present simultaneously but was unaffected when either compound was present by itself. Synergistic effects were found at pH 7.4 with certain other weak acids (acetyl salicylate (aspirin), benzoate, and cinnamate) and with a nonacidic salicylate analog, salicyl alcohol, but not with acetate or p-hydroxy benzoate. Thus, the synergism with Cd{sub 2+} is determined by the structure of the compounds and not merely by their acidity. The kinetics of {sup 109}Cd{sub 2+} uptake by cells grown and assayed in broth indicated the presence of two uptake systems with Kms of 1 and 52 microM Cd{sub 2+} and Vmaxs of 0.059 and 1.5 mumol of Cd{sub 2+} per min per g of cells, respectively. The kinetics of uptake for cells grown and assayed with 20 mM salicyl alcohol showed 2.5-fold increases in the Vmaxs of both systems but no change in the Kms. Salicylate-grown cells also exhibited increased rates of {sup 109}Cd{sub 2+} uptake by both systems. Thus, enhanced uptake of Cd{sub 2+} may be responsible for the potentiation of Cd{sub 2+} toxicity by salicylate and salicyl alcohol.

  17. Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats.

    PubMed

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2014-04-01

    Aspirin (salicylate), as a common drug that is frequently used for long-term treatment in a clinical setting, has the potential to cause reversible tinnitus. However, few reports have examined the inflammatory cytokines expression and alteration of synaptic ultrastructure in the cochlear nucleus (CN) in a rat model of tinnitus. The tinnitus-like behavior of rats were detected by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. We investigated the expression levels of the tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), N-methyl D-aspartate receptor subunit 2A (NR2A) mRNA and protein in the CN and compared synapses ultrastructure in the CN of tinnitus rats with normal ones. GPIAS showed that rats with long-term administration of salicylate were experiencing tinnitus, and the mRNA and protein expression levels of TNF-? and NR2A were up-regulated in chronic treatment groups, and they returned to baseline 14 days after cessation of treatment. Furthermore, compared to normal rats, repetitive salicylate-treated rats showed a greater number of presynaptic vesicles, thicker and longer postsynaptic densities, increased synaptic interface curvature. These data revealed that chronic salicylate administration markedly, but reversibly, induces tinnitus possibly via augmentation of the expression of TNF-? and NR2A and cause changes in synaptic ultrastructure in the CN. Long-term administration of salicylate causes neural plasticity changes at the CN level. PMID:24092407

  18. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and ?-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  19. Salicylate poisoning: an evidence-based consensus guideline for out-of-hospital management.

    PubMed

    Chyka, Peter A; Erdman, Andrew R; Christianson, Gwenn; Wax, Paul M; Booze, Lisa L; Manoguerra, Anthony S; Caravati, E Martin; Nelson, Lewis S; Olson, Kent R; Cobaugh, Daniel J; Scharman, Elizabeth J; Woolf, Alan D; Troutman, William G

    2007-01-01

    A review of U.S. poison center data for 2004 showed over 40,000 exposures to salicylate-containing products. A guideline that determines the conditions for emergency department referral and pre-hospital care could potentially optimize patient outcome, avoid unnecessary emergency department visits, reduce health care costs, and reduce life disruption for patients and caregivers. An evidence-based expert consensus process was used to create the guideline. Relevant articles were abstracted by a trained physician researcher. The first draft of the guideline was created by the lead author. The entire panel discussed and refined the guideline before distribution to secondary reviewers for comment. The panel then made changes based on the secondary review comments. The objective of this guideline is to assist poison center personnel in the appropriate out-of-hospital triage and initial out-of-hospital management of patients with a suspected exposure to salicylates by 1) describing the process by which a specialist in poison information should evaluate an exposure to salicylates, 2) identifying the key decision elements in managing cases of salicylate exposure, 3) providing clear and practical recommendations that reflect the current state of knowledge, and 4) identifying needs for research. This guideline is based on an assessment of current scientific and clinical information. The expert consensus panel recognizes that specific patient care decisions may be at variance with this guideline and are the prerogative of the patient and the health professionals providing care, considering all of the circumstances involved. This guideline does not substitute for clinical judgment. Recommendations are in chronological order of likely clinical use. The grade of recommendation is in parentheses: 1) Patients with stated or suspected self-harm or who are the victims of a potentially malicious administration of a salicylate, should be referred to an emergency department immediately. This referral should be guided by local poison center procedures. In general, this should occur regardless of the dose reported (Grade D). 2) The presence of typical symptoms of salicylate toxicity such as hematemesis, tachypnea, hyperpnea, dyspnea, tinnitus, deafness, lethargy, seizures, unexplained lethargy, or confusion warrants referral to an emergency department for evaluation (Grade C). 3) Patients who exhibit typical symptoms of salicylate toxicity or nonspecific symptoms such as unexplained lethargy, confusion, or dyspnea, which could indicate the development of chronic salicylate toxicity, should be referred to an emergency department (Grade C). 4) Patients without evidence of self-harm should have further evaluation, including determination of the dose, time of ingestion, presence of symptoms, history of other medical conditions, and the presence of co-ingestants. The acute ingestion of more than 150 mg/kg or 6.5 g of aspirin equivalent, whichever is less, warrants referral to an emergency department. Ingestion of greater than a lick or taste of oil of wintergreen (98% methyl salicylate) by children under 6 years of age and more than 4 mL of oil of wintergreen by patients 6 years of age and older could cause systemic salicylate toxicity and warrants referral to an emergency department (Grade C). 5) Do not induce emesis for ingestions of salicylates (Grade D). 6) Consider the out-of-hospital administration of activated charcoal for acute ingestions of a toxic dose if it is immediately available, no contraindications are present, the patient is not vomiting, and local guidelines for its out-of-hospital use are observed. However, do not delay transportation in order to administer activated charcoal (Grade D). 7) Women in the last trimester of pregnancy who ingest below the dose for emergency department referral and do not have other referral conditions should be directed to their primary care physician, obstetrician, or a non-emergent health care facility for evaluation of maternal and fetal risk. Routine referral to an emergency department for immediate

  20. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family.

    PubMed

    Zubieta, Chloe; Ross, Jeannine R; Koscheski, Paul; Yang, Yue; Pichersky, Eran; Noel, Joseph P

    2003-08-01

    Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid. PMID:12897246

  1. Infrared spectra of hydrogen-bonded salicylic acid and its derivatives : Salicylic acid and acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.

    1981-11-01

    Infrared spectra of hydrogen-bonded salicylic acid, O-deutero-salicylic acid and acetylsalicylic acid crystals have been studied experimentally and theoretically. Interpretation of these spectra was based on the Witkowski-Maréchal model. Semi-quantitative agreement between experimental and theoretical spectra can be achieved with the simplest form of this model, with values of interaction parameters transferable for equivalent intermolecular hydrogen bonds.

  2. Direct Effects of Salicylate on Renal Function in the Dog

    PubMed Central

    Quintanilla, A.; Kessler, R. H.

    1973-01-01

    Sodium salicylate was administered to anesthetized dogs in doses sufficient to produce concentrations in plasma comparable to those common in human salicylate toxicity. Salicylate administration increased the rates of excretion of water, sodium, and chloride in the urine. Salicylate administration also increased the rate of excretion of potassium so that its clearance often exceeded that of creatinine. This enhancement of potassium excretion was dissociated from the alkalosis that accompanies salicyate toxicity. Administration of 5% CO2 in inspired gas did not attenuate the excretion of potassium; injection of salicylate into one renal artery caused a unilateral kaliuresis. Phosphate excretion increased progressively after administration of salicylate. On several occasions the clearance of phosphate equalled that of creatinine. Salicylate reduced renal tubular glucose reabsorption. When salicylate was injected into a renal artery, a glycosuria occurred ipsilaterally at filtered loads of glucose far below the reabsorptive capacity of the dog kidney. Salicylate administration also was associated with early elevation of glucose, phosphate, and potassium concentration in plasma. Salicylate administration reduced the content of adenosine triphosphate in the renal medulla. Salicylate was concentrated within the medulla between 1.5 and 3 times that of the cortex, a gradient equal to that for chloride. Images PMID:4750446

  3. Cloning and characterization of a benzoic acid/salicylic acid carboxyl methyltransferase gene involved in floral scent production from lily (Lilium 'Yelloween').

    PubMed

    Wang, H; Sun, M; Li, L L; Xie, X H; Zhang, Q X

    2015-01-01

    In lily flowers, the volatile ester methyl benzoate is one of the major and abundant floral scent compounds; however, knowledge regarding the biosynthesis of methyl benzoate remains unknown for Lilium. In this study, we isolated a benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) gene, LiBSMT, from petals of Lilium 'Yelloween'. The gene has an open reading frame of 1083 base pairs (bp) and encodes a protein of 41.05 kDa. Sequence alignment and phylogenetic analyses of LiBSMT revealed 40-50% similarity with other known benzenoid carboxyl methyltransferases in other plant species, and revealed homology to BSMT of Oryza sativa. Heterologous expression of this gene in Escherichia coli yielded an enzyme responsible for catalyzing benzoic acid and salicylic acid to methyl benzoate and methyl salicylate, respectively. Quantitative real-time polymerase chain reaction analysis showed that LiBSMT was preferentially expressed in petals. Moreover, the expression of LiBSMT in petals was developmentally regulated. These expression patterns correlate well with the emission of methyl benzoate. Our results indicate that LiBSMT plays an important role in floral scent methyl benzoate production and emission in lily flowers. PMID:26600510

  4. Delayed recrudescence to toxic salicylate concentrations after salsalate overdose.

    PubMed

    West, Patrick L; Horowitz, B Zane

    2010-06-01

    Salicylates are common exposures. We report an unusual case of salicylate ingestion, as salsalate, with resolution of symptoms and return of salicylate levels to non-toxic values, with a subsequent, unexpected recrudescence to toxic levels requiring reinstitution of therapy. A 31-year-old man ingested unknown amounts of salsalate, hydroxyzine, and a benzodiazepine. He was intubated and treated with IV sodium bicarbonate and two doses of oral activated charcoal. Eight hours after presentation, his serum salicylate concentration peaked at 55 mg/dL, and then decreased to a nadir of 5.6 mg/dL 38 h after presentation, coinciding with return of GI motility. Several hours later salicylate concentrations began to rise, peaking 67 h after presentation at 61.7 mg/dL. He was treated with sodium bicarbonate and charcoal, which resulted in decreased serum salicylate to therapeutic levels. Salicylate ingestions are known to exhibit unusual toxicokinetics and absorption in overdose; however, this is the first case we are aware of that shows a return to toxic concentrations after apparent resolution of toxicity. Recrudescence of salicylate concentrations to a degree that would dictate reinstitution of therapy for overdose is unusual and may warrant prolonged monitoring of serum salicylate concentrations in salsalate ingestions. PMID:20405267

  5. Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids

    NASA Astrophysics Data System (ADS)

    Brittain, Harry G.

    2014-12-01

    The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

  6. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    SciTech Connect

    Yao, Jianzhuang; Xu, Qin; Chen, Feng; Guo, Hong

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoate in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.

  7. 4-Carbamoylpiperidinium 5-nitro­salicylate

    PubMed Central

    Smith, Graham; Wermuth, Urs D.

    2011-01-01

    In the crystal structure of the title compound, C6H13N2O+·C7H4NO5 ?, the isonipecotamide cations and the 5-nitro­salicylate anions form hydrogen-bonded chain substructures through head-to-tail piperidinium–carboxyl­ate N—H?O hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R 2 2(8)]. These chains are cross-linked by amide–carboxyl­ate N—H?O and piperidinium–nitro N—H?O associations, giving a sheet structure. PMID:21522633

  8. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses.

    PubMed

    Ruel, Jérôme; Chabbert, Christian; Nouvian, Régis; Bendris, Rim; Eybalin, Michel; Leger, Claude Louis; Bourien, Jérôme; Mersel, Marcel; Puel, Jean-Luc

    2008-07-16

    Currently, many millions of people treated for various ailments receive high doses of salicylate. Consequently, understanding the mechanisms by which salicylate induces tinnitus is an important issue for the research community. Behavioral testing in rats have shown that tinnitus induced by salicylate or mefenamate (both cyclooxygenase blockers) are mediated by cochlear NMDA receptors. Here we report that the synapses between the sensory inner hair cells and the dendrites of the cochlear spiral ganglion neurons express NMDA receptors. Patch-clamp recordings and two-photon calcium imaging demonstrated that salicylate and arachidonate (a substrate of cyclooxygenase) enabled the calcium flux and the neural excitatory effects of NMDA on cochlear spiral ganglion neurons. Salicylate also increased the arachidonate content of the whole cochlea in vivo. Single-unit recordings of auditory nerve fibers in adult guinea pig confirmed the neural excitatory effect of salicylate and the blockade of this effect by NMDA antagonist. These results suggest that salicylate inhibits cochlear cyclooxygenase, which increased levels of arachidonate. The increased levels of arachidonate then act on NMDA receptors to enable NMDA responses to glutamate that inner hair cells spontaneously release. This new pharmacological profile of salicylate provides a molecular mechanism for the generation of tinnitus at the periphery of the auditory system. PMID:18632935

  9. Salicylic acid as a peeling agent: a comprehensive review

    PubMed Central

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. PMID:26347269

  10. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes...

  11. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes...

  12. Glycolic Acid 15% Plus Salicylic Acid 2%

    PubMed Central

    Sánchez-Blanco, Elena

    2011-01-01

    Background: Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. Objective: The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. Methods: A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. Results: All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Conclusion: Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment. PMID:21938272

  13. Amygdala hyperactivity and tonotopic shift after salicylate exposure.

    PubMed

    Chen, Guang-Di; Manohar, Senthilvelan; Salvi, Richard

    2012-11-16

    The amygdala, important in forming and storing memories of aversive events, is believed to play a major role in debilitating tinnitus and hyperacusis. To explore this hypothesis, we recorded from the lateral amygdala (LA) and auditory cortex (AC) before and after treating rats with a dose of salicylate that induces tinnitus and hyperacusis-like behavior. Salicylate unexpectedly increased the amplitude of the local field potential (LFP) in the LA making it hyperactive to sounds?60 dB SPL. Frequency receptive fields (FRFs) of multiunit (MU) clusters in the LA were also dramatically altered by salicylate. Neuronal activity at frequencies below 10 kHz and above 20 kHz was depressed at low intensities, but was greatly enhanced for stimuli between 10 and 20 kHz (frequencies near the pitch of the salicylate-induced tinnitus in the rat). These frequency-dependent changes caused the FRF of many LA neurons to migrate towards 10-20 kHz thereby amplifying activity from this region. To determine if salicylate-induced changes restricted to the LA would remotely affect neural activity in the AC, we used a micropipette to infuse salicylate (20 ?l, 2.8 mM) into the amygdala. Local delivery of salicylate to the amygdala significantly increased the amplitude of the LFP recorded in the AC and selectively enhanced the neuronal activity of AC neurons at the mid-frequencies (10-20 kHz), frequencies associated with the tinnitus pitch. Taken together, these results indicate that systemic salicylate treatment can induce hyperactivity and tonotopic shift in the amygdala and infusion of salicylate into the amygdala can profoundly enhance sound-evoked activity in AC, changes likely to increase the perception and emotional salience of tinnitus and loud sounds. This article is part of a Special Issue entitled: Tinnitus Neuroscience. PMID:22464181

  14. Iontophoresis of Salicylic Acid From Salicylic Acid Doped Poly(p-phynylene vinylene)/ Polyacrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Niamlang, Sumonman

    2009-03-01

    The apparent diffusion coefficients, Dapp, and the release mechanisms of salicylic acid from salicylic acid-loaded polyacrylamide hydrogels, SA-loaded PAAM, and salicylic acid-doped poly(phenylene vinylene)/polyacrylamide hydrogels, SA-doped PPV/PAAM, were investigated. In the absence of an electric field, the diffusion of SA from the SA-doped PPV/PAAM hydrogel is delayed in the first 3 hr due to the ionic interaction between the anionic drug and PPV. Beyond this period, SA can diffuse continuously into the buffer solution through the PAAM matrix. Dapp of SA-doped PPV/PAAM is higher than that of the SA-loaded PAAM, and the former increases with increasing electric field strength due to the combined mechanisms: the expansion of PPV chains inside the hydrogel; iontophoresis; and the electroporation of the matrix pore. Thus, the presence of the conductive polymer and the applied electric field can be combined to control the drug release rate at an optimal desired level.

  15. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-04-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

  16. Enlarged processing window of plasticized wheat gluten using salicylic acid.

    PubMed

    Ullsten, N Henrik; Gällstedt, Mikael; Johansson, Eva; Gräslund, Astrid; Hedenqvist, Mikael S

    2006-03-01

    The temperature window for the extrusion of glycerol-plasticized wheat gluten was increased by the use of salicylic acid, a known scorch retarder and radical scavenger. It was possible to extrude 30 wt % glycerol-wheat gluten films with a die-head temperature as high as 135 degrees C, rather than 95 degrees C, by incorporating only 1 wt % salicylic acid. Small effects of shear-induced heating during extrusion at the higher temperatures suggested that the acid acted as a lubricant and viscosity reducer. The latter was suggested to originate primarily from the salicylic-acid-induced reduction in the degree of protein aggregation/cross-linking, as indicated by size-exclusion high-performance liquid chromatography and chemiluminescence. Electron paramagnetic resonance spectroscopy on extruded films indicated that the beneficial effect of salicylic acid was due to its radical scavenging effect. Tensile tests on extrudates revealed that the materials produced at the substantially higher processing temperature were still ductile. The complex shear modulus increased more slowly with increasing salicylic acid content above 110-120 degrees C, indicating that the aggregation/cross-linking rate was slower with salicylic acid, that is, that it did have a scorch-retarding effect, besides yielding a lower final degree/complexity of aggregation. PMID:16529413

  17. Dyes, preservatives and salicylates in the induction of food intolerance and/or hypersensitivity in children.

    PubMed

    Ibero, M; Eseverri, J L; Barroso, C; Botey, J

    1982-01-01

    We present 25 patients, aged between 18 and 153 months, with clinical symptoms suggestive of allergy to food antigens. After undergoing exhaustive studies (including case histories, cutaneous tests for reactions to food antigen, peripheral eosinophils, secretory and humoral immunity, determination of total IgE and of specific RAST, exclusion-provocation diets) and without being able to identify an offender, patients were submitted to oral provocation with different food additives (tartrazine, sunset yellow FCF, new coccine, erythrosine, sodium benzoate, 4-methyl hydroxybenzoate and acetylsalicylic acid) after 48 hours of exclusion from their diets of dyes, preservatives and salicylates. The results obtained reflect, at a global level, 57.89% of positivities for dyes, 34.21% for the benzoates and 7.81% for acetyl-salicylic acid. The low incidence of crossed intolerance phenomena should be emphasized (32% of the patients). The disparity of our results with those of other authors could be due to the age of our patients, the clinical patterns they present and the dietary habits of different countries and regions. PMID:6295125

  18. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    PubMed

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-?, and IL-1? mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-?, IL-1? mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  19. Expression of Immediate-Early Genes in the Inferior Colliculus and Auditory Cortex in Salicylate-Induced Tinnitus in Rat

    PubMed Central

    Hu, S.S.; Mei, L.; Chen, J.Y.; Huang, Z.W.; Wu, H.

    2014-01-01

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus. PMID:24704997

  20. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat.

    PubMed

    Hu, S S; Mei, L; Chen, J Y; Huang, Z W; Wu, H

    2014-01-01

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus. PMID:24704997

  1. [Milestones of cardivascular pharmacotherapy: salicylates and aspirin].

    PubMed

    Jerie, P

    2006-01-01

    The analgesic and antipyretic effect of the bark of willow has been known in Egypt and Greece for canturies. The modem era of salicylates starts with a letter sent 1758 by Reverend Edward Stone to The Royal Society in London. He described "an account of the success of the bark of willow in the cure of agues". His report. erroneously attributed to Edmond Stone. was published five years later. The active ingredient of willow bark. "salicine". was first isolated 1828 by Joseph Buchner, then by Henri Leroux, and also prepared from the oil of wintergreen (Gaultheria) and meadowsweet (Spirea ulmaria) by J. W. Lowig 1833. and called "Spirsäure", which was already pure acetylsalicylic acid. It was also synthetised 1853 by Ch. Gerhardt and finally 1897 in Bayer's laboratoires by Felix Hoffman, who also demonstrated its antiinflammatory efficacy. After two years of clinical trials with low doses, Bayer's management decided to start the productions and launched Aspirin as an analgetic worldwide in summer 1899. The first ASPIRIN ERA bagun. A completely new epoch started when J. N. Vane and Priscilla Piner demonstrated 1971 that the main mechanism of action of aspirin-like drugs is the inhibition of prostaglandin synthesis. In later studies the potency to inhibit platelet aggregation with small doses of aspirin (30-125 mg) was demonstrated. The Physicians'Health Study 1988 confirmed this effect: aspirin significantly reduced the risk of both, fatal and non-fatal myocardial infarction. and is now used in primary and secondary prevention of atherosclerosis. However the idea was not new: The use of salicylates and aspirin was throughly discussed more than 50 years ago: Paul C. Gibson published 1949 a well-documented case report on efficacy of aspirin in patients with angina, and Kl. Weber and P. Klein in Prague used Gibson's mixture successfully for patients with acute myocardial infarction (1951). Recently, the efficacy and security, the interactions and side-effects of low-dose aspirin have been studied and discussed. In chronic treatment, any combination of two specific platelet antiaggregants should be avoided. PMID:17323609

  2. Salicylate-induced increases in free triiodothyronine in human serum

    PubMed Central

    Larsen, P. R.

    1972-01-01

    Addition of sodium salicylate to human serum at concentrations often obtained during aspirin therapy causes 100-200% increases in free triiodothyronine (T3) and free thyroxine (T4) as estimated by ultrafiltration. The increase in free T3 was unexpected since previous data had suggested that salicylate inhibits binding of T4 only to thyroxine-binding prealbumin (TBPA) and that T3 is not bound to this protein. Using ultrafiltration techniques, we demonstrated binding of T3 to TBPA. The affinity constant for T3-TBPA binding appears to be slightly greater than that for albumin-T3 binding. While salicylate inhibits the binding of T3 (and T4) to TBPA, it can be predicted that little change will be observed in the free T3 (or free T4) without inhibition of thyroid hormone binding to thyroxine-binding globulin (TBG). Using a competitive-binding protein displacement technique, it has been shown that sodium salicylate, like diphenylhydantoin (DPH), inhibits the binding of T3 and T4 to TBG. The magnitude of the increase in free T3 and free T4 induced by salicylates suggests that interference with TBG binding is its major effect. Aspirin was administered orally to two normal subjects in quantities sufficient to obtain serum salicylate levels of 20-25 mg/100 ml. This resulted in a decrease of 20-30% in total serum T3 and T4 levels. This decrease in T4 levels is similar in magnitude to that previously observed in subjects receiving DPH. Unlike what has been observed with DPH treatment, therapeutic salicylate levels are associated with increases of 50-75% in the unbound fraction of both T3 and T4 which persist throughout an 8-10 day treatment period. PMID:4623165

  3. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v). PMID:25863446

  4. Effects of salicylic acid on growth and stomatal movements ofVicia faba L.: Evidence for salicylic acid metabolization.

    PubMed

    Manthe, B; Schulz, M; Schnabl, H

    1992-09-01

    The influence of salicylic acid on the growth and stomatal movements ofVicia faba L. was investigated. Whereas shoot length, fresh weight, and transpiration rates, which are directly correlated with stomatal pore widths, were only affected at salicylic acid concentrations higher than 3.5 mM after long-term treatments, guard cells in epidermal peels exhibited a high sensitivity at concentrations as low as 0.001 mM, resulting in stomatal closing. HPLC analysis of methanolic extracts from roots and leaves revealed the presence of free salicylic acid and a metabolite, whose amount increased with time in plants previously incubated with a medium containing salicylic acid. The possible ability ofVicia faba to detoxify the phenolic acid may be one explanation of the discrepancy between the stomatal reaction in epidermal peels directly treated with the phenolic acid and after application through the transpiration stream. The results indicate that, under natural conditions, salicylic acid will not act as an allelopathic compound whose toxic properties severely affect the growth ofVicia faba. PMID:24254284

  5. Transparent plastic scintillators for neutron detection based on lithium salicylate

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  6. In situ detection of salicylate in Ocimum basilicum plant leaves via reverse iontophoresis.

    PubMed

    González-Sánchez, M I; Lee, P T; Guy, R H; Compton, R G

    2015-11-28

    The quantitative analysis of salicylate provides useful information for the evaluation of metabolic processes in plants. We report a simple, noninvasive method to measure salicylate in situ in Ocimum basilicum leaves using reverse iontophoresis in combination with cyclic voltammetry at disposable screen-printed electrodes and the concentration of salicylate in basil leaves was found to be 3 mM. PMID:26419728

  7. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  8. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  9. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  10. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under...

  11. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  12. A case of bilateral sudden hearing loss and tinnitus after salicylate intoxication.

    PubMed

    Kim, Sang Min; Jo, Joon-Man; Baek, Moo Jin; Jung, Kyu Hwan

    2013-04-01

    Salicylate, the active ingredient of aspirin can cause sensorineural hearing loss and tinnitus when plasma concentrations reach a critical level. The ototoxic mechanisms of salicylate remain unclear but hearing and tinnitus usually recovers a few days after intoxication. There have been few reports of salicylate-induced ototoxicity in Korea, and the majority is caused by a low dose of aspirin. Herein, we report a case of sudden hearing loss and tinnitus after acute salicylate intoxication and review recent updates on salicylate ototoxicity. PMID:24653899

  13. Negative anion gap metabolic acidosis in salicylate overdose--a zebra!

    PubMed

    Kaul, Viren; Imam, Syed Haider; Gambhir, Harvir Singh; Sangha, Arindam; Nandavaram, Sravanthi

    2013-10-01

    Salicylate poisoning classically results in an increased anion gap metabolic acidosis. We discuss a case of normal anion gap metabolic acidosis despite elevated serum salicylate concentration. This diagnostic dilemma stemmed from aberrant reading of salicylate ions by analyzer electrodes as chloride ions leading to falsely negative anion gap. On review, this phenomenon is found to be possible with a number of commonly used analyzers. In emergency department settings, high level of clinical suspicion for salicylate poisoning should be maintained, and metabolic acidosis with normal anion gap should not be used to rule out salicylate overdose. This can prevent significant avoidable morbidity and mortality. PMID:23867355

  14. The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

    2011-06-01

    As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

  15. Reye's syndrome: salicylate and mitochondrial monoamine oxidase function

    SciTech Connect

    Faraj, B.A.; Caplan, D.; Lolies, P.

    1986-03-01

    It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with /sup 14/C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome.

  16. Tungsten oxo salicylate complexes from tungsten hexachloride reactions systems.

    PubMed

    Kolesnichenko, V; Mason, M H; Botts, J B; Botts, A M; Baroni, T E; Heppert, J A; Rheingold, A L; Liable-Sands, L; Yap, G P

    2001-09-10

    Tungsten hexachloride is a potent halogen-transfer agent, capable of reacting directly with salicylic acid to generate a tungsten oxo fragment and salicoyl chloride. As a result, oxo complexes dominate the chemistry of tungsten(VI) salicylates. Both mono- and disalicylate substituted tungsten oxo complexes are accessible. The Brønsted free acid W(=O)Cl(Hsal)(sal) complex is a sparingly soluble, presumably polymeric material that can be dissolved in THF. The THF adduct has been characterized by NMR spectroscopy, although an X-ray crystallographic study indicates that the product cocrystallizes with a structurally analogous d(1) WCl(2)(Hsal.THF)(sal) byproduct. The remaining chloride ligand in W(=O)Cl(Hsal)(sal) is replaced by a bridging oxo unit when the reaction contains a significant excess of salicylic acid. The product "linear" oxo bridged ditungsten complex, [W(=O)(Hsal)(sal)](2)O, forms intramolecular hydrogen bonds, accounting for its high solubility in noncoordinating solvents. An X-ray study shows that the intramolecular Hsal.sal hydrogen bonding in this complex accommodates a more linear W-O-W arrangement than does a previously observed class of isostructural diolate derivatives. Tungsten oxo tetrachloride, formed in the initial reaction between salicylic acid and WCl(6), also reacts with the salicoyl chloride byproduct to generate tungsten salicoylate (OAr-2-COCl) complexes. PMID:11531451

  17. Sodium salicylate protects against rotenone-induced parkinsonism in rats.

    PubMed

    Madathil, Sindhu K; Karuppagounder, Saravanan S; Mohanakumar, Kochupurackal P

    2013-08-01

    Complex I deficiency culminating in oxidative stress is proposed as one of the upstream mechanisms of nigral neuronal death in Parkinson's disease. We investigated whether sodium salicylate, an active metabolite of aspirin, could afford protection against rotenone-induced oxidative stress, neuronal degeneration, and behavioral dysfunction in rats, because it has the potential to accept a molecule each of hydroxyl radical (•OH) at the third or fifth position of its benzyl ring. Rotenone caused dose-dependent increase in •OH in isolated mitochondria from the cerebral cortex and time- (24-48 h) and dose-dependent (0.1-100 µM) increase in the substantia nigra and the striatum, ipsilateral to the side of rotenone infusion. Administration of sodium salicylate at 12-h intervals for 4 days showed dose-dependent (50-100 mg/kg, i.p) reductions in the levels of •OH in the nigra on the fifth day. These animals showed significant attenuation in rotenone-induced loss in striatal dopamine levels, number of nigral dopaminergic neurons, reduced and oxidized glutathione levels, and complex I activity loss, but superoxide dismutase activity was increased further. Amphetamine- or apomorphine-induced ipsilateral rotations in rotenone-treated rats were significantly reduced in rats treated with sodium salicylate. Our results indicate a direct role of •OH in mediating nigral neuronal death by rotenone and confirm the neuroprotective potential of salicylate in a rodent model of parkinsonism. PMID:23447126

  18. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  19. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  20. 21 CFR 862.3830 - Salicylate test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Salicylate test system. 862.3830 Section 862.3830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems §...

  1. Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus.

    PubMed

    Wei, Lei; Ding, Dalian; Sun, Wei; Xu-Friedman, Matthew A; Salvi, Richard

    2010-08-01

    Spontaneous hyperactivity in the dorsal cochlear nucleus (DCN), particularly in fusiform cells, has been proposed as a neural generator of tinnitus. To determine if sodium salicylate, a reliable tinnitus inducer, could evoke hyperactivity in the DCN, we measured the spontaneous and depolarization-evoked spike rate in fusiform and cartwheel cells during salicylate superfusion. Five minute treatment with 1.4 mM salicylate suppressed spontaneous and evoked firing in fusiform cells; this decrease partially recovered after salicylate washout. Less suppression and greater recovery occurred with 3 min treatment using 1.4 mM salicylate. In contrast, salicylate had no effect on the spontaneous or evoked firing of cartwheel cells indicating that salicylate's suppressive effects are specific to fusiform cells. To determine if salicylate's suppressive effects were a consequence of increased synaptic inhibition, spontaneous inhibitory postsynaptic currents (IPSC) were measured during salicylate treatment. Salicylate unexpectedly reduced IPSC thereby ruling out increased inhibition as a mechanism to explain the depressed firing rates in fusiform cells. The salicylate-induced suppression of fusiform spike rate apparently arises from unidentified changes in the cell's intrinsic excitability. PMID:20430089

  2. Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer†

    PubMed Central

    Song, Yuhua; Guallar, Victor; Baker, Nathan A.

    2008-01-01

    Salicylate, an amphiphilic molecule and a popular member of non-steroidal antiinflammatory drug family, is known to affect hearing through reduction of the electromechanical coupling in the outer hair cells of the ear. This reduction of electromotility by salicylate has been widely studied but the molecular mechanism of the phenomenon is still unknown. In this study, we investigated one aspect of salicylate’s action; namely, the perturbation of electrical and mechanical membrane properties by salicylate in the absence of cytoskeletal or membrane-bound motor proteins such as prestin. In particular, we simulated the interaction of salicylate with a dipalmitoylphosphatidylcholine (DPPC) bilayer via atomically-detailed molecular dynamics simulations to observe the effect of salicylate on the microscopic and mesoscopic properties of the bilayer. The results demonstrate that salicylate interacts with the bilayer by associating at the water-DPPC interface in a nearly perpendicular orientation and penetrating more deeply into the bilayer than either sodium or chloride. This association has several affects on the membrane properties. First, binding of salicylate to the membrane displaces chloride from the bilayer-water interface. Second, salicylate influences the electrostatic potential and dielectric properties of the bilayer, with significant changes at the water-lipid bilayer interface. Third, salicylate association results in structural changes including decreased head group area per lipid and increased lipid tail order. However, salicylate does not significantly alter the mechanical properties of the DPPC bilayer; bulk compressibility, area compressibility, and bending modulus were only perturbed by small, statistically-insignificant amounts, by the presence of salicylate. The observations from these simulations are in qualitative agreement with experimental data and support the conclusion that salicylate influences the electrical but not the mechanical properties of DPPC membranes. PMID:16216066

  3. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  4. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  5. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does not influence any of the investigated parameters under hypoxia.

  6. Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum

    PubMed Central

    Ratzinger, Astrid; Riediger, Nadine; von Tiedemann, Andreas

    2009-01-01

    Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated. PMID:19449088

  7. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  8. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  9. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate.

    PubMed Central

    Domenico, P; Schwartz, S; Cunha, B A

    1989-01-01

    Heavily encapsulated Klebsiella pneumoniae (serotypes 1 and 2) was cultured in the presence of sodium salicylate. The addition of salicylate (2 to 30 micrograms/ml) progressively decreased the amount of capsular polysaccharide produced by all strains without significantly inhibiting cell growth. Further addition of salicylate (50 to 200 micrograms/ml) was progressively inhibitory to cell growth and decreased the production of polysaccharide only slightly. The optimal concentration of salicylate that could reduce the polysaccharide production of heavily encapsulated, virulent strains by 50% or more was 30 micrograms/ml. Mutants of these bacteria that produced less capsule were affected by salicylate to a lesser degree. All concentrations of salicylate tested were physiologically achievable in humans and within the therapeutic range of aspirin. The addition of calcium and magnesium partially reversed the effects of salicylate on polysaccharide production. Chelating agents, particularly EGTA [ethylene-bis(oxyethylenenitrile)tetraacetic acid], reduce capsule production as salicylate did. Thus, the chelation of calcium and magnesium by salicylate could account, at least in part, for the reduction of capsule. Optical density measurements allowed for rapid monitoring of capsule production in various culture media because a large part of culture turbidity was apparently due to the capsule. Decreased production of the primary K. pneumoniae virulence factor with salicylate may have therapeutic potential. PMID:2680983

  10. Effect of mixed function oxidase induction and inhibition on salicylate-induced nephrotoxicity in male rats

    SciTech Connect

    Kyle, M.E.; Kocsis, J.J.

    1986-06-30

    A previous study in this laboratory demonstrated that greater nephrotoxicity was induced by 500 mg/kg (/sup 14/C)salicylate in 12-month-old male Sprague-Dawley rats than in 3-month-old animals, and the increased nephrotoxicity was correlated with greatly increased binding of radioactivity to the renal mitochondria in the older rats. To determine the role of reactive intermediate generation in salicylate-induced nephrotoxicity, male Sprague-Dawley rats were pretreated with piperonyl butoxide, phenobarbital, or Aroclor prior to the administration of 500 mg/kg (/sup 14/C)salicylate. In the kidneys of rats pretreated with only corn oil, mitochondrial macromolecules contained 57% of the total covalently bound radioactivity while in the livers of these same animals, microsomes contained most (52%) of the bound radioactivity. Pretreatment with piperonyl butoxide, an inhibitor of mixed function oxidase activity, decreased (a) salicylate-induced nephrotoxicity; (b) the covalent binding of (/sup 14/C)salicylate equivalents to renal mitochondria; and (c) the formation of the 2,3- and 2,5-dihydroxybenoic acid metabolites of salicylate. Pretreatment with phenobarbital and Aroclor, inducers of hepatic P-450, on the other hand, had no effect on salicylate-induced nephrotoxicity nor on the covalent binding of (/sup 14/C)salicylate equivalents to renal mitochondria. These data are consistent with the hypothesis that salicylate is metabolized to reactive intermediates that irreversibly bind to renal mitochondria and lead to salicylate-induced nephrotoxicity.

  11. [Properties of unrelated salicylate hydroxylases in bacteria of the genus pseudomon].

    PubMed

    Puntus, T F; Vlasova, E P; Sokolov, A P; Zaharchenko, N S; Funtikova, T V

    2015-01-01

    The unrelated salicylate hydroxylases NahG and NahU of the strains Pseudomonasfluorescens 142 NF and P. Putida BS3701 were extracted and purified by ion-exchange and hydrophobic and gel permeation chromatography. The extracted enzymes differed in kinetic and catalyst performance during salicylate hydrolysis. For NahU salicylate hydroxylase, Km and Vmax were found to be higher (3.1 +/- 0.6 microM and 7.7 +/- 0.4 microM/min, respectively) than for NahG salicylate hydroxylase (1.3 +/- 0.1 microM and 4.7 +/- 0.1 microM/min, respectively). The activity of both enzymes toward substituted salicylates was higher in cases where the substituent groups were in para position than in cases with those in meta position. The activity toward substituted salicylates with substituent groups in meta position was different. The activity of salicylate hydroxylase NahG was higher toward salicylates with substituent groups in position 3; salicylate hydroxylase NahU activity was higher toward those with substituent groups in position 5. This suggests a difference in the spatial configuration of active sites in extracted unrelated salicylate hydroxylases. PMID:26027357

  12. Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer.

    PubMed

    Song, Yuhua; Guallar, Victor; Baker, Nathan A

    2005-10-18

    Salicylate, an amphiphilic molecule and a popular member of the nonsteroidal anti-inflammatory drug family, is known to affect hearing through reduction of the electromechanical coupling in the outer hair cells of the ear. This reduction of electromotility by salicylate has been widely studied, but the molecular mechanism of the phenomenon is still unknown. In this study, we investigated one aspect of salicylate's action, namely the perturbation of electrical and mechanical membrane properties by salicylate in the absence of cytoskeletal or membrane-bound motor proteins such as prestin. In particular, we simulated the interaction of salicylate with a dipalmitoylphosphatidylcholine (DPPC) bilayer via atomically detailed molecular dynamics simulations to observe the effect of salicylate on the microscopic and mesoscopic properties of the bilayer. The results demonstrate that salicylate interacts with the bilayer by associating at the water-DPPC interface in a nearly perpendicular orientation and penetrating more deeply into the bilayer than either sodium or chloride. This association has several affects on the membrane properties. First, binding of salicylate to the membrane displaces chloride from the bilayer-water interface. Second, salicylate influences the electrostatic potential and dielectric properties of the bilayer, with significant changes at the water-lipid bilayer interface. Third, salicylate association results in structural changes, including decreased headgroup area per lipid and increased lipid tail order. However, salicylate does not significantly alter the mechanical properties of the DPPC bilayer; bulk compressibility, area compressibility, and bending modulus were only perturbed by small, statistically insignificant amounts by the presence of salicylate. The observations from these simulations are in qualitative agreement with experimental data and support the conclusion that salicylate influences the electrical but not the mechanical properties of DPPC membranes. PMID:16216066

  13. Acute cerebral white matter damage in lethal salicylate intoxication.

    PubMed

    Rauschka, Helmut; Aboul-Enein, Fahmy; Bauer, Jan; Nobis, Hans; Lassmann, Hans; Schmidbauer, Manfred

    2007-01-01

    A 34-year-old oligophrenic woman was admitted in comatose state with marked tachypnea. History revealed the oral ingestion of a large amount of acetylsalicylate to attenuate ear pain within the preceding 3 days. Laboratory investigations showed a toxic concentration of serum salicylate (668 mg/l, toxic range above 200 mg/l) and metabolic acidosis. Oxygenation, blood pressure, electrocardiography, echocardiography and CT of thorax and brain were normal. The patient was intubated, fluid and bicarbonate was given intravenously. Six hours after admission asystolia refractory to resuscitation led to death. Autopsy showed venous congestion of the brain, cardiac dilatation and pulmonary edema. Brain histopathology showed myelin disintegration and caspase-3 activation in glial cells, whereas, grey matter changes were sparse. Acute white matter damage is suggested to be the substrate of cerebral dysfunction in salicylate intoxication and possible mechanisms are discussed. PMID:16930716

  14. Salicylates and homoeopathy in rheumatoid arthritis: preliminary observations.

    PubMed Central

    Gibson, R G; Gibson, S L; MacNeill, A D; Gray, G H; Dick, W C; Buchanan, W W

    1978-01-01

    This paper reports the results of a pilot study in which 41 patients with rheumatoid arthritis were treated with high doses of salicylate, 3.9 g per day, and the results compared with a further 54 similar patients treated with homoeopathy. Both groups were compared with 100 patients who received placebo. 2 The patients who received homoeopathy did better than those who received salicylate. The design of the trial was such, however, that it was not possible to distinguish between the effects due to the physicians and the effects due to the drugs and a further trial is planned to elucidate this point. 3 Patients on homoeopathic treatment did not experience toxic effects. PMID:365205

  15. Salicylates are interference compounds in TR-FRET assays.

    PubMed

    Hanley, Ronan P; Horvath, Shanti; An, Jianghong; Hof, Fraser; Wulff, Jeremy E

    2016-02-01

    Given the importance of high-throughput screening in drug discovery, the identification of compounds that interfere with assay readouts is crucial. The pursuit of false positives wastes time and money, while distracting development teams from more promising leads. In the context of TR-FRET assays, most interfering compounds are dyes or aggregators. In the course of our studies on the PD1-PDL2 interaction, we discovered that salicylic acids, an extremely common compound subclass in screening libraries, interfere with TR-FRET assays. While the precise mechanism of interference was not established, our data suggest that interaction of the salicylate with the cryptand-ligated europium FRET donor is responsible for the change in assay signal. PMID:26733476

  16. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    TOXICOLOGICAL REVIEW of METHYL METHACRYLATE ( CAS No . 80 - 62 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) January 1998 U.S . Environmental Protection Agency Washington , DC TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . .

  17. Chloride and Salicylate Influence Prestin-dependent Specific Membrane Capacitance

    PubMed Central

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin. PMID:24554714

  18. Simultaneous determination of salicylic acid and salicylamide in biological fluids

    NASA Astrophysics Data System (ADS)

    Murillo Pulgarín, J. A.; Alañón Molina, A.; Sánchez-Ferrer Robles, I.

    2011-09-01

    A new methodology for the simultaneous determination of salicylic acid and salicylamide in biological fluids is proposed. The strong overlapping of the fluorescence spectra of both analytes makes impossible the conventional fluorimetric determination. For that reason, the use of fluorescence decay curves to resolve mixtures of analytes is proposed; this is a novel technique that provides the benefits in selectivity and sensitivity of the fluorescence decay curves. In order to assess the goodness of the proposed method, a prediction set of synthetic samples were analyzed obtaining recuperation percentages between 98.2 and 104.6%. Finally, a study of the detection limits was done using a new criterion resulting in values for the detection limits of 8.2 and 11.6 ?g L -1 for salicylic acid and salicylamide respectively. The validity of the method was tested in human serum and human urine spiked with aliquots of the analytes. Recoveries obtained were 96.2 and 94.5% for salicylic acid and salicylamide respectively.

  19. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid.

    PubMed

    Raskin, I; Turner, I M; Melander, W R

    1989-04-01

    We have recently purified calorigen, the natural trigger for heat production in the inflorescences of Sauromatum guttatum Schott (voodoo lily), a thermogenic plant, and identified it as salicylic acid. Since then an analytical assay was developed that allows the quantitation of salicylic acid in plant tissues. This assay was used to demonstrate that on the day preceding the day of blooming the levels of salicylic acid in the thermogenic organs (appendix and lower spadix) of the voodoo lily increased almost 100-fold, reaching a level of 1 mug/g of fresh weight. The level of salicylic acid in the appendix started to rise in the afternoon and reached its maximum in the late evening, whereas the maximum accumulation of salicylic acid in the lower spadix occurred late at night. The increase in salicylic acid level in the appendix was followed the next morning by a spectacular metabolic burst that lasted for about 7 hr and at its peak increased the appendix temperature by over 12 degrees C. The second, 14-hr-long, thermogenic episode in the lower spadix started late at night and ended on the following morning, after maximum temperature increases of more than 10 degrees C. The concentration of salicylic acid in both thermogenic tissues promptly returned to basal, preblooming levels at the end of the thermogenic periods. The thermogenic response was under strong photoperiodic and developmental control, with salicylic acid eliciting much stronger thermogenic responses in light than in darkness. Similar surges in salicylic acid occurred in nonthermogenic male and female flowers, while the concentration of salicylic acid in the spathe remained consistently below 20 ng/g of fresh weight. Of 33 analogs of salicylic acid tested, only 2,6-dihydroxybenzoic acid and acetylsalicylic acid (aspirin) were thermogenic. The activity of 2,6-dihydroxybenzoic acid exceeded that of salicylic acid. PMID:16594020

  20. The antioxidant properties of salicylate derivatives: A possible new mechanism of anti-inflammatory activity.

    PubMed

    Borges, Rosivaldo S; Castle, Steven L

    2015-11-01

    The synthesis and antioxidant evaluation by DPPH scavenging of a series of salicylic acid derivatives is described. Gentisic acid and its ester, amide, and amino analogs possess more radical scavenging capacity than salicylic acid and other salicylate derivatives. This property can possibly provide an additional pathway for anti-inflammatory activity through either single electron or hydrogen atom transfer, leading to a new strategy for the design of anti-inflammatory agents. PMID:26183083

  1. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology.

    PubMed

    Sheppard, A; Hayes, S H; Chen, G-D; Ralli, M; Salvi, R

    2014-04-01

    Salicylate's ototoxic properties have been well established, inducing tinnitus and a sensory hearing loss when administered in high doses. Peripherally, acute dosing of salicylate causes frequency dependent reductions in DPOAEs and CAP amplitudes in low (<10 kHz) and high (>20 kHz) frequencies more than mid frequencies (10-20 kHz), which interestingly corresponds to the pitch of behaviourally-matched salicylate-induced tinnitus. Chronic salicylate dosing affects the peripheral system by causing a compensatory temporary enhancement in DPOAE amplitudes and up-regulation of prestin mRNA and protein expression. Despite salicylate's antioxidant properties, cultured cochlea studies indicate it also impairs spiral ganglion neurons (SGNs) by paradoxically causing an upsurge of superoxide radicals leading to apoptosis. Centrally, salicylate alters ?-aminobutyric acid (GABA) and serotonin mediated neurotransmission in the central nervous system (CNS), which results in classical and non-classical auditory regions showing hyperactivity after salicylate administration. In the auditory cortex (AC) and lateral amygdala (LA), neuron characteristic frequencies (CF) shift upward and downward to mid frequencies (10-20 kHz) altering tonotopy following salicylate administration. Additionally, current source density (CSD) analysis showed enhanced current flow into the supergranular layer of the auditory cortex after a high systemic dose of salicylate. In humans, auditory perception changes following salicylate or aspirin, including decreased word discrimination and temporal integration ability. The results of previous studies have partially identified the mechanisms that are involved in salicylate-induced tinnitus and hearing loss, however to date some interactions remain convoluted. This review discusses current knowledge of salicylate ototoxicity and interactions. PMID:24843217

  2. Effect of salicylate on potassium currents in inner hair cells isolated from guinea-pig cochlea.

    PubMed

    Kimitsuki, Takashi; Ohashi, Mitsuru; Umeno, Yoshihiro; Yoshida, Takamasa; Komune, Noritaka; Noda, Teppei; Komune, Shizuo

    2011-10-17

    Although salicylate is one of the most widely used nonsteroidal anti-inflammatory drugs, it causes moderate hearing loss and tinnitus at high-dose levels. In the present study, salicylate effects on the K currents in inner hair cells were examined. Salicylate reversibly reduced the outward K currents (I(K,f)), but did not affect the inward current (I(K,n)). Salicylate blocked the outward K currents in a concentration-dependent manner according to Hill equation with a half-blocking concentration of 1.66mM, and the Hill coefficient of 1.86. PMID:21896315

  3. Long-term administration of salicylate enhances prestin expression in rat cochlea.

    PubMed

    Yang, Kun; Huang, Zhi-Wu; Liu, Zhi-Qi; Xiao, Bo-Kui; Peng, Jian-Hua

    2009-01-01

    Salicylate, a common drug frequently used long term in the clinic, is well known for causing reversible hearing loss and tinnitus. Our previous study, however, demonstrated that chronic administration of salicylate progressively raised the amplitude of distortion product of otoacoustic emissions (DPOAEs), which are mainly caused by (outer hair cell) OHC electromotility. How salicylate affects OHC electromotility to cause this paradoxical increase remains unclear. One possibility is that it could affect prestin, which is a motor protein that contributes to the mechano-electrical properties of OHCs. In this experiment, we assessed the effect of acute and chronic salicylate treatment on prestin expression. Interestingly, after long-term salicylate injection (200 mg/kg, twice daily for 14 days), prestin gene and protein levels were up-regulated about twofold. These levels returned to baseline 14 days after treatment stopped. Acute injection of salicylate (single injection, 400 mg/kg) did not affect prestin levels. These data reveal that chronic salicylate administration markedly, but reversibly, increased prestin levels which may contribute to the enhanced DPOAE amplitudes we observed previously with similar salicylate treatment, which may be responsible for salicylate-induced tinnitus generation. PMID:19173110

  4. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats.

    PubMed

    Yang, Guang; Lobarinas, Edward; Zhang, Liyan; Turner, Jeremy; Stolzberg, Daniel; Salvi, Richard; Sun, Wei

    2007-04-01

    Neurophysiological studies of salicylate-induced tinnitus have generally been carried out under anesthesia, a condition that abolishes the perception of tinnitus and depresses neural activity. To overcome these limitations, measurement of salicylate induced tinnitus were obtained from rats using schedule induced polydipsia avoidance conditioning (SIPAC) and gap pre-pulse inhibition of acoustic startle (GPIAS). Both behavioral measures indicated that tinnitus was present after treatment with 150 and 250 mg/kg of salicylate; measurements with GPIAS indicated that the pitch of the tinnitus was near 16 kHz. Chronically implanted microwire electrode arrays were used to monitor the local field potentials and spontaneous discharge rate from multiunit clusters in the auditory cortex of awake rats before and after treatment with 150 mg/kg of salicylate. The amplitude of the local field potential elicited with 60 dB SPL tone bursts increased significantly 2h after salicylate treatment particularly at 16-20 kHz; frequencies associated with the tinnitus pitch. Field potential amplitudes had largely recovered 1-2 days post-salicylate when behavioral results showed that tinnitus was absent. The mean spontaneous spike recorded from the same multiunit cluster pre- and post-salicylate decreased from 22 spikes/s before treatment to 14 spikes/s 2h post-salicylate and recovered 1 day post-treatment. These preliminary physiology data suggest that salicylate induced tinnitus is associated with sound evoked hyperactivity in auditory cortex and spontaneous hypoactivity. PMID:16904853

  5. Effect of certain variables on the tumor and tissue distribution of tracers. Salicylates and vasoactive drugs

    SciTech Connect

    Halpern, S.E.; Hagan, P.; Stern, P.; Gordon, R.; Dabbs, J.

    1981-03-01

    Attempts were made to increase the viable tumor concentration of 54Mn and 67Ga in a rat hepatoma model by administering rat angiotensin, tolazoline, and salicylates. Salicylates increased the tumor concentrations of 54Mn and improved 65Mn viable tumor/background ratios. 67Ga was not affected by the salicylates. The salicylate effect appeared to be mediated by intracellular mechanisms rather than alterations in plasma protein binding. Rat angiotensin slightly increased the concentrations of 67Ga in the tumors but not enough to suggest that it would be useful clinically. Tolazoline did not increase tumor uptake of the tracers.

  6. Salicylate in the perfusate during ischemia/reperfusion prevented mitochondrial injury.

    PubMed

    van Jaarsveld, H; Kuyl, J M; van Zyl, G F; Barnard, H C

    1994-12-01

    Salicylate is widely used as a stable trap for the highly reactive hydroxyl radical. The purpose of this study was to determine whether the addition of salicylate to hearts subjected to ischemia and reperfusion was able to prevent some injury. Salicylate was able to inhibit mitochondrial damage, and preserved ascorbate and alpha-tocopherol depletion due to ischemia/reperfusion in rat hearts. It did not prevent the elevation of low molecular weight iron. We conclude that salicylate functions as an antioxidant and afforded protection against ischemia and reperfusion. PMID:7712105

  7. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  8. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.

    PubMed

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-09-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

  9. Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

    PubMed Central

    Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

    2014-01-01

    Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

  10. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    PubMed Central

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  11. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  12. Effect of salicylate on KCNQ4 of the guinea pig outer hair cell.

    PubMed

    Wu, T; Lv, P; Kim, H J; Yamoah, E N; Nuttall, A L

    2010-04-01

    Salicylate causes a moderate hearing loss and tinnitus in humans at high-dose levels. Salicylate-induced hearing loss has been attributed to impaired sound amplification by outer hair cells (OHCs) through its direct action on the OHC motility sensor and/or motor. However, there is a disparity of salicylate concentrations between the clinical and animal studies, i.e., extremely high extracellular concentrations of salicylate (from 1 to 10 mM) is required to produce a significant reduction of electromotility in animal studies. Such concentrations are above the clinical/physiological range for humans. Here, we showed that clinical/physiological concentration range of salicylate caused concentration-dependent and reversible reductions in I(K,n) (KCNQ4) and subsequent depolarization of OHCs. Salicylate reduced the maximal tail current of the activation curve of I(K,n) without altering the voltage-sensitivity (V(half)). The salicylate-induced reduction of I(K,n) was almost completely blocked by linopirdine (0.1 mM) and BaCl? (10 mM). Consistent with the finding in OHCs, salicylate significantly reduced KCNQ4-mediated current expressed in Chinese hamster ovarian (CHO) cells by comparable amplitude to OHCs without significantly shifting V(half). Nonstationary fluctuation analysis shows that salicylate significantly reduced the estimated single-channel current amplitude and numbers. Intracellular Ca²+ elevation resulting from cytoplasmic acidosis also contributes to the current reduction of I(K,n) (KCNQ4) of OHCs. These results indicate a different model for the salicylate-induced hearing loss through the reduction of KCNQ4 and subsequent depolarization of OHCs, which reduces the driving force for transduction current and electromotility. The major mechanism underlying the reduction of I(K,n) (KCNQ4) is the direct blocking action of salicylate on KCNQ4. PMID:20147414

  13. High doses of salicylate reduces glycinergic inhibition in the dorsal cochlear nucleus of the rat.

    PubMed

    Zugaib, João; Ceballos, Cesar C; Leão, Ricardo M

    2016-02-01

    High doses of salicylate induce reversible tinnitus in experimental animals and humans, and is a common tinnitus model. Salicylate probably acts centrally and induces hyperactivity in specific auditory brainstem areas like the dorsal cochlear nucleus (DCN). However, little is known about the effect of high doses of salicylate in synapses and neurons of the DCN. Here we investigated the effects of salicylate on the excitability and evoked and spontaneous neurotransmission in the main neurons (fusiform, cartwheel and tuberculoventral) and synapses of the DCN using whole cell recordings in slices containing the DCN. For this, we incubate the slices for at least 1 h in solution with 1.4 mM salicylate, and recorded action potentials and evoked and spontaneous synaptic currents in fusiform, cartwheel (CW) and putative tuberculoventral (TBV) neurons. We found that incubation with salicylate did not affect the firing of fusiform and TBV neurons, but decreased the spontaneous firing of cartwheel neurons, without affecting AP threshold or complex spikes. Evoked and spontaneous glutamatergic neurotransmission on the fusiform and CW neurons cells was unaffected by salicylate and evoked glycinergic neurotransmission on fusiform neurons was also unchanged by salicylate. On the other hand spontaneous glycinergic transmission on fusiform neurons was reduced in the presence of salicylate. We conclude that high doses of salicylate produces a decreased inhibitor drive on DCN fusiform neurons by reducing the spontaneous firing of cartwheel neurons, but this effect is not able to increase the excitability of fusiform neurons. So, the mechanisms of salicylate-induced tinnitus are probably more complex than simple changes in the neuronal firing and basal synaptic transmission in the DCN. PMID:26548740

  14. FUNCTIONAL TERATOGENS OF THE RAT KIDNEY I. COCHICINE, DINOSEB, AND METHYL SALICYLATE

    EPA Science Inventory

    Substances known or suspected to cause subtle or transient anatomical alterations in renal development were administered prenatally or neonatally to rats in order to determine whether they are capable of altering renal functional development. olchicine alters mitotic activity and...

  15. Olfactoryresponse of the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) to methyl salicylate in laboratory bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of Typhlodromus pyri, a key predator of grapevine rust mite (Calepitrimerus vitis), to MeSA was tested using a Y-tube olfactometer in laboratory bioassays. Six doses ranging from 200 to 0.002 µg of diluted MeSA were tested. Significantly higher proportions of T. pyri preferred MeSA at ...

  16. Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage.

    PubMed

    Zhang, Youzuo; Zhang, Meiling; Yang, Huqing

    2015-05-01

    The effect of salicylic acid with and without chitosan, or a chitosan-g-salicylic acid complex, on chilling injury and post-harvest quality of cucumber stored at 2 °C for 12 days plus 2 days at 20 °C was investigated. The results showed the chitosan-g-salicylic acid coating inhibited chilling injury better than salicylic acid alone or with chitosan. Chitosan-g-salicylic acid also reduced weight loss and respiration rate, limited increases in malondialdehyde content and electrolyte leakage, and maintained higher total soluble solids, chlorophyll and ascorbic acid content. Furthermore, this coating increased the endogenous salicylic acid concentrations and antioxidant enzyme activities including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in cucumber during storage. Our study suggests that chitosan-g-salicylic acid alleviated chilling injury in cucumber through sustained-release of salicylic acid and the higher antioxidant enzymes concentrations. PMID:25529719

  17. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  19. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  1. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  2. Methyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R01 / 003 TOXICOLOGICAL REVIEW OF METHYL CHLORIDE ( CAS No . 74 - 87 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2001 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance with U.

  3. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  5. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGESBeta

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  6. Highly luminescent and color-tunable salicylate ionic liquids

    SciTech Connect

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  7. 21 CFR 201.314 - Labeling of drug preparations containing salicylates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Labeling of drug preparations containing... Products § 201.314 Labeling of drug preparations containing salicylates. (a) The label of any oral drug preparation intended for sale without prescription and which contains any salicylate ingredient...

  8. Chelation and effectiveness of salicylate related compounds on pyresis, sedimentation rate and hematocrit

    SciTech Connect

    Schubert, J.; Rosenthal, M.W.; Fried, J.F.

    1984-01-01

    The mechanism of action and identification of sites of salicylates and related compounds in antipyresis were studied. Structure-activity investigations of antipyresis were made using Sprague-Dawley rats. Results showed copper was chelated by the salicylate, passes through the cell membrane, and repairs the lesion. 13 references, 2 figures. (ACR)

  9. Loudness perception affected by high doses of salicylate--a behavioral model of hyperacusis.

    PubMed

    Zhang, Chao; Flowers, Elizabeth; Li, Jun-Xu; Wang, Qiuju; Sun, Wei

    2014-09-01

    The major side-effects of high doses of salicylate include sensorial hearing loss and tinnitus. Although salicylate decreases cochlear output, it enhances the evoked potentials recorded from the central auditory system (CAS), suggesting an increase to sound sensitivity. However, the loudness change after salicylate administration has not yet been directly measured. In this study, we established an operant conditioning based behavioral task in rats and measured their loudness perception changes before and after high doses of salicylate injection (250 mg/kg, i.p.). We found that high doses of salicylate induced a significant increase to loudness response in 40% of the rats (out of 20 rats), suggesting a hyperacusis behavior. In another 40% of rats, a rapid increase of loudness response was detected, suggesting loudness recruitment. The reaction time of the rats was also measured during the loudness tests before and after salicylate exposure. The reaction time level functions are highly correlated to the loudness response functions. Our studies confirmed that increased sound sensitivity, which is commonly seen in patients with tinnitus and hyperacusis, can be induced by high doses of salicylate. This loudness change induced by salicylate may be related with hypersensitivity in the CAS. PMID:24882611

  10. Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane

    ERIC Educational Resources Information Center

    Wilkins, Andrew; Parmenter, Emily

    2012-01-01

    A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

  11. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    PubMed Central

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  12. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling was used to investigate the molecular phenotypes of transgenic Populus tremula x P. alba bybrids expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reducing...

  13. Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane

    ERIC Educational Resources Information Center

    Wilkins, Andrew; Parmenter, Emily

    2012-01-01

    A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

  14. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-ß-D-...

  15. Comment on the paper ``Growth and characterization of organic nonlinear optical crystal: l-Valinium salicylate (LVS)''

    NASA Astrophysics Data System (ADS)

    Natarajan, S.; Moovendaran, K.; Srinivasan, B. R.

    2015-10-01

    The slow evaporation of an aqueous solution containing L-valine and salicylic acid results in the fractional crystallization of salicylic acid and not any so called L-valinium salicylate as reported recently by Andal and Murugakoothan in the title paper.

  16. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage.

    PubMed

    Kumar, Deepak; Mishra, Daya Shankar; Chakraborty, Binayak; Kumar, Prabhat

    2013-08-01

    Different antioxidants and salicylic acid were tested to overcome pericarp browning and to maintain the postharvest quality of the litchi fruits at ambient storage. It was found that 0.5% salicylic acid, 1% isoascorbic acid and 1% N-acetyl cysteine performed better over sulphur dioxide (SO2) fumigation for most of the parameters under study. Application of 0.5% salicylic acid found superior to reduce the pericarp browning, relative leakage rate, and decay percentage. It was effective in reduction of polyphenol oxidase activity and improvement of anthocyanin pigments of the fruit pericarp over other treatments. Total soluble solid, titratable acidity and ascorbic acid of the litchi fruits were recorded highest with the application of 1% isoascorbic acid followed by 0.5% salicylic acid treatment. Therefore, 0.5% salicylic acid and 1% isoascorbic could be used as an alternative of SO2 fumigation for quality retention of litchi fruits. PMID:24425984

  17. Phase I trial of sodium salicylate in patients with myelodysplastic syndromes and acute myelogenous leukemia.

    PubMed

    Klimek, Virginia M; Dolezal, Emily K; Smith, Larry; Soff, Gerald; Nimer, Stephen D

    2012-05-01

    Sodium salicylate is an inexpensive, readily available anti-inflammatory agent which inhibits NF-?B in in vitro models. We examined whether it was possible to safely achieve and maintain salicylate levels known to inhibit NF-?B in vitro in 11 patients with MDS or AML taking sodium salicylate. Most patients achieved the target blood salicylate level (20-30mg/dL) with acceptable toxicity, including reversible grade 1/2 elevations of hepatic transaminases (n=4) and ototoxicity (n=4). One patient had grade 3/4 elevations in AST/ALT. This study suggests that sodium salicylate may be safely combined with conventional chemotherapy regimens which are not associated with significant ototoxicity or hepatotoxicity. PMID:22154022

  18. Ground-State Proton Transfer Tautomer of Al(III)-Salicylate Complexes in Ethanol Solution

    SciTech Connect

    Wang, Zheming ); Friedrich, Donald; Ainsworth, Calvin C.); Hemmer, Staci L.; Joly, Alan G.); Beversluis, Michael R.

    2001-01-01

    The tautomerization of salicylate anion in the presence of A1(III) in ethanol was studied by UV? visible absorption spectroscopy and fluorescence spectroscopy, anisotropy, and lifetime measurements from 100 to 298 K. Complexation with A1(III) causes an equilibrium shift from the normal form of the salicylate anion toward the tautomer form, demonstrating that the presence of a highly charged cation, A1(III), stabilizes the tautomer form of salicylate. Spectra and fluorescence lifetimes of salicylate and other salicyl derivatives in the presence of A1(III) reveal three types of A1(III)-salicylate complexes. In type I complexes, salicylate binds to A1(III) through the carboxylate group, preserving the intramolecular hydrogen bond between the carbonyl oxygen and the phenol group, as indicated by the largely Stokes-shifted fluorescence emission following the excited state proton transfer process. In type II complexes, salicylate binds to A1(III) through the carboxylate group, but the phenol proton is oriented away from the carbonyl oxygen so that the complex shows short wavelength fluorescence emission characteristic of substituted phenolic compounds. In type III complexes, A1(III) stabilizes and binds to the tautomer form of salicylate through the phenolate oxygen, in which salicylate exists in its proton transferred tautomer form. Absorption spectra recorded at temperatures between 100 K and 298 K indicate that the type III tautomer complex is energetically favored at low temperature, although type I is the dominant species at room temperature. All three types of complexes are interconvertible above the ethanol glass transition temperature. However, below the glass transition temperature interconversion ceases, indicating large amplitude atomic motion is involved in the conversion.

  19. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  20. Aluminum Chloride Hexahydrate in a Salicylic Acid Gel

    PubMed Central

    Valins, Whitney

    2009-01-01

    Hyperhidrosis is a common dermatological condition that has a tremendous impact on the quality of life of affected patients. Aluminum chloride hexahydrate is considered first-line therapy for patients with mild-to-moderate hyperhidrosis. This treatment has been proven to be effective in the treatment of hyperhidrosis; however, its use has been limited by significant irritation. In many patients, the irritant dermatitis is so severe that, despite clinical efficacy, this therapy must be discontinued. There are many topical aluminum chloride therapies available. Observations from a busy hyperhidrosis practice revealed decreased irritation and increased efficacy with a novel therapy that combines 15% aluminum chloride hexahydrate with 2% salicylic acid in a gel base. This combination of 15% aluminum chloride hexahydrate with 2% salicylic acid offers patients who have failed aluminum chloride hexahydrate in the past excellent efficacy with minimal irritation. We report seven cases of patients with a history of severe irritation from aluminum chloride who maintained excellent results with this new topical without any significant irritation. PMID:20729946

  1. Salicylic acid and salicylic acid sensitive and insensitive catalases in different genotypes of chickpea against Fusarium oxysporum f. sp. ciceri.

    PubMed

    Gayatridevi, S; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

    2013-10-01

    Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance. PMID:24431522

  2. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae.

    PubMed

    Ambrose, Karen V; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  3. Inhibition of voltage-gated channel currents in rat auditory cortex neurons by salicylate.

    PubMed

    Liu, Yanxing; Zhang, Hailin; Li, Xuepei; Wang, Yongli; Lu, Hong; Qi, Xiang; Ma, Changsheng; Liu, Junxiu

    2007-12-01

    Salicylate is a medicine for anti-inflammation with a side effect of tinnitus. To understand the mechanisms of tinnitus induced by salicylate, we studied the effects of salicylate on voltage-gated ion channels and action potential firing rates in freshly dissociated rat pyramidal neurons in auditory cortex (AC) using the whole-cell patch technique. We found that salicylate reduced the voltage-gated sodium current (I(Na)), the delayed rectifier potassium current (I(K(DR))) and the L-type voltage-gated calcium current (I(Ca,L)) in concentration-dependent manner. An amount of 1mM salicylate shifted the steady-state inactivation curve of I(Na) negatively by about 5mV, shifted the steady-state activation and inactivation curve of I(K(DR)) negatively by approximately 14mV and 17mV, respectively, and shifted the steady-state activation curve of I(Ca,L) negatively by about 10mV. 1mM salicylate significantly increased the action potential firing rates, ultimately. From the results, we speculated that through affecting the voltage-gated ion channels in AC, an important position in auditory system, salicylate increased the firing rate of neurons and enhanced neuronal excitability on the one hand, increased the excitatory transmitters release and reduced the inhibitory transmitter release on the other hand, thus finally induced tinnitus. PMID:17920083

  4. Salicylate selectively kills cochlear spiral ganglion neurons by paradoxically up-regulating superoxide.

    PubMed

    Deng, Lili; Ding, Dalian; Su, Jiping; Manohar, Senthilvelan; Salvi, Richard

    2013-10-01

    Aspirin and its active ingredient salicylate are potent antioxidants that have been reported to be neuro- and otoprotective. However, when consumed in large quantities, these drugs can cause temporary hearing loss and tinnitus. Moreover, recent studies indicate that after several days of treatment, salicylate selectively destroys the spiral ganglion neurons and auditory nerve fibers that relay sounds from the sensory hair cells to the brain. Why salicylate selectively damages spiral ganglion neurons while sparing the hair cells and supports cells is unclear. Here we show that high dose of salicylate trigger an apoptotic response in spiral ganglion neurons characterized morphologically by soma shrinkage and nuclear condensation and fragmentation plus activation of extrinsic initiator caspase-8 and intrinsic initiator caspase-9 several days after the onset of drug treatment. Salicylate treatment triggered an upsurge in the toxic superoxide radical only in spiral ganglion neurons, but not in neighboring hair cells and support cells. Mn TMPyP pentachloride, a cell permeable scavenger of superoxide blocked the expression of superoxide staining in spiral ganglion neurons and almost completely blocked the damage to the nerve fibers and spiral ganglion neurons. NMDA receptor activation is known to increase neuronal superoxide levels. Since NMDA receptors are mainly found on spiral ganglion neurons and since salicylate enhances NMDA receptor currents, the selective killing of spiral ganglion neurons is likely a consequence of enhanced and sustained activation of NMDA receptors by salicylate. PMID:23494753

  5. Potassium channel activator attenuates salicylate-induced cochlear hearing loss potentially ameliorating tinnitus.

    PubMed

    Sun, Wei; Liu, Jun; Zhang, Chao; Zhou, Na; Manohar, Senthilvelan; Winchester, Wendy; Miranda, Jason A; Salvi, Richard J

    2015-01-01

    High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10?mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs. PMID:25904892

  6. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    PubMed Central

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  7. Potassium Channel Activator Attenuates Salicylate-Induced Cochlear Hearing Loss Potentially Ameliorating Tinnitus

    PubMed Central

    Sun, Wei; Liu, Jun; Zhang, Chao; Zhou, Na; Manohar, Senthilvelan; Winchester, Wendy; Miranda, Jason A.; Salvi, Richard J.

    2015-01-01

    High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs. PMID:25904892

  8. Development of novel bepotastine salicylate salt bioequivalent to the commercial bepotastine besilate in beagle dogs.

    PubMed

    Cho, Kwan Hyung; Choi, Han-Gon

    2013-06-01

    To develop a novel salt form of bepotastine with bioequivalent to the commericial bepostastine besilate, bepostastine salicylate was prepared and its physicochemical properties were investigated. Furthermore, the bepotastine salicylate-loaded tablet was prepared by the wet granulation method, and the dissolution and bioavailability in beagle dogs were evaluated compared to the bepotastine besilate-loaded commercial product. Bepotastine salicylate improved the solubility of bepotastine, and the extent of solubility improvement by salicylate form was similar to that by besilate form. However, this novel salt exhibited negligible hygroscopicity similar to besilate form, and showed slightly higher melting point than besilate form. It was stable in various pH solutions. Furthermore, the bepotastine salicylate-loaded tablet composed of bepotastine salicylate, microcrystalline cellulose, D-mannitol, povidone, sodium starch glycolate and sodium stearyl fumarate at the weight ratio of 9.63/60.97/38/3.6/6/1.8 showed similar dissolution to the bepotastine besilate-loaded commercial product in water, pH 1.2, pH 4.0 and pH 6.8 and was bioequivalent to the commercial product in beagle dogs. Thus, this bepotastine salicylate-loaded tablet would be a promising candidate with bioequivalence to the bepotastine besilate-loaded commercial product. PMID:22963365

  9. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    PubMed

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  10. Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex.

    PubMed

    Stolzberg, D; Chen, G-D; Allman, B L; Salvi, R J

    2011-04-28

    The neuronal mechanism underlying the phantom auditory perception of tinnitus remains elusive at present. For over 25 years, temporary tinnitus following acute salicylate intoxication in rats has been used as a model to understand how a phantom sound can be generated. Behavioral studies have indicated that the pitch of salicylate-induced tinnitus in the rat is approximately 16 kHz. In order to better understand the origin of the tinnitus pitch measurements were made at the levels of auditory input and output; both cochlear and cortical physiological recordings were performed in ketamine/xylazine anesthetized rats. Both compound action potentials and distortion product otoacoustic emission measurements revealed a salicylate-induced band-pass-like cochlear deficit in which the reduction of cochlear input was least at 16 kHz and significantly greater at high and low frequencies. In a separate group of rats, frequency receptive fields of primary auditory cortex neurons were tracked using multichannel microelectrodes before and after systemic salicylate treatment. Tracking frequency receptive fields following salicylate revealed a population of neurons that shifted their frequency of maximum sensitivity (i.e. characteristic frequency) towards the tinnitus frequency region of the tonotopic axis (?16 kHz). The data presented here supports the hypothesis that salicylate-induced tinnitus results from an expanded cortical representation of the tinnitus pitch determined by an altered profile of input from the cochlea. Moreover, the pliability of cortical frequency receptive fields during salicylate-induced tinnitus is likely due to salicylate's direct action on intracortical inhibitory networks. Such a disproportionate representation of middle frequencies in the auditory cortex following salicylate may result in a finer analysis of signals within this region which may pathologically enhance the functional importance of spurious neuronal activity concentrated at tinnitus frequencies. PMID:21310217

  11. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea.

    PubMed Central

    Tunstall, M J; Gale, J E; Ashmore, J F

    1995-01-01

    1. The effect of salicylate on membrane capacitance and intracellular pH has been measured in isolated outer hair cells (OHCs) during whole cell recording. Cell membrane capacitance was measured using a lock-in amplifier technique. 2. Salicylate applied in the bath reduced the fast charge movement, equivalent to a voltage-dependent membrane capacitance, present in OHCs. Simultaneous measurement of membrane capacitance and voltage-driven cell length changes showed that salicylate reduced both together. 3. A small effect of salicylate on outward currents at 0 mV was observed. Sodium salicylate (5 mM) reduced the currents by 19% and another weak acid, sodium butyrate (10 mM), reduced outward currents in OHCs by 15%. 4. The ratiometric dye 2,7-bis(2-carboxymethyl)-5,6-carboxyfluorescein (BCECF) was used to measure pHi changes in OHCs during weak acid exposure. Membrane capacitance and pHi were measured simultaneously in OHCs exposed first to 10 mM sodium butyrate and then to 5 mM sodium salicylate. Although both compounds produced a similar reduction in pHi, butyrate decreased the resting capacitance from a mean resting capacitance of 35 pF (at -30 mV) by 5.4 +/- 2.1 pF, whereas salicylate decreased it by 15.7 +/- 2.3 pF (n = 4). 5. Exposure of OHCs to 10 mM sodium benzoate, an amphiphilic anion, reduced resting membrane capacitance at -30 mV by 9.2 +/- 3.2 pF (n = 3). Outward currents, measured at 0 mV, were reduced by 0.25 +/- 0.05 nA during benzoate application, comparable with the effect of salicylate. 6. Capacitance was measured during slow bath application of salicylate. The resulting dose-capacitance curve had a Hill coefficient of 3.40 +/- 0.85 (n = 4) and a half-maximal dose of 3.95 +/- 0.34 mM. The dose-capacitance curve was not significantly voltage dependent. 7. Salicylate had no detectable effect on the resting capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 8. It is concluded that many of the described effects of salicylate on hearing may arise from the partitioning of the salicylate molecule into the membrane of the OHC and consequent inhibition of OHC motility. PMID:7562613

  12. Supramolecular hydrogen-bonding networks in cytosine salicylic acid hydrate (2 : 3 : 2) complex

    NASA Astrophysics Data System (ADS)

    Sridhar, B.; Ravikumar, K.

    2010-03-01

    Cytosine-cytosinium base pairs are interconnected by triple hydrogen bonds thereby resembling a pseudo-Watson-Crick pattern and generates two characteristic R {2/2}(8)-motifs. Both molecules of the salicylic acids interconnect the base pair and lead to the formation of one dimensional supramolecular hexameric tape along b-axis. This hexameric tape are sandwiched by the water molecules, one of the salicylic acid and salicylate anion which form one dimensional and two dimensional supramolecular hydrogen bonded networks in the crystal packing. Macrocylic rings of cavities are also noticed in the crystal structure.

  13. Salicylate Toxicity from Genital Exposure to a Methylsalicylate-Containing Rubefacient

    PubMed Central

    Thompson, Trevonne M.; Toerne, Theodore; Erickson, Timothy B.

    2016-01-01

    Methylsalicylate-containing rubefacients have been reported to cause salicylate poisoning after ingestion, topical application to abnormal skin, and inappropriate topical application to normal skin. Many over-the-counter products contain methylsalicylate. Topical salicylates rarely produce systemic toxicity when used appropriately; however, methylsaliclyate can be absorbed through intact skin. Scrotal skin can have up to 40-fold greater absorption compared to other dermal regions. We report a unique case of salicylate poisoning resulting from the use of a methylsalicylate-containing rubefacient to facilitate masturbation in a male teenager. Saliclyate toxicity has not previously been reported from the genital exposure to methylsaliclyate. PMID:26973745

  14. Action of salicylate on membrane capacitance of outer hair cells from the guinea-pig cochlea.

    PubMed

    Tunstall, M J; Gale, J E; Ashmore, J F

    1995-06-15

    1. The effect of salicylate on membrane capacitance and intracellular pH has been measured in isolated outer hair cells (OHCs) during whole cell recording. Cell membrane capacitance was measured using a lock-in amplifier technique. 2. Salicylate applied in the bath reduced the fast charge movement, equivalent to a voltage-dependent membrane capacitance, present in OHCs. Simultaneous measurement of membrane capacitance and voltage-driven cell length changes showed that salicylate reduced both together. 3. A small effect of salicylate on outward currents at 0 mV was observed. Sodium salicylate (5 mM) reduced the currents by 19% and another weak acid, sodium butyrate (10 mM), reduced outward currents in OHCs by 15%. 4. The ratiometric dye 2,7-bis(2-carboxymethyl)-5,6-carboxyfluorescein (BCECF) was used to measure pHi changes in OHCs during weak acid exposure. Membrane capacitance and pHi were measured simultaneously in OHCs exposed first to 10 mM sodium butyrate and then to 5 mM sodium salicylate. Although both compounds produced a similar reduction in pHi, butyrate decreased the resting capacitance from a mean resting capacitance of 35 pF (at -30 mV) by 5.4 +/- 2.1 pF, whereas salicylate decreased it by 15.7 +/- 2.3 pF (n = 4). 5. Exposure of OHCs to 10 mM sodium benzoate, an amphiphilic anion, reduced resting membrane capacitance at -30 mV by 9.2 +/- 3.2 pF (n = 3). Outward currents, measured at 0 mV, were reduced by 0.25 +/- 0.05 nA during benzoate application, comparable with the effect of salicylate. 6. Capacitance was measured during slow bath application of salicylate. The resulting dose-capacitance curve had a Hill coefficient of 3.40 +/- 0.85 (n = 4) and a half-maximal dose of 3.95 +/- 0.34 mM. The dose-capacitance curve was not significantly voltage dependent. 7. Salicylate had no detectable effect on the resting capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 8. It is concluded that many of the described effects of salicylate on hearing may arise from the partitioning of the salicylate molecule into the membrane of the OHC and consequent inhibition of OHC motility. PMID:7562613

  15. The surface reaction kinetics of salicylate on alumina

    SciTech Connect

    Wang, Z.; Ainsworth, C.C.; Friedrich, D.M.; Joly, A.G.; Gassman, P.L.

    1997-12-31

    The kinetics of reaction of salicylate with colloidal alumina in aqueous suspension and with Al(III) in homogeneous aqueous solution were studied by stopped-flow laser fluorescence spectroscopy. The emission spectra confirmed the formation of both monodentate complexes and more stable bidentate chelates. Temporal evolution of the spectra indicated that the reaction was fast (within first few minutes) for both the homogeneous and heterogeneous reactions but slowed down afterwards for the latter. Reactions completed within 10 minutes in homogeneous phase at pH 3.3 but took more than 12 hours in alumina suspension. Analysis of the fluorescence intensity within first four minutes showed that in homogeneous phase the reaction followed a single pseudo-first-order kinetics. In alumina suspension log plots were nonlinear and characteristic of multiple heterogeneous reaction paths. The kinetics are interpreted in terms of the simultaneous formation of multiple species as well as subsequent conversion between species.

  16. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Manohar, Murli; Harraz, Maged M; Park, Sang-Wook; Schroeder, Frank C; Snyder, Solomon H; Klessig, Daniel F

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  17. Human GAPDH Is a Target of Aspirin’s Primary Metabolite Salicylic Acid and Its Derivatives

    PubMed Central

    Manohar, Murli; Harraz, Maged M.; Park, Sang-Wook; Schroeder, Frank C.; Snyder, Solomon H.; Klessig, Daniel F.

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  18. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  19. Alleviation of salt stress in lemongrass by salicylic acid.

    PubMed

    Idrees, Mohd; Naeem, M; Khan, M Nasir; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2012-07-01

    Soil salinity is one of the key factors adversely affecting the growth, yield, and quality of crops. A pot study was conducted to find out whether exogenous application of salicylic acid could ameliorate the adverse effect of salinity in lemongrass (Cymbopogon flexuosus Steud. Wats.). Two Cymbopogon varieties, Krishna and Neema, were used in the study. Three salinity levels, viz, 50, 100, and 150 mM of NaCl, were applied to 30-day-old plants. Salicylic acid (SA) was applied as foliar spray at 10(-5) M concentration. Totally, six SA-sprays were carried out at 10-day intervals, following the first spray at 30 days after sowing. The growth parameters were progressively reduced with the increase in salinity level; however, growth inhibition was significantly reduced by the foliar application of SA. With the increase in salt stress, a gradual decrease in the activities of carbonic anhydrase and nitrate reductase was observed in both the varieties. SA-treatment not only ameliorated the adverse effects of NaCl but also showed a significant improvement in the activities of these enzymes compared with the untreated stressed-plants. The plants supplemented with NaCl exhibited a significant increase in electrolyte leakage, proline content, and phosphoenol pyruvate carboxylase activity. Content and yield of essential oil was also significantly decreased in plants that received salinity levels; however, SA overcame the unfavorable effects of salinity stress to a considerable extent. Lemongrass variety Krishna was found to be more adapted to salt stress than Neema, as indicated by the overall performance of the two varieties under salt conditions. PMID:21882051

  20. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis

    SciTech Connect

    Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

    1985-02-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3-/sup 3/H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment.

  1. Decreasing the toxicity of paraquat through the complexation with sodium salicylate: Stoichiometric analysis.

    PubMed

    Gales, Luís; Amorim, Ricardo; Afonso, Carlos Manuel M; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge

    2015-10-01

    Over the last decades, paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride; PQ) has been involved in numerous fatalities especially attributed to suicide attempts. Previously, it was shown that salicylates, namely sodium salicylate (NaSAL) and lysine acetylsalicylate (LAS) may form complexes with PQ, which may contribute to prevent its toxicity. The direct chemical reactivity between PQ and NaSAL was previously studied by liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry, showing the formation of complexes, though reported data was not fully conclusive. In the present study, the structure of the complex of PQ with NaSAL is fully characterized by crystallography. It was observed that PQ is complexed with 4 NaSAL molecules. Since formulations containing PQ and salicylates have been proposed, these results point that the stoichiometry of 1:4 (PQ:salicylates) should be considered to optimize prevention of PQ-mediated toxic effects. PMID:26298007

  2. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  3. Salicylate-enhanced activation of transcription factors induced by interferon-gamma.

    PubMed Central

    Chen, L C; Kepka-Lenhart, D; Wright, T M; Morris, S M

    1999-01-01

    Salicylate enhanced the interferon-gamma-dependent activation of two transcription factors in a murine macrophage cell line: signal transducer and activator of transcription (STAT)1 and interferon-gamma-responsive factor 1. Salicylate alone did not activate these transcription factors. This enhancement was reflected by increased DNA-binding activities and was the consequence of prolonged tyrosine phosphorylation of these transcription factors following interferon-gamma treatment. However, salicylate did not directly inhibit protein-tyrosine phosphatase activity in nuclear extracts of interferon-gamma-treated cells. The enhanced activation of STAT1 resulted in increased induction of mRNA encoding interferon regulatory factor-1. These results not only demonstrate that aspirin and its metabolite salicylate may have pro-inflammatory as well as anti-inflammatory effects but also raise the possibility that new cellular targets may be identified for modulating the Janus kinase-STAT signalling pathway. PMID:10477259

  4. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    NASA Astrophysics Data System (ADS)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  5. Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Rogi?, Dunja

    1993-03-01

    A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 ?g ml -1 of aspirin and from 2.723-13.616 ?g ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 ?g ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

  6. Both Central and Peripheral Auditory Systems Are Involved in Salicylate-Induced Tinnitus in Rats: A Behavioral Study

    PubMed Central

    Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

    2014-01-01

    Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067

  7. Hydrolytic metabolism of phenyl and benzyl salicylates, fragrances and flavoring agents in foods, by microsomes of rat and human tissues.

    PubMed

    Ozaki, Hitomi; Sugihara, Kazumi; Tamura, Yuki; Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2015-12-01

    Salicylates are used as fragrance and flavor ingredients for foods, as UV absorbers and as medicines. Here, we examined the hydrolytic metabolism of phenyl and benzyl salicylates by various tissue microsomes and plasma of rats, and by human liver and small-intestinal microsomes. Both salicylates were readily hydrolyzed by tissue microsomes, predominantly in small intestine, followed by liver, although phenyl salicylate was much more rapidly hydrolyzed than benzyl salicylate. The liver and small-intestinal microsomal hydrolase activities were completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Phenyl salicylate-hydrolyzing activity was co-eluted with carboxylesterase activity by anion exchange column chromatography of the Triton X-100 extracts of liver and small-intestinal microsomes. Expression of rat liver and small-intestinal isoforms of carboxylesterase, Ces1e and Ces2c (AB010632), in COS cells resulted in significant phenyl salicylate-hydrolyzing activities with the same specific activities as those of liver and small-intestinal microsomes, respectively. Human small-intestinal microsomes also exhibited higher hydrolyzing activity than liver microsomes towards these salicylates. Human CES1 and CES2 isozymes expressed in COS cells both readily hydrolyzed phenyl salicylate, but the activity of CES2 was higher than that of CES1. These results indicate that significant amounts of salicylic acid might be formed by microsomal hydrolysis of phenyl and benzyl salicylates in vivo. The possible pharmacological and toxicological effects of salicylic acid released from salicylates present in commercial products should be considered. PMID:26321725

  8. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling.

    PubMed

    Wei, L; Ding, D; Salvi, R

    2010-06-16

    Aspirin, whose active ingredient is sodium salicylate, is the most widely used drug worldwide, but it is not recommended for children because it may cause Reye's syndrome. High doses of salicylate also induce temporary hearing loss and tinnitus; while these disorders are believed to disappear when treatment is discontinued some data suggest that prolonged treatment may be neurotoxic. To investigate its ototoxicity, immature, postnatal day 3 rat cochlear organotypic cultures were treated with salicylate. Salicylate did not damage the sensory hair cells, but instead damaged the spiral ganglion neurons (SGN) and their peripheral fibers in a dose-dependent manner. The cross-sectional area of SGN decreased from 205 microm(2) in controls to 143, 116, and 91 microm(2) in cultures treated with 1, 3, or 5 mM salicylate, respectively. Morphological changes and caspase upregulation were indicative of caspase-mediated apoptosis. A quantitative RT-PCR apoptosis array identified a subset of genes up- or down regulated by salicylate. Eight genes showed a biologically relevant change (P<0.05, > or =2 fold change) after 3 h treatment with salicylate; seven genes (Tp53, Birc3, Tnfrsf5, Casp7, Nfkb1, Fas, Lta, Tnfsf10) were upregulated and one gene (Pycard) was downregulated. After 6 h treatment, only one gene (Nol3) was upregulated and two genes were downregulated (Cideb and Lhx4) while after 12 h treatment, two genes (Il10, Gadd45a) were upregulated and 4 (Prok2, Card10, Ltbr, Dapk1) were downregulated. High doses of salicylate in a physiologically relevant range can induce caspase-mediated cell death in immature SGN; changes in the expression of apoptotic genes particularly among members of the tumor necrosis factor (TNF) family appear to play an important role in the degeneration. PMID:20298761

  9. Salicylate induced neural changes in the primary auditory cortex of awake cats.

    PubMed

    Zhang, X; Yang, P; Cao, Y; Qin, L; Sato, Y

    2011-01-13

    Systemic administration of salicylate at high doses can induce reversible tinnitus and hyperacusis in humans and animals. For this reason, a number of studies have investigated the salicylate-induced changes of neural activity in the auditory cortex (AC); however, most previous studies of the AC were conducted on brain slices or anesthetized animals, which cannot completely represent the actual conditions. Few efforts have been made to examine the neural activity of awake animals, and only recorded the local field potential (LFP) of the AC. In this study, we recorded neural spike activities from chronically implanted electrodes in the primary AC (A1) of awake cats, and investigated the changes of neural responses to pure-tone and click-train stimuli after systemic injection of 200 mg/kg salicylate. We found that sound-evoked spike activities were significantly increased from 1 h after salicylate administration, and the increase of neural responses lasted longer than 3 days with a peak at 12 h. Salicylate not only increased the amplitude of transient responses at the onset and offset of pure-tone stimuli, but also induced a sustained response during the prolonged stimulus period and a late response at ?100 ms after stimulus offset. The significant enhancement of neural responses was observed over the entire tested frequency range (0.1-16 kHz) with a relative peak in the band of 3.2-9.6 kHz. The capability of exhibiting spikes synchronizing with successive clicks was also enhanced. All these effects were more apparent when the neurons were driven by high intensity sounds. Salicylate-administration also decreased the mean spontaneous rate in A1 units, and the decrease of spontaneous rate was larger in the units with a high initial spontaneous rate. Our data confirm that salicylate can modulate the neural activity at the cortical level and provide more information for understanding the mechanism of salicylate-induced tinnitus. PMID:21044658

  10. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling

    PubMed Central

    Wei, Lei; Ding, Dalian; Salvi, Richard

    2010-01-01

    Aspirin, whose active ingredient is sodium salicylate, is the most widely used drugs worldwide, but it is not recommend for children because it may causes Reye’s syndrome. High doses of salicylate also induce temporary hearing loss and tinnitus; while these disorders are believed to disappear when treatment is discontinued some data suggest that prolonged treatment may be neurotoxic. To investigate its ototoxicity, immature, postnatal day 3 rat cochlear organotypic cultures were treated with salicylate. Salicylate did not damage the sensory hair cells, but instead damaged the spiral ganglion neurons and their peripheral fibers in a dose-dependent manner. The cross sectional area of spiral ganglion neurons decreased from 205 ?m2 in controls to 143, 116 and 91 ?m2 in cultures treated with 1, 3 or 5 mM salicylate respectively. Morphological changes and caspase upregulation were indicative of caspase-mediated apoptosis. A quantitative RT-PCR apoptosis array identified a subset of genes up or down regulated by salicylate. Eight genes showed a biologically relevant change (P < 0.05, ? 2 fold change) after 3 h treatment with salicylate; 7 genes (Tp53, Birc3, Tnfrsf5, Casp7, Nfkb1, Fas, Lta, Tnfsf10) were upregulated and 1 gene (Pycard) was downregulated. After 6 h treatment, only 1 gene (Nol3) was upregulated and 2 genes were downregulated (Cideb and Lhx4) while after 12 h treatment, 2 genes (Il10, Gadd45a) were upregulated and 4 (Prok2, Card10, Ltbr, Dapk1) were downregulated. High doses of salicylate in a physiologically relevant range can induce caspase-mediated cell death in immature spiral ganglion neurons; changes in the expression of apoptotic genes particularly among members of the TNF family appear to play an important role in the degeneration. PMID:20298761

  11. Dermal and underlying tissue pharmacokinetics of salicylic acid after topical application.

    PubMed

    Singh, P; Roberts, M S

    1993-08-01

    The time course of salicylic acid at a dermal application site and in local underlying tissues below the site in rats was examined using a physiologically based pharmacokinetic model assuming first-order diffusional mass transfer between the dermis and underlying tissues. The concentrations of salicylic acid in tissues below the applied site were measured and compared with plasma concentrations and concentrations in similar tissues on the contralateral side. The direct penetration of salicylic acid was dominant only to a depth of 3-4 mm below the applied site for the first approximately 2 hr after application. The time course of salicylic acid in individual rats was modeled using known tissue blood flows and tissue-tissue clearances by (i) numerical integration and nonlinear regression of a series of differential equations representing events in individual tissues, and (ii) numerical integration and nonlinear regression of a single differential equation representation of the concentration-time course in an individual tissue with a polynomial representation of salicylate concentrations in other input tissues and an exponential representation of the input from the solution. Tissue-tissue clearances were deduced by both nonlinear regression and mass balance analysis (only for underlying dermis) using area-under-the-curves from salicylic acid tissue penetration data in anesthetized rats. The relative importance of direct penetration and blood supply in determining the concentrations of salicylic acid in deeper tissues was assessed by simulations in which either no direct penetration occurred or there was zero input from blood. Simulations confirm that direct penetration is only evident in the superficial tissues for approximately 2 hr. An attempt was also made to examine the dermal pharmacokinetics of salicylic acid using statistical moments. PMID:8133461

  12. Effect of salicylates on histamine and L-histidine metabolism. Inhibition of imidazoleacetate phosphoribosyl transferase.

    PubMed Central

    Moss, J; De Mello, M C; Vaughan, M; Beaven, M A

    1976-01-01

    In man and other animals, urinary excretion of the histidine and histamine metabolite, imidazoleacetate, is increased and that of its conjugated metabolite, ribosylimidazoleacetate, decreased by salicylates. Imidazoleacetate has been reported to produce analgesia and narcosis. Its accumulation as a result of transferase inhibition could play a part in the therapeutic effects of salicylates. To determine the locus of salicylate action, we have investigated the effect of anti-inflammatory drugs on imidazoleacetate phosphoribosyl transferase, the enzyme that catalyzes the ATP-dependent conjugation of imidazoleacetate with phosphoribosylpyrophosphate. As little as 0.2 mM aspirin produced 50% inhibition of the rat liver transferase. In vivo, a 30% decrease in the urinary excretion of ribosylimidazoleacetate has been observed with plasma salicylate concentrations of 0.4 mM. The enzyme was also inhibited by sodium salicylate but not by salicylamide, sodium gentisate, aminopyrine, phenacetin, phenylbutazone, or indomethacin. The last four drugs have been shown previously not to alter the excretion of ribosylimidazoleacetate when administered in vivo. Since both the drug specificity and inhibitory concentrations are similar in vivo and in vitro, it seems probable that the effect of salicylates on imidazoleacetate conjugation results from inhibition of imidazoleacetate phosphoribosyl transferase. PMID:180057

  13. Wine as a digestive aid: comparative antimicrobial effects of bismuth salicylate and red and white wine.

    PubMed Central

    Weisse, M. E.; Eberly, B.; Person, D. A.

    1995-01-01

    OBJECTIVE--To test whether red and white wines are as potent as bismuth salicylate against the bacteria responsible for traveller's diarrhoea to try to explain wine's legendary reputation as a digestive aid. DESIGN--Red and white wine, bismuth salicylate, two solutions containing ethanol (diluted absolute ethanol and tequila), and sterilised water were tested against suspensions of salmonella, shigella, and Escherichia coli to determine relative antibacterial activity. Suspensions of 10(7) colony forming units of shigella, salmonella, and E coli were added to the test solutions and plated on standard nutrient agar at 0, 10, 20, 30, 60, and 120 minutes and 24 hours. Dilutions of wine and bismuth salicylate were then tested with E coli as the test bacterium, and the experiment repeated. MAIN OUTCOME MEASURES--Exposure times necessary for eradication of organisms for the different solutions; decreases in colony counts at the different exposure times for dilutions of wine and bismuth salicylates. RESULTS--Undiluted wine and bismuth salicylate were both effective in reducing the number of viable organisms (by 10(5)-10(6) colony forming units) after 20-30 minutes. Dilutions of wine were much more effective in decreasing colony counts than were similar dilutions of bismuth salicylate. CONCLUSION--The antibacterial property of wine is largely responsible for wine's reputation as a digestive aid. Images p1659-a PMID:8541747

  14. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric.

    PubMed

    Kantouch, A; El-Sayed, A Atef; Salama, M; El-Kheir, A Abou; Mowafi, S

    2013-11-01

    Salicylic acid and three of its derivatives were used to provide antibacterial properties to viscose fabrics. The four bactericides used were bonded to the viscose fabrics using epichlorohydrin or polymer binders. Optimization of the salicylic acid and its derivatives as well as the concentration of polymers was reported. The ability of the polymer binders to attract and bind the four bactericides was observed. The overall results show that the antibacterial reactivity of salicylic acid and its derivatives are in the following order 5-bromosalicylic acid>salicylic acid>5-chlorosalicylic acid>4-chlorosalicylic acid. Using epichlorohydrin as a binding agent, unfortunately, inhibits the bactericidal activity of the four bactericides. The FTIR study concludes that the reaction between salicylic acid as well as its derivatives with epichlorohydrin takes place through the phenolic group of the acids. The unexpected deterioration in the bactericidal properties of salicylic acid and its derivatives as a result of the treatment with epichlorohydrin could be due to the nature of interaction between the epichlorohydrin molecule and the acids molecules. PVP and PU show superior ability to sustain the four bactericides used even after 10 washing cycles. PMID:24076193

  15. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies

    PubMed Central

    Cross, Sheree E; Anderson, Chris; Roberts, Michael S

    1998-01-01

    Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946

  16. Radiation- and photo-induced formation of salicylic acid from phenol and CO{sub 2} in aqueous solution

    SciTech Connect

    Krapfenbauer, K.; Getoff, N.

    1996-12-31

    The concentration of CO{sub 2} in the atmosphere is steady increasing because of the combustion of fossil fuels and the industrial pollution. As a result, global warming has occurred. In the present study the formation of the salicylic acid and other products, originating from the carboxylation of phenol is investigated. It has been found that the formation of salicylic acid strongly depend on several experimental conditions: pH of the solution, concentration of phenol and CO{sub 2}, and absorbed dose. The formation of salicylic acid was also studied in the presence of catalysts. Photo-induced carboxylation of phenol to salicylic acid will be also reported. Probable reaction mechanisms for the salicylic acid formation are suggested. Finally, a comparison is made between the well known industrial Kolbe-Schmitt process for salicylic acid production and the aspects of the present new method for CO{sub 2} utilization.

  17. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  18. Quantification of jasmonic and salicylic acids in rice seedling leaves.

    PubMed

    Cho, Kyoungwon; Han, Oksoo; Tamogami, Shigeru; Shibato, Junko; Kubo, Akihiro; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) are critical signaling components involved in various aspects of plant growth, development, and defense. Their constitutive levels vary from plant to plant and also from tissue to tissue within the same plant. Moreover, their quantitative levels change when plant is exposed to biotic and abiotic stresses. To better understand the JA- and SA-mediated signaling and metabolic pathways, it is important to precisely quantify their levels in plants/tissues/organs. However, their extraction and quantification are not trivial and still technically challenging. An effort has been made in various laboratories to develop a simple and standard procedure that can be utilized for quantification of JA and SA. Here, we present the experimental procedure and our decade of experience on extracting and quantifying them in an absolute manner in leaves of rice seedlings. We must mention that this method has been applied to both monocotyledonous and dicotyledonous plants for absolute quantification of JA and SA. As collaboration is the key towards rapid progress in science and technology, we are always open to sharing our experience in this field with any active research group with an aim to improve the procedure further and eventually to connect the importance of their (JA and SA) quantitative levels with networks of signaling and metabolic pathways in plants. PMID:23135852

  19. Association of riboflavin, caffeine, and sodium salicylate in aqueous solution

    NASA Astrophysics Data System (ADS)

    Baranovskii, S. F.; Bolotin, P. A.

    2007-03-01

    We have used UV and visible spectrophotometry to study self-association of aromatic riboflavin molecules (RFN, vitamin B2, 7,8-dimethyl-10-N-(1'-D-ribityl)isoalloxazine) in aqueous solution (pH 6.86) at T = 298 K, using a dimer model. We have determined the equilibrium dimerization constant for riboflavin, KdB = 125 ± 40 M-1. We have studied heteroassociation in the system of molecules of 7,8-dimethyl-10-ribitylisoalloxazine with 1,3,7-trimethylxanthine (caffeine) and sodium salicylate (NAS) in aqueous solution (pH 6.86; T = 298 K). We have determined the heteroassociation constants for RFN-NAS and RFN-caffeine molecules in the absence and in the presence of urea in solutions using a modified Benesi-Hildebrand equation: 25 ± 4, 17 ± 3, and 74 ± 11, 53 ± 7 M-1 respectively. We have determined the dimerization constants for NAS (2.7 ± 0.5 M-1) and caffeine (17.0 ± 1.5 M-1). We conclude that heteroassociation of the aromatic molecules leads to a lower effective riboflavin concentration in solution, and the presence of urea in mixed solutions leads to an decrease in the complexation constants for the RFN-NAS and RFN-caffeine systems.

  20. Inhibition of mast cell-dependent anaphylaxis by sodium salicylate

    PubMed Central

    Kim, H M; Shin, H Y; Choo, Y K; Park, J K

    1999-01-01

    Sodium salicylate (NaSal) is a commonly used agent with a wide pharmacological spectrum. The objective of the present study was to investigate the effect of NaSal on anaphylaxis. NaSal (10−1 and 1 mm) significantly inhibited systemic anaphylaxis induced by compound 48/80 in rats. NaSal also significantly inhibited local anaphylaxis activated by anti-dinitrophenyl (DNP) immunoglobulin E (IgE). NaSal (10−1 and 1 mm) significantly inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Northern-blot analysis demonstrated that a significantly reduced level of the mRNA of l-histidine decarboxylase was expressed in mast cells treated with NaSal, compared with that without NaSal. NaSal (10−2 and 10−1 mm) had a significant inhibitory effect on anti-DNP IgE-induced tumour necrosis factor-α secretion from RPMC. The level of cyclic AMP in RPMC, when NaSal (1 mm) was added, transiently and significantly increased about sixfold compared with that of basal cells. These results suggest a possible use of NaSal in managing mast cell-dependent anaphylaxis. PMID:10233741

  1. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk.

    PubMed

    Fullerton, Morgan D; Ford, Rebecca J; McGregor, Chelsea P; LeBlond, Nicholas D; Snider, Shayne A; Stypa, Stephanie A; Day, Emily A; Lhoták, Šárka; Schertzer, Jonathan D; Austin, Richard C; Kemp, Bruce E; Steinberg, Gregory R

    2015-05-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk ?1-deficient (?1(-/-)) mice. Macrophages from Ampk ?1(-/-) mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk ?1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk ?1(-/-) macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk ?1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk ?1(-/-) macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  2. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  3. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza

    PubMed Central

    Zhang, Xiaoru; Dong, Juane; Liu, Hailong; Wang, Jiao; Qi, Yuexin; Liang, Zongsuo

    2016-01-01

    Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza. PMID:26808150

  4. High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response.

    PubMed

    Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju

    2014-01-01

    Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. PMID:24149068

  5. Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats.

    PubMed

    Kizawa, K; Kitahara, T; Horii, A; Maekawa, C; Kuramasu, T; Kawashima, T; Nishiike, S; Doi, K; Inohara, H

    2010-02-17

    Tinnitus is a non-observable phantom sensation. As such, it is a difficult condition to investigate and, to date, no effective treatment has been developed. To approach this phantom sensation, we aimed to develop a rat behavioral model of tinnitus using salicylate, an active component of aspirin known to induce tinnitus. We also aimed to establish a molecular marker of tinnitus by assessing the expression of transient receptor potential cation channel superfamily V-1 (TRPV1) in the rat auditory pathway during salicylate-induced tinnitus. Animals were trained to perform "an active avoidance task": animals were conditioned by electrical footshock to move to the other side of the conditioning box when hearing a sound. Animals received a single injection of saline or salicylate (400 mg/kg i.p.) and false positive responses were measured 2 h after injection as the number of movements during a silent period. The number of responses in salicylate-treated animals was highest when the conditioned stimulus was 60 dB sound pressure level (SPL) and 16 kHz. This indicates that animals could feel tinnitus 2 h after salicylate injection, equivalent to that induced by 60 dB SPL and 16 kHz. By means of real-time PCR and western blot analysis, TRPV1 expression was significantly upregulated in spiral ganglion cells 2 h after salicylate injection and this upregulation together with the increase in the number of false positive responses was significantly suppressed by capsazepine (10 mg/kg i.p.), a specific antagonist of TRPV1. This suggests that salicylate could induce tinnitus through activation of TRPV1 in the rat auditory pathway. PMID:19958810

  6. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-12-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 3.1, 1.0 and 4.8μgC dwg-1 h-1, respectively (dwg; dry weight of the leaves in gram). The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because they probably produce oxidation products that can condense onto the aerosol phase. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas area using a BVOC emission model. The contribution was estimated to reach 50% of the biogenic terpenoid emission in the landscapes dominated by desert willow and mesquite and 13% in the Las Vegas area. The contributions to biogenic SOA are likely to be higher due to the potentially high SOA yields of these compounds.

  7. Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation

    NASA Astrophysics Data System (ADS)

    Matsunaga, S. N.; Guenther, A. B.; Potosnak, M. J.; Apel, E. C.

    2008-07-01

    Biogenic volatile organic compounds (BVOC) produced by plants are known to have an important role in atmospheric chemistry. However, our knowledge of the range of BVOCs produced by different plant processes is still expanding, and there remain poorly understood categories of BVOCs. In this study, emissions of a novel class of BVOC emissions were investigated in a desert region. Our study considered 8 species of common desert plants: blackbrush (Coleogyne ramosissima), desert willow (Chilopsis linearis), mesquite (Prosopis glandulosa), mondel pine (Pinus eldarica), pinyon pine (Pinus monophylla), cottonwood (Populus deltoides), saguaro cactus (Carnegiea gigantea) and yucca (Yucca baccata). The measurements focused on BVOCs with relatively high molecular weight (>C15) and/or an oxygenated functional group. Significantly high emission rates of two salicylic esters were found for blackbrush, desert willow and mesquite with emission rates of 1.4, 2.1 and 0.46 μgC dwg-1 h-1, respectively. The salicylic esters were identified as 2-ethylhexenyl salicylate (2-EHS) and 3,3,5-trimethylcyclohexenyl salicylate (homosalate) and are known as effective ultraviolet (UV) absorbers. We propose that the plants derive a protective benefit against UV radiation from the salicylic esters and that the emission process is driven by the physical evaporation of the salicylic esters due to the high ambient temperatures. In addition, the salicylic esters are predicted to be an effective precursor of secondary organic aerosol (SOA) because of their low vapor pressure due to a high number of carbon atoms (15 or 16) and the presence of three oxygen atoms. We estimated the contribution of the sunscreen esters themselves and their oxidation products on the SOA formation for the Las Vegas region using a BVOC emission model. The contribution was estimated to reach 90% of the biogenic SOA in the landscapes dominated by desert willow and mesquite and 25% in Las Vegas area.

  8. Induction of nopaline synthase promoter activity by H2O2 has no direct correlation with salicylic acid.

    PubMed Central

    Dai, Z; An, G

    1995-01-01

    Transgenic tobacco (Nicotiana tabacum L.) plants carrying a fusion between the nopaline synthase (nos) promoter and chloramphenicol acetyltransferase (CAT) reporter gene (caf) were tested for their response to treatment with H2O2. The nos promoter-driven CAT activity increased significantly by addition of H2O2, reaching the maximum level at 15 mM. Kinetic analysis for CAT activity showed that induction by H2O2 was similar to that of methyl jasmonate (MJ), but was much slower than induction by salicylic acid (SA). Time-course experiments for mRNA level also revealed that the response to H2O2 treatment was similar to that of MJ. The nos promoter displayed a rapid and transient induction of mRNA with SA treatment, with the maximum levels occurring at 3 h, whereas the levels induced by H2O2 or MJ treatment increased continuously during the 11-h experimental period. The antioxidants N-acetyl-L-cysteine and catechol did not alter the SA effect. The responses of the nos promoter to H2O2, MJ, and wounding were significantly reduced by deletions of the CAAT box region and the sequence between -112 and -101. However, these deletions did not significantly alter the SA response. This suggests that H2O2 may have a different mechanism from that of SA for inducing nos promotor activity. PMID:8539287

  9. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    SciTech Connect

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  10. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters.

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The purpose of this work was to develop a family of cross-linked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as "bioactive" and "resorbable" and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties. PMID:26284981

  11. Caspase-3 activation in the guinea pig cochlea exposed to salicylate.

    PubMed

    Feng, Hao; Yin, Shi-Hua; Tang, An-Zhou; Cai, Hong-Wu; Chen, Ping; Tan, Song-Hua; Xie, Li-Hong

    2010-07-19

    In the current study, we explored whether chronic salicylate exposure could induce apoptosis in outer hair cells (OHCs) and spiral ganglion neurons (SGNs) of the cochlea. Guinea pig received sodium salicylate (400 mg/kg/d) or saline vehicle for 10 consecutive days. Programmed cell death (PCD) executioner was evaluated with immunohistochemistry detection of activated caspase-3. Apoptosis was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Repeated salicylate administration activated caspase-3 and caused apoptosis in OHCs and SGNs (p<0.01 vs. saline control for both measures and in both cell types). Cell counting showed a significant loss in OHCs (p<0.01 vs. saline control), but not in inner hair cells (IHCs). Transmission electron microscopy (TEM) revealed chromatin condensation and nucleus margination in salicylate-treated cochlea. Scanning electron microscopy (SEM) demonstrated stereociliary bundles breakdown and fusion at the apical of OHCs, villous matter was discovered to attach on the surface of SGNs. These findings suggest that long-term administration of high-dose salicylate can activate caspase-3 pathway to induce OHC and SGN apoptosis. PMID:20478357

  12. Synergistic Substrate and Oxygen Activation in Salicylate Dioxygenase Revealed by QM/MM Simulations.

    PubMed

    Roy, Subhendu; Kästner, Johannes

    2016-01-01

    Salicylate 1,2-dioxygenase (SDO) is the first enzyme to be discovered to catalyze the oxidative cleavage of a monohydroxylated aromatic compound, namely salicylate, instead of the well-known electron-rich substrates. We have investigated the mechanism of dioxygen activation in SDO by QM/MM calculations. Our study reveals that the non-heme Fe(II) center in SDO activates salicylate and O2 synergistically through a strong covalent interaction to facilitate the reductive cleavage of O2 . A covalent salicylate-Fe(II) -O2 complex is the reactive oxygen species in this case, and its electronic structure is best described as being between the two limiting cases, Fe(II) -O2 and Fe(II) -O2 (.-) , with partial electron transfer from the activated salicylate to O2 via the Fe center. Thus SDO employs a synergistic strategy of substrate and oxygen activation to carry out the catalytic reaction, which is unprecedented in the family of iron dioxygenases. Moreover, O2 activation in SDO happens without the assistance of a proton source. Our study essentially shows a new mechanistic possibility for O2 activation. PMID:26596241

  13. How salicylic acid takes transcriptional control over jasmonic acid signaling

    PubMed Central

    Caarls, Lotte; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well. PMID:25859250

  14. Physical insights into salicylic acid release from poly(anhydrides).

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2016-01-21

    Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers. PMID:26689269

  15. AHL-priming functions via oxylipin and salicylic acid

    PubMed Central

    Schenk, Sebastian T.; Schikora, Adam

    2015-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID:25642235

  16. Selective arylation reactions of bismuth-transition metal salicylate complexes.

    PubMed

    Stavila, Vitalie; Thurston, John H; Whitmire, Kenton H

    2009-07-20

    Heterometallic bismuth-niobium or -tantalum salicylate complexes react with sodium tetraphenylborate to produce complexes in which one or more aryl groups have been transferred from boron to bismuth with the concomitant displacement of a eta(2)-salicylato ligand. When the previously reported Bi(2)Ta(2)(sal)(4)(Hsal)(4)(OEt)(4) (1) and BiTa(4)(mu-O)(4)(sal)(4)(Hsal)(3)(O(i)Pr)(4) (2) are treated with an alcoholic solution of NaBPh(4), the compounds [PhBi(Hsal)Ta(sal)(2)(OEt)(2) x EtOH](2) (3) and PhBiTa(4)(mu-O)(4)(Hsal)(2)(sal)(4)(OEt)(4) x CH(2)Cl(2) (4) are produced (sal = O(2)CC(6)H(4)-2-O(2-), Hsal = O(2)CC(6)H(4)-2-OH(-)). The core geometries of the heterometallic complexes are retained. However, if preparations of compound 1 are treated with NaBPh(4) without prior isolation of 1, [Ph(2)BiNb(sal)(2)(OMe)(2)](infinity) (5) is produced instead. This compound was characterized both as a solvent-free crystalline form and as one containing a lattice diethyl ether. The compound exhibits a polymeric chain structure that can be viewed as alternating [Ph(2)Bi](+) and [Nb(sal)(2)(OMe)(2)](-) units connected via bridging carboxylate groups. The arylation of the bismuth(III) center proceeds smoothly under mild conditions at room temperature, affording a new means for the mild functionalization of bismuth-transition metal heterometallic complexes. PMID:19537724

  17. AHL-priming functions via oxylipin and salicylic acid.

    PubMed

    Schenk, Sebastian T; Schikora, Adam

    2014-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant-microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID:25642235

  18. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling.

    PubMed

    Gitau, Samuel Chege; Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Liang, Haihai; Qian, Ming; Lv, Lifang; Li, Tianshi; Xu, Bozhi; Wang, Zhiguo; Zhang, Yong; Xu, Chaoqian; Lu, Yanjie; Du, Zhiming; Shan, Hongli; Yang, Baofeng

    2015-12-01

    Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin. PMID:26626190

  19. Salicylic Acid in Rice (Biosynthesis, Conjugation, and Possible Role).

    PubMed Central

    Silverman, P.; Seskar, M.; Kanter, D.; Schweizer, P.; Metraux, J. P.; Raskin, I.

    1995-01-01

    Salicylic acid (SA) is a natural inducer of disease resistance in some dicotyledonous plants. Rice seedlings (Oryza sativa L.) had the highest levels of SA among all plants tested for SA content (between 0.01 and 37.19 [mu]g/g fresh weight). The second leaf of rice seedlings had slightly lower SA levels than any younger leaves. To investigate the role of SA in rice disease resistance, we examined the levels of SA in rice (cv M-201) after inoculation with bacterial and fungal pathogens. SA levels did not increase after inoculation with either the avirulent pathogen Pseudomonas syringae D20 or with the rice pathogens Magnaporthe grisea, the causal agent of rice blast, and Rhizoctonia solani, the causal agent of sheath blight. However, leaf SA levels in 28 rice varieties showed a correlation with generalized blast resistance, indicating that SA may play a role as a constitutive defense compound. Biosynthesis and metabolism of SA in rice was studied and compared to that of tobacco. Rice shoots converted [14C]cinnamic acid to SA and the lignin precursors p-coumaric and ferulic acids, whereas [14C]benzoic acid was readily converted to SA. The data suggest that in rice, as in tobacco, SA is synthesized from cinnamic acid via benzoic acid. In rice shoots, SA is largely present as a free acid; however, exogenously supplied SA was converted to [beta]-O-D-glucosylSA by an SA-inducible glucosyltransferase (SA-GTase). A 7-fold induction of SA-GTase activity was observed after 6 h of feeding 1 mM SA. Both rice roots and shoots showed similar patterns of SA-GTase induction by SA, with maximal induction after feeding with 1 mM SA. PMID:12228500

  20. Effect of salicylate on the large GABAergic neurons in the inferior colliculus of rats.

    PubMed

    Zou, Qiao-Zhi; Shang, Xiu-Li

    2012-12-01

    Salicylate, the anti-inflammatory component of aspirin, induces transient tinnitus and hearing loss in clinical and animal experiments. However, the affected sites and mechanisms of generation remain unclear. Recently, down-regulation of inhibitory transmission mediated by ?-aminobutyric acid type A receptors was suggested to be crucial in generating tinnitus. However, the cell-specific pathways involved in this process were far from being understood. Here, we describe changes of inhibitory neurotransmitter, receptor, and glutamatergic axosomatic terminals in certain large GABAergic neurons (LGNs) in the inferior colliculus of rats treated with high doses of salicylate. Based on these results, we suggest that salicylate may affect inhibitory projection pathways from the inferior colliculus to the auditory cortex and lead to neural hyperactivity, perhaps by affecting the function of the LGNs. PMID:22644808

  1. Biodegradable salicylate-based poly(anhydride-ester) microspheres for controlled insulin delivery.

    PubMed

    Delgado-Rivera, Roberto; Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E

    2014-08-01

    Salicylate-based poly(anhydride-esters) (PAEs) chemically incorporate salicylic acid (SA) into the polymer backbone, which is then delivered in a controlled manner upon polymer hydrolysis. In this work, a salicylate-based PAE is a carrier to encapsulate and deliver insulin. Polymer microspheres were formulated using a water/oil/water double-emulsion solvent evaporation technique. The microspheres obtained had a smooth surface, high protein encapsulation efficiency, and relatively low emulsifier content. Insulin was released in vitro for 15 days, with no signs of aggregation or unfolding of the secondary structure. The released insulin also retained bioactivity in vitro. Concurrently, SA was released from the microspheres with polymer degradation and anti-inflammatory activity was observed. Based upon these results, the formulated microspheres enable simultaneous delivery of insulin and SA, both retaining bioactivity following processing. PMID:24027012

  2. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid.

    PubMed

    Vu, Chi B; Bemis, Jean E; Benson, Ericka; Bista, Pradeep; Carney, David; Fahrner, Richard; Lee, Diana; Liu, Feng; Lonkar, Pallavi; Milne, Jill C; Nichols, Andrew J; Picarella, Dominic; Shoelson, Adam; Smith, Jesse; Ting, Amal; Wensley, Allison; Yeager, Maisy; Zimmer, Michael; Jirousek, Michael R

    2016-02-11

    This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-?B pathway through the intracellular release of the two bioactives. PMID:26784936

  3. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zhu, Jinwei; Wang, Ying; Feng, Jiangtao; Yan, Wei; Xu, Hao

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  4. Biodegradable Salicylate-Based Poly(anhydride-ester) Microspheres For Controlled Insulin Delivery

    PubMed Central

    Delgado-Rivera, Roberto; Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E.

    2014-01-01

    Salicylate-based poly(anhydride-esters) (PAEs) chemically incorporate salicylic acid (SA) into the polymer backbone, which is then delivered in a controlled manner upon polymer hydrolysis. In this work, a salicylate-based PAE is a carrier to encapsulate and deliver insulin. Polymer microspheres were formulated using a water/oil/water double-emulsion solvent evaporation technique. The microspheres obtained had a smooth surface, high protein encapsulation efficiency, and relatively low emulsifier content. Insulin was released in vitro for 15 days, with no signs of aggregation or unfolding of the secondary structure. The released insulin also retained bioactivity in vitro. Concurrently, SA was released from the microspheres with polymer degradation and anti-inflammatory activity was observed. Based upon these results, the formulated microspheres enable simultaneous delivery of insulin and SA, both retaining bioactivity following processing. PMID:24027012

  5. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding.

    PubMed

    Egorova, Ksenia S; Seitkalieva, Marina M; Posvyatenko, Alexandra V; Khrustalev, Victor N; Ananikov, Valentine P

    2015-11-12

    Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961

  6. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    ERIC Educational Resources Information Center

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  7. Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy: An Undergraduate Quantitative Analysis Experiment

    ERIC Educational Resources Information Center

    Mitchell-Koch, Jeremy T.; Reid, Kendra R.; Meyerhoff, Mark E.

    2008-01-01

    An experiment for the undergraduate quantitative analysis laboratory involving applications of visible spectrophotometry is described. Salicylate, a component found in several medications, as well as the active by-product of aspirin decomposition, is quantified. The addition of excess iron(III) to a solution of salicylate generates a deeply…

  8. Transport of salicylate in proximal tubule (S sub 2 segment) isolated from rabbit kidney

    SciTech Connect

    Schild, L.; Roch-Ramel, F. )

    1988-04-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S{sub 2} segment). Salicylate secretion (J{sub sal}{sup b{yields}l}) fulfilled the criteria for a carrier-mediated transport system: J{sub sal}{sup b{yields}l} was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K{sub m} and V{sub max} for this secretory transport were 80 {mu}M and 3,200 fmol{center dot}min{sup {minus}1}{center dot}mm{sup {minus}1}, respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J{sub sal}{sup l{yields}b}) was low. J{sub sal}{sup l{yields}b} was stimulated by increasing the bath Pco{sub 2} or by removing basolateral HCO{sub 3}{sup {minus}}; J{sub sal}{sup l{yields}b} was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H{sup +} secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J{sub sal}{sup l{yields}b} increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane.

  9. Salicylate initiates apoptosis in the spiral ganglion neuron of guinea pig cochlea by activating caspase-3.

    PubMed

    Feng, Hao; Yin, Shi-Hua; Tang, An-Zhou; Tan, Song-Hua

    2011-06-01

    Salicylate-induced ototoxicity leading to sensorineural hearing loss (SNHL) and tinnitus is well documented. However, the exact mechanisms are poorly defined. Caspase-3 is a member of the class of effector caspases and has been activated in nearly every model of apoptosis. To examine its role in salicylate-induced injury, we subjected guinea pigs to treatment with a specific inhibitor zDEVD-FMK via the round window niche (RWN) followed by a systemic injection of salicylate at a dose of 200 mg · kg(-1) · d(-1) i.p. for 10 consecutive days. For those animals administered with salicylate, immunohistochemical studies revealed that caspase-3 was activated in the spiral ganglion neurons (SGNs) and method of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) to identify neuronal apoptosis showed that fragmented nuclei were distributed in Rosenthal's canal. Topical administration of the zDEVD-FMK at a concentration of 500 mM blocked caspase-3 activation and had an effect in reducing the number of TUNEL-positive auditory neurons. In contrast, the inhibitor at a concentration of 125 or 250 mM caused no variation in the expression of activated caspase-3, or in the ratio of TUNEL-positive neurons. These results indicate that caspase-3 is a crucial mediator of apoptosis induced by salicylate in the primary auditory neuron in vivo, and suggest that the specific inhibitor at a relatively high concentration may be therapeutically beneficial in salicylate-induced apoptosis. PMID:21451968

  10. Salicylate disrupts interrenal steroidogenesis and brain glucocorticoid receptor expression in rainbow trout.

    PubMed

    Gravel, Amélie; Vijayan, Mathilakath M

    2006-09-01

    Varying levels of pharmaceuticals, including salicylate, ibuprofen, and acetaminophen, have been reported in the aquatic environment, but few studies have actually addressed the impact of these drugs on aquatic organisms. We tested the hypothesis that these pharmaceuticals are endocrine disruptors in fish by examining their impact on interrenal corticosteroidogenesis in rainbow trout. Indeed, acute adrenocorticotrophic hormone (ACTH)-mediated cortisol production in trout interrenal cells in vitro was significantly depressed (20-40%) by these pharmaceutical drugs. Furthermore, we investigated whether this interrenal dysfunction involved inhibition of the steroidogenic capacity in rainbow trout. To this end, we fed trout salicylate-laced feed (100 mg/kg body weight) for 3 days and assessed the transcript levels of key proteins involved in corticosteroidogenesis, including steroidogenic acute regulatory protein (StAR), peripheral-type benzodiazepine receptor (PBR), cytochrome P450 cholesterol side chain cleavage (P450scc), and 11beta-hydroxylase. Salicylate treatment did not affect the resting plasma cortisol or glucose levels, whereas the acute ACTH-stimulated cortisol production was significantly depressed in the interrenal tissue. This disruption of steroidogenesis by salicylate corresponded to a significant drop in the gene expression of StAR and PBR, but not P450scc or 11beta-hydroxylase, compared to the sham-treated fish. Also, brain glucocorticoid receptor (GR) protein content and not GR mRNA level was significantly reduced by salicylate. Taken together, salicylate is a corticosteroid disruptor in trout and the targets include the key rate-limiting step in interrenal steroidogenesis and brain glucocorticoid signaling. PMID:16551645

  11. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  12. Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage

    SciTech Connect

    Palmoski, M.J.; Brandt, K.D.

    1982-09-01

    While net /sup 35/S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when /sup 3/H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished.

  13. Preliminary crystallographic analysis of salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans

    SciTech Connect

    Matera, I.; Ferraroni, M.; Bürger, S.; Stolz, A.; Briganti, F.

    2006-06-01

    Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain P. salicylatoxidans, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. The crystals obtained give diffraction data to 2.9 Å resolution which could assist in the elucidation of the catalytic mechanism of this peculiar dioxygenase. Salicylate 1,2-dioxygenase, a new ring-fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring-fission mechanism, has been crystallized. Diffraction-quality crystals of salicylate 1,2-dioxygenase were obtained using the sitting-drop vapour-diffusion method at 277 K from a solution containing 10%(w/v) ethanol, 6%(w/v) PEG 400, 0.1 M sodium acetate pH 4.6. Crystals belong to the primitive tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = 133.3, c = 191.51 Å. A complete data set at 100 K extending to a maximum resolution of 2.9 Å was collected at a wavelength of 0.8423 Å. Molecular replacement using the coordinates of known extradiol dioxygenases structures as a model has so far failed to provide a solution for salicylate 1,2-dioxygenase. Attempts are currently being made to solve the structure of the enzyme by MAD experiments using the anomalous signal of the catalytic Fe{sup II} ions. The salicylate 1,2-dioxygenase structural model will assist in the elucidation of the catalytic mechanism of this ring-fission dioxygenase from P. salicylatoxidans, which differs markedly from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate with high catalytic efficiency.

  14. Molecular Design and Synthesis of Novel Salicyl Glycoconjugates as Elicitors against Plant Diseases

    PubMed Central

    Cui, Zining; Ito, Jun; Dohi, Hirofumi; Amemiya, Yoshimiki; Nishida, Yoshihiro

    2014-01-01

    A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant defense resistance. PMID:25259805

  15. Effects of mixing procedure itself on the structure, viscosity, and spreadability of white petrolatum and salicylic acid ointment and the skin permeation of salicylic acid.

    PubMed

    Kitagawa, Shuji; Fujiwara, Megumi; Okinaka, Yuta; Yutani, Reiko; Teraoka, Reiko

    2015-01-01

    White petrolatum is a mixture of solid and liquid hydrocarbons and its structure can be affected by shear stress. Thus, it might also induce changes in its rheological properties. In this study, we used polarization microscopy to investigate how different mixing methods affect the structure of white petrolatum. We used two different mixing methods, mixing using a rotation/revolution mixer and mixing using an ointment slab and an ointment spatula. The extent of the fragmentation and dispersal of the solid portion of white petrolatum depended on the mixing conditions. Next, we examined the changes in the structure of a salicylic acid ointment, in which white petrolatum was used as a base, induced by mixing and found that the salicylic acid solids within the ointment were also dispersed. In addition to these structural changes, the viscosity and thixotropic behavior of both test substances also decreased in a mixing condition-dependent manner. The reductions in these parameters were most marked after mixing with a rotation/revolution mixer, and similar results were obtained for spreadability. We also investigated the effects of mixing procedure on the skin accumulation and permeation of salicylic acid. They were increased by approximately three-fold after mixing. Little difference in skin accumulation or permeation was detected between the two mixing methods. These findings indicate that mixing procedures themselves affect the utility and physiological effects of white petrolatum-based ointments. Therefore, these effects should be considered when mixing is required for the clinical use of petrolatum-based ointments. PMID:25400272

  16. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. PMID:26634573

  17. Cell proliferation depends on mitochondrial Ca2+ uptake: inhibition by salicylate

    PubMed Central

    Núñez, Lucía; Valero, Ruth A; Senovilla, Laura; Sanz-Blasco, Sara; García-Sancho, Javier; Villalobos, Carlos

    2006-01-01

    Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx pathway involved in control of multiple cellular and physiological processes including cell proliferation. Recent evidence has shown that SOCE depends critically on mitochondrial sinking of entering Ca2+ to avoid Ca2+-dependent inactivation. Thus, a role of mitochondria in control of cell proliferation could be anticipated. We show here that activation of SOCE induces cytosolic high [Ca2+] domains that are large enough to be sensed and avidly taken up by a pool of nearby mitochondria. Prevention of mitochondrial clearance of the entering Ca2+ inhibited both SOCE and cell proliferation in several cell types including Jurkat and human colon cancer cells. In addition, we find that therapeutic concentrations of salicylate, the major metabolite of aspirin, depolarize partially mitochondria and inhibit mitochondrial Ca2+ uptake, as revealed by mitochondrial Ca2+ measurements with targeted aequorins. This salicylate-induced inhibition of mitochondrial Ca2+ sinking prevented SOCE and impaired cell growth of Jurkat and human colon cancer cells. Finally, direct blockade of SOCE by the pyrazole derivative BTP-2 was sufficient to arrest cell growth. Taken together, our results reveal that cell proliferation depends critically on mitochondrial Ca2+ uptake and suggest that inhibition of tumour cell proliferation by salicylate may be due to interference with mitochondrial Ca2+ uptake, which is essential for sustaining SOCE. This novel mechanism may contribute to explaining the reported anti-proliferative and anti-tumoral actions of aspirin and dietary salicylates. PMID:16339178

  18. An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory.

    ERIC Educational Resources Information Center

    Creager, Stephen E.; And Others

    1995-01-01

    Describes an electrode, selective for the salicylate ion, that can be prepared and used by undergraduate students. Discusses the preparation of the electrode, typical response characteristics obtained, and results of a limited study using the electrode to estimate the selectivity coefficient for an interfering ion and to determine the amount of…

  19. Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats

    PubMed Central

    Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.

    2015-01-01

    To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200?mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60?dB SPL); gap detection thresholds were always 10?ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60?dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635

  20. Trans-canal laser irradiation reduces tinnitus perception of salicylate treated rat.

    PubMed

    Park, Young Min; Na, Woo Sung; Park, Il Yong; Suh, Myung-Whan; Rhee, Chung-Ku; Chung, Phil-Sang; Jung, Jae Yun

    2013-06-01

    The aim of this study was to find out the effect of low-level laser therapy (LLLT) on salicylate-induced tinnitus in the rat model. Fourteen Sprague-Dawley rats (8 weeks; 240-280 gm) were divided into 2 groups (study group, control group). Rats of both groups were treated with 400 mg/kg/day of sodium salicylate for 8 consecutive days. Tinnitus was monitored using GPIAS (Gap Prepulse Inhibition of Acoustic Startle) 2 h after first salicylate treatment, and every 24 h during 9 days of treatment. Rats in laser group were irradiated to each ear with wavelength of 830 nm diode laser (165 mW/cm(2)) for 30 min daily for 8 days. During salicylate treatment, rats of study group irradiated with low level laser showed significantly higher GPIAS values throughout the experiment. Therapeutic effect of LLLT is demonstrated in animal tinnitus model by means of GPIAS. Further experimental studies are needed to find possible mechanisms and better methods to improve LLLT efficacy. PMID:23583341

  1. Salicylate-induced hearing loss and gap detection deficits in rats.

    PubMed

    Radziwon, Kelly E; Stolzberg, Daniel J; Urban, Maxwell E; Bowler, Rachael A; Salvi, Richard J

    2015-01-01

    To test the "tinnitus gap-filling" hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200?mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30-60?dB SPL); gap detection thresholds were always 10?ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60?dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635

  2. Salicylate Prevents Virus-Induced Type 1 Diabetes in the BBDR Rat

    PubMed Central

    Yang, Chaoxing; Jurczyk, Agata; diIorio, Philip; Norowski, Elaine; Brehm, Michael A.; Grant, Christian W.; Guberski, Dennis L.; Greiner, Dale L.; Bortell, Rita

    2013-01-01

    Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1?, IL-6, IFN-?, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1? and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1?, IL-6, IFN-? and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes. PMID:24147110

  3. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  4. A general palladium-catalyzed carbonylative synthesis of chromenones from salicylic aldehydes and benzyl chlorides.

    PubMed

    Wu, Xiao-Feng; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2013-09-01

    Cute CO! An interesting and straightforward procedure for the carbonylative synthesis of chromenones from readily available salicylic aldehydes and benzyl chlorides has been developed (see scheme; DPPP = 1,3-bis(diphenylphosphino)propane). In the presence of a palladium catalyst, various coumarins were produced in good to excellent yields. PMID:23939874

  5. Salicylic Acid Improved In Viro Meristem Regeneration and Salt Tolerance in Two Hibiscus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid (SA) has been reported to induce abiotic stress, including salt tolerance in plants. The objective of this study was to determine whether application of various exogenous SA concentrations to in vitro grown meristem shoots could induce salt tolerance in two Hibiscus species. The effec...

  6. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    PubMed

    Yang, Chaoxing; Jurczyk, Agata; diIorio, Philip; Norowski, Elaine; Brehm, Michael A; Grant, Christian W; Guberski, Dennis L; Greiner, Dale L; Bortell, Rita

    2013-01-01

    Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1?, IL-6, IFN-?, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1? and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1?, IL-6, IFN-? and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes. PMID:24147110

  7. SALICYLIC ACID- AND NITRIC OXIDE-MEDIATED SIGNAL TRANSDUCTION IN DISEASE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current advances in plant defense signaling is discussed, with emphasis on the role of nitric oxide and salicylic acid in the development of disease resistance. Nitric Oxide has recently been shown to have an important role in plant disease resistance. We show an increase in NOS-like activity in TMV...

  8. Cell-type-specific activation of c-Jun N-terminal kinase by salicylates.

    PubMed

    Schwenger, P; Alpert, D; Skolnik, E Y; Vilcek, J

    1999-04-01

    Salicylates inhibit signaling by tumor necrosis factor (TNF), including TNF-induced activation of mitogen-activated protein kinases (MAPKs). On the other hand, we recently showed that in normal human diploid fibroblasts sodium salicylate (NaSal) elicits activation of p38 MAPK but not activation of c-Jun N-terminal kinase (JNK). Here we show that NaSal treatment of COS-1 or HT-29 cells produced a sustained c-Jun N-terminal kinase (JNK) activation. Activation of JNK or p38 MAPK by NaSal (or aspirin) was not due to a nonspecific hyperosmotic effect because much higher molar concentrations of sorbitol or NaCl were required to produce a similar activation. Three structurally unrelated nonsteroidal antiinflammatory drugs (ibuprofen, acetaminophen, and indomethacin) failed to induce significant activation of JNK or p38 MAPK, suggesting that cyclooxygenase inhibition is not the underlying mechanism whereby salicylates induce p38 MAPK and JNK activation. Activation of JNK and p38 MAPKs may be relevant for some antiinflammatory actions of salicylates. PMID:10082138

  9. Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate

    NASA Astrophysics Data System (ADS)

    Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

    2011-11-01

    ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution ??. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with ? max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to ?max=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

  10. Structure and Mechanism of MbtI, the Salicylate Synthase from Mycobacterium tuberculosis

    SciTech Connect

    Zwahlen,J.; Kolappan, S.; Zhou, R.; Kisker, C.; Tonge, P.

    2007-01-01

    MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 {angstrom} resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg{sup 2+}-dependent, and in the absence of Mg{sup 2+} MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.

  11. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium complex (generic). 721.10089 Section 721.10089 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  12. Salicylate elimination diets in children: is food restriction supported by the evidence?

    PubMed

    Gray, Paul E A; Mehr, Sam; Katelaris, Constance H; Wainstein, Brynn K; Star, Anita; Campbell, Dianne; Joshi, Preeti; Wong, Melanie; Frankum, Brad; Keat, Karuna; Dunne, Geraldine; Dennison, Barbara; Kakakios, Alyson; Ziegler, John B

    2013-06-17

    A review of case notes from our Sydney-based paediatric allergy services, between 1 January 2003 and 31 December 2011, identified 74 children who had been prescribed diets that eliminated foods containing natural salicylates before attending our clinics. The most common indications for starting the diets were eczema (34/74) and behavioural disturbances (17/74) including attention deficit hyperactivity disorder (ADHD). We could find no peer-reviewed evidence to support the efficacy of salicylate elimination diets in managing these diseases. We do not prescribe these diets, and in a survey of European and North American food allergy experts, only 1/23 respondents used a similar diet for eczema, with none of the respondents using salicylate elimination to treat ADHD. A high proportion (31/66) of children suffered adverse outcomes, including nutritional deficiencies and food aversion, with four children developing eating disorders. We could find no published evidence to support the safety of these diets in children. While this uncontrolled study does not prove a causal relationship between salicylate elimination diets and harm, the frequency of adverse events appears high, and in the absence of evidence of safety or efficacy, we cannot recommend the use of these diets in children. PMID:23919705

  13. Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

  14. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  15. ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

  16. Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

  17. 21 CFR 201.314 - Labeling of drug preparations containing salicylates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Labeling of drug preparations containing salicylates. 201.314 Section 201.314 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Specific Labeling Requirements for Specific Drug Products § 201.314 Labeling of drug...

  18. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    PubMed Central

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  19. Loss of Function of FATTY ACID DESATURASE7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner1[W][OA

    PubMed Central

    Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.

    2012-01-01

    We report here that disruption of function of the ?-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202

  20. Jasmonate- and salicylate-induced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, Sitobion avenae.

    PubMed

    Cao, He-He; Wang, Su-Hua; Liu, Tong-Xian

    2014-02-01

    Jasmonate- and salicylate-mediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In two-choice tests, adult aphids preferred control wheat leaves to MeJA- or SA-treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJA-treated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJA-treated plants was significantly shorter than on control plants. Total duration of salivation period on SA-treated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJA-dependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SA-mediated resistance may be phloem-based. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA- and SA-induced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance. PMID:23956152

  1. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma.

    PubMed

    Noreña, A J; Moffat, G; Blanc, J L; Pezard, L; Cazals, Y

    2010-04-14

    Tinnitus, also called phantom auditory perception, is a major health problem in western countries. As such, a significant amount of effort has been devoted to understanding its mechanisms, including studies in animals wherein a supposed "tinnitus state" can be induced. Here, we studied on the same awake animals the effects of a high-dose of salicylate and of an acoustic trauma both at levels known to induce tinnitus. Recordings of cortical activity (local field potentials) from chronically implanted electrodes in the same animals under each condition allowed direct comparison of the effects of salicylate and trauma (noise trauma was carried out several days after full recovery from salicylate administration). Salicylate induced a systematic and reversible increase in amplitude of cortical responses evoked by tone bursts over a wide range of frequencies and intensities. The effects of noise trauma, though much more variable than those of salicylate, resulted in both increases and decreases in the amplitude of cortical responses. These alterations of cortical response amplitudes likely reflect associated hypoacusis and hyperacusis. The effects of salicylate administration and noise trauma on spontaneous activity were also studied. Fourier analysis did not reveal any increase in power within any given frequency band; rather, both treatments induced a decrease of power spectrum over a relatively broad frequency band (approximately 10-30 Hz). Entropy rate of spontaneous activity, a measure of complexity (temporal correlations), was found to decrease after salicylate but not after acoustic trauma. The present data on evoked potentials confirm salicylate effects at the cortical level and partially extend such effects to acoustic trauma. While the present study showed that both salicylate and noise trauma induced some changes of spontaneous activity in auditory cortex, none of these changes are interpretable in terms of potential neural correlate of tinnitus. PMID:20096752

  2. In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus.

    PubMed

    Liu, Junxiu; Yu, Ping; Lin, Yuqing; Zhou, Na; Li, Tao; Ma, Furong; Mao, Lanqun

    2012-06-19

    As one of the most important neurochemicals in biological systems, ascorbate plays vital roles in many physiological and pathological processes. In order to understand the roles of ascorbate in the pathological process of tinnitus, this study demonstrates an in vivo method for real time monitoring of the changes of ascorbate level in the cochlear perilymph of guinea pigs during the acute period of tinnitus induced by local microinfusion of salicylate with carbon fiber microelectrodes (CFMEs) modified with multiwalled carbon nanotubes (MWNTs). To accomplish in vivo electrochemical monitoring of ascorbate in the microenvironment of the cochlear perilymph, the MWNT-modified CFME is used as working electrode, a microsized Ag/AgCl is used as reference electrode, and Pt wire is used as counter electrode. Three electrodes are combined together around a capillary to form integrated capillary-electrodes. The integrated capillary-electrode is carefully implanted into the cochlear perilymph of guinea pigs and used both for externally microinfusing of salicylate into the cochlear perilymph and for real time monitoring of the change of ascorbate levels. The in vivo voltammetric method based on the integrated capillary-electrodes possesses a high selectivity and a good linearity for ascorbate determination in the cochlear perilymph of guinea pigs. With such a method, the basal level of cochlear perilymph ascorbate is determined to be 45.0 ± 5.1 ?M (n = 6). The microinfusion of 10 mM salicylate (1 ?L/min, 5 min) into the cochlear decreases the ascorbate level to 28 ± 10% of the basal level (n = 6) with a statistical significance (P < 0.05), implying that the decrease in ascorbate level in the cochlear may be associated with salicylate-induced tinnitus. This study essentially offers a new method for in vivo monitoring of the cochlear perilymph ascorbate following the salicylate-induced tinnitus and can thus be useful for investigation on chemical essences involved in tinnitus. PMID:22703231

  3. DNA methylation and cancer.

    PubMed

    Kulis, Marta; Esteller, Manel

    2010-01-01

    DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future. PMID:20920744

  4. Histone Arginine Methylation

    PubMed Central

    Lorenzo, Alessandra Di; Bedford, Mark T.

    2012-01-01

    Arginine methylation is a common posttranslational modification (PTM). This type of PTM occurs on both nuclear and cytoplasmic proteins, and is particularly abundant on shuttling proteins. In this review, we will focus on one aspect of this PTM: the diverse roles that arginine methylation of the core histone tails play in regulating chromatin function. A family of nine protein arginine methyltransferases (PRMTs) catalyze methylation reactions, and a subset target histones. Importantly, arginine methylation of histone tails can promote or prevent the docking of key transcriptional effector molecules, thus playing a central role in the orchestration of the histone code. PMID:21074527

  5. Alterations in lipid profile, oxidative stress and hepatic function in rat fed with saccharin and methyl-salicylates

    PubMed Central

    Amin, Kamal Adel; AlMuzafar, Hessah Mohammed

    2015-01-01

    Background: Food additives attract consumers, improve foods quality, control weight, and replace sugar in foods, while it may affect seriously children and adults health. Aim: To investigate the adverse effects of saccharin and methylsalicyltaes on lipid profile, blood glucose, renal, hepatic function, and oxidative stress/antioxidant (lipid peroxidation, Catalase and reduced glutathione (GSH) in liver tissues). Methods: 46 young male albino rats were used. Saccharin and methylsalicylate were giving orally as low and high dose for 30 days. Rats were divided into 5 groups, 1st control group, 2nd and 3rd low and high saccharin-treated groups and 4th and 5th low and high methylsalicylate-treated group. Results: Serum total cholesterol, triglyceride, glucose levels and body weight gain were decreased in saccharin high dose compared to control. Rats ingested high dose of saccharin presented a significant reduction in serum triglycerides, cholesterol and LDL levels. Low and high doses of saccharin exhibited a significant increase in liver function marker of ALT, AST, ALP activity, total proteins and albumin levels and renal function test (urea and creatinine levels) in comparison with control group. Saccharin high dose induce a significant decline in hepatic GSH levels, catalase and SOD activities while increased in hepatic MDA level. Conclusion: It could be concluded that, saccharin affects harmfully and alters biochemical markers in hepatic and renal tissues not only at greater doses but also at low doses. Whereas uses of metylsalicylates would not pose a risk for renal function and hepatic oxidative markers. PMID:26131217

  6. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    PubMed Central

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar warts at 12 weeks (incident rate ratio 1.08 (0.81 to 1.43), P=0.62). Conclusions Salicylic acid and the cryotherapy were equally effective for clearance of plantar warts. Trial registration Current Controlled Trials ISRCTN18994246, National Research Register N0484189151. PMID:21652750

  7. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    NASA Astrophysics Data System (ADS)

    Mitra, Atanu; Bhaumik, Asim; Nandi, Mahasweta; Mondal, John; Roy, B. K.

    2009-05-01

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO 2-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsets of their absorption band compared to pure (organic-free) nanocrystalline TiO 2 and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication.

  8. Heterometallic CeIII-FeIII-salicylate networks: models for corrosion mitigation of steel surfaces by the 'green' inhibitor, Ce(salicylate)3.

    PubMed

    Deacon, Glen B; Forsyth, Craig M; Behrsing, Thomas; Konstas, Kristina; Forsyth, Maria

    2002-12-01

    The syntheses and structures of the novel Ce-Fe bimetallic complexes [[Fe(sal)2(bpy)]2Ce(NO3)(H2O)3].EtOH and [[Fe(sal)2(bpy)]4Ce2(H2O)11][salH]2.EtOH.3H2O (salH2 = salicylic acid) suggest Fe(3+)-sal2- units and Ce-OC(R)O-Fe bridging contribute to the formation of corrosion inhibitive layers on steel surfaces exposed to [Ce(salH)3(H2O)]. PMID:12478763

  9. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15

    SciTech Connect

    Chen, S.H.; Aitken, M.D.

    1999-02-01

    Pseudomonas saccharophila P15 was isolated from soil contaminated with polycyclic aromatic hydrocarbons (PAH) and previously was reported to degrade a variety of low- and high-molecular weight PAH. Strain P15 grows on phenanthrene by a known pathway in which salicylate is an intermediate. Preincubation with phenanthrene and downstream intermediates through salicylate stimulated PAH dioxygenase activity and initial rates of phenanthrene removal, suggesting that salicylate is the inducer of these activities. Salicylate also greatly enhanced initial rates of removal of fluoranthene, pyrene, benz[a]anthracene, chrysene, and benzo[a]pyrene, high-molecular weight substrates that strain P15 does not use for growth.The specific rate of removal of benzo[a]pyrene was at least 2 orders of magnitude lower than that of the four-ring compounds and nearly 5 orders of magnitude lower than that of phenanthrene. The mineralization of phenanthrene, benz[a]anthracene, chrysene, and benzo[a]pyrene was stimulated by preincubation with phenanthrene or salicylate, although significant mineralization of phenanthrene, benz[a]anthracene, and chrysene occurred in uninduced cultures. Further experiments with chrysene indicated that chrysene does not appear to induce its own mineralization. The results suggest that P. saccharophila P15 expresses a low level of constitutive PAH metabolism which is inducible to much higher levels and that high-molecular weight PAH metabolism by this organism is induced by the low-molecular weight substrate phenanthrene and by salicylate.

  10. Free Radicals, Salicylic Acid and Mycotoxins in Asparagus After Inoculation with Fusarium proliferatum and F. oxysporum.

    PubMed

    Dobosz, Bernadeta; Drzewiecka, Kinga; Waskiewicz, Agnieszka; Irzykowska, Lidia; Bocianowski, Jan; Karolewski, Zbigniew; Kostecki, Marian; Kruczynski, Zdzislaw; Krzyminiewski, Ryszard; Weber, Zbigniew; Golinski, Piotr

    2011-09-01

    Electron paramagnetic resonance was used to monitor free radicals and paramagnetic species like Fe, Mn, Cu generation, stability and status in Asparagus officinalis infected by common pathogens Fusarium proliferatum and F. oxysporum. Occurrence of F. proliferatum and F. oxysporum, level of free radicals and other paramagnetic species, as well as salicylic acid and mycotoxins content in roots and stems of seedlings were estimated on the second and fourth week after inoculation. In the first term free and total salicylic acid contents were related to free radicals level in stem (P = 0.010 and P = 0.033, respectively). Concentration of Fe(3+) ions in porphyrin complexes (g = 2.3, g = 2.9) was related to the species of pathogen. There was no significant difference between Mn(2+) concentrations in stem samples; however, the level of free radicals in samples inoculated with F. proliferatum was significantly higher when compared to F. oxysporum. PMID:21957331

  11. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.

    PubMed

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-01-01

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions. PMID:25156390

  12. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.

    PubMed

    Lebeis, Sarah L; Paredes, Sur Herrera; Lundberg, Derek S; Breakfield, Natalie; Gehring, Jase; McDonald, Meredith; Malfatti, Stephanie; Glavina del Rio, Tijana; Jones, Corbin D; Tringe, Susannah G; Dangl, Jeffery L

    2015-08-21

    Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome. PMID:26184915

  13. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis

    PubMed Central

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-01-01

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host–pathogen interactions. PMID:25156390

  14. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  15. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    SciTech Connect

    Angel, G.C.; Samson, J.A.R.; Williams, G.

    1986-09-15

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 80 eV (138--15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  16. New insight into photo-bromination processes in saline surface waters: the case of salicylic acid.

    PubMed

    Tamtam, Fatima; Chiron, Serge

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20α-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br, Br(2)(-)) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. PMID:22863810

  17. Passive permeability of salicylic acid in renal proximal S2 and S3 tubules

    SciTech Connect

    Chatton, J.Y.; Roch-Ramel, F. )

    1991-03-01

    The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The ({sup 14}C) salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH.

  18. Relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, J. A. R.; Wiliams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138-15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  19. The relative fluorescent efficiency of sodium salicylate between 90 and 800 eV

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, J. A. R.; Williams, G.

    1986-01-01

    The relative fluorescent quantum efficiency of sodium salicylate was measured between 90 and 800 eV (138 -15 A) by the use of synchrotron radiation. A general increase in efficiency was observed in this spectral range except for abrupt decreases in efficiency at the carbon and oxygen K-edges. Beyond the oxygen K-edge (532 eV) the efficiency increased linearly with the incident photon energy to the limit of the present observations.

  20. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    PubMed

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)??* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence. PMID:26135028

  1. Glycerol salicylate-based containing ?-tricalcium phosphate as a bioactive root canal sealer.

    PubMed

    Portella, Fernando F; Collares, Fabrício M; Dos Santos, Luís A; dos Santos, Bruno P; Camassola, Melissa; Leitune, Vicente C B; Samuel, Susana M W

    2015-11-01

    The use of bioactive materials instead of inert materials to fill the root canal space could be an effective approach to achieve a hermetic seal and stimulate the healing of periapical tissues. The purpose of this study was to develop and characterize an endodontic sealer based on a glycerol salicylate resin and ?-tricalcium phosphate (?TCP) at physical and chemical properties. Different sealers were formulated using 70% of a glycerol salicylate resin and 30% of a mixture of calcium hydroxide and ?TCP (0, 5, 10, or 15%, in weight). Sealers formulated were characterized based on setting time, in vitro degradation over time, pH, cytotoxicity, and mineral deposition. Sealers presented setting time ranging from 240 to 405 min, and basic pH over 8.21 after 28 days. Higher ?TCP concentration leads to sealers with low solubility. Cell viability after 48 h in direct contact with sealers was similar to a commercial sealer used as reference. The 10% and 15% ?TCP sealers exhibited a calcium-phosphate layer on the surface after immersion in water and SBF for 7 days. Glycerol salicylate sealers with 10% and 15% ?-tricalcium phosphate showed reliable physical-chemical properties and apatite-forming ability. PMID:25611332

  2. Altered intensity coding in the salicylate-overdose animal model of tinnitus.

    PubMed

    Wan, Ilynn; Pokora, Ondrej; Chiu, Tzaiwen; Lansky, Petr; Poon, Paul Waifung

    2015-10-01

    Tinnitus is one of the leading disorders of hearing with no effective cure as its pathophysiological mechanisms remain unclear. While the sensitivity to sound is well-known to be affected, exactly how intensity coding per se is altered remains unclear. To address this issue, we used a salicylate-overdose animal model of tinnitus to measure auditory cortical evoked potentials at various stimulus levels, and analyzed on single-trial basis the response strength and its variance for the computation of the lower bound of Fisher information. Based on Fisher information profiles, we compared the precision or efficiency of intensity coding before and after salicylate-treatment. We found that after salicylate treatment, intensity coding was unexpectedly improved, rather than impaired. Also, the improvement varied in a sound-dependent way. The observed changes are likely due to some central compensatory mechanisms that are activated during tinnitus to bring out the full capacity of intensity coding which is expressed only in part under normal conditions. PMID:26151393

  3. Effect of salicylic acid on morphological and biochemical attributes in cowpea.

    PubMed

    Chandra, A; Anand, A; Dubey, A

    2007-04-01

    Effects of salicylic acid (SA) on seed germination, seedling growth, flowering and biochemical activities were studied out in four cowpea (Vigna unguiculata) genotypes in control environments. The results revealed that both germination and seedling growth were negatively affected by 0.02%. SA application, however did not affect the size of full expanded buds, time of 50% flowering and date of flower initiation. A maximum increase in peroxidase (EC1.11.1.7) activity was observed in UPC 4200 over other genotypes. No significant change in the content of total soluble and intercellular fluid proteins was observed except in UPC 4200 genotype. SA induced accumulation of total soluble sugars more at flowering stage than at seed setting stage. It is evident from the present study that UPC 4200 genotype was more responsive to salicylic acid both in terms of increased peroxidase activity and less negative effect on morphological attributes, thus suggesting its wider use without negative impact on environment as salicylic acid has been reported in plants. PMID:17915749

  4. Do salicylates and ascorbate increase the outer membrane permeability to hydrophobic antibiotics in Pseudomonas aeruginosa?

    PubMed

    Vaara, M

    1990-01-01

    Acetylsalicylate and ascorbate have earlier been shown to increase the outer membrane (OM) permeability of Pseudomonas aeruginosa to a hydrophobic probe compound, nitrocefin. In order to elucidate whether these drugs increase the OM permeability to a wider set of hydrophobic compounds, the OM permeability to three other hydrophobic probes (rifampin, fusidic acid and sodium deoxycholate) was studied in the presence of salicylates or ascorbate. A high concentration (300 micrograms/ml, equal to 1.7 mM) of L-ascorbate decreased the minimum inhibitory concentration (MIC) of rifampin against P. aeruginosa by a factor of approximately 3. As a sharp contrast, the reference compound, polymyxin B nonapeptide (PMBN) which has a strong OM permeability-increasing action, decreased the MIC by a factor of approximately 100, at a concentration as low as 3 micrograms/ml (equal to 3 microM). If the assays were performed in a low ionic strength medium (L broth diluted 1/5 with water) instead of L broth, ascorbate was somewhat more effective. The MIC of fusidic acid was even less influenced by ascorbate. Additionally, ascorbate did not potentiate the bacteriolytic action of sodium deoxycholate, whereas the control compound hexametaphosphate had a marked effect. Furthermore, salicylate and acetylsalicylate sensitised, in all conditions tested, P. aeruginosa to none of the three probes. The results suggest that ascorbate and salicylates lack any significant OM permeability-increasing action. PMID:2129299

  5. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jind?iška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Ji?ina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. PMID:24767113

  6. Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium

    SciTech Connect

    Heitzer, A.; Thonnard, J.E.; Sayler, G.S.; Webb, O.F. )

    1992-06-01

    A bioassay was developed and standardized for the rapid, specific, and quantitative assessment of naphthalene and salicylate bioavailability by use of bioluminescence monitoring of catabolic gene expression. The bioluminescent reporter strain Pseudomonas fluorescens HK44, which carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism, was used. The physiological state of the reporter cultures as well as the intrinsic regulatory properties of the naphthalene degradation operon must be taken into account to obtain a high specificity at low target substrate concentrations. Experiments have shown that the use of exponentially growing reporter cultures has advantages over the use of carbon-starved, resting cultures. In aqueous solutions for both substrates, naphthalene and salicylate, linear relationships between initial substrate concentration and bioluminescence response were found over concentration ranges of 1 to 2 orders of magnitude. Naphthalene could be detected at a concentration of 45 ppb. Studies conducted under defined conditions with extracts and slurries of experimentally contaminated sterile soils and identical uncontaminated soil controls demonstrated that this method can be used for specific and quantitative estimations of target pollutant presence and bioavailability in soil extracts and for specific and qualitative estimations of napthalene in soil slurries.

  7. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 ?m. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  8. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    SciTech Connect

    Close, D.M.; Sagstuen, E.

    1983-12-01

    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases.

  9. Speciation of salicylate surface complexes in aqueous alumina suspensions by polarized fluorescence excitation spectroscopy

    SciTech Connect

    Friedrich, D.M.; Wang, Z.; Ainsworth, C.C.

    1996-10-01

    Organic acids can accelerate the dissolution of soil minerals and the release of metal ions into the aqueous environment. This chemistry is integral to many processes occurring in soils, including contaminant transport, soil formation, and diagenesis. In order to model these geochemical processes, it is necessary to know the chemical identity and distribution of organic sorbates at aqueous mineral surfaces. In this study, time-resolved and CW polarized fluorescence are used to elucidate the surface speciation of salicylate anions in highly turbid media. Laser excitation of fluorescence enables detection of alumina-salicylate complexes at geochemically relevant concentrations (10{sup -7} M; approximately one molecular complex per colloidal particle). Two types of surface complexes are observed: short wavelength emission is assigned to the bidentate salicylate-aluminum complex and long wavelength emission is assigned to either monodentate or ion-associated complexes, which can undergo intramolecular excited state proton-transfer. Fluorescence polarization anisotropy measurements demonstrate that both types of surface species are rotationally restricted. It is demonstrated that quantitative evaluation of polarized fluorescence is fruitful even in the presence of the depolarizing effects of multiple light scattering in the turbid suspensions.

  10. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    PubMed Central

    Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

  11. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana.

    PubMed

    Traw, M B; Kim, J; Enright, S; Cipollini, D F; Bergelson, J

    2003-05-01

    Plants often respond to attack by insect herbivores and necrotrophic pathogens with induction of jasmonate-dependent resistance traits, but respond to attack by biotrophic pathogens with induction of salicylate-dependent resistance traits. To assess the degree to which the jasmonate- and salicylate-dependent pathways interact, we compared pathogenesis-related protein activity and bacterial performance in four mutant Arabidopsis thaliana lines relative to their wild-type backgrounds. We found that two salicylate-dependent pathway mutants (cep1, nim1-1) exhibited strong effects on the growth of the generalist biotrophic pathogen, Pseudomonas syringae pv. tomato, whereas two jasmonate-dependent pathway mutants (fad3-2fad7-2fad8, jar1-1) did not. Leaf peroxidase and exochitinase activity were negatively correlated with bacterial growth, whereas leaf polyphenol oxidase activity and trypsin inhibitor concentration were not. Interestingly, leaf total glucosinolate concentration was positively correlated with bacterial growth. In the same experiment, we also found that application of jasmonic acid generally increased leaf peroxidase activity and trypsin inhibitor concentration in the mutant lines. However, the cep1 mutant, shown previously to overexpress salicylic acid, exhibited no detectable biological or chemical responses to jasmonic acid, suggesting that high levels of salicylic acid may have inhibited a plant response. In a second experiment, we compared the effect of jasmonic acid and/or salicylic acid on two ecotypes of A. thaliana. Application of salicylic acid to the Wassilewskija ecotype decreased bacterial growth. However, this effect was not observed when both salicylic acid and jasmonic acid were applied, suggesting that jasmonic acid negated the beneficial effect of salicylic acid. Collectively, our results confirm that the salicylate-dependent pathway is more important than the jasmonate-dependent pathway in determining growth of P. syringae pv. tomato in A. thaliana, and suggest important negative interactions between these two major defensive pathways in the Wassilewskija ecotype. In contrast, the Columbia ecotype exhibited little evidence of negative interactions between the two pathways, suggesting intraspecific variability in how these pathways interact in A. thaliana. PMID:12694277

  12. Kinetics and mechanism of surface reaction of salicylate on alumina in colloidal aqueous suspension

    SciTech Connect

    Wang, Z.; Ainsworth, C.C.; Friedrich, D.M.; Gassman, P.L.; Joly, A.G.

    2000-04-01

    The reaction kinetics of salicylate with Al(III) in aqueous solution and at the colloidal alumina-water interface was studied by stopped-flow laser fluorescence spectroscopy. Temporal evolution of the fluorescence spectra suggests that formation of a carboxylate monodentate complex was the reaction intermediate that occurs transiently at the beginning of the reaction in aqueous salicylate-Al(III) solution. However, by lowering the pH to 2.0, the formation of such an intermediate can be directly observed as it is the only species formed. The reaction of salicylate with aqueous Al{sup 3+} is completed within 10 min at pH 3.3 but is significantly slower at pH 2.0. At both pH the aqueous reaction follows a single pseudo-first order rate law. in Alumina suspension the reaction was initially fast but slowed down after {approximately}30 s. Completion of the reaction took up to 12 h, depending on pH and ionic strength. The formation of a carboxylate monodentate surface complex as a transient species is clearly observed in alumina suspensions at near neutral pH. The initial rapid reaction (<30 s), accounting for {approximately}70{degree} of the total reaction, can be best described by the Elovich rate equation and the slower reaction, accounting for {approximately}30% of the total reaction, obeys pseudo-first order kinetics. These results are consistent with a sorption reaction mechanism that is controlled by the leaving group lability at the surface sites (Al-OH{sub 2}{sup +} and Al-OH). The pseudo-first order rate constant varies little with initial salicylate concentration, ionic strength, or pH > 4, suggesting that the slow reaction pathway involves ligand substitution reactions between salicylate and the hydroxyl groups for which the Al-O binding and activation energy are affected by site heterogeneity or site density to a lesser degree than Al-OH{sub 2}{sup +} sites.

  13. Iron-salicylate complex induces peroxidation, alters hepatic lipid profile and affects plasma lipoprotein composition.

    PubMed

    Brunet, S; Guertin, F; Thibault, L; Gavino, V; Delvin, E; Levy, E

    1997-03-21

    Iron overload, with its associated toxic effects, has serious health consequences and results in damage to the liver, heart and other organs. Salicylate may be used as the lipophilic carrier, transporting more iron into hepatocytes. In this study, we examined the effect of the combined administration of these compounds on plasma lipid profile and lipoprotein composition, as well as on hepatic lipid concentration. Male Spraque-Dawley rats were injected i.p. with Fe (15 mg/kg weight). This injection was repeated 24 h later with a gavage of sodium salicylate (700 mg/kg). Control rats received 0.9% NaCl only. The peroxidation indices TBARS (P < 0.001) and conjugated dienes (P < 0.05) significantly increased in the blood (50 and 122%, respectively) and liver (333 and 101%, respectively) of Fe salicylate-treated rats. Concomitantly, blood and liver arachidonic acid content was diminished by iron treatment. In parallel, the plasma lipid profile was markedly affected in Fe-salicylate treated-rats. Lower plasma concentrations of total cholesterol (25%, P < 0.0001) cholesteryl ester, (34%, P < 0.001) and high-density lipoprotein-cholesterol (50%, P < 0.001) were observed. Lipoprotein composition analysis revealed enrichment of free cholesterol and depletion of cholesterol ester in very low-density, intermediate-density, low-density and high-density (HDL2, HDL3) lipoproteins. Furthermore, SDS-polyacrylamide gel electrophoresis revealed several alterations in the apolipoprotein distribution of these lipoproteins. The activity of lecithin:cholesterol acyltransferase was unchanged and could not account for the reduction of cholesterol esterification. As for the plasma, the liver exhibited a significant (P < 0.001) decrease in total cholesterol (2.42 +/- 0.07 versus 1.89 +/- 0.06 mg/g liver), essentially due to a reduction in cholesteryl ester (0.93 +/- 0.07 versus 0.51 +/- 0.03 mg/g, P < 0.001). Again, the activity of ACAT (dpm/mg microsomal protein) was not lower (12,700 +/- 1250) than that of controls (9650 +/- 1080). Thus, the iron-salicylate was able to induce peroxidation and to profoundly affect the intravascular and intrahepatic lipid, and plasma lipoprotein metabolism. Additional work is needed to elucidate the mechanisms involved in the underlying lipid and lipoprotein abnormalities. PMID:9105557

  14. Ground-state proton-transfer tautomer of the salicylate anion

    SciTech Connect

    Friedrich, D.M.; Wang, Z.; Joly, A.G.; Peterson, K.A.; Callis, P.R.

    1999-12-02

    Solutions of sodium salicylate in anhydrous polar solvents exhibit a weak, temperature-dependent absorption band ({lambda}{sub max} {approx} 325 nm) lying in the Stokes gap between the main absorption (296 nm) and the fluorescence band (396 nm, acetonitrile). This weak, longer wavelength absorption band is hardly observable in aqueous solution, but its intensity increases with temperature and increases with polarity in anhydrous organic solvents in the order of ethanol < acetonitrile < dimethyl sulfoxide at room temperature. After correction for solvent thermal contraction, the temperature-dependent absorption spectrum of salicylate in acetonitrile solutions reveals a clear isosbestic point ({epsilon}{sub 310}= 2,000 M{sup {minus}1} cm{sup {minus}1}) characteristic of an equilibrium between two salicylate species with band-maximum extinction coefficients of {epsilon}{sub 325} = 3,400 M{sup {minus}1} cm{sup {minus}1} and {epsilon}{sub 296} = 3,586 M{sup {minus}1} cm{sup {minus}1}. In acetonitrile at room temperature (298 K) the concentration equilibrium constant (minor/major) for the interconversion reaction between the two species is K{sub 298} = 0.11, with {Delta}H = 1.6 kcal mol{sup {minus}1} and {Delta}S = 0.97 cal{center{underscore}dot}mol{sup {minus}1} K{sup {minus}1}. The fluorescence lifetime (4.8 ns in acetonitrile) and the shape of the fluorescence spectrum are independent of excitation wavelength. The fluorescence quantum yield for excitation in the long-wavelength shoulder (340 nm) is approximately 60% larger than the yield for excitation in the main band at 296 nm ({phi}{sub 340} = 0.29, {phi}{sub 296} = 0.18) in acetonitrile at room temperature. These results are consistent with assignment of the shoulder band to the proton-transfer tautomer of the salicylate anion. Electronic structure calculations support assignment of the 325 nm absorption band to the ground-state tautomer (phenoxide anion form) of the salicylate anion. Absorption transition moments for both the normal and tautomer forms are parallel to the emission transition moment, are electronically allowed, and are consistent with {sup 1}L{sub b} assignment for both absorbing and emitting transitions. The static dipole moments are in the order of {mu}(N*) {ge} {mu}(N) > {mu}(T*) > {mu}(T) for the normal (N) and tautomer (T) ground and electronic excited states.

  15. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat.

    PubMed

    Stolzberg, Daniel; Chrostowski, Michael; Salvi, Richard J; Allman, Brian L

    2012-07-01

    A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits. PMID:22496535

  16. [Investigations on the acute, carrageenan-induced inflammatory reaction and pharmacology of orally administered sodium salicylate in turkeys].

    PubMed

    Cramer, Kerstin; Schmidt, Volker; Richter, Andreas; Fuhrmann, Herbert; Abraham, Getu; Krautwald-Junghanns, Maria-Elisabeth

    2015-01-01

    The complex mechanisms of acute inflammation have been subject to veterinary investigations since a long time. However, knowledge on the role of specific inflammatory mediators, as well as pharmacokinetics (PK) and -dynamics (PD) of non-steroidal anti-inflammatory drugs (NSAID) in birds is limited. The objective of this work therefore was to establish a modified tissue cage-model to investigate the acute, carrageenan-mediated inflammatory response, as well as plasma and exudate-kinetics and the antiphlogistic effect of orally administered sodium salicylate on the elicited inflammatory reaction in turkeys. Within the class Aves, comparable studies have so far only been published in chicken. Following bilateral subcutaneous implantation of carrageenan-treated synthetic sponges in the lateral thoracic region, sodium salicylate was administered orally at a dose of 50 mg/kg body weight (BW; therapy group) twice daily on three consecutive days, while a control group received drinking water as a placebo (n = 24 per group). Combined PK and PD of sodium salicylate were evaluated on the basis of salicylate- and prostaglandin (PG) E2-plasma- and -exudate-concentrations, exudate volumes, as well as leukocyte exudate counts. Sodium salicylate was readily absorbed from the gastrointestinal tract and accumulated in the inflammatory exudate. At 4, 6, and 10 h after first application, sodium salicylate significantly reduced PG E2-concentrations in the inflammatory exudate when compared to the control group, whereas leukocyte exudate counts increased over time in both study groups, unaffected by sodium salicylate The described modified tissue cage-model can be beneficial for further research on the pathophysiology of avian inflammatory processes and the investigation of the combined pharmacodynamics and -kinetics of drugs in birds of adequate size. PMID:26054231

  17. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat

    PubMed Central

    Chrostowski, Michael; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits. PMID:22496535

  18. Methylations: a radical mechanism.

    PubMed

    Fontecave, Marc

    2011-05-27

    On the basis of labeling experiments, Grove et al. (2011) have shown how an electrophilic carbon (from an RNA adenosine) can be methylated by S-adenosylmethionine-dependent methyltransferases though an original radical mechanism. PMID:21609836

  19. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  20. Dimerization and thiol sensitivity of the salicylic acid binding thimet oligopeptidases TOP1 and TOP2 define their functions in redox-sensitive cellular pathways

    PubMed Central

    Westlake, Timothy J.; Ricci, William A.; Popescu, George V.; Popescu, Sorina C.

    2015-01-01

    A long-term goal in plant research is to understand how plants integrate signals from multiple environmental stressors. The importance of salicylic acid (SA) in plant response to biotic and abiotic stress is known, yet the molecular details of the SA-mediated pathways are insufficiently understood. Our recent work identified the peptidases TOP1 and TOP2 as critical components in plant response to pathogens and programmed cell death (PCD). In this study, we investigated the characteristics of TOPs related to the regulation of their enzymatic activity and function in oxidative stress response. We determined that TOP1 and TOP2 interact with themselves and each other and their ability to associate in dimers is influenced by SA and the thiol-based reductant DTT. Biochemical characterization of TOP1 and TOP2 indicated distinct sensitivities to DTT and similarly robust activity under a range of pH values. Treatments of top mutants with Methyl Viologen (MV) revealed TOP1 and TOP2 as a modulators of the plant tolerance to MV, and that exogenous SA alleviates the toxicity of MV in top background. Finally, we generated a TOP-centered computational model of a plant cell whose simulation outputs replicate experimental findings and predict novel functions of TOP1 and TOP2. Altogether, our work indicates that TOP1 and TOP2 mediate plant responses to oxidative stress through spatially separated pathways and positions proteolysis in a network for plant response to diverse stressors. PMID:26042129

  1. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.

    PubMed

    Wang, Zheng; Tan, Xiaoli; Zhang, Zhiyan; Gu, Shoulai; Li, Guanying; Shi, Haifeng

    2012-03-01

    Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru. PMID:22284712

  2. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.

    TOXLINE Toxicology Bibliographic Information

    Wang Z; Tan X; Zhang Z; Gu S; Li G; Shi H

    2012-03-01

    Signaling pathways mediated by salicylic acid (SA) and jasmonic acid (JA) are widely studied in various host-pathogen interactions. For oilseed rape (Brassica napus)-Sclerotinia sclerotiorum interaction, little information of the two signaling molecules has been described in detail. In this study, we showed that the level of SA and JA in B. napus leaves was increased with a distinct temporal profile, respectively, after S. sclerotiorum infection. The application of SA or methyl jasmonate enhanced the resistance to the pathogen. Furthermore, a set of SA and JA signaling marker genes were identified from B. napus and were used to monitor the signaling responses to S. sclerotiorum infection by examining the temporal expression profiles of these marker genes. The SA signaling was activated within 12h post inoculation (hpi) followed by the JA signaling which was activated around 24 hpi. In addition, SA-JA crosstalk genes were activated during this process. These results suggested that defense against S. sclerotiorum in oilseed rape is associated with a sequential activation of SA signaling and JA signaling, which provide important clues for designing strategies to curb diseases caused by S. sclerotioru.

  3. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    PubMed

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response. PMID:10859179

  4. DNA methylation and differentiation

    SciTech Connect

    Michalowky, L.A.; Jones, P.A. )

    1989-03-01

    The methylation of specific cytosine residues in DNA has been implicated in regulating gene expression and facilitating functional specialization of cellular phenotypes. Generally, the demethylation of certain CpG sites correlates with transcriptional activation of genes. 5-Azacytidine is an inhibitor of DNA methylation and has been widely used as a potent activator of suppressed genetic information. Treatment of cells with 5-azacytidine results in profound phenotypic alterations. The drug-induced hypomethylation of DNA apparently perturbs DNA-protein interactions that may consequently alter transcriptional activity and cell determination. The inhibitory effect of cytosine methylation may be exerted via altered DNA-protein interactions specifically or may be transduced by a change in the conformation of chromatin. Recent studies have demonstrated that cytosine methylation also plays a central role in parental imprinting, which in turn determines the differential expression of maternal and paternal genomes during embryogenesis. In other words, methylation is the mechanism whereby the embryo retains memory of the gametic origin of each component of genetic information. A memory of this type would probably persist during DNA replication and cell division as methylation patterns are stable and heritable.

  5. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection

    PubMed Central

    Zhou, Tao; Murphy, Alex M.; Lewsey, Mathew G.; Westwood, Jack H.; Zhang, Heng-Mu; González, Inmaculada; Canto, Tomás

    2014-01-01

    The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1. PMID:24633701

  6. Prestin up-regulation in chronic salicylate (aspirin) administration: an implication of functional dependence of prestin expression.

    PubMed

    Yu, N; Zhu, M-L; Johnson, B; Liu, Y-P; Jones, R O; Zhao, H-B

    2008-08-01

    Salicylate (aspirin) can reversibly eliminate outer hair cell (OHC) electromotility to induce hearing loss. Prestin is the OHC electromotility motor protein. Here we report that, consistency with increase in distortion product otoacoustic emission, long-term administration of salicylate can increase prestin expression and OHC electromotility. The prestin expression at the mRNA and protein levels was increased by three- to four-fold. In contrast to the acute inhibition, the OHC electromotility associated charge density was also increased by 18%. This incremental increase was reversible. After cessation of salicylate administration, the prestin expression returned to normal. We also found that long-term administration of salicylate did not alter cyclooxygenase (Cox) II expression but down-regulated NF-kappaB and increased nuclear transcription factors c-fos and egr-1. The data suggest that prestin expression in vivo is dynamically up-regulated to increase OHC electromotility in long-term administration of salicylate via the Cox-II-independent pathways. PMID:18560754

  7. Differential effects of some natural compounds on the transdermal absorption and penetration of caffeine and salicylic acid.

    PubMed

    Muhammad, Faqir; Riviere, Jim E

    2015-04-10

    Many natural products have the potential to modulate the dermal penetration of topically applied drugs and chemicals. We studied the effect of five natural compounds (hydroxycitronellal, limonene 1,2-epoxide, terpinyl acetate, p-coumaric acid, transferrulic acid) and ethanol on the transdermal penetration of two marker drugs ((14)C-caffeine and (14)C-salicylic acid) in a flow through in vitro porcine skin diffusion system. The parameters of flux, permeability, diffusivity, and percent dose absorbed/retained were calculated and compared. The dermal absorption of (14)C-caffeine was significantly higher with terpinyl acetate and limonene 1,2-epoxide as compared to ethanol; while dermal absorption of (14)C-salicylic acid was significantly greater with hydroxycitronellal and limonene 1,2-epoxide as compared to ethanol. A 10-fold increase in flux and permeability of caffeine with terpinyl acetate was observed while limonene increased flux of caffeine by 4-fold and permeability by 3-fold. Hydroxycitronellal and limonene increased salicylic acid's flux and permeability over 2-fold. The other natural compounds tested did not produce statistically significant effects on dermal penetration parameters for both caffeine and salicylic acid (p?0.05). These results emphasize the differential effects of natural substances on the transdermal penetration of hydrophilic (caffeine) and hydrophobic (salicylic acid) drugs. PMID:25681718

  8. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    SciTech Connect

    Mitra, Atanu; Bhaumik, Asim; Nandi, Mahasweta; Mondal, John; Roy, B.K.

    2009-05-15

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsets of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.

  9. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    SciTech Connect

    Parsons, James F. Shi, Katherine; Calabrese, Kelly; Ladner, Jane E.

    2006-03-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.

  10. Salicylate toxicity associated with administration of Percy medicine in an infant.

    PubMed

    Lewis, Teresa V; Badillo, Randal; Schaeffer, Scott; Hagemann, Tracy M; McGoodwin, Lee

    2006-03-01

    Percy Medicine is a nonprescription gastrointestinal suspension containing bismuth subsalicylate as the active ingredient (1050 mg/10-ml dose). A 3-month-old infant with colic developed salicylate toxicity requiring hospitalization in the pediatric intensive care unit (PICU) as a result of continued administration of this medicine. Bismuth subsalicylate has an aspirin equivalency conversion factor of 0.479 (approximately half the strength of aspirin). For 3.5 weeks the infant's parents administered the medicine, which provided the equivalent of aspirin 57-84 mg/kg/day with no reported problems. However, on the day of admission the baby presented with central nervous system depression and respiratory distress. Assessment at a local emergency facility revealed metabolic acidosis; his serum salicylate concentration was 747 mg/L. After acute management, the patient was transferred to our hospital, where he was treated with whole bowel irrigation and alkalinization therapy. Subsequently, the baby required 4 days of management in the PICU and 2 additional days of observation in a general nursing unit before he was discharged home without incident. The parents had chosen Percy Medicine based on the picture of a baby on the front of the package and because of its placement on the shelf next to a drug their family physician had recommended previously. Salicylate-containing products are not routinely recommended for children aged 1 year or younger. The general public may assume that over-the-counter products are safe because they do not require a prescription. Health care professionals must be responsible for educating the public regarding risks associated with over-the-counter products and the need to read and follow label directions. PMID:16503721

  11. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II.

    PubMed

    Bayram, Esra; Senturk, Murat; Kufrevioglu, O Irfan; Supuran, Claudiu T

    2008-10-15

    The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and II, with a series of salicylic acid derivatives was investigated by using the esterase method with 4-nitrophenyl acetate as substrate. IC(50) values for sulfasalazine, diflunisal, 5-chlorosalicylic acid, dinitrosalicylic acid, 4-aminosalicylic acid, 4-sulfosalicylic acid, 5-sulfosalicylic acid, salicylic acid, acetylsalicylic acid (aspirin) and 3-metylsalicylic acid were of 3.04 microM, 3.38 microM, 4.07 microM, 7.64 microM, 0.13 mM, 0.29 mM, 0.42 mM, 0.56 mM, 2.71 mM and 3.07 mM for hCA I and of 4.49 microM, 2.70 microM, 0.72 microM, 2.80 microM, 0.75 mM, 0.72 mM, 0.29 mM, 0.68 mM, 1.16 mM and 4.70 mM for hCA II, respectively. Lineweaver-Burk plots were also used for the determination of the inhibition mechanism of these substituted phenols, most of which were noncompetitive inhibitors with this substrate. Some salicylic acid derivatives investigated here showed effective hCA I and II inhibitory activity, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents. PMID:18819808

  12. Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.

    PubMed

    Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

    2013-03-01

    This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments. PMID:23545907

  13. Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid.

    PubMed

    Echevarría-Machado, Ileana; Escobedo-G M, Rosa María; Larqué-Saavedra, Alfonso

    2007-01-01

    Catharanthus roseus transformed roots were cultured in the presence of salicylic acid (SA) at concentrations between 0.1 fM and 100 pM and the effect on root growth was evaluated. Significant morphological changes in the lateral roots were recorded on day two in the SA treatment. Presence of SA increased root cap size and caused the appearance of lateral roots closer to the root tip. The bioassay was sensitive enough to allow testing of low concentrations of other growth regulators that may affect root morphology and physiology. PMID:17544287

  14. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  15. One-stop Genomic DNA Extraction by Salicylic Acid Coated Magnetic Nanoparticles

    PubMed Central

    Zhou, Zhongwu; Kadam, Ulhas; Irudayaraj, Joseph

    2014-01-01

    Salicylic acid coated magnetic nanoparticles were prepared via a modified, one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by non-specific binding of the particles, as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared to traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally-friendly. PMID:23911528

  16. Neuroprotection by Aspirin and Sodium Salicylate Through Blockade of NF-kappaB Activation

    NASA Astrophysics Data System (ADS)

    Grilli, Mariagrazia; Pizzi, Marina; Memo, Maurizio; Spano, Pierfranco

    1996-11-01

    Aspirin (acetylsalicylic acid) is a commonly prescribed drug with a wide pharmacological spectrum. At concentrations compatible with amounts in plasma during chronic anti-inflammatory therapy, acetylsalicylic acid and its metabolite sodium salicylate were found to be protective against neurotoxicity elicited by the excitatory amino acid glutamate in rat primary neuronal cultures and hippocampal slices. The site of action of the drugs appeared to be downstream of glutamate receptors and to involve specific inhibition of glutamate-mediated induction of nuclear factor kappa B. These results may contribute to the emerging theme of anti-inflammatory drugs and neurodegeneration.

  17. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    SciTech Connect

    Lekshmy, R. K. E-mail: tharapradeepkumar@yahoo.com; Thara, G. S. E-mail: tharapradeepkumar@yahoo.com

    2014-10-15

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  18. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    PubMed Central

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  19. The catalytic mechanism of decarboxylative hydroxylation of salicylate hydroxylase revealed by crystal structure analysis at 2.5 Å resolution.

    PubMed

    Uemura, Takuya; Kita, Akiko; Watanabe, Yoshihiko; Adachi, Motoyasu; Kuroki, Ryota; Morimoto, Yukio

    2016-01-01

    The X-ray crystal structure of a salicylate hydroxylase from Pseudomonas putida S-1 complexed with coenzyme FAD has been determined to a resolution of 2.5 Å. Structural conservation with p- or m-hydroxybenzoate hydroxylase is very good throughout the topology, despite a low amino sequence identity of 20-40% between these three hydroxylases. Salicylate hydroxylase is composed of three distinct domains and includes FAD between domains I and II, which is accessible to solvent. In this study, which analyzes the tertiary structure of the enzyme, the unique reaction of salicylate, i.e. decarboxylative hydroxylation, and the structural roles of amino acids surrounding the substrate, are considered. PMID:26616054

  20. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  1. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  2. Relation between acid back-diffusion and luminal surface hydrophobicity in canine gastric mucosa: Effects of salicylate and prostaglandin

    SciTech Connect

    Goddard, P.J.

    1989-01-01

    The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E{sub 2} to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa.

  3. Modified USP assay for simultaneous determination of aspirin and nonaspirin salicylates in aspirin and buffered aspirin tablets.

    PubMed

    Luber, J R; Visalli, A J; Patel, D M

    1979-06-01

    Modified USP procedures are described for the simultaneous determination of nonaspirin salicylates and aspirin in aspirin and buffered aspirin tablets. The existing USP procedures are not stability indicating for intact aspirin when significant levels of nonaspirin salicylates are present, as is often the case in short-term, high temperature stability programs. The modified procedures yeld considerably shorter analysis times and stability-indicating assays for intact aspirin without the need for sophisticated equipment other than that presently required by USP XIX. PMID:458583

  4. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex.

    PubMed

    Basta, Dietmar; Goetze, Romy; Ernst, Arne

    2008-06-01

    Salicylate is a well-known substance to produce reversible tinnitus in animals and humans as well. It has been shown that systemic application of salicylate changes the neuronal spontaneous activity in several parts of the auditory pathway. The effects observed in central auditory structures in vivo could be based upon the changed afferent cochlear input to the central auditory system or in addition by a direct action of salicylate onto neurons within the auditory pathway. A direct influence of local salicylate application on spontaneous activity of central auditory neurons has already been described for the inferior colliculus (IC) in brain slice preparations. As spontaneous activity within all key structures of the central auditory pathway could play an important role in tinnitus generation, the present study investigated direct effects of salicylate superfusion on the spontaneous activity of the deafferented cochlear nucleus (CN), medial geniculate body (MGB), and auditory cortex (AC) in brain slices. Out of 72 neurons, 73.4% responded statistically significantly to the superfusate by changing their firing rates. 48.4% of them increased and 51.6% decreased their firing rates, respectively. The mean change of firing rate upon salicylate superfusion was 24.4%. All responses were not significantly different between the brain areas. The amount of neurons which responded to salicylate and the mean change of firing rate was much higher in the IC than in the CN, MGB and AC. This contributes to the hypothesis that salicylate-induced tinnitus is a phantom auditory perception mainly related to hyperexcitability of IC neurons. However, the present results suggest that the individual, specific salicylate sensitivity of CN, MGB and AC neurons can modulate the salicylate-induced generation of tinnitus. PMID:18372130

  5. Metabolic production of methylated selenium species requires adequate methylation status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity negatively impacts methylation status and markers of methylation status vary according to selenium status in supplemented subjects. We have proposed that disruptions in methylation capacity induced by obesity compromise demonstrable anti-cancer effects of Se supplementation. In order to addr...

  6. Derivatives of salicylic acid as inhibitors of YopH in Yersinia pestis.

    PubMed

    Huang, Zunnan; He, Yantao; Zhang, Xian; Gunawan, Andrea; Wu, Li; Zhang, Zhong-Yin; Wong, Chung F

    2010-08-01

    Yersinia pestis causes diseases ranging from gastrointestinal syndromes to bubonic plague and could be misused as a biological weapon. As its protein tyrosine phosphatase YopH has already been demonstrated as a potential drug target, we have developed two series of forty salicylic acid derivatives and found sixteen to have micromolar inhibitory activity. We designed these ligands to have two chemical moieties connected by a flexible hydrocarbon linker to target two pockets in the active site of the protein to achieve binding affinity and selectivity. One moiety possessed the salicylic acid core intending to target the phosphotyrosine-binding pocket. The other moiety contained different chemical fragments meant to target a nearby secondary pocket. The two series of compounds differed by having hydrocarbon linkers with different lengths. Before experimental co-crystal structures are available, we have performed molecular docking to predict how these compounds might bind to the protein and to generate structural models for performing binding affinity calculation to aid future optimization of these series of compounds. PMID:20560978

  7. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    PubMed Central

    2011-01-01

    Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin. PMID:21871058

  8. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  9. Salicylate de bismuth pour la diarrhée chez l’enfant

    PubMed Central

    Goldman, Ran D.

    2013-01-01

    Résumé Question J’ai reçu récemment un patient de 5 ans à qui, lors d’un voyage en Amérique du Sud, un médecin de famille local a prescrit du sous-salicylate de bismuth pour une diarrhée. Est-ce une pratique que nous devrions encourager? Réponse La recherche réalisée dans les pays en développement a fait valoir que l’utilisation du sous-salicylate de bismuth était efficace pour raccourcir la durée de la diarrhée. En dépit de ces constatations, son efficacité limitée, des préoccupations à propos du fait qu’il pourrait potentiellement causer le syndrome de Reye, les problèmes d’observance et son coût sont les principales raisons pour lesquelles on ne le recommande pas systématiquement pour les enfants.

  10. Derivatives of Salicylic Acid as Inhibitors of YopH in Yersinia pestis

    PubMed Central

    Huang, Zunnan; He, Yantao; Zhang, Xian; Gunawan, Andrea; Wu, Li; Zhang, Zhong-Yin; Wong, Chung F.

    2010-01-01

    Yersinia pestis causes diseases ranging from gastrointestinal syndromes to bubonic plague and could be misused as a biological weapon. As its protein tyrosine phosphatase YopH has already been demonstrated as a potential drug target, we have developed two series of forty salicylic acid derivatives and found sixteen to have micromolar inhibitory activity. We designed these ligands to have two chemical moieties connected by a flexible hydrocarbon linker to target two pockets in the active site of the protein to achieve binding affinity and selectivity. One moiety possessed the salicylic acid core intending to target the phosphotyrosine-binding pocket. The other moiety contained different chemical fragments meant to target a nearby secondary pocket. The two series of compounds differed by having hydrocarbon linkers with different lengths. Before experimental co-crystal structures are available, we have performed molecular docking to predict how these compounds might bind to the protein and to generate structural models for performing binding affinity calculation to aid future optimization of these series of compounds. PMID:20560978

  11. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

  12. Campylobacter pyloridis and associated gastritis: investigator blind, placebo controlled trial of bismuth salicylate and erythromycin ethylsuccinate.

    PubMed Central

    McNulty, C A; Gearty, J C; Crump, B; Davis, M; Donovan, I A; Melikian, V; Lister, D M; Wise, R

    1986-01-01

    An investigator blind trial was performed comparing bismuth salicylate, erythromycin ethylsuccinate, and placebo in the treatment of Campylobacter pyloridis associated gastritis in patients without peptic ulceration. Fifty patients fulfilled the study criteria. There was a strong correlation between the presence of C pyloridis and histologically confirmed gastritis. Clearance of organisms led to improvement of the gastritis. C pyloridis was cleared from 15 patients; of these, 13 had gastritis initially, which resolved in 12. Conversely, gastritis resolved in only four of 32 patients not cleared of organisms (p less than 0.0001). There was significantly greater improvement in endoscopic appearances in the patients cleared of C pyloridis compared with those whose infection persisted (p less than 0.001). In the three treatment groups organisms were cleared from 14 of 18 patients receiving the locally active bismuth salicylate, only one of 15 patients receiving erythromycin ethylsuccinate, and none of 17 patients taking placebo. These findings suggest that the ideal antimicrobial for the successful eradication of C pyloridis associated gastritis should be locally active, stable at low pH, and should penetrate gastric mucus. The resolution of gastritis and improvement in endoscopic appearances associated with clearance of C pyloridis support the view that these organisms may play a part in this condition. Images FIG 2 PMID:3092967

  13. Ascorbic acid and salicylic acid mitigate nacl stress in Caralluma tuberculata Calli.

    PubMed

    Rehman, Riaz Ur; Zia, Muhammad; Abbasi, Bilal Haider; Lu, Gang; Chaudhary, Muhammad Fayyaz

    2014-06-01

    Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure. PMID:24744157

  14. Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity.

    PubMed

    Paraskevopoulos, Georgios; Krátký, Martin; Mandíková, Jana; Trejtnar, František; Stola?íková, Ji?ina; Pávek, Petr; Besra, Gurdyal; Vinšová, Jarmila

    2015-11-15

    Inspired by the high antituberculous activity of novel nitro-substituted derivatives and based on promising predicted ADMET properties we have synthesized a series of 33 salicylanilides containing nitro-group in their salicylic part and evaluated them for their in vitro antimycobacterial, antimicrobial and antifungal activities. The presence of nitro-group in position 4 of the salicylic acid was found to be beneficial and the resulting molecules exhibited minimum inhibitory concentrations (MICs) ranging from 2 to 32 ?M against Mycobacterium tuberculosis. The best activity was found for 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide (MIC=2 ?M). 4-Nitrosalicylanilides were also found to be active against all Staphylococcus species tested while for MRSA strain 2-hydroxy-4-nitro-N-[4-(trifluoromethyl)phenyl]benzamide's MIC was 0.98 ?M. None of the nitrosalicylanilides was active against Enterococcus sp. J 14365/08 and no considerable activity was found against Gram-negative bacteria or fungi. The hepatotoxicity of all nitrosalicylanilides was found to be in the range of their MICs for HepG2 cells. PMID:26526729

  15. Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew.

    PubMed

    VanDoorn, Arjen; de Vries, Michel; Kant, Merijn R; Schuurink, Robert C

    2015-01-01

    During insect feeding, a complex interaction takes place at the feeding site, with plants deciphering molecular information associated with the feeding herbivore, resulting in the upregulation of the appropriate defenses, and the herbivore avoiding or preventing these defenses from taking effect. Whiteflies can feed on plants without causing significant damage to mesophyll cells, making their detection extra challenging for the plant. However, whiteflies secrete honeydew that ends up on the plant surface at the feeding site and on distal plant parts below the feeding site. We reasoned that this honeydew, since it is largely of plant origin, may contain molecular information that alerts the plant, and we focused on the defense hormone salicylic acid (SA). First, we analyzed phloem sap from tomato plants, on which the whiteflies are feeding, and found that it contained salicylic acid (SA). Subsequently, we determined that in honeydew more than 80% of SA was converted to its glycoside (SAG). When whiteflies were allowed to feed from an artificial diet spiked with labeled SA, labeled SAG also was produced. However, manually depositing honeydew on undamaged plants resulted still in a significant increase in endogenous free SA. Accordingly, transcript levels of PR1a, an SA marker gene, increased whereas those of PI-II, a jasmonate marker gene, decreased. Our results indicate that whiteflies manipulate the SA levels within their secretions, thus influencing the defense responses in those plant parts that come into contact with honeydew. PMID:25563984

  16. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  17. Thiophanate-methyl

    Integrated Risk Information System (IRIS)

    Thiophanate - methyl ; CASRN 23564 - 05 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  18. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  19. Pirimiphos-methyl

    Integrated Risk Information System (IRIS)

    Pirimiphos - methyl ; CASRN 29232 - 93 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  20. Haloxyfop-methyl

    Integrated Risk Information System (IRIS)

    Haloxyfop - methyl ; CASRN 69806 - 40 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  1. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  2. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    Methyl Isobutyl Ketone ( MIBK ) ; CASRN 108 - 10 - 1 ; Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  3. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 002 TOXICOLOGICAL REVIEW OF METHYL ISOBUTYL KETONE ( CAS No . 108 - 10 - 1 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2003 U.S . Environmental Protection Agency Washington DC DISCLAIMER This document has been reviewed in accordan

  4. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 009 www.epa.gov / iris TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE ( CAS No . 78 - 93 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been r

  5. Methylation, memory and addiction

    PubMed Central

    Bali, Purva; Im, Heh-In

    2011-01-01

    Dynamic chromatin remodeling is at the heart of most biological processes including gene transcription, DNA replication and repair, cell differentiation and apoptosis. Chromatin remodeling as a result of covalent histone modifications, including histone acetylation, methylation or SUMOylation, play important roles in these processes. Similarly, direct chemical modification of DNA, most notably DNA methylation, also plays a key role in controlling gene expression and basic aspects of cell biology. Memory, one of the most fundamental of all brain functions, is a complex process involving diverse cellular signaling cascades and coordinated regulation of entire networks of genes. Synaptic plasticity, which is defined as activity-dependent changes in synaptic strength between neurons, provides the cellular basis of memory. The role for covalent histone modifications in synaptic plasticity and in learning and memory has been now been firmly established.1–3 In contrast, much less had been known concerning DNA methylation in memory formation and storage. Emerging evidence now suggests that DNA methylation plays a central role in these processes, likely by directly influencing the expression of genes involved in synaptic plasticity.4 PMID:21586900

  6. Kapok oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  7. Nutrients and DNA Methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigenetics is a new mechanism responsible for development, aging, and disease process such as cancer development. One major epigenetic phenomenon is DNA methylation, which attributes to gene expression and integrity. Deepening the knowledge on one-carbon metabolism is very important to understandin...

  8. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    PubMed

    Tett, Adrian J; Karunakaran, Ramakrishnan; Poole, Philip S

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394

  9. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.

    PubMed Central

    Heitzer, A; Malachowsky, K; Thonnard, J E; Bienkowski, P R; White, D C; Sayler, G S

    1994-01-01

    An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical light guide by using strontium alginate. This biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either naphthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 jet fuel or an aqueous leachate from a manufactured-gas plant soil, since naphthalene was present in both pollutant mixtures. PMID:8017932

  10. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  11. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium

    SciTech Connect

    Heitzer, A.; Malachowsky, K.; Thonnard, J.E.

    1994-05-01

    An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical guide by using strontium alginate. The biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either napthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 fuel or an aqueous leachate from a manufactured-gas plant soil, since napthalene was present in both pollutant mixtures. 43 refs., 4 figs., 1 tab.

  12. Characterisation of SalRAB a Salicylic Acid Inducible Positively Regulated Efflux System of Rhizobium leguminosarum bv viciae 3841

    PubMed Central

    Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394

  13. Ab initio model of salicylate adsorbed onto Al{sub 2}O{sub 3} and illite clay

    SciTech Connect

    Kubicki, J.D.; Itoh, M.J.; Apitz, S.E.

    1996-10-01

    Organic-mineral surface chemistry plays a significant role in numerous geochemical processes such as global carbon cycling, weathering, and contaminant fate and transport. Knowledge of bonding mechanisms between naturally-occurring organic matter (NOM) and minerals is necessary in environmental science. This research examines surface complexation of salicylic acid (which is often used as an analog for NOM) adsorbed onto Al{sub 2}O{sub 3} and illite. ATR-FTIR spectra of the adsorbed complexes were measured and compared to theoretical vibrational spectra of possible surface configurations derived form molecular orbital (MO) calculations. A variety of Al- and Si-salicylate complexes were modeled with ab initio MO calculations. The theoretical vibrational spectrum that best fits the observed spectra corresponds to a salicylate anion bonded to an octahedral Al{sup 3+} ion via a C-O-Al ester-type linkage. These results support the configuration proposed in Biber and Stumm for salicylate adsorbed onto Al{sub 2}O{sub 3}.

  14. Effect of multiple washing in salicylic acid on the bacterial flora of the skin of processed broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to determine changes in the bacterial flora of the skin of processed broilers after each of five consecutive washings in solutions of the keratolytic agent, salicylic acid. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in ...

  15. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    SciTech Connect

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  16. Changes in the bacterial flora of skin of processed broiler chickens washed in solutions of salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the number of bacteria recovered from the skin of processed broilers after each of five consecutive washings in salicylic acid (SA) solutions was examined. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in distilled water (control), 10% S...

  17. Systematic review of efficacy of topical rubefacients containing salicylates for the treatment of acute and chronic pain

    PubMed Central

    Mason, Lorna; Moore, R Andrew; Edwards, Jayne E; McQuay, Henry J; Derry, Sheena; Wiffen, Philip J

    2004-01-01

    Objective To determine the efficacy and safety of topical rubefacients containing salicylates in acute and chronic pain. Data sources Electronic databases and manufacturers of salicylates. Study selection Randomised double blind trials comparing topical rubefacients with placebo or another active treatment, in adults with acute or chronic pain, and reporting dichotomous information, around a 50% reduction in pain, and analyses at one week for acute conditions and two weeks for chronic conditions. Data extraction Relative benefit and number needed to treat, analysis of adverse events, and withdrawals. Data synthesis Three double blind placebo controlled trials had information on 182 patients with acute conditions. Topical salicylate was significantly better than placebo (relative benefit 3.6, 95% confidence interval 2.4 to 5.6; number needed to treat 2.1, 1.7 to 2.8). Six double blind placebo controlled trials had information on 429 patients with chronic conditions. Topical salicylate was significantly better than placebo (relative benefit 1.5, 1.3 to 1.9; number needed to treat 5.3, 3.6 to 10.2), but larger, more valid studies were without significant effect. Local adverse events and withdrawals were generally rare in trials that reported them. Conclusions Based on limited information, topically applied rubefacients containing salicylates may be efficacious in the treatment of acute pain. Trials of musculoskeletal and arthritic pain suggested moderate to poor efficacy. Adverse events were rare in studies of acute pain and poorly reported in those of chronic pain. Efficacy estimates for rubefacients are unreliable owing to a lack of good clinical trials. PMID:15033879

  18. Flavivirus RNA methylation.

    PubMed

    Dong, Hongping; Fink, Katja; Züst, Roland; Lim, Siew Pheng; Qin, Cheng-Feng; Shi, Pei-Yong

    2014-04-01

    The 5' end of eukaryotic mRNA contains the type-1 (m7GpppNm) or type-2 (m7GpppNmNm) cap structure. Many viruses have evolved various mechanisms to develop their own capping enzymes (e.g. flavivirus and coronavirus) or to 'steal' caps from host mRNAs (e.g. influenza virus). Other viruses have developed 'cap-mimicking' mechanisms by attaching a peptide to the 5' end of viral RNA (e.g. picornavirus and calicivirus) or by having a complex 5' RNA structure (internal ribosome entry site) for translation initiation (e.g. picornavirus, pestivirus and hepacivirus). Here we review the diverse viral RNA capping mechanisms. Using flavivirus as a model, we summarize how a single methyltransferase catalyses two distinct N-7 and 2'-O methylations of viral RNA cap in a sequential manner. For antiviral development, a structural feature unique to the flavivirus methyltransferase was successfully used to design selective inhibitors that block viral methyltransferase without affecting host methyltransferases. Functionally, capping is essential for prevention of triphosphate-triggered innate immune activation; N-7 methylation is critical for enhancement of viral translation; and 2'-O methylation is important for subversion of innate immune response during viral infection. Flaviviruses defective in 2'-O methyltransferase are replicative, but their viral RNAs lack 2'-O methylation and are recognized and eliminated by the host immune response. Such mutant viruses could be rationally designed as live attenuated vaccines. This concept has recently been proved with Japanese encephalitis virus and dengue virus. The findings obtained with flavivirus should be applicable to other RNA viruses. PMID:24486628

  19. Molecular coupling of DNA methylation and histone methylation

    PubMed Central

    Hashimoto, Hideharu; Vertino, Paula M; Cheng, Xiaodong

    2011-01-01

    The combinatorial pattern of DNA and histone modifications constitutes an epigenetic ‘code’ that shapes gene-expression patterns by enabling or restricting the transcriptional potential of genomic domains. DNA methylation is associated with histone modifications, particularly the absence of histone H3 lysine 4 methylation (H3K4me0) and the presence of H3K9 methylation. This article focuses on three protein domains (ATRX–Dnmt3–Dnmt3L [ADD], Cys–X–X–Cys [CXXC] and the methyl-CpG-binding domain [MBD]) and the functional implications of domain architecture in the mechanisms linking histone methylation and DNA methylation in mammalian cells. The DNA methyltransferase DNMT3a and its accessory protein DNMT3L contain a H3K4me0-interacting ADD domain that links the DNA methylation reaction with unmodified H3K4. The H3K4 methyltransferase MLL1 contains a CpG-interacting CXXC domain that may couple the H3K4 methylation reaction to unmethylated DNA. Another H3K4 methyltransferase, SET1, although lacking an intrinsic CXXC domain, interacts directly with an accessory protein CFP1 that contains the same domain. The H3K9 methyltransferase SETDB1 contains a putative MBD that potentially links the H3K4 methylation reaction to methylated DNA or may do so through the interaction with the MBD containing protein MBD1. Finally, we consider the domain structure of the DNA methyltransferase DNMT1, its accessory protein UHRF1 and their associated proteins, and propose a mechanism by which DNA methylation and histone methylation may be coordinately maintained through mitotic cell division, allowing for the transmission of parental DNA and for the histone methylation patterns to be copied to newly replicated chromatin. PMID:21339843

  20. Use of the water-soluble fluor sodium salicylate for fluorographic detection of tritium in thin-layer chromatograms and nitrocellulose blots

    SciTech Connect

    Lucher, L.A.; Lego, T.

    1989-05-01

    We have determined that sodium salicylate, a water-soluble fluor which we use routinely for fluorography with polyacrylamide gels, is also useful for fluorography with thin-layer media. Detection of /sup 3/H-labeled material applied to thin-layer chromatography plates, or nitrocellulose membranes, can be enhanced up to 150-fold after treatment with an aqueous solution of 2 M sodium salicylate, while detection of /sup 35/S-labeled material is enhanced only about 2-fold. We demonstrate the utility of sodium salicylate fluorography in detecting 3H-labeled palmitic acid following thin-layer chromatography and /sup 3/H-labeled proteins following blotting to nitrocellulose.

  1. Newly Identified Targets of Aspirin and Its Primary Metabolite, Salicylic Acid.

    PubMed

    Klessig, Daniel F

    2016-04-01

    Salicylic acid (SA) is a plant hormone, which influences several physiological processes, and is a critical modulator of multiple levels of immunity in plants. Several high-throughput screens, which were developed to identify SA-binding proteins through which SA mediates its many physiological effects in plants, uncovered several novel targets of aspirin and its primary metabolite, SA, in humans. These include glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and high mobility group box 1 (HMGB1), two proteins associated with some of the most prevalent and devastating human diseases. In addition, natural and synthetic SA derivatives were discovered, which are much more potent than SA at inhibiting the disease-associated activities of these targets. PMID:26954428

  2. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  3. Synthesis, crystal structure, spectral and thermal properties of 4-dimethylaminopyridinium salicylate monohydrate

    NASA Astrophysics Data System (ADS)

    Arunkumar, A.; Ramasamy, P.

    2013-06-01

    4-dimethylaminopyridinium salicylate monohydrate (DMAPSA) was synthesized and its crystal structure was determined using single crystal X-ray diffraction analysis. From the crystal structure analysis it can be inferred that the crystal belongs to monoclinic system with space group of P21/n. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by FTIR spectral studies. 1H and 13C FT-NMR has been recorded to elucidate the molecular structure. The molecular mass of DMAPSA has been measured using mass spectroscopic analysis. The thermal stability and thermal decomposition of DMAPSA have been investigated by means of thermogravimetric analysis and differential thermal analysis. The melting point of crystal was observed as 172 °C by melting point apparatus. Fluorescence spectra were taken for the excitation wavelength of 240 nm.

  4. Cannabinoid receptor down-regulation in the ventral cochlear nucleus in a salicylate model of tinnitus.

    PubMed

    Zheng, Yiwen; Baek, Jean-Ha; Smith, Paul F; Darlington, Cynthia L

    2007-06-01

    Cannabinoid CB1 receptors have not been systematically investigated in the brainstem cochlear nucleus, nor have they been investigated in relation to tinnitus. Using immunohistochemistry and cell counting, we showed that a large number of neurons in the rat cochlear nucleus possess cannabinoid CB1 receptors. Following salicylate injections that induced the behavioural manifestations of tinnitus, the number of principal neurons in the ventral cochlear nucleus expressing CB1 receptors significantly decreased, while the number of CB1-positive principal neurons in the dorsal cochlear nucleus did not change significantly. These results suggest that CB1 receptors in the cochlear nucleus may be important for auditory function and that a down-regulation of CB1 receptors in the ventral cochlear nucleus may be related to the development of tinnitus. PMID:17376618

  5. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

  6. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway

    PubMed Central

    Tanaka, Shigeyuki; Han, Xiaowei; Kahmann, Regine

    2015-01-01

    Microbes attempting to colonize plants are recognized through the plant immune surveillance system. This leads to a complex array of global as well as specific defense responses, which are often associated with plant cell death and subsequent arrest of the invader. The responses also entail complex changes in phytohormone signaling pathways. Among these, salicylic acid (SA) signaling is an important pathway because of its ability to trigger plant cell death. As biotrophic and hemibiotrophic pathogens need to invade living plant tissue to cause disease, they have evolved efficient strategies to downregulate SA signaling by virulence effectors, which can be proteins or secondary metabolites. Here we review the strategies prokaryotic pathogens have developed to target SA biosynthesis and signaling, and contrast this with recent insights into how plant pathogenic eukaryotic fungi and oomycetes accomplish the same goal. PMID:26042138

  7. Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog.

    PubMed

    Aldawsari, Fahad S; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Aguayo-Ortiz, Rodrigo; Aljuhani, Naif; Cuman, Roberto Kenji Nakamura; Medina-Franco, José L; Siraki, Arno G; Velázquez-Martínez, Carlos A

    2016-03-01

    Resveratrol is a natural compound with a plethora of activities as well as limitations. We recently reported a series of resveratrol-salicylate analogs with potential chemopreventive activity. Herein, we report the anti-inflammatory and antioxidant properties of these resveratrol derivatives. Using an in vitro COX inhibition assay, and two in vivo protocols (carrageenan-induced peritonitis and paw edema), we identified a novel compound (C10) as a potent anti-inflammatory agent. The enhanced potency of C10 was associated with the ability of C10 to decrease the activity of myeloperoxidase (MPO) enzyme at 10mg/kg, whereas resveratrol and it's natural analog (TMS) did not exert the same effect. Additionally, C10 significantly reduced the concentration of intracellular reactive oxygen species. Because of the proven association between cancer, inflammation, and oxidative stress, we believe that C10 is a promising chemopreventive molecule. PMID:26850006

  8. Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid.

    PubMed

    Fernandes, Cléberson F; Moraes, Vadjah C P; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, José T A

    2006-10-01

    Two isoperoxidases were detected in cowpea (Vigna unguiculata) leaves. Treatment of the primary leaves with 10mM salicylic acid increased the total peroxidase activity contributed by the anionic isoform. To isolate both the anionic and cationic peroxidases the leaf crude extract was loaded on a Superose 12 HR 10/30 column followed by chromatography on Mono-Q HR 5/5. Both enzymes were stable in a pH range from 5 to 7. The optimum-temperatures for the cationic and anionic peroxidase isoforms were, respectively, 20-30 degrees C and 30 degrees C. The dependence of guaiacol oxidation rate varying its concentration at constant H(2)O(2) concentration showed, for both enzymes, Michaelis-Menten-type kinetic. Apparent K(m)(s) were 0.8 and 4.8 microM for the cationic and anionic isoperoxidases, respectively. PMID:16971216

  9. Combined patch containing salicylic acid and nicotinamide: role of drug interaction.

    PubMed

    Padula, Cristina; Ferretti, Chiara; Nicoli, Sara; Santi, Patrizia

    2010-12-01

    The aim of the present study was to formulate a combined patch containing salicylic (SA) acid and nicotinamide (NA), useful for the treatment of mild acne, and to verify their mutual effect on drug permeation and skin retention. The performance of the patch was tested in vitro in permeation experiments using pig ear skin as barrier. To better understand the data obtained from the film, permeation from solutions and isopropyl myristate/water partition coefficient were also determined. The results obtained in the present work suggest a mutual influence of NA and SA on their permeation across the skin from an innovative transdermal film. The partition coefficient obtained when the two molecules were simultaneously present was typically lower than the respective value obtained with NA and SA alone. PMID:20950260

  10. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona.

    PubMed

    Han, Ying; Chen, Gang; Chen, Yahua; Shen, Zhenguo

    2015-12-01

    Cadmium (Cd) toxictity and possible role of salicylic acid (SA) in alleviating Cd-induced toxicity were investigated on ornamental hydrophyte Iris hexagona. Compared to the control, treatments with 100 and 500 µM Cd for 7 days significantly decreased dry weight, the contents of chlorophyll, photosynthetic parameters, and increased the content of thiobarbituric acid reactive substance. Pretreatment of the roots of I. hexagona seedlings with 1 µM SA before Cd exposure may increase dry weight, photosynthetic rate, activities of antioxidant enzymes, improve the cell ultrastructure and protect plants from Cd-induced oxidative stress damage. However, SA pretreatment had no significant effect on Cd concentrations in the leaves and roots. It is suggested that SA-induced Cd tolerances in I. hexagona are likely associated with increases in antioxidant enzyme activities and vacuolar compartmentation, rather than Cd uptake. PMID:26310127

  11. Efficacy of Myrtus communis L. and Descurainia sophia L. Versus Salicylic Acid for Wart Treatment

    PubMed Central

    Ghadami Yazdi, Elham; Minaei, Mohamad Bagher; Hashem Dabaghian, Fataneh; Ebrahim Zadeh Ardakani, Mohamad; Ranjbar, Ali Mohammad; Rastegari, Mohamad; Ghadami Yazdi, Ali

    2014-01-01

    Background: Wart is a skin disease with circular appendages, which is called “suloul” in Iranian traditional medicine (ITM). According to ITM literature, warts have different types and causes. The most important mechanism is excretion of materials (Khelt) from body to skin and mucus; its causative material is often phlegm, black bile or a combination of them. To treat warts, it is necessary to consider the patient’s life style, modify his dietary intake and moisturize his temperament. Objectives: This study aimed to compare Myrtus communis L. and Descurainia sophia L. as a method of ITM, versus salicylic acid in treatment of wart. Patients and Methods: In this study, conducted in Yazd, Iran, 100 patients were selected and randomly divided into four groups. Group 1) salicylic acid, group 2) salicylic acid and D. sophia L. group 3) M. communis L. group 4) M. communis L. and D. sophia L. Numbers, sizes of lesions and symptoms, on days 0, 20, 40 and 90 were examined and analyzed. The relapse rate was investigated three months after. Changes of sizes and numbers of warts in each period of time in each group, compared to baseline, were assessed by Wilcoxon Signed Rank test. To compare these changes between the groups, Kruskal Wallis test was used. Results: In this study 100 patients participated, 69% of which were female. Compared to baseline, mean ± SD of changes for the number of warts in day 40 were 1.12 ± 4.2, 0.96 ± 2.5, 1.32 ± 5.1 and 0.04 ± 0.2 respectively in the four groups (P = 0.02). Mean ± SD of changes for the number of warts in day 90 were 1.84 ± 4.5, 1.56 ± 2.8, 1.24 ± 5.1 and 0.04 ± 0.6 respectively in the four groups (P = 0.03). In addition mean ± SD of changes for the size of warts in day 40 were 0.96 ± 1.8, 1.03 ± 2.4, 2.47 ± 3.0 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Mean ± SD of changes for the size of warts in day 90 were 1.24 ± 2.1, 1.3 ± 2.3, 2.45 ± 3.1 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Relapse was not seen in any groups after three months. The frequency of side effects was similar after three months. Conclusions: M. communis L. can be used as a topical treatment for warts. It not only shows more rapid response than salicylic acid, but also has fewer side effects. It seems that D. sophia L. can modify the digestion process and patients can excrete large amounts of the substance that causes warts. Therefore, it is better to use it more than 40 days. According to our investigation, in ITM, considering the cause and mechanism of disease generation and the causing materials of the disease, different treatments should be applied for each patient. Although applying an appropriate treatment is necessary, a unique treatment for all the patients cannot be available. PMID:25558385

  12. Optical trapping investigation on the effects of salicylate on electromechanical properties of plasma membranes

    NASA Astrophysics Data System (ADS)

    Lee, Linda; Qian, Feng; Brownell, William E.; Anvari, Bahman

    2006-02-01

    The ability of cellular membranes to generate electrically-induced mechanical force (EMF) has been demonstrated in many cell types, including cochlear outer hair cells, axons, and some cultured mammalian cells. Models of membrane based EMF generation are based on an interaction between the transmembrane electric field and membrane surface charge. We use a technique that combines optical trapping with voltage clamping to investigate the effects of an electrically charged amphipathic agent on EMF by membrane tethers. Our preliminary results indicate that salicylate, a negatively charged amphipathic agent, which is also known to cause reversible hearing loss and reduce outer hair cell electromotility, reduces EMF in membrane tethers. These measurements provide a basis to better understand the role of membrane charge properties in EMF generation.

  13. Salicylic acid-dependent gene expression is activated by locomotion mucus of different molluscan herbivores

    PubMed Central

    Meldau, Stefan; Kästner, Julia; von Knorre, Dietrich; Baldwin, Ian T

    2014-01-01

    Slugs and snails specifically secrete mucus to aid their locomotion. This mucus is the contact material between molluscan herbivores and plants. We have recently shown that the locomotion mucus of the slug Deroceras reticulatum contains salicylic acid (SA).1 When applied to wounded leaves of Arabidopsis thaliana this mucus induces the activity of the SA-responsive pathogenesis related 1 (PR1) promotor1. Here we analyzed PR1 promotor activity in response to treatments with locomotion mucus of eight slugs and snails. Although none of the mucus contained SA, their application still elicited PR1 promotor activity. These data provide further insights into the complex interactions between molluscan herbivores and plants. PMID:25346792

  14. Fluorescence characteristics of 5-amino salicylic acid: An iodide recognition study

    NASA Astrophysics Data System (ADS)

    Arora, Priyanka; Suyal, Kanchan; Joshi, Neeraj K.; Joshi, Hem Chandra; Pant, Sanjay

    In this paper we report the effect of iodide on the fluorescence of 5-amino salicylic acid (5-ASA). In the absence of iodide, prominent blue green (BG) emission band at ˜465 nm (broad) is observed in aprotic solvents whereas violet (V) emission at ˜408 nm, blue green (BG) at ˜480 nm and green (G) at ˜500 nm are observed in case of protic solvents. On the addition of iodide ion (I-), the intensity of BG fluorescence is enhanced in case of aprotic solvents. On the other hand the G band is enhanced in protic solvents and decrease in the intensity of the V band is observed. The effect of hydrogen bonding as well as the interplay of neutral and ionic species is invoked to explain the observed results. The study projects the application of this system in iodide recognition in protic/aprotic environments.

  15. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  16. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe

    NASA Astrophysics Data System (ADS)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  17. Chromatographic analysis of salicylic compounds in different species of the genus Salix.

    PubMed

    Pob?ocka-Olech, Loretta; van Nederkassel, Anne-Marie; Vander Heyden, Yvan; Krauze-Baranowska, Miros?awa; Glód, Daniel; Baczek, Tomasz

    2007-11-01

    The separation of nine phenol glycosides--salicin, salicortin, 2'-acetylsalicortin, populin, tremulacin, salidroside, triandrin, picein and helicin--by normal phase (NP), reversed phase (RP) HPLC techniques and a coupling of NP and RP monolithic silica columns was studied. Among the above nine compounds only five--salicin, populin, tremulacin, salidroside and triandrin--were resolved in an NP system with a mobile phase comprising hexane/isopropanol/methanol (87:12:1, v/v/v). Optimized separation was performed with two coupled monolithic silica columns of different polarity (bare silica and RP-18). The method was applied to verify the presence of salicylic compounds and other phenolic derivatives in the bark of six species from the genus Salix, namely S. purpurea, S. daphnoides clone 1095, S. alba clone 1100, S. triandra, S. viminalis, and S. herbacea. Gradient elution with a mobile phase composed of acetonitrile and water containing 0.05% of trifluoroacetic acid, with increasing acetonitrile concentration from 3% to 48%, was chosen as optimal. For the selective detection of the salicylic compounds, an evaporative light scattering detector was employed along with a UV detector. The differences in the composition of phenols in the different plant materials were confirmed. Additionally, it must be emphasized that for the first time the presence of 2'-acetylsalicortin was revealed in S. alba clone 1100. Furthermore, an SPE-HPLC method was developed for the rapid analysis of the salicin content, analyzed as free and total fraction, in willow barks. The determined concentrations of total salicin varied from 25.4 mg/g in S. alba clone 1100 to 96.47 mg/g in S. daphnoides clone 1095. PMID:17880029

  18. Effect of salicylate on outer hair cell plasma membrane viscoelasticity: studies using optical tweezers

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.

  19. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    PubMed

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. PMID:26529301

  20. The physiological response of Artemisia annua L. to salt stress and salicylic acid treatment.

    PubMed

    Li, Lin; Zhang, Haihui; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu; Ding, Chunbang; Wang, Xiaoli

    2014-04-01

    Salinity has a great influence on plant growth and distribution. A few existing reports on Artemisia annua L. response to salinity are concentrated on plant growth and artemisinin content; the physiological response and salt damage mitigation are yet to be understood. In this study, the physiological response of varying salt stresses (50, 100, 200, 300, or 400 mM NaCl) on A. annua L. and the effect of exogenous salicylic acid (0.05 or 0.1 mM) at 300-mM salt stress were investigated. Plant growth, antioxidant enzyme activity, proline, and mineral element level were determined. In general, increasing salt concentration significantly reduced plant growth. Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were stimulated by salt treatment to a higher enzyme activity in treated plants than those in untreated plants. Content of proline had a visible range of increment in the salt-treated plants. Distribution of mineral elements was in inconformity: Na(+) and Ca(2+) were mainly accumulated in the roots; K(+) and Mg(2+) were concentrated in leaves and stems, respectively. Alleviation of growth arrest was observed with exogenous applications of salicylic acid (SA) under salt stress conditions. The activity of SOD and POD was notably enhanced by SA, but the CAT action was suppressed. While exogenous SA had no discernible effect on proline content, it effectively inhibited excessive Na(+) absorption and promoted Mg(2+) absorption. Ca(2+) and K(+) contents showed a slight reduction when supplemented with SA. Overall, the positive effect of SA towards resistance to the salinity of A. annua will provide some practical basis for A. annua cultivation. PMID:24757320

  1. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana.

    PubMed Central

    Kliebenstein, Daniel J; Figuth, Antje; Mitchell-Olds, Thomas

    2002-01-01

    The ability of a single genotype to generate different phenotypes in disparate environments is termed phenotypic plasticity, which reflects the interaction of genotype and environment on developmental processes. However, there is controversy over the definition of plasticity genes. The gene regulation model states that plasticity loci influence trait changes between environments without altering the means within a given environment. Alternatively, the allelic sensitivity model argues that plasticity evolves due to selection of phenotypic values expressed within particular environments; hence plasticity must be controlled by loci expressed within these environments. To identify genetic loci controlling phenotypic plasticity and address this controversy, we analyzed the plasticity of glucosinolate accumulation under methyl jasmonate (MeJa) treatment in Arabidopsis thaliana. We found genetic variation influencing multiple MeJa signal transduction pathways. Analysis of MeJa responses in the Landsberg erecta x Columbia recombinant inbred lines identified a number of quantitative trait loci (QTL) that regulate plastic MeJa responses. All significant plasticity QTL also impacted the mean trait value in at least one of the two "control" or "MeJa" environments, supporting the allelic sensitivity model. Additionally, we present an analysis of MeJa and salicylic acid cross-talk in glucosinolate regulation and describe the implications for glucosinolate physiology and functional understanding of Arabidopsis MeJa signal transduction. PMID:12196411

  2. MethylSig: a whole genome DNA methylation analysis pipeline

    PubMed Central

    Park, Yongseok; Figueroa, Maria E.; Rozek, Laura S.; Sartor, Maureen A.

    2014-01-01

    Motivation: DNA methylation plays critical roles in gene regulation and cellular specification without altering DNA sequences. The wide application of reduced representation bisulfite sequencing (RRBS) and whole genome bisulfite sequencing (bis-seq) opens the door to study DNA methylation at single CpG site resolution. One challenging question is how best to test for significant methylation differences between groups of biological samples in order to minimize false positive findings. Results: We present a statistical analysis package, methylSig, to analyse genome-wide methylation differences between samples from different treatments or disease groups. MethylSig takes into account both read coverage and biological variation by utilizing a beta-binomial approach across biological samples for a CpG site or region, and identifies relevant differences in CpG methylation. It can also incorporate local information to improve group methylation level and/or variance estimation for experiments with small sample size. A permutation study based on data from enhanced RRBS samples shows that methylSig maintains a well-calibrated type-I error when the number of samples is three or more per group. Our simulations show that methylSig has higher sensitivity compared with several alternative methods. The use of methylSig is illustrated with a comparison of different subtypes of acute leukemia and normal bone marrow samples. Availability: methylSig is available as an R package at http://sartorlab.ccmb.med.umich.edu/software. Contact: sartorma@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24836530

  3. An Arabidopsis thaliana methyltransferase Capable of Methylating Farnesoic Acid

    SciTech Connect

    Yang,Y.; Yuan, J.; Ross, J.; Noel, J.; Pichersky, E.

    2006-01-01

    We previously reported the identification of a new family of plant methyltransferases (MTs), named the SABATH family, that use S-adenosyl-l-methionine (SAM) to methylate a carboxyl moiety or a nitrogen-containing functional group on a diverse array of plant compounds. The Arabidopsis genome alone contains 24 distinct SABATH genes. To identify the catalytic specificities of members of this protein family in Arabidopsis, we screened recombinantly expressed and purified enzymes with a large number of potential substrates. Here, we report that the Arabidopsis thaliana gene At3g44860 encodes a protein with high catalytic specificity towards farnesoic acid (FA). Under steady-state conditions, this farnesoic acid carboxyl methyltransferase (FAMT) exhibits K{sub M} values of 41 and 71 {mu}M for FA and SAM, respectively. A three-dimensional model of FAMT constructed based upon similarity to the experimentally determined structure of Clarkia breweri salicylic acid methyltransferase (SAMT) suggests a reasonable model for FA recognition in the FAMT active site. In plants, the mRNA levels of At3g44860 increase in response to the exogenous addition of several compounds previously shown to induce plant defense responses at the transcriptional level. Although methyl farnesoate (MeFA) has not yet been detected in Arabidopsis, the presence of a FA-specific carboxyl methyltransferase in Arabidopsis capable of producing MeFA, an insect juvenile hormone made by some plants as a presumed defense against insect herbivory, suggests that MeFA or chemically similar compounds are likely to serve as new specialized metabolites in Arabidopsis.

  4. DNA methylation program during development

    PubMed Central

    ZHOU, Feng C.

    2013-01-01

    DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novo-synthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation constitute ample complexity for an instructional program for orchestrated gene expression and development. The forum of the current discussion and review are whether there is such a program, if so what the DNA methylation program entails, and what environment can change the DNA methylation program. The translational implication of the DNA methylation program is also proposed. PMID:23687512

  5. DNA Methylation and Colorectal Cancer

    PubMed Central

    Ashktorab, Hassan; Brim, Hassan

    2014-01-01

    Colorectal cancer (CRC) is one of the major cancers in the world and second death-causing cancer in the US. CRC development involves genetic and epigenetic alterations. Changes in DNA methylation status are believed to be involved at different stages of CRC. Promoter silencing via DNA methylation and hypomethylation of oncogenes alter genes’ expression, and can be used as a tool for the early detection of colonic lesions. DNA methylation use as diagnostic and prognostic marker has been described for many cancers including CRC. CpG Islands Methylator Phenotype (CIMP) is one of the underlying CRC mechanisms. This review aims to define methylation signatures in CRC. The analysis of DNA methylation profile in combination with the pathological diagnosis would be useful in predicting CRC tumors’ evolution and their prognostic behavior. PMID:25580099

  6. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response.

    PubMed

    Zhao, Nan; Lin, Hong; Lan, Suque; Jia, Qidong; Chen, Xinlu; Guo, Hong; Chen, Feng

    2016-05-01

    The known members of plant methyl esterase (MES) family catalyze the hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated VvMES1-15. In this report, VvMES5 was selected for molecular, biochemical and structural studies. VvMES5 is most similar to tomato methyl jasmonate esterase. E. coli-expressed recombinant VvMES5 displayed methyl jasmonate (MeJA) esterase activity, it was renamed VvMJE1. Under steady-state conditions, VvMJE1 exhibited an apparent Km value of 92.9 μM with MeJA. VvMJE1 was also shown to have lower activity with methyl salicylate (MeSA), another known substrate of the MES family, and only at high concentrations of the substrate. To understand the structural basis of VvMJE1 in discriminating MeJA and MeSA, a homolog model of VvMJE1 was made using the X-ray structure of tobacco SABP2, which encodes for methyl salicylate esterase, as a template. Interestingly, two bulky residues at the binding site and near the surface of tobacco SABP2 are replaced by relatively small residues in VvMJE1. Such a change enables the accommodation of a larger substrate MeJA in VvMJE1. The expression of VvMJE1 was compared in control grape plants and grape plants treated with one of the three stresses: heat, cold and UV-B. While the expression of VvMJE1 was not affected by heat treatment, its expression was significantly up-regulated by cold treatment and UV-B treatment. This result suggests that VvMJE1 has a role in response of grape plants to these two abiotic stresses. PMID:26934101

  7. Blocking caspase-3-dependent pathway preserves hair cells from salicylate-induced apoptosis in the guinea pig cochlea.

    PubMed

    Feng, Hao; Yin, Shi-Hua; Tang, An-Zhou

    2011-07-01

    In the present study, we aim to explore whether the caspase-3-dependent pathway is involved in the apoptotic cell death that occurs in the hair cells (HCs) of guinea pig cochlea following a salicylate treatment. Guinea pigs received sodium salicylate (Na-SA), at a dose of 200 mg·kg(-1)·d(-1) i.p., as a vehicle for 5 consecutive days. In some experiments, N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zDEVD-FMK), a specific apoptosis inhibitor, was directly applied into the cochlea via the round window niche (RWN) prior to salicylate treatment for determination of caspase-3 activation. Alterations in auditory function were evaluated with auditory brainstem responses (ABR) thresholds. Caspase-3 activity was determined by measuring the proteolytic cleavage product of caspase-3 (N-terminated peptide substrate). DNA fragmentation within the nuclei was examined with a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Ultrastructure variation in the target cell was assessed by electron microscopy (EM). Salicylate treatment initiated an obvious elevation in ABR thresholds with a maximum average shift of 60 dB sound pressure level (SPL), and caused significant apoptosis in both inner (IHCs) and outer (OHCs) hair cells resulted from an evident increasing in immunoreactivity to caspase-3 protease. Transmission electron microscopy (TEM) displayed chromatin condensation and nucleus margination accompanied by cell body shrinkage in the OHCs, but not in the IHCs. Scanning electron microscopy (SEM) showed breakdown, fusion, and loss in the stereociliary bundles at the apex of OHCs rather than IHCs. zDEVD-FMK pretreatment prior to salicylate injection substantially attenuated an expression of the apoptotic protease and protected HCs against apoptotic death, followed by a moderate relief in the thresholds of ABR, an alleviation in the submicroscopic structure was also identified. In particular, disorientation and insertion in the hair bundles at the apex of OHCs was exhibited though no classic apoptotic change found. The above changes were either prevented or significantly attenuated by zDEVD-FMK. These findings indicate that salicylate could damage cochlear hair cells via inducing apoptosis associated with caspase-3 activation. PMID:21503676

  8. Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-di­nitro­salicylic acid and 5-sulfosalicylic acid

    PubMed Central

    Smith, Graham; Wermuth, Urs D.

    2014-01-01

    The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-di­nitro­salicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate, C10H15N2 +·C7H3N2O7 ?, (I), and (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 3-carb­oxy-4-hy­droxy­benzene­sulfonate, C10H15N2 +·C7H5O6S?, (II), are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N—H?Npyridine hydrogen bonds generate zigzag NIC cation chains which extend along a, while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form ?–?-associated stacks which are parallel to the NIC cation chains along a [ring-centroid separation = 3.857?(2)?Å]. Weak C—H?O inter­actions between chain substructures give an overall three-dimensional structure. In the crystal of (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carb­oxy­lic acid O—H?Npyridine hydrogen bonds. These chains, which extend along b, are pseudocentrosymmetrically related and give ?–? inter­actions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations = 3.6422?(19) and 3.7117?(19)?Å]. Also present are weak C—H?O hydrogen-bonding inter­actions between the chains, giving an overall three-dimensional structure. PMID:25484766

  9. In-situ CIR-FTIR (cylindrical internal reflection/Fourier transform infrared) characterization of salicylate complexes at the goethite/aqueous solution interface

    SciTech Connect

    Yost, E.C.; Tejedor-Tejedor, M.I.; Anderson, M.A. )

    1990-06-01

    The types of complexes that salicylate (2-hydroxy-benzoate) forms with the surface of goethite ({alpha}-FeOOH) in aqueous medium were studied in situ by using cylindrical internal reflection (CIR) Fourier transform infrared (FTIR) spectroscopy. Results obtained from CIR-FTIR studies were compared with adsorption isotherm experiments in order to relate the level of salicylate coverage to the nature of the surface complex. At lower surface coverages all the interfacial salicylate has a chelate structure in which one carboxylic oxygen and the ortho phenolic oxygen bind one Fe atom of the goethite surface. At higher surface coverages this chelate complex coexists with salicylate ions, which are weakly bound in the double layer.

  10. Expression of Antioxidant Genes in the Mouse Cochlea and Brain in Salicylate-Induced Tinnitus and Effect of Treatment with Spirulina platensis Water Extract.

    PubMed

    Hwang, Juen-Haur; Chang, Nian-Cih; Chen, Jin-Cherng; Chan, Yin-Ching

    2015-01-01

    Salicylate increased manganese-superoxide dismutase (Mn-SOD) gene expression, but decreased catalase (CAT) gene expression in the cochlea and various brain regions of mice with tinnitus. Spirulinaplatensis water extract reduced salicylate-induced overexpression of the Mn-SOD gene, but increased salicylate-induced downregulation of the CAT gene. With the exception of significantly increased SOD activity in the brainstem and inferior colliculus of the Spirulina group, SOD and CAT enzyme activities did not differ among the three groups. The tinnitus group had higher malondialdehyde (MDA) levels than the control group in the temporal and the frontal lobes. S.platensis water extract reduced salicylate-induced elevations of MDA levels in many brain areas. We proposed that altered expression of antioxidant genes may reflect states of oxidative stress associated with tinnitus. PMID:26277928

  11. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    NASA Astrophysics Data System (ADS)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  12. Methylation-Specific PCR Unraveled

    PubMed Central

    Derks, Sarah; Lentjes, Marjolein H. F. M.; Hellebrekers, Debby M. E. I.; de Bruïne, Adriaan P.; Herman, James G.; van Engeland, Manon

    2004-01-01

    Methylation?specific PCR (MSP) is a simple, quick and cost?effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1) sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2) detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical) applications. PMID:15623939

  13. The effect of sodium salicylate on the rat embryo in culture: an in vitro model for the morphological assessment of teratogenicity.

    PubMed Central

    McGarrity, C; Samani, N; Beck, F; Gulamhusein, A

    1981-01-01

    The optimum teratogenic dose of subcutaneously administered sodium salicylate was determined in vivo at 9.5 days of gestation. Fetuses from rats injected with this dose at 9.5 days were examined at 11.5 days and its propensities for producing resorption as well as deformities noted. Next, maternal serum levels 3-3.5 hours and 18.5 hours after salicylate injection were determined. Having established the feasibility of determining an effect due to salicylate at 11.5 days, after injection at 9.5 days, the following experiments were performed in vitro in animals cultured between 9.5 and 11.5 days by the method of New et al. (1976a): (1) Sodium salicylate was added to the culture serum, at levels equivalent to those obtained 3-3.5 hours after maternal injection of the optimum teratogenic dose, for 24 of the 48 hours culture period. (2) Rats were cultured for the first 24 hours of the 48 hours culture period in serum taken from rats injected 3.5 hours previously with the optimum teratogenic dose. (3) Rats were cultured for 24 out of 48 hours in serum from animals which had been injected with the optimum teratogenic dose 18.5 hours before bleeding. (4) Rats were cultured for 24 out of 48 hours in serum containing salicylate added to make up levels normally associated with (3). (5) A control culture was performed. The experiment indicates great similarity between the results obtained from animals cultured in serum with salicylate added and results from culture in serum of salicylate treated rats. It appears therefore that sodium salicylate - acting directly on the feto-placental unit - is the active teratogen rather than any of its metabolites. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7333953

  14. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  15. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: economic evaluation alongside a randomised controlled trial (EVerT trial)

    PubMed Central

    2012-01-01

    Abstract Background Plantar warts (verrucae) are extremely common. Although many will spontaneously disappear without treatment, treatment may be sought for a variety of reasons such as discomfort. There are a number of different treatments for cutaneous warts, with salicylic acid and cryotherapy using liquid nitrogen being two of the most common forms of treatment. To date, no full economic evaluation of either salicylic acid or cryotherapy has been conducted based on the use of primary data in a pragmatic setting. This paper describes the cost-effectiveness analysis which was conducted alongside a pragmatic multicentre, randomised trial evaluating the clinical effectiveness of cryotherapy versus 50% salicylic acid of the treatment of plantar warts. Methods A cost-effectiveness analysis was undertaken alongside a pragmatic multicentre, randomised controlled trial assessing the clinical effectiveness of 50% salicylic acid and cryotherapy using liquid nitrogen at 12 weeks after randomisation of patients. Cost-effectiveness outcomes were expressed as the additional cost required to completely cure the plantar warts of one additional patient. A NHS perspective was taken for the analysis. Results Cryotherapy costs on average £101.17 (bias corrected and accelerated (BCA) 95% CI: 85.09-117.26) more per participant over the 12 week time-frame, while there is no additional benefit, in terms of proportion of patients healed compared with salicylic acid. Conclusions Cryotherapy is more costly and no more effective than salicylic acid. Trial registration Current Controlled Trials ISRCTN18994246 [controlled-trials.com] and National Research Register N0484189151. PMID:22369511

  16. Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status.

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2013-01-15

    Foliage of Coriandrum sativum is a rich source of natural folates amenable for enhancement through salicylic acid-mediated elicitation, thereby holding a great promise for natural-mode alleviation of this vitamin (B(9)) deficiency. In the present study we report salicylic acid-mediated differential elicitation of different forms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microwave-drying and bioaccessibilities from fresh and dried foliage. The first two compounds nearly doubled and the third increased sixfold post-elicitation, with all three showing concomitant increase in bioaccessibilities. Although a slight decrease in bioaccessibility was observed in dried foliage, over twofold increase of each form of folate upon elicitation would deliver much higher levels of natural folates from this traditional culinary foliage, which is widely used in many cuisines. Elicitor-mediated folate enhancement also imparted reduction of oxidative status and the enhancement of antioxidant enzyme activities in coriander foliage. PMID:23122099

  17. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    PubMed Central

    Dihazi, Abdelhi; Serghini, Mohammed Amine; Jaiti, Fatima; Daayf, Fouad; Driouich, Azeddine; Dihazi, Hassan; El Hadrami, Ismail

    2011-01-01

    Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants. PMID:22567327

  18. Stereocontrolled Synthesis of a Potential Transition-State Inhibitor of the Salicylate Synthase MbtI from Mycobacterium tuberculosis.

    PubMed

    Liu, Zheng; Liu, Feng; Aldrich, Courtney C

    2015-07-01

    Mycobactins are small-molecule iron chelators (siderophores) produced by Mycobacterium tuberculosis (Mtb) for iron mobilization. The bifunctional salicylate synthase MbtI catalyzes the first step of mycobactin biosynthesis through the conversion of the primary metabolite chorismate into salicylic acid via isochorismate. We report the design, synthesis, and biochemical evaluation of an inhibitor based on the putative transition state (TS) for the isochorismatase partial reaction of MbtI. The inhibitor mimics the hypothesized charge buildup at C-4 of chorismate in the TS as well as C-O bond formation at C-6. Another important design element of the inhibitor is replacement of the labile pyruvate side chain in chorismate with a stable C-linked propionate isostere. We developed a stereocontrolled synthesis of the highly functionalized cyclohexene inhibitor that features an asymmetric aldol reaction using a titanium enolate, diastereoselective Grignard addition to a tert-butanesulfinyl aldimine, and ring closing olefin metathesis as key steps. PMID:26035083

  19. Enhanced Photocatalytic Degradation of Salicylic Acid in Water-ethanol Mixtures from Titanium Dioxide Grafted with Hexadecyltrichlorosilane

    NASA Astrophysics Data System (ADS)

    Kassir, Mounir; Roques-Carmes, Thibault; Assaker, Karine; Hamieh, Tayssir; Razafitianamaharavo, Angelina; Toufaily, Joumana; Villiéras, Frédéric

    The aim of this paper is to study the effect of the chemical modification on the photocatalytic properties of TiO2. The TiO2 Degussa-P25 nanoparticles are chemically modified using the hydrophobic organosilane hexadecyltrichlorosilane (HTS). The samples are employed as catalysts for salicylic acid photocatalytic oxidation in water-ethanol mixtures. The kinetics of salicylic acid photodegradation is investigated as a function of ethanol content in water-ethanol mixtures and initial HTS concentrations. The results indicate that the HTS groups are not degraded during the photocatalytic process. The TiO2 grafted by HTS is more efficient than bare TiO2 for the photodegradation process in presence of ethanol. The photodegradation process follows first order kinetics and the apparent rate constant increases linearly with the initial HTS concentration (amount of HTS grafted).

  20. Managing Nematodes without Methyl Bromide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

  1. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain

    PubMed Central

    Han, Wen-Juan; Chen, Lei; Wang, Hai-Bo; Liu, Xiang-Zeng; Hu, San-Jue; Sun, Xiao-Li; Luo, Ceng

    2015-01-01

    Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain. PMID:26609438

  2. Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid.

    PubMed

    Kumbhar, S S; Mahadik, M A; Shinde, S S; Rajpure, K Y; Bhosale, C H

    2015-01-01

    ZnFe2O4 thin films are successfully deposited onto bare and fluorine doped tin oxide (FTO) coated quartz substrate using the spray pyrolysis method. The structure and morphology of ZnFe2O4 photoelectrodes were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The X-ray diffraction pattern confirms the polycrystalline nature of films with a spinel cubic crystal structure. The AFM micrographs shows the granular nature of the films. The dielectric constant and dielectric loss shows dispersion behavior as a function of frequency measured in the range from 20Hz to 1MHz. Photoelectrocatalysis degradation of salicylic acid using ZnFe2O4 photoelectrode under sunlight illumination has been investigated. The result shows that the degradation percentage of salicylic acid on ZnFe2O4 photoelectrodes is reached 49% under neutral conditions after 320min illumination. The decrease in values of COD from 19.4mg/L to 6.4mg/L indicates there is mineralization of salicylic acid with time. PMID:25528302

  3. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  4. Enhancement of Population Densities of Pseudomonas putida PpG7 in Agricultural Ecosystems by Selective Feeding with the Carbon Source Salicylate

    PubMed Central

    Colbert, Stephen F.; Schroth, Milton N.; Weinhold, Albert R.; Hendson, Mavis

    1993-01-01

    Sodium salicylate (1,000 ?g/ml) was delivered through a drip irrigation system to agricultural field soils planted to tomato and infested with Pseudomonas putida PpG7, the host of the salicylate catabolic plasmid NAH7. In nonfumigated soils infested with approximately 103 CFU of PpG7 per g in the top 30 cm, population densities were increased up to 112-fold within 14 days of the initial application of salicylate compared with the densities in the respective nonamended soils. Mean season-long population densities of PpG7 in the top 30 cm of soil were significantly increased (P < 0.01) from 216 CFU/g in nonamended soils to 1,370 CFU/g in salicylate-amended soils. In the respective rhizosphere soils, mean population densities of PpG7 were significantly increased (P < 0.01) from 92 to 2,066 CFU/cm of root. Soil fumigation interacted (P < 0.01) with salicylate amendment and further increased the mean population densities of PpG7 in nonrhizosphere soil by an additional 5,689 CFU/g of soil. This fumigation effect was not detected in rhizosphere soils. The effect of salicylate in increasing population densities of PpG7 in soil also was affected by inoculum level, field site, and soil depth. Proportionate differences were greater in soils infested with approximately 103 CFU of PpG7 per g than in comparable soils infested with 105 CFU/g. In low-inoculum soils, increases from salicylate amendments were 26- and 29-fold in rhizosphere and nonrhizosphere soils, respectively, and in high-inoculum soils, the respective increases were 5.6- and 5-fold. No increases of fungi able to utilize salicylate were detected in soils amended with salicylate. However, soil fumigation with metham-sodium significantly reduced (P < 0.01) population densities of fungal salicylate utilizers in rhizosphere and nonrhizosphere soils. PMID:16348984

  5. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  6. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  7. Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(III)-salicylate complexes

    NASA Astrophysics Data System (ADS)

    Shi, Wenjing; Jin, Xiaoyan; Dong, Shaonan; Bi, Shuping

    2013-11-01

    Density functional theory (DFT) calculations were performed on the structures and water-exchange reactions of aqueous Al(III)-salicylate complexes. Based on the four models (gas phase (GP); polarizable continuum model (PCM), which estimates the bulk solvent effect; supermolecule model (SM), which considers the explicit solvent effect, and supermolecule-polarizable continuum model (SM-PCM), which accounts for both types of solvent effects), we systematically conducted this study by examining three different properties of the complexes. (1) The microscopic properties of the aqueous Al(III)-salicylate complexes were studied by optimizing their various structures (including the possible 1:1 mono- and bidentate complexes, cis and trans isomers of the 1:2 bidentate complexes and 1:3 bidentate complexes) at the B3LYP/6-311+G(d, p) level. (2) The 27Al and 13C NMR chemical shifts were calculated using the GIAO method at the HF/6-311+G(d, p) level. The calculation results show that the values obtained with the SM-PCM models are in good agreement with the experimental data available in the literature, indicating that the models we employed are appropriate for Al(III)-salicylate complexes. (3) The water-exchange reactions of 1:1 mono- and bidentate Al(III)-salicylate complexes were simulated using supermolecule models at the B3LYP/6-311+G(d, p) level. The logarithm of the water-exchange rate constant (log kex) of the 1:1 bidentate complex predicted using the "log kex-dAl-OH2" correlation is 4.0, which is in good agreement with the experimental value of 3.7, whereas the calculated range of log kex of the 1:1 monodentate complexes is 1.3-1.9. By effectively combining the results for the thermodynamic static structures with the simulations of the kinetic water-exchange reactions, this work promotes further understanding of the configurations and formation mechanism of Al(III)-salicylate complexes.

  8. Novel neurological and immunological targets for salicylate-based phytopharmaceuticals and for the anti-depressant imipramine.

    PubMed

    Ulrich-Merzenich, G; Kelber, O; Koptina, A; Freischmidt, A; Heilmann, J; Müller, J; Zeitler, H; Seidel, M F; Ludwig, M; Heinrich, E U; Winterhoff, H

    2012-07-15

    Inflammatory processes are increasingly recognised to contribute to neurological and neuropsychatric disorders such as depression. Thus we investigated whether a standardized willow bark preparation (WB) which contains among other constituents salicin, the forerunner of non-steroidal antiphlogistic drugs, would have an effect in a standard model of depression, the forced swimming test (FST), compared to the antidepressant imipramine. Studies were accompanied by gene expression analyses. In order to allocate potential effects to the different constituents of WB, fractions of the extract with different compositions of salicyl alcohol derivative and polyphenols were also investigated. Male Sprague Dawley rats (n=12/group) were treated for 14 days (p.o.) with the WB preparation STW 33-I (group A) and its fractions (FR) (groups FR-B to E) in concentrations of 30 mg/kg. The FRs were characterized by a high content of flavone and chalcone glycosides (FR-B), flavonoid glycosides and salicyl alcohol derivatives (FR-C), salicin and related salicyl alcohol derivatives (FR-D) and proanthocyanidines (FR-E). The tricyclic antidepressant imipramine (20 mg/kg) (F) was used as positive control. The FST was performed on day 15. The cumulative immobility time was significantly (p<0.05) reduced in group A (36%), group FR-D (44%) and by imipramine (16%) compared to untreated controls. RNA was isolated from peripheral blood. RNA samples (group A, group FR-D, and imipramine) were further analysed by rat whole genome microarray (Agilent) in comparison to untreated controls. Quantitative PCR for selected genes was performed. Genes (>2 fold, p<0.01), affected by WB and/or FR-D and imipramine, included both inflammatory (e.g. IL-3, IL-10) and neurologically relevant targets. Common genes regulated by WB, FR-D and imipramine were GRIA 2 ?, SRP54 ?, CYP26B ?, DNM1L ? and KITLG ?. In addition, the hippocampus of rats treated (27 d) with WB (15-60 mg/kg WB) or imipramine (15 mg/kg bw) showed a slower serotonin turnover (5-hydroxyindol acetic acid/serotonin (p<0.05)) depending on the dosage. Thus WB (30 mg/kg), its ethanolic fraction rich in salicyl alcohol derivatives (FR-D) (30 mg/kg) and imipramine, by being effective in the FST, modulated known and new targets relevant for neuro- and immunofunctions in rats. These findings contribute to our understanding of the link between inflammation and neurological functions and may also support the scope for the development of co-medications from salicylate-containing phytopharmaceuticals as multicomponent mixtures with single component synthetic drugs. PMID:22743246

  9. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.

    PubMed

    Rhoads, D. M.; McIntosh, L.

    1992-09-01

    Alternative respiratory pathway capacity increases during the development of the thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative oxidase proteins increased dramatically between D-4 (4 days prior to the day of anthesis) and D-3 and continued to increase until the day of anthesis (D-day). The level of salicylic acid (SA) in the appendix is very low early on D-1, but increases to a high level in the evening of D-1. Thermogenesis occurs after a few hours of light on D-day. Therefore, the initial accumulation of the alternative oxidase proteins precedes the increase in SA by 3 days, indicating that other regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase precursor protein accumulated to a high level in the appendix tissue by D-1. Application of SA to immature appendix tissue caused an increase in alternative pathway capacity and a dramatic accumulation of the alternative oxidase proteins and the 1.6-kb transcript. Time course experiments showed that the increase in capacity, protein levels, and transcript level corresponded precisely. The response to SA was blocked by cycloheximide or actinomycin D, indicating that de novo transcription and translation are required. However, nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb transcript did not result from a simple increase in the rate of transcription of aox1. PMID:12297672

  10. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    PubMed Central

    Gimenez-Ibanez, Selena; Solano, Roberto

    2013-01-01

    An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014

  11. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco

    PubMed Central

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Jürgen

    2013-01-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

  12. Constitutively Elevated Salicylic Acid Signals Glutathione-Mediated Nickel Tolerance in Thlaspi Nickel Hyperaccumulators1

    PubMed Central

    Freeman, John L.; Garcia, Daniel; Kim, Donggiun; Hopf, Amber; Salt, David E.

    2005-01-01

    Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus. PMID:15734913

  13. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates.

    PubMed

    Wang, Xiao-Ying; Zhang, Ling; Wei, Xiao-Hong; Wang, Qi

    2013-02-01

    Chitosan oligosaccharide (COS) derivatives have attracted significant interest in drug delivery systems because of their well-known low toxicity, excellent biocompatibility, and biodegradability. Paclitaxel-loaded nanoparticles based on salicylic acid-grafted chitosan oligosaccharide (COS/SA) were synthesized and characterized. Then, in order to understand the mechanism of the actions of the paclitaxel (PTX) encapsulated by COS/SA, all-atom molecular dynamics simulations were performed to analyze the aggregation of COS/SA molecules. The van der Waals and hydrophobic interactions are the major driving forces for the drug encapsulation process. Electrostatic and hydrogen-bonding interactions also play helpful roles in the COS/SA aggregation. Analyses of the radial distribution function and solvent accessible surface area indicate that the COS/SA nanoparticles are highly hydrosoluble and that the nanoparticles can significantly enhance the aqueous solubility of a hydrophobic drug. Different drug loading systems are also investigated in this work, and the best theoretical drug loading is found to be 10% (w/w). The present work provides insights into the mechanism of the atomic structures of drug-loaded polymeric nanoparticles and presents new perspective for the design of drug delivery systems with desirable properties. PMID:23219327

  14. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid

    PubMed Central

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-01-01

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA. PMID:26659305

  15. The rates of water exchange in Al(III)-salicylate and Al(III)-sulfosalicylate complexes

    SciTech Connect

    Sullivan, D.J.; Nordin, J.P.; Phillips, B.L.; Casey, W.H.

    1999-05-01

    Rate parameters are reported for exchange of hydration waters from the inner coordination sphere of Al(III)-sulfosalicylate [Al(sSal){sup +}] and Al(III)-salicylate [Al(Sal){sup +}] complexes to bulk solution as determined with {sup 17}O-NMR. The rate parameters for the Al(sSal){sup +} complex are: K{sub ex}{sup 298} = (3.0 {+-} 0.2){center_dot}10{sup 3} s{sup {minus}1}, {Delta}H{sup {double_dagger}} = 37({+-}3)kJ/mol, {Delta}S{sup {double_dagger}} = {minus}54({+-}9) J/mol K; and for the Al(Sal){sup +} complex are: k{sub ex}{sup 298} = 4.9({+-}0.3){center_dot}10{sup 3} s{sup {minus}1}, {Delta}H{sup {double_dagger}} = 35({+-}3) kJ/mol, {Delta}S{sup {double_dagger}} = {minus}57({+-}11) J/mol K. These results, along with previous work, suggest that the lability of water molecules in bidentate carboxylate-phenolic complexes scales with the electron-donating properties of the ligand oxygens. Replacement of a coordinated carboxyl with a phenolic group in the ligand increases both the Lewis basicity and the value of k{sub ex}{sup 298}. A correlation between these parameters is proposed that can be used to predict rate coefficients for other bidentate aluminum complexes.

  16. Design and synthesis of resveratrol-salicylate hybrid derivatives as CYP1A1 inhibitors.

    PubMed

    Aldawsari, Fahad S; Elshenawy, Osama H; El Gendy, Mohamed A M; Aguayo-Ortiz, Rodrigo; Baksh, Shairaz; El-Kadi, Ayman O S; Velázquez-Martínez, Carlos A

    2015-12-01

    Resveratrol and aspirin are known to exert potential chemopreventive effects through modulation of numerous targets. Considering that the CYP450 system is responsible for the activation of environmental procarcinogens, the aim of this study was to design a new class of hybrid resveratrol-aspirin derivatives possessing the stilbene and the salicylate scaffolds. Using HepG2 cells, we evaluated (a) the inhibition of TCDD-mediated induction of CYP1A1 exerted by resveratrol-aspirin derivatives using the EROD assay, and (b) CYP1A1 mRNA in vitro. We observed significant inhibition (84%) of CYP1A1 activity and a substantial decrease in CYP1A1 mRNA with compound 3, compared to control. Resveratrol did not exert inhibition under the same experimental conditions. This inhibitory profile was supported by docking studies using the crystal structure of human CYP1A1. The potential effect exerted by compound 3 (the most active), provide preliminary evidence supporting the design of hybrid molecules combining the chemical features of resveratrol and aspirin. PMID:25407017

  17. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    PubMed Central

    Chen, Guang-Di; Radziwon, Kelly E.; Manohar, Senthilvelan

    2014-01-01

    Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus. PMID:24891959

  18. Auditory brainstem response as a possible objective indicator for salicylate-induced tinnitus in rats.

    PubMed

    Liu, Xiao-Peng; Chen, Lin

    2012-11-16

    The auditory response to an acoustic stimulus will usually be suppressed, or masked, by a preceding sound. Here, we show that forward acoustic masking at a high frequency can boost the auditory brainstem response (ABR) in rats injected with a high dose of sodium salicylate (NaSal), a tinnitus inducer. The forward narrow band noise caused a decrease in the amplitude of the ABR to a probe tone burst in normal rats, but caused an unexpected increase in the amplitude at 16 kHz in rats treated with NaSal (300 mg/kg). The observed effect could be manifested in normal rats presented with a background tone added to the masker and the probe, suggesting an underlying mechanism associated with tinnitus. We hypothesize that in NaSal-treated rats, tinnitus can "internally" mask the ABR in a similar way as an external background sound does and the "unmasking" effect of forward masking can result in a rebound of the otherwise suppressed ABR. Our study raises the possibility of using the ABR as an objective indicator for NaSal-induced tinnitus in animals. This article is part of a Special Issue entitled: Tinnitus Neuroscience. PMID:22607819

  19. Potassium ion channel openers, Maxipost and Retigabine, protect against peripheral salicylate ototoxicity in rats.

    PubMed

    Sheppard, Adam M; Chen, Guang-Di; Salvi, Richard

    2015-09-01

    Sodium Salicylate (SS) reliably induces a sensorineural hearing loss and tinnitus when administered in high doses. Recent animal modeled studies indicate that potassium channel openers such as Maxipost and Retigabine (RTG) can block SS- or noise-induced tinnitus respectively; however, the origins and mechanisms are poorly understood. Since SS blocks the same potassium channels that Maxipost and RTG open, we postulated that these drugs might influence peripheral auditory function. To test this hypothesis Maxipost or RTG were administered alone or in combination with SS in rats. When administered alone, Maxipost and RTG had no effect on distortion product otoacoustic emissions (DPOAE) or compound action potentials (CAPs). However when Maxipost or RTG were administered with SS, Maxipost prevented the SS-reduced CAP amplitudes at high frequencies (?20 kHz) and RTG prevented SS-reduced CAP amplitudes at low frequencies (?8 kHz). These results suggest that Maxipost and RTG can protect against peripheral damage and therefore reduce the incidence of tinnitus. PMID:25937133

  20. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. PMID:26057076

  1. A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis.

    PubMed

    Desveaux, Darrell; Subramaniam, Rajagopal; Després, Charles; Mess, Jean-Nicholas; Lévesque, Caroline; Fobert, Pierre R; Dangl, Jeffery L; Brisson, Normand

    2004-02-01

    Transcriptional reprogramming is critical for plant disease resistance responses; its global control is not well understood. Salicylic acid (SA) can induce plant defense gene expression and a long-lasting disease resistance state called systemic acquired resistance (SAR). Plant-specific "Whirly" DNA binding proteins were previously implicated in defense gene regulation. We demonstrate that the potato StWhy1 protein is a transcriptional activator of genes containing the PBF2 binding PB promoter element. DNA binding activity of AtWhy1, the Arabidopsis StWhy1 ortholog, is induced by SA and is required for both SA-dependent disease resistance and SA-induced expression of an SAR response gene. AtWhy1 is required for both full basal and specific disease resistance responses. The transcription factor-associated protein NPR1 is also required for SAR. Surprisingly, AtWhy1 activation by SA is NPR1 independent, suggesting that AtWhy1 works in conjunction with NPR1 to transduce the SA signal. Our analysis of AtWhy1 adds a critical component to the SA-dependent plant disease resistance response. PMID:14960277

  2. Salicylic acid and calcium-induced protection of wheat against salinity.

    PubMed

    Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O

    2012-07-01

    Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes. PMID:21979309

  3. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    PubMed

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses. PMID:23604702

  4. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  5. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

    PubMed

    Alonso-Ramírez, Ana; Poveda, Jorge; Martín, Ignacio; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2014-10-01

    Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum?GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse. PMID:24684632

  6. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis.

    PubMed

    Khokon, Atiqur Rahman; Okuma, Eiji; Hossain, Mohammad Anowar; Munemasa, Shintaro; Uraji, Misugi; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2011-03-01

    Salicylic acid (SA), a ubiquitous phenolic phytohormone, is involved in many plant physiological processes including stomatal movement. We analysed SA-induced stomatal closure, production of reactive oxygen species (ROS) and nitric oxide (NO), cytosolic calcium ion ([Ca²+](cyt)) oscillations and inward-rectifying potassium (K+(in)) channel activity in Arabidopsis. SA-induced stomatal closure was inhibited by pre-treatment with catalase (CAT) and superoxide dismutase (SOD), suggesting the involvement of extracellular ROS. A peroxidase inhibitor, SHAM (salicylhydroxamic acid) completely abolished SA-induced stomatal closure whereas neither an inhibitor of NADPH oxidase (DPI) nor atrbohD atrbohF mutation impairs SA-induced stomatal closures. 3,3'-Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) stainings demonstrated that SA induced H?O? and O?? production. Guard cell ROS accumulation was significantly increased by SA, but that ROS was suppressed by exogenous CAT, SOD and SHAM. NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) suppressed the SA-induced stomatal closure but did not suppress guard cell ROS accumulation whereas SHAM suppressed SA-induced NO production. SA failed to induce [Ca²+](cyt) oscillations in guard cells whereas K+(in) channel activity was suppressed by SA. These results indicate that SA induces stomatal closure accompanied with extracellular ROS production mediated by SHAM-sensitive peroxidase, intracellular ROS accumulation and K+(in) channel inactivation. PMID:21062318

  7. Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.

    PubMed

    Yang, You-Xin; Ahammed, Golam J; Wu, Caijun; Fan, Shu-ying; Zhou, Yan-Hong

    2015-01-01

    Phytohormone crosstalk is crucial for plant defenses against pathogens and insects in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. These low molecular mass signals critically trigger and modulate plant resistance against biotrophic as well as necrotrophic pathogens through a complex signaling network that even involves participation of other hormones. Crosstalk among SA, JA and ET is mediated by different molecular players, considered as integral part of these crosscommunicating signal transduction pathways. Recent progress has revealed that the positive versus negative interactions among those pathways ultimately enable a plant to fine-tune its defense against specific aggressors. On the other hand, pathogens have evolved strategies to manipulate the signaling network to their favour in order to intensify virulence on host plant. Here we review recent advances and current knowledge on the role of classical primary defense hormones SA, JA and ET as well as their synergistic and antagonistic interaction in plant disease and immune responses. Crosstalk with other hormones such as abscisic acid, auxin, brassinosteroids, cytokinins and melatonin is also discussed mainly in plant disease resistance. In addition to our keen focus on hormonal crosstalk, this review also highlights potential implication of positive and negative regulatory interactions for developing an efficient disease management strategy through manipulation of hormone signaling in plant. PMID:25824390

  8. Modulation of human stratum corneum properties by salicylic acid and all-trans-retinoic acid.

    PubMed

    Piérard-Franchimont, C; Goffin, V; Piérard, G E

    1998-01-01

    Topical all-trans-retinoic acid (RA) has been reported to decrease the in vivo skin response to sodium lauryl sulfate (SLS). The converse was also shown with a synergistic effect of RA following prior applications of SLS. The reason for such effects is not clear. We employed measures of transepidermal water loss (TEWL), squamometry and sequential corneosurfametry to explore the protective activity of a 0.05% RA cream at the level of the stratum corneum. Nonionic oil-in-water emulsions with or without 5% salicylic acid (SA) served as test product references. Data indicated that the RA formulation was responsible for a stochastic impairment in the TEWL and for an increased intercorneocyte cohesion. SA and the unmedicated emulsion did not lead to similar TEWL changes. The squamometry test proved to be very sensitive to disclose the effects of SA and RA without, however, allowing to distinguish the difference in the physiological processes involved. The corneosurfametry bioassay did not show any protection or synergistic effect between RA or SA and SLS challenge on the stratum corneum. This is in contrast to a previous work showing a positive protective effect afforded by retinol against SLS. The combined effects of irritant compounds affecting the stratum corneum are complex. The precise reason for some of their biological consequences remains a conundrum. On balance, products such as SA and RA do not appear to afford protection or impairment to a surfactant challenge at the level of the stratum corneum. PMID:9885411

  9. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected. PMID:25779084

  10. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk[S

    PubMed Central

    Fullerton, Morgan D.; Ford, Rebecca J.; McGregor, Chelsea P.; LeBlond, Nicholas D.; Snider, Shayne A.; Stypa, Stephanie A.; Day, Emily A.; Lhoták, Šárka; Schertzer, Jonathan D.; Austin, Richard C.; Kemp, Bruce E.; Steinberg, Gregory R.

    2015-01-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1−/−) mice. Macrophages from Ampk β1−/− mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1−/− macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1−/− macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  11. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-11-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  12. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  13. Gelation of microemulsions and release behavior of sodium salicylate from gelled microemulsions.

    PubMed

    Feng, Guilong; Xiong, Yun; Wang, Hong; Yang, Yajiang

    2009-02-01

    A novel gelled microemulsion was prepared in the presence of the low molecular weight gelator N-stearine-N'-stearyl-L-phenylalanine at a very low concentration. It is completely different from the conventional microemulsion-based gels (MBGs) usually formed by polymeric gelling agents, such as gelatin, agar and kappa-carrageenan. The microemulsion consists of i-propyl myristate, Tween 80, propylene glycol and water. The gelled microemulsions showed good thermo-reversibility. The gel-to-sol transition temperature (T(GS)) of gelled microemulsion depends upon the concentration of gelator and the composition of the microemulsions. The gelation mechanism was investigated by polarized optical microscopy (POM) and FT-IR. POM images show elongated and strand-like crystallites formed by the aggregation of the gelator, ultimately resulting in the gelation of the microemulsion. FT-IR analysis indicates that intermolecular hydrogen bonds are responsible for the formation of gelator aggregates. Water-soluble sodium salicylate was used as a model drug for the investigation of the release from the gelled microemulsions. The release profiles exhibited a controlled release and followed the first-order release kinetics. The release rates decreased with an increase of the gelator and isopropyl myristate contents. These results reveal potential applications of gelled microemulsion in drug delivery systems. PMID:18793724

  14. Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats.

    PubMed

    Chen, Guang-Di; Radziwon, Kelly E; Kashanian, Nina; Manohar, Senthilvelan; Salvi, Richard

    2014-01-01

    Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus. PMID:24891959

  15. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects. PMID:25464323

  16. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.).

    PubMed

    Cui, Jing; Zhang, Rui; Wu, Guo Lin; Zhu, Hong Mei; Yang, Hong

    2010-07-01

    Napropamide is a widely used herbicide for controlling weeds in crop production. However, extensive use of the herbicide has led to its accumulation in ecosystems, thus causing toxicity to crops and reducing crop production and quality. Salicylic acid (SA) plays multiple roles in regulating plant adaptive responses to biotic and environmental stresses. However, whether SA regulates plant response to herbicides (or pesticides) was unknown. In this study, we investigated the effect of SA on herbicide napropamide accumulation and biological processes in rapeseed (Brassica napus). Plants exposed to 8 mg kg(-1) napropamide showed growth stunt and oxidative damage. Treatment with 0.1 mM SA improved growth and reduced napropamide levels in plants. Treatment with SA also decreased the abundance of O (2) (-.) and H(2)O(2) as well as activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), and increased activities of guaiacol peroxidase (POD) and glutathione-S-transferase (GST) in napropamide-exposed plants. Analysis of SOD, CAT, and POD activities using nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. These results may help to understand how SA regulates plant response to organic contaminants and provide a basis to control herbicide/pesticide contamination in crop production. PMID:19967348

  17. A systematic simulation of the effect of salicylic acid on sphingolipid metabolism

    PubMed Central

    Shi, Chao; Yin, Jian; Liu, Zhe; Wu, Jian-Xin; Zhao, Qi; Ren, Jian; Yao, Nan

    2015-01-01

    The phytohormone salicylic acid (SA) affects plant development and defense responses. Recent studies revealed that SA also participates in the regulation of sphingolipid metabolism, but the details of this regulation remain to beexplored. Here, we use in silico Flux Balance Analysis (FBA) with published microarray data to construct a whole-cell simulation model, including 23 pathways, 259 reactions, and 172 metabolites, to predict the alterations in flux of major sphingolipid species after treatment with exogenous SA. This model predicts significant changes in fluxes of certain sphingolipid species after SA treatment, changes that likely trigger downstream physiological and phenotypic effects. To validate the simulation, we used 15N-labeled metabolic turnover analysis to measure sphingolipid contents and turnover rate in Arabidopsis thaliana seedlings treated with SA or the SA analog benzothiadiazole (BTH). The results show that both SA and BTH affect sphingolipid metabolism, altering the concentrations of certain species and also changing the optimal flux distribution and turnover rate of sphingolipids. Our strategy allows us to estimate sphingolipid fluxes on a short time scale and gives us a systemic view of the effect of SA on sphingolipid homeostasis. PMID:25859253

  18. Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in Arabidopsis.

    PubMed

    Tan, Wei-Juan; Xiao, Shi; Chen, Qin-Fang

    2015-11-01

    In our recent article in Molecular Plant, we reported that 3 lipase-like defense regulators SENESCENCE-ASSOCIATED GENE101 (SAG101), ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are involved in the regulation of freezing tolerance in Arabidopsis. The transcripts of SAG101, EDS1 and PAD4 were inducible by cold stress and their knockout or knockdown mutants exhibited enhanced chilling and freezing tolerance in comparison to the wild type. The freezing tolerance phenotype showed in the sag101, eds1 and pad4 mutants was correlated with the transcriptional upregulation of C-REPEAT/DRE BINDING FACTORs (CBFs) and their regulons as well as increased levels of proline. Upon cold exposure, the sag101, eds1 and pad4 mutants showed ameliorated cell death and accumulation of hydrogen peroxide, which were highly induced by freezing stress in the wild-type leaves. Moreover, the contents of salicylic acid (SA) and diacylglycerol (DAG) were significantly decreased in the sag101, eds1 and pad4 mutants compared to the wild type. Taken together, our results suggest that the SAG101, EDS1 and PAD4 are negative regulators in the freezing response and function, at least in part, by modulating the homeostasis of SA and DAG in Arabidopsis. PMID:26340231

  19. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.)

    PubMed Central

    War, Abdul Rashid; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu

    2011-01-01

    Salicylic acid (SA), a plant hormone plays an important role in induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms. A series of experiments were carried out to evaluate the biochemical response of the chickpea (Cicer arietinum L.) plants to a range of SA concentrations (1, 1.5, and 2 mM). Water treated plants were maintained as control. Activities of peroxidase (POD) and polyphenol oxidase (PPO) were evaluated and amounts of total phenols, hydrogen peroxide (H2O2), and proteins were calculated after 96 h of treatment. Plants responded very quickly to SA at 1.5 mM and showed higher induction of POD and PPO activities, besides the higher accumulation of phenols, H2O2 and proteins. Plants treated with SA at 2 mM showed phytotoxic symptoms. These results suggest that SA at 1.5 mM is safe to these plants and could be utilized for the induction of plant defense. PMID:22057329

  20. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  1. Abnormal Glycosphingolipid Mannosylation Triggers Salicylic Acid–Mediated Responses in Arabidopsis[W][OA

    PubMed Central

    Mortimer, Jenny C.; Yu, Xiaolan; Albrecht, Sandra; Sicilia, Francesca; Huichalaf, Mariela; Ampuero, Diego; Michaelson, Louise V.; Murphy, Alex M.; Matsunaga, Toshiro; Kurz, Samantha; Stephens, Elaine; Baldwin, Timothy C.; Ishii, Tadashi; Napier, Johnathan A.; Weber, Andreas P.M.; Handford, Michael G.; Dupree, Paul

    2013-01-01

    The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi. PMID:23695979

  2. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling.

    PubMed

    Tateda, Chika; Zhang, Zhongqin; Shrestha, Jay; Jelenska, Joanna; Chinchilla, Delphine; Greenberg, Jean T

    2014-10-01

    In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA. PMID:25315322

  3. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  4. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice.

    PubMed

    Meguro, Ayano; Sato, Yutaka

    2014-01-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes. PMID:24686568

  5. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat

    PubMed Central

    Ustundag, Yasemin; Bulut, Funda; Demir, Caner Feyzi; Bal, Ali

    2016-01-01

    Introduction Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. Material and methods Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. Results Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). Conclusions We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw. PMID:26925138

  6. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis.

    PubMed

    Lv, Feifei; Zhou, Jun; Zeng, Lizhang; Xing, Da

    2015-08-01

    β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation. PMID:25998906

  7. Salicylic Acid Regulates Plasmodesmata Closure during Innate Immune Responses in Arabidopsis[C][W

    PubMed Central

    Wang, Xu; Sager, Ross; Cui, Weier; Zhang, Chong; Lu, Hua; Lee, Jung-Youn

    2013-01-01

    In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell–cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell–cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell–cell coupling requires an ENHANCED DESEASE RESISTANCE1– and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1–dependent SA pathway in conjunction with the regulator of plasmodesmal gating PLASMODESMATA-LOCATED PROTEIN5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop. PMID:23749844

  8. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  9. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    SciTech Connect

    Yalpani, N.; Schulz, M.; Balke, N.E. )

    1990-05-01

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with ({sup 14}C)SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a M{sub t} of about 50,000 and high specificity towards UDP-glucose as the sugar donor (K{sub m} = 0.28 mM) and SA as the glucose acceptor (K{sub m} = 0.11 mM). 2-D PAGE of ({sup 35}S)methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase.

  10. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid.

    PubMed

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-01-01

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA. PMID:26659305

  11. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum. PMID:26808096

  12. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action.

    PubMed

    da Rocha Neto, Argus Cezar; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2015-12-23

    Apple is a fruit widely produced and consumed around the world. Blue mold (Penicillium expansum) is one of the main postharvest diseases in apples, leading to a wide use of fungicides and the search for alternative products. The aim of this study was to assess the effect of salicylic acid (SA) against P. expansum, elucidating its mechanisms of action. The antimicrobial effect was determined by exposing conidia to a 2.5 mM SA solution for 0 to 120 min, followed by incubation. The effect of pH on the efficacy of SA against P. expansum was assessed both in vitro and in situ. The action mechanisms were investigated through fluorescence assays, measurement of protein leakage, lipid damage, and transmission electronic microscopy. SA was capable of inhibiting 90% of the fungal germination after 30 min, causing damage to the conidial plasma membrane and leading to protein leakage up to 3.2 μg of soluble protein per g of mycelium. The pH of the SA solution affected the antimicrobial activity of this secondary metabolite, which inhibited the germination of P. expansum and the blue mold incidence in apples in solutions with pH≤3 by 100%, gradually losing its activity at higher pH. PMID:26340673

  13. Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco.

    PubMed Central

    Du, H.; Klessig, D. F.

    1997-01-01

    Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified several proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in tobacco (Nicotiana tabacum) leaves and has an apparent molecular weight of approximately 25,000. It reversibly binds SA with an apparent dissociation constant of 90 nM, an affinity that is 150-fold higher than that between SA and catalase. The ability of most analogs of SA to compete with labeled SA for binding to this protein correlated with their ability to induce defense gene expression and enhanced resistance. Strikingly, benzothiadiazole, a recently described chemical activator that induces plant defenses and disease resistance at very low rates of application, was the strongest competitor, being much more effective than unlabeled SA. The possible role of this SA-binding protein in defense signal transduction is discussed. PMID:12223676

  14. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming

    PubMed Central

    Seyfferth, Carolin; Tsuda, Kenichi

    2014-01-01

    The phytohormone salicylic acid (SA) is a small phenolic compound that regulates diverse physiological processes, in particular plant resistance against pathogens. Understanding SA-mediated signaling has been a major focus of plant research. Pathogen-induced SA is mainly synthesized via the isochorismate pathway in chloroplasts, with ICS1 (ISOCHORISMATE SYNTHASE 1) being a critical enzyme. Calcium signaling regulates activities of a subset of transcription factors thereby activating nuclear ICS1 expression. The produced SA triggers extensive transcriptional reprogramming in which NPR1 (NON-EXPRESSOR of PATHOGENESIS-RELATED GENES 1) functions as the central coactivator of TGA transcription factors. Recently, two alternative but not exclusive models for SA perception mechanisms were proposed. The first model is that NPR1 homologs, NPR3 and NPR4, perceive SA thereby regulating NPR1 protein accumulation. The second model describes that NPR1 itself perceives SA, triggering an NPR1 conformational change thereby activating SA-mediated transcription. Besides the direct SA binding, NPR1 is also regulated by SA-mediated redox changes and phosphorylation. Emerging evidence show that pathogen virulence effectors target SA signaling, further strengthening the importance of SA-mediated immunity. PMID:25538725

  15. Sodium salicylate reduces the level of GABAB receptors in the rat's inferior colliculus.

    PubMed

    Butt, S; Ashraf, F; Porter, L A; Zhang, H

    2016-03-01

    Previous studies have indicated that sodium salicylate (SS) can cause hearing abnormalities through affecting the central auditory system. In order to understand central effects of the drug, we examined how a single intraperitoneal injection of the drug changed the level of subunits of the type-B ?-aminobutyric acid receptor (GABAB receptor) in the rat's inferior colliculus (IC). Immunohistochemical and western blotting experiments were conducted three hours following a drug injection, as previous studies indicated that a tinnitus-like behavior could be reliably induced in rats within this time period. Results revealed that both subunits of the receptor, GABABR1 and GABABR2, reduced their level over the entire area of the IC. Such a reduction was observed in both cell body and neuropil regions. In contrast, no changes were observed in other brain structures such as the cerebellum. Thus, a coincidence existed between a structure-specific reduction in the level of GABAB receptor subunits in the IC and the presence of a tinnitus-like behavior. This coincidence likely suggests that a reduction in the level of GABAB receptor subunits was involved in the generation of a tinnitus-like behavior and/or used by the nervous system to restore normal hearing following application of SS. PMID:26705739

  16. Salicylic acid improves root antioxidant defense system and total antioxidant capacities of flax subjected to cadmium.

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Soengas, Pilar; Obregon, Sara; Cartea, Maria Elena; Djebali, Wahbi; Chaïbi, Wided

    2013-07-01

    Cadmium (Cd) disrupts the normal growth and development of plants, depending on their tolerance to this toxic element. The present study was focused on the impacts of exogenous salicylic acid (SA) on the response and regulation of the antioxidant defense system and membrane lipids to 16-day-old flax plantlets under Cd stress. Exposure of flax to high Cd concentrations led to strong inhibition of root growth and enhanced lipid peroxides, membrane permeability, protein oxidation, and hydrogen peroxide (H2O2) production to varying degrees. Concomitantly, activities of the antioxidant enzymes catalase (CAT, EC 1.11.1.6), guaïcol peroxydase (GPX, EC 1.11.1.7), ascorbate peroxydase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1), and the total antioxidant capacities (2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and ferric reducing antioxidant power (FRAP)) were significantly altered by Cd. In contrast, exogenous SA greatly reduced the toxic effects of Cd on the root growth, antioxidant system, and membrane lipid content. The Cd-treated plantlets pre-soaked with SA exhibited less lipid and protein oxidation and membrane alteration, as well as a high level of total antioxidant capacities and increased activities of antioxidant enzymes except of CAT. These results may suggest that SA plays an important role in triggering the root antioxidant system, thereby preventing membrane damage as well as the denaturation of its components. PMID:23758477

  17. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  18. Identification of an OsPR10a promoter region responsive to salicylic acid

    PubMed Central

    Hwang, Seon-Hee; Lee, In Ah; Yie, Se Won

    2008-01-01

    Orysa sativa pathogenesis-related protein 10a (OsPR10a) was induced by pathogens, salicylic acid (SA), jasmonic acid (JA), ethephon, abscisic acid (ABA), and NaCl. We tried to analyze the OsPR10a promoter to investigate the transcriptional regulation of OsPR10a by SA. We demonstrated the inducibility of OsPR10a promoter by SA using transgenic Arabidopsis carrying OsPR10a:GFP as well as by transient expression assays in rice. To further identify the promoter region responsible for its induction by SA, four different deletions of the OsPR10a promoter were made, and their activities were measured by transient assays. The construct containing 687-bp OsPR10a promoter from its start codon exhibited a six-fold increase of induction compared to the control in response to SA. Mutation in the W-box like element 1 (WLE 1) between 687 and 637-bp from TGACA to TGAAA completely abolished induction of the OsPR10a promoter by SA, indicating that the WLE 1 between ?687 and ?637 of OsPR10a promoter is important in SA-mediated OsPR10a expression. We show for the first time that the W-box like element plays a role in SA mediated PR gene expression. PMID:18193274

  19. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana.

    PubMed

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  20. Salicylic acid mediates the reduced growth of lignin down-regulated plants

    PubMed Central

    Gallego-Giraldo, Lina; Escamilla-Trevino, Luis; Jackson, Lisa A.; Dixon, Richard A.

    2011-01-01

    Down-regulation of the enzyme hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in thale cress (Arabidopsis thaliana) and alfalfa (Medicago sativa) leads to strongly reduced lignin levels, reduced recalcitrance of cell walls to sugar release, but severe stunting of the plants. Levels of the stress hormone salicylic acid (SA) are inversely proportional to lignin levels and growth in a series of transgenic alfalfa plants in which lignin biosynthesis has been perturbed at different biosynthetic steps. Reduction of SA levels by genetically blocking its formation or causing its removal restores growth in HCT–down-regulated Arabidopsis, although the plants maintain reduced lignin levels. SA-mediated growth inhibition may occur via interference with gibberellic acid signaling or responsiveness. Our data place SA as a central component in growth signaling pathways that either sense flux into the monolignol pathway or respond to secondary cell-wall integrity, and indicate that it is possible to engineer plants with highly reduced cell-wall recalcitrance without negatively impacting growth. PMID:22123972