These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The Synthesis of Methyl Salicylate: Amine Diazotization.  

ERIC Educational Resources Information Center

Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

Zanger, Murray; McKee, James R.

1988-01-01

2

Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate  

Technology Transfer Automated Retrieval System (TEKTRAN)

Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-met...

3

Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds  

NASA Astrophysics Data System (ADS)

Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

2013-11-01

4

Methyl salicylate production in tomato affects biotic interactions.  

PubMed

The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses. PMID:20059742

Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

2010-04-01

5

Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.  

PubMed

Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B.?subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B.?subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus?subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-?-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-?-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B.?subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B.?subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B.?subtilis and host plants in the rhizosphere. PMID:25181478

Kobayashi, Kazuo

2015-04-01

6

Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper  

Microsoft Academic Search

We sprayed defence-related plant growth regulators (salicylic acid, methyl jasmonate and ethephon) on one-month-old Habanero\\u000a pepper seedlings cultivated in vitro. Twenty-four hours later, we inoculated the seedlings with a virulent strain of Phytophthora capsici and periodically evaluated the disease symptoms. At the concentrations used, neither salicylic acid nor methyl jasmonate\\u000a generated a protective effect in the seedlings, which died less

Rosalía Núñez-Pastrana; Guadalupe Fabiola Arcos-Ortega; Ramón Armando Souza-Perera; Carlos Alberto Sánchez-Borges; Yumi Elena Nakazawa-Ueji; Francisco Javier García-Villalobos; Adolfo Alberto Guzmán-Antonio; José Juan Zúñiga-Aguilar

7

Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.  

PubMed

Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids. PMID:16222805

Zhu, Junwei; Park, Kye-Chung

2005-08-01

8

HPLC-Quantification of Diethylamine Salicylate and Methyl Nicotinate in Ointments  

Microsoft Academic Search

A simple liquid chromatographic method for simultaneous quantification of diethylamine salicylate and methyl nicotinate in the presence of parabens and some drug degradation products is demonstrated. The LC-separation of the two drug substances was undertaken on a column packed with ?-Bondapack C18 using 1% aqueous acetic acid-acetonitrile (85 + 15) at a flow rate of 1.7 ml\\/min at ambient temperature

M. A. Abounassif; E. M. Abdel-Moety; R. A. Gad-Kariem

1992-01-01

9

Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate  

Microsoft Academic Search

Suspension cultures of Habanero pepper (Capsicum chinense Jacq.) were exposed to salicylic acid or methyl jasmonate to change secondary metabolism. Both treatments led to the accumulation\\u000a of capsaicinoids and their late biosynthetic intermediate, vanillin. Both elicitors had a positive effect on the activities\\u000a of phenylalanine ammonia lyase and coumarate O-methyltransferase, but none of them represented the main limiting step for

M. G. Gutiérrez-Carbajal; M. Monforte-González; M. de L. Miranda-Ham; G. Godoy-Hernández; F. Vázquez-Flota

2010-01-01

10

A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.  

PubMed

The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P.?brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P.?brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids. PMID:25135243

Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

2015-05-01

11

Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries  

Microsoft Academic Search

Methyl salicylate (MeSA) is a herbivore-induced plant volatile that has shown potential in attracting natural enemies. Here, we conducted a meta-analysis to evaluate the magnitude of natural enemy response to MeSA in the field, and tested its attractiveness to insect predators in commercial cranberry bogs. Eighteen experiments from 14 publications were used in the meta-analysis, resulting in 91 total observations.

Cesar Rodriguez-Saona; Ian Kaplan; Joseph Braasch; Durairaj Chinnasamy; Livy Williams

2011-01-01

12

Fumigant Activity of 6 Selected Essential Oil Compounds and Combined Effect of Methyl Salicylate And Trans-Cinnamaldehyde Against Culex pipiens pallens.  

PubMed

We studied the knockdown activity and lethal toxicity of 6 essential oil compounds-methyl salicylate, linalool, 2-phenethyl alcohol, eugenol, ?-citronellol, and trans-cinnamaldehyde-as fumigants against adult female Culex pipiens pallens in the laboratory. Of the 6 products tested, trans-cinnamaldehyde was the most toxic (LC50 ?=? 0.26 µl/l air, 24 h) with a slow knockdown time (KT95 ?=? 176.5 min at 0.5 µl/l air). Methyl salicylate displayed a lower toxicity (LC50 ?=? 1.17 µl/l air, 24 h) but the fastest knockdown activity (KT95 ?=? 16.8 min) at the sublethal concentration 0.5 µl/l air. Furthermore, the binary mixture of methyl salicylate and trans-cinnamaldehyde exhibited a combined effect of fast knockdown activity and high toxicity against Cx. p. pallens adults, showing potential for development as natural fumigants for mosquito control. PMID:25843095

Ma, Wei-Bin; Feng, Jun-Tao; Jiang, Zhi-Li; Zhang, Xing

2014-09-01

13

Preclinical pharmacokinetic evaluation and metabolites identification of methyl salicylate-2-O-?-d-lactoside in rats using LC-MS/MS and Q-TOF-MS methods.  

PubMed

Methyl salicylate-2-O-?-d-lactoside (MSL) is a natural salicylate derivative from the traditional Chinese medicine of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis). As a non-steroidal anti-inflammatory drug (NSAID), MSL exerts a significant anti-arthritis effect but hardly has any gastrointestinal toxicity. In this paper, the pharmacokinetics, distribution, excretion and identification of MSL and its metabolites are described following rat oral and intravenous administration. The biological samples were quantified by UPLC-MS/MS and the metabolites in urine and feces were identified by using Q-TOF-MS. These results will support future investigations leading to clinical development of this drug. PMID:25746501

Zhang, Dan; Huang, Chao; Xin, Wenyu; Ma, Xiaowei; Zhang, Weiku; Zhang, Tiantai; Du, Guanhua

2015-05-10

14

The Preparation of 2-(4Oxo4H-1-benzopyran-2-yl)-1-phenyl-ethanones by the Condensation\\/Cyclization of Dilithiated 1Benzoylacetone with Lithiated Methyl Salicylates  

Microsoft Academic Search

Dilithiated 1-benzoylacetone was prepared in excess lithium diisopropylamide and condensed with several lithiated methyl salicylates, followed by acid cyclization to 2-(4-oxo-4H-1-benzopyran-2-yl)-1-phenylethanones (2-phenacyl-chromones).

April J. Angel; Douglas R. Hurst; Angela R. Williams; Kristen L. French; Charles F. Beam

1998-01-01

15

Effective photosensitized energy transfer of nonanuclear terbium clusters using methyl salicylate derivatives.  

PubMed

The photophysical properties of the novel nonanuclear Tb(III) clusters Tb-L1 and Tb-L2 involving the ligands methyl 4-methylsalicylate (L1) and methyl 5-methylsalicylate (L2) are reported. The position of the methyl group has an effect on their photophysical properties. The prepared nonanuclear Tb(III) clusters were identified by fast atom bombardment mass spectrometry and powder X-ray diffraction. Characteristic photophysical properties, including photoluminescence spectra, emission lifetimes, and emission quantum yields, were determined. The emission quantum yield of Tb-L1 (???* = 31%) was found to be 13 times larger than that of Tb-L2 (???* = 2.4%). The photophysical characterization and DFT calculations reveal the effect of the methyl group on the electronic structure of methylsalicylate ligand. In this study, the photophysical properties of the nonanuclear Tb(III) clusters are discussed in relation to the methyl group on the aromatic ring of the methylsalicylate ligand. PMID:25671396

Omagari, Shun; Nakanishi, Takayuki; Seki, Tomohiro; Kitagawa, Yuichi; Takahata, Yumie; Fushimi, Koji; Ito, Hajime; Hasegawa, Yasuchika

2015-03-12

16

Molecular Structure of Salicylic acid  

NSDL National Science Digital Library

Salicylic acid is a colorless to white crystalline powder with a sweetish acrid taste that occurs naturally in many microorganisms and plants in very small amounts. It is also made synthetically and used as preservative of food products in some countries and as an antiseptic in mouthwashes and toothpastes. This chemical is also used in the manufacture of methyl salicylates, acetylasalicylic acid (aspirin) and other salicylates. Salicylic acid is a chemical intermediate in the synthesis of dyestuff, salicylate esters and salts. It is prepared commercially by heating sodium phenolate (the sodium salt of phenol) with carbon dioxide under pressure to form sodium salicylate, which is treated with sulfuric acid to liberate salicylic acid. Salicylic acid is quite irritating to skin and mucosa and it destroys epithelial cells. Absorption of large amounts can cause vomiting, abdominal pain, acidosis and mental disturbances.

2004-11-11

17

Salicylate and methyl jasmonate differentially influence diacetylene accumulation pattern in transformed roots of feverfew  

Microsoft Academic Search

In hairy root cultures of feverfew (Tanacetum parthenium (L.) Sch. Bip.), treated with methyl jasmonate (MJ), accumulation of spiroketal enol ether type diacetylenes of known deterrent activity was increased about two-fold. The phenomenon was independent of the root clone studied. The maximum total acetylene content (?2.5 and 1.1% dry weight in clones M2 and I2, respectively) was observed after 72–96

Anna Stojakowska; Janusz Malarz; Wanda Kisiel

2002-01-01

18

Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation  

NASA Astrophysics Data System (ADS)

Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (?OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ?OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

2015-02-01

19

The identification and differential expression of Eucalyptus grandis pathogenesis-related genes in response to salicylic acid and methyl jasmonate  

PubMed Central

Two important role players in plant defence response are the phytohormones salicylic acid (SA) and jasmonic acid (JA); both of which have been well described in model species such as Arabidopsis thaliana. Several pathogenesis related (PR) genes have previously been used as indicators of the onset of SA and JA signaling in Arabidopsis. This information is lacking in tree genera such as Eucalyptus. The aim of this study was to characterize the transcriptional response of PR genes (EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX) identified in Eucalyptus grandis to SA and methyl jasmonate (MeJA) treatment as well as to qualify them as diagnostic for the two signaling pathways. Using the genome sequence of E. grandis, we identified candidate Eucalyptus orthologs EgrPR2, EgrPR3, EgrPR4, EgrPR5, and EgrLOX based on a co-phylogenetic approach. The expression of these genes was investigated after various doses of SA and MeJA (a derivative of JA) treatment as well as at various time points. The transcript levels of EgrPR2 were decreased in response to high concentrations of MeJA whereas the expression of EgrPR3 and EgrLOX declined as the concentrations of SA treatment increased, suggesting an antagonistic relationship between SA and MeJA. Our results support EgrPR2 as potentially diagnostic for SA and EgrPR3, EgrPR4, and EgrLOX as indicators of MeJA signaling. To further validate the diagnostic potential of the PR genes we challenged E. grandis clones with the fungal necrotrophic pathogen Chrysoporthe austroafricana. The tolerant clone showed high induction of EgrPR2 and decreased transcript abundance of EgrPR4. Pre-treatment of the susceptible genotype with 5 mM SA resulted in lesion lengths comparable to the tolerant genotype after artificial inoculation with C. austroafricana. Thus expression profiling of EgrPR2 and EgrPR4 genes could serve as a useful diagnostic approach to determine which of the two signaling pathways are activated against various pathogens in Eucalyptus. PMID:23508356

Naidoo, Ronishree; Ferreira, Linda; Berger, Dave K.; Myburg, Alexander A.; Naidoo, Sanushka

2013-01-01

20

Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode  

Technology Transfer Automated Retrieval System (TEKTRAN)

Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

21

Salicylic acids  

PubMed Central

Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

2012-01-01

22

Salicylic acid, ethephon, and methyl jasmonate enhance ester regeneration in 1-MCP-treated apple fruit after long-term cold storage.  

PubMed

Volatile esters, primarily synthesized in peel tissues, are major aromatic components of apple fruits [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. The use of cold storage combined with 1-methylcyclopropene (1-MCP) treatment prolongs the life of apples but represses the regeneration of esters during poststorage ripening. In this study, the regeneration of total esters was significantly increased in apple fruits treated with salicylic acid (SA) and Ethephon (ETH) that had been treated once or twice with 1-MCP. However, methyl jasmonate (MeJA) treatment resulted in regeneration of total esters after a single 1-MCP treatment. To determine the mechanism by which SA, ETH, and MeJA regulate ester regeneration, the apple alcohol acyltransferase gene (MdAAT2) was investigated at the mRNA, protein, and enzyme activity levels. Genes associated with ethylene perception were also investigated by RT-PCR. The results suggest that MdAAT2 controls ester regeneration and that MdETR1 plays a key role in ethylene perception and regulation of downstream MdAAT2 gene expression during poststorage. Ester compounds and concentrations differed in peels treated with different signal molecules, indicating that regulation of the pathway upstream of straight-chain ester biosynthesis depended on the regulation of lipoxygenase (LOX) and alcohol dehydrogenase (ADH) activity by SA, ETH, and MeJA during poststorage ripening. PMID:16719511

Li, Da-Peng; Xu, Yun-Feng; Sun, Li-Ping; Liu, Li-Xia; Hu, Xiao-Li; Li, De-Quan; Shu, Huai-Rui

2006-05-31

23

Anti-inflammation effect of methyl salicylate 2-O-?-D-lactoside on adjuvant induced-arthritis rats and lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells.  

PubMed

Methyl salicylate 2-O-?-D-lactoside (MSL) is a derivative of natural salicylate isolated from Gaultheria yunnanensis (Franch.) Rehder, which is widely used for treating rheumatoid arthritis (RA), swelling and pain. The aim of the present study was to investigate the effect of MSL on the progression of adjuvant-induced arthritis (AIA) in rat in vivo and explore the anti-inflammatory effects and mechanism of MSL in lipopolysaccharide (LPS)-treated murine macrophages RAW264.7 cells in vitro. Our results showed that MSL significantly inhibited the arthritis progression in AIA rats, decreasing the right hind paw swelling and ankle diameter, attenuating histopathological changes and suppressing the plasma levels of TNF-? and IL-1? in AIA rats. Besides, MSL had potent anti-inflammatory effects on the LPS-activated RAW264.7. MSL dose-dependently inhibited the activity of COX-1, and COX-2. Moreover, MSL prominently inhibited LPS-induced activation of MAPK in RAW264.7 cells by blocking phosphorylation of p38 and ERK. Our study suggests that MSL may be effective in the treatment of inflammatory diseases by inhibiting the pro-inflammatory cytokine production and regulating the MAPK signal pathway. PMID:25637446

Zhang, Xue; Sun, Jialin; Xin, Wenyu; Li, Yongjie; Ni, Lin; Ma, Xiaowei; Zhang, Dan; Zhang, Dongming; Zhang, Tiantai; Du, Guanhua

2015-03-01

24

Salicylate toxicity from ingestion of traditional massage oil  

PubMed Central

A 16-month-old child developed a brief generalised tonic–clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1?week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome. PMID:22922924

Muniandy, Rajesh Kumar; Sinnathamby, Vellan

2012-01-01

25

Salicylate de méthyle, constituant unique de l'huile essentielle de l'écorce des racines de Securidaca longepedunculata du Burkina Faso  

Microsoft Academic Search

Methyl salycylate, the one constituent of Burkina Faso Securidaca longepedunculata roots bark essential oil. Securidaca longepedunculata, from Burkina Faso (Yalle), roots bark essential oil has been investigated by GC\\/MS and NMR 1H, 13C. The oils were found to contain methyl salicylate as major component (up to 90%). NMR analysis results of the oil are identical than methyl salicylate commercial product.

Roger H. C. Nébié; Rigobert T. Yaméogo; André Bélanger; Faustin S. Sib

2004-01-01

26

Efficient scavenging of ?-carotene radical cations by antiinflammatory salicylates.  

PubMed

The radical cation generated during photobleaching of ?-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9?:?1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the ?-carotene radical cation by the three salicylates is supported by DFT-calculations. PMID:24336797

Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

2014-02-01

27

The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid  

Microsoft Academic Search

The plant defensin PDF1.2 has previously been shown to accumulate systemically via a salicylic acid-independent pathway in leaves of Arabidopsis upon challenge by fungal pathogens. To further investigate the signalling and transcriptional processes underlying plant defensin induction, a DNA fragment containing 1184 bp and 1232 bp upstream of the transcriptional and translational start sites, respectively, was cloned by inverse PCR. To test

John M. Manners; Iris A. M. A. Penninckx; Katrien Vermaere; Kemal Kazan; Rebecca L. Brown; Andrew Morgan; Donald J. Maclean; Mark D. Curtis; Bruno P. A. Cammue; Willem F. Broekaert

1998-01-01

28

[Suicidal salicylate intoxications and unintentional percutaneous poisoning with salicylic ointment].  

PubMed

Suicidal salicylate poisonings are presented in 49 patients, 33 women and 16 men, aged from 18 to 71 (mean 37) years. Mixed poisonings with multiple agents were four times more frequent, had more severe clinical course and demanded longer hospitalisation than acute intoxications with salicylates alone. Four patient were over 65 years old (8.2%). Difficult economic situation of geriatric population in Poland had no effect on frequency of suicidal attempts in the studied cohort. There were no fatalities in the studied group. There were two unintentional systemic poisonings due to topical administration of the 10% salicylic acid ointment for wide spread skin lesions (more than 80% of body surface) in two patients with exudative psoriasis. PMID:14569910

Chodorowski, Zygmunt; Anand, Jacek Sein; Waldman, Wojciech

2003-01-01

29

[Therapy of acute salicylate poisoning].  

PubMed

Poisoning with salicylic acid and its derivatives is a quite common event, leading to possibly life-threatening complications. A case of fatal intoxication of a sixty-year old patient with acetylsalicylic acid is described and the therapeutic options are discussed. In acute poisoning it is mandatory to initiate simple and effective measures first. This gives time for discussing and planning the more laborious procedures. The initial treatment of salicylate poisoning is based on the prevention of further absorption by a sufficiently large quantity of orally administered activated charcoal (approximately 1 g/kg b.w.). Given repeatedly, activated charcoal may enhance non-renal clearance of salicylates. Intravenously administered sodium bicarbonate counteracts the metabolic acidosis. Moreover, bicarbonate therapy limits tissue distribution of the drug and enhances its renal excretion. The availability of glycine for salicylic acid metabolism may be limited in poisoning because glycine has been used for forming the conjugation product salicyluric acid. Glycine may be administered orally to overcome this bottleneck. Gastric lavage has been proven to be of limited efficacy. This efficacy is further diminished if gastric lavage is performed late after drug ingestion. When it is performed, however, activated charcoal should be administered before and after gastric lavage. Whenever the more simple treatment options fail, hemodialysis or hemoperfusion should be additionally considered since these procedures are effective in removing salicylates from the body. PMID:8211029

Herren, T; Como, F; Krähenbühl, S; Wyss, P A

1993-09-25

30

Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots  

Technology Transfer Automated Retrieval System (TEKTRAN)

The effect of two-chemical elicitors, salicylic acid and methyl jasmonate, on the production of gossypol, 6-methoxy gossypol, and 6,6'-dimethoxy gossypol in Gossypium barbadense hairy roots was examined. Methyl jasmonate, but not salicylic acid, was found to increase the production of gossypol and ...

31

Salicylic acid-independent plant defence pathways  

Microsoft Academic Search

Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent

Corné M. J Pieterse; Leendert C van Loon

1999-01-01

32

Microwave spectrum of salicylic acid  

NASA Astrophysics Data System (ADS)

The rotational spectra of salicylic acid and of three OD deuterated species have been investigated by free jet millimiter-wave absorption spectroscopy. Only lines of the most stable conformer, the one with an intramolecular hydrogen bond between the phenolic hydrogen and the carbonyl oxygen, have been observed. The positions of the phenolic and carboxylic hydrogens have been precisely derived.

Evangelisti, Luca; Tang, Shouyuan; Velino, Biagio; Caminati, Walther

2009-03-01

33

[scpA the new salicylate hydroxylase gene localized on salicylate/caprolactam degradation plasmids].  

PubMed

Both caprolactam and salicylate biodegradation by Pseudomonas salicylate/caprolactam degraders is controlled by large conjugative plasmids (SAL/CAP). Some of these plasmids determined to be the members of IncP-7 group. The new salicylate 1-hydroxylase gene (scpA) on SAL/CAP-plasmids has been detected and partially sequenced. Gene scpA was equally related to closest homologs nahG (NAH7), salA (P. reinekei MT1) and nahU (pND6-1), but identity of scpA to these genes did not exceed 72-74%. Synthesis of salicylate 1-hydroxylase ScpA was not induced by salicylate. This enzyme had wide substrate specificity and exhibited highest specific activity with 4-methylsalicylate and nonsubstituted salicylate. Besides pseudomonad's salicylate degradative conjugative plasmids without "classical" nah2-operon and harboring only salicylate 1-hydroxylase gene nahU have been firstly described. PMID:23705500

Panov, A V; Volkova, O V; Puntus, I F; Esikova, T Z; Kosheleva, I A; Boronin, A M

2013-01-01

34

Salicylate Biosynthesis: Overexpression, Purification, and Characterization of Irp9, a Bifunctional Salicylate Synthase from Yersinia enterocolitica  

Microsoft Academic Search

In some bacteria, salicylate is synthesized using the enzymes isochorismate synthase and isochorismate pyruvate lyase. In contrast, gene inactivation and complementation experiments with Yersinia enterocolitica suggest the synthesis of salicylate in the biosynthesis of the siderophore yersiniabactin involves a single protein, Irp9, which converts chorismate directly into salicylate. In the present study, Irp9 was for the first time heterologously expressed

Olivier Kerbarh; Alessio Ciulli; Nigel I. Howard; Chris Abell

2005-01-01

35

A review of toxicity from topical salicylic acid preparations.  

PubMed

Topical salicylic acid is often used in dermatologic conditions because of its keratolytic, bacteriostatic, fungicidal, and photoprotective properties. The bioavailability of salicylic acid differs depending on the vehicle used and pH of transcellular fluids. Although rare, salicylic acid toxicity (salicylism) can occur from topical application. Physicians should be mindful of the potential for salicylism or even death from topically applied salicylic acid. PMID:24472429

Madan, Raman K; Levitt, Jacob

2014-04-01

36

sal Genes Determining the Catabolism of Salicylate Esters Are Part of a Supraoperonic Cluster of Catabolic Genes in Acinetobacter sp. Strain ADP1  

PubMed Central

A 5-kbp region upstream of the are-ben-cat genes was cloned from Acinetobacter sp. strain ADP1, extending the supraoperonic cluster of catabolic genes to 30 kbp. Four open reading frames, salA, salR, salE, and salD, were identified from the nucleotide sequence. Reverse transcription-PCR studies suggested that these open reading frames are organized into two convergent transcription units, salAR and salDE. The salE gene, encoding a protein of 239 residues, was ligated into expression vector pET5a. Its product, SalE, was shown to have esterase activity against short-chain alkyl esters of 4-nitrophenol but was also able to hydrolyze ethyl salicylate to ethanol and salicylic acid. A mutant of ADP1 with a Kmr cassette introduced into salE had lost the ability to utilize only ethyl and methyl salicylates of the esters tested as sole carbon sources, and no esterase activity against ethyl salicylate could be detected in cell extracts. SalE was induced during growth on ethyl salicylate but not during growth on salicylate itself. salD encoded a protein of undetermined function with homologies to the Escherichia coli FadL membrane protein, which is involved in facilitating fatty acid transport, and a number of other proteins detected during aromatic catabolism, which may also function in hydrocarbon transport or uptake processes. A Kmr cassette insertion in salD deleteriously affected cell growth and viability. The salA and salR gene products closely resemble two Pseudomonas proteins, NahG and NahR, respectively encoding salicylate hydroxylase and the LysR family regulator of both salicylate and naphthalene catabolism. salA was cloned into pUC18 together with salR and salE, and its gene product showed salicylate-inducible hydroxylase activity against a range of substituted salicylates, with the same relative specific activities as found in wild-type ADP1 grown on salicylate. Mutations involving insertion of Kmr cassettes into salA and salR eliminated expression of salicylate hydroxylase activity and the ability to grow on either salicylate or ethyl salicylate. Studies of mutants with disruptions of genes of the ?-ketoadipate pathway with or without an additional salE mutation confirmed that ethyl salicylate and salicylate were channeled into the ?-ketoadipate pathway at the level of catechol and thence dissimilated by the cat gene products. SalR appeared to regulate expression of salA but not salE. PMID:10715011

Jones, Rheinallt M.; Pagmantidis, Vassilis; Williams, Peter A.

2000-01-01

37

The ocs element in the soybean GH2\\/4 promoter is activated by both active and inactive auxin and salicylic acid analogues  

Microsoft Academic Search

The octopine synthase (ocs or ocs-like) element has been previously reported to be responsive to the plant hormones, auxin, salicylic acid, and methyl jasmonate. Using transient assays with carrot protoplasts, we have demonstrated that an ocs element from the soybean auxin-inducible GH2\\/4 promoter is not only activated by strong auxins (i.e, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, a-naphthalene acetic acid) and salicylic

Tim Ulmasov; Gretchen Hagen; Tom Guilfoyle

1994-01-01

38

[Compartmentation of salicylate-induced proteins].  

PubMed

A key factor of immunity, salicylic acid (exogenous or accumulating under the action of biotrophic or semibiotrophic pathogens on plants), causes the formation of not only protective antipathogenic proteins but also many proteins, which enhance the resistance of host plant cells. Salicylate-induced proteins, which are encoded by nuclear genes and formed with cytoplasmic ribosomes, function in the cytosol or are transported into nuclei, vacuoles, plastids, mitochondria, and outside the plasmalemma. This review is focused on salicylate-induced proteins, which are not only delivered into different compartments but are also involved in their transmembrane transport. PMID:25707113

Tarchevski?, I A

2014-01-01

39

The estrogenic potential of salicylate esters and their possible risks in foods and cosmetics.  

PubMed

Salicylate esters (SEs), a class of chemicals extensively used as flavor and fragrance additives in foods, beverages and a wide variety of consumer products, are suspected to have estrogenic activity based on chemical analysis of in silica molecular docking. We evaluated the estrogenic potentials of phenyl salicylate (PhS), benzyl salicylate (BzS), phenethyl salicylate (PES), ethyl salicylate (ES) and methyl salicylate (MS) using an in vitro human estrogen receptor ? (hER?)-coactivator recruiting assay and in vivo immature rodent uterotrophic bioassays. We found that PhS, BzS and PES showed obvious in vitro hER? agonistic activities; BzS in particular exhibited a higher estrogenic activity compared to bisphenol A (BPA). The uterine weights were significantly increased in mice treated with 11.1, 33.3, 100 and 300 mg/kg/day BzS and 33.3mg/kg/day PES and rats treated with 3.7, 11.1, 33.3 and 100mg/kg/day BzS for 3 days (P<0.05). Finally, we transformed the daily intakes and the dermal exposures of SEs in the real world into estradiol equivalent concentrations (EEQs). We found that the EEQ of BzS daily intake in consumers in the U.S. and the EEQs of dermal BzS and PES exposure among high-volume users worldwide were higher than the maximum secure daily estradiol intake recommended by the U.S. Food and Drug Administration (FDA). In particular, the EEQ for dermal BzS exposure was up to 162 ng EEQ/kg, which is 3.3 times higher than the maximal acceptable daily E(2) intake recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). PMID:22197706

Zhang, Zhaobin; Jia, Chengxia; Hu, Ying; Sun, Libei; Jiao, Jian; Zhao, Liang; Zhu, Desheng; Li, Jun; Tian, Yonglu; Bai, Huicheng; Li, Ruobao; Hu, Jianying

2012-03-01

40

In Vitro Degradation of Willow Salicylates  

Microsoft Academic Search

Salicylates are defensive compounds against a great variety of generalist herbivores. Salicortin and its derivatives are labile compounds that degrade immediately when cell compartmentalization is ruptured, producing a 6-hydroxy-2-cyclohexenone (6-HCH) moiety that is a strong antifeeding cue. We studied the In Vitro degradation of willow salicylates in the presence and absence of foliar enzymes at acidic, neutral, and alkaline pHs.

Teija Ruuhola; Riitta Julkunen-Tiitto; Pirjo Vainiotalo

2003-01-01

41

Relaxation in the glass-former acetyl salicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy  

E-print Network

Supercooled liquid and glassy acetyl salicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetyl salicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

R. Nath; T. El Goresy; H. Zimmermann; R. Bohmer

2006-04-09

42

Salicylic Acid Biosynthesis and Metabolism  

PubMed Central

Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

2011-01-01

43

21 CFR 862.3830 - Salicylate test system.  

Code of Federal Regulations, 2013 CFR

...system is a device intended to measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes aspirin, in human specimens. Measurements obtained by this device are used in diagnosis and treatment of salicylate overdose...

2013-04-01

44

21 CFR 862.3830 - Salicylate test system.  

Code of Federal Regulations, 2014 CFR

...system is a device intended to measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes aspirin, in human specimens. Measurements obtained by this device are used in diagnosis and treatment of salicylate overdose...

2014-04-01

45

21 CFR 862.3830 - Salicylate test system.  

Code of Federal Regulations, 2011 CFR

...system is a device intended to measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes aspirin, in human specimens. Measurements obtained by this device are used in diagnosis and treatment of salicylate overdose...

2011-04-01

46

21 CFR 862.3830 - Salicylate test system.  

Code of Federal Regulations, 2012 CFR

...system is a device intended to measure salicylates, a class of analgesic, antipyretic and anti-inflammatory drugs that includes aspirin, in human specimens. Measurements obtained by this device are used in diagnosis and treatment of salicylate overdose...

2012-04-01

47

Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats.  

PubMed

Aspirin (salicylate), as a common drug that is frequently used for long-term treatment in a clinical setting, has the potential to cause reversible tinnitus. However, few reports have examined the inflammatory cytokines expression and alteration of synaptic ultrastructure in the cochlear nucleus (CN) in a rat model of tinnitus. The tinnitus-like behavior of rats were detected by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. We investigated the expression levels of the tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6), N-methyl D-aspartate receptor subunit 2A (NR2A) mRNA and protein in the CN and compared synapses ultrastructure in the CN of tinnitus rats with normal ones. GPIAS showed that rats with long-term administration of salicylate were experiencing tinnitus, and the mRNA and protein expression levels of TNF-? and NR2A were up-regulated in chronic treatment groups, and they returned to baseline 14 days after cessation of treatment. Furthermore, compared to normal rats, repetitive salicylate-treated rats showed a greater number of presynaptic vesicles, thicker and longer postsynaptic densities, increased synaptic interface curvature. These data revealed that chronic salicylate administration markedly, but reversibly, induces tinnitus possibly via augmentation of the expression of TNF-? and NR2A and cause changes in synaptic ultrastructure in the CN. Long-term administration of salicylate causes neural plasticity changes at the CN level. PMID:24092407

Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

2014-04-01

48

Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion  

PubMed Central

As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and ?-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

2013-01-01

49

Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli  

SciTech Connect

The toxicity of Cd{sub 2+} in Escherichia coli K-12 was potentiated by salicylate and several related compounds. The efficiency of plating on Luria broth plates was reduced by more than 10(5)-fold when 10 mM salicylate and 200 microM CdCl{sub 2} were present simultaneously but was unaffected when either compound was present by itself. Synergistic effects were found at pH 7.4 with certain other weak acids (acetyl salicylate (aspirin), benzoate, and cinnamate) and with a nonacidic salicylate analog, salicyl alcohol, but not with acetate or p-hydroxy benzoate. Thus, the synergism with Cd{sub 2+} is determined by the structure of the compounds and not merely by their acidity. The kinetics of {sup 109}Cd{sub 2+} uptake by cells grown and assayed in broth indicated the presence of two uptake systems with Kms of 1 and 52 microM Cd{sub 2+} and Vmaxs of 0.059 and 1.5 mumol of Cd{sub 2+} per min per g of cells, respectively. The kinetics of uptake for cells grown and assayed with 20 mM salicyl alcohol showed 2.5-fold increases in the Vmaxs of both systems but no change in the Kms. Salicylate-grown cells also exhibited increased rates of {sup 109}Cd{sub 2+} uptake by both systems. Thus, enhanced uptake of Cd{sub 2+} may be responsible for the potentiation of Cd{sub 2+} toxicity by salicylate and salicyl alcohol.

Rosner, J.L.; Aumercier, M. (National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (USA))

1990-12-01

50

A new salicylate ISFET for the determination of salicylic and acetylsalicylic acid in drugs.  

PubMed

A salicylate ISFET for the analysis of salicylic and acetylsalicylic acid in drugs is described. It is based on a salicylate ion selective membrane coated on the surface of the Si3N4 gate of the FET. The sensitive membrane consists of tetra-dodecylammonium salicylate, polyvinyl chloride and a proper plasticizer. The linearity range of the sensor is 5 x 10(-5)-1.5 x 10(-2) M for the salicylic acid, and 7 x 10(-5)-1.5 x 10(-2) M for the acetylsalicylic acid, respectively. The detection limit for the two compounds is 5 x 10(-5) M while the response time is < or = 20 s. The effect of pH and different interfering ions was also studied. The sensor was used to analyse the content of acetylsalicylic and salicylic acid in some drugs, and the accuracy of the method was evaluated through recovery tests. The results obtained with this method are well correlated either with those obtained with a classical ISE employing the same sensitive membrane or with the classical volumetric method. PMID:9696555

Su, Y; Tomassetti, M; Sammartino, M P; Crescentini, G; Campanella, L

1995-04-01

51

Cisplatin ototoxicity and otoprotection with sodium salicylate.  

PubMed

Cisplatin is a potent antineoplastic drug widely used for the treatment of cancer in both adults and children. One of its most important side effects is ototoxicity, which leads to irreversible bilateral hearing loss for high frequencies (4-8 kHz). Several studies have tried to identify drugs that, when combined with cisplatin, may act as otoprotectors. The mechanism of ototoxicity of cisplatin is known to be related to changes in the antioxidant mechanisms of hair cells, especially the outer hair cells of the cochlea. Our proposal was to assess the action of sodium salicylate, which has a known antioxidant property, as a possible otoprotector of outer hair cells against the action of cisplatin, using distortion product otoacoustic emissions (DPOAEs) and scanning electron microscopy. The study was conducted on albino guinea pigs divided into two groups: group 1 (n = 9, 18 cochleae) receiving a cisplatin dose of 8.0 mg/kg/day by the intraperitoneal (ip) route for 3 days, group 2 (n = 10, 20 cochleae) receiving 100 mg/kg sodium salicylate by the subcutaneous route followed 90 min later by cisplatin, 8.0 mg/kg/day ip for 3 days, and group 3 (n = 3, six cochleae) treated with 100 mg/kg day sodium salicylate for 3 days. In group 1, there was damage with the absence of cilia in all three rows of outer hair cells in the basal turn, followed by turns 2 and 3. In group 2, hair cells were present in all cochlear turns, but exhibited disarrangement of the ciliary structure, especially in row 1, and the DPOAEs were absent after 3 days of treatment. We conclude that drugs such as sodium salicylate, because of their antioxidant properties, may protect, at least partially, the outer hair cells against cisplatin ototoxicity. PMID:16758221

Hyppolito, Miguel Angelo; de Oliveira, José Antonio A; Rossato, Maria

2006-09-01

52

40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Modified salicylic acid, zirconium complex (generic...Substances § 721.10089 Modified salicylic acid, zirconium complex (generic...identified generically as modified salicylic acid, zirconium complex (PMN...

2010-07-01

53

Potentiation of susceptibility to aminoglycosides by salicylate in Escherichia coli.  

PubMed Central

Susceptibility of Escherichia coli to kanamycin and seven other aminoglycosides has been found to be strongly potentiated by salicylate. At pH 7.5, in the presence of 15 mM salicylate and 0.5 micrograms of kanamycin per ml, the efficiency of plating of the bacteria was 2 x 10(-5), whereas there was no significant killing in the presence of kanamycin or salicylate alone. With 0.75 micrograms of kanamycin per ml, the addition of 2.5 mM salicylate was sufficient to reduce the efficiency of plating by more than 10(4)-fold. Synergistic effects were found also at pHs 6.5 and 8.5. To determine whether the action of salicylate resulted from its behavior as a weak acid or its salicyl structure, similar experiments were carried out with acetate and salicyl alcohol. Acetate, a membrane-permeating weak acid, showed a synergistic effect on kanamycin susceptibility at pH 6.5 that was comparable to the effect seen with salicylate at pH 6.5. However, acetate had no synergistic effect with kanamycin at pH 7.5 or 8.5. This is consistent with the ability of acetate to increase the membrane potential of cells and the dependence of susceptibility to kanamycin and other aminoglycosides on the membrane potential. Salicyl alcohol, which has a hydroxyl group in the place of the carboxyl group that is present in salicylate, was an effective synergist with kanamycin. It was equally effective at pHs 6.5 and 7.5 and somewhat more effective at pH 8.5. These results support the hypothesis that two effects are involved in the synergy between aminoglycosides and salicylate: a weak acid effect, possibly to increase the membrane potential, and an uncharacterized effect related to the salicyl structure. PMID:2193619

Aumercier, M; Murray, D M; Rosner, J L

1990-01-01

54

Spectroscopic studies of solid-state forms of donepezil free base and salt forms with various salicylic acids  

NASA Astrophysics Data System (ADS)

The polymorphic forms of donepezil free base have been studied using X-ray powder diffraction, Fourier transform infrared absorption spectroscopy, and differential scanning calorimetry. None of the free base crystal forms was observed to exhibit detectable fluorescence in the solid state under ambient conditions. Crystalline salt products were obtained by the reaction of donepezil with salicylic and methyl-substituted salicylic acids, with the salicylate and 4-methylsalicylate salts being obtained as non-solvated products, and the 3-methylsalicylate and 5-methylsalicylate salts being obtained as methanol solvated products. The intensity of solid-state fluorescence from donepezil salicylate and donepezil 4-methylsalicylate was found to be reduced relative to the fluorescence intensity of the corresponding free acids, while the solid-state fluorescence intensity of donepezil 3-methylsalicylate methanolate and donepezil 5-methylsalicylate methanolate was greatly increased relative to the fluorescence intensity of the corresponding free acids. Desolvation of the solvated salt products led to formation of glassy solids that exhibited strong green fluorescence.

Brittain, Harry G.

2014-12-01

55

21 CFR 862.3830 - Salicylate test system.  

Code of Federal Regulations, 2010 CFR

...DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3830 Salicylate test system. (a) Identification. A...

2010-04-01

56

DETERMINATION OF BENZOIC ACID AND SALICYLIC ACID IN COMMERCIAL BENZOIC AND SALICYLIC ACIDS OINTMENTS BY SPECTROPHOTOMETRIC METHOD  

Microsoft Academic Search

Commercial benzoic acid and salicylic acid ointments have been analyzed for benzoic acid and salicylic acid content by using a spectrophotometric method. Since benzoic acid and salicylic acid exhibit overlapping spectra, absorbance measurements are made at two wavelengths, i.e. 271 nm and 303 nm in ethanol (96%v\\/v) for simultaneous determination of the two compounds. The method is direct and involves

IQBAL AHMAD; FAIYAZ HM VAID

57

Quantitative genetic analysis of salicylic acid perception in Arabidopsis.  

PubMed

Salicylic acid (SA) is a phytohormone required for a full resistance against some pathogens in Arabidopsis, and NPR1 (Non-Expressor of Pathogenesis Related Genes 1) is the only gene with a strong effect on resistance induced by SA which has been described. There can be additional components of SA perception that escape the traditional approach of mutagenesis. An alternative to that approach is searching in the natural variation of Arabidopsis. Different methods of analyzing the variation between ecotypes have been tried and it has been found that measuring the growth of a virulent isolate of Pseudomonas syringae after the exogenous application of SA is the most effective one. Two ecotypes, Edi-0 and Stw-0, have been crossed, and their F2 has been studied. There are two significant quantitative trait loci (QTLs) in this population, and there is one QTL in each one of the existing mapping populations Col-4 × Laer-0 and Laer-0 × No-0. They have different characteristics: while one QTL is only detectable at low concentrations of SA, the other acts after the point of crosstalk with methyl jasmonate signalling. Three of the QTLs have candidates described in SA perception as NPR1, its interactors, and a calmodulin binding protein. PMID:21614499

Dobón, Albor; Canet, Juan Vicente; Perales, Lorena; Tornero, Pablo

2011-10-01

58

Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.  

PubMed Central

A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response. PMID:8989885

Penninckx, I A; Eggermont, K; Terras, F R; Thomma, B P; De Samblanx, G W; Buchala, A; Métraux, J P; Manners, J M; Broekaert, W F

1996-01-01

59

Direct Ring Fission of Salicylate by a Salicylate 1,2-Dioxygenase Activity from Pseudaminobacter salicylatoxidans  

PubMed Central

In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and 1H and 13C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate. PMID:11698383

Hintner, Jan-Peter; Lechner, Christa; Riegert, Ulrich; Kuhm, Andrea Elisabeth; Storm, Thomas; Reemtsma, Thorsten; Stolz, Andreas

2001-01-01

60

An enzyme mediated, colorimetric method for the measurement of salicylate.  

PubMed

A novel enzymatic assay for salicylate in serum has been developed. Salicylate monooxygenase and NADH are used to convert the drug to catechol. This is reacted with 4-aminophenol at high pH to yield a blue product, which is detected colorimetrically. The assay is complete in less than seven minutes and requires no sophisticated equipment. The method is precise, sensitive and shows excellent accuracy in recovery experiments and when compared to a high performance liquid chromatography method. The assay is free from interference by coloured or turbid samples, salicylate metabolites, structurally related compounds such as benzoate and 4-hydroxybenzoate, and a range of drugs. The assay reagents demonstrate excellent stability. The formulation of the assay in two stages provides increased specificity and sensitivity compared to other emergency salicylate assays and allows the inclusion of reagents to greatly enhance the stability of the salicylate monooxygenase-NADH reagent, yet the method is simple and performs well. PMID:3708854

Chubb, S A; Campbell, R S; Ramsay, J R; Hammond, P M; Atkinson, T; Price, C P

1986-03-28

61

Salicylate and catechol levels are maintained in nahG transgenic poplar  

Microsoft Academic Search

Metabolic profiling was used to investigate the molecular phenotypes of a transgenic Populus tremula×P. alba hybrid expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reduce salicylic acid levels in other model systems and thereby elucidate roles for salicylic acid in plant signaling, transgenic poplars

Alison M. Morse; Timothy J. Tschaplinski; Christopher Dervinis; Paula M. Pijut; Eric A. Schmelz; Wendy Day; John M. Davis

2007-01-01

62

Hydroxyl radical induced degradation of salicylates in aerated aqueous solution  

NASA Astrophysics Data System (ADS)

Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV-vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved.

Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

2014-04-01

63

Ion Channel-Forming Alamethicin Is a Potent Elicitor of Volatile Biosynthesis and Tendril Coiling. Cross Talk between Jasmonate and Salicylate Signaling in Lima Bean  

Microsoft Academic Search

Alamethicin (ALA), a voltage-gated, ion channel-forming peptide mixture from Trichoderma viride, is a potent elicitor of the biosynthesis of volatile compounds in lima bean (Phaseolus lunatus). Unlike elicitation with jasmonic acid or herbivore damage, the blend of substances emitted comprises only the two homoterpenes, 4,11-dimethylnona-1,3,7-triene and 4,8,12-trimethyltrideca-1,3,7,11-tetraene, and methyl salicylate. Inhibition of octadecanoid signaling by aristolochic acid and phenidone as

Jurgen Engelberth; Thomas Koch; Gode Schuler; Nadine Bachmann; Jana Rechtenbach; Wilhelm Boland

2001-01-01

64

Iontophoresis of Salicylic Acid From Salicylic Acid Doped Poly(p-phynylene vinylene)/ Polyacrylamide Hydrogels  

NASA Astrophysics Data System (ADS)

The apparent diffusion coefficients, Dapp, and the release mechanisms of salicylic acid from salicylic acid-loaded polyacrylamide hydrogels, SA-loaded PAAM, and salicylic acid-doped poly(phenylene vinylene)/polyacrylamide hydrogels, SA-doped PPV/PAAM, were investigated. In the absence of an electric field, the diffusion of SA from the SA-doped PPV/PAAM hydrogel is delayed in the first 3 hr due to the ionic interaction between the anionic drug and PPV. Beyond this period, SA can diffuse continuously into the buffer solution through the PAAM matrix. Dapp of SA-doped PPV/PAAM is higher than that of the SA-loaded PAAM, and the former increases with increasing electric field strength due to the combined mechanisms: the expansion of PPV chains inside the hydrogel; iontophoresis; and the electroporation of the matrix pore. Thus, the presence of the conductive polymer and the applied electric field can be combined to control the drug release rate at an optimal desired level.

Niamlang, Sumonman

2009-03-01

65

Spectroscopic structural studies of salicylic acid, salicylamide and aspirin  

NASA Astrophysics Data System (ADS)

The electronic absorption spectra of the salicylic acid and the salicylamide molecules have been studied using SCF—CL calculations. The singlet and the triplet electronic transition energies have been calculated. The state functions of eight excited states for these molecules have been calculated in addition to the oscillator strengths, charge densities, ionization potentials and electron affinities. Our calculations lead to the presence of salicylic acid and salicylamide in the ?-forms in which the carboxylic hydroxyl group or the amino group is directed toward the enolic hydroxyl group. The salicylic acid and the salicylamide molecules have the Cs point group symmetry, but the aspirin molecule has the C1 point group symmetry, in which the acetyl group does not lie in the plane of the salicylic acid molecule.

El-Shahawy, Anwar S.

66

Expression of Immediate-Early Genes in the Inferior Colliculus and Auditory Cortex in Salicylate-Induced Tinnitus in Rat  

PubMed Central

Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus. PMID:24704997

Hu, S.S.; Mei, L.; Chen, J.Y.; Huang, Z.W.; Wu, H.

2014-01-01

67

Indirect inhibition of vitamin K epoxide reduction by salicylate.  

PubMed

Salicylate antagonizes the vitamin K-dependent biosynthesis of clotting factors in the rat and produces an elevation of the ratio of vitamin K epoxide to vitamin K in the liver. Vitamin K epoxide is reduced to vitamin K by a vitamin K epoxide reductase, and 1 mM salicylate was required to cause a 50% inhibition of the dithiothreitol-dependent in-vitro reduction of vitamin K epoxide by this enzyme. This enzyme was, however, inhibited 50% by as little as 70-80 microM salicylate when reducing equivalents for the reaction were furnished by endogenous cytosolic reductants. This effect on the cytosolic reductant supply was shown to be unrelated to a previously demonstrated inhibition of DT-diaphorase by salicylate. The concentrations of salicylate at which significant inhibitory effects are exerted in-vitro (50-100 microM) are below the 200 microM levels observed in the livers of rats given an anticoagulating dose of salicylate. PMID:6149281

Hildebrandt, E; Suttie, J W

1984-09-01

68

Expression of mitochondrial tatC in Nicotiana tabacum is responsive to benzothiadiazole and salicylic acid.  

PubMed

A cDNA, up-regulated upon treatment of tobacco cells with salicylic acid and benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester, was identified by differential RNA display and the full sequence obtained. This mitochondrial gene, twin arginine translocation (tatC), resembles orthologues across different species, including the gene that codes for a sec-independent membrane translocating protein in bacteria. Hypothetical tatC proteins have also been identified in the mitochondria of Arabidopsis thaliana, Oenothera berteriana, Beta vulgaris, Oryza sativa and Marchantia polymorpha. Comparative protein analysis indicates a similar function for the tatC gene. The up-regulation of the tatC gene in a 3kbp transcript was confirmed by RNA gel blot analysis. PMID:17350139

van der Merwe, Johannes A; Dubery, Ian A

2007-09-01

69

Methylation matters  

PubMed Central

DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.???Keywords: methylation; cancer PMID:11333864

Costello, J.; Plass, C.

2001-01-01

70

Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters).  

PubMed

A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (T(g)) and the antimicrobials' melting points (T(m)) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

Johnson, Michelle L; Uhrich, Kathryn E

2009-12-01

71

Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)  

PubMed Central

A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

Johnson, Michelle L.; Uhrich, Kathryn E.

2008-01-01

72

Host Preference and Larval Performance of the Salicylate-Using Leaf Beetle Phratora vitellinae  

Microsoft Academic Search

Larvae of Phratora vitellinae (Coleoptera: Chrysomelidae) convert salicyl glucosides from the host plant into a larval defensive secretion with salicylaldehyde. This secretion repels generalist predators. Willows vary greatly in the concentrations of salicyl glucosides in their leaves. One may predict that P. vitellinae prefers and survives better on plants that contain more salicyl glucosides. We determined the amount of larval

Nathan E. Rank; Alfred Kopf; Riitta Julkunen-Tiitto; Jorma Tahvanainen

1998-01-01

73

Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase.  

PubMed

Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants. PMID:11169183

Mauch, F; Mauch-Mani, B; Gaille, C; Kull, B; Haas, D; Reimmann, C

2001-01-01

74

The protective effect of salicylic acid on lysozyme against riboflavin-mediated photooxidation  

NASA Astrophysics Data System (ADS)

As a metabolite of aspirin in vivo, salicylic acid was proved to protect lysozyme from riboflavin-mediated photooxidation in this study. The antioxidative properties of salicylic acid were further studied by using time-resolved laser flash photolysis of 355 nm. It can quench the triplet state of riboflavin via electron transfer from salicylic acid to the triplet state of riboflavin with a reaction constant of 2.25 × 10 9 M -1 s -1. Mechanism of antioxidant activities of salicylic acid on lysozyme oxidation was discussed. Salicylic acid can serve as a potential antioxidant to quench the triplet state of riboflavin and reduce oxidative pressure.

Li, Kun; Wang, Hongbao; Cheng, Lingli; Zhu, Hui; Wang, Mei; Wang, Shi-Long

2011-06-01

75

Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra.  

PubMed

We studied the relationship between biosynthesis of salicylates, the main chemical defenses in willow and growth of Salix pentandra by cultivating plants in the presence of 2-aminoindan-2-phosphonic acid (AIP), a powerful inhibitor of phenylalanine ammonia-lyase (PAL: EC 4.3.1.5.). AIP inhibited efficiently, though not totally, the endogenous synthesis of salicylates. This inhibition markedly increased plant growth. Exogenous application of the precursors of salicylates, benzoic acid (BA), salicylic acid (SA), and helicin, increased the levels of several individual salicylates, but decreased the growth of plants cultivated in the presence of AIP. These results suggest a trade-off between plant growth and the synthesis of salicylates in S. pentandra. Phenylalanine, which accumulated in response to inhibitor treatment, but was decreased by precursor treatments, may be a common and limiting precursor for both plant growth and salicylate synthesis. The biosynthesis of salicin is suggested to proceed mainly via benzoyl-glucose, an intermediate in the synthesis of salicylic acid. Salicin is the most obvious precursor of more substituted salicylates, salicortin, acetylsalicortin, and tremulacin. In addition, we found that the salicylate pools of mature plant parts of S. pentandra were not subject to turnover, implying that the maintenance of salicylates does not demand high resources of plants, although their initial construction is costly. PMID:12921436

Ruuhola, Teija; Julkunen-Titto, Riitta

2003-07-01

76

Reye's syndrome: salicylate and mitochondrial monoamine oxidase function  

SciTech Connect

It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with /sup 14/C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome.

Faraj, B.A.; Caplan, D.; Lolies, P.

1986-03-01

77

Salicylate-Independent Lesion Formation in Arabidopsis lsd Mutants  

Microsoft Academic Search

In many interactions of plants with pathogens, the pri- mary host defense reaction is accompanied by plant cell death at the site of infection. The resulting lesions are cor- related with the establishment of an inducible resistance in plants called systemic acquired resistance (SAR), for which salicylic acid (SA) accumulation is a critical signal- ing event in Arabidopsis and tobacco.

Michelle D. Hunt; Terrence P. Delaney; Robert A. Dietrich; Kris B. Weymann; Jeffery L. Dangl; John A. Ryals

1997-01-01

78

Chronic Salicylism Resulting in Noncardiogenic Pulmonary Edema Requiring Hemodialysis  

Microsoft Academic Search

Salicylate intoxication is frequently overlooked as a cause of noncardiogenic pulmonary edema and altered mental status in adult patients. We describe a 42-year-old woman who presented with two episodes of recurrent noncardiogenic pulmonary edema requiring intubation. The first admission to hospital triggered an extensive initial workup that did not indicate a cause for the pulmonary edema. At the second presentation,

Debbie L. Cohen; Jarrod Post; Anthony A. Ferroggiaro; Jeanmarie Perrone; Mary H. Foster

2000-01-01

79

Chloride and Salicylate Influence Prestin-dependent Specific Membrane Capacitance  

PubMed Central

The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (?Csa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented ?Csa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers ?Csa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of ?Csa, leading to a better understanding of prestin. PMID:24554714

Santos-Sacchi, Joseph; Song, Lei

2014-01-01

80

Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.  

PubMed

Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV. PMID:24450774

Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

2014-06-01

81

A novel salicylate-selective electrode based on a Sn(IV) complex of salicylal-imino acid Schiff base.  

PubMed

A novel poly(vinyl chloride) membrane electrode with high selectivity toward salicylate (Sal-), based on the use of the salicylal-imino acid Schiff base dibenyl complex of Sn(IV) [Sn(IV)-SIADBen] as ionophore is described. The influence of lipophilic charged additives on the performance of the electrode was studied. The results suggested that Sn(IV)-SIADBen according to a positively-charged carrier mechanism. The influence of several other variables was investigated in order to optimize the potentiometric response and selectivity of the electrode. The electrode based on Sn(IV)-SIADBen, with 30.44 wt% PVC, 64.55 wt% plasticizer [dioctyl phthalate (DOP)], 3.81 wt% ionophore, and 1.2 wt% anionic additive exhibited a linear response for the Sal- ion over the concentration range 1.0x10(-1) to 2.5x10(-6) mol l-1, and displayed an anti-Hofmeister selectivity sequence as follows: salicylate>perchlorate>thiocyanate>benzoate>iodide>nitrate>chloride>nitrite approximately acetate>citrate>sulfate. UV-Visible absorption spectra were used to examine the specific interaction of salicylate with the ionophore. The electrode was applied to clinical medical analysis, and the results obtained were consistent with those obtained by conventional methods. PMID:15668810

Xu, Lan; Yuan, Ruo; Chai, Ya-Qin; Wang, Xiu-Ling

2005-02-01

82

Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid.  

PubMed

A novel salicylate-selective electrode based on an organotin complex with a salicylal Schiff base of amino acid salicylaldehydeaminoacid-di-n-butyl-Sn(IV) [Sn(IV)-SAADB] as ionophore is described, which exhibits high selectivity for salicylate over many other common anions with an anti-Hofmeister selectivity sequence: Sal- > PhCOO- > SCN- > Cl04- > I- > NO3- > NO2- > Br- > Cl- > CH3COO-. The electrode, based on Sn(IV)-SAADB, with a 30.44 wt% PVC, a 65.45 wt% plasticizer (dioctyl phthalate, DOP), a 3.81 wt% ionophore and a 0.3 wt% anionic additive is linear in 6.0 x 10(-6) - 1.0 x 10(-1) mol l(-1) with a detection limit of 2.0 x 10(-6) mol l(-1) and a slope of 62.0 +/- 1.2 mV/decade of salicylate concentration in a phosphate buffer solution of pH 5.5 at 25 degrees C. The influence on the electrode performances by lipophilic charged additives was studied, and the possible response mechanism was investigated by UV spectra. The electrode was applied to medicine analysis and the result obtained has been satisfactory. PMID:15790114

Xu, Lan; Yuan, Ruo; Fu, Ying-Zi; Chai, Ya-Qin

2005-03-01

83

CG methylation  

PubMed Central

A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed. PMID:23244310

Vinson, Charles; Chatterjee, Raghunath

2013-01-01

84

Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration  

SciTech Connect

In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does not influence any of the investigated parameters under hypoxia.

Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

2012-04-15

85

GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement  

PubMed Central

Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of ?-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

2011-01-01

86

DNA Methylation  

PubMed Central

The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:25405210

Marinus, M.G.; Løbner-Olesen, A.

2014-01-01

87

Elevated carbon dioxide increases salicylic acid in Glycine max.  

PubMed

Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2). PMID:23321090

Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

2012-12-01

88

Could salicylates in food have contributed to the decline in cardiovascular disease mortality? A new hypothesis.  

PubMed Central

OBJECTIVES: The prophylactic effect of aspirin (at 80 mg/day) for the prevention of cardiovascular disease mortality has long been recognized. This study examined whether other salicylates are present in comparable quantities in the US food supply. METHODS: To estimate the order of magnitude for salicylates in the food supply, annual production data for selected synthetic salicylates were analyzed. RESULTS: Production figures for 1960 indicate exposure to salicylates of 250 mg/day per person, or 95 mg/day per person excluding aspirin. Trend data indicate a rise in the production of salicylates over time, reaching 341 mg/day per person, or 126 mg/day per person excluding aspirin, in 1970. CONCLUSIONS: The US ingestion of salicylates with aspirinlike properties may have increased to the point that many susceptible individuals have received a beneficial effect that has contributed to the decline in cardiovascular disease mortality. PMID:9314816

Ingster, L M; Feinleib, M

1997-01-01

89

Oxidation of Methyl-Substituted Naphthalenes: Pathways in a Versatile Sphingomonas paucimobilis Strain†  

PubMed Central

Aromatic compounds with alkyl substituents are abundant in fossil fuels. These compounds become important environmental sources of soluble toxic products, developmental inhibitors, etc. principally through biological activities. To assess the effect of methyl substitution on the completeness of mineralization and accumulation of pathway products, an isolate from a phenanthrene enrichment culture, Sphingomonas paucimobilis 2322, was used. Washed cell suspensions containing cells grown on 2,6-dimethylnaphthalene in mineral medium were incubated with various mono-, di-, and trimethylnaphthalene isomers, and the products were identified and quantified by gas chromatography and mass spectrometry. The data revealed enzymes with relaxed substrate specificity that initiate metabolism either by methyl group monoxygenation or by ring dioxygenation. Congeners with a methyl group on each ring initially hydroxylate a methyl, and this is followed by conversion to a carboxyl; when there are two methyl groups on a single ring, the first reaction is aryl dioxygenation of the unsubstituted ring. Intermediates are channeled to primary ring fission via dihydrodiols to form methyl-substituted salicylates. Further evidence that there are multiple pathways comes from the fact that both phthalate and (methyl)salicylate are formed from 2-methylnaphthalene. PMID:9572967

Dutta, Tapan K.; Selifonov, Sergey A.; Gunsalus, Irwin C.

1998-01-01

90

Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation.  

PubMed

Capsicum annuum L. Bugang exhibits a hypersensitive response against Tobacco mosaic virus (TMV) P(0) infection. The C. annuumUDP-glucosyltransferase 1 (CaUGT1) gene was upregulated during resistance response to TMV and by salicylic acid, ethephon, methyl viologen, and sodium nitroprusside treatment. When the gene was downregulated by virus-induced gene silencing, a delayed HR was observed. In addition, free and total SA concentrations in the CaUGT1-downregulated hot pepper were decreased by 52% and 48% compared to that of the control plants, respectively. This suggested that the CaUGT1 gene was involved in resistance response against TMV infection by controlling the accumulation of SA. PMID:19540833

Lee, Boo-Ja; Kim, Sung-Kyu; Choi, Soo Bok; Bae, Jungdon; Kim, Ki-Jeong; Kim, Young-Jin; Paek, Kyung-Hee

2009-07-01

91

Evaluation of salicylic acid fatty ester prodrugs for UV protection.  

PubMed

The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation. PMID:21244220

Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

2011-07-01

92

Optimized Synthesis of Salicylate-based Poly(anhydride-esters)  

PubMed Central

Summary The synthesis of a salicylate-based poly(anhydride-ester) was optimized to improve the overall efficiency and quality of the polymer. First, a new approach for the preparation of the polymer precursor minimizes the overall number of synthetic steps and increases the overall yield. Second, the melt-polymerization apparatus was modified to include dynamic mixing, which yields polymer with increased molecular weights on both the milligram and gram scale. PMID:23976808

Schmeltzer, Robert C.; Anastasiou, Theodore J.; Uhrich, Kathryn E.

2013-01-01

93

Determination of salicylate in beverages and cosmetics by use of an amperometric biosensor  

Microsoft Academic Search

A fast and selective enzymatic method for the determination of salicylate in beverages and cosmetics has been developed. The\\u000a enzyme salicylate hydroxylase was immobilised covalently onto a glassy carbon working electrode of a wall-jet cell coupled\\u000a with a flowinjection analysis system. The salicylate is enzymatically converted to catechol, which can be detected amperometrically\\u000a on the glassy carbon electrode at +

M. Ehrendorfer; G. Sontag; F. Pittner

1996-01-01

94

Study of Benzyl Salicylate\\/beta-Cyclodextrin Inclusion Complex Formation by Positron Annihilation  

Microsoft Academic Search

Results of positron annihilation lifetime spectra of beta-cyclodextrin and beta-cyclodextrin complexed with benzyl salicylate,benzyl acetate, or ethyl salicylate in air and vacuum were used to determine the fraction of beta-cyclodextrin which remains uncomplexed in the benzyl salicylate\\/beta-cyclodextrin 1:2 molar ratio inclusion complex. The intensity of the longest-lived component in vacuum was shown to decrease when the beta-cyclodextrin cavity was filled

V. J. Bellitto; F. H. Hsu Hadley Jr.; T. Trinh

1996-01-01

95

Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato.  

PubMed

We demonstrated that exogenous application of 200 microM salicylic acid through root feeding and foliar spray could induce resistance against Fusarium oxysporum f. sp. Lycopersici (Fol) in tomato. Endogenous accumulation of free salicylic acid in tomato roots was detected by HPLC and identification was confirmed by LC-MS/MS analysis. At 168h of salicylic acid treatment through roots, the endogenous salicylic acid level in the roots increased to 1477ngg(-1) FW which was 10 times higher than control plants. Similarly, the salicylic acid content was 1001ngg(-1) FW at 168h of treatment by foliar spray, which was 8.7 times higher than control plants. The activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) were 5.9 and 4.7 times higher, respectively than the control plants at 168h of salicylic acid feeding through the roots. The increase in PAL and POD activities was 3.7 and 3.3 times higher, respectively at 168h of salicylic acid treatments through foliar spray than control plants. The salicylic acid-treated tomato plants challenged with Fol exhibited significantly reduced vascular browning and leaf yellowing wilting. The mycelial growth of Fol was not significantly affected by salicylic acid. Significant increase in basal level of salicylic acid in noninoculated plants indicated that tomato root system might have the capacity to assimilate and distribute salicylic acid throughout the plant. The results indicated that the induced resistance observed in tomato against Fol might be a case of salicylic acid-dependent systemic acquired resistance. PMID:19329332

Mandal, Sudhamoy; Mallick, Nirupama; Mitra, Adinpunya

2009-07-01

96

Simultaneous determination of salicylic acid and salicylamide in biological fluids  

NASA Astrophysics Data System (ADS)

A new methodology for the simultaneous determination of salicylic acid and salicylamide in biological fluids is proposed. The strong overlapping of the fluorescence spectra of both analytes makes impossible the conventional fluorimetric determination. For that reason, the use of fluorescence decay curves to resolve mixtures of analytes is proposed; this is a novel technique that provides the benefits in selectivity and sensitivity of the fluorescence decay curves. In order to assess the goodness of the proposed method, a prediction set of synthetic samples were analyzed obtaining recuperation percentages between 98.2 and 104.6%. Finally, a study of the detection limits was done using a new criterion resulting in values for the detection limits of 8.2 and 11.6 ?g L -1 for salicylic acid and salicylamide respectively. The validity of the method was tested in human serum and human urine spiked with aliquots of the analytes. Recoveries obtained were 96.2 and 94.5% for salicylic acid and salicylamide respectively.

Murillo Pulgarín, J. A.; Alañón Molina, A.; Sánchez-Ferrer Robles, I.

2011-09-01

97

Sensitive fluorographic detection of 3H and 14C on chromatograms using methyl anthranilate as a scintillant.  

PubMed

Methyl anthranilate is a simple, sensitive, and inexpensive liquid scintillant for fluorographic detection of weak beta-emitting isotopes on chromatograms. Detection of tritium is enhanced 1000-fold compared to autoradiography in a 24-h exposure. Since methyl anthranilate is a viscous liquid, it is easily applied as an even coating which subsequently solidifies at the low temperature (-80 degrees C) used for fluorography. Of several liquid scintillants tested, methyl anthranilate was most effective, followed by 9-ethyl fluorene, methyl salicylate, and 1-methyl naphthalene. The efficiency of 1-methyl naphthalene could be raised to the level of methyl anthranilate by the addition of a small amount (0.5%) of 2,5-diphenyloxazole (PPO). PMID:6614485

Bochner, B R; Ames, B N

1983-06-01

98

Salicylates of Intact Salix myrsinifolia Plantlets Do Not Undergo Rapid Metabolic Turnover1  

PubMed Central

Salicylates, the main phenolic glucosides of northern willow (Salix spp.), play an important role in plant-herbivore interactions. Salicylates are labile metabolites that are thought to undergo metabolic turnover. Salicylates are synthesized from phenylalanine (Phe) via the shikimate pathway. 2-Aminoindan-2-phosphonic acid (AIP), a strong inhibitor of Phe ammonia-lyase (EC 4.3.1.5), was used to block the biosynthesis of salicylates. The aim of this study was to investigate long-term turnover of salicylates in intact micropropagated plantlets of Salix myrsinifolia Salisb. The biosynthesis of salicylates was inhibited efficiently but not completely by 30 ?m 2-aminoindan-2-phosphonic acid. Inhibitor treatment, aside from leading to a high accumulation of Phe, also led to an increase in tyrosine and tryptophan, indicating that 2-aminoindan-2-phosphonic acid may also inhibit enzymes other than Phe ammonia-lyase. Salicylates were shown to be unexpectedly stable metabolites that did not undergo marked metabolic turnover in intact plants; in leaves no significant turnover occurred, and in the stems the five salicylates studied were turned over slowly, with half-lives of 11 to 25 d. The total amount of salicylate in mature shoots decreased only 0.6% per day. PMID:10712554

Ruuhola, Teija Marjaana; Julkunen-Tiitto, Maija-Riitta Kristiina

2000-01-01

99

Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.  

PubMed

In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers. PMID:24517727

Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

2014-03-10

100

Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic Acid, jasmonic Acid and ethylene.  

PubMed

Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

2014-09-01

101

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene  

PubMed Central

Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner. PMID:25289020

Lee, Young Hee; Kim, Sang Hee; Yun, Byung-Wook; Hong, Jeum Kyu

2014-01-01

102

Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA  

PubMed Central

The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

2007-01-01

103

FUNCTIONAL TERATOGENS OF THE RAT KIDNEY I. COCHICINE, DINOSEB, AND METHYL SALICYLATE  

EPA Science Inventory

Substances known or suspected to cause subtle or transient anatomical alterations in renal development were administered prenatally or neonatally to rats in order to determine whether they are capable of altering renal functional development. olchicine alters mitotic activity and...

104

Methyl Salicylate, a Soybean Aphid-Induced Plant Volatile Attractive to the Predator Coccinella septempunctata  

Microsoft Academic Search

Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific

Junwei Zhu; Kye-Chung Park

2005-01-01

105

Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model  

PubMed Central

Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNF? and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNF? and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

2015-01-01

106

Salicylate and catechol levels are maintained in nahG transgenic poplar  

Technology Transfer Automated Retrieval System (TEKTRAN)

Metabolic profiling was used to investigate the molecular phenotypes of transgenic Populus tremula x P. alba bybrids expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reducing...

107

A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid  

Technology Transfer Automated Retrieval System (TEKTRAN)

Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-ß-D-...

108

Dermal and underlying tissue pharmacokinetics of salicylic acid after topical application  

Microsoft Academic Search

The time course of salicylic acid at a dermal application site and in local underlying tissues below the site in rats was examined using a physiologically based pharmacokinetic model assuming first-order diffusional mass transfer between the dermis and underlying tissues. The concentrations of salicylic acid in tissues below the applied site were measured and compared with plasma concentrations and concentrations

Parminder Singh I; Michael S. Roberts

1993-01-01

109

Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane  

ERIC Educational Resources Information Center

A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

Wilkins, Andrew; Parmenter, Emily

2012-01-01

110

Regulation of Heat Production in the Inflorescences of an Arum Lily by Endogenous Salicylic Acid  

Microsoft Academic Search

We have recently purified calorigen, the natural trigger for heat production in the inflorescences of Sauromatum guttatum Schott (voodoo lily), a thermogenic plant, and identified it as salicylic acid. Since then an analytical assay was developed that allows the quantitation of salicylic acid in plant tissues. This assay was used to demonstrate that on the day preceding the day of

Ilya Raskin; Ivan M. Turner; Wayne R. Melander

1989-01-01

111

Percutaneous Absorption of Salicylic Acid after Administration of Trolamine Salicylate Cream in Rats with Transcutol® and Eucalyptus Oil Pre-Treated Skin  

PubMed Central

Purpose: This study was conducted to assess the effect of skin pre-treatment with Transcutol® and eucalyptus oil on systemic absorption of topical trolamine salicylate in rat. Methods: Pharmacokinetic parameters of salicylic acid following administration of trolamine salicylate on rat skin pre-treated with either Transcutol® or eucalyptus oil were determined using both non-compartmental and non-linear mixed effect modeling approaches and compared with those of control group. Results: Median (% of interquartile range/median) of salicylic acid AUC0-8hr (ng/mL/hr) values in Transcutol® or eucalyptus oil treated rats were 2522(139%) and 58976(141%), respectively as compared to the 3023(327%) of the control group. Skin pre-treatment with eucalyptus oil could significantly decrease extravascular volume of distribution (V/F) and elimination rate constant (k) of salicylic acid. Conclusion: Unlike Transcutol®, eucalyptus oil lead to enhanced transdermal absorption of trolamine salicylate through rat skin. PMID:24312851

Sajjadi, Paniz; Khodayar, Mohammad Javad; Sharif Makhmalzadeh, Behzad; Rezaee, Saeed

2013-01-01

112

Potassium Channel Activator Attenuates Salicylate-Induced Cochlear Hearing Loss Potentially Ameliorating Tinnitus  

PubMed Central

High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10?mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs.

Sun, Wei; Liu, Jun; Zhang, Chao; Zhou, Na; Manohar, Senthilvelan; Winchester, Wendy; Miranda, Jason A.; Salvi, Richard J.

2015-01-01

113

Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves.  

PubMed

Detection of phytohormones in situ has gained significant attention due to their critical roles in regulating developmental processes and signaling for defenses in plants at low concentration. As one type of plant hormones, salicylic acid has recently been found to be one of pivotal signal molecules for physiological behaviors of plants. Here we report the application of paper-based electroanalytical devices for sensitively in situ detection of salicylic acid in tomato leaves with the sample volume of several microliters. Specifically, disposable working electrodes were fabricated by coating carbon tape with the mixture of multiwall carbon nanotubes and nafion. We observed that the treatment of the modified carbon tape electrodes with oxygen plasma could significantly improve electrochemical responses of salicylic acid. The tomato leaves had a punched hole of 1.5mm diameter to release salicylic acid with minor influence on continuous growth of tomatoes. By incorporating the tomato leaf with the paper-based analytical device, we were able to perform in situ determination of salicylic acid based on its electrocatalytic oxidation. Our experimental results demonstrated that the amounts of salicylic acid differed statistically in normal, phytoene desaturase (PDS) gene silent and diseased (infected by Botrytis cinerea) tomato leaves. By quantifying salicylic acid at the level of several nanograms in situ, the simple paper-based electroanalytical devices could potentially facilitate the study of defense mechanism of plants under biotic and abiotic stresses. This study might also provide a sensitive method with spatiotemporal resolution for mapping of chemicals released from living organisms. PMID:24794407

Sun, Li-Jun; Feng, Qiu-Mei; Yan, Yong-Feng; Pan, Zhong-Qin; Li, Xiao-Hui; Song, Feng-Ming; Yang, Haibing; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

2014-10-15

114

Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1.  

PubMed Central

Pseudomonas putida PMD-1 dissimilates naphthalene (Nah), salicylate (Sal), and benzoate (Ben) via catechol which is metabolized through the meta (or alpha-keto acid) pathway. The ability to utilize salicylate but not naphthalene was transferred from P. putida PMD-1 to several Pseudomonas species. Agarose gel electrophoresis of deoxyribonucleic acid (DNA) from PMD-1 and Sal+ exconjugants indicated that a plasmid (pMWD-1) of 110 megadaltons is correlated with the Sal+ phenotype; restriction enzyme analysis of DNA from Sal+ exconjugants indicated that plasmid pMWD-1 was transmitted intact. Enzyme analysis of Sal+ exconjugants demonstrated that the enzymes required to oxidize naphthalene to salicylate are absent, but salicylate hydroxylase and enzymes of the meta pathway are present. Thus, naphthalene conversion to salicylate requires chromosomal genes, whereas salicylate degradation is plasmid encoded. Comparison of restriction digests of plasmid pMWD-1 indicated that it differs considerably from the naphthalene and salicylate degradative plasmids previously described in P. putida. Images PMID:7275935

Zuniga, M C; Durham, D R; Welch, R A

1981-01-01

115

Salicylic acid and salicylic acid sensitive and insensitive catalases in different genotypes of chickpea against Fusarium oxysporum f. sp. ciceri.  

PubMed

Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance. PMID:24431522

Gayatridevi, S; Jayalakshmi, S K; Mulimani, V H; Sreeramulu, K

2013-10-01

116

Salicylate-induced pulmonary edema--a near-miss diagnosis.  

PubMed

A 43-year-old white woman presented to the emergency department with confusion, agitation, and progressive dyspnea. Chest x-ray revealed pulmonary edema. Initial diagnostic considerations were pneumonia, pulmonary embolism, sepsis, central nervous system infection, substance toxicity, and heart failure. Her salicylate level was 92.6 mg/dL, and an arterial blood gas revealed a respiratory alkalosis and nonanion gap metabolic acidosis, consistent with salicylate poisoning. Noncardiogenic pulmonary edema is an atypical presentation of salicylate toxicity, and this case highlights the importance of an early toxicology screen to make a time-critical diagnosis and provide specific treatment. PMID:24361138

Yuklyaeva, Nataliya; Chaudhary, Ahmad; Gorantla, Ramakrishna; Bischof, Edward

2014-05-01

117

Supramolecular hydrogen-bonding networks in cytosine salicylic acid hydrate (2 : 3 : 2) complex  

NASA Astrophysics Data System (ADS)

Cytosine-cytosinium base pairs are interconnected by triple hydrogen bonds thereby resembling a pseudo-Watson-Crick pattern and generates two characteristic R {2/2}(8)-motifs. Both molecules of the salicylic acids interconnect the base pair and lead to the formation of one dimensional supramolecular hexameric tape along b-axis. This hexameric tape are sandwiched by the water molecules, one of the salicylic acid and salicylate anion which form one dimensional and two dimensional supramolecular hydrogen bonded networks in the crystal packing. Macrocylic rings of cavities are also noticed in the crystal structure.

Sridhar, B.; Ravikumar, K.

2010-03-01

118

Indomethacin and salicylate decrease epinephrine-induced glycogenolysis  

SciTech Connect

Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3-/sup 3/H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment.

Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

1985-02-01

119

Growth and properties of Lithium Salicylate single crystals  

SciTech Connect

An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

2009-02-13

120

Both Central and Peripheral Auditory Systems Are Involved in Salicylate-Induced Tinnitus in Rats: A Behavioral Study  

PubMed Central

Objective This study was designed to establish a low dose salicylate-induced tinnitus rat model and to investigate whether central or peripheral auditory system is involved in tinnitus. Methods Lick suppression ratio (R), lick count and lick latency of conditioned rats in salicylate group (120 mg/kg, intraperitoneally) and saline group were first compared. Bilateral auditory nerves were ablated in unconditioned rats and lick count and lick latency were compared before and after ablation. The ablation was then performed in conditioned rats and lick count and lick latency were compared between salicylate group and saline group and between ablated and unablated salicylate groups. Results Both the R value and the lick count in salicylate group were significantly higher than those in saline group and lick latency in salicylate group was significantly shorter than that in saline group. No significant changes were observed in lick count and lick latency before and after ablation. After ablation, lick count and lick latency in salicylate group were significantly higher and shorter respectively than those in saline group, but they were significantly lower and longer respectively than those in unablated salicylate group. Conclusion A low dose of salicylate (120 mg/kg) can induce tinnitus in rats and both central and peripheral auditory systems participate in the generation of salicylate-induced tinnitus. PMID:25269067

Liu, Zhi; Sun, Yongzhu; Chang, Haifeng; Cui, Pengcheng

2014-01-01

121

Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization  

NASA Astrophysics Data System (ADS)

Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

2012-08-01

122

Simultaneous determination of acetylsalicylic and salicylic acids by first derivative spectrometry in pharmaceutical preparations  

NASA Astrophysics Data System (ADS)

A multicomponent first derivative UV spectrometric procedure for determination of acetylsalicylic acid (aspirin) and salicylic acid in the solution containing 1 % (w/v) of citric acid in some pharmaceutical preparations is presented. The method is based on the use of the first derivative minimum spectrometric measurements at 286 nm for aspirin and at 318 nm for salicylic acid. Four kinds of cmmercial Aspirin tablets were assayed without a long pretreatment of the pharmaceuticals from the tablet additives. Beer's law is obeyed from 13.62-68.1 ?g ml -1 of aspirin and from 2.723-13.616 ?g ml -1 of salicylic acid. Detection limits at the 0.05 level of significance were calculated to be 1.24 and 0.25 ?g ml -1 with relative standard deviations of 1.09 % and 1.2 % of aspirin and salicylic acid, respectively.

Rogi?, Dunja

1993-03-01

123

In vitro assessment of the acaricidal activity of computer-selected analogues of carvacrol and salicylic acid on Rhipicephalus (Boophilus) microplus.  

PubMed

Rhipicephalus (Boophilus) microplus is a tick that causes huge economic losses in cattle. The indiscriminate use of acaricides has generated resistance to most compounds present on the market. This makes further investigation on other potential acaricides necessary, the in silico assay being an alternative to the design of new compounds. In the present study a biosilico assay was performed using TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer-Aided Rational Drug Design) and WEKA (Waikato Environment for Knowledge Analysis) software. Two carvacrol and four salicylic acid derivatives, synthesized by conventional methods and evaluated with the larval packet test on larvae of R. (B.) microplus were selected. All evaluated compounds presented acaricidal activity; however, ethyl 2-methoxybenzoate (91.8 ± 1.7 % mortality) and ethyl 2,5-dihydroxybenzoate (89.1 ± 1.6 % mortality) showed greater activity than salicylic acid. With regard to the carvacrol analogues, carvacrol acetate (67.8 ± 2.1 % mortality) and carvacrol methyl ether (71.7 ± 1.6 % mortality) also showed greater activity than carvacrol (35.9 ± 3.2 % mortality). TOMOCOMD-CARDD and WEKA software were helpful tools in the search for alternative structures with potential acaricidal activity on R. (B.) microplus. PMID:23543288

Concepción, Ramírez L; Froylán, Ibarra V; Herminia I, Pérez M; Norberto, Manjarrez A; Héctor J, Salgado Z; Yeniel, González C

2013-10-01

124

Differentiated in vivo skin penetration of salicylic compounds in hairless rats measured by cutaneous microdialysis  

Microsoft Academic Search

The purpose was to investigate the in vivo skin penetration of four 14C-salicylic compounds using microdialysis and to relate dermal concentrations to structural features. Furthermore, to compare two in vivo retrodialysis recovery methods for estimation of true unbound extracellular concentrations. Microdialysis probes were inserted in the dermis of hairless rats. Equimolal 14C-salicylic formulations were applied topically and dialysate sampled consecutively

Lene Simonsen; Aksel Jørgensen; Eva Benfeldt; Lotte Groth

2004-01-01

125

Trade-Off Between Synthesis of Salicylates and Growth of Micropropagated Salix pentandra  

Microsoft Academic Search

We studied the relationship between biosynthesis of salicylates, the main chemical defenses in willow and growth of Salix pentandra by cultivating plants in the presence of 2-aminoindan-2-phosphonic acid (AIP), a powerful inhibitor of phenylalanine ammonia-lyase (PAL: EC 4.3.1.5.). AIP inhibited efficiently, though not totally, the endogenous synthesis of salicylates. This inhibition markedly increased plant growth. Exogenous application of the precursors

Teija Ruuhola; Riitta Julkunen-Tiitto

2003-01-01

126

Active Oxygen Species in the Induction of Plant Systemic Acquired Resistance by Salicylic Acid  

Microsoft Academic Search

A complementary DNA encoding a salicylic acid (SA)-binding protein has been cloned. Its properties suggest involvement in SA-mediated induction of systemic acquired resistance (SAR) in plants. The sequence of the protein is similar to that of catalases and the protein exhibits catalase activity. Salicylic acid specifically inhibited the catalase activity in vitro and induced an increase in H_2O_2 concentrations in

Zhixiang Chen; Herman Silva; Daniel F. Klessig

1993-01-01

127

Determination of hydroxyl radicals using salicylate as a trapping agent by gas chromatography-mass spectrometry  

Microsoft Academic Search

Objectives: To establish a sensitive method for measuring hydroxyl radical formation in biological systems using salicylate as probe.Methods: Salicylate hydroxylation products and related aromatic compounds were extracted and converted to trimethylsilyl (TMS) derivatives. The derivatives were analyzed by gas chromatography-mass spectrometry (GC-MS). Quantitation was achieved by selected-ion-recording (SIR) with benzoic acid (ring-D5) as an internal standard.Results: All compounds were well

Xiaoping Luo; Denis C. Lehotay

1997-01-01

128

Anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) by a denitrifying bacterium  

Microsoft Academic Search

The anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) was studied in a denitrifying bacterium. Cells grown with\\u000a 2-hydroxybenzoate were simultaneously adapted to degrade benzoate. Extract of these cells formed benzoate or benzoyl-CoA when\\u000a incubated under reducing conditions with salicylate, MgATP, and coenzyme A, suggesting a degradation of 2-hydroxybenzoate\\u000a via benzoate or benzoyl-CoA. This suggestion was supported by enzyme activity measurements.

Cornelus F. C. Bonting; Georg Fuchs

1996-01-01

129

A new pharmacological effect of salicylates: inhibition of NFAT-dependent transcription.  

PubMed

The anti-inflammatory effects of salicylates, originally attributed to inhibition of cyclooxygenase activity, are currently known to involve additional mechanisms. In this study we investigated the possible modulation by salicylates of NFAT-mediated transcription in lymphocytic and monocytic cell lines. RNase protection assays showed that 2-acetoxy-4-trifluoromethylbenzoic acid (triflusal) inhibited, in a dose-dependent manner, mRNA expression of several cytokine genes, most of which are NFAT-regulated and cyclosporin A (CsA)-sensitive. In Jurkat cells, the expression of IL-3, GM-CSF, TNF-alpha, TGF-beta1, IL-2, lymphotactin, MIP-1alpha, and MIP-1beta was inhibited to different extents. In THP-1 cells, inhibition of the expression of M-CSF, G-CSF, stem cell factor, IFN-gamma, TNF-alpha, TGF-beta1, lymphotoxin-beta1, MIP-1alpha, MIP-1beta, and IL-8 was observed. Sodium salicylate and aspirin only showed significant effects at 5 mM. The transcriptional activity of two genes that contain NFAT sites, a GM-CSF full promoter and a T cell-specific enhancer from the IL-3 locus, was also inhibited by salicylates. Transactivation experiments performed with several NFAT-dependent and AP-1-dependent reporter genes showed that triflusal strongly inhibited NFAT-dependent transcription at concentrations as low as 0.25 mM. Sodium salicylate and aspirin were less potent. The triflusal inhibitory effect was reversible and synergized with suboptimal doses of CsA. Experiments to address the mechanism of action of salicylates in the NFAT activation cascade disclosed a mechanism different from that of CsA, because salicylates inhibited DNA-binding and NFAT-mediated transactivation without affecting phosphorylation or subcellular localization of NFAT. In summary, these data describe a new pharmacological effect of salicylates as inhibitors of NFAT-dependent transcription. PMID:15494524

Aceves, Mónica; Dueñas, Ana; Gómez, Cristina; San Vicente, Edurne; Crespo, Mariano Sánchez; García-Rodríguez, Carmen

2004-11-01

130

Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric.  

PubMed

Salicylic acid and three of its derivatives were used to provide antibacterial properties to viscose fabrics. The four bactericides used were bonded to the viscose fabrics using epichlorohydrin or polymer binders. Optimization of the salicylic acid and its derivatives as well as the concentration of polymers was reported. The ability of the polymer binders to attract and bind the four bactericides was observed. The overall results show that the antibacterial reactivity of salicylic acid and its derivatives are in the following order 5-bromosalicylic acid>salicylic acid>5-chlorosalicylic acid>4-chlorosalicylic acid. Using epichlorohydrin as a binding agent, unfortunately, inhibits the bactericidal activity of the four bactericides. The FTIR study concludes that the reaction between salicylic acid as well as its derivatives with epichlorohydrin takes place through the phenolic group of the acids. The unexpected deterioration in the bactericidal properties of salicylic acid and its derivatives as a result of the treatment with epichlorohydrin could be due to the nature of interaction between the epichlorohydrin molecule and the acids molecules. PVP and PU show superior ability to sustain the four bactericides used even after 10 washing cycles. PMID:24076193

Kantouch, A; El-Sayed, A Atef; Salama, M; El-Kheir, A Abou; Mowafi, S

2013-11-01

131

Wine as a digestive aid: comparative antimicrobial effects of bismuth salicylate and red and white wine.  

PubMed Central

OBJECTIVE--To test whether red and white wines are as potent as bismuth salicylate against the bacteria responsible for traveller's diarrhoea to try to explain wine's legendary reputation as a digestive aid. DESIGN--Red and white wine, bismuth salicylate, two solutions containing ethanol (diluted absolute ethanol and tequila), and sterilised water were tested against suspensions of salmonella, shigella, and Escherichia coli to determine relative antibacterial activity. Suspensions of 10(7) colony forming units of shigella, salmonella, and E coli were added to the test solutions and plated on standard nutrient agar at 0, 10, 20, 30, 60, and 120 minutes and 24 hours. Dilutions of wine and bismuth salicylate were then tested with E coli as the test bacterium, and the experiment repeated. MAIN OUTCOME MEASURES--Exposure times necessary for eradication of organisms for the different solutions; decreases in colony counts at the different exposure times for dilutions of wine and bismuth salicylates. RESULTS--Undiluted wine and bismuth salicylate were both effective in reducing the number of viable organisms (by 10(5)-10(6) colony forming units) after 20-30 minutes. Dilutions of wine were much more effective in decreasing colony counts than were similar dilutions of bismuth salicylate. CONCLUSION--The antibacterial property of wine is largely responsible for wine's reputation as a digestive aid. Images p1659-a PMID:8541747

Weisse, M. E.; Eberly, B.; Person, D. A.

1995-01-01

132

Preparation, Characterization and Antimicrobial Activity Studies on Some Ternary Complexes of Cu(II) with Acetylacetone and Various Salicylic Acids  

Microsoft Academic Search

Ternary complexes of Cu(II) with acetylacetone and various salicylic acids (viz., salicylic, 5-chloro-, 3,5-dibromo-, 3,5-dinitro-, thio-, and acetyl-salicylic acids) were synthesised in pure state and these complexes were characterised by elemental analysis, conductivity, IR data and optical absorption. The antibacterial and antifungal activity studies on these complexes revealed that the ternary complexes are better toxic agents than the binary complexes

Y. Anjaneyulu; R. Prabhakara Rao

1986-01-01

133

Auditory sensori-neural alterations induced by salicylate.  

PubMed

Early after the development of aspirin, almost 150 years ago, its auditory toxicity has been associated with high doses employed in the treatment of chronic inflammatory diseases. Tinnitus, loss of absolute acoustic sensitivity and alterations of perceived sounds are the three auditory alterations described by human subjects after ingestion of large doses of salicylate. They develop over the initials days of treatment but may then level off, fluctuate or decrease, and are reversible within a few days of cessation of treatment. They may also occur within hours of ingestion of an extremely large dose. Individual subjects vary notably as to their susceptibility to salicylate-induced auditory toxicity. Tinnitus may be the first subjective symptom, and is often described as a continuous high pitch sound of mild loudness. The hearing loss is slight to moderate, bilaterally symmetrical and affects all frequencies with often a predominance at the high frequencies. Alterations of perceived sounds include broadening of frequency filtering, alterations in temporal detection, deterioration of speech understanding and hypersensitivity to noise. Behavioral conditioning of animals provides evidence for mild and reversible hearing loss and tinnitus, similar to those observed in humans. Anatomical examinations revealed significant alterations only at outer hair cell lateral membrane. Electrophysiological investigations showed no change in endocochlear resting potential, and small changes in the compound sensory potentials, cochlear microphonic and summating potential, at low acoustic levels. Measures of cochlear mechanical responses to sounds indicated a clear loss of absolute sensitivity and an associated broadening of frequency filtering, both of a magnitude similar to audiometric alterations in humans, but at extremely high salicylate levels. Otoacoustic emissions demonstrated changes in the mechano-sensory functioning of the cochlea in the form of decrease of spontaneous emissions and reduced nonlinearities. In vitro measures of isolated outer hair cells showed reduction of their fast motile responses which are thought to be at the origin of cochlear absolute sensitivity and associated fine filtering. Acoustically evoked neural responses from the eighth nerve to the auditory cortex showed reversible and mild losses of absolute sensitivity and associated broadening of frequency filtering. There is no evidence of a direct alteration of cochlear efferent innervation. Evidence was obtained for decreases in cochlear blood supply under control of autonomous innervation. Spontaneous neural activity of the auditory nerve revealed increases in firings and/or in underlying temporal synchronies. Similar effects were found at the inferior colliculus, mostly at the external nucleus, and at the cortex, mostly at the anterior and less at the secondary auditory cortex but not at the primary auditory cortex. These changes in spontaneous activity might underlie tinnitus as they affect mostly neural elements coding high frequencies, can occur without a loss of sensitivity, are dose dependent, develop progressively, and are reversible. Biochemical cochlear alterations are poorly known. Modifications of oxydative phosphorylation does not seem to occur, involvement of inhibition of prostaglandin synthesis appears controversial but could underlie changes in blood supply. Other biochemical alterations certainly also occur at outer hair cells and at afferent nerve fibers but remain unknown. PMID:10880852

Cazals, Y

2000-12-01

134

Characterization of the Inhibition of K+ Absorption in Oat Roots by Salicylic Acid 1  

PubMed Central

The phenolic compounds salicylic acid (o-hydroxybenzoic acid) and ferulic acid (4-hydroxy-3-methoxycinnamic acid) inhibited K+ (86Rb+) absorption in excised oat (Avena sativa L. cv. Goodfield) root tissue. Salicylic acid was the most inhibitory. The degree of inhibition was both concentration- and pH-dependent. With decreasing pH, the inhibitory effect of the phenolic increased. During the early stages of incubation, the time required to inhibit K+ absorption was also pH- and concentration-dependent. At pH 4.0, 5×10?4 molar salicylic acid inhibited K+ absorption about 60% within 1 minute; whereas, at pH 6.5, this concentration affected absorption only after 10 to 15 minutes. However, at 5 × 10?3 molar and pH 6.5, salicylic acid was inhibitory within 1 minute. The capacity of the tissue to recover following a 1-hour treatment in 5 × 10?4 molar salicylic acid ranged from no recovery at pH 4.5 to complete recovery at pH 7.5. The absorption of salicylic acid was pH-dependent, also. As pH decreased, more of the phenolic compound was absorbed by the tissue. The increased absorption of the compound at low pH most likely contributed to apparent tissue damage at pH 4.5 and might have accounted for the lack of recovery of K+ absorption as pH decreased. Under the proper conditions of pH and concentration, phenolic acids such as salicylic acid could significantly affect mineral absorption by plants in the field. PMID:16662106

Harper, James R.; Balke, Nelson E.

1981-01-01

135

Deciphering the link between salicylic acid signaling and sphingolipid metabolism  

PubMed Central

The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

2015-01-01

136

The Biosynthesis of Salicylic Acid in Potato Plants1  

PubMed Central

Spraying potato (Solanum tuberosum L.) leaves with arachidonic acid (AA) at 1500 ?g mL?1 led to a rapid local synthesis of salicylic acid (SA) and accumulation of a SA conjugate, which was shown to be 2-O-?-glucopyranosylsalicylic acid. Radiolabeling studies with untreated leaves showed that SA was synthesized from phenylalanine and that both cinnamic and benzoic acid were intermediates in the biosynthesis pathway. Using radiolabeled phenylalanine as a precursor, the specific activity of SA was found to be lower when leaves were treated with AA than in control leaves. Similar results were obtained when leaves were fed with the labeled putative intermediates cinnamic acid and benzoic acid. Application of 2-aminoindan-2-phosphonic acid at 40 ?m, an inhibitor of phenylalanine ammonia-lyase, prior to treatment with AA inhibited the local accumulation of SA. When the putative intermediates were applied to leaves in the presence of 2-aminoindan-2-phosphonic acid, about 40% of the expected accumulation of free SA was recovered, but the amount of the conjugate remained constant. PMID:9662552

Coquoz, Jean-Luc; Buchala, Antony; Métraux, Jean-Pierre

1998-01-01

137

Methyl nutrients, DNA methylation, and cardiovascular disease.  

PubMed

Diet plays an important role in the development and prevention of cardiovascular disease (CVD), but the molecular mechanisms are not fully understood. DNA methylation has been implicated as an underlying molecular mechanism that may account for the effect of dietary factors on the development and prevention of CVD. DNA methylation is an epigenetic process that provides "marks" in the genome by which genes are set to be transcriptionally activated or silenced. Epigenomic marks are heritable but are also responsive to environmental shifts, such as changes in nutritional status, and are especially vulnerable during development. S-adenosylmethionine is the methyl group donor for DNA methylation and several nutrients are required for the production of S-adenosylmethionine. These methyl nutrients include vitamins (folate, riboflavin, vitamin B12, vitamin B6, choline) and amino acids (methionine, cysteine, serine, glycine). As such, imbalances in the metabolism of these nutrients have the potential to affect DNA methylation. The focus of this review is to provide an overview on the current understanding of the relationship between methyl nutrient status and DNA methylation patterns and the potential role of this interaction in CVD pathology. PMID:23661599

Glier, Melissa B; Green, Timothy J; Devlin, Angela M

2014-01-01

138

Modeling of the oxidation of methyl esters--Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a  

E-print Network

-temperature range are similar to that of alkanes. Keywords: Methyl esters; Oxidation; Detailed kinetic model; MethylModeling of the oxidation of methyl esters--Validation for methyl hexanoate, methyl heptanoate Abstract The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which

Paris-Sud XI, Université de

139

Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2,  

E-print Network

Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires±pathogen interaction, Arabidopsis, Botrytis cinerea, salicylic acid, camalexin. Introduction Plants are constantly identi®ed Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis

Ausubel, Frederick M.

140

Neonicotinoid insecticides induce salicylate-associated plant defense responses  

PubMed Central

Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

2010-01-01

141

How salicylic acid takes transcriptional control over jasmonic acid signaling  

PubMed Central

Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well. PMID:25859250

Caarls, Lotte; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

2015-01-01

142

AHL-priming functions via oxylipin and salicylic acid  

PubMed Central

Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID:25642235

Schenk, Sebastian T.; Schikora, Adam

2015-01-01

143

In vitro protection of auditory hair cells by salicylate from the gentamycin-induced but not neomycin-induced cell loss  

Microsoft Academic Search

Salicylate has been shown to protect animals and people from the gentamycin-induced hearing loss. The objective of our study was to determine if salicylate is otoprotective in vitro. In this fashion, we wanted to validate the use of explant culture system for future studies on the ototoxicity prevention. In addition, we wanted to find out if salicylate protects from the

Birgit Mazurek; Xiangxin Lou; Heidi Olze; Heidemarie Haupt; Agnieszka J. Szczepek

144

Effect of heparin injection on plasma protein binding of bilirubin and salicylate in rats.  

PubMed

Intravenous heparin injection significantly increased the free bilirubin and salicylate fractions in the plasma of rats. This effect occurred within 2 min after injection of 500 U of heparin/kg and lasted for 15--45 min (bilirubin) or for greater than 45 min (salicylate). In vitro addition of heparin to plasma had no quantitatively significant effect on the protein binding of bilirubin and salicylate. The in vivo effect of heparin on protein binding was reversible by treating the plasma with activated charcoal, a procedure known to remove fatty acids from albumin. Since protein binding affects the pharmacokinetic characteristics and the pharmacological activity of drugs, the heparin--drug interaction may have significant clinical implications. Use of heparinized plasma for exchange transfusion in the treatment of neonatal jaundice may be hazardous. PMID:529035

Wiegand, U W; Levy, G

1979-12-01

145

Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes  

NASA Astrophysics Data System (ADS)

To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

Zhang, Qian; Zhu, Jinwei; Wang, Ying; Feng, Jiangtao; Yan, Wei; Xu, Hao

2014-07-01

146

Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage  

SciTech Connect

While net /sup 35/S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when /sup 3/H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished.

Palmoski, M.J.; Brandt, K.D.

1982-09-01

147

Study of the transformation of two salicylates used in personal care products in chlorinated water.  

PubMed

Disinfection of swimming pool water is essential to inactivate pathogenic microorganisms. However chlorine based disinfectants, the most commonly used, are known to lead to the formation of disinfection by-products (DBPs), some of which have been associated with adverse health effects. Precursors of DBPs include the organic matter present in the water used to fill the swimming pool, human body fluids and personal care products (PCPs) used by swimmers and bathers. The increased use, in the last years, of PCPs lead to an increased concern about the fate of PCPs in swimming pool waters and potential health risks of formed DBPs. In this study, the chemical transformations of two salicylates, benzyl salicylate (BzS) and phenyl salicylate (PS), incorporated in several PCPs, in chlorinated water were investigated. High-performance liquid chromatography (HPLC) with UV-diode-array detection (HPLC-UV-DAD) was used to follow the reaction kinetics and HPLC with mass spectrometry (HPLC-MS) was used to tentatively identify the major transformation by-products. Under the experimental conditions used in this work both salicylates reacted with chlorine following pseudo-first order kinetics: rate constant k = (0.0038 ± 0.0002) min(-1) and half-life t1/2 = (182 ± 10) min for BzS and rate constant k = (0.0088 ± 0.0005) min(-1) and half-life t1/2 = (79 ± 4) min for PS (mean ± standard deviation). The reactions of the two salicylates in chlorinated water led to the formation of DBPs that were tentatively identified as mono- and dichloro- substituted compounds. Most probably they result from an electrophilic substitution of one or two hydrogen atoms in the phenolic ring of both salicylates by one or two chlorine atoms. PMID:25086797

de Oliveira e Sá, Mariana M; Miranda, Margarida S; da Silva, Joaquim C G Esteves

2014-11-15

148

Effect of salicylate, bismuth, osmolytes, and tetracycline resistance on expression of fimbriae by Escherichia coli.  

PubMed

Adherence of Escherichia coli is facilitated by fimbriae and several outer membrane proteins (OMPs). Hypertonic conditions, salicylate, and Mar mutations are known to reduce OmpF expression. We speculated that OMPs involved in export or assembly of fimbrial subunits might be similarly affected. To explore this hypothesis, E. coli expressing P, type 1, S, colonization factor antigen I (CFA/I), or CFA/II fimbriae was grown in the presence of salicylate, bismuth salts, NaCl, and nonfermented sugars. Tetracycline-resistant clones were derived from several P-fimbriated strains. The bacteria were tested for the ability to agglutinate erythrocytes, yeast cells, and alpha-D-Gal(-4)-beta-D-Gal-bonded latex (Gal-Gal) beads and were examined for fimbriae by electron microscopy. Hyperosmolar conditions decreased fimbrial expression for all strains. Expression of P fimbriae by pyelonephritic strains, all of which were OmpF+, was reversibly repressed by salicylate and bismuth salts. CFA strains were similarly affected. Tetracycline-resistant P-fimbriated strains were OmpF deficient, were unable to agglutinate erythrocytes and Gal-Gal beads, and lacked fimbriae as observed by electron microscopy. Strains with plasmid-encoded P-fimbrial genes did not demonstrate OmpF on polyacrylamide gel electrophoresis profiles and were not affected by salicylate. The type 1-fimbriated phenotype was not affected by salicylate or bismuth unless the strains also expressed P fimbriae. S-fimbriated strains were not affected. The mechanism by which salicylates, bismuth salts, and tetracycline resistance inhibit or modulate the expression of P fimbriae may be mediated through OmpF and other OMPs. PMID:7910591

Kunin, C M; Hua, T H; Guerrant, R L; Bakaletz, L O

1994-06-01

149

Molecular Design and Synthesis of Novel Salicyl Glycoconjugates as Elicitors against Plant Diseases  

PubMed Central

A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant defense resistance. PMID:25259805

Cui, Zining; Ito, Jun; Dohi, Hirofumi; Amemiya, Yoshimiki; Nishida, Yoshihiro

2014-01-01

150

Molecular design and synthesis of novel salicyl glycoconjugates as elicitors against plant diseases.  

PubMed

A new series of salicyl glycoconjugates containing hydrazide and hydrazone moieties were designed and synthesized. The bioassay indicated that the novel compounds had no in vitro fungicidal activity but showed significant in vivo antifungal activity against the tested fungal pathogens. Some compounds even had superior activity than the commercial fungicides in greenhouse trial. The results of RT-PCR analysis showed that the designed salicyl glycoconjugates could induce the expression of LOX1 and Cs-AOS2, which are the specific marker genes of jasmonate signaling pathway, to trigger the plant defense resistance. PMID:25259805

Cui, Zining; Ito, Jun; Dohi, Hirofumi; Amemiya, Yoshimiki; Nishida, Yoshihiro

2014-01-01

151

Resistance of Red Clover (Trifolium pratense) to the Root Parasitic Plant Orobanche minor is Activated by Salicylate but not by Jasmonate  

PubMed Central

Background and Aims Obligate root holoparasites of the genus Orobanche attack dicotyledonous crops and cause severe losses in many parts of the world. Chemical induction of plant defence systems such as systemic acquired resistance was proposed to be an available strategy to control the root parasite, but the detailed mechanisms involved have not been clarified. The aim of this study was to elucidate the effects of salicylic acid (SA), jasmonic acid (JA) and their analogues on resistance of red clover to Orobanche parasitism. Methods Roots of red clover grown in plastic chambers were applied with SA, S-methyl benzo[1,2,3]thiadiazole-7-carbothioate (BTH), methyl jasmonate (MeJA) and n-propyl dihydrojasmonate (PDJ), and then were inoculated with O. minor seeds. Attachments of the parasite were observed after 5 weeks. Key Results SA and BTH, inducers of SA-mediated defences, significantly reduced the number of established parasites by more than 75 %. By contrast, MeJA and PDJ, inducers of JA-mediated defences, did not affect parasitism. The reduction in the number of established parasites by SA and BTH was due to the inhibited elongation of O. minor radicles and the activation of defence responses in the host root including lignification of the endodermis. Conclusions These results suggest that SA-induced resistance, but not JA-induced resistance, is effective in inhibiting Orobanche parasitism and that the resistance is expressed by the host root both externally and internally. PMID:17660517

Kusumoto, Dai; Goldwasser, Yaakov; Xie, Xiaonan; Yoneyama, Kaori; Takeuchi, Yasutomo; Yoneyama, Koichi

2007-01-01

152

Effects of mixing procedure itself on the structure, viscosity, and spreadability of white petrolatum and salicylic Acid ointment and the skin permeation of salicylic Acid.  

PubMed

White petrolatum is a mixture of solid and liquid hydrocarbons and its structure can be affected by shear stress. Thus, it might also induce changes in its rheological properties. In this study, we used polarization microscopy to investigate how different mixing methods affect the structure of white petrolatum. We used two different mixing methods, mixing using a rotation/revolution mixer and mixing using an ointment slab and an ointment spatula. The extent of the fragmentation and dispersal of the solid portion of white petrolatum depended on the mixing conditions. Next, we examined the changes in the structure of a salicylic acid ointment, in which white petrolatum was used as a base, induced by mixing and found that the salicylic acid solids within the ointment were also dispersed. In addition to these structural changes, the viscosity and thixotropic behavior of both test substances also decreased in a mixing condition-dependent manner. The reductions in these parameters were most marked after mixing with a rotation/revolution mixer, and similar results were obtained for spreadability. We also investigated the effects of mixing procedure on the skin accumulation and permeation of salicylic acid. They were increased by approximately three-fold after mixing. Little difference in skin accumulation or permeation was detected between the two mixing methods. These findings indicate that mixing procedures themselves affect the utility and physiological effects of white petrolatum-based ointments. Therefore, these effects should be considered when mixing is required for the clinical use of petrolatum-based ointments. PMID:25400272

Kitagawa, Shuji; Fujiwara, Megumi; Okinaka, Yuta; Yutani, Reiko; Teraoka, Reiko

2015-01-01

153

DNA Methylation Profiling Identifies CG Methylation Clusters in Arabidopsis Genes  

Microsoft Academic Search

Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA [1]. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears

Robert K. Tran; Jorja G. Henikoff; Daniel Zilberman; Renata F. Ditt; Steven E. Jacobsen; Steven Henikoff

2005-01-01

154

Loss of Function of FATTY ACID DESATURASE7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner1[W][OA  

PubMed Central

We report here that disruption of function of the ?-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202

Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.

2012-01-01

155

DNA methylation and cancer.  

PubMed

DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future. PMID:20920744

Kulis, Marta; Esteller, Manel

2010-01-01

156

Hybrid organic-inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate  

NASA Astrophysics Data System (ADS)

ADP-NH 4Sal hybrid crystals are grown from aqueous solutions. The influence of the acidity of the mixed solution on the conditions of co-crystallization of the components is studied. The spectral and scintillation characteristics are determined. Co-crystallization of ammonium salicylate (NH 4Sal) and ammonium dihydrogen phosphate (ADP, NH 4H 2PO 4) is shown to be feasible, the structure of the doping addition being defined by the solution ??. In basic and weak acidic media the hybrid crystals ADP:NH 4Sal are formed in which salicylate anions are located in the interplanar space between the {110}-type planes in the lattice of ADP. The luminescence spectra contain an emission band maximum with ? max=360 nm. In acidic solutions there are ADP:HSal crystals in which salicylic acid molecules captured by the growth macrosteps are located in the interplanar space of the prismatic {100} and pyramidal {101} growth sectors. The luminescence band undergoes bathochromic shift to ?max=400 nm. The sensitivity of ADP:NH 4Sal scintillation crystals to fast neutrons depends on the concentration of ammonium salicylate in ADP matrix. The highest neutron sensitivity is characteristic of the co-doped ADP:NH 4Sal/Tl scintillation crystals.

Voronov, A. P.; Salo, V. I.; Puzikov, V. M.; Babenko, G. N.; Roshal, A. D.; Tkachenko, V. F.

2011-11-01

157

Salicylic Acid Mediates Resistance in the Willow Salix viminalis Against the Gall Midge Dasineura marginemtorquens  

Microsoft Academic Search

Resistant willow (Salix viminalis L.) genotypes react with a rapid hypersensitive response (HR) when attacked by the gall midge Dasineura marginemtorquens Bremi. In general, infected plant genotypes or species that react hypersensitively to pathogens accumulate salicylic acid (SA) locally and systemically. Thus, pathogen-induced HRs are strongly associated with accumulation of SA. In this study, we tested the hypothesis that SA

Olof Ollerstam; Stig Larsson

2003-01-01

158

Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene,  

E-print Network

Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid for necrotrophic soft rot-causing pathogens, including the fungus Botrytis cinerea (ten Have et al., 1998 that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis

Ausubel, Frederick M.

159

Salicylic Acid Improved In Viro Meristem Regeneration and Salt Tolerance in Two Hibiscus Species  

Technology Transfer Automated Retrieval System (TEKTRAN)

Salicylic acid (SA) has been reported to induce abiotic stress, including salt tolerance in plants. The objective of this study was to determine whether application of various exogenous SA concentrations to in vitro grown meristem shoots could induce salt tolerance in two Hibiscus species. The effec...

160

In vitro skin decontamination model: comparison of salicylic acid and aminophylline.  

PubMed

Abstract Objective: This study compared three model decontaminant solutions (distilled water, 10% distilled water and soap and methanol) for their ability to remove salicylic acid and aminophylline from an in vitro skin model. Materials and methods: Human abdominal skin was dosed with 20?µL of either [(14)C]-aminophylline or [(14)C]-salicylic acid on 1?cm(2) per skin. After each exposure time (5, 30 and 60?min post-dosing, respectively), surface skin was washed three times with each solution and tape stripped 10 times. Wash solutions, tape strips, receptor fluid and remaining skin were then analyzed with liquid scintillation counting to quantify the amount of salicylic acid and aminophylline. Results: Total mass balance recovery for each chemical at three time exposure points was between 73.6 and 101.5%, except at 60?min where aminophylline was only 42.5%. Majority of salicylic acid and aminophylline were recovered from washing solution when compared to stratum corneum, epidermis, dermis, surrounding skin and receptor fluid. Conclusion: The three tested decontaminates possessed similar effectiveness in removing lipophilic and hydrophilic chemicals from the skin. Due to diminishing decontamination efficacy with time, it is suggested that skin should be washed as soon as possible following contamination to minimize percutaneous penetration and the deleterious effects associated with skin reservoir content. PMID:24964167

Noury, Barbara; Coman, Garrett; Blickenstaff, Nicholas; Maibach, Howard

2014-06-25

161

Some physiological and biochemical responses to nickel in salicylic acid applied chickpea (Cicer arietinum L.) seedlings.  

PubMed

The present study examined the effects of salicylic acid pre-application on the responses of seven-day-old chickpea (Cicer arietinum L.) seedlings to nickel. For this purpose, the plants were treated with 1 mM salicylic acid solution for 6 and 10 hours and then treated with 0.75, 1.5 and 3 mM nickel solutions for 48 hours hydroponically. Following the treatment, changes in seedling length, seedling fresh weight and leaf dry weight (after 10 hours), as well as MDA, proline, protein and pigment contents (after 6 and 10 hours) were examined. Salicylic acid pre-application was found to significantly alleviate the typical harmful effects caused by nickel and 3 mM nickel concentration in particular, on the parameters associated with toxic stress. However, pre-application of salicylic acid for 6 and 10 hours without nickel treatment did not produce any stimulatory or inhibitory effect on the seedlings as compared to the controls. PMID:21840830

Canakci, Songül; Dursun, Bahar

2011-09-01

162

Neuroprotection by Aspirin and Sodium Salicylate Through Blockade of NF-kappaB Activation  

Microsoft Academic Search

Aspirin (acetylsalicylic acid) is a commonly prescribed drug with a wide pharmacological spectrum. At concentrations compatible with amounts in plasma during chronic anti-inflammatory therapy, acetylsalicylic acid and its metabolite sodium salicylate were found to be protective against neurotoxicity elicited by the excitatory amino acid glutamate in rat primary neuronal cultures and hippocampal slices. The site of action of the drugs

Mariagrazia Grilli; Marina Pizzi; Maurizio Memo; Pierfranco Spano

1996-01-01

163

An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory.  

ERIC Educational Resources Information Center

Describes an electrode, selective for the salicylate ion, that can be prepared and used by undergraduate students. Discusses the preparation of the electrode, typical response characteristics obtained, and results of a limited study using the electrode to estimate the selectivity coefficient for an interfering ion and to determine the amount of…

Creager, Stephen E.; And Others

1995-01-01

164

Campylobacter pyloridis and associated gastritis: investigator blind, placebo controlled trial of bismuth salicylate and erythromycin ethylsuccinate  

Microsoft Academic Search

An investigator blind trial was performed comparing bismuth salicylate, erythromycin ethylsuccinate, and placebo in the treatment of Campylobacter pyloridis associated gastritis in patients without peptic ulceration. Fifty patients fulfilled the study criteria. There was a strong correlation between the presence of C pyloridis and histologically confirmed gastritis. Clearance of organisms led to improvement of the gastritis. C pyloridis was cleared

C A McNulty; J C Gearty; B Crump; M Davis; I A Donovan; V Melikian; D M Lister; R Wise

1986-01-01

165

Host plant preference based on salicylate chemistry in a willow leaf beetle ( Chrysomela aeneicollis )  

Microsoft Academic Search

Chrysomela aeneicollis (Coleoptera: Chrysomelidae) uses salicin from its host plant (Salix spp.) to produce a defensive secretion, salicylaldehyde. Because it requires salicin for this secretion, I predicted that C. aeneicollis should be attracted to willows which possess salicin and other salicylates. To test this prediction, I determined the host-plant preferences of C. aeneicollis among four potential hosts which occur in

Nathan Egan Rank

1992-01-01

166

Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid  

Microsoft Academic Search

An analysis is described for the rapid determination of nitrate?N in plant extracts. The complex formed by nitration of salicylic acid under highly acidic conditions absorbs maximally at 410 nm in basic (pH>12) solutions. Absorbance of the chromophore is directly proportional to the amount of nitrate?N present. Ammonium, nitrite, and chloride ions do not interfere.

D. A. Cataldo; M. Maroon; L. E. Schrader; V. L. Youngs

1975-01-01

167

ENHANCED DISEASE SUSCEPTIBILITY 1 and SALICYLIC ACID act redundantly to regulate resistance gene-mediated signaling  

Technology Transfer Automated Retrieval System (TEKTRAN)

Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), ...

168

Biocontrol Elicited Systemic Resistance in Sugarbeet is Salicylic Acid Independent and NPR1 Dependent.  

Technology Transfer Automated Retrieval System (TEKTRAN)

ABSTRACT: Salicylic acid (SA) and NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) are both key players in the establishment of systemic acquired resistance (SAR). Previously we demonstrated that biological control agents (BCAs) Bacillus mycoides isolate Bac J (BmJ) and Bacillus mojavensis isol...

169

Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

170

SALICYLIC ACID- AND NITRIC OXIDE-MEDIATED SIGNAL TRANSDUCTION IN DISEASE RESISTANCE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Current advances in plant defense signaling is discussed, with emphasis on the role of nitric oxide and salicylic acid in the development of disease resistance. Nitric Oxide has recently been shown to have an important role in plant disease resistance. We show an increase in NOS-like activity in TMV...

171

Postharvest salicylic acid treatment reduces storage rots in water-stressed but no unstressed sugarbeet roots  

Technology Transfer Automated Retrieval System (TEKTRAN)

Exogenous application of salicylic acid (SA) reduces storage rots in a number of postharvest crops. SA’s ability to protect sugarbeet (Beta vulgaris L.) taproots from common storage rot pathogens, however, is unknown. To determine the potential of SA to reduce storage losses caused by three common...

172

Structure and Mechanism of MbtI, the Salicylate Synthase from Mycobacterium tuberculosis  

SciTech Connect

MbtI (rv2386c) from Mycobacterium tuberculosis catalyzes the initial transformation in mycobactin biosynthesis by converting chorismate to salicylate. We report here the structure of MbtI at 2.5 {angstrom} resolution and demonstrate that isochorismate is a kinetically competent intermediate in the synthesis of salicylate from chorismate. At pH values below 7.5 isochorismate is the dominant product while above this pH value the enzyme converts chorismate to salicylate without the accumulation of isochorismate in solution. The salicylate and isochorismate synthase activities of MbtI are Mg{sup 2+}-dependent, and in the absence of Mg{sup 2+} MbtI has a promiscuous chorismate mutase activity similar to that of the isochorismate pyruvate lyase, PchB, from Pseudomonas aeruginosa. MbtI is part of a larger family of chorismate-binding enzymes descended from a common ancestor (the MST family), that includes the isochorismate synthases and anthranilate synthases. The lack of active site residues unique to pyruvate eliminating members of this family, combined with the observed chorismate mutase activity, suggests that MbtI may exploit a sigmatropic pyruvate elimination mechanism similar to that proposed for PchB. Using a combination of structural, kinetic, and sequence based studies we propose a mechanism for MbtI applicable to all members of the MST enzyme family.

Zwahlen,J.; Kolappan, S.; Zhou, R.; Kisker, C.; Tonge, P.

2007-01-01

173

Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress  

Microsoft Academic Search

Salicylic acid (SA) treatment reduces the damaging action by water deficit on growth and accelerates a restoration of growth processes. The aim of the present work was to study the physiological and biochemical alteration induced by SA in lemongrass plants under stress conditions. Therefore, a pot culture experiment was conducted to test whether SA application at concentration of (10 M)

Mohd Idrees; M. Masroor A. Khan; Tariq Aftab; M. Naeem; Nadeem Hashmi

2010-01-01

174

Dynamics of Responses in Compatible Potato - Potato virus Y Interaction Are Modulated by Salicylic Acid  

PubMed Central

To investigate the dynamics of the potato – Potato virus Y (PVY) compatible interaction in relation to salicylic acid - controlled pathways we performed experiments using non-transgenic potato cv. Désirée, transgenic NahG-Désirée, cv. Igor and PVYNTN, the most aggressive strain of PVY. The importance of salicylic acid in viral multiplication and symptom development was confirmed by pronounced symptom development in NahG-Désirée, depleted in salicylic acid, and reversion of the effect after spraying with 2,6-dichloroisonicotinic acid (a salicylic acid - analogue). We have employed quantitative PCR for monitoring virus multiplication, as well as plant responses through expression of selected marker genes of photosynthetic activity, carbohydrate metabolism and the defence response. Viral multiplication was the slowest in inoculated potato of cv. Désirée, the only asymptomatic genotype in the study. The intensity of defence-related gene expression was much stronger in both sensitive genotypes (NahG-Désirée and cv. Igor) at the site of inoculation than in asymptomatic plants (cv. Désirée). Photosynthesis and carbohydrate metabolism gene expression differed between the symptomatic and asymptomatic phenotypes. The differential gene expression pattern of the two sensitive genotypes indicates that the outcome of the interaction does not rely simply on one regulatory component, but similar phenotypical features can result from distinct responses at the molecular level. PMID:22194976

Baebler, Špela; Stare, Katja; Kova?, Maja; Blejec, Andrej; Prezelj, Nina; Stare, Tjaša; Kogovšek, Polona; Pompe-Novak, Maruša; Rosahl, Sabine; Ravnikar, Maja; Gruden, Kristina

2011-01-01

175

Salicylate elimination diets in children: is food restriction supported by the evidence?  

PubMed

A review of case notes from our Sydney-based paediatric allergy services, between 1 January 2003 and 31 December 2011, identified 74 children who had been prescribed diets that eliminated foods containing natural salicylates before attending our clinics. The most common indications for starting the diets were eczema (34/74) and behavioural disturbances (17/74) including attention deficit hyperactivity disorder (ADHD). We could find no peer-reviewed evidence to support the efficacy of salicylate elimination diets in managing these diseases. We do not prescribe these diets, and in a survey of European and North American food allergy experts, only 1/23 respondents used a similar diet for eczema, with none of the respondents using salicylate elimination to treat ADHD. A high proportion (31/66) of children suffered adverse outcomes, including nutritional deficiencies and food aversion, with four children developing eating disorders. We could find no published evidence to support the safety of these diets in children. While this uncontrolled study does not prove a causal relationship between salicylate elimination diets and harm, the frequency of adverse events appears high, and in the absence of evidence of safety or efficacy, we cannot recommend the use of these diets in children. PMID:23919705

Gray, Paul E A; Mehr, Sam; Katelaris, Constance H; Wainstein, Brynn K; Star, Anita; Campbell, Dianne; Joshi, Preeti; Wong, Melanie; Frankum, Brad; Keat, Karuna; Dunne, Geraldine; Dennison, Barbara; Kakakios, Alyson; Ziegler, John B

2013-06-17

176

Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats  

PubMed Central

To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200?mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60?dB SPL); gap detection thresholds were always 10?ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60?dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible.

Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.

2015-01-01

177

MONILIOPHTHORA PERNICIOSA PRODUCES HORMONES AND ALTERS ENDOGENOUS AUXIN AND SALICYLIC ACID IN INFECTED COCOA LEAVES  

Technology Transfer Automated Retrieval System (TEKTRAN)

We investigated the endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) in leaves of Theobroma cacao and the pathogen, Crinipellis perniciosa. In cacao leaves, the levels of all hormones decreased with maturity and showed no preferential ...

178

Effect of Salicylic Acid on Somatic Embryogenesis and Plant Regeneration in Hedychium bousigonianum  

Technology Transfer Automated Retrieval System (TEKTRAN)

The objective of this study was to induce somatic embryogenesis in Hedychium bousigonianum Pierre ex Gagnepain and assess the influence of salicylic acid (S) on somatic embryogenesis. Somatic embryos and subsequently regenerated plants were successfully obtained 30 days after transfer of embryogenic...

179

Aspirin and salicylate suppress polymorphonuclear apoptosis delay mediated by proinflammatory stimuli.  

PubMed

During inflammation, polymorphonuclear leukocyte (PMN) apoptosis can be delayed by different proinflammatory mediators. Classically, it has been accepted that the widely used anti-inflammatory drug acetyl salicylic acid (ASA) exerts its action through inhibition of cyclooxygenases and subsequent prostaglandin synthesis. We hypothesized that another anti-inflammatory action of ASA could be the shortening of PMN survival. We found that at therapeutic concentrations (1-3 mM), ASA and its metabolite salicylate (NaSal), but not indomethacin or ibuprofen, counteracted the prolonged PMN survival mediated by lipopolysaccharide (LPS) through inhibition of nuclear factor-kappaB (NF-kappaB) activation. Both salicylates also inhibited interleukin (IL)-1alpha or acidic conditions antiapoptotic activity. Higher concentrations of both drugs had a direct apoptotic effect. Salicylates were not effective when PMN apoptosis delay was induced by granulocyte macrophage-colony-stimulating factor (GM-CSF), a NF-kappaB-independent cytokine. Promotion of PMN survival by the combination of IL-1alpha and LPS was also reversed by salicylates, but higher concentrations were required. ASA concentrations that did not trigger PMN death increase the zymosan- or tumor necrosis factor-alpha-mediated proapoptotic effect. The LPS- and IL-1alpha- but not GM-CSF-mediated antiapoptotic effect was markedly reduced in PMNs from donors who had ingested ASA. Using a thioglycolate-induced peritonitis model, we showed that in ASA- or NaSal-treated mice there was not only a decrease in the number of cells recruited but also an increase in the percentage of apoptotic PMNs as well as an enhancement of phagocytosis compared with controls. Our findings demonstrate that acceleration of PMN apoptosis by turning off the NF-kappaB-mediated survival signals elicited by proinflammatory stimuli is another anti-inflammatory action of ASA and NaSal. PMID:16936242

Negrotto, Soledad; Malaver, Elisa; Alvarez, María Eugenia; Pacienza, Natalia; D'Atri, Lina Paola; Pozner, Roberto Gabriel; Gómez, Ricardo Martín; Schattner, Mirta

2006-11-01

180

DNA Methylation and Cancer  

Microsoft Academic Search

DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a

Marta Kulis; Manel Esteller

2010-01-01

181

Gene Regulation by Methylation  

Microsoft Academic Search

Epigenetic gene regulation of specific genes strongly affects clinical outcome of malignant glioma. MGMT is the best studied gene for the connection of promoter methylation and clinical course in glioblastoma. While MGMT promoter methylation analysis currently does not alter treatment of glioblastoma patients, mainly because of a lack of convincing\\u000a therapy to radiotherapy and concomitant administration of alkylating drugs, there

Wolf C. Mueller; Andreas von Deimling

182

Guiding DNA methylation.  

PubMed

How DNA methyltransferases, with their limited target specificity, establish cell-type-specific epigenetic patterns is poorly understood. Schübeler and colleagues (Lienert et al., 2011) now show that methylation-determining regions (MDRs) within promoter regions are sufficient to recapitulate endogenous patterns and dynamics of DNA methylation. PMID:22056134

Meissner, Alexander

2011-11-01

183

Bis(di­methyl­formamide)­penta­kis­(?-N,2-dioxido­benzene-1-carb­ox­imidato)tetra­kis­(1-methyl­imidazole)di-?-propionato-penta­manganese(III)manganese(II)–di­methyl­formamide–methanol (1/0.24/1.36)  

PubMed Central

The title compound [Mn6(C7H4NO3)5(C3H5O2)2(C4H6N2)4.17(C3H7NO)1.83]·0.24C3H7NO·1.36CH3OH or Mn(II)(C3H5O2)2[15-MCMn(III)N(shi)-5](Me—Im)4.17(DMF)1.83·0.24DMF·1.36MeOH (where MC is metallacrown, shi3? is salicyl­hydroximate, Me—Im is 1-methyl­imidazole, DMF is N,N-di­methyl­formamide, and MeOH is methanol), contains an MnII ion in the central cavity and five MnIII ions in the MC ring. The central MnII ion is seven coordinate and has a geometry best described as distorted face-capped trigonal prismatic with ? angles of 6.13, 10.36, and 11.73° and an estimated average s/h ratio of 1.03±0.11. Four of the ring MnIII ions are six coordinate with distorted octa­hedral geometries. Two of the MnIII ions have ? absolute stereoconfiguration, while the other two MnIII ions have a planar configuration. The fifth MnIII ion is five coordinate and has a distorted square pyramidal geometry with ? = 0.20. Three of the MnIII ions bind one 1-methyl­imidazole ligand. Two of the ring MnIII ions have a 1-methyl­imidazole and a DMF disordered over a coordination site. For one of the ring MnIII ions, the occupancy ratio of the ligands refines to 0.51?(1):0.49?(1) in favor of the DMF. For the other ring MnIII ion, the occupancy ratio of the ligands refines to 0.68?(1):0.32?(1) in favor of the 1-methyl­imidazole. Two propionate anions serve to bridge the central MnII ion between two different MnIII ions. The methyl groups of the bridging propionate anions are disordered over two positions. The methyl group disorder also induces disorder in the H atoms of the adjacent methyl­ene C atom to the same degree. For one of the propionate anions, the occupancy ratio refines to 0.752?(8):0.248?(8) and for the second, the occupancy ratio refines to 0.604?(6):0.396?(6). In addition, the disorder of the methyl group of the latter propionate anion is correlated with a partially occupied [0.604?(6)] methanol mol­ecule. Furthermore, a methanol mol­ecule and a DMF mol­ecule are positionally disordered in the lattice. The occupancy refines to 0.757?(7):0.243?(7) in favor of the methanol mol­ecule. Correlated to the occupancy of the methanol and DMF mol­ecules is a disordered benzene ring of one salicyl­hydroximate ligand. The benzene ring is disordered over two positions with an occupancy ratio of 0.757?(7):0.243?(7). Lastly, the two lattice methanol mol­ecules are hydrogen bonded to the 15-MC-5 mol­ecule. For the partially occupied methanol mol­ecule associated with the disordered propionate anion, the hydroxyl group of the methanol is hydrogen bonded to a carboxyl­ate O atom of the propionate anion. For the partially occupied methanol mol­ecule associated with the partially occupied lattice DMF mol­ecule, the hydroxyl group of the methanol is hydrogen bonded to the phenolate O atom of a salicyl­hydroximate ligand and to the carbonyl O atom of a coordinated DMF mol­ecule. PMID:24426984

Lutter, Jacob C.; Kampf, Jeff W.; Zeller, Matthias; Zaleski, Curtis M.

2013-01-01

184

Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles  

Microsoft Academic Search

Many natural enemies of herbivorous arthropods use herbivore-induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plantherbivore combinations, a situation that favours a flexible approach in the foraging behaviour of the natural enemies. In this paper, we address the flexibility in behavioural responses of the predatory

Boer de J. G; Marcel Dicke

2004-01-01

185

Analgesic efficacy of sodium salicylate in an amphotericin B-induced bovine synovitis-arthritis model.  

PubMed

This study examined the efficacy of sodium salicylate for providing analgesia in an amphotericin B-induced bovine synovitis-arthritis model using 10 male Holstein calves, 4 to 6 mo old and weighing approximately 250 kg. The study used a repeated measures partial crossover design with 2 phases, consisting of 3 treatment periods within each phase. Calves were blocked by body weight and randomly assigned to the sodium salicylate (50 mg/kg i.v.) or placebo group for phase 1. In period 1, lameness induction was simulated with a needle prick of the coronary band, followed by drug or placebo administration. At predetermined time points, serial blood samples for cortisol and salicylate concentrations, electrodermal activity measurements, heart rates, and pressure mat data were collected. Visual lameness scores were recorded by an observer blinded to treatments. In period 2, lameness was induced with injection of amphotericin B into the distal interphalangeal joint, followed by drug or placebo administration, with sample collection as described previously. In period 3, the drug or placebo was administered to the respective calves with sample collection. After a 10-d washout period, phase 2 was conducted with treatments crossed over between groups. Cortisol and salicylate samples were analyzed by competitive chemiluminescent immunoassay and fluorescence polarization immunoassay, respectively. The pharmacokinetic data were analyzed using compartmental analysis. Mean intravenous salicylate apparent volume of distribution was 0.2 +/- 0.005 L/kg, total body clearance was 4.3 +/- 0.2 mL/min.kg, and elimination half-life was 36.9 +/- 1.2 min. The repeated measures data were analyzed based on a univariate split-plot approach with a random effects-mixed model. Differences in stance phase duration and serum cortisol concentration values were seen both between periods and between treatment group x periods; differences in heart rate, contact surface area, and contact pressure values were seen between periods, suggesting that our lameness model was effective. No differences were seen between treatment groups. When analyzed by visual lameness score, differences were seen in heart rate, contact surface area, contact pressure, and cortisol concentrations. Area under the time-effect curves, determined by using the trapezoidal rule, had results similar to the repeated measures data, except for a difference in period for electrodermal activity. This amphotericin B-induced synovitis-arthritis model is a useful tool for studying changes associated with lameness in cattle. Sodium salicylate was not effective in providing analgesia after lameness. PMID:19620655

Kotschwar, J L; Coetzee, J F; Anderson, D E; Gehring, R; KuKanich, B; Apley, M D

2009-08-01

186

The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate  

PubMed Central

Background NPR1 is a gene of Arabidopsis thaliana required for the perception of salicylic acid. This perception triggers a defense response and negatively regulates the perception of jasmonates. Surprisingly, the application of methyl jasmonate also induces resistance, and NPR1 is also suspected to be relevant. Since an allelic series of npr1 was recently described, the behavior of these alleles was tested in response to methyl jasmonate. Results The response to methyl jasmonate of different npr1s alleles and NPR1 paralogs null mutants was measured by the growth of a pathogen. We have also tested the subcellular localization of some npr1s, along with the protein-protein interactions that can be measured in yeast. The localization of the protein in npr1 alleles does not affect the response to methyl jasmonate. In fact, NPR1 is not required. The genes that are required in a redundant fashion are the BOPs. The BOPs are paralogs of NPR1, and they physically interact with the TGA family of transcription factors. Conclusions Some npr1 alleles have a phenotype in this response likely because they are affecting the interaction between BOPs and TGAs, and these two families of proteins are responsible for the resistance induced by methyl jasmonate in wild type plants. PMID:23116333

2012-01-01

187

Effect of urinary pH on the pharmacokinetics of salicylic acid, with its glycine and glucuronide conjugates in human.  

PubMed

We studied the effects of urinary pH on the kinetics of salicylic acid (SA) with its metabolites and assessed the contribution of alkaline hydrolysis of salicylic acid acyl glucuronide to the renal clearance of salicylic acid. Hydrolysis of SAAG in alkaline urine contributes marginally to the high renal clearance and excretion of salicylic acid, validating alkalinization of a patient with SA overdose. Under acidic urine conditions, salicylic acid (SA) had a terminal plasma t1/2 value of 3.29 +/- 0.52 hours while under alkaline urine conditions this t1/2 was significantly reduced to 2.50 +/- 0.41 hours (p = 0.0156). The total oral body clearance of salicylic acid under acidic conditions (1.38 +/- 0.43 l/h) is significantly lower than under alkaline urine conditions (2.27 +/- 0.83 l/h; p = 0.0410). The Km and Vmax values of SA, and its conjugates salicylic acid phenolic glucuronide (SAPG), salicyluric acid (SU) and salicyluric acid phenolic glucuronide (SUPG) did not differ statistically under acidic and alkaline urine conditions. The protein binding of SA was 93.8 +/- 1.0% and that of SU was 89.7 +/- 2.2% in vivo and in vitro. SUPG had a protein binding of 84.8 +/- 1.8%, while SAPG showed no protein binding at all. The renal excretion of salicylic acid depends strongly on the urinary pH. The percentage of the dose excreted unchanged increased from 2.3 +/- 1.5% under acidic conditions to 30.5 +/- 9.1% under alkaline conditions (p = 0.0006). Alkaline urine lowered by 50% the percentage of the dose excreted as SU (p = 0.0028), SAAG (p = 0.0013), and SUPG (p = 0.0296), while SAPG is only marginally lowered (p = 0.0589).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834163

Vree, T B; Van Ewijk-Beneken Kolmer, E W; Verwey-Van Wissen, C P; Hekster, Y A

1994-10-01

188

Release of 5-amino salicylic acid from acrylic type polymeric prodrugs designed for colon-specific drug delivery  

Microsoft Academic Search

New acrylic type polymeric systems having degradable ester or amide bonds linked to the bioactive agent 5-amino salicylic acid (5-ASA), were prepared and evaluated as materials for colon-specific drug delivery. Methacryloyloxyethyl 5-amino salicylate (MOES), and N-methacryloylaminoethyl 5-amino salicylamide (MAES) were prepared as the polymerizable derivatives of 5-ASA using activated ester methodology. The drug-containing monomers were free radically copolymerized with methacrylic

Soodabeh Davaran; Jalal Hanaee; Abbas Khosravi

1999-01-01

189

Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings  

Microsoft Academic Search

The effects of salicylic acid (SA) pretreatment on ascorbate–glutathione (GSH) cycle under chilling stress in eggplant seedlings\\u000a were investigated. Salicylic acid pretreatment improved chilling resistance of eggplant seedlings with maximum efficiency\\u000a at a concentration of 0.3%. The chilling injury index was decreased by 36.9% as compared to that of the control after 0.3%\\u000a SA pretreatment. Under chilling stress, seedlings pretreated

Shuangchen Chen; Liu Zimei; Jinxia Cui; Ding Jiangang; Xiaojian Xia; Dilin Liu; Jingquan Yu

190

Heterometallic CeIII-FeIII-salicylate networks: models for corrosion mitigation of steel surfaces by the 'green' inhibitor, Ce(salicylate)3.  

PubMed

The syntheses and structures of the novel Ce-Fe bimetallic complexes [[Fe(sal)2(bpy)]2Ce(NO3)(H2O)3].EtOH and [[Fe(sal)2(bpy)]4Ce2(H2O)11][salH]2.EtOH.3H2O (salH2 = salicylic acid) suggest Fe(3+)-sal2- units and Ce-OC(R)O-Fe bridging contribute to the formation of corrosion inhibitive layers on steel surfaces exposed to [Ce(salH)3(H2O)]. PMID:12478763

Deacon, Glen B; Forsyth, Craig M; Behrsing, Thomas; Konstas, Kristina; Forsyth, Maria

2002-12-01

191

Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation.  

PubMed

Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols. PMID:15649397

Cho, Okyoung; Choi, Ki Young; Zylstra, Gerben J; Kim, Young-Soo; Kim, Seong-Ki; Lee, Joon H; Sohn, Ho-Yong; Kwon, Gi-Seok; Kim, Young Min; Kim, Eungbin

2005-02-18

192

Design and evaluation of 4-aminophenol and salicylate derivatives as free-radical scavenger.  

PubMed

This theoretical and experimental study describes the design and evaluation of the free-radical scavenging effect for the molecular association of 4-aminophenol and salicylate derivatives. For this purpose, we employed theoretical methods for the selection of antioxidant drugs and the rapid methods of evaluation: the 1,1-diphenyl-2-picrylhydrazyl radical and the thiobarbituric acid reactive substances in the lipid peroxidation initiated by Fe(2+) and ascorbic acid in human erythrocytes. The associate derivatives exhibited a more potent inhibition than the salicylic acid, while the benzoyl compound exhibited a more potent inhibition than paracetamol. The molecular parameters related to the electron distribution and structure (ionization potential and energy of the highest occupied molecular orbital) correlated very well with the antioxidant action of the compounds studied here in different tests. PMID:23405943

Borges, Rosivaldo S; Pereira, Glaécia A N; Vale, Joyce K L; França, Luiz C S; Monteiro, Marta C; Alves, Cláudio N; da Silva, Albérico B F

2013-03-01

193

Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.  

PubMed

Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions. PMID:25156390

Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

2014-01-01

194

A new class of salicylic acid derivatives for inhibiting YopH of Yersinia pestis.  

PubMed

Previously, we identified a class of salicylic acid derivatives that display inhibitory activity against the protein tyrosine phosphatase YopH from Yersinia pestis. Because docking study suggested that the large phenyl ring attaching to the salicylic acid core might be exposed to the solvent and might not contribute significantly to binding, we have developed a new class of compounds that no longer contain this phenyl ring. We first devised a synthetic scheme for the compounds and then developed an automated computational screening model surrounding this synthetic scheme to help select a small number of compounds for synthesis and experimental testing. Based on this computational screening model and the analysis of the structure-activity relationship of our previous class of compounds, we have synthesized eight compounds and found five that yield micromolar activity. When applying in a larger scale, the synthetic scheme and the computational screening model developed here should help to identify even more potent inhibitors in the future. PMID:25468042

Paudyal, Mahesh P; Wu, Li; Zhang, Zhong-Yin; Spilling, Christopher D; Wong, Chung F

2014-12-15

195

Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis  

PubMed Central

Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host–pathogen interactions. PMID:25156390

Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

2014-01-01

196

Preparation and characterization of an anti-inflammatory agent based on a zinc-layered hydroxide-salicylate nanohybrid and its effect on viability of Vero-3 cells  

PubMed Central

A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells. PMID:23345976

Ramli, Munirah; Hussein, Mohd Zobir; Yusoff, Khatijah

2013-01-01

197

ENZYMOLOGY OF ARSENIC METHYLATION  

EPA Science Inventory

Enzymology of Arsenic Methylation David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

198

Epigenomics: Methylation matters  

Microsoft Academic Search

Genome-wide maps of methylated cytosine bases at single-base-pair resolution in human cells reveal distinct differences between cell types. These maps provide a starting point to decode the function of this enigmatic mark.

Dirk Schübeler

2009-01-01

199

Inhibition of NF-kappaB by Sodium Salicylate and Aspirin  

Microsoft Academic Search

The transcription factor nuclear factor-kappa B (NF-kappa B) is critical for the inducible expression of multiple cellular and viral genes involved in inflammation and infection including interleukin-1 (IL-1), IL-6, and adhesion molecules. The anti-inflammatory drugs sodium salicylate and aspirin inhibited the activation of NF-kappa B, which further explains the mechanism of action of these drugs. This inhibition prevented the degradation

Elizabeth Kopp; Sankar Ghosh

1994-01-01

200

Terahertz Vibrational Modes of Crystalline Salicylic Acid by Numerical Model Using Periodic Density Functional Theory  

Microsoft Academic Search

The terahertz vibrational modes of crystalline salicylic acid at 1-6 THz were investigated using a vibrational calculation method in which the diagonalization of force constant matrix was estimated by periodic density functional calculations. The result proved sufficient to enable the terahertz vibrational modes to be assigned to lattice modes at 32.2-64.9 cm-1 coupled with translational and rotational modes, intermolecular bending

Shigeki Saito; Talgat M. Inerbaev; Hiroshi Mizuseki; Nobuaki Igarashi; Yoshiyuki Kawazoe

2006-01-01

201

Protection by aspirin of indomethacin-induced small intestinal damage in rats: mediation by salicylic acid  

Microsoft Academic Search

Most of non-steroidal anti-inflammatory drugs (NSAIDs) except aspirin (ASA) produce intestinal damage in rats. In the present study, we re-examined the intestinal toxic effect of ASA in rats, in comparison with various NSAIDs, and investigated why ASA does not cause damage in the small intestine, in relation to its metabolite salicylic acid (SA). Various NSAIDs (indomethacin; 10 mg\\/kg; flurbiprofen; 20

Koji Takeuchi; Shoko Hase; Hiroyuki Mizoguchi; Yusaku Komoike; Akiko Tanaka

2001-01-01

202

Influence of intravenous acetylsalicylic acid and sodium salicylate on human renal function and lithium clearance  

Microsoft Academic Search

The influence of intravenous acetylsalicylic acid (ASA; D,L-lysine-mono-acetylsalicylate), equimolar doses of sodium salicylate (SA) and placebo (P) on renal function has been studied in 6 healthy female volunteers, in 150 mmol sodium balance, and in lithium (Li) steady state with a plasma Li between 0.6 and 0.8 mmol\\/l. Following a bolus injection of 0.5 g ASA, 0.444 g SA or

I. W. Reimann; E. Golbs; C. Fischer; J. C. Frölich

1985-01-01

203

Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions  

Microsoft Academic Search

A quaternary ammonium-based room temperature ionic liquid trioctylmethylammonium salicylate (TOMAS) has been studied as an extractant of transition metal ions (Fe3+, Cu2+, Ni2+, Mn2+) in aqueous solutions. The effect of pH value on the recovery of metal ions has been investigated. The mechanism of extraction into the ionic liquid has been proposed. The possibility of stripping voltammetric determination of transition

Vladimir M. Egorov; Dmitry I. Djigailo; Dmitry S. Momotenko; Denis V. Chernyshov; Irina I. Torocheshnikova; Svetlana V. Smirnova; Igor V. Pletnev

2010-01-01

204

Identification of NPR1Dependent and Independent Genes Early Induced by Salicylic Acid Treatment in Arabidopsis  

Microsoft Academic Search

Salicylic acid (SA) plays a crucial role in stress resistance in plants by modifying the expression of a battery of genes. In this paper, we report the identification of a group of early SA-regulated genes of Arabidopsis (activated between 0.5–2.5 h), using the cDNA-amplified fragment length polymorphism technique (cDNA-AFLP). Using 128 different primer combinations, we identified several genes based on their

Francisca Blanco; Virginia Garretón; Nicolas Frey; Calixto Dominguez; Tomás Pérez-Acle; Dominique Van der Straeten; Xavier Jordana; Loreto Holuigue

2005-01-01

205

Salicylic Acid Activates a 48-kD MAP Kinase in Tobacco  

Microsoft Academic Search

The involvement of phosphorylalion\\/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses my- elin basic protein as a substrate. This kinase is called the p48

Shuqun Zhang; Daniel F. Klessig

1997-01-01

206

Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco  

Microsoft Academic Search

Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified sev- era1 proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in

Daniel F. Klessig

1997-01-01

207

Salicylic Acid Protects Potato Plants-from Phytoplasma-associated Stress and Improves Tuber Photosynthate Assimilation  

Microsoft Academic Search

During a pathogen attack, cells triggers the overproduction of reactive oxygen species causing oxidative stress and physiological\\u000a damage. Plants develop strategies using these reactive molecules for protection against pathogen attack. Phytoplasma are bacteria\\u000a lacking cell walls that inhabit plant phloem and reduce yield, tuber quality, and commercial harvest value. Sprayed salicylic\\u000a acid (SA) activated plant defense response against phytoplasma attack

Silvia Sánchez-Rojo; Humberto A. López-Delgado; Martha E. Mora-Herrera; Humberto I. Almeyda-León; Hilda Araceli Zavaleta-Mancera; David Espinosa-Victoria

2011-01-01

208

Anticorrosive properties of electrosynthesized poly(o-anisidine) coatings on copper from aqueous salicylate medium  

Microsoft Academic Search

Poly(o-anisidine) (POA) coatings were electrosynthesized on copper (Cu) from an aqueous solution containing o-anisidine and sodium salicylate by using cyclic voltammetry, galvanostatic and potentiostatic modes. The extent of corrosion protection offered by these coatings to Cu in aqueous 3% NaCl solution was evaluated by the open circuit potential measurements, potentiodynamic polarization technique and electrochemical impedance spectroscopy. Potentiodynamic polarization and electrochemical

Sudeshna Chaudhari; S. R. Sainkar; P. P. Patil

2007-01-01

209

Response of barley grains to the interactive e.ect of salinity and salicylic acid  

Microsoft Academic Search

Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water

M. A. El-Tayeb

2005-01-01

210

Thermodynamic and NMR study of aggregation of dodecyltrimethylammonium chloride in aqueous sodium salicylate solution  

Microsoft Academic Search

The complex aggregation processes of dodecyltrimethylammonium chloride (DTAC) have been studied in dilute solutions of sodium\\u000a salicylate (NaSal) by isothermal titration calorimetry and electrical conductivity at temperatures between 278.15 K and 318.15 K.\\u000a A structural transformation that was dependent on the concentrations of DTAC and NaSal was observed. The micellization process\\u000a in dilute solutions of DTAC has been subjected to a detailed

Bojan Šarac; Janez Cerkovnik; Bernard Ancian; Guillaume Mériguet; Gaëlle M. Roger; Serge Durand-Vidal; Marija Bešter-Roga?

211

Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid  

NASA Astrophysics Data System (ADS)

Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 ?m. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

2012-07-01

212

Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium.  

PubMed

A bioassay was developed and standardized for the rapid, specific, and quantitative assessment of naphthalene and salicylate bioavailability by use of bioluminescence monitoring of catabolic gene expression. The bioluminescent reporter strain Pseudomonas fluorescens HK44, which carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism, was used. The physiological state of the reporter cultures as well as the intrinsic regulatory properties of the naphthalene degradation operon must be taken into account to obtain a high specificity at low target substrate concentrations. Experiments have shown that the use of exponentially growing reporter cultures has advantages over the use of carbon-starved, resting cultures. In aqueous solutions for both substrates, naphthalene and salicylate, linear relationships between initial substrate concentration and bioluminescence response were found over concentration ranges of 1 to 2 orders of magnitude. Naphthalene could be detected at a concentration of 45 ppb. Studies conducted under defined conditions with extracts and slurries of experimentally contaminated sterile soils and identical uncontaminated soil controls demonstrated that this method can be used for specific and quantitative estimations of target pollutant presence and bioavailability in soil extracts and for specific and qualitative estimations of napthalene in soil slurries. PMID:16348717

Heitzer, A; Webb, O F; Thonnard, J E; Sayler, G S

1992-06-01

213

Changes in actin dynamics are involved in salicylic acid signaling pathway.  

PubMed

Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. PMID:24767113

Matoušková, Jind?iška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Ji?ina; Martinec, Jan; Valentová, Olga

2014-06-01

214

Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium  

SciTech Connect

A bioassay was developed and standardized for the rapid, specific, and quantitative assessment of naphthalene and salicylate bioavailability by use of bioluminescence monitoring of catabolic gene expression. The bioluminescent reporter strain Pseudomonas fluorescens HK44, which carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism, was used. The physiological state of the reporter cultures as well as the intrinsic regulatory properties of the naphthalene degradation operon must be taken into account to obtain a high specificity at low target substrate concentrations. Experiments have shown that the use of exponentially growing reporter cultures has advantages over the use of carbon-starved, resting cultures. In aqueous solutions for both substrates, naphthalene and salicylate, linear relationships between initial substrate concentration and bioluminescence response were found over concentration ranges of 1 to 2 orders of magnitude. Naphthalene could be detected at a concentration of 45 ppb. Studies conducted under defined conditions with extracts and slurries of experimentally contaminated sterile soils and identical uncontaminated soil controls demonstrated that this method can be used for specific and quantitative estimations of target pollutant presence and bioavailability in soil extracts and for specific and qualitative estimations of napthalene in soil slurries.

Heitzer, A.; Thonnard, J.E.; Sayler, G.S.; Webb, O.F. (Univ. of Tennessee, Knoxville (United States))

1992-06-01

215

Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis  

PubMed Central

Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

2015-01-01

216

Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat  

PubMed Central

A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits. PMID:22496535

Chrostowski, Michael; Salvi, Richard J.; Allman, Brian L.

2012-01-01

217

Chemical changes in Ulmus minor xylem tissue after salicylic acid or carvacrol treatments are associated with enhanced resistance to Ophiostoma novo-ulmi.  

PubMed

Application of endogenous plant hormone salicylic acid (SA) or essential oil component carvacrol (CA) in elms enhances tree resistance to the Dutch elm disease pathogen, although the effect of these compounds on tree metabolism is unknown. The chemical changes induced by SA or CA treatments in Ulmus minor were studied through gas chromatography-mass spectrometry (GC-MS) analysis of xylem tissues. Treatments consisted of fortnightly irrigating seedlings with water, SA or CA at 600 mg L?¹. The chemical composition of the xylem tissues sampled from treated trees was significantly altered depending on the treatment type. SA treatment induced an accumulation of the sinapyl alcohol, a precursor of lignin and other phenylpropanoid-derived products. CA treatment induced an accumulation of the methyl esters of palmitic, linoleic and stearic acids. Both treatments resulted in early bud burst and SA significantly reduced sapwood radial growth, possibly as a consequence of a trade-off between tree growth and tree defence. The enhanced resistance provided by these treatments is discussed. PMID:22910373

Martín, Juan A; Solla, Alejandro; García-Vallejo, María C; Gil, Luis

2012-11-01

218

Synthesis, characterization and adsorption properties of diethylenetriamine-modified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution.  

PubMed

We report an effective approach for tailoring the pore textural properties and surface polarity of a hypercrosslinked resin to enhance its adsorption capacity and selectivity for removing salicylic acid from aqueous solution. Four hypercrosslinked resins were synthesized by controlling the reaction time of the self Friedel-Crafts reaction of chloromethylated polystyrene-co-divinylbenzene, and then modified with diethylenetriamine to adjust their surface polarity. The resins were characterized with N(2) adsorption for pore textural properties, Fourier transform infrared spectroscopy (FT-IR) for surface functional groups, chemical analysis for residual chlorine content and weak basic exchange capacity. Adsorption equilibrium, kinetics and breakthrough performance were determined for the removal of salicylic acid from aqueous solution on a selected resin HJ-M01. The equilibrium adsorption capacity of salicylic acid on HJ-M01 is significantly higher than that on its precursor HJ-11 and a few commercial adsorbents including AB-8, XAD-4 and XAD-7. The dynamic adsorption capacity of salicylic acid on HJ-M01 was found to be 456.4 mg/L at a feed concentration of 1000 mg/L and 294 K. The used resin could be fully regenerated with 1% sodium hydroxide solution. The hypercrosslinked resins being developed were promising alternatives to commercial adsorbents for removing salicylic acid and other volatile organic compounds (VOCs) from aqueous solution. PMID:22482881

Huang, Jianhan; Jin, Xiaoying; Mao, Jinglin; Yuan, Bin; Deng, Rujie; Deng, Shuguang

2012-05-30

219

Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats.  

PubMed

In human, salicylate-induced tinnitus sometimes occurs a few days after its administration, but the chronic effects of salicylate in animal models are not fully known. In this study, we revealed the distribution of active cells in the rat auditory brainstem by staining an activity marker Fos-protein after multiple daily injections of salicylate. Experimental animals were first given five daily doses of sodium salicylate (250 mg/kg, i.p.). On day 6 they were placed inside a sound room for 8 h before sacrifice. Immunohistochemistry showed a significant increase in the number of Fos-positive cells at the inferior colliculus (IC), particularly its central division. At the cochlear nucleus (CN), only a few Fos-stains were found at the dorsal nucleus while no Fos-stain appeared at the ventral nucleus. The scarcity of Fos-stains at the CN reflected more a lack of external sound inputs than an adaptation in Fos-expression. Since Fos-stains in CN could still be induced on day 6 following brief tonal stimulation. Results are consistent with the hypothesis that salicylate-induced tinnitus is a phantom sound perception related to overactivity of cells at the IC. PMID:12583883

Wu, Jiunn Liang; Chiu, Tzai Wen; Poon, Paul Wai Fung

2003-02-01

220

Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection.  

PubMed

The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1. PMID:24633701

Zhou, Tao; Murphy, Alex M; Lewsey, Mathew G; Westwood, Jack H; Zhang, Heng-Mu; González, Inmaculada; Canto, Tomás; Carr, John P

2014-06-01

221

Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection  

PubMed Central

The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1. PMID:24633701

Zhou, Tao; Murphy, Alex M.; Lewsey, Mathew G.; Westwood, Jack H.; Zhang, Heng-Mu; González, Inmaculada; Canto, Tomás

2014-01-01

222

40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...  

Code of Federal Regulations, 2014 CFR

...2014-07-01 false Butyl acrylate, polymer with substituted methyl styrene, methyl...Substances § 721.6920 Butyl acrylate, polymer with substituted methyl styrene, methyl...substance identified as butyl acrylate, polymer with substituted methyl styrene,...

2014-07-01

223

40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...  

Code of Federal Regulations, 2013 CFR

...2013-07-01 false Butyl acrylate, polymer with substituted methyl styrene, methyl...Substances § 721.6920 Butyl acrylate, polymer with substituted methyl styrene, methyl...substance identified as butyl acrylate, polymer with substituted methyl styrene,...

2013-07-01

224

40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Butyl acrylate, polymer with substituted methyl styrene, methyl...Substances § 721.6920 Butyl acrylate, polymer with substituted methyl styrene, methyl...substance identified as butyl acrylate, polymer with substituted methyl styrene,...

2010-07-01

225

Metabolic production of methylated selenium species requires adequate methylation status  

Technology Transfer Automated Retrieval System (TEKTRAN)

Obesity negatively impacts methylation status and markers of methylation status vary according to selenium status in supplemented subjects. We have proposed that disruptions in methylation capacity induced by obesity compromise demonstrable anti-cancer effects of Se supplementation. In order to addr...

226

Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew.  

PubMed

Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed. PMID:23880093

Tayeh, Christine; Randoux, Béatrice; Bourdon, Natacha; Reignault, Philippe

2013-12-15

227

Study of supramolecular frameworks having aliphatic dicarboxylic acids, N,N?-bis(salicyl)ethylenediamine and N,N?-bis(salicyl)butylenediamine  

NASA Astrophysics Data System (ADS)

The reaction of bases (L1 and L2) (where L1 = N,N?-bis(salicyl)ethylenediamine, L2 = N,N?-bis(salicyl)butylenediamine) with dicarboxylic acids [adipic acid (1,6-Hexanedioic acid, AA), pimelic acid (1,7-Heptanedioic acid, PA) and suberic acid (1,8-Octanedioic acid, SUA] yielded the corresponding six new ionic salts viz., [1/2L1H+?1/2AA-?1/2AA] (1), [2 × 1/2L1H+?PA2-?CHCl3] (2) [1/2L1H+?1/2SUA-] (3), [1/2L2H+?1/2AA-?2CH3OH] (4), [1/2L2H+?1/2PA-] (5) and [1/2L2H+?1/2SUA-] (6), respectively. Theses salts were characterized by elemental analysis, FT-IR, NMR, X-ray crystallography, and theoretically by means of Gaussian 09. The X-ray crystallographic studies revealed that the proton transfer occurred from acid to base. It also demonstrated that different type of hydrogen bond interactions between cations and anions were responsible for the supramolecular frameworks. The optimized structures of these salts were calculated in terms of the density functional theory. The curve fitting analysis between experimental and simulated data of structural parameters was done, and found statistically close. The orientation of molecules was remained same in both the gas and solid phases. The thermal studies of these salts were investigated by TG-DTG.

Goel, Nidhi; Kumar, Naresh

2014-08-01

228

DNA Methylation and Cancer Diagnosis  

PubMed Central

DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

2013-01-01

229

Targeted delivery of salicylic acid from acne treatment products into and through skin: role of solution and ingredient properties and relationships to irritation  

Microsoft Academic Search

Salicylic acid (SA) is a beta hydroxy acid and has multifunctional uses in the treatment of various diseases in skin such as acne, psoriasis, and photoaging. One problem often cited as associated with salicylic acid is that it can be quite irritating at pH 3-4, where it exhibits the highest activity in the treatment of skin diseases. We have identified

LINDA RHEIN; BHASKAR CHAUDHURI; NUR JIVANI; H. Fares; A. Davis

2004-01-01

230

Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory  

ERIC Educational Resources Information Center

Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

Clay, Matthew D.; McLeod, Eric J.

2012-01-01

231

Signaling requirements and role of salicylic acid in HRT-and rrt-mediated resistance to turnip crinkle virus in Arabidopsis  

E-print Network

Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Di-17 elicits a hypersensitive. Keywords: turnip crinkle virus, salicylic acid, defense, Arabidopsis, signaling. Introduction Plants have

Kachroo, Pradeep

232

Kenaf methyl esters  

Technology Transfer Automated Retrieval System (TEKTRAN)

Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

233

Kapok oil methyl esters  

Technology Transfer Automated Retrieval System (TEKTRAN)

The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

234

Nutrients and DNA Methylation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Epigenetics is a new mechanism responsible for development, aging, and disease process such as cancer development. One major epigenetic phenomenon is DNA methylation, which attributes to gene expression and integrity. Deepening the knowledge on one-carbon metabolism is very important to understandin...

235

DNA methylation profiling in nanochannels  

Microsoft Academic Search

We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200nm2. The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD), with high signal contrast and low background. DNA barcodes consisting of methylated

Shuang Fang Lim; Alena Karpusenko; John J. Sakon; Joseph A. Hook; Tyra A. Lamar; Robert Riehn

2011-01-01

236

DNA METHYLATION, CANCER SUSCEPTIBILITY, AND NUTRIENT INTERACTIONS  

Technology Transfer Automated Retrieval System (TEKTRAN)

DNA methylation is an important epigenetic mechanism of transcriptional control. DNA methylation plays an essential role in maintaining cellular function, and changes in methylation patterns may contribute to the development of cancer. Aberrant methylation of DNA (global hypomethylation accompanied ...

237

Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.  

PubMed

This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments. PMID:23545907

Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

2013-03-01

238

Comparative effects of using alcohol, natural drying, and salicylic sugar powder on umbilical stump detachment of neonates.  

PubMed

This study compares the effectiveness of alcohol, natural drying, and salicylic sugar powder on umbilical separation time of the neonate in our high-humidity region. From September 2007 to May 2008, a total of 143 neonates in a community hospital were divided into 3 groups according to their birth month in sequence. Each umbilical care regimen was randomly assigned to a 3-month period. Data on occurrence of omphalitis and cord separation time were collected by telephone follow-up until stump separation. The salicylic sugar powder group had the lowest rates of colonization and shortest cord separation time compared with the natural drying and alcohol groups. No omphalitis developed in any of the 3 groups. Natural drying and salicylic sugar powder are safe and effective ways to care for the umbilical cord stump in high-humidity regions. Nursing professionals should consider choosing a more effective umbilical care regimen and provide mothers with thorough instruction. PMID:22843010

Liu, Mei-Fang; Lee, Tzu-Ying; Kuo, Ying-Ling; Lien, Man-Chen

2012-01-01

239

Salicylic acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized solar cells.  

PubMed

Two series dyes of azo-bridged zinc porphyrins have been devised, synthesized, and performed in dye-sensitized solar cells, in which salicylic acids and azo groups were introduced as a new anchoring group and ?-conjugated bridge via a simple synthetic procedure. The representation of the new dyes has been investigated by optical, photovoltaic, and electrochemical means. The photoelectric conversion efficiency of their DSSC devices has been improved compared with other DSSC devices sensitized by symmetrical porphyrin dyes. The results revealed that tridentate binding modes between salicylic acid and TiO2 nanoparticles could enhance the efficiency of electron injection. The binding modes between salicylic acid and TiO2 nanoparticles may play a crucial role in the photovoltaic performance of DSSCs. PMID:24229086

Gou, Faliang; Jiang, Xu; Li, Bo; Jing, Huanwang; Zhu, Zhenping

2013-12-11

240

Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.  

PubMed

Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1?AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1?AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity. PMID:23961939

Hackmann, Christian; Korneli, Christin; Kutyniok, Magdalene; Köster, Tino; Wiedenlübbert, Matthias; Müller, Caroline; Staiger, Dorothee

2014-03-01

241

Salicylate restores transport function and anion exchanger activity of missense pendrin mutations.  

PubMed

The SLC26A4 gene encodes the transmembrane protein pendrin, which is involved in the homeostasis of the ion concentration of the endolymph of the inner ear, most likely by acting as a chloride/bicarbonate transporter. Mutations in the SLC26A4 gene cause sensorineuronal hearing loss. However, the mechanisms responsible for such loss have remained unknown. Therefore, in this study, we focused on the function of ten missense pendrin mutations (p.P123S (Pendred syndrome), p.M147V (NSEVA), p.K369E (NSEVA), p.A372V (Pendred syndrome/NSEVA), p.N392Y (Pendred syndrome), p.C565Y (NSEVA), p.S657N (NSEVA), p.S666F (NSEVA), p.T721M (NSEVA) and p.H723R (Pendred syndrome/NSEVA)) reported in Japanese patients, and analyzed their cellular localization and anion exchanger activity using HEK293 cells transfected with each mutant gene. Immunofluorescent staining of the cellular localization of the pendrin mutants revealed that p.K369E and p.C565Y, as well as wild-type pendrin, were transported to the plasma membrane, while 8 other mutants were retained in the cytoplasm. Furthermore, we analyzed whether salicylate, as a pharmacological chaperone, restores normal plasma membrane localization of 8 pendrin mutants retained in the cytoplasm to the plasma membrane. Incubation with 10 mM of salicylate of the cells transfected with the mutants induced the transport of 4 pendrin mutants (p.P123S, p.M147V, p.S657Y and p.H723R) from the cytoplasm to the plasma membrane and restored the anion exchanger activity. These findings suggest that salicylate might contribute to development of a new method of medical treatment for sensorineuronal hearing loss caused by the mutation of the deafness-related proteins, including pendrin. PMID:20826203

Ishihara, Kenji; Okuyama, Shuhei; Kumano, Shun; Iida, Koji; Hamana, Hiroshi; Murakoshi, Michio; Kobayashi, Toshimitsu; Usami, Shinichi; Ikeda, Katsuhisa; Haga, Yoichi; Tsumoto, Kohei; Nakamura, Hiroyuki; Hirasawa, Noriyasu; Wada, Hiroshi

2010-12-01

242

Sequential determination of salicylic and acetylsalicylic acids by amperometric multisite detection flow injection analysis.  

PubMed

An amperometric multisite detection flow injection analysis (FIA) system was developed for sequential determination of 2 analytes with a single sample injection and single detector. Tubular composite carbon electrodes with an inner diameter similar to that of the FIA manifold tubing were constructed so that measurements could be made without impairing the sample plug hydrodynamic characteristics. The electrochemical behavior of the tubular voltammetric cell in a low-dispersion FIA manifold and the behavior of the FIA system incorporating this type of voltammetric cell intended for multisite detection were evaluated by performing measurements with potassium hexacyanoferrate(II). Feasibility of the approach was demonstrated in the sequential determination of salicylic and acetylsalicylic acids in pharmaceutical products at a fixed potential of 0.98 V. The system allows sequential determination of salicylic acid concentrations ranging from 1.0 x 10(-5) to 5.0 x 10(-5) M and acetylsalicylic acid concentrations between 1.0 x 10(-3) and 5.0 x 10(-3) M with good precision on both detection sites and with relative standard deviations (RSDs) > or = 1.5% (n = 10) and 2.1% (n = 10), respectively. A comparison of these results with those of the U.S. Pharmacopeia procedure showed RSDs <5.0 and 1.0% for salicylic acid and acetylsalicylic acid, respectively. The proposed method enables 15 determinations per hour, which corresponds to the analysis of approximately 8 samples per hour. The detection limits of the methodology were approximately 3.5 x 10(-6) and 1.1 x 10(-5) M, respectively, for the first and second monitoring sites. PMID:12477186

Catarino, Rita I L; Garcia, M Beatriz Q; Lapa, Rui A S; Lima, José L F C; Barrado, Enrique

2002-01-01

243

Loss of a callose synthase results in salicylic acid-dependent disease resistance.  

PubMed

Plants attacked by pathogens rapidly deposit callose, a beta-1,3-glucan, at wound sites. Traditionally, this deposition is thought to reinforce the cell wall and is regarded as a defense response. Surprisingly, here we found that powdery mildew resistant 4 (pmr4), a mutant lacking pathogen-induced callose, became resistant to pathogens, rather than more susceptible. This resistance was due to mutation of a callose synthase, resulting in a loss of the induced callose response. Double-mutant analysis indicated that blocking the salicylic acid (SA) defense signaling pathway was sufficient to restore susceptibility to pmr4 mutants. Thus, callose or callose synthase negatively regulates the SA pathway. PMID:12920300

Nishimura, Marc T; Stein, Monica; Hou, Bi-Huei; Vogel, John P; Edwards, Herb; Somerville, Shauna C

2003-08-15

244

Enterobactin Protonation and Iron Release: Structural Characterization of the Salicylate Coordination Shift in Ferric Enterobactin  

PubMed Central

The siderophore enterobactin (Ent) is produced by many species of enteric bacteria to mediate iron uptake. This iron scavenger can be reincorporated by the bacteria as the ferric complex [FeIII(Ent)]3- and is subsequently hydrolyzed by an esterase to facilitate intracellular iron release. Recent literature reports on altered protein recognition and binding of modified enterobactin increase the significance of understanding the structural features and solution chemistry of ferric enterobactin. The structure of the neutral protonated ferric enterobactin complex [FeIII(H3Ent)]0 has been the source of some controversy and confusion in the literature. To demonstrate the proposed change of coordination from the tris-catecholate [FeIII(Ent)]3- to the tris-salicylate [FeIII(H3Ent)]0 upon protonation, the coordination chemistry of two new model compounds N,N’,N”-tris[2-(hydroxybenzoyl)carbonyl]cyclotriseryl trilactone (SERSAM) and N,N’,N”-tris[2-hydroxy,3-methoxy(benzoyl)carbonyl]cyclotriseryl trilactone (SER(3M)SAM) was examined in solution and solid state. Both SERSAM and SER(3M)SAM form tris-salicylate ferric complexes with spectroscopic and solution thermodynamic properties (with log ?110 values of 39 and 38 respectively) similar to those of [FeIII(H3Ent)]0. The fits of EXAFS spectra of the model ferric complexes and the two forms of ferric enterobactin provided bond distances and disorder factors in the metal coordination sphere for both coordination modes. The protonated [FeIII(H3Ent)]0 complex (dFe-O = 1.98 Å, ?2stat(O) = 0.00351(10) Å2) exhibits a shorter average Fe-O bond length but a much higher static Debye-Waller factor for the first oxygen-shell than the catecholate [FeIII(Ent)]3- complex (dFe-O = 2.00 Å, ?2stat(O) = 0.00067(14) Å2). 1H NMR spectroscopy was used to monitor the amide bond rotation between the catecholate and salicylate geometries using the gallic complexes of enterobactin; [GaIII(Ent)]3- and [GaIII(H3Ent)]0. The ferric salicylate complexes display quasi-reversible reduction potentials from ?89 mV to ?551 mV (relative to the normal hydrogen electrode NHE) which supports the feasibility of a low pH iron release mechanism facilitated by biological reductants. PMID:16819888

Abergel, Rebecca J.; Warner, Jeffrey A.; Shuh, David K.; Raymond, Kenneth N.

2011-01-01

245

One-stop Genomic DNA Extraction by Salicylic Acid Coated Magnetic Nanoparticles  

PubMed Central

Salicylic acid coated magnetic nanoparticles were prepared via a modified, one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by non-specific binding of the particles, as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared to traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally-friendly. PMID:23911528

Zhou, Zhongwu; Kadam, Ulhas; Irudayaraj, Joseph

2014-01-01

246

Neuroprotection by Aspirin and Sodium Salicylate Through Blockade of NF-kappaB Activation  

NASA Astrophysics Data System (ADS)

Aspirin (acetylsalicylic acid) is a commonly prescribed drug with a wide pharmacological spectrum. At concentrations compatible with amounts in plasma during chronic anti-inflammatory therapy, acetylsalicylic acid and its metabolite sodium salicylate were found to be protective against neurotoxicity elicited by the excitatory amino acid glutamate in rat primary neuronal cultures and hippocampal slices. The site of action of the drugs appeared to be downstream of glutamate receptors and to involve specific inhibition of glutamate-mediated induction of nuclear factor kappa B. These results may contribute to the emerging theme of anti-inflammatory drugs and neurodegeneration.

Grilli, Mariagrazia; Pizzi, Marina; Memo, Maurizio; Spano, Pierfranco

1996-11-01

247

Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide  

SciTech Connect

A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

Lekshmy, R. K., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com; Thara, G. S., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com [Department of Chemistry, University College, Thiruvananthapuram- 695 034, Kerala (India)

2014-10-15

248

Fluorometric determination of EDTA and EGTA using terbium-salicylate complex.  

PubMed

A method for determining EDTA (ethylenediaminetetraacetic acid) based on a highly fluorescent terbium-EDTA-salicylic acid complex formation was developed. EDTA from as low as a few picomoles to as high as several nanomoles can be determined in a microtiter plate in 10-20 min. Ethyleneglycol-bis(2-aminoethoxy)-tetraacetic acid (EGTA) also can be determined by the same method, but its sensitivity is ca. 14-fold lower. Interestingly, diethylenetriamine tetraacetic acid did not form fluorescent complex with terbium under the same conditions. PMID:11373087

Lee, Y C

2001-06-01

249

Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide  

NASA Astrophysics Data System (ADS)

A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

Lekshmy, R. K.; Thara, G. S.

2014-10-01

250

Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. 'Santa Rosa'.  

PubMed

Plum fruit has a short shelf life with a rapid deterioration in quality after harvest. The primary goal of this study is to investigate and compare the effect of putrescine and salicylic acid on quality properties and antioxidant activity of plum during storage. The plum fruits (cv. 'Santa Rosa') were harvested at the mature ripe stage, and dipped in different concentrations of putrescine (1, 2, 3 and 4 mmol/L) and salicylic acid (1, 2, 3 and 4 mmol/L), as well as distilled water (control) for 5 min. The fruits were then packed in boxes with polyethylene covers and stored at 4 °C with 95 % relative humidity for 25 days. A factorial trial based on completely randomized block design with 4 replications was carried out. The weight loss, fruit firmness, total soluble solids, titratable acidity, pH, maturity index, ascorbic acid, total phenolics and antioxidant activity at 0, 5, 10, 15, 20 and 25 days after harvest were recorded. During the storage period, the weight loss, total soluble solids, pH and maturity index increased significantly while the fruit firmness, titratable acidity, ascorbic acid, total phenolics and antioxidant activity decreased significantly (P?salicylic acid and control) in all measured parameters. The data showed that the weight loss and softening of the plum fruits were decreased significantly by the use of putrescine and salicylic acid. Also, exogenous treatments of putrescine and salicylic acid are found to be effective in maintaining titratable acidity, ascorbic acid, total phenolics and antioxidant activity in plum fruits during storage at 4 °C. It was concluded that postharvest treatment of plum fruit with putrescine and salicylic acid were effective on delaying the ripening processes and can be used commercially to extend the shelf life of plum fruit with acceptable fruit quality. PMID:25829585

Davarynejad, Gholam Hossein; Zarei, Mehdi; Nasrabadi, Mohamad Ebrahim; Ardakani, Elham

2015-04-01

251

Understanding the relationship between DNA methylation and histone lysine methylation?  

PubMed Central

DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

Rose, Nathan R.; Klose, Robert J.

2014-01-01

252

Synthesis and biological evaluation of salicylate-based compounds as a novel class of methionine aminopeptidase inhibitors.  

PubMed

A series of salicylate-based compounds were designed and synthesized based on the simple function group replacement from our previously reported catechol-containing inhibitors of methionine aminopeptidase (MetAP). Some of these salicylate derivatives showed similar potency and metalloform selectivity, and some showed considerable antibacterial activity. These findings are consistent with our previous conclusion that Fe(II) is the likely metal used by MetAP in bacterial cells and provide new lead structures that can be further developed as novel antibacterial agents. PMID:22001086

Wang, Wen-Long; Chai, Sergio C; Ye, Qi-Zhuang

2011-12-01

253

Ascorbic acid and salicylic acid mitigate nacl stress in Caralluma tuberculata Calli.  

PubMed

Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure. PMID:24744157

Rehman, Riaz Ur; Zia, Muhammad; Abbasi, Bilal Haider; Lu, Gang; Chaudhary, Muhammad Fayyaz

2014-06-01

254

Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.  

PubMed

Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2). PMID:24413046

Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

2014-02-28

255

Proteomic analysis of differentially expressed proteins induced by salicylic acid in suspension-cultured ginseng cells.  

PubMed

In this study, optimized 2-DE sample preparation methodologies were established for suspension-cultured ginseng cells. Three commonly used protein extraction methods (Trichloroacetic acid-acetone, urea/thiourea and phenol extraction method) were evaluated for proteomic analysis of suspension cultures of ginseng. A comparative analysis of suspension-cultured ginseng cells proteome induced by salicylic acid (SA) was reported. The results demonstrated that phenol extraction method was the best method based on protein extraction efficiency and the good quality of 2-DE patterns for suspension-cultured ginseng cells. Fifteen differentially expressed proteins induced by salicylic acid in suspension-cultured ginseng cells were identified by MALDI-TOF-MS. These identified proteins were involved in defense and stress response, energy metabolism, signal transduction/transcription, protein synthesis and metabolism, and photosynthesis. Chaperonin 60, related to defense responses, was more abundant in suspension-cultured ginseng cells after application of SA. Vacuolar ATPase subunit B was newly induced in SA treatment. PMID:24600313

Sun, Jiaman; Fu, Junfan; Zhou, Rujun

2014-04-01

256

Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.  

PubMed

The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 ?M of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

2014-09-01

257

Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid.  

PubMed

This paper presents a novel approach to improve the barrier and mechanical properties of extruded glycerol-plasticized vital wheat gluten sheets. The sheets were extruded with a single screw extruder at alkaline conditions using 3-5 wt % NaOH. Salicylic acid (SA), known to improve the extrudability of wheat gluten, was also added alone or in combination with NaOH. Oxygen transmission rate and volatile mass measurements, tensile tests, protein solubility, glycerol migration, infrared spectroscopy, and electrophoresis were used to assess the properties of the extrudate. Electrophoresis showed that the gluten/glycerol sheet and the sheet with 3 wt % NaOH and 1 wt % SA contained the same building blocks in terms of proteins and protein subunits, although the protein solubility in these samples was different. The oxygen barrier, at dry conditions, was improved significantly with the addition of NaOH. On the other hand, the addition of salicylic acid yielded poorer barrier properties. The extrudate was placed on a blotting paper and its aging properties were investigated during the first 120 days. It was observed that the extrudate with 3 wt % NaOH had the most suitable combination of properties (low oxygen permeability, large strain at break, and relatively small aging-induced changes in mechanical properties); the reason is probably due to low plasticizer migration and an optimal protein aggregation/polymerization. PMID:19178277

Ullsten, N Henrik; Cho, Sung-Woo; Spencer, Gwen; Gällstedt, Mikael; Johansson, Eva; Hedenqvist, Mikael S

2009-03-01

258

Derivatives of Salicylic Acid as Inhibitors of YopH in Yersinia pestis  

PubMed Central

Yersinia pestis causes diseases ranging from gastrointestinal syndromes to bubonic plague and could be misused as a biological weapon. As its protein tyrosine phosphatase YopH has already been demonstrated as a potential drug target, we have developed two series of forty salicylic acid derivatives and found sixteen to have micromolar inhibitory activity. We designed these ligands to have two chemical moieties connected by a flexible hydrocarbon linker to target two pockets in the active site of the protein to achieve binding affinity and selectivity. One moiety possessed the salicylic acid core intending to target the phosphotyrosine-binding pocket. The other moiety contained different chemical fragments meant to target a nearby secondary pocket. The two series of compounds differed by having hydrocarbon linkers with different lengths. Before experimental co-crystal structures are available, we have performed molecular docking to predict how these compounds might bind to the protein and to generate structural models for performing binding affinity calculation to aid future optimization of these series of compounds. PMID:20560978

Huang, Zunnan; He, Yantao; Zhang, Xian; Gunawan, Andrea; Wu, Li; Zhang, Zhong-Yin; Wong, Chung F.

2010-01-01

259

Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew.  

PubMed

During insect feeding, a complex interaction takes place at the feeding site, with plants deciphering molecular information associated with the feeding herbivore, resulting in the upregulation of the appropriate defenses, and the herbivore avoiding or preventing these defenses from taking effect. Whiteflies can feed on plants without causing significant damage to mesophyll cells, making their detection extra challenging for the plant. However, whiteflies secrete honeydew that ends up on the plant surface at the feeding site and on distal plant parts below the feeding site. We reasoned that this honeydew, since it is largely of plant origin, may contain molecular information that alerts the plant, and we focused on the defense hormone salicylic acid (SA). First, we analyzed phloem sap from tomato plants, on which the whiteflies are feeding, and found that it contained salicylic acid (SA). Subsequently, we determined that in honeydew more than 80% of SA was converted to its glycoside (SAG). When whiteflies were allowed to feed from an artificial diet spiked with labeled SA, labeled SAG also was produced. However, manually depositing honeydew on undamaged plants resulted still in a significant increase in endogenous free SA. Accordingly, transcript levels of PR1a, an SA marker gene, increased whereas those of PI-II, a jasmonate marker gene, decreased. Our results indicate that whiteflies manipulate the SA levels within their secretions, thus influencing the defense responses in those plant parts that come into contact with honeydew. PMID:25563984

VanDoorn, Arjen; de Vries, Michel; Kant, Merijn R; Schuurink, Robert C

2015-01-01

260

Molecular coupling of DNA methylation and histone methylation  

PubMed Central

The combinatorial pattern of DNA and histone modifications constitutes an epigenetic ‘code’ that shapes gene-expression patterns by enabling or restricting the transcriptional potential of genomic domains. DNA methylation is associated with histone modifications, particularly the absence of histone H3 lysine 4 methylation (H3K4me0) and the presence of H3K9 methylation. This article focuses on three protein domains (ATRX–Dnmt3–Dnmt3L [ADD], Cys–X–X–Cys [CXXC] and the methyl-CpG-binding domain [MBD]) and the functional implications of domain architecture in the mechanisms linking histone methylation and DNA methylation in mammalian cells. The DNA methyltransferase DNMT3a and its accessory protein DNMT3L contain a H3K4me0-interacting ADD domain that links the DNA methylation reaction with unmodified H3K4. The H3K4 methyltransferase MLL1 contains a CpG-interacting CXXC domain that may couple the H3K4 methylation reaction to unmethylated DNA. Another H3K4 methyltransferase, SET1, although lacking an intrinsic CXXC domain, interacts directly with an accessory protein CFP1 that contains the same domain. The H3K9 methyltransferase SETDB1 contains a putative MBD that potentially links the H3K4 methylation reaction to methylated DNA or may do so through the interaction with the MBD containing protein MBD1. Finally, we consider the domain structure of the DNA methyltransferase DNMT1, its accessory protein UHRF1 and their associated proteins, and propose a mechanism by which DNA methylation and histone methylation may be coordinately maintained through mitotic cell division, allowing for the transmission of parental DNA and for the histone methylation patterns to be copied to newly replicated chromatin. PMID:21339843

Hashimoto, Hideharu; Vertino, Paula M; Cheng, Xiaodong

2011-01-01

261

Histone Acetylation And Methylation  

Microsoft Academic Search

Post-synthetic modification of histone proteins in chromatin architecture plays a central role in the epigenetic regulation\\u000a of transcription. Histone acetylation and methylation are the two major modifications that function as a specific transcription\\u000a regulator in response to various cellular signals. Albeit the mechanism of action of these modifications in transcription\\u000a is not well understood, recent discovery of histone acetyltransferase (HAT)

Woojin An

262

Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.  

PubMed Central

An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical light guide by using strontium alginate. This biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either naphthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 jet fuel or an aqueous leachate from a manufactured-gas plant soil, since naphthalene was present in both pollutant mixtures. PMID:8017932

Heitzer, A; Malachowsky, K; Thonnard, J E; Bienkowski, P R; White, D C; Sayler, G S

1994-01-01

263

Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium  

SciTech Connect

An optical whole-cell biosensor based on a genetically engineered bioluminescent catabolic reporter bacterium was developed for continuous on-line monitoring of naphthalene and salicylate bioavailability and microbial catabolic activity potential in waste streams. The bioluminescent reporter bacterium, Pseudomonas fluorescens HK44, carries a transcriptional nahG-luxCDABE fusion for naphthalene and salicylate catabolism. Exposure to either compound resulted in inducible bioluminescence. The reporter culture was immobilized onto the surface of an optical guide by using strontium alginate. The biosensor probe was then inserted into a measurement cell which simultaneously received the waste stream solution and a maintenance medium. Exposure under defined conditions to both naphthalene and salicylate resulted in a rapid increase in bioluminescence. The magnitude of the response and the response time were concentration dependent. Good reproducibility of the response was observed during repetitive perturbations with either napthalene or salicylate. Exposure to other compounds, such as glucose and complex nutrient medium or toluene, resulted in either minor bioluminescence increases after significantly longer response times compared with naphthalene or no response, respectively. The environmental utility of the biosensor was tested by using real pollutant mixtures. A specific bioluminescence response was obtained after exposure to either an aqueous solution saturated with JP-4 fuel or an aqueous leachate from a manufactured-gas plant soil, since napthalene was present in both pollutant mixtures. 43 refs., 4 figs., 1 tab.

Heitzer, A.; Malachowsky, K.; Thonnard, J.E. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

1994-05-01

264

Exogenous salicylic acid enhance the resistance of Wheat seedlings to Hessian Fly (Diptera: Cecidomyiidae) infestation under heat stress  

Technology Transfer Automated Retrieval System (TEKTRAN)

Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

265

Changes in the bacterial flora of skin of processed broiler chickens washed in solutions of salicylic acid  

Technology Transfer Automated Retrieval System (TEKTRAN)

Changes in the number of bacteria recovered from the skin of processed broilers after each of five consecutive washings in salicylic acid (SA) solutions was examined. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in distilled water (control), 10% S...

266

Salicylic Acid 6% in an ammonium lactate emollient foam vehicle in the treatment of mild-to-moderate scalp psoriasis.  

PubMed

Scalp psoriasis is a common life-altering skin condition causing a great deal of distress. It significantly affects quality of life and is difficult to manage. Treatment can provide variable results, often impacting patient compliance with therapy. Salicylic acid is used as adjunctive therapy to other topical treatments because of its marked keratolytic effect. Its effectiveness as a monotherapy is not fully understood. An emollient foam formulation of 6% salicylic acid (Salkera) in an ammonium lactate vehicle has recently become available. Efficacy, tolerability and patient acceptability of salicylic acid 6% emollient foam were assessed in an open-label pilot study of 10 subjects with scalp psoriasis. All psoriasis severity parameters were reduced with a significant decrease in Psoriasis Scalp Severity Index (PSSI) score from 15.3 to 3.0 after four weeks of monotherapy (P<0.001). Sixty percent of subjects were either "completely cleared" or "almost cleared" of their psoriasis. No adverse events (AEs) were reported. All signs and symptom tolerability measures demonstrated statistically significant score decreases with the exception of oiliness severity and patient-reported burning tolerability. Salicylic acid 6% emollient foam provides a useful option in the treatment of psoriasis that is highly effective, well tolerated and acceptable to patients. PMID:21369643

Kircik, Leon

2011-03-01

267

Characterisation of SalRAB a Salicylic Acid Inducible Positively Regulated Efflux System of Rhizobium leguminosarum bv viciae 3841  

PubMed Central

Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394

Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.

2014-01-01

268

Effect of multiple washing in salicylic acid on the bacterial flora of the skin of processed broiler chickens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Experiments were conducted to determine changes in the bacterial flora of the skin of processed broilers after each of five consecutive washings in solutions of the keratolytic agent, salicylic acid. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in ...

269

Down Regulation of Virulence Factors of Pseudomonas aeruginosa by Salicylic Acid Attenuates Its Virulence on Arabidopsis thaliana and Caenorhabditis elegans  

Microsoft Academic Search

Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria.

B. Prithiviraj; H. P. Bais; T. Weir; B. Suresh; E. H. Najarro; B. V. Dayakar; H. P. Schweizer; J. M. Vivanco

2005-01-01

270

An Arabidopsis thaliana methyltransferase Capable of Methylating Farnesoic Acid  

SciTech Connect

We previously reported the identification of a new family of plant methyltransferases (MTs), named the SABATH family, that use S-adenosyl-l-methionine (SAM) to methylate a carboxyl moiety or a nitrogen-containing functional group on a diverse array of plant compounds. The Arabidopsis genome alone contains 24 distinct SABATH genes. To identify the catalytic specificities of members of this protein family in Arabidopsis, we screened recombinantly expressed and purified enzymes with a large number of potential substrates. Here, we report that the Arabidopsis thaliana gene At3g44860 encodes a protein with high catalytic specificity towards farnesoic acid (FA). Under steady-state conditions, this farnesoic acid carboxyl methyltransferase (FAMT) exhibits K{sub M} values of 41 and 71 {mu}M for FA and SAM, respectively. A three-dimensional model of FAMT constructed based upon similarity to the experimentally determined structure of Clarkia breweri salicylic acid methyltransferase (SAMT) suggests a reasonable model for FA recognition in the FAMT active site. In plants, the mRNA levels of At3g44860 increase in response to the exogenous addition of several compounds previously shown to induce plant defense responses at the transcriptional level. Although methyl farnesoate (MeFA) has not yet been detected in Arabidopsis, the presence of a FA-specific carboxyl methyltransferase in Arabidopsis capable of producing MeFA, an insect juvenile hormone made by some plants as a presumed defense against insect herbivory, suggests that MeFA or chemically similar compounds are likely to serve as new specialized metabolites in Arabidopsis.

Yang,Y.; Yuan, J.; Ross, J.; Noel, J.; Pichersky, E.

2006-01-01

271

DNA methylation program during development  

PubMed Central

DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novo-synthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation constitute ample complexity for an instructional program for orchestrated gene expression and development. The forum of the current discussion and review are whether there is such a program, if so what the DNA methylation program entails, and what environment can change the DNA methylation program. The translational implication of the DNA methylation program is also proposed. PMID:23687512

ZHOU, Feng C.

2013-01-01

272

40 CFR 721.1576 - 1,3-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.  

Code of Federal Regulations, 2010 CFR

...ethenyloxy)methyl] cyclohexyl] methyl] ester. 721.1576 Section 721.1576 Protection...ethenyloxy)methyl] cyclohexyl] methyl] ester. (a) Chemical substance and significant...ethenyloxy)methyl] cyclohexyl] methyl] ester (PMN P-98-1162; CAS No....

2010-07-01

273

Atmospheric photoxidation of methyl sulfide  

NASA Astrophysics Data System (ADS)

Major gas phase products of the photooxidation of methyl sulfide (CH3SCH3) under atmospheric conditions are sulfur dioxide, formaldehyde, ozone and nitric acid, along with smaller amounts of methyl nitrate. Substantial formation of light-scattering aerosols was observed, with inorganic sulfate and methane sulfonic acid as major components of the aerosol. Experimental results are discussed in terms of reaction pathways initiated by reaction of methyl sulfide with the hydroxyl radical.

Grosjean, D.; Lewis, R.

1982-10-01

274

Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation  

PubMed Central

Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

2013-01-01

275

Methylation and liver cancer.  

PubMed

Cancer evolution at all stages (including initiation, progression and invasion) is driven by both epigenetic abnormalities and genetic alterations. Epigenetics refer to any structural modification of genomic regions, which lead to modification in gene expression without alterations in DNA sequence. Progressive deregulation of epigenetic process is being increasingly recognized in liver carcinogenesis. This review will provide an overview of DNA methylation, one of the most commonly epigenetic events, which profoundly contributes to liver cancer initiation and progression. Furthermore, the recent advancements in the knowledge of epigenetic reprogramming underlying hepatic cancer stem cells will be highlighted. PMID:23806627

Raggi, Chiara; Invernizzi, Pietro

2013-12-01

276

Salicylic acid-dependent gene expression is activated by locomotion mucus of different molluscan herbivores  

PubMed Central

Slugs and snails specifically secrete mucus to aid their locomotion. This mucus is the contact material between molluscan herbivores and plants. We have recently shown that the locomotion mucus of the slug Deroceras reticulatum contains salicylic acid (SA).1 When applied to wounded leaves of Arabidopsis thaliana this mucus induces the activity of the SA-responsive pathogenesis related 1 (PR1) promotor1. Here we analyzed PR1 promotor activity in response to treatments with locomotion mucus of eight slugs and snails. Although none of the mucus contained SA, their application still elicited PR1 promotor activity. These data provide further insights into the complex interactions between molluscan herbivores and plants. PMID:25346792

Meldau, Stefan; Kästner, Julia; von Knorre, Dietrich; Baldwin, Ian T

2014-01-01

277

Fluorescence characteristics of 5-amino salicylic acid: An iodide recognition study  

NASA Astrophysics Data System (ADS)

In this paper we report the effect of iodide on the fluorescence of 5-amino salicylic acid (5-ASA). In the absence of iodide, prominent blue green (BG) emission band at ˜465 nm (broad) is observed in aprotic solvents whereas violet (V) emission at ˜408 nm, blue green (BG) at ˜480 nm and green (G) at ˜500 nm are observed in case of protic solvents. On the addition of iodide ion (I-), the intensity of BG fluorescence is enhanced in case of aprotic solvents. On the other hand the G band is enhanced in protic solvents and decrease in the intensity of the V band is observed. The effect of hydrogen bonding as well as the interplay of neutral and ionic species is invoked to explain the observed results. The study projects the application of this system in iodide recognition in protic/aprotic environments.

Arora, Priyanka; Suyal, Kanchan; Joshi, Neeraj K.; Joshi, Hem Chandra; Pant, Sanjay

278

Optical trapping investigation on the effects of salicylate on electromechanical properties of plasma membranes  

NASA Astrophysics Data System (ADS)

The ability of cellular membranes to generate electrically-induced mechanical force (EMF) has been demonstrated in many cell types, including cochlear outer hair cells, axons, and some cultured mammalian cells. Models of membrane based EMF generation are based on an interaction between the transmembrane electric field and membrane surface charge. We use a technique that combines optical trapping with voltage clamping to investigate the effects of an electrically charged amphipathic agent on EMF by membrane tethers. Our preliminary results indicate that salicylate, a negatively charged amphipathic agent, which is also known to cause reversible hearing loss and reduce outer hair cell electromotility, reduces EMF in membrane tethers. These measurements provide a basis to better understand the role of membrane charge properties in EMF generation.

Lee, Linda; Qian, Feng; Brownell, William E.; Anvari, Bahman

2006-02-01

279

Efficacy of Myrtus communis L. and Descurainia sophia L. Versus Salicylic Acid for Wart Treatment  

PubMed Central

Background: Wart is a skin disease with circular appendages, which is called “suloul” in Iranian traditional medicine (ITM). According to ITM literature, warts have different types and causes. The most important mechanism is excretion of materials (Khelt) from body to skin and mucus; its causative material is often phlegm, black bile or a combination of them. To treat warts, it is necessary to consider the patient’s life style, modify his dietary intake and moisturize his temperament. Objectives: This study aimed to compare Myrtus communis L. and Descurainia sophia L. as a method of ITM, versus salicylic acid in treatment of wart. Patients and Methods: In this study, conducted in Yazd, Iran, 100 patients were selected and randomly divided into four groups. Group 1) salicylic acid, group 2) salicylic acid and D. sophia L. group 3) M. communis L. group 4) M. communis L. and D. sophia L. Numbers, sizes of lesions and symptoms, on days 0, 20, 40 and 90 were examined and analyzed. The relapse rate was investigated three months after. Changes of sizes and numbers of warts in each period of time in each group, compared to baseline, were assessed by Wilcoxon Signed Rank test. To compare these changes between the groups, Kruskal Wallis test was used. Results: In this study 100 patients participated, 69% of which were female. Compared to baseline, mean ± SD of changes for the number of warts in day 40 were 1.12 ± 4.2, 0.96 ± 2.5, 1.32 ± 5.1 and 0.04 ± 0.2 respectively in the four groups (P = 0.02). Mean ± SD of changes for the number of warts in day 90 were 1.84 ± 4.5, 1.56 ± 2.8, 1.24 ± 5.1 and 0.04 ± 0.6 respectively in the four groups (P = 0.03). In addition mean ± SD of changes for the size of warts in day 40 were 0.96 ± 1.8, 1.03 ± 2.4, 2.47 ± 3.0 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Mean ± SD of changes for the size of warts in day 90 were 1.24 ± 2.1, 1.3 ± 2.3, 2.45 ± 3.1 and 0.45 ± 1.7 respectively in the four groups (P < 0.001). Relapse was not seen in any groups after three months. The frequency of side effects was similar after three months. Conclusions: M. communis L. can be used as a topical treatment for warts. It not only shows more rapid response than salicylic acid, but also has fewer side effects. It seems that D. sophia L. can modify the digestion process and patients can excrete large amounts of the substance that causes warts. Therefore, it is better to use it more than 40 days. According to our investigation, in ITM, considering the cause and mechanism of disease generation and the causing materials of the disease, different treatments should be applied for each patient. Although applying an appropriate treatment is necessary, a unique treatment for all the patients cannot be available. PMID:25558385

Ghadami Yazdi, Elham; Minaei, Mohamad Bagher; Hashem Dabaghian, Fataneh; Ebrahim Zadeh Ardakani, Mohamad; Ranjbar, Ali Mohammad; Rastegari, Mohamad; Ghadami Yazdi, Ali

2014-01-01

280

Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata.  

PubMed

The short-day plant, Lemna paucicostata (synonym Lemna aequinoctialis), was induced to flower when cultured in tap water without any additional nutrition under non-inductive long-day conditions. Flowering occurred in all three of the tested strains, and strain 6746 was the most sensitive to the starvation stress conditions. For each strain, the stress-induced flowering response was weaker than that induced by short-day treatment, and the stress-induced flowering of strain 6746 was completely inhibited by aminooxyacetic acid and l-2-aminooxy-3-phenylpropionic acid, which are inhibitors of phenylalanine ammonia-lyase. Significantly higher amounts of endogenous salicylic acid (SA) were detected in the fronds that flowered under the poor-nutrition conditions than in the vegetative fronds cultured under nutrition conditions, and exogenously applied SA promoted the flowering response. The results indicate that endogenous SA plays a role in the regulation of stress-induced flowering. PMID:22429781

Shimakawa, Aya; Shiraya, Takeshi; Ishizuka, Yuta; Wada, Kaede C; Mitsui, Toshiaki; Takeno, Kiyotoshi

2012-07-01

281

Salicylic Acid sans Aspirin in Animals and Man: Persistence in Fasting and Biosynthesis from Benzoic Acid  

PubMed Central

Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A 13C6 benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

2008-01-01

282

Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.  

PubMed

The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

2014-10-01

283

Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression  

PubMed Central

It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress. PMID:25852720

Herrera-Vásquez, Ariel; Salinas, Paula; Holuigue, Loreto

2015-01-01

284

Salicylic acid (SA) bioaccessibility from SA-based poly(anhydride-ester).  

PubMed

The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different (p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer). The release rates followed a zero-order release rate that was dependent on several factors, including (1) solubilization rate, (2) macroscopic erosion of the powdered polymer, (3) hydrolytic cleavage of the anhydride bonds, and (4) subsequent hydrolysis of the polymer precursor (SADG) to SA and diglycolic acid. PMID:25082798

Rogers, Michael A; Yan, Yim-Fan; Ben-Elazar, Karen; Lan, Yaqi; Faig, Jonathan; Smith, Kervin; Uhrich, Kathryn E

2014-09-01

285

Antagonism of the Stat3–Stat3 Protein Dimer with Salicylic Acid Based Small Molecules  

PubMed Central

More than 50 new inhibitors of the oncogenic Stat3 protein were identified through a structure–activity relationship (SAR) study based on the previously identified inhibitor S3I-201 (IC50 = 86 µm, Ki > 300 µm). A key structural feature of these inhibitors is a salicylic acid moiety, which, by acting as a phosphotyrosine mimetic, is believed to facilitate binding to the Stat3 SH2 domain. Several of the analogues exhibit higher potency than the lead compound in inhibiting Stat3 DNA binding activity, with an in vitro IC50 range of 18.7–51.9 µm, and disruption of Stat3–pTyr peptide interactions with Ki values in the 15.5–41 µm range. One agent in particular exhibited potent inhibition of Stat3 phosphorylation in both breast and multiple myeloma tumor cells, suppressed the expression of Stat3 target genes, and induced antitumor effects in tumor cells harboring activated Stat3 protein. PMID:21618433

Fletcher, Steven; Page, Brent D. G.; Zhang, Xialoei; Yue, Peibin; Li, Zhi Hua; Sharmeen, Sumaiya; Singh, Jagdeep; Zhao, Wei; Schimmer, Aaron D.; Trudel, Suzanne; Turkson, James; Gunning, Patrick T.

2011-01-01

286

NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants  

PubMed Central

Salicylic acid (SA) is a plant immune signal produced upon pathogen challenge to induce systemic acquired resistance (SAR). It is the only major plant hormone for which the receptor has not been firmly identified. SAR in Arabidopsis requires the transcription cofactor NPR1 (nonexpresser of PR genes 1), whose degradation serves as a molecular switch for SAR. Here we show that NPR1 paralogues, NPR3 and NPR4, are SA receptors that bind SA with different affinities and function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the npr3 npr4 mutant accumulates higher levels of NPR1 and is insensitive to SAR induction. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge. PMID:22699612

Fu, Zheng Qing; Yan, Shunping; Saleh, Abdelaty; Wang, Wei; Ruble, James; Oka, Nodoka; Mohan, Rajinikanth; Spoel, Steven H.; Tada, Yasuomi; Zheng, Ning; Dong, Xinnian

2012-01-01

287

Kinetics and Mechanism of Nanoparticles-Catalyzed Piperidinolysis of Anionic Phenyl Salicylate  

PubMed Central

The values of the relative counterion (X) binding constant RXBr (=KX/KBr, where KX and KBr represent cetyltrimethylammonium bromide, CTABr, micellar binding constants of Xv? (in non-spherical micelles), v = 1,2, and Br? (in spherical micelles)) are 58, 68, 127, and 125 for Xv? = 1?, 12?, 2?, and 22?, respectively. The values of 15?mM CTABr/[NavX] nanoparticles-catalyzed apparent second-order rate constants for piperidinolysis of ionized phenyl salicylate at 35°C are 0.417, 0.488, 0.926, and 0.891?M?1?s?1 for NavX = Na1, Na21, Na2, and Na22, respectively. Almost entire catalytic effect of nanoparticles catalyst is due to the ability of nonreactive counterions, Xv?, to expel reactive counterions, 3?, from nanoparticles to the bulk water phase. PMID:25478597

Khan, M. Niyaz

2014-01-01

288

Methyl Bromide and Methyl Chloride Degradation in the Southern Ocean  

NASA Astrophysics Data System (ADS)

The oceans are both a source and sink for atmospheric methyl bromide and methyl chloride and play a significant role in the atmospheric budgets of these ozone-active gases. We have carried out a series of shipboard studies designed to characterize the loss rate of methyl halides in the surface ocean, using a 13C stable isotope incubation technique. Here we present the first degradation measurements of methyl bromide and methyl chloride in the Southern Ocean. The cruise was conducted from October to December, 2001, aboard the Australian icebreaker "Aurora Australis". The cruise track extended from Hobart, Tasmania to Buchanan Bay (Mertz Glacier) at the coast of Antarctica (46-67°S, 138-145°E). For methyl bromide, loss rate constants measured over the course of the cruise in unfiltered seawater samples ranged from 0.00 to 0.17 d-1 with a mean of 0.04ñ0.04 d-1 (n=102). Chemical loss rates in these waters were extremely low, because of the low seawater temperatures, and the observed loss rate constants are largely (98%) attributable to biological processes. For methyl chloride, loss rate constants measured over the course of the cruise in unfiltered seawater samples ranged from 0.00 to 0.22 d-1, with a mean of 0.07+/-0.08 (n=43). Loss in filtered samples was undetectable, as expected from the known rate of hydrolysis. As in the case of methyl bromide, the loss mechanism for methyl chloride is presumed to be biological. These results demonstrate that biological degradation of methyl bromide and methyl chloride can occur at significant rates even in very cold, polar waters, and explain the tendency for high latitude waters to be undersaturated with respect to atmospheric methyl bromide. These are the first open ocean observations of biological methyl chloride uptake. The high rates observed confirm earlier coastal measurements, and support the idea that the oceans can be a major sink for atmospheric methyl chloride.

Tokarczyk, R.; Goodwin, K.; Saltzman, E. S.

2002-12-01

289

Effect of salicylate on outer hair cell plasma membrane viscoelasticity: studies using optical tweezers  

NASA Astrophysics Data System (ADS)

The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.

Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman

2004-06-01

290

Hydrogen bonds in 1:1 complex of piperidine-3-carboxylic acid with salicylic acid  

NASA Astrophysics Data System (ADS)

The 1:1 complex between the zwitterionic piperidinium-3-carboxylate (P3C) and salicylic acid (SAL), P3C·SAL, has been characterized by single crystal X-ray analysis, FTIR and NMR spectroscopy, and by DFT calculations. The crystals are orthorhombic, space group Pbca, with a = 11.6477(7), b = 9.1754(6), c = 23.5833(12) Å. An O sbnd H⋯O bridge (2.537(1) Å) links the SAL and P3C moieties. The proton in this H bond is located closer to the salicylic carboxylate group. In the P3C moiety, the piperidine ring adopts the chair conformation, and the carboxylate group is in the axial orientation and is stabilized by an intramolecular N +sbnd H⋯O hydrogen bond of 2.847(1) Å. In the crystal packing, two P3C·SAL units form a centrosymmetric dimer through a pair of intermolecular N +sbnd H⋯O bonds of 2.801(1) Å. The dimers form a zigzag chain linked via another N +sbnd H⋯O bond (2.799(1) Å). In the structures of the monomeric [P3C·SAL] and dimeric [(P3C·SAL) 2] species optimized by B3LYP/6-31G(d,p) calculations, both the inter- and intra-molecular hydrogen bonds are shorter than in the crystal. The FTIR spectrum shows a broad absorption in the 3100-2400 cm -1 region attributed to ?NH and ?OH vibrations. The broad absorption in the 1500-600 cm -1 region is attributed to the O sbnd H·O hydrogen bonds. The 1H and 13C NMR spectra have been analyzed to elucidate the structure of the P3C·SAL complex in solution. The GIAO magnetic isotropic shielding tensors have been used to predict the 1H and 13C chemical shifts in DMSO solution.

Bartoszak-Adamska, El?bieta; Dega-Szafran, Zofia; Krociak, Magdalena; Jaskolski, Mariusz; Szafran, Miros?aw

2009-02-01

291

The Effects of Salicylic Acid and Tobacco Mosaic Virus Infection on the Alternative Oxidase of Tobacco.  

PubMed Central

Salicylic acid (SA) is a signal in systemic acquired resistance and an inducer of the alternative oxidase protein in tobacco (Nicotiana tabacum cv Xanthi nc) cell suspensions and during thermogenesis in aroid spadices. The effects of SA on the levels of alternative oxidase protein and the pathogenesis-related 1a mRNA (a marker for systemic acquired resistance), and on the partitioning of electrons between the Cyt and alternative pathways were investigated in tobacco. Leaves were treated with 1.0 mM SA and mitochondria isolated at times between 1 h and 3 d after treatment. Alternative oxidase protein increased 2.5-fold within 5 h, reached a maximum (9-fold) after 12 h, and remained at twice the level of control plants after 3 d. Measurements of isotope fractionation of 18O by intact leaf tissue gave a value of 23% at all times, identical to that of control plants, indicating a constant 27 to 30% of electron-flow partitioning to the alternative oxidase independent of treatment with SA. Transgenic NahG tobacco plants that express bacterial salicylate hydroxylase and possess very low levels of SA gave a fractionation of 23% and showed control levels of alternative oxidase protein, suggesting that steady-state alternative oxidase accumulates in an SA-independent manner. Infection of plants with tobacco mosaic virus resulted in an increase in alternative oxidase protein in both infected and systemic leaves, but no increase was observed in comparably infected NahG plants. Total respiration rate and partitioning of electrons to the alternative pathway in virus-infected plants was comparable to that in uninfected controls. PMID:12223844

Lennon, A. M.; Neuenschwander, U. H.; Ribas-Carbo, M.; Giles, L.; Ryals, J. A.; Siedow, J. N.

1997-01-01

292

Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid  

NASA Astrophysics Data System (ADS)

Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

King, Angela G.

2009-08-01

293

DNA Methylation and Gene Function  

Microsoft Academic Search

In most higher organisms, DNA is modified after synthesis by the enzymatic conversion of many cytosine residues to 5-methylcytosine. For several years, control of gene activity by DNA methylation has been recognized as a logically attractive possibility, but experimental support has proved elusive. However, there is now reason to believe, from recent studies, that DNA methylation is a key element

Aharon Razin; Arthur D. Riggs

1980-01-01

294

Molecular Structure of Methyl benzoate  

NSDL National Science Digital Library

Methyl benzoate is used mainly as a perfume; it has a very pleasant smell and mixes well with scents of ylang ylang, musk, rose, and geranium. Methyl benzoate also acts as a solvent for cellulose esters, as a dying carrier, disinfectant additive, penetrating agent, and as a pesticide.

2002-10-11

295

Managing Nematodes without Methyl Bromide  

Technology Transfer Automated Retrieval System (TEKTRAN)

Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

296

Methods of DNA methylation detection  

NASA Technical Reports Server (NTRS)

The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

2010-01-01

297

Salicylic acid and derivatives anchored on poly(styrene- co-divinylbenzene) resin and membrane via a diazo bridge: Synthesis, characterisation and application to metal extraction  

Microsoft Academic Search

New materials for chelating solid-phase extraction have been prepared by grafting of salicylic acid and derivatives on poly(styrene-co-divinylbenzene) based sorbents. These sorbents are either resin bead-shaped Amberlite® XAD-4 or membrane disk-shaped Empore™ SDB-XC. Grafting has been achieved via –NN– spacer. The grafted ligands are salicylic acid (SA), its dimer form methylenedisalicylic acid (MDSA) and trimer form aurintricarboxylic form (ATA) in

Sabrina Boussetta; Catherine Branger; André Margaillan; Jean-Luc Boudenne; Bruno Coulomb

2008-01-01

298

Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants  

Microsoft Academic Search

Exogenous salicylic acid has been shown to confer tolerance against biotic and abiotic stresses. In the present work the ability\\u000a of its analogue, 4-hydroxybenzoic acid to increase abiotic stress tolerance was demonstrated: it improved the drought tolerance\\u000a of the winter wheat (Triticum aestivum L.) cv. Cheyenne and the freezing tolerance of the spring wheat cv. Chinese Spring. Salicylic acid, however,

E. Horváth; M. Pál; G. Szalai; E. Páldi; T. Janda

2007-01-01

299

Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374  

Microsoft Academic Search

Mutants of Pseudomonas fluorescens WCS374 defective in biosynthesis of the fluorescent siderophore pseu- dobactin still display siderophore activity, indicating the production of a second siderophore. A recombinant cosmid clone (pMB374-07) of a WCS374 gene library harboring loci necessary for the biosynthesis of salicylic acid (SA) and this second siderophore pseudomonine was isolated. The salicylate biosynthesis region of WCS374 was localized

JESUS MERCADO-BLANCO; KOEN M. G. M. VAN DER DRIFT; PER E. OLSSON; JANE E. THOMAS-OATES; LEENDERT C. VAN LOON; PETER A. H. M. BAKKER

2001-01-01

300

Enhanced Photocatalytic Degradation of Salicylic Acid in Water-ethanol Mixtures from Titanium Dioxide Grafted with Hexadecyltrichlorosilane  

NASA Astrophysics Data System (ADS)

The aim of this paper is to study the effect of the chemical modification on the photocatalytic properties of TiO2. The TiO2 Degussa-P25 nanoparticles are chemically modified using the hydrophobic organosilane hexadecyltrichlorosilane (HTS). The samples are employed as catalysts for salicylic acid photocatalytic oxidation in water-ethanol mixtures. The kinetics of salicylic acid photodegradation is investigated as a function of ethanol content in water-ethanol mixtures and initial HTS concentrations. The results indicate that the HTS groups are not degraded during the photocatalytic process. The TiO2 grafted by HTS is more efficient than bare TiO2 for the photodegradation process in presence of ethanol. The photodegradation process follows first order kinetics and the apparent rate constant increases linearly with the initial HTS concentration (amount of HTS grafted).

Kassir, Mounir; Roques-Carmes, Thibault; Assaker, Karine; Hamieh, Tayssir; Razafitianamaharavo, Angelina; Toufaily, Joumana; Villiéras, Frédéric

301

Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis  

PubMed Central

Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants. PMID:22567327

Dihazi, Abdelhi; Serghini, Mohammed Amine; Jaiti, Fatima; Daayf, Fouad; Driouich, Azeddine; Dihazi, Hassan; El Hadrami, Ismail

2011-01-01

302

Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis.  

PubMed

Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants. PMID:22567327

Dihazi, Abdelhi; Serghini, Mohammed Amine; Jaiti, Fatima; Daayf, Fouad; Driouich, Azeddine; Dihazi, Hassan; El Hadrami, Ismail

2011-01-01

303

Improved detection of salicylic acids using terbium-sensitized luminescence in aqueous micellar solutions of cetyltrimethylammonium chloride.  

PubMed

The determination of salicylic, p-aminosalicylic and 5-fluorosalicylic acids was investigated using terbium-sensitized luminescence in aqueous solutions. Formation of a ternary chelate between terbium, EDTA and the salicylic acid requires dissociation of the phenol group which is adjacent to the dissociated carboxylic group. The reaction is obtained in alkaline solutions and is enhanced in the presence of cetyltrimethylammonium chloride. As evidenced by absorbance and fluorescence measurements, the cationic surfactant plays an important role in the formation of the ternary chelate and then terbium luminescence depends mainly on the extent of chelate formation. Linearity is found over more than four orders of magnitude and detection limits are in the range (2-4) x 10(-10) mol l-1 for the three acids. PMID:10736862

Arnaud, N; Georges, J

1999-07-01

304

Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status.  

PubMed

Foliage of Coriandrum sativum is a rich source of natural folates amenable for enhancement through salicylic acid-mediated elicitation, thereby holding a great promise for natural-mode alleviation of this vitamin (B(9)) deficiency. In the present study we report salicylic acid-mediated differential elicitation of different forms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microwave-drying and bioaccessibilities from fresh and dried foliage. The first two compounds nearly doubled and the third increased sixfold post-elicitation, with all three showing concomitant increase in bioaccessibilities. Although a slight decrease in bioaccessibility was observed in dried foliage, over twofold increase of each form of folate upon elicitation would deliver much higher levels of natural folates from this traditional culinary foliage, which is widely used in many cuisines. Elicitor-mediated folate enhancement also imparted reduction of oxidative status and the enhancement of antioxidant enzyme activities in coriander foliage. PMID:23122099

Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

2013-01-15

305

Luminescent heptadentate Tb 3+ complex with pendant aza-15-crown-5 showing recognition of lactate and salicylate in aqueous solution  

Microsoft Academic Search

The coordinatedly unsaturated neutral complex TbL1 that possesses two labile metal-bound water molecules provides linear response to lactate in the range of 0–3.0mM at the simulated extracellular background with the variations of Tb luminescence lifetime as output; the maximal amplification of the luminescence intensity of TbL1 reaches a factor of 135 upon titration with aromatic antenna salicylate in the physiological

Cong Li; Wing-Tak Wong

2004-01-01

306

Orthogonal array design for the optimization of hollow fiber protected liquid-phase microextraction of salicylates from environmental waters  

Microsoft Academic Search

In the present study, a three phase-based hollow fiber protected liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) for the determination of salicylates in environmental waters was developed. The HF-LPME procedure was optimized by an L16(45) orthogonal array experimental design (OAD) with five factors at four levels. Under the optimal extraction condition (pHs of donor and receiving phases

Cong Zhang; Lei Ye; Li Xu

2011-01-01

307

Salt Stress Mitigation by Seed Priming with Salicylic Acid in Two Faba Bean Genotypes Differing in Salt Tolerance  

Microsoft Academic Search

The differential responses of two faba bean (Vicia faba L.) local Egyptian genotypes to salinity (0 or 140 mM NaCl) and seed priming with 0.2 mM salicylic acid (SA) were studied. Salinity caused no significant changes in dry weight and tissue water content of genotype 115, whereas they were significantly reduced in genotype 125. Genotype 115 exhibited higher accumulation of

M. M. AZOOZ

308

Improvement of pea ( Pisum sativum) seed vigour response by fish protein hydrolysates in combination with acetyl salicylic acid  

Microsoft Academic Search

Acetyl salicylic acid (ASA) and fish protein hydrolysate (FPH) were used for stimulation of vigour of pea (Pisum sativum) seeds. Pea seeds were pre-hydrated in water which contained 50 ?M of ASA, 2 ml l?1 of FPH (standardized mackerel hydrolysates) and 2 ml l?1 of a combination of ASA and FPH (ASA\\/FPH) for 24 h and followed by germination in

Nuri Andarwulan; Kalidas Shetty

1999-01-01

309

Molecular Structure of Methyl mercaptan  

NSDL National Science Digital Library

Methyl mercaptan is a colorless, flammable and volatile sulfur compound that is responsible for the rotten cabbage or burnt rubber aroma. This substance can be found in the blood, brain, and other tissues of humans and other animals, it is released from animal feces and occurs naturally in foods such as nuts and cheeses. The formation of methyl mercaptan is commonly noted as a problem in the process of the post-fermentation of wine. Despite the repulsive smell methyl mercaptan is used as a gas odorant, as an intermediate in the production of fungicides, as jet fuel additives, flavoring agents, plastics, as well as in the synthesis of methionines, and as catalysts.

2003-06-03

310

Evaluation of physicochemical properties, skin permeation and accumulation profiles of salicylic acid amide prodrugs as sunscreen agent.  

PubMed

Various amide prodrugs of salicylic acid were synthesised, and their physicochemical properties including lipophilicity, chemical stability and enzymatic hydrolysis were investigated. In vivo skin permeation and accumulation profiles were also evaluated using a combination of common permeation enhancing techniques such as the use of a supersaturated solution of permeants in an enhancer vehicle, a lipophilic receptor solution, removal of the stratum corneum and delipidisation of skin. Their capacity factor values were proportional to the degree of carbon-carbon saturation in the side chain. All these amides were highly stable in acetonitrile and glycerine. Amide prodrugs were converted to salicylic acid both in hairless mouse liver and skin homogenates. N-dodecyl salicylamide (C12SM) showed the lowest permeation of salicylic acid in skin compared to the other prodrugs, probably due to its low aqueous solubility. It had a high affinity for the stratum corneum and its accumulation was restricted to only the uppermost layer of skin. Thus, this amide prodrug could be a safer topical sunscreen agent with minimum potential for systemic absorption. PMID:21839822

Yan, Yi-Dong; Sung, Jun Ho; Lee, Dong Won; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Kim, Dong Wuk; Kim, Jong Oh; Piao, Ming Guan; Li, Dong Xun; Yong, Chul Soon; Choi, Han Gon

2011-10-31

311

DNA methylation in endometrial cancer  

PubMed Central

Endometrial cancer is the most commonly diagnosed gynecological cancer, and it has been shown to be a complex disease driven by abnormal genetic and epigenetic alterations, as well as environmental factors. Epigenetic changes resulting in aberrant gene expression are dynamic and modifiable features of many cancer types. A significant epigenetic change is aberrant DNA methylation. In this review, we review evidence on the role of aberrant DNA methylation, examining changes in relation to endometrial carcinogenesis, and report on recent advances in the understanding of the contribution of aberrant DNA methylation to endometrial cancer with the emphasis on the role of dietary/lifestyle and environmental factors, as well as opportunities and challenges of DNA methylation in endometrial cancer management and prevention. PMID:20543579

Freudenheim, Jo L

2010-01-01

312

Methylation: a regulator of HIV-1 replication?  

PubMed Central

Recent characterizations of methyl transferases as regulators of cellular processes have spurred investigations into how methylation events might influence the HIV-1 life cycle. Emerging evidence suggests that protein-methylation can positively and negatively regulate HIV-1 replication. How DNA- and RNA- methylation might impact HIV-1 is also discussed. PMID:17274823

Yedavalli, Venkat RK; Jeang, Kuan-Teh

2007-01-01

313

Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(III)-salicylate complexes  

NASA Astrophysics Data System (ADS)

Density functional theory (DFT) calculations were performed on the structures and water-exchange reactions of aqueous Al(III)-salicylate complexes. Based on the four models (gas phase (GP); polarizable continuum model (PCM), which estimates the bulk solvent effect; supermolecule model (SM), which considers the explicit solvent effect, and supermolecule-polarizable continuum model (SM-PCM), which accounts for both types of solvent effects), we systematically conducted this study by examining three different properties of the complexes. (1) The microscopic properties of the aqueous Al(III)-salicylate complexes were studied by optimizing their various structures (including the possible 1:1 mono- and bidentate complexes, cis and trans isomers of the 1:2 bidentate complexes and 1:3 bidentate complexes) at the B3LYP/6-311+G(d, p) level. (2) The 27Al and 13C NMR chemical shifts were calculated using the GIAO method at the HF/6-311+G(d, p) level. The calculation results show that the values obtained with the SM-PCM models are in good agreement with the experimental data available in the literature, indicating that the models we employed are appropriate for Al(III)-salicylate complexes. (3) The water-exchange reactions of 1:1 mono- and bidentate Al(III)-salicylate complexes were simulated using supermolecule models at the B3LYP/6-311+G(d, p) level. The logarithm of the water-exchange rate constant (log kex) of the 1:1 bidentate complex predicted using the “log kex-dAl-OH2” correlation is 4.0, which is in good agreement with the experimental value of 3.7, whereas the calculated range of log kex of the 1:1 monodentate complexes is 1.3-1.9. By effectively combining the results for the thermodynamic static structures with the simulations of the kinetic water-exchange reactions, this work promotes further understanding of the configurations and formation mechanism of Al(III)-salicylate complexes.

Shi, Wenjing; Jin, Xiaoyan; Dong, Shaonan; Bi, Shuping

2013-11-01

314

Nickel-catalyzed reductive methylation of alkyl halides and acid chlorides with methyl p-tosylate.  

PubMed

Methylation of unactivated alkyl halides and acid chlorides under Ni-catalyzed reductive coupling conditions led to efficient formation of methylated alkanes and ketones using methyl p-methyl tosylate as the methylation reagent. Moderate to excellent coupling yields as well as excellent functional group tolerance were observed under the present mild and easy-to-operate reaction conditions. PMID:25333482

Liang, Zhuye; Xue, Weichao; Lin, Kunhua; Gong, Hegui

2014-11-01

315

Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore  

PubMed Central

Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

2014-01-01

316

Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures.  

PubMed

The plant response to different stress types can occur through stimulus recognition and the subsequent signal transduction through second messengers that send information to the regulation of metabolism and the expression of defense genes. The phospholipidic signaling pathway forms part of the plant response to several phytoregulators, such as salicylic acid (SA), which has been widely used to stimulate secondary metabolite production in cell cultures. In this work, we studied the effects of SA treatment on [(32)-P]Pi phospholipid turnover and phospholipase D (PLD) activity using cultured Capsicum chinense cells. In cultured cells, the PIP2 turnover showed changes after SA treatment, while the most abundant phospholipids (PLs), such as phosphatidylcholine (PC), did not show changes during the temporal course. SA treatment significantly increased phosphatidic acid (PA) turnover over time compared to control cells. The PA accumulation in cells treated with 1-butanol showed a decrease in messengers; at the same time, there was a 1.5-fold increase in phosphatidylbutanol. These results suggest that the participation of the PLD pathway is a source of PA production, and the activation of this mechanism may be important in the cell responses to SA treatment. PMID:25766278

Rodas-Junco, B A; Muñoz-Sánchez, J A; Vázquez-Flota, F; Hernández-Sotomayor, S M T

2015-05-01

317

Is Salicylic Acid a Translocated Signal of Systemic Acquired Resistance in Tobacco?  

PubMed Central

Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites. PMID:12242358

Shulaev, V.; Leon, J.; Raskin, I.

1995-01-01

318

Identification of didecyldimethylammonium salts and salicylic Acid as antimicrobial compounds in commercial fermented radish kimchi.  

PubMed

Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected. PMID:25779084

Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

2015-03-25

319

Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.  

PubMed

Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae. PMID:24328494

Rahman, Alamgir; Kuldau, Gretchen A; Uddin, Wakar

2014-06-01

320

Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice.  

PubMed

We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes. PMID:24686568

Meguro, Ayano; Sato, Yutaka

2014-01-01

321

Resistance and biomass in Arabidopsis: a new model for salicylic acid perception.  

PubMed

Salicylic acid (SA) is an essential hormone for plant defence and development. SA perception is usually measured by counting the number of pathogens that grow in planta upon an exogenous application of the hormone. A biological SA perception model based on plant fresh weight reduction caused by disease resistance in Arabidopsis thaliana is proposed. This effect is more noticeable when a chemical analogue of SA is used, like Benzothiadiazole (BTH). By spraying BTH several times, a substantial difference in plant biomass is observed when compared with the mock treatment. Such difference is dose-dependent and does not require pathogen inoculation. The model is robust and allows for the comparison of different Arabidopsis ecotypes, recombinant inbreed lines, and mutants. Our results show that two mutants, non-expresser of pathogenesis-related genes 1 (npr1) and auxin resistant 3 (axr3), fail to lose biomass when BTH is applied to them. Further experiments show that axr3 responds to SA and BTH in terms of defence induction. NPR1-related genotypes also confirm the pivotal role of NPR1 in SA perception, and suggest an active program of depletion of resources in the infected tissues. PMID:20040060

Canet, Juan V; Dobón, Albor; Ibáñez, Federico; Perales, Lorena; Tornero, Pablo

2010-02-01

322

Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens.  

PubMed

Resistant willow (Salix viminalis L.) genotypes react with a rapid hypersensitive response (HR) when attacked by the gall midge Dasineura marginemtorquens Bremi. In general, infected plant genotypes or species that react hypersensitively to pathogens accumulate salicylic acid (SA) locally and systemically. Thus, pathogen-induced HRs are strongly associated with accumulation of SA. In this study, we tested the hypothesis that SA mediates resistance in S. viminalis against D. marginemtorquens. By means of HPLC, we found accumulation of SA in a resistant S. viminalis genotype, but not in a susceptible genotype one to two days after D. marginemtorquens egg hatch. To test whether this correlation between accumulation of SA and resistance is causal, we treated a normally susceptible S. viminalis genotype exogenously with SA and found a decreased larval survival frequency on treated shoots. Thus, the hypothesis that SA mediates resistance in the S. viminalis/D. marginemtorquens system was strongly supported. Interestingly, great similarity seems to exist between the biochemical signaling associated with pathogen-induced HRs and this gall-inducer induced HR. PMID:12647860

Ollerstam, Olof; Larsson, Stig

2003-01-01

323

Salicylic Acid Regulates Plasmodesmata Closure during Innate Immune Responses in Arabidopsis[C][W  

PubMed Central

In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell–cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell–cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell–cell coupling requires an ENHANCED DESEASE RESISTANCE1– and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1–dependent SA pathway in conjunction with the regulator of plasmodesmal gating PLASMODESMATA-LOCATED PROTEIN5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop. PMID:23749844

Wang, Xu; Sager, Ross; Cui, Weier; Zhang, Chong; Lu, Hua; Lee, Jung-Youn

2013-01-01

324

Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.  

PubMed

Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and ?-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance. PMID:24025239

Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

2013-11-01

325

A native chromatin extraction method based on salicylic acid coated magnetic nanoparticles and characterization of chromatin.  

PubMed

Native chromatin contains valuable genetic, epigenetic and structural information. Though DNA and nucleosome structures are well defined, less is known about the higher-order chromatin structure. Traditional chromatin extraction methods involve fixation, fragmentation and centrifugation, which might distort the higher-order structural information of native chromatin. We present a simple approach to isolate native chromatin from cultured mammalian cells using salicylic acid coated magnetic nanoparticles (SAMNPs). Chromatin is magnetically separated from cell lysates without any filtration or high-speed centrifugation. The purified chromatin is suitable for the examination of histone modifications and other chromatin associated proteins as confirmed by western blotting analysis. The structure of chromatin was determined by confocal fluorescence microscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). High-resolution AFM and TEM images clearly show a classical bead-on-a-string structure. The higher-order chromatin structure is also determined via electron microscopy. Our method provides a simple, inexpensive and an environmentally friendly means to extract native chromatin not possible before, suitable for both biochemical and structural analysis. PMID:25475154

Zhou, Zhongwu; Irudayaraj, Joseph

2015-02-01

326

Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus.  

PubMed

Salicylic acid (o-hydroxy benzoic acid) (SA) induced a rapid dose-dependent membrane hyperpolarization (within seconds) and a modification of the proton secretion (within minutes) of Mimosa pudica pulvinar cells at concentrations higher than 0.1mM. Observations on plasma membrane vesicles isolated from pulvinar tissues showed that SA acted directly at the membrane level through a protonophore action as suggested by the inhibition of the proton gradient and the lack of effect on H(+)-ATPase catalytic activity. Comparative data obtained with protonophores (carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol) and inhibitors of ATPases (vanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol) corroborated this conclusion. Consequently, the collapse of the proton motive force led to an impairment in membrane functioning. This impairment is illustrated by the inhibition of the ion-driven turgor-mediated seismonastic reaction of the pulvinus following SA treatment. SA acted in a specific manner as its biosynthetic precursor benzoic acid induced much milder effects and the m- and p-OH benzoic acid derivatives did not trigger similar characteristic effects. Therefore, SA may be considered both a membrane signal molecule and a metabolic effector following its uptake in the cells. PMID:23487303

Saeedi, Saed; Rocher, Françoise; Bonmort, Janine; Fleurat-Lessard, Pierrette; Roblin, Gabriel

2013-04-01

327

Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants.  

PubMed Central

Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance. PMID:12228656

Meuwly, P.; Molders, W.; Buchala, A.; Metraux, J. P.

1995-01-01

328

Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk  

PubMed Central

Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: ‘early’ (expression peak at 1 d postinfestation (dpi)); ‘intermediate’ (4 dpi); and ‘late’, whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA–SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor. PMID:25297722

Alba, Juan M; Schimmel, Bernardus C J; Glas, Joris J; Ataide, Livia M S; Pappas, Maria L; Villarroel, Carlos A; Schuurink, Robert C; Sabelis, Maurice W; Kant, Merijn R

2015-01-01

329

Percutaneous absorption of salicylic acid--in vitro and in vivo studies.  

PubMed

Salicylic acid (SA) has been used in pharmaceutical and cosmetic preparations for many years. Although there are a number of studies which report on the permeation characteristics of this molecule in vitro, to our knowledge the disposition of SA in vivo has not been studied in detail. In the present work we prepared a range of SA formulations with different gelling agents. Permeation of SA from the formulations was studied in vitro using conventional Franz cells and in vivo using confocal Raman spectroscopy (CRS). Selection of the gelling agent clearly influenced the efficacy of SA delivery from all formulations. It was possible to detect SA in vivo using CRS and to depth profile the molecule. A good in vitro-in vivo correlation was also found when the cumulative amounts of SA which permeated in vitro were plotted against the CRS signal in the skin. The findings provide further confidence in the application of CRS for the study of drug disposition in the skin. PMID:25178827

Mateus, Rita; Moore, David J; Hadgraft, Jonathan; Lane, Majella E

2014-11-20

330

Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens  

PubMed Central

An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014

Gimenez-Ibanez, Selena; Solano, Roberto

2013-01-01

331

Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling  

PubMed Central

Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses. PMID:25821454

Furniss, James J.; Spoel, Steven H.

2015-01-01

332

A systematic simulation of the effect of salicylic acid on sphingolipid metabolism  

PubMed Central

The phytohormone salicylic acid (SA) affects plant development and defense responses. Recent studies revealed that SA also participates in the regulation of sphingolipid metabolism, but the details of this regulation remain to beexplored. Here, we use in silico Flux Balance Analysis (FBA) with published microarray data to construct a whole-cell simulation model, including 23 pathways, 259 reactions, and 172 metabolites, to predict the alterations in flux of major sphingolipid species after treatment with exogenous SA. This model predicts significant changes in fluxes of certain sphingolipid species after SA treatment, changes that likely trigger downstream physiological and phenotypic effects. To validate the simulation, we used 15N-labeled metabolic turnover analysis to measure sphingolipid contents and turnover rate in Arabidopsis thaliana seedlings treated with SA or the SA analog benzothiadiazole (BTH). The results show that both SA and BTH affect sphingolipid metabolism, altering the concentrations of certain species and also changing the optimal flux distribution and turnover rate of sphingolipids. Our strategy allows us to estimate sphingolipid fluxes on a short time scale and gives us a systemic view of the effect of SA on sphingolipid homeostasis. PMID:25859253

Shi, Chao; Yin, Jian; Liu, Zhe; Wu, Jian-Xin; Zhao, Qi; Ren, Jian; Yao, Nan

2015-01-01

333

Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice  

NASA Astrophysics Data System (ADS)

We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

Meguro, Ayano; Sato, Yutaka

2014-04-01

334

Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.  

PubMed

Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

2013-07-01

335

Salicylic Acid Regulates Arabidopsis Microbial Pattern Receptor Kinase Levels and Signaling[W][OPEN  

PubMed Central

In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA. PMID:25315322

Tateda, Chika; Zhang, Zhongqin; Shrestha, Jay; Jelenska, Joanna; Chinchilla, Delphine; Greenberg, Jean T.

2014-01-01

336

Abnormal Glycosphingolipid Mannosylation Triggers Salicylic Acid–Mediated Responses in Arabidopsis[W][OA  

PubMed Central

The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi. PMID:23695979

Mortimer, Jenny C.; Yu, Xiaolan; Albrecht, Sandra; Sicilia, Francesca; Huichalaf, Mariela; Ampuero, Diego; Michaelson, Louise V.; Murphy, Alex M.; Matsunaga, Toshiro; Kurz, Samantha; Stephens, Elaine; Baldwin, Timothy C.; Ishii, Tadashi; Napier, Johnathan A.; Weber, Andreas P.M.; Handford, Michael G.; Dupree, Paul

2013-01-01

337

Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming  

PubMed Central

The phytohormone salicylic acid (SA) is a small phenolic compound that regulates diverse physiological processes, in particular plant resistance against pathogens. Understanding SA-mediated signaling has been a major focus of plant research. Pathogen-induced SA is mainly synthesized via the isochorismate pathway in chloroplasts, with ICS1 (ISOCHORISMATE SYNTHASE 1) being a critical enzyme. Calcium signaling regulates activities of a subset of transcription factors thereby activating nuclear ICS1 expression. The produced SA triggers extensive transcriptional reprogramming in which NPR1 (NON-EXPRESSOR of PATHOGENESIS-RELATED GENES 1) functions as the central coactivator of TGA transcription factors. Recently, two alternative but not exclusive models for SA perception mechanisms were proposed. The first model is that NPR1 homologs, NPR3 and NPR4, perceive SA thereby regulating NPR1 protein accumulation. The second model describes that NPR1 itself perceives SA, triggering an NPR1 conformational change thereby activating SA-mediated transcription. Besides the direct SA binding, NPR1 is also regulated by SA-mediated redox changes and phosphorylation. Emerging evidence show that pathogen virulence effectors target SA signaling, further strengthening the importance of SA-mediated immunity. PMID:25538725

Seyfferth, Carolin; Tsuda, Kenichi

2014-01-01

338

Synthesis and biological evaluation of quinoline salicylic acids as P-selectin antagonists.  

PubMed

Leukocyte recruitment of sites of inflammation and tissue injury involves leukocyte rolling along the endothelial wall, followed by firm adherence of the leukocyte, and finally transmigration of the leukocyte across cell junctions into the underlying tissue. The initial rolling step is mediated by the interaction of leukocyte glycoproteins containing active moieties such as sialyl Lewisx (sLex) with P-selectin expressed on endothelial cells. Consequently, inhibition of this interaction by means of a small molecule P-selectin antagonist is an attractive strategy for the treatment of inflammatory diseases such as arthritis. High-throughput screening of the Wyeth chemical library identified the quinoline salicylic acid class of compounds (1) as antagonists of P-selectin, with potency in in vitro and cell-based assays far superior to that of sLex. Through iterative medicinal chemistry, we identified analogues with improved P-selectin activity, decreased inhibition of dihydrooratate dehydrogenase, and acceptable CYP profiles. Lead compound 36 was efficacious in the rat AIA model of rheumatoid arthritis. PMID:17201408

Kaila, Neelu; Janz, Kristin; DeBernardo, Silvano; Bedard, Patricia W; Camphausen, Raymond T; Tam, Steve; Tsao, Desirée H H; Keith, James C; Nickerson-Nutter, Cheryl; Shilling, Adam; Young-Sciame, Ruth; Wang, Qin

2007-01-11

339

Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens  

PubMed Central

Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens. PMID:22641422

Mur, Luis A. J.

2012-01-01

340

Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats  

PubMed Central

Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus. PMID:24891959

Chen, Guang-Di; Radziwon, Kelly E.; Manohar, Senthilvelan

2014-01-01

341

Regulation of water, salinity, and cold stress responses by salicylic acid  

PubMed Central

Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

Miura, Kenji; Tada, Yasuomi

2014-01-01

342

Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis.  

PubMed

The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi. PMID:23695979

Mortimer, Jenny C; Yu, Xiaolan; Albrecht, Sandra; Sicilia, Francesca; Huichalaf, Mariela; Ampuero, Diego; Michaelson, Louise V; Murphy, Alex M; Matsunaga, Toshiro; Kurz, Samantha; Stephens, Elaine; Baldwin, Timothy C; Ishii, Tadashi; Napier, Johnathan A; Weber, Andreas P M; Handford, Michael G; Dupree, Paul

2013-05-01

343

Significance of cholesterol methyl groups.  

PubMed

Cholesterol is an indispensable molecule in mammalian cell membranes. To truly understand its role in the functions of membranes, it is essential to unravel cholesterol's structure-function relationship determined by underlying molecular interactions. For this purpose, we elaborate on this issue by considering the previously proposed idea that cholesterol's effects on a number of physical properties of membranes have been optimized during the evolution by removal of its excess methyl groups from the alpha-face of cholesterol, thus "smoothening" the structure. Consequently, the methyl groups still attached to cholesterol are one of the most intriguing structural features of the molecule. An obvious question arises: Why do these methyl groups still exist, and could cholesterol properties be further optimized by their removal? Because of the nature of the biosynthetic pathways of cholesterol, and the evidence of decreased interactions between sterols and lipid acyl chains when methyl groups are present, it seems plausible that removal of the methyl groups might indeed lead to stronger ordering and condensing effects of the cholesterol molecule. Atomic-scale molecular dynamics simulations of numerous modified sterols embedded in saturated lipid bilayers demonstrate, however, that the issue is more subtle. The analysis reveals a complex interplay between the lipid acyl chains and the structural details of cholesterol. Changes in cholesterol structure typically do not improve its performance in terms of promoting membrane order. This view is substantiated by a detailed analysis of the simulation data. In particular, it highlights the importance of the methyl group C18 for cholesterol properties. The C18 group resides between the third and fourth ring of cholesterol on its "rough" beta-side, and the results provide compelling evidence that C18 is crucial for the proper orientation of the sterol. More generally, the data provide insight into the role of the methyl groups of cholesterol. PMID:18278902

Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko; Vattulainen, Ilpo

2008-03-13

344

Direct gradient reversed-phase high-performance liquid chromatographic determination of salicylic acid, with the corresponding glycine and glucuronide conjugates in human plasma and urine.  

PubMed

A gradient reversed-phase HPLC analysis for the direct measurement of salicylic acid (SA) with the corresponding glycine and glucuronide conjugates in plasma and urine of humans was developed. The glucuronides were isolated by preparative HPLC from human urine samples. The concentration of the glucuronides in the isolated fraction were determined after enzymatic hydrolysis. Salicylic acid acyl glucuronide (SAAG) was not present in plasma. No isoglucuronides were present in acidic and alkaline urine of the volunteer. The limits of quantitation in plasma are: SA 0.2 microgram/ml, salicyluric acid (SU) 0.1 microgram/ml, salicylic acid phenolic glucuronide (SAPG) 0.4 microgram/ml and salicyluric acid phenolic glucuronide (SUPG) 0.2 microgram/ml. The limit of quantitation in urine is for all compounds 5 micrograms/ml. Salicylic acid acyl glucuronide is stable in phosphate buffer pH 4.9 during 8 h at 37 degrees C; thereafter it declines to 80% after 24 h. The subject's urine was therefore acidified by the oral intake of 4 x 1.2 g of ammonium chloride/day. With acidic urine, hardly any salicylic acid is excreted unchanged (0.6%). It is predominantly excreted as salicyluric acid (68.7%). PMID:8006100

Vree, T B; van Ewijk-Beneken Kolmer, E W; Verwey-van Wissen, C P; Hekster, Y A

1994-02-11

345

Alcohol, DNA Methylation, and Cancer  

PubMed Central

Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis. PMID:24313162

Varela-Rey, Marta; Woodhoo, Ashwin; Martinez-Chantar, Maria-Luz; Mato, José M.; Lu, Shelly C.

2013-01-01

346

PCMdb: Pancreatic Cancer Methylation Database  

NASA Astrophysics Data System (ADS)

Pancreatic cancer is the fifth most aggressive malignancy and urgently requires new biomarkers to facilitate early detection. For providing impetus to the biomarker discovery, we have developed Pancreatic Cancer Methylation Database (PCMDB, http://crdd.osdd.net/raghava/pcmdb/), a comprehensive resource dedicated to methylation of genes in pancreatic cancer. Data was collected and compiled manually from published literature. PCMdb has 65907 entries for methylation status of 4342 unique genes. In PCMdb, data was compiled for both cancer cell lines (53565 entries for 88 cell lines) and cancer tissues (12342 entries for 3078 tissue samples). Among these entries, 47.22% entries reported a high level of methylation for the corresponding genes while 10.87% entries reported low level of methylation. PCMdb covers five major subtypes of pancreatic cancer; however, most of the entries were compiled for adenocarcinomas (88.38%) and mucinous neoplasms (5.76%). A user-friendly interface has been developed for data browsing, searching and analysis. We anticipate that PCMdb will be helpful for pancreatic cancer biomarker discovery.

Nagpal, Gandharva; Sharma, Minakshi; Kumar, Shailesh; Chaudhary, Kumardeep; Gupta, Sudheer; Gautam, Ankur; Raghava, Gajendra P. S.

2014-02-01

347

Methyl Jasmonate-Induced Ethylene Production Is Responsible for Conifer Phloem Defense Responses and Reprogramming of Stem Cambial Zone for Traumatic Resin Duct Formation  

PubMed Central

Conifer stem pest resistance includes constitutive defenses that discourage invasion and inducible defenses, including phenolic and terpenoid resin synthesis. Recently, methyl jasmonate (MJ) was shown to induce conifer resin and phenolic defenses; however, it is not known if MJ is the direct effector or if there is a downstream signal. Exogenous applications of MJ, methyl salicylate, and ethylene were used to assess inducible defense signaling mechanisms in conifer stems. MJ and ethylene but not methyl salicylate caused enhanced phenolic synthesis in polyphenolic parenchyma cells, early sclereid lignification, and reprogramming of the cambial zone to form traumatic resin ducts in Pseudotsuga menziesii and Sequoiadendron giganteum. Similar responses in internodes above and below treated internodes indicate transport of a signal giving a systemic response. Studies focusing on P. menziesii showed MJ induced ethylene production earlier and 77-fold higher than wounding. Ethylene production was also induced in internodes above the MJ-treated internode. Pretreatment of P. menziesii stems with the ethylene response inhibitor 1-methylcyclopropene inhibited MJ and wound responses. Wounding increased 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase protein, but MJ treatment produced a higher and more rapid ACC oxidase increase. ACC oxidase was most abundant in ray parenchyma cells, followed by cambial zone cells and resin duct epithelia. The data show these MJ-induced defense responses are mediated by ethylene. The cambial zone xylem mother cells are reprogrammed to differentiate into resin-secreting epithelial cells by an MJ-induced ethylene burst, whereas polyphenolic parenchyma cells are activated to increase polyphenol production. The results also indicate a central role of ray parenchyma in ethylene-induced defense. PMID:15299142

Hudgins, J.W.; Franceschi, Vincent R.

2004-01-01

348

Induced Production of 1-Methoxy-indol-3-ylmethyl Glucosinolate by Jasmonic Acid and Methyl Jasmonate in Sprouts and Leaves of Pak Choi (Brassica rapa ssp. chinensis)  

PubMed Central

Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future. PMID:23873294

Wiesner, Melanie; Hanschen, Franziska S.; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

2013-01-01

349

Identification of multiple salicylic acid-binding proteins using two high throughput screens  

PubMed Central

Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [3H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays. PMID:25628632

Manohar, Murli; Tian, Miaoying; Moreau, Magali; Park, Sang-Wook; Choi, Hyong Woo; Fei, Zhangjun; Friso, Giulia; Asif, Muhammed; Manosalva, Patricia; von Dahl, Caroline C.; Shi, Kai; Ma, Shisong; Dinesh-Kumar, Savithramma P.; O'Doherty, Inish; Schroeder, Frank C.; van Wijk, Klass J.; Klessig, Daniel F.

2014-01-01

350

Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress.  

PubMed

The role of glutathione (GSH) in plant defense is an established fact. However, the association of GSH with other established signaling molecules within the defense signaling network remains to be evaluated. Previously we have shown that GSH is involved in defense signaling network likely through NPR1-dependent salicylic acid (SA)-mediated pathway. In this study, to gain further insight, we developed chloroplast-targeted gamma-glutamylcysteine synthetase (?-ECS) overexpressed transgenic Nicotiana tabacum (NtGp line) and constructed a forward subtracted cDNA (suppression subtractive hybridization (SSH)) library using NtGp line as a tester. Interestingly, in addition to SA-related transcripts like pathogenesis-related protein 1a (PR1a) and SAR8.2 m/2l, 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase), a key enzyme of ethylene (ET) biosynthesis, was identified in the SSH library. Besides, transcription factors like WRKY transcription factor 3 (WRKY3), WRKY1 and ethylene responsive factor 4 (ERF4), associated with SA and ET respectively, were also identified thus suggesting an interplay of GSH with ET and SA. Furthermore, proteomic profiling of NtGp line, performed by employing two-dimensional gel electrophoresis (2-DE), corroborated with the transcriptomic profile and several defense-related proteins like serine/threonine protein kinase, and heat shock 70 protein (HSP70) were identified with increased accumulation. Fascinatingly, induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) was also noted thus demonstrating the active involvement of GSH with ET. Protein gel blot analysis confirmed the enhanced accumulation of ACC oxidase in NtGp line. Together, our data revealed that GSH is involved in the synergistic multiple steps crosstalk through ET as well as SA to combat environmental stress. PMID:24913051

Ghanta, Srijani; Datta, Riddhi; Bhattacharyya, Dipto; Sinha, Ragini; Kumar, Deepak; Hazra, Saptarshi; Mazumdar, Aparupa Bose; Chattopadhyay, Sharmila

2014-07-01

351

Uptake and metabolic effects of salicylic acid on the pulvinar motor cells of Mimosa pudica L.  

PubMed

In this paper, the salicylic acid (o-hydroxy benzoic acid) (SA) uptake by the pulvinar tissues of Mimosa pudica L. pulvini was shown to be strongly pH-dependent, increasing with acidity of the assay medium. This uptake was performed according to a unique affinity system (K(m) = 5.9 mM, V(m) = 526 pmol mgDW(-1)) in the concentration range of 0.1-5 mM. The uptake rate increased with increasing temperature (5-35 °C) and was inhibited following treatment with sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), suggesting the involvement of an active component. Treatment with p-chloromercuribenzenesulfonic acid (PCMBS) did not modify the uptake, indicating that external thiol groups were not necessary. KCl, which induced membrane depolarization had no significant effect, and fusicoccin (FC), which hyperpolarized cell membrane, stimulated the uptake, suggesting that the pH component of the proton motive force was likely a driving force. These data suggest that the SA uptake by the pulvinar tissues may be driven by two components: an ion-trap mechanism playing a pivotal role and a putative carrier-mediated mechanism. Unlike other benzoic acid derivatives acting as classical respiration inhibitors (NaN3 and KCN), SA modified the pulvinar cell metabolism by increasing the respiration rate similar to CCCP and 2,4-dinitrophenol (DNP). Furthermore, SA inhibited the osmoregulated seismonastic reaction in a pH dependent manner and induced characteristic damage to the ultrastructural features of the pulvinar motor cells, particularly at the mitochondrial level. PMID:24292275

Dédaldéchamp, Fabienne; Saeedi, Saed; Fleurat-Lessard, Pierrette; Roblin, Gabriel

2014-01-01

352

Efficacy of the addition of salicylic acid to clindamycin and benzoyl peroxide combination for acne vulgaris.  

PubMed

Clindamycin phosphate (CDP), benzoyl peroxide (BPO) and salicylic acid (SA) are known to be effective acne therapy agents depending on their anti-inflammatory and comedolytic properties. The purpose of this study was to investigate the efficacy and tolerability of the addition of SA treatment to CDP and BPO (SA and CDP + BPO) and compare it with CDP + BPO in patients with mild to moderate facial acne vulgaris. Forty-nine patients were enrolled in a 12 week prospective, single-blind, randomized, comparative clinical study. Efficacy was assessed by lesion counts, global improvement, quality of life index and measurements of skin barrier functions. Local side effects were also evaluated. Both combinations were effective in reducing total lesion (TL), inflammatory lesion (IL) and non-inflammatory lesion (NIL) counts. There were statistically significant differences between treatment groups for reductions in NIL counts beyond 2 weeks, IL counts and TL counts throughout the all study weeks, and global improvement scores evaluated by patients and investigator at the end of the study in favor of SA and CDP + BPO treatment when compared to CDP + BPO treatment. Both combinations significantly decreased stratum corneum hydration, although skin sebum values decreased with SA and CDP + BPO treatment. These combinations were also well tolerated except significantly higher frequency of mild to moderate transient dryness in patients applied SA and CDP + BPO. The addition of SA to CDP + BPO treatment demonstrated significantly better and faster results in terms of reductions in acne lesion counts and well tolerated except for higher frequency of mild to moderate transient dryness. PMID:22035285

Akarsu, Sevgi; Fetil, Emel; Yücel, Filiz; Gül, Eylem; Güne?, Ali T

2012-05-01

353

Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.  

PubMed

Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels. PMID:25034826

Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

2014-10-01

354

Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1  

PubMed Central

Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel. PMID:22936930

Coronado, Edith; Roggo, Clémence; Johnson, David R.; van der Meer, Jan Roelof

2012-01-01

355

Review: Salicylate-Induced Cochlear Impairments, Cortical Hyperactivity and Re-Tuning, and Tinnitus  

PubMed Central

High doses of sodium salicylate (SS) have long been known to induce temporary hearing loss and tinnitus, effects attributed to cochlear dysfunction. However, our recent publications reviewed here show that SS can induce profound, permanent, and unexpected changes in the cochlea and central nervous system. Prolonged treatment with SS permanently decreased the cochlear compound action potential (CAP) amplitude in vivo. In vitro, high dose SS resulted in a permanent loss of spiral ganglion neurons and nerve fibers, but did not damage hair cells. Acute treatment with high-dose SS produced a frequency-dependent decrease in the amplitude of distortion product otoacoustic emissions and CAP. Losses were greatest at low and high frequencies, but least at the mid-frequencies (10-20 kHz), the mid-frequency band that corresponds to the tinnitus pitch measured behaviorally. In the auditory cortex, medial geniculate body and amygdala, high-dose SS enhanced sound-evoked neural responses at high stimulus levels, but it suppressed activity at low intensities and elevated response threshold. When SS was applied directly to the auditory cortex or amygdala, it only enhanced sound evoked activity, but did not elevate response threshold. Current source density analysis revealed enhanced current flow into the supragranular layer of auditory cortex following systemic SS treatment. Systemic SS treatment also altered tuning in auditory cortex and amygdala; low frequency and high frequency multiunit clusters up-shifted or down-shifted their characteristic frequency into the 10-20 kHz range thereby altering auditory cortex tonotopy and enhancing neural activity at mid-frequencies corresponding to the tinnitus pitch. These results suggest that SS-induced hyperactivity in auditory cortex originates in the central nervous system, that the amygdala potentiates these effects and that the SS-induced tonotopic shifts in auditory cortex, the putative neural correlate of tinnitus, arises from the interaction between the frequency-dependent losses in the cochlea and hyperactivity in the central nervous system. PMID:23201030

Chen, Guang-Di; Stolzberg, Daniel; Lobarinas, Edward; Sun, Wei; Ding, Dalian; Salvi, Richard

2014-01-01

356

“On-Off” Thermoresponsive Coating Agent Containing Salicylic Acid Applied to Maize Seeds for Chilling Tolerance  

PubMed Central

Chilling stress is an important constraint for maize seed establishment in the field. In this study, a type of “on-off” thermoresponsive coating agent containing poly (N-isopropylacrylamide-co-butylmethacrylate) (Abbr. P(NIPAm-co-BMA)) hydrogel was developed to improve the chilling tolerance of coated maize seed. The P(NIPAm-co-BMA) hydrogel was synthesized by free-radical polymerization of N-isopropylacrylamide (NIPAm) and butylmethacrylate (BMA). Salicylic acid (SA) was loaded in the hydrogel as the chilling resistance agent. SA-loaded P(NIPAm-co-BMA) was used for seed film-coating of two maize varieties, Huang C (HC, chilling-tolerant) and Mo17 (chilling-sensitive), to investigate the coated seed germination and seedling growth status under chilling stress. The results showed that the hydrogel obtained a phase transition temperature near 12°C with a NIPAM to MBA weight ratio of 1: 0.1988 (w/w). The temperature of 12°C was considered the “on-off” temperature for chilling-resistant agent release; the SA was released from the hydrogel more rapidly at external temperatures below 12°C than above 12°C. In addition, when seedlings of both maize varieties suffered a short chilling stress (5°C), higher concentrations of SA-loaded hydrogel resulted in increased germination energy, germination percentage, germination index, root length, shoot height, dry weight of roots and shoots and protective enzyme activities and a decreased malondialdehyde content in coated maize seeds compared to single SA treatments. The majority of these physiological and biochemical parameters achieved significant levels compared with the control. Therefore, SA-loaded P(NIPAm-co-BMA), a nontoxic thermoresponsive hydrogel, can be used as an effective material for chilling tolerance in film-coated maize seeds. PMID:25807522

He, Fei; Huang, Yutao; Song, Wenjian; Hu, Jin

2015-01-01

357

Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis.  

PubMed

Sudden exposure of plants to high light (HL) leads to metabolic and physiological disruption of the photosynthetic cells. Changes in ROS content, adjustment of photosynthetic processes and the antioxidant pools and, ultimately, gene induction are essential components for a successful acclimation to the new light conditions. The influence of salicylic acid (SA) on plant growth, short-term acclimation to HL, and on the redox homeostasis of Arabidopsis thaliana leaves was assessed here. The dwarf phenotype displayed by mutants with high SA content (cpr1-1, cpr5-1, cpr6-1, and dnd1-1) was less pronounced when these plants were grown in HL, suggesting that the inhibitory effect of SA on growth was partly overcome at higher light intensities. Moreover, higher SA content affected energy conversion processes in low light, but did not impair short-term acclimation to HL. On the other hand, mutants with low foliar SA content (NahG and sid2-2) were impaired in acclimation to transient exposure to HL and thus predisposed to oxidative stress. Low and high SA levels were strictly correlated to a lower and higher foliar H(2)O(2) content, respectively. Furthermore high SA was also associated with higher GSH contents, suggesting a tight correlation between SA, H(2)O(2) and GSH contents in plants. These observations implied an essential role of SA in the acclimation processes and in regulating the redox homeostasis of the cell. Implications for the role of SA in pathogen defence signalling are also discussed. PMID:16698814

Mateo, Alfonso; Funck, Dietmar; Mühlenbock, Per; Kular, Baldeep; Mullineaux, Philip M; Karpinski, Stanislaw

2006-01-01

358

Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance.  

PubMed

Salicylic acid (SA), a cell-signaling metabolite in plants, is involved in resistance of plants to pathogens and environmental stresses; however, there is little information available on the responses of fungi to SA. Conidia of Metarhizium robertsii (ARSEF 2575) (Hypocreales: Clavicipitaceae) were produced on potato dextrose agar medium plus yeast extract (PDAY) supplemented with 1, 2, 4, or 8 mM SA (pH adjusted to 6.9) and incubated under constant-dark conditions. Then the tolerance of conidia against wet heat (45 °C, 3 h) and UV-B radiation (7.0 kJ m(-2)) was tested. For comparison, conidia were also produced on minimal medium (MM) that contained no carbon source (carbon starvation), a condition known to induce elevated conidial tolerance to heat and UV-B radiation in M. robertsii. The heat tolerance of conidia produced on PDAY containing 1, 2, or 4 mM SA were two-fold higher than that of conidia produced on PDAY alone; which is the same level of thermotolerance induced by growth on MM. Conidia produced on PDAY with 8 mM SA, however, did not exhibit increased heat tolerance. Growth on PDAY + SA did not increase conidial UV-B tolerance at any of the SA concentrations tested. The conidial yields of M. robertsii produced on PDAY with all levels of SA were somewhat reduced in comparison to the yield on PDAY alone. Nevertheless, conidial yields on PDAY + SA were 20-40 times greater than that obtained on MM alone. In conclusion, M. robertsii conidia produced on PDAY medium containing low concentrations of SA demonstrated increased tolerance to heat, but not to UV-B radiation. In comparison to PDAY alone, SA-amended PDAY afforded somewhat reduced conidial yields; however, in a mass-production situation, yield reductions would be offset by the fact that the conidia obtained would have relatively high heat tolerance. PMID:22385625

Rangel, Drauzio E N; Fernandes, Éverton K K; Anderson, Anne J; Roberts, Donald W

2012-03-01

359

Synthetically modified bioisosteres of salicyl alcohol and their gastroulcerogenic assessment versus aspirin: biochemical and histological correlates.  

PubMed

The present study was conducted to synthesize nitrogen containing derivatives of salicyl alcohol and to investigate in vivo their ulcerogenic potential in comparison with aspirin in rats. The compounds [4-(2-hydroxybenzyl) morpholin-4-iumchloride (I)] and [1,4-bis(2-hydroxybenzyl) piperazine-1,4-diium chloride (II)] were synthesized and their chemical structures were characterized using spectral data. In our previous study (Ali et al., Afr J Pharm Pharmacol 7:585-596, 2013), both compounds showed anti-inflammatory, antinociceptive, and antipyretic properties in standard animal models and a greater binding affinity for cyclooxygenase-2 versus cyclooxygenase-1 in molecular docking and dynamics analysis. For in vivo studies, animals were randomly divided into four groups. The synthetic compounds (both at 100 or 150 mg/kg), aspirin (150 mg/kg), or saline vehicle was administered orally, once daily for 6 days and then tested for ulcerogenic activity. At the end of the procedure, gastric juice and tissues were collected and subjected to biochemical and histological analyses. The results of the study revealed that in the case of the aspirin-treated group, there was a significant increase in gastric juice volume, free acidity, total acidity, and ulcer score and a decrease in gastric pH. Moreover, histological examination of the gastric mucosa of the aspirin-treated group indicated morphological changes while neither of the synthetic compounds showed any significant ulcerogenic or cytotoxic properties. The results of the present study suggest that both compounds are free from ulcerogenic side effects and may represent a better alternative to aspirin. PMID:24292286

Ali, Gowhar; Subhan, Fazal; Islam, Nazar Ul; Ullah, Nasir; Sewell, Robert D E; Shahid, Muhammad; Khan, Ikhtiar

2014-03-01

360

Inhibition of cardiac hypertrophy by triflusal (4-trifluoromethyl derivative of salicylate) and its active metabolite.  

PubMed

The nuclear factor (NF)-kappaB signaling pathway is an important intracellular mediator of cardiac hypertrophy. The aim of the present study was to determine whether triflusal (2-acetoxy-4-trifluoromethylbenzoic acid), a salicylate derivative used as antiplatelet agent, and its active metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) inhibit cardiac hypertrophy in vitro and in vivo by blocking the NF-kappaB signaling pathway. In cultured neonatal rat cardiomyocytes, HTB (300 microM, a concentration reached in clinical use) inhibited phenylephrine (PE)-induced protein synthesis ([3H]leucine uptake), induction of the fetal-type gene atrial natriuretic factor (ANF), and sarcomeric disorganization. Assessment of the effects of triflusal in pressure overload-induced cardiac hypertrophy by aortic banding resulted in a significant reduction in the ratio of heart weight to body weight and in a reduction of the mRNA levels of the cardiac hypertrophy markers ANF and alpha-actinin compared with untreated banded rats. Electrophoretic mobility shift assay revealed an increase in the NF-kappaB binding activity in cardiac nuclear extracts of banded rats that was prevented by triflusal treatment. It is noteworthy that banded rats treated with oral triflusal, compared with untreated rats, showed enhanced protein levels of IkappaBalpha, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Finally, HTB increased phospho-IkappaBalpha levels in neonatal cardiomyocytes and inhibited proteosome activity, suggesting that this drug prevented proteosome-mediated degradation of IkappaBalpha. These results indicate that triflusal, a drug with a well characterized pharmacological and safety profile currently used as antiplatelet, inhibits cardiomyocyte growth by interfering with the NF-kappaB signaling pathway through a post-transcriptional mechanism involving reduced-proteosome degradation of IkappaBalpha. PMID:16421291

Planavila, Anna; Rodríguez-Calvo, Ricardo; de Arriba, Alberto Fernández; Sánchez, Rosa M; Laguna, Juan C; Merlos, Manuel; Vazquez-Carrera, Manuel

2006-04-01

361

Characterization of Withania somnifera Leaf Transcriptome and Expression Analysis of Pathogenesis – Related Genes during Salicylic Acid Signaling  

PubMed Central

Withania somnifera (L.) Dunal is a valued medicinal plant with pharmaceutical applications. The present study was undertaken to analyze the salicylic acid induced leaf transcriptome of W. somnifera. A total of 45.6 million reads were generated and the de novo assembly yielded 73,523 transcript contig with average transcript contig length of 1620 bp. A total of 71,062 transcripts were annotated and 53,424 of them were assigned GO terms. Mapping of transcript contigs to biological pathways revealed presence of 182 pathways. Seventeen genes representing 12 pathogenesis-related (PR) families were mined from the transcriptome data and their pattern of expression post 17 and 36 hours of salicylic acid treatment was documented. The analysis revealed significant up-regulation of all families of PR genes by 36 hours post treatment except WsPR10. The relative fold expression of transcripts ranged from 1 fold to 6,532 fold. The two families of peroxidases including the lignin-forming anionic peroxidase (WsL-PRX) and suberization-associated anionic peroxidase (WsS-PRX) recorded maximum expression of 377 fold and 6532 fold respectively, while the expression of WsPR10 was down-regulated by 14 fold. Additionally, the most stable reference gene for normalization of qRT-PCR data was also identified. The effect of SA on the accumulation of major secondary metabolites of W. somnifera including withanoside V, withaferin A and withanolide A was also analyzed and an increase in content of all the three metabolites were detected. This is the first report on expression patterns of PR genes during salicylic acid signaling in W. somnifera. PMID:24739900

Ghosh Dasgupta, Modhumita; George, Blessan Santhosh; Bhatia, Anil; Sidhu, Om Prakash

2014-01-01

362

EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana  

PubMed Central

Background The hypersensitive necrosis response (HR) of resistant plants to avirulent pathogens is a form of programmed cell death in which the plant sacrifices a few cells under attack, restricting pathogen growth into adjacent healthy tissues. In spite of the importance of this defense response, relatively little is known about the plant components that execute the cell death program or about its regulation in response to pathogen attack. Results We isolated the edr2-6 mutant, an allele of the previously described edr2 mutants. We found that edr2-6 exhibited an exaggerated chlorosis and necrosis response to attack by three pathogens, two powdery mildew and one downy mildew species, but not in response to abiotic stresses or attack by the bacterial leaf speck pathogen. The chlorosis and necrosis did not spread beyond inoculated sites suggesting that EDR2 limits the initiation of cell death rather than its spread. The pathogen-induced chlorosis and necrosis of edr2-6 was correlated with a stimulation of the salicylic acid defense pathway and was suppressed in mutants deficient in salicylic acid signaling. EDR2 encodes a novel protein with a pleckstrin homology and a StAR transfer (START) domain as well as a plant-specific domain of unknown function, DUF1336. The pleckstrin homology domain binds to phosphatidylinositol-4-phosphate in vitro and an EDR2:HA:GFP protein localizes to endoplasmic reticulum, plasma membrane and endosomes. Conclusion EDR2 acts as a negative regulator of cell death, specifically the cell death elicited by pathogen attack and mediated by the salicylic acid defense pathway. Phosphatidylinositol-4-phosphate may have a role in limiting cell death via its effect on EDR2. This role in cell death may be indirect, by helping to target EDR2 to the appropriate membrane, or it may play a more direct role. PMID:17612410

Vorwerk, Sonja; Schiff, Celine; Santamaria, Marjorie; Koh, Serry; Nishimura, Marc; Vogel, John; Somerville, Chris; Somerville, Shauna

2007-01-01

363

Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.  

PubMed

An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. PMID:22285411

Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

2012-04-01

364

UV-induced photoreaction pathways of salicylic acid: Identification of the fourth stable conformer and ketoketene-water complex  

NASA Astrophysics Data System (ADS)

Photoreaction pathways of salicylic acid have been investigated by the low-temperature matrix-isolation infrared spectroscopy with an aid of the density-functional-theory calculations. Only the most stable E form existed in an argon matrix. The second stable R form and the fourth stable H form were produced by UV irradiation (? > 290 nm). The third stable O form was assumed to return immediately to E form even if it was produced. Ketoketene-water complex was yielded from R form by dissociation of the H and OH parts interacting through intramolecular hydrogen bonding upon prolonged UV irradiation.

Miyagawa, Masaya; Akai, Nobuyuki; Nakata, Munetaka

2014-05-01

365

Spectrophotometric determination of copper(II) in pharmaceutical, biological and water samples by 4-(2'-benzothiazolylazo)-salicylic acid  

NASA Astrophysics Data System (ADS)

A highly sensitive method is proposed to determine copper(II) ions by forming a stable complex through their interaction with 4-(2'-benzothiazolylazo)-salicylic acid (BTAS) at room temperature and pH of about 5.0. The complex gave a maximum absorption at ? = 485 nm with a molar absorptivity coefficient of 2.35·104 l/(mol·cm). The linear range for the copper determination is 0.63-5.04 mg/l. The method can be applied to determine copper ions in different biological specimens like some drugs and water samples.

Hashem, E. Y.; Seleim, M. M.; El-Zohry, A. M.

2011-09-01

366

Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid  

NASA Astrophysics Data System (ADS)

A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise.

El-Yazbi, Fawzi A.; Hammud, Hassan H.; Assi, Sulaf A.

2007-10-01

367

Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid.  

PubMed

A derivative spectrophotometric method was developed for the assay of a ternary mixture of aspirin (ASP), paracetamol (PAR) and salicylic acid (SAL). The method is based on the use of the first and second derivatives of the ratio spectra and measurement at zero-crossing wavelengths. The ratio spectra were obtained by dividing the absorption spectrum of the mixture by that of one of the components. The concentration of the other components are then determined from their respective calibration curves treated similarly. The described method was applied for the determination of these combinations in synthetic mixtures and dosage forms. The results obtained were accurate and precise. PMID:17350884

El-Yazbi, Fawzi A; Hammud, Hassan H; Assi, Sulaf A

2007-10-01

368

Salicylate poly(vinyl chloride) membrane electrode based on (2-[(E)-2-(4-nitrophenyl) hydrazono]-1-phenyl-2-(2-quinolyl)-1-ethanone) Cu(II)  

Microsoft Academic Search

A new salicylate-selective electrode based on the complex of (2-[(E)-2-(4-nitrophenyl)hydrazono]-1-phenyl-2-(2-quinolyl)-1-ethanone) Cu(II) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of ?59.6±1.0mV\\/decade and a linear range of 1.0×10?6 to 1.0M for salicylate. The limit of detection was 5.0×10?7M. The electrode had a fast response time of 10s and can be used for more than 3 months.

M. Mazloum Ardakani; M. S. Jalayer; J. Safari; Z. Sadeghi; H. R. Zare

2005-01-01

369

The antiemetic drug trimethobenzamide prevents hypophagia due to acetyl salicylate, but not to 5-HT1B or 5-HT1C agonists.  

PubMed

Pretreatment with the antiemetic agent trimethobenzamide (TMB) prevented the hypophagic response of rats to acetyl salicylate (a known emetic in man and dogs). However, it did not affect the hypophagic responses to the 5-HT1B agonist RU24969, or to the 5-HT1C/5-HT1B agonists mCPP and TFMPP. The results therefore suggest that the hypophagic effects of the 5-HT agonists do not involve a malaise-dependent mechanism similar to that mediating the effect of acetyl salicylate. PMID:3147468

Kennett, G A; Curzon, G

1988-01-01

370

METHYLATION OF MERCURY IN AGRICULTURAL SOILS  

EPA Science Inventory

Methylation of applied divalent mercury ion was found to occur in agricultural soils. The production of methylmercury was affected by soil texture, soil moisture content, soil temperature, concentration of the ionic mercury amendment, and time. Methylation was directly proportion...

371

Synthesis of (+)-spirolaxine methyl ether.  

PubMed

A short and efficient synthesis of (+)-spirolaxine methyl ether, a metabolite of the fungus Sporotrichum laxum with inhibitory activity against Helicobacter pylori, is described. The synthesis has been carried out by a Prins cyclization, to obtain the [6,5]-spiroketal system, and a Wadsworth-Emmons condensation, applied for the installation of the polymethylene chain on the phthalide moiety. PMID:16872220

Nannei, Raffaella; Dallavalle, Sabrina; Merlini, Lucio; Bava, Adriana; Nasini, Gianluca

2006-08-01

372

Methods of DNA methylation analysis.  

Technology Transfer Automated Retrieval System (TEKTRAN)

The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...

373

DNA Methylation of Cancer Genome  

PubMed Central

DNA methylation plays an important role in regulating normal development and carcinogenesis. Current understanding of the biological roles of DNA methylation is limited to its role in the regulation of gene transcription, genomic imprinting, genomic stability, and X chromosome inactivation. In the past 2 decades, a large number of changes have been identified in cancer epigenomes when compared with normals. These alterations fall into two main categories, namely, hypermethylation of tumor suppressor genes and hypomethylation of oncogenes or heterochromatin, respectively. Aberrant methylation of genes controlling the cell cycle, proliferation, apoptosis, metastasis, drug resistance, and intracellular signaling has been identified in multiple cancer types. Recent advancements in whole-genome analysis of methylome have yielded numerous differentially methylated regions, the functions of which are largely unknown. With the development of high resolution tiling microarrays and high throughput DNA sequencing, more cancer methylomes will be profiled, facilitating the identification of new candidate genes or ncRNAs that are related to oncogenesis, new prognostic markers, and the discovery of new target genes for cancer therapy.† PMID:19960550

Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M.; Chan, Wai-Yee

2010-01-01

374

Gene methylation in gastric cancer.  

PubMed

Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. PMID:23669186

Qu, Yiping; Dang, Siwen; Hou, Peng

2013-09-23

375

Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate  

E-print Network

Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate renewable sources, can reduce net emissions of greenhouse gases. An important class of biodiesel fuels

Paris-Sud XI, Université de

376

The Neutral Hydrolysis of the Methyl Halides  

Microsoft Academic Search

The rate of hydrolysis of methyl chloride, methyl bromide and methyl iodide have been measured in water over a wide range of temperature by a conductance method. The temperature dependence of the rate was shown to conform to an equation of the general form log10 k = A\\/T + B log10 T + C within experimental error. This implies that

R. L. Heppolette; R. E. Robertson

1959-01-01

377

Relationship between nucleosome positioning and DNA methylation  

E-print Network

LETTERS Relationship between nucleosome positioning and DNA methylation Ramakrishna K. Chodavarapu1- ing this data with profiles of DNA methylation at single base reso- lution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more

Jacobsen, Steve

378

5, 13611378, 2008 Methyl arsenic and  

E-print Network

BGD 5, 1361­1378, 2008 Methyl arsenic and antimony species in suspended matter L. Duester et al of Biogeosciences Methylated arsenic and antimony species in suspended matter of the river Ruhr, Germany L. Duester1 of the European Geosciences Union. 1361 #12;BGD 5, 1361­1378, 2008 Methyl arsenic and antimony species

Paris-Sud XI, Université de

379

DNA methylation: Bisulphite modification and analysis  

Microsoft Academic Search

DNA methylation is an important epigenetic modification of DNA in mammalian genomes. DNA methylation patterns are established early in development, modulated during tissue-specific differentiation and disrupted in many disease states, including cancer. To understand further the biological functions of these changes, accurate and reproducible methods are required to fully analyze the DNA methylation sequence. Here, we describe the 'gold-standard' bisulphite

Aaron Statham; Clare Stirzaker; Peter L Molloy; Marianne Frommer; Susan J Clark

2006-01-01

380

ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION  

EPA Science Inventory

Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

381

Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery.  

PubMed

Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

Woo, J O; Misran, M; Lee, P F; Tan, L P

2014-01-01

382

Development and in-vitro characterization of fish oil oleogels containing benzoyl peroxide and salicylic acid as keratolytic agents.  

PubMed

Topical keratolytic agents such as benzoyl peroxide (BP) and salicylic acid (SA) are one of the common treatments for inflammatory skin diseases. However, the amount of drug delivery through the skin is limited due to the stratum corneum. The purposes of this study were to investigate the ability of fish oil to act as penetration enhancer for topical keratolytic agents and to determine the suitable gelator for formulating stable fish oil oleogels. 2 types of gelling agents, beeswax and sorbitan monostearate (Span 60), were used to formulate oleogels. To investigate the efficacy of fish oil oleogel permeation, commercial hydrogels of benzoyl peroxide (BP) and salicylic acid (SA) were used as control, and comparative analysis was performed using Franz diffusion cell. Stability of oleogels was determined by physical assessments at 20°C and 40°C storage. Benzoyl peroxide (BP) fish oil oleogels containing beeswax were considered as better formulations in terms of drug permeation and cumulative drug release. All the results were found to be statistically significant (p<0.05, ANOVA) and it was concluded that the beeswax-fish oil combination in oleogel can prove to be beneficial in terms of permeation across the skin and stability. PMID:24026957

Rehman, K; Tan, C M; Zulfakar, M H

2014-03-01

383

Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy  

SciTech Connect

Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

Wang, Z.; Friedrich, D.M.; Ainsworth, C.C. [Pacific Northwest National Lab., Richland, WA (United States)

1996-10-01

384

Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery  

PubMed Central

Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

2014-01-01

385

Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures  

PubMed Central

Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

2013-01-01

386

Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter.  

PubMed

Ultrasonic frequencies of 20kHz, 382kHz, 584kHz, 862kHz (and 998kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862kHz is around 10% more efficient at generating hydroxyl radicals than the 382kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42°C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382kHz and 862kHz, though 582kHz is substantially lower, when the power levels are set at approximately 9W for all systems. An equivalent power level of 9W could not be obtained for the 998kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound. PMID:23207056

Milne, Louise; Stewart, Isobel; Bremner, David H

2013-05-01

387

Identification of Differentially Methylated Sequences in Colorectal Cancer by Methylated CpG Island Amplification1  

Microsoft Academic Search

CpG island methylation has been linked to tumor suppressor gene inactivation in neoplasia and may serve as a useful marker to clone novel cancer-related genes. We have developed a novel PCR-based method, methylated CpG island amplification (MCA), which is useful for both methylation analysis and cloning differentially methylated genes. Using restriction enzymes that have differential sensitivity to 5-methyl-cytosine, followed by

Minoru Toyota; Coty Ho; Nita Ahuja; Kam-Wing Jair; Qing Li; Mutsumi Ohe-Toyota; Stephen B. Baylin; Jean-Pierre J. Issa

1999-01-01

388

Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.  

PubMed

Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. PMID:25096754

Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

2015-04-01

389

The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone.  

PubMed

In this study, we comparatively evaluated the effects of the flurochloridone as well as flurochloridone and exogenously applied salicylic acid (SA) on Helianthus annuus L. to find out herbicide-induced toxicity reducing influence of SA. We examined and compared the physiological and biochemical effects of different concentrations of flurochloridone (11, 32 and 72 mM) in both the SA pre-treated and non-treated plants. The plants treated with flurochloridone exhibited reduced total chlorophyll, carotenoid, and relative water content compared to the control group, whereas the plants that were pre-treated with SA exhibited relatively higher values for the same physiological parameters. In the SA non-treated plants, the superoxide dismutase, glutathione reductase and glutathione S-transferase activities were increased in the treatment groups compared to the control group. In the treatment groups, these enzyme activities were decreased in the SA-pre-treated plants compared to the non-treated plants. Ascorbate peroxidase and catalase activities decreased in the flurochloridone-treated plants compared to the control plants. The ascorbate peroxidase activity increased in the control groups but decreased in the treatment groups in the SA pre-treated plants compared to the non-treated plants. However, SA treatment decreased the activity of catalase in the control and treatment groups compared to the plants that were not treated with SA. Flurochloridone treatment increased the malondialdehyde content in the treated groups compared to the control groups, whereas SA-pretreatment decreased malondialdehyde content compared to plants that were not treated with SA. Flurochloridone treatment increased endogenous SA content compared to the control. Although the residual levels of herbicide in the plants increased proportionately with increasing herbicide concentrations, the SA-pre-treated plants exhibited reduced residual herbicide levels compared to the plants that were not treated with SA. These results indicate that the flurochloridone induces various physiological and biochemical responses in non-target plants and that treatment with exogenous SA can increase stress resistance by altering these responses. PMID:24859709

Kaya, Armagan; Yigit, Emel

2014-08-01

390

A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis  

PubMed Central

Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

2014-01-01

391

Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings  

PubMed Central

The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 ?M) to solutions containing half-strength Hoagland medium and PEG 6000 (?0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity. PMID:23803653

Marci?ska, Izabela; Czyczy?o-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Micha?; Dziurka, Kinga; Waligórski, Piotr; Juzo?, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanis?aw

2013-01-01

392

Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua.  

PubMed

The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth. PMID:15140107

Cipollini, D; Enright, S; Traw, M B; Bergelson, J

2004-06-01

393

Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic Acid on wheat seedlings.  

PubMed

The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 ?M) to solutions containing half-strength Hoagland medium and PEG 6000 (-0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity. PMID:23803653

Marci?ska, Izabela; Czyczy?o-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T; Janowiak, Franciszek; Filek, Maria; Dziurka, Micha?; Dziurka, Kinga; Waligórski, Piotr; Juzo?, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanis?aw

2013-01-01

394

40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...  

Code of Federal Regulations, 2013 CFR

...2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...2-propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl...

2013-07-01

395

40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...  

Code of Federal Regulations, 2014 CFR

...2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...2-propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl...

2014-07-01

396

Increased DNA methylation in the suicide brain  

PubMed Central

Clinical studies find that childhood adversity and stress-ful life events in adulthood increase the risk for major depression and for suicide. The predispositions to either major depression or suicide are thought to depend on genetic risk factors or epigenetic effects. We investigated DNA methylation signatures postmortem in brains of suicides with diagnosis of major depressive disorder. DNA methylation levels were determined at single C-phosphate-G (CpG) resolution sites within ventral prefrontal cortex of 53 suicides and nonpsychiatric controls, aged 16 to 89 years. We found that DNA methylation increases throughout the lifespan. Suicides showed an 8-fold greater number of methylated CpG sites relative to controls (P<2.2x10-16), with greater DNA methylation changes over and above the increased methylation observed in normal aging. This increased DNA methylation may be a significant contributor to the neuropathology and psychopathology underlying the risk of suicide in depression. PMID:25364291

Haghighi, Fatemeh; Xin, Yurong; Chanrion, Benjamin; O'Donnell, Anne H.; Ge, Yongchao; Dwork, Andrew J.; Arango, Victoria; Mann, J. John

2014-01-01

397

The revival of DNA methylation  

PubMed

Current Topics in Microbiology and Immunology. Vol. 249: DNA Methylation and Cancer edited by P. A. Jones and P. K. Vogt Springer-Verlag (2000) pp. 170. ISBN 3-540-66608-7 75.50/$129.00 After a long period of relative confidentiality, the DNA methylation field has become a major research domain over the last few years. In this context, the importance of DNA methylation in human cancer has only become apparent over the last 5 to10 years. This small book (9 articles) provides a comprehensive overview of the main data and, more interestingly, presents the new concepts emerging from the recent extensive work, essentially performed over 2-3 years. The article written by B. Hendrich and A. Bird gives an overview of our current knowledge about the proteins implicated in DNA methylation, including DNA-methyltransferases and methylated-DNA-binding-proteins. It should be noted that the discovery of several of these proteins is a direct consequence of the human genome sequencing program, since they were first found 'in silico' by searching the databases. The specific properties of each of these partners of DNA methylation are beginning to be identified. Their implication in the regulation of histone acetylation suggests some possible mechanisms for regulation of gene expression. These models take into account, in particular, the remodeling of the chromatin structure. The value of mouse models in the understanding of the role of these proteins is discussed by P. W. Laird in another article. The present limitations of these approaches, essentially due to the non-viability of homozygous mutant mice for the main DNA-methyltransferase (Dnmt1) could be passed in the near future by the generation of conditional knockouts. Three articles by J. G. Herman and S. B. Baylin, M. F. Chan, G. Liang and P. A. Jones and J. P. Issa focus on the role of CpG island methylation in cancer and aging. These small stretches of DNA are frequently located around the transcription-start sites of approximately half of all human genes. For virtually all of these genes, with the exception of genes of the inactive X chromosome and some imprinted genes, these regions are maintained free of methylation in normal cells regardless of whether these genes are transcribed. It has been recognized that the CpG islands of a growing number of genes, either known to be involved in carcinogenesis (p16, E-cadherin, hMLH1,.) or candidate tumor supressor genes (p15, GST-&Pgr;,.) are methylated in many types of human cancer. The implication of the hypermethylation of CpG islands in tumor progression is discussed in its various aspects. In particular, the article by Chan et al. highlights the necessity to not oversimplify the relationships between methylation/inactivation and demethylation/activation. Moreover, extending his work on cancer, J. P. Issa shows that specific genes are affected by age-related methylation (EGFR, ER,.) and that such hypermethylation has disastrous consequences for the integrity of aged tissues. The article of A. P. Feinberg covers another area in this field and discusses the role of DNA methylation in imprinting and proposes a model for a role for the of loss of imprinting in cancer. Two articles investigate the action of tumor causing agents: the exogenous carcinogens and the Epstein-Barr virus (EBV). G. P. Pfeifer, M. S. Tang and M. F. Denissenko present the now well known effect of the deamination of methylcytosine on the formation of mutations. However, they insist on the finding that cytosine methylation can increase the rates of mutation by enhancing the binding of chemical carcinogens to DNA. This mechanisms is likely to have important implications for both chemical and ultra violet light induced carcinogenesis. K. D. Robertson summarize his work on the consequences of the inactivation of EBV genes on the virus' life cycle. The use of demethylating agents, like azacytidine, for reactivation of Cp-derived antigens, which could result in specific immune recognition of the tumor, is an interesting idea; however, as analyzed by M. (ABSTRACT TRUNCATED)

Malfoy

2000-11-01

398

Effect of Emulsifiers and Their Liquid Crystalline Structures in Emulsions on Dermal and Transdermal Delivery of Hydroquinone, Salicylic Acid and Octadecenedioic Acid  

Microsoft Academic Search

This study investigated the effect of emulsifiers and their liquid crystalline structures on the dermal and transdermal delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC). Emulsions containing liquid crystalline phases were compared with an emulsion without liquid crystals. Skin permeation experiments were performed using Franz-type diffusion cells and human abdominal skin dermatomed to a thickness of 400

A. Otto; J. W. Wiechers; C. L. Kelly; J. C. Dederen; J. Hadgraft; J. du Plessis

2010-01-01

399

Influence of Salicylic Acid on In Vitro Micropropagation and Salt Tolerance in Two Hibiscus Species, H. acetosella and H. moscheutos (cv ‘Luna Red’)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Salicylic acid (SA) is a hormone-like substance that plays an important role in the regulation of plant growth and development. It has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA concentrations (0, 0.5, and 1 mM) on i...

400

Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots  

Technology Transfer Automated Retrieval System (TEKTRAN)

Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

401

Effects of the potassium ion channel modulators BMS-204352 Maxipost and its R-enantiomer on salicylate-induced tinnitus in rats  

Microsoft Academic Search

Currently, there are no effective pharmacological therapies for chronic tinnitus despite a number of efforts from clinical studies and more recently, studies in animals using compounds to enhance endogenous inhibition or reduce central hyperactivity. The purpose of the current study was to evaluate the therapeutic efficacy of a novel anxiolytic with potassium channel activity in suppressing salicylate induced tinnitus in

Edward Lobarinas; William Dalby-Brown; Daniel Stolzberg; Naheed R. Mirza; Brian L. Allman; Richard Salvi

2011-01-01

402

Acute pulmonary edema and plasma kininogen consumption in the adrenaline-treated rat: Inhibition by acetylsalicylic acid and resistance to salicylate and indomethacin  

Microsoft Academic Search

Pulmonary edema and plasma kininogen consumption caused by intravenously administered adrenaline, were inhibited in rats pretreated with acetylsalicylic acid, but not in rats pretreated with indomethacin or sodium salicylate. The possibility of a connection between this edema and mast cell-linked activation of kallikrein by adrenaline is discussed, as well as the possible role of acetylsalicylic acid acting as an acetylating

A. M. Rothschild; R. S. B. Cordeiro; A. Castania

1975-01-01

403

SIMULTANEOUS QUANTIFICATION OF JASMONIC ACID AND SALICYLIC ACID IN PLANTS BY VAPOR PHASE EXTRACTION AND GAS CHROMATOGRAPHY-CHEMICAL IONIZATION-MASS SPECTROMETRY  

Technology Transfer Automated Retrieval System (TEKTRAN)

Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive and reproducible quantification of both compounds by vapor phase extraction and gas chromatography-positive ion chemic...

404

Molecular Structure of Methyl Acrylate  

NSDL National Science Digital Library

Commercially available since 1944, methyl acrylate is a clear, colorless liquid with a sweet, fruity odor. This lachrymator often found in tobacco smoke, is used in the manufacturing of polymers, leather finishing, resins, textile, paper coatings, and plastic films. It is highly flammable and polymerizes explosively with exposure to light or heat. Inhibition by hydroquinone monomethyl ether, MEHQ, helps to prevent this problem. Because MEHQ functionality is reliant on oxygen, methyl acrylate must never be stored in an inert environment. Contact with skin will lead to severe deep burns, while ingestion or inhalation could lead to nausea, cough and abdominal pain. The liver, lungs, and kidneys are target organs for this compound, and medical attention should be sought immediately upon exposure.

2002-10-01

405

Vitamin K1 accumulation in tobacco plants overexpressing bacterial genes involved in the biosynthesis of salicylic acid.  

PubMed

Phylloquinone (Vitamin K(1)) is an essential component of the photosynthetic electron transfer. As isochorismate is required for the biosynthesis of Vitamin K(1), isochorismate synthase (ICS) activity is expected to be present in all green plants. In bacteria salicylic acid (SA) is synthesized via a two step pathway involving ICS and isochorismate pyruvate lyase (IPL). The effect of the introduction in tobacco plants of the bacterial ICS and IPL genes on the endogenous isochorismate pathway was investigated. Transgenic tobacco plants in which IPL was targeted to the chloroplast suffered severe growth retardation and had low Vitamin K(1) content. Probably because isochorismate was channeled towards SA production, the plants were no longer able to produce normal levels of Vitamin K(1). Transgenic tobacco plants in which the bacterial ICS was present in the chloroplast showed higher Vitamin K(1) contents than wild type plants. PMID:17084477

Verberne, Marianne C; Sansuk, Kamonchanok; Bol, John F; Linthorst, Huub J M; Verpoorte, Robert

2007-01-30

406

Amino Acid Homeostasis Modulates Salicylic Acid–Associated Redox Status and Defense Responses in Arabidopsis[C][W][OA  

PubMed Central

The tight association between nitrogen status and pathogenesis has been broadly documented in plant–pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid–dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance. PMID:21097712

Liu, Guosheng; Ji, Yuanyuan; Bhuiyan, Nazmul H.; Pilot, Guillaume; Selvaraj, Gopalan; Zou, Jitao; Wei, Yangdou

2010-01-01

407

Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.  

PubMed

The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. PMID:25308637

Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

2015-03-15

408

The dispersion correction and weak-hydrogen-bond network in low-frequency vibration of solid-state salicylic acid  

NASA Astrophysics Data System (ADS)

We perform the dispersion-corrected first-principles calculations of vibrational absorption and the far-infrared (terahertz) spectroscopic experiments at different temperature to examine the effect of weak-hydrogen-bond network on the low-frequency vibrations of solid-state salicylic acid. By dispersion correction, calculated frequencies improve especially in the intermonomer torsion and interdimer translational modes which are closely related to the weak hydrogen bonds. The calculated frequencies and their relative intensities reproduce the observed spectrum in the accuracy of 10 cm-1 or less. Weak-hydrogen-bond network causes a large frequency shift of out-of-plane intermonomer modes and enhances interdimer translational modes accompanied by the O⋯H stretching vibrations.

Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

2012-04-01

409

[Determination of antidangdruff agent salicylic acid, zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo by high performance liquid chromatography].  

PubMed

A high performance liquid chromatography method was established for determination of antidangdruff agent salicylic acid,zinc pyrithione, octopirox, climbazole and ketoconazole in shampoo on a C18 column using acetonitrile-metholaqueous solution (10 mmol/L KH2 PO4 and 5 mmol/L EDTANa2, pH is adjusted to 4.0 with H3 PO4) (50:10:40) as mobile phase at a flow rate of 1.0 ml/min, with the column temperature 25 degrees C and detection wave 230nm. The precision was less than 3.8% and recovery varied from 92.7% to 104.9%. The experimental results showed that the method was simple, precise and accurate. PMID:16329615

Yang, Yan-Wei; Zhu, Ying; Su, Xiao-Qing

2005-09-01

410

Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.  

PubMed

Burdock fructooligosaccharide (BFO) is a natural elicitor from Arcitum lappa. The effects of BFO in controlling postharvest disease in grape, apple, banana, kiwi, citrus, strawberry, and pear were investigated. The disease index, decay percentage, and area under the disease progress curve indicated that BFO has general control effects on postharvest disease of fruits. Kyoho grapes were studied to elucidate the mechanism of BFO in boosting the resistance of grapes to Botrytis cinerea infection. BFO treatment induced upregulation of the npr1, pr1, pal, and sts genes, and inhibited the total phenol content decrease, which activated chitinase and ?-1,3-glucanase. These results indicated that the salicylic acid-dependent signalling pathway was induced. The delayed colour change and peroxidase and polyphenoloxidase activity suggested that BFO delayed grape browning. The reduced respiration rate, weight loss, and titratable acidity prolonged the shelf life of postharvest grapes. BFO is a promising elicitor in postharvest disease control. PMID:23265522

Sun, Fei; Zhang, Pengying; Guo, Moran; Yu, Wenqian; Chen, Kaoshan

2013-05-01

411

Strategy to improve photovoltaic performance of DSSC sensitized by zinc prophyrin using salicylic acid as a tridentate anchoring group.  

PubMed

Three new zinc porphyrin dyes attached to ethynyl benzoic acid as an electron transmission and anchoring group have been designed, synthesized, and well-characterized. The performances of their sensitized solar cells have been investigated by optical, photovoltaic, and electrochemical methods. The photoelectric conversion efficiency of the solar cells sensitized by the dye with salicylic acid as an anchoring group demonstrated obvious enhancement when compared with that sensitized by the dye with carboxylic acid as an anchoring group. The density functional theory calculations and the electrochemical impedance spectroscopies revealed that tridentate binding modes could increase the efficiency of electron injection from dyes to the TiO2 nanoparticles by more electron pathways. PMID:24761751

Gou, Faliang; Jiang, Xu; Fang, Ran; Jing, Huanwang; Zhu, Zhenping

2014-05-14

412

Inhibitors of the Salicylate Synthase (MbtI) from Mycobacterium tuberculosis Discovered by High-Throughput Screening  

PubMed Central

A simple steady-state kinetic high-throughput assay was developed for the salicylate synthase MbtI from Mycobacterium tuberculosis, which catalyzes the first committed step of mycobactin biosynthesis. The mycobactins are small-molecule iron chelators produced by M. tuberculosis, and their biosynthesis has been identified as a promising target for the development of new antitubercular agents. The assay was miniaturized to a 384-well plate format and high-throughput screening was performed at the National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases (NSRB). Three classes of compounds were identified comprising the benzisothiazolones (class I), diarylsulfones (class II), and benzimidazole-2-thiones (class III). Each of these compound series was further pursued to investigate their biochemical mechanism and structure–activity relationships. Benzimidazole-2-thione 4 emerged as the most promising inhibitor owing to its potent reversible inhibition. PMID:21053346

Vasan, Mahalakshmi; Neres, João; Williams, Jessica; Wilson, Daniel J.; Teitelbaum, Aaron M.; Remmel, Rory P.; Aldrich, Courtney C.

2010-01-01

413

DNA methylation: old dog, new tricks?  

PubMed

DNA methylation is an epigenetic modification that is generally associated with repression of transcription initiation at CpG-island promoters. Here we argue that, on the basis of recent high-throughput genomic and proteomic screenings, DNA methylation can also have different outcomes, including activation of transcription. This is evidenced by the fact that transcription factors can interact with methylated DNA sequences. Furthermore, in certain cellular contexts, genes containing methylated promoters are highly transcribed. Interestingly, this uncoupling between methylated DNA and repression of transcription seems to be particularly evident in germ cells and pluripotent cells. Thus, contrary to previous assumptions, DNA methylation is not exclusively associated with repression of transcription initiation. PMID:25372310

Spruijt, Cornelia G; Vermeulen, Michiel

2014-11-01

414

Wp specific methylation of highly proliferated LCLs  

SciTech Connect

The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

Park, Jung-Hoon [Functional Genomics Lab, Graduate School of Life Science and Biotechnology, CHA Research Institute, Bundang Campus, College of Medicine, Pochon CHA University, 222 Yatap-Dong, Bundang-Gu, Sungnam-Si, Kyunggi-Do 436-836, South Korea (Korea, Republic of); Jeon, Jae-Pil [Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, South Korea (Korea, Republic of); Shim, Sung-Mi [Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, South Korea (Korea, Republic of); Nam, Hye-Young [Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, South Korea (Korea, Republic of); Kim, Joon-Woo [Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, South Korea (Korea, Republic of); Han, Bok-Ghee [Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, 5 Nokbun-Dong, Eunpyung-Gu, Seoul 122-701, South Korea (Korea, Republic of); Lee, Suman [Functional Genomics Lab, Graduate School of Life Science and Biotechnology, CHA Research Institute, Bundang Campus, College of Medicine, Pochon CHA University, 222 Yatap-Dong, Bundang-Gu, Sungnam-Si, Kyunggi-Do 436-836, South Korea (Korea, Republic of)]. E-mail: suman@cha.ac.kr

2007-06-29

415

Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves  

SciTech Connect

Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco masaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g[sup [minus]1] fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-GTase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7--27.0 [mu]g g[sup [minus]1] fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity. 21 refs., 5 figs.

Enyedi, A.J.; Raskin, I. (Rutgers Univ., New Brunswick, NJ (United States))

1993-04-01

416

Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.  

PubMed

cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. PMID:24583236

Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

2014-05-01

417

Proton affinities of saturated aliphatic methyl esters  

Microsoft Academic Search

The kinetic method was used to determine the proton affinities of methyl esters of several saturated fatty acids. Decompositions\\u000a of the proton-bound dimers of the methyl esters, AHB+, were observed under different conditions with two instruments. The proton affinities (PAs) of the methyl esters increase\\u000a continually with increasing carbon number in the acid. Equilibrium and initial rate experiments were performed

Jason Evans; Gordon Nicol; Burnaby Munson

2000-01-01

418

Bisulfighter: accurate detection of methylated cytosines and differentially methylated regions  

PubMed Central

Analysis of bisulfite sequencing data usually requires two tasks: to call methylated cytosines (mCs) in a sample, and to detect differentially methylated regions (DMRs) between paired samples. Although numerous tools have been proposed for mC calling, methods for DMR detection have been largely limited. Here, we present Bisulfighter, a new software package for detecting mCs and DMRs from bisulfite sequencing data. Bisulfighter combines the LAST alignment tool for mC calling, and a novel framework for DMR detection based on hidden Markov models (HMMs). Unlike previous attempts that depend on empirical parameters, Bisulfighter can use the expectation-maximization algorithm for HMMs to adjust parameters for each data set. We conduct extensive experiments in which accuracy of mC calling and DMR detection is evaluated on simulated data with various mC contexts, read qualities, sequencing depths and DMR lengths, as well as on real data from a wide range of biological processes. We demonstrate that Bisulfighter consistently achieves better accuracy than other published tools, providing greater sensitivity for mCs with fewer false positives, more precise estimates of mC levels, more exact locations of DMRs and better agreement of DMRs with gene expression and DNase I hypersensitivity. The source code is available at http://epigenome.cbrc.jp/bisulfighter. PMID:24423865

Saito, Yutaka; Tsuji, Junko; Mituyama, Toutai

2014-01-01

419

Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate  

SciTech Connect

New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

2010-01-22

420

Molecular Structure of Methyl Cyanide  

NSDL National Science Digital Library

Methyl Cyanide is a toxic, colorless liquid with an aromatic (ether like) odor and forms explosive mixtures with air. It is a critical solvent for several important processes e.g., it is widely used as a mobile phase solvent in chromatography applications, as a wash solvent and in preparing reagent solutions for oligonucleotide synthesis. It is employed in the manufacturing of acrylic fibers, pharmaceuticals, perfumes, nitrile rubber, batteries, pesticides, and inorganic salts. It can be utilized to remove tars, phenols, and coloring matter from petroleum hydrocarbons, to extract fatty acids from fish liver, animal, and vegetable oils, and to recrystallize steroids.

2003-06-03

421

Aberrant DNA methylation patterns in diabetic nephropathy  

PubMed Central

Background The aim of this study was to evaluate whether global levels of DNA methylation status were associated with albuminuria and progression of diabetic nephropathy in a case-control study of 123 patients with type 2 diabetes- 53 patients with albuminuria and 70 patients without albuminuria. Methods The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood mononuclear cells to determine individual global DNA methylation status in two groups. Results Global DNA methylation levels were significantly higher in patients with albuminuria compared with those in normal range of albuminuria (p?=?0.01). There were significant differences in global levels of DNA methylation in relation to albuminuria (p?=?0.028) and an interesting pattern of increasing global levels of DNA methylation in terms of albuminuria severity. In patients with micro- and macro albuminuria, we found no significant correlations between global DNA methylation levels and duration of diabetes (p?>?0.05). In both sub groups, there were not significant differences between global DNA methylation levels with good and poor glycaemic control (p?>?0.05). In addition, in patients with albuminuria, no differences in DNA methylation levels were observed between patients with and without other risk factors including age, gender, hypertension, dyslipidaemia and obesity. Conclusions These data may be helpful in further studies to develop novel biomarkers and new strategies for clinical care of patients at risk of diabetic nephropathy. PMID:25028646

2014-01-01

422

DNA methylation patterns in lung carcinomas.  

PubMed

The genome of epithelial tumors is characterized by numerous chromosomal aberrations, DNA base sequence changes, and epigenetic abnormalities. The epigenome of cancer cells has been most commonly studied at the level of DNA CpG methylation. In squamous cell carcinomas of the lung, CpG methylation patterns undergo substantial changes relative to normal lung epithelium. Using a genome-scale mapping technique for CpG methylation (MIRA-chip), we characterized CpG island methylation and methylation patterns of entire chromosome arms at a level of resolution of approximately 100 bp. In individual stage I lung carcinomas, several hundred and probably up to a thousand CpG islands become methylated. Interestingly, a large fraction (almost 80%) of the tumor-specifically methylated sequences are targets of the Polycomb complex in embryonic stem cells. Homeobox genes are particularly overrepresented and all four HOX gene loci on chromosomes 2, 7, 12, and 17 are hotspots for tumor-associated methylation because of the presence of multiple methylated CpG islands within these loci. DNA hypomethylation at CpGs in squamous cell tumors preferentially affects repetitive sequence classes including SINEs, LINEs, subtelomeric repeats, and segmental duplications. Since these epigenetic changes are found in early stage tumors, their contribution to tumor etiology as well as their potential usefulness as diagnostic or prognostic biomarkers of the disease should be considered. PMID:19429482

Pfeifer, Gerd P; Rauch, Tibor A

2009-06-01

423

Analysing and interpreting DNA methylation data.  

PubMed

DNA methylation is an epigenetic mark that has suspected regulatory roles in a broad range of biological processes and diseases. The technology is now available for studying DNA methylation genome-wide, at a high resolution and in a large number of samples. This Review discusses relevant concepts, computational methods and software tools for analysing and interpreting DNA methylation data. It focuses not only on the bioinformatic challenges of large epigenome-mapping projects and epigenome-wide association studies but also highlights software tools that make genome-wide DNA methylation mapping more accessible for laboratories with limited bioinformatics experience. PMID:22986265

Bock, Christoph

2012-10-01

424

Methylation – an uncommon modification of glycans*  

PubMed Central

A methyl group on a sugar residue is a rarely reported event. Until now this kind of modification has been found in the kingdom of animals only in worms and molluscs, whereas it is more frequently present in some species of bacteria, fungi, algae and plants, but not in mammals. The monosaccharides involved as well as the positions of the methyl groups on the sugar vary with the species. Methylation seems to play a role in some recognition events but details are still unknown. This review summarises the current knowledge on methylation of sugars in all kinds of organism. PMID:22944672

Staudacher, Erika

2013-01-01

425

Emissions of Methyl Halides and Methane from Rice Paddies  

Microsoft Academic Search

Methyl halide gases are important sources of atmospheric inorganic halogen compounds, which in turn are central reactants in many stratospheric and tropospheric chemical processes. By observing emissions of methyl chloride, methyl bromide, and methyl iodide from flooded California rice fields, we estimate the impact of rice agriculture on the atmospheric budgets of these gases. Factors influencing methyl halide emissions are

K. R. Redeker; N.-Y. Wang; J. C. Low; A. McMillan; S. C. Tyler; R. J. Cicerone

2000-01-01

426

Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate  

Microsoft Academic Search

New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel\\/air autoignition delay times and comparing

C Naik; C K Westbrook; O Herbinet; W J Pitz; M Mehl

2010-01-01

427

Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate  

Microsoft Academic Search

New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel\\/air autoignition delay times and comparing

C. V. Naik; C. K. Westbrook; O. Herbinet; W. J. Pitz; M. Mehl

2011-01-01

428

Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas  

Microsoft Academic Search

Preeclampsia (PE) is a severe hypertensive disorder associated with pregnancy; despite substantial research effort in the past several years, the etiology of PE is still unclear. The role of epigenetic factors in the etiology of PE, including DNA methylation, has been poorly characterized. In the present study, we investigated global DNA methylation as well as DNA methylation of the paternally

Wen-long Gao; Dong Li; Zhong-xin Xiao; Qin-ping Liao; Hui-xia Yang; Yu-xia Li; Lei Ji; Yan-ling Wang

2011-01-01

429

E?ect of Soil Physical Factors on Methyl Iodide and Methyl Bromide  

Microsoft Academic Search

Production and importation of methyl bromide is scheduled to be banned by 2001. Methyl iodide was evaluated as a possible replacement soil fumigant. The e†ects of soil moisture, temperature, soil texture and fumigation time on the efficacy of methyl iodide for the control of two common weeds, Abutilon theophrasti and L olium multiÑorum, were characterized and compared with those of

Wenming Zhang; J. Ole Becker; Howard D. Ohr; James J. Sims; Steven D. Campbell

1998-01-01

430

Synthesis of both enantiomers of 12-methyl-13-tridecanolide and 14-methyl-15-pentadecanolide (muscolide).  

PubMed

Both enantiomers of 12-methyl-13-tridecanolide{(R)-(+)-1, (S)-(-)-1} and 14-methyl-15-pentadecanolide (muscolide) {(R)-(+)-2, (S)-(-)-2} were synthesized from either (S)-(+)- or (R)-(-)-3-bromo-2-methyl-1-propanol 8 as a chiral building block. PMID:23980425

Noda, Yoshihiro; Mamiya, Natsuki; Kashin, Hitoshi

2013-07-01

431

Chicago area methyl parathion response.  

PubMed

The Illinois Department of Public Health participated in the Chicago, Illinois, area methyl parathion (MP) response with several other federal, state, and local government agencies beginning in April 1997. This response was initiated on evidence that hundreds of homes in the Chicago area were illegally treated for cockroaches with MP over a period of several years. Through applicator receipt books and information reported by property owners and tenants, 968 homes were identified as having been treated with MP. Upon implementation of a response plan developed by the Methyl Parathion Health Sciences Steering Committee, environmental sampling and urine monitoring were provided for eligible households. Environmental sampling was conducted in 903 homes, with MP detected above levels of concern in 596 residences. Residents of these homes were offered urine sampling to determine the extent of exposure to MP. Urine samples were collected and analyzed for p-nitrophenol in 1,913 individuals. Implementation of the protocol resulted in 550 residents being relocated during the remediation of 100 households. PMID:12634143

McCann, Kenneth G; Moomey, C Michael; Runkle, Kenny D; Hryhorczuk, Daniel O; Clark, J Milton; Barr, Dana B

2002-12-01

432

Preparation of ? -methyl- ? -butyrolactone: Mechanism of its formation and utilization in 2-methyl-1-tetralone synthesis  

Microsoft Academic Search

?-Methyl-?-butyrolactone (III) has been prepared directly from ?-butyrolactone (I) in 89 % yield by selective monomethylation conditions: K2CO3\\/DMC\\/210°C\\/7 h. The reaction mechanism was elucidated and described. An intermediate and two byproducts: methyl tetrahydro-3-methyl-2-oxofuran-3-carboxylate\\u000a (II), 3-(methoxycarbonyl)propyl methyl carbonate (IV) and 3-(methoxycarbonyl)butyl methyl carbonate (V) were identified. The high temperature disproportionation of K2CO3 in the presence of dimethyl carbonate to MeOK was

Vladislav Semak; Andrej Bohá?; Marta Sališová; Gabriela Addová; Peter Danko

2008-01-01

433

7 CFR 305.6 - Methyl bromide fumigation treatment schedules.  

Code of Federal Regulations, 2010 CFR

...2010-01-01false Methyl bromide fumigation treatment schedules....Treatments § 305.6Methyl bromide fumigation treatment schedules. ...quarantined area may be treated with methyl bromide fumigation in...

2010-01-01

434

21 CFR 173.385 - Sodium methyl sulfate.  

Code of Federal Regulations, 2013 CFR

...CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance...and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent...

2013-04-01

435

21 CFR 173.385 - Sodium methyl sulfate.  

Code of Federal Regulations, 2012 CFR

...CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance...and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent...

2012-04-01

436

21 CFR 173.385 - Sodium methyl sulfate.  

Code of Federal Regulations, 2014 CFR

...CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance...and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent...

2014-04-01

437

21 CFR 173.385 - Sodium methyl sulfate.  

Code of Federal Regulations, 2011 CFR

...CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance...and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent...

2011-04-01

438

21 CFR 173.385 - Sodium methyl sulfate.  

Code of Federal Regulations, 2010 CFR

...CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in pectin in accordance...and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does not exceed 0.1 percent...

2010-04-01

439

ABIOLOGICAL METHYLATION OF MERCURY IN SOIL  

EPA Science Inventory

This work defines several factors influencing the methylation of mercuric ion in soil. Two of the most important findings were that it is possible to extract the mercury methylating factor from soil with a solution of 0.5N sodium hydroxide and that this factor is responsible for ...

440

Effects of DNA methylation on nucleosome stability  

PubMed Central

Methylation of DNA at CpG dinucleotides represents one of the most important epigenetic mechanisms involved in the control of gene expression in vertebrate cells. In this report, we conducted nucleosome reconstitution experiments in conjunction with high-throughput sequencing on 572 KB of human DNA and 668 KB of mouse DNA that was unmethylated or methylated in order to investigate the effects of this epigenetic modification on the positioning and stability of nucleosomes. The results demonstrated that a subset of nucleosomes positioned by nucleotide sequence was sensitive to methylation where the modification increased the affinity of these sequences for the histone octamer. The features that distinguished these nucleosomes from the bulk of the methylation-insensitive nucleosomes were an increase in the frequency of CpG dinucleotides and a unique rotational orientation of CpGs such that their minor grooves tended to face toward the histones in the nucleosome rather than away. These methylation-sensitive nucleosomes were preferentially associated with exons as compared to introns while unmethylated CpG islands near transcription start sites became enriched in nucleosomes upon methylation. The results of this study suggest that the effects of DNA methylation on nucleosome stability i