Science.gov

Sample records for methylation polymorphism polymerase

  1. Methylation-sensitive polymerase chain reaction.

    PubMed

    Moore, Hannah R; Meehan, Richard R; Young, Lorraine E

    2006-01-01

    Here, we describe a robust and reproducible methylation-sensitive polymerase chain reaction (MS-PCR) method to detect the percentage methylation in repeat sequences of individual pre-implantation ovine embryos produced by different embryo technologies. This method allows the comparison of embryos produced by nuclear transfer with other production and embryo culture methods, accounting for the heterogeneity between embryos within a single treatment. DNA extracted from single embryos is digested with a methylation-sensitive restriction enzyme to determine the percentage methylation after PCR amplification in comparison with an undigested control. The undigested control represents 100% methylation because methylation-sensitive enzymes do not cut methylated DNA, allowing the entire sample to be amplified by PCR. Image analysis quantification of the digested subsample PCR product on an ethidium bromide-stained agarose gel is proportional to the amount of methylated DNA in each embryo. By comparing quadruplicate values obtained for each embryo against a standard curve, we are able to ensure the validity of our results for each individual embryo. Compared with bisulphite sequencing methods, the method described is rapid, inexpensive, and relatively high-throughput. PMID:16761730

  2. Effect of MTHFR Gene Polymorphism Impact on Atherosclerosis via Genome-Wide Methylation

    PubMed Central

    Lin, Xuefeng; Zhang, Wei; Lu, Qun; Lei, Xinjun; Wang, Tingzhong; Han, Xuanmao; Ma, Aiqun

    2016-01-01

    Background Atherosclerosis seriously threats human health. Homocysteine is an independent risk factor closely related to DNA methylation. MTHFR C667T loci polymorphism is closely associated with homocysteine level. This study aimed to investigate the relationship among MTHFR C667T loci polymorphism, genome-wide methylation, and atherosclerosis. Material/Methods Blood sample was collected from 105 patients with coronary atherosclerosis and 105 healthy controls. Pyrosequencing methylation was used to detect LINE-1 methylation level. Polymerase chain reaction-restriction enzyme fragment length polymorphism (PCR-RFLP) was used to test MTHFR. Results LINE-1 methylation level in the patient group was significantly lower than in the controls (t=5.007, P<0.001). MTHFR C667T genotype distribution presented marked differences in the 2 groups. TT genotype carriers had significantly increased risk of atherosclerosis (OR=3.56, P=0.009). Three different genotypes of MTHFR C667T loci showed different LINE-1 methylation level between the 2 groups (P<0.01). LINE-1 methylation level in TT and CT genotype carriers was obviously lower than in CC genotype carriers (P<0.05). Conclusions MTHFR C667T loci polymorphism may affect atherosclerosis by regulating genome methylation level. PMID:26828698

  3. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  4. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    PubMed Central

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  5. GSH2 promoter methylation in pancreatic cancer analyzed by quantitative methylation-specific polymerase chain reaction

    PubMed Central

    GAO, FEI; HUANG, HAO-JIE; GAO, JUN; LI, ZHAO-SHEN; MA, SHU-REN

    2015-01-01

    Tumor suppressor gene silencing via promoter hypermethylation is an important event in pancreatic cancer pathogenesis. Aberrant DNA hypermethylation events are highly tumor specific, and may provide a diagnostic tool for pancreatic cancer patients. The objective of the current study was to identify novel methylation-related genes that may potentially be used to establish novel therapeutic and diagnostic strategies against pancreatic cancer. The methylation status of the GS homeobox 2 (GSH2) gene was analyzed using the sodium bisulfite sequencing method. The GSH2 methylation ratio was examined in primary carcinomas and corresponding normal tissues derived from 47 patients with pancreatic cancer, using quantitative methylation-specific polymerase chain reaction. Methylation ratios were found to be associated with the patient's clinicopathological features. GSH2 gene methylation was detected in 26 (55.3%) of the 47 pancreatic cancer patients, indicating that it occurs frequently in pancreatic cancer. A significant association with methylation was observed for tumor-node-metastasis stage (P=0.031). GSH2 may be a novel methylation-sensitive tumor suppressor gene in pancreatic cancer and may be a tumor-specific biomarker of the disease. PMID:26171036

  6. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.

    PubMed

    Tan, Ming-pu

    2010-01-01

    Water stress is known to alter cytosine methylation, which generally represses transcription. However, little is known about the role of methylation alteration in maize under osmotic stress. Here, methylation-sensitive amplified polymorphism (MSAP) was used to screen PEG- or NaCl-induced methylation alteration in maize seedlings. The sequences of 25 differentially amplified fragments relevant to stress were successfully obtained. Two stress-specific fragments from leaves, LP166 and LPS911, shown to be homologous to retrotransposon Gag-Pol protein genes, suggested that osmotic stress-induced methylation of retrotransposons. Three MSAP fragments, representing drought-induced or salt-induced methylation in leaves, were homologous to a maize aluminum-induced transporter. Besides these, heat shock protein HSP82, Poly [ADP-ribose] polymerase 2, Lipoxygenase, casein kinase (CK2), and dehydration-responsive element-binding (DREB) factor were also homologs of MSAP sequences from salt-treated roots. One MSAP fragment amplified from salt-treated roots, designated RS39, was homologous to the first intron of maize protein phosphatase 2C (zmPP2C), whereas - LS103, absent from salt-treated leaves, was homologous to maize glutathione S-transferases (zmGST). Expression analysis showed that salt-induced intron methylation of root zmPP2C significantly downregulated its expression, while salt-induced demethylation of leaf zmGST weakly upregulated its expression. The results suggested that salinity-induced methylation downregulated zmPP2C expression, a negative regulator of the stress response, while salinity-induced demethylation upregulated zmGST expression, a positive effecter of the stress response. Altered methylation, in response to stress, might also be involved in stress acclimation. PMID:19889550

  7. DNA methylation and methylation polymorphism in ecotypes of Jatropha curcas L. using methylation-sensitive AFLP markers.

    PubMed

    Mastan, Shaik G; Rathore, Mangal S; Bhatt, Vacha D; Chikara, J; Ghosh, A

    2014-12-01

    We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas. PMID:25227523

  8. Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation.

    PubMed Central

    Jüttermann, R; Hosokawa, K; Kochanek, S; Doerfler, W

    1991-01-01

    Sequence-specific methylation of the promoter and adjacent regions in mammalian genes transcribed by RNA polymerase II leads to the inhibition of these genes. So far, RNA polymerase III-transcribed genes have not been investigated in depth. We therefore studied methylation effects on the RNA polymerase III-transcribed VAI gene of adenovirus type 2 DNA. The VAI gene contains 20 5'-CG-3' dinucleotides, of which 4 (20%) can be methylated by HpaII (5'-CCGG-3') and HhaI (5'-GCGC-3'). Three of these 5'-CG-3' sequences are located close to the internal regulatory region of the VAI segment. An unmethylated, a 5'-CCGG-3'- and 5'-GCGC-3'-methylated, and a 5'-CG-3'-methylated pUC18 construct containing the VAI and VAII regions were transfected into mammalian cells. In many experiments, an inactivating effect of 5'-CCGG-3' and 5'-GCGC-3' DNA methylation on the VAI region was not observed. In contrast, methylation of all 20 5'-CG-3' sequences in the VAI region by a CpG-specific DNA methyltransferase from Spiroplasma species did interfere with VAI transcription. Transcription of the VAI- and VAII- and of the VAI-containing constructs was also shown to be inhibited in an in vitro cell-free transcription system after the constructs had been methylated at the 5'-CCGG-3' and 5'-GCGC-3' sequences or at all 5'-CG-3' sequences. When an oligodeoxyribonucleotide which carried the internal control block A of the VAI region was methylated at three 5'-CG-3' sequences, the formation of a complex with HeLa nuclear proteins was abrogated. The results presented support the notion that the VAI gene transcribed by the DNA-dependent RNA polymerase III is also inactivated by methylation of the decisive 5'-CG-3' sequences. Images PMID:2002541

  9. Pervasive polymorphic imprinted methylation in the human placenta.

    PubMed

    Hanna, Courtney W; Peñaherrera, Maria S; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E; Kelsey, Gavin; Robinson, Wendy P

    2016-06-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  10. Pervasive polymorphic imprinted methylation in the human placenta

    PubMed Central

    Hanna, Courtney W.; Peñaherrera, Maria S.; Saadeh, Heba; Andrews, Simon; McFadden, Deborah E.; Kelsey, Gavin; Robinson, Wendy P.

    2016-01-01

    The maternal and paternal copies of the genome are both required for mammalian development, and this is primarily due to imprinted genes, those that are monoallelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilization. There are a large number of germline DMRs that have not yet been associated with imprinting, and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta and investigated the dynamics of these imprinted DMRs during development in somatic and extraembryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publicly available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. Forty-three known and 101 novel imprinted DMRs were identified in the human placenta by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. Seventy-two novel DMRs showed a pattern consistent with placental-specific imprinting, and this monoallelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation. PMID:26769960

  11. Detection of DNA sequence polymorphisms in carcinogen metabolism genes by polymerase chain reaction.

    PubMed

    Bell, D A

    1991-01-01

    The glutathione transferase mu gene (GST1) and the debrisoquine hydroxylase gene (CYP2D6) are known to be polymorphic in the human population and have been associated with increased susceptibility to cancer. Smokers with low lymphocyte GST mu activity are at higher risk for lung cancer, while low debrisoquine hydroxylase activity has been correlated with lower risk for lung and bladder cancer. Phenotypic characterization of these polymorphisms by lymphocyte enzyme activity (GST) and urine metabolite ratios (debrisoquine) is cumbersome for population studies. Recent cloning and sequencing of the mutant alleles of these genes has allowed genotyping via the polymerase chain reaction (PCR). Advantages of PCR approaches are speed, technical simplicity, and minimal sample requirements. This article reviews the PCR-based methods for detection of genetic polymorphisms in human cancer susceptibility genes. PMID:1684153

  12. Genetic polymorphism of toll-like receptors 4 gene by polymerase chain reaction-restriction fragment length polymorphisms, polymerase chain reaction-single-strand conformational polymorphism to correlate with mastitic cows

    PubMed Central

    Gupta, Pooja H.; Patel, Nirmal A.; Rank, D. N.; Joshi, C. G.

    2015-01-01

    Aim: An attempt has been made to study the toll-like receptors 4 (TLR4) gene polymorphism from cattle DNA to correlate with mastitis cows. Materials and Methods: In present investigation, two fragments of TLR4 gene named T4CRBR1 and T4CRBR2 of a 316 bp and 382 bp were amplified by polymerase chain reaction (PCR), respectively from Kankrej (22) and Triple cross (24) cattle. The genetic polymorphisms in the two populations were detected by a single-strand conformational polymorphism in the first locus and by digesting the fragments with restriction endonuclease Alu I in the second one. Results: Results showed that both alleles (A and B) of two loci were found in all the two populations and the value of polymorphism information content indicated that these were highly polymorphic. Statistical results of χ2 test indicated that two polymorphism sites in the two populations fit with Hardy–Weinberg equilibrium (p<0.05). Meanwhile, the effect of polymorphism of TLR4 gene on the somatic cell score (SCS) indicated the cattle with allele a in T4CRBR1 showed lower SCS than that of allele B (p<0.05). Thus, the allele A might play an important role in mastitis resistance in cows. Conclusion: The relationship between the bovine mastitis trait and the polymorphism of TLR4 gene indicated that the bovine TLR4 gene may play an important role in mastitis resistance. PMID:27047144

  13. An improved polymerase chain reaction-restriction fragment length polymorphism assay for the detection of a PON2 gene polymorphism

    PubMed Central

    DUAN, XIAORAN; YANG, YONGLI; WANG, TUANWEI; FENG, XIAOLEI; YAO, WU; YAN, ZHEN; WANG, WEI

    2016-01-01

    In recent research, it has been shown that there have been variants of rs12026 within the paraoxonase 2 (PON2) gene, which have been associated with cardiovascular disease, cerebrovascular disease, diabetes and other diseases. The isochizomers, such as the BsoFI enzyme, required for the detection of this polymorphism are expensive. Therefore, an improved and less expensive polymerase chain reaction (PCR)-restriction fragment length polymorphism method was established for the detection of the single-nucleotide polymorphism rs12026 in the exon 5 of chromosome 7 of the human PON2 gene using the method of amplification-created restriction site. Subsequent to assessing 302 individuals, the genotype frequencies were 68.9% for CC, 29.8% for CG and 1.3% for GG, and the allelic frequencies were 83.8% for C and 16.2% for G. The PCR results were confirmed by DNA sequencing. The χ2 test showed that the genotype and allele frequencies of PON2-148 do not deviate from Hardy-Weinberg equilibrium, and the sequences of amplified products were consistent with the sequence published in GenBank with the exception of a mismatched base. PMID:27330753

  14. Detection of short tandem repeat polymorphisms from human nails using direct polymerase chain reaction method.

    PubMed

    Tie, Jian; Uchigasaki, Seisaku

    2014-11-01

    Human nail is an important forensic material for parental testing and individual identification in large-scale disasters. Detection of STR polymorphism from hard tissues generally requires DNA purification, which is technically complicated and time consuming. In the present study, we attempted to detect STR polymorphisms from untreated human nail samples by direct PCR amplification method using the primer mixture supplied with the GenePrint® SilverSTR® III System or the AmpFℓSTR® Identifiler® PCR Amplification Kit, and Tks Gflex DNA polymerase known to be effective for amplification from crude samples. A nail fragment measuring approximately 1.5 mm in breadth and 0.5 mm in length was placed directly into a PCR tube, and various PCR conditions were tested. The PCR products were analyzed by denaturing acrylamide gel electrophoresis or CE. Multiple STR polymorphisms were detected successfully. This method that detects STR polymorphisms not only from fresh human fingernails, but also from old nail fragments stored at room temperature for up to 10 years is expected to become a novel DNA analytical method in forensic medicine and genetic studies. PMID:24934775

  15. A neutrality test for detecting selection on DNA methylation using single methylation polymorphism frequency spectrum.

    PubMed

    Wang, Jun; Fan, Chuanzhu

    2015-01-01

    Inheritable epigenetic mutations (epimutations) can contribute to transmittable phenotypic variation. Thus, epimutations can be subject to natural selection and impact the fitness and evolution of organisms. Based on the framework of the modified Tajima's D test for DNA mutations, we developed a neutrality test with the statistic "D(m)" to detect selection forces on DNA methylation mutations using single methylation polymorphisms. With computer simulation and empirical data analysis, we compared the D(m) test with the original and modified Tajima's D tests and demonstrated that the D(m) test is suitable for detecting selection on epimutations and outperforms original/modified Tajima's D tests. Due to the higher resetting rate of epimutations, the interpretation of D(m) on epimutations and Tajima's D test on DNA mutations could be different in inferring natural selection. Analyses using simulated and empirical genome-wide polymorphism data suggested that genes under genetic and epigenetic selections behaved differently. We applied the D(m) test to recently originated Arabidopsis and human genes, and showed that newly evolved genes contain higher level of rare epialleles, suggesting that epimutation may play a role in origination and evolution of genes and genomes. Overall, we demonstrate the utility of the D(m) test to detect whether the loci are under selection regarding DNA methylation. Our analytical metrics and methodology could contribute to our understanding of evolutionary processes of genes and genomes in the field of epigenetics. The Perl script for the "D(m)" test is available at http://fanlab.wayne.edu/ (last accessed December 18, 2014). PMID:25539727

  16. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    NASA Astrophysics Data System (ADS)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony

    2014-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.

  17. Glutamine methylation in Histone H2A is an RNA Polymerase I dedicated modification

    PubMed Central

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J; Nielsen, Michael L.; Kouzarides, Tony

    2013-01-01

    Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes1. Here, we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that Fibrillarin is the ortholog enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me specific antibody, show that this modification is exclusively enriched over the 35S rDNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (Facilitator of Transcription) complex2. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 exhibits reduced histone incorporation and increased transcription at the rDNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes. PMID:24352239

  18. The rs3756063 polymorphism is associated with SNCA methylation in the Chinese Han population.

    PubMed

    Wei, Yang; Yang, Nannan; Xu, Qian; Sun, Qiying; Guo, Jifeng; Li, Kai; Liu, Zhenhua; Yan, Xinxiang; Zhu, Xiongwei; Tang, Beisha

    2016-08-15

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Genome-wide association studies have confirmed the association of single nucleotide polymorphisms (SNPs) located in the SNCA gene with the risk of PD. While hypomethylation of the SNCA intron-1 was observed in patients with sporadic PD, an association between SNCA SNPs and SNCA methylation levels has been identified. To investigate whether these SNPs are associated with the level of SNCA methylation in the Chinese population, we genotyped SNCA SNPs and analyzed the relationship between SNCA SNPs and SNCA DNA methylation status from peripheral blood mononuclear cells of Chinese Han PD patients. Our results revealed that the rs3756063 polymorphism could contribute to the risk of PD in the Chinese Han population and confirmed the effect of this polymorphism on SNCA DNA methylation. Further studies will be needed to gain a better understanding of the mechanisms underlying the associations between SNPs, methylation and PD pathogenesis. PMID:27423554

  19. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    SciTech Connect

    Wu, Chia-Chang; Huang, Yung-Kai; Chung, Chi-Jung; Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Lai, Li-An; Lin, Ying-Chin; Su, Chien-Tien; Hsueh, Yu-Mei

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.

  20. A Germline Polymorphism of DNA Polymerase Beta Induces Genomic Instability and Cellular Transformation

    PubMed Central

    Keh, Agnes; Sweasy, Joann B.

    2012-01-01

    Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility. PMID:23144635

  1. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    PubMed

    Souza, M T; Carvalho-Zilse, G A

    2014-01-01

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species. PMID:25117306

  2. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells

    PubMed Central

    Dias, João D; Rito, Tiago; Torlai Triglia, Elena; Kukalev, Alexander; Ferrai, Carmelo; Chotalia, Mita; Brookes, Emily; Kimura, Hiroshi; Pombo, Ana

    2015-01-01

    Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels. DOI: http://dx.doi.org/10.7554/eLife.11215.001 PMID:26687004

  3. Single-Nucleotide Polymorphism Identification Assays Using a Thermostable DNA Polymerase and Delayed Extraction MALDI-TOF Mass Spectrometry

    PubMed Central

    Haff, Lawrence A.; Smirnov, Igor P.

    1997-01-01

    We report a simple method, the PinPoint assay, for detecting and identifying single-base variations (polymorphisms) at specific locations within DNA sequences. An oligonucleotide primer is annealed to the target DNA immediately upstream of the polymorphic site and is extended by a single base in the presence of all four dideoxynucleotide triphosphates and a thermostable DNA polymerase. The extension products are desalted, concentrated, and subjected to delayed-extraction MALDI-TOF mass spectrometry. The base at the polymorphic site is identified by the mass added onto the primer. Heterozygous targets produce two mass-resolved species that represent the addition of both bases complementary to those at the polymorphic site. The assay is suitable for double-stranded PCR products without purification or strand separation. More than one primer can be simultaneously extended and then mass-analyzed. The mass spectrometric method thus shows promise for high-volume diagnostic or genotyping applications. PMID:9110177

  4. Polymerase chain reaction-restriction fragment length polymorphism authentication of raw meats from game birds.

    PubMed

    Rojas, María; González, Isabel; Fajardo, Violeta; Martín, Irene; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2008-01-01

    Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), woodpigeon (Columba palumbus), and song thrush (Turdus philomelos). PCR amplification was performed using a set of primers flanking a conserved region of approximately 720 base pairs (bp) from the mitochondrial 12S rRNA gene. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of AluI and BfaI endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. However, the use of the PCR-RFLP technique described is limited to raw meat authentication. It is not suitable for cooked products because thermal treatment strongly accelerates DNA degradation leading to difficulties in amplifying the 720 bp fragment. PMID:19202803

  5. Mutagenicity Assessment of Organophosphates using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay

    PubMed Central

    Bhinder, Preety; Chaudhry, Asha

    2013-01-01

    Objectives: In this study we have evaluated the mutagenicity of organophosphate pesticides acephate, chlorpyrifos, and profenofos using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the mosquito Culex quinquefasciatus taken as an experimental model. Materials and Methods: Second instar larvae were treated with LC20 of each pesticide for 24 h and mutations induced in the sequence of mitochondrial COII gene (690bp) were studied from restriction patterns generated with AluI, PacI, and PsiI restriction endonucleases. Results: Variations in the number and size of digested fragments were recorded from treated individuals compared with controls showing that the restriction enzymes created a cut at different locations. In addition, sequences of COII gene from control and treated individuals were also used to confirm the RFLP patterns. From the sequence alignment data, it was found that mutations caused the destruction and generation of restriction sites in the gene sequence of treated individuals. Conclusion: This study indicates that all the three pesticides had potential to induce mutations in the normal sequence of COII gene and also advocates the use of PCR-RFLP assay as an efficient, rapid, and sensitive technique to detect mutagenicity of pesticides. PMID:24403735

  6. A polymerase chain reaction-based method for constructing a linear vector with site-specific DNA methylation.

    PubMed

    Arakawa, Toshiya; Ohta, Tohru; Abiko, Yoshihiro; Okayama, Miki; Mizoguchi, Itaru; Takuma, Taishin

    2011-09-15

    DNA methylation is an important epigenetic modification that leads to a wide variety of biological functions, including transcription, growth and development, and diseases associated with altered gene expression such as cancers. However, tools to insert site-specific methylation into DNA for analyzing epigenetic functions are limited. Here we describe a novel polymerase chain reaction (PCR)-based approach to provide site-specific DNA methylation at any site, including CpG or CpNpG islands. This method is simple and versatile, and it consists of four steps to construct the DNA methylation vector: (I) design and synthesis of methylated primers, (II) PCR amplification, (III) isolation of single-stranded DNA, and (IV) annealing and ligation of isolated single-stranded DNAs. First we produced and validated a linear green fluorescence protein (GFP) vector by this method. Next we applied this method to introduce methyl groups into the promoter of the cyclooxygenase-2 (COX-2) gene and found that site-specific DNA methylation at the CRE element significantly altered COX-2 gene expression. These results demonstrate that this PCR-based approach is useful for the analysis of biological functions that depend on DNA methylation. PMID:21669180

  7. Direct and site-specific quantification of RNA 2'-O-methylation by PCR with an engineered DNA polymerase.

    PubMed

    Aschenbrenner, Joos; Marx, Andreas

    2016-05-01

    Methylation of the 2'-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2'-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2'-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2'-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  8. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase

    PubMed Central

    Aschenbrenner, Joos; Marx, Andreas

    2016-01-01

    Methylation of the 2′-hydroxyl-group of ribonucleotides is found in all major classes of RNA in eukaryotes and is one of the most abundant posttranscriptional modifications of stable RNAs. In spite of intense studies, the multiple functions of RNA 2′-O-methylation are still not understood. One major obstacle in the field are the technical demanding detection methods, which are typically laborious and do not always deliver unambiguous results. We present a thermostable KlenTaq DNA polymerase variant with significant reverse transcription activity that is able to discriminate 2′-O-methylated from unmethylated RNAs. The engineered enzyme catalyzes DNA synthesis from DNA as well as RNA templates and enables expeditious quantification of 2′-O-methylation of individual nucleotides directly from total RNA extracts by a simple qRT-PCR. PMID:27016740

  9. Randomly amplified polymorphic DNA-polymerase chain reaction analysis of two different populations of cultured Korean catfish Silurus asotus.

    PubMed

    Yoon, J M; Kim, G W

    2001-12-01

    Genetic similarity and diversity of cultured catfish Silurus asotus populations collected from two areas in western Korea were examined using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Out of 20 random primers tested, 5 produced 1344 RAPD bands ranging from 8.2 to 13.6 polymorphic bands per primer. The polymorphic bands in these populations ranged from 56.4% to 59.6%. Polymorphic bands per lane within populations ranged from 4.9% to 5.3%. The similarity within the Kunsan population varied from 0.39 to 0.82 with a mean (+/- SD) of 0.56 +/- 0.08. The level of bandsharing values was 0.59 +/- 0.07 within the catfish population from Yesan. The genetic similarity in cultured catfish populations may have been caused because individuals from two populations were reared in the same environmental conditions or by inbreeding during several generations. However, in view of bandsharing values, polymorphic bands and also the specific major bands that were inter-population-specific, significant genetic differentiation between these populations were present even if bandsharing (BS) values were somewhat numerically different. Therefore, the number of RAPD polymorphisms identified in this study may be sufficient to permit estimating genetic similarity and diversity. However, in future, additional populations, sampling sites and individuals will be necessary to make up for these weak points. PMID:11807294

  10. Genetic relationships among Aedes aegypti (Diptera: Culicidae) populations from Argentina using random amplified polymorphic DNA polymerase chain reaction markers.

    PubMed

    de Sousa, G B; Blanco, A; Gardenal, C N

    2001-05-01

    Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) polymorphism was analyzed in five Aedes aegypti (L.) populations from Argentina and one from Puerto Rico to estimate levels of intraspecific polymorphism and genetic relatedness. Allele frequencies were estimated assuming that RAPD products segregate as dominants and that genotype frequencies at those loci are in Hardy-Weinberg equilibrium. Mean expected heterozygosity (He) was 0.350; F(ST) values were significant at all loci except one, supporting the usefulness of the fragments used here to discriminate among populations. Rogers' genetic similarity between samples ranged from 0.806 to 0.621. The population from Puerto Rico was the most different from the Argentina populations. Considering that Ae. aegypti eggs, larvae, and pupae can be transported easily, relationships among the Argentinian populations may reflect the routes and intensity of commercial transit. PMID:11372960

  11. On-chip detection of a single nucleotide polymorphism without polymerase amplification

    PubMed Central

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H.; Kennedy, Ian M.

    2014-01-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD− wild type and three PKD positive cats. The standard curves for PKD positive (PKD+) and negative (PKD−) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable. PMID:25580203

  12. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    PubMed Central

    Yamamoto, Ryohei; Umetsu, Makio; Yamamoto, Mizuki; Matsuyama, Satoshi; Takenaka, Shigeo; Ide, Hiroshi; Kubo, Kihei

    2015-01-01

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3′-OH and 5′-deoxyribose phosphate (5′-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5′-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. PMID:25724755

  13. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    PubMed

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions. PMID:26588922

  14. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    PubMed

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress. PMID:26396013

  15. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and promoter methylation in cervical oncogenic lesions and cancer

    PubMed Central

    Botezatu, Anca; Socolov, Demetra; Iancu, Iulia V; Huica, Irina; Plesa, Adriana; Ungureanu, Carmen; Anton, Gabriela

    2013-01-01

    The aim of this study was to investigate the role of methylenetetrahydrofolate reductase (MTHFR) polymorphisms and MTHFR methylation pattern in cervical lesions development among women from Romania, a country with high prevalence of human papillomavirus (HPV) cervical infections. To achieve this goal, blood samples and cervical cytology specimens (n = 77)/tumour tissue specimens (n = 23) were investigated. As control, blood and negative cytological smears (n = 50) were used. A statistically significant association was found between T allele of C677T polymorphism and cervical lesions, heterozygote women presenting a threefold increased risk (normal/cervical lesions and tumours: wild homozygote 34/41 (0.68/0.41), heterozygote 14/51 (0.28/0.51), mutant homozygote 2/8 (0.04/0.08); OR = 3.081, P = 0.0035). Using χ square test for the control group, the HPV-negative and HPV-positive patients with cervix lesions, a significant correlation between viral infection and T allele of C677T polymorphism (P = 0.0287) was found. The MTHFR promoter was methylated in all HGSIL and tumour samples, significant differences being noted between HPV-positive samples, control group and cases of cervical dysplastic lesions without HPV DNA (P < 0. 0001) and between samples from patients with high-risk (hr)HPV versus low-risk (lr)HPV (P = 0.0026). No correlations between polymorphisms and methylation were observed. In Romania, individuals carrying T allele are susceptible for cervical lesions. MTHFR promoter methylation is associated with cervical severity lesions and with hrHPV. PMID:23444906

  16. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage

    PubMed Central

    Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C.M.; Jansen, Jacob G.; Hogenbirk, Marc A.; de Wind, Niels; Jacobs, Heinz

    2015-01-01

    Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. PMID:25505145

  17. METHYLATION OF ARSENIC BY RECOMBINANT HUMAN AS3MT/287M AND AS3MT/287T POLYMORPHS

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). AS3MT polymorphism is, in part, responsible for interindividual differences in iAs metabolism. AS3MT/M287T polymorphism that is found in ~ 10% of C...

  18. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-01-01

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico. PMID:27323120

  19. Metal A and Metal B Sites of Nuclear RNA Polymerases Pol IV and Pol V Are Required for siRNA-Dependent DNA Methylation and Gene Silencing

    PubMed Central

    Haag, Jeremy R.; Pontes, Olga; Pikaard, Craig S.

    2009-01-01

    Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active. PMID:19119310

  20. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering.

    PubMed

    Alifano, Pietro; Palumbo, Carla; Pasanisi, Daniela; Talà, Adelfia

    2015-05-20

    Following its introduction in 1967, rifampicin has become a mainstay of therapy in the treatment of tuberculosis, leprosy and many other widespread diseases. Its potent antibacterial activity is due to specific inhibition of bacterial RNA polymerase. However, resistance to rifampicin was reported shortly after its introduction in the medical practice. Studies in the model organism Escherichia coli helped to define the molecular mechanism of rifampicin-resistance demonstrating that resistance is mostly due to chromosomal mutations in rpoB gene encoding the RNA polymerase β chain. These studies also revealed the amazing potential of the molecular genetics to elucidate the structure-function relationships in bacterial RNA polymerase. The scope of this paper is to illustrate how rifampicin-resistance has been recently exploited to better understand the regulatory mechanisms that control bacterial cell physiology and virulence, and how this information has been used to maneuver, on a global scale, gene expression in bacteria of industrial interest. In particular, we reviewed recent literature regarding: (i) the effects of rpoB mutations conferring rifampicin-resistance on transcription dynamics, bacterial fitness, physiology, metabolism and virulence; (ii) the occurrence in nature of "mutant-type" or duplicated rifampicin-resistant RNA polymerases; and (iii) the RNA polymerase genetic engineering method for strain improvement and drug discovery. PMID:25481100

  1. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    PubMed Central

    Loza-Muller, Lloyd; Rodríguez-Corona, Ulises; Sobol, Margarita; Rodríguez-Zapata, Luis C.; Hozak, Pavel; Castano, Enrique

    2015-01-01

    Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter. PMID:26594224

  2. Modulation of the W748S mutation in DNA polymerase γ by the E1143G polymorphism in mitochondrial disorders

    PubMed Central

    Chan, Sherine S.L.; Longley, Matthew J.; Copeland, William C.

    2007-01-01

    DNA polymerase gamma (pol γ) is required for replication and repair of mitochondrial DNA. Over 80 mutations in POLG, the gene encoding the catalytic subunit of pol γ, have been linked with disease. The W748S mutation in POLG is the most common mutation in ataxia-neuropathy spectrum disorders and is generally found in cis with the common E1143G polymorphism. It has been unclear whether E1143G participates in the disease process. We investigated the biochemical consequences of pol γ proteins containing W748S or E1143G, or both. W748S pol γ exhibited low DNA polymerase activity, low processivity and a severe DNA-binding defect. However, interactions between the catalytic and accessory subunits were normal. Despite the benefits derived from binding with the accessory subunit, catalytic activities did not reach wild-type (WT) levels. Also, nucleotide selectivity decreased 2.1-fold compared with WT. Surprisingly, pol γ containing only E1143G was 1.4-fold more active than WT, and this increased polymerase activity could be due to higher thermal stability for E1143G pol γ. The E1143G substitution partially rescued the deleterious effects of the W748S mutation, as DNA binding, catalytic activity and fidelity values were intermediate for W748S-E1143G. However, W748S-E1143G had a notably lower change in enthalpy for protein folding than W748S alone. We suggest that when E1143G is in cis with other pathogenic mutations, it can modulate the effects of these mutations. For W748S-E1143G pol γ, the benefits bestowed by E1143G include increased DNA binding and polymerase activity; however, E1143G was somewhat detrimental to protein stability. PMID:17088268

  3. Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip.

    PubMed

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; McIntosh, Andrew M; Porteous, David J; Evans, Kathryn L

    2016-09-01

    Genome-wide analysis of DNA methylation has now become a relatively inexpensive technique thanks to array-based methylation profiling technologies. The recently developed Illumina Infinium MethylationEPIC BeadChip interrogates methylation at over 850,000 sites across the human genome, covering 99% of RefSeq genes. This array supersedes the widely used Infinium HumanMethylation450 BeadChip, which has permitted insights into the relationship between DNA methylation and a wide range of conditions and traits. Previous research has identified issues with certain probes on both the HumanMethylation450 BeadChip and its predecessor, the Infinium HumanMethylation27 BeadChip, which were predicted to affect array performance. These issues concerned probe-binding specificity and the presence of polymorphisms at target sites. Using in silico methods, we have identified probes on the Infinium MethylationEPIC BeadChip that are predicted to (i) measure methylation at polymorphic sites and (ii) hybridise to multiple genomic regions. We intend these resources to be used for quality control procedures when analysing data derived from this platform. PMID:27330998

  4. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach.

    PubMed

    Iñiguez, Alena M; Araújo, Adauto; Ferreira, Luiz Fernando; Vicente, Ana Carolina P

    2003-01-01

    The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA) present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR) inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences. PMID:12687765

  5. A new measurement approach of ionizing radiation in irradiated trout (Oncorhynchus mykiss) by Randomly Polymorphic DNA-Polymerase Chain Reaction.

    PubMed

    Şakalar, Ergün; Mol, Sühendan

    2016-05-01

    Trout (Oncorhynchus mykiss) were irradiated at doses of 0.250, 0.500, 1, 3, 5, 7 and 9 kGy in gamma cell. DNAs were extracted from the irradiated samples before and after storage. 1ERP primers were designed, and RAPD-PCR (Randomly Polymorphic DNA-Polymerase Chain Reaction) was applied to make randomly amplifications on the DNA of the irradiated samples. Agarose gel profiles of irradiated fish were obtained to determine change of band profiles. In addition, DNA fragmentation occurring in each dose was determined by comet assay for the verification of methodology developed in this study. The molecular methodology was developed to estimate ionizing radiation (IR) level in irradiated fish. This methodology allows the analysis of the trout irradiated up to the dose limit of around 0.5 kGy and stored for a period of three months. PMID:27407216

  6. Polymorphism, recombination and alternative unscrambling in the DNA polymerase alpha gene of the ciliate Stylonychia lemnae (Alveolata; class Spirotrichea).

    PubMed Central

    Ardell, David H; Lozupone, Catherine A; Landweber, Laura F

    2003-01-01

    DNA polymerase alpha is the most highly scrambled gene known in stichotrichous ciliates. In its hereditary micronuclear form, it is broken into >40 pieces on two loci at least 3 kb apart. Scrambled genes must be reassembled through developmental DNA rearrangements to yield functioning macronuclear genes, but the mechanism and accuracy of this process are unknown. We describe the first analysis of DNA polymorphism in the macronuclear version of any scrambled gene. Six functional haplotypes obtained from five Eurasian strains of Stylonychia lemnae were highly polymorphic compared to Drosophila genes. Another incompletely unscrambled haplotype was interrupted by frameshift and nonsense mutations but contained more silent mutations than expected by allelic inactivation. In our sample, nucleotide diversity and recombination signals were unexpectedly high within a region encompassing the boundary of the two micronuclear loci. From this and other evidence we infer that both members of a long repeat at the ends of the loci provide alternative substrates for unscrambling in this region. Incongruent genealogies and recombination patterns were also consistent with separation of the two loci by a large genetic distance. Our results suggest that ciliate developmental DNA rearrangements may be more probabilistic and error prone than previously appreciated and constitute a potential source of macronuclear variation. From this perspective we introduce the nonsense-suppression hypothesis for the evolution of ciliate altered genetic codes. We also introduce methods and software to calculate the likelihood of hemizygosity in ciliate haplotype samples and to correct for multiple comparisons in sliding-window analyses of Tajima's D. PMID:14704164

  7. Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms

    PubMed Central

    2013-01-01

    Background The incidence of Alzheimer’s disease, particularly in developing countries, is expected to increase exponentially as the population ages. Continuing research in this area is essential in order to better understand this disease and develop strategies for treatment and prevention. Genome-wide association studies have identified several loci as genetic risk factors of AD aside from apolipoprotein E such as bridging integrator (BIN1), clusterin (CLU), ATP-binding cassette sub-family A member 7 (ABCA7), complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein (PICALM). However genetic research in developing countries is often limited by lack of funding and expertise. This study therefore developed and validated a simple, cost effective polymerase chain reaction based technique to determine these single nucleotide polymorphisms. Methods An allele-specific PCR method was developed to detect single nucleotide polymorphisms of BIN1 rs744373, CLU rs11136000, ABCA7 rs3764650, CR1 rs3818361 and PICALM rs3851179 in human DNA samples. Allele-specific primers were designed by using appropriate software to permit the PCR amplification only if the nucleotide at the 3’-end of the primer complemented the base at the wild-type or variant-type DNA sample. The primers were then searched for uniqueness using the Basic Local Alignment Search Tool search engine. Results The assay was tested on a hundred samples and accurately detected the homozygous wild-type, homozygous variant-type and heterozygous of each SNP. Validation was by direct DNA sequencing. Conclusion This method will enable researchers to carry out genetic polymorphism studies for genetic risk factors associated with late-onset Alzheimer’s disease (BIN1, CLU, ABCA7, CR1 and PICALM) without the use of expensive instrumentation and reagents. PMID:23419238

  8. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2.

    PubMed

    Sauerbrei, Andreas; Bohn-Wippert, Kathrin; Kaspar, Marisa; Krumbholz, Andi; Karrasch, Matthias; Zell, Roland

    2016-01-01

    The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains. PMID:26433780

  9. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation.

    PubMed

    Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng

    2015-03-01

    DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. PMID:25461675

  10. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population: A STROBE-Compliant Observational Study.

    PubMed

    Dai, Zhi-Jun; Liu, Xing-Han; Ma, Yun-Feng; Kang, Hua-Feng; Jin, Tian-Bo; Dai, Zhi-Ming; Guan, Hai-Tao; Wang, Meng; Liu, Kang; Dai, Cong; Yang, Xue-Wen; Wang, Xi-Jing

    2016-01-01

    DNA polymerases are responsible for ensuring stability of the genome and avoiding genotoxicity caused by a variety of factors during DNA replication. Consequently, these proteins have been associated with an increased cancer risk. DNA polymerase kappa (POLK) is a specialized DNA polymerase involved in translesion DNA synthesis (TLS) that allows DNA synthesis over the damaged DNA. Recently, some studies investigated relationships between POLK polymorphisms and cancer risk, but the role of POLK genetic variants in breast cancer (BC) remains to be defined. In this study, we aimed to evaluate the effects of POLK polymorphisms on BC risk.We used the Sequenom MassARRAY method to genotype 3 single nucleotide polymorphisms (SNPs) in POLK (rs3213801, rs10077427, and rs5744533), in order to determine the genotypes of 560 BC patients and 583 controls. The association of genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CIs) from logistic regression analyses.We found a statistically significant difference between patient and control groups in the POLK rs10077427 genotypic groups, excluding the recessive model. A positive correlation was also found between positive progesterone receptor (PR) status, higher Ki67 index, and rs10077427 polymorphism. For rs5744533 polymorphism, the codominant, dominant, and allele models frequencies were significantly higher in BC patients compared to healthy controls. Furthermore, our results indicated that rs5744533 SNP has a protective role in the postmenopausal women. However, we failed to find any associations between rs3213801 polymorphism and susceptibility to BC.Our results indicate that POLK polymorphisms may influence the risk of developing BC, and, because of this, may serve as a prognostic biomarker among Chinese women. PMID:26765445

  11. Genetic polymorphisms in metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine.

    PubMed

    Kim, Dojung; Lee, Young-Joo; Ryu, Heui-Young; Lee, Jin-Hee; Kim, Hyun-Kyung; Kim, Eunhee; Moon, Jae-Dong; Chang, Dong Deuk; Yoon, Hae-Seong

    2013-01-01

    Heterocyclic amines (HCAs) are naturally produced during common cooking processes for meats and fish. HCAs are metabolized by various enzymes, including cytochromes P450, N-acetyl transferases, and sulfotransferases, and their bioactivated metabolites are considered to bind to DNA or protein to show carcinogenic effects. More than 20 HCAs have been identified, of which 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is classified as 'reasonably anticipated to be a human carcinogen' to develop cancers in breast, colon and prostate. The purpose of this study was to evaluate human exposure levels of PhIP and to understand the role of genetic polymorphisms of enzymes on PhIP metabolism. Urine samples were collected from subjects (n = 100) before 3-day meat-restricted diets. Subjects consumed grilled chicken, and their blood and urine were collected before and after the administration of the chickens to investigate genetic polymorphisms and PhIP levels. The mean PhIP levels were 4.22 ± 0.12, 0.61 ± 0.19 and 22.64 ± 1.00 pg ml(-1) in urine under normal conditions and before and after chicken administration, respectively. Among 21 Single-nucleotide polymorphisms (SNP) of CYP1A1, CYP1A2, NATs and UGTs investigated in this study, genotypic groups of CYP1A1/T6235C (MSP I) and CYP1A2/-2467delT showed significant differences in PhIP excretion (P < 0.05). These results suggest that genetic polymorphisms might affect PhIP metabolism, which could improve understanding of populations subject to PhIP-derived health risk. PMID:22131055

  12. Association between polymorphisms in arsenic metabolism genes and urinary arsenic methylation profiles in girls and boys chronically exposed to arsenic.

    PubMed

    Recio-Vega, Rogelio; González-Cortes, Tania; Olivas-Calderón, Edgar; Clark Lantz, R; Jay Gandolfi, A; Michel-Ramirez, Gladis

    2016-08-01

    Disease manifestations or susceptibilities often differ among individuals exposed to the same concentrations of arsenic (As). These differences have been associated with several factors including As metabolism, sex, age, genetic variants, nutritional status, smoking, and others. This study evaluated the associations between four As metabolism-related gene polymorphisms/null genotypes with urinary As methylation profiles in girls and boys chronically exposed to As. In a total of 332 children aged 6-12 years, the frequency of AS3MT, GSTO1, GSTT1, and GSTM1 polymorphisms/null genotypes and As urinary metabolites were measured. The results revealed that total As and monomethyl metabolites of As (MMA) levels were higher in boys than in girls. No differences in the frequency of the evaluated polymorphisms were found between girls and boys. In AS3MT-Met287Thr carriers, %MMA levels were higher and second methylation levels (defined as dimethylarsinic acid divided by MMA) were lower. In children with the GSTM1 null genotype, second methylation levels were higher. In boys, a positive association between the AS3MT-Met287Thr polymorphism with %MMA and between the GSTO1-Glu155del and As(v) was found; whereas, a negative relationship was identified between AS3MT-Met287Thr and second methylation profiles. In girls, a positive association was found between the GSTO1-Ala140Asp polymorphism with second methylation levels. In conclusion, our data indicate that gender, high As exposure levels, and polymorphisms in the evaluated genes negatively influenced As metabolism. Environ. Mol. Mutagen. 57:516-525, 2016. © 2016 Wiley Periodicals, Inc. PMID:27327299

  13. Calmodulin Polymerase Chain Reaction-Restriction Fragment Length Polymorphism for Leishmania Identification and Typing.

    PubMed

    Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E

    2016-08-01

    A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy. PMID:27352873

  14. Plasma S-adenosylmethionine, DNMT polymorphisms, and peripheral blood LINE-1 methylation among healthy Chinese adults in Singapore

    PubMed Central

    2013-01-01

    Background Global hypomethylation of repetitive DNA sequences is believed to occur early in tumorigenesis. There is a great interest in identifying factors that contribute to global DNA hypomethylation and associated cancer risk. We tested the hypothesis that plasma S-adenosylmethionine (SAM) level alone or in combination with genetic variation in DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was associated with global DNA methylation extent at long interspersed nucleotide element-1 (LINE-1) sequences. Methods Plasma SAM level and LINE-1 DNA methylation index were measured using stored blood samples collected from 440 healthy Singaporean Chinese adults during 1994-1999. Genetic polymorphisms of 13 loci in DNMT1, DNMT3A and DNMT3B were determined. Results LINE-1 methylation index was significantly higher in men than in women (p = 0.001). LINE-1 methylation index was positively associated with plasma SAM levels (p ≤ 0.01), with a plateau at approximately 78% of LINE-1 methylation index (55 nmol/L plasma SAM) in men and 77% methylation index (50 nmol/L plasma SAM) in women. In men only, the T allele of DNMT1 rs21124724 was associated with a statistically significantly higher LINE-1 methylation index (ptrend = 0.001). The DNMT1 rs2114724 genotype modified the association between plasma SAM and LINE-1 methylation index at low levels of plasma SAM in men. Conclusions Circulating SAM level was associated with LINE-1 methylation status among healthy Chinese adults. The DNMT1 genetic polymorphism may exert a modifying effect on the association between SAM and LINE-1 methylation status in men, especially when plasma SAM level is low. Our findings support a link between plasma SAM and global DNA methylation status at LINE-1 sequences. PMID:23957506

  15. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    PubMed Central

    Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment. PMID:27380174

  16. Approach to molecular characterization of different strains of Fasciola hepatica using random amplified polymorphic DNA polymerase chain reaction.

    PubMed

    Scarcella, S; Miranda-Miranda, E; Solana, M V; Solana, H

    2015-04-01

    The aim of the present study was to genetically characterize Fasciola hepatica strains from diverse ecogeographical regions (America and Europe), susceptible and resistant to Triclabendazole, using the random amplified polymorphic DNA fragments (RAPDs-PCR) technique to elucidate genetic variability between the different isolates. Ten different oligonucleotide primers of 10 bases with GC content varying from 50-70% were used. A polymerase chain reaction (PCR) was carried out in 25 μl of total volume. Duplicate PCR reactions on each individual template DNA were performed to test the reproducibility of the individual DNA bands. The size of the RAPD-PCR fragments was determined by the reciprocal plot between the delay factors (Rf) versus the logarithm of molecular weight ladder. The phenogram obtained showed three main clusters, the major of which contained European Strains (Cullompton and Sligo) showing a genetic distance of 27.2 between them. The American strains (Cedive and Cajamarca) on the other hand formed each their distinctive group but clearly maintaining a closer genetic relationship among them than that to their European counterparts, with which showed a distance of 33.8 and 37.8, respectively. This polymorphism would give this species enhanced adaptability against the host, as well as the environment. The existence of genetically different populations of F. hepatica could allow, against any selection pressure, natural or artificial (for use fasciolicides products and/or control measures), one or more populations of F. hepatica to be able to survive and create resistance or adaptability to such selective pressure. PMID:25595655

  17. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-01-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  18. Molecular Epidemiology of Leptospirosis in Northern Iran by Nested Polymerase Chain Reaction/Restriction Fragment Length Polymorphism and Sequencing Methods

    PubMed Central

    Zakeri, Sedigheh; Sepahian, Neda; Afsharpad, Mandana; Esfandiari, Behzad; Ziapour, Peyman; Djadid, Navid D.

    2010-01-01

    This study was conducted to investigate the prevalence of Leptospira species in Mazandaran Province of Iran by using nested polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) methods and sequencing analysis. Blood samples (n = 119) were collected from humans suspected of having leptospirosis from different parts of the province in 2007. By using an indirect immunofluorescent antibody test (IFAT), we determined that 35 (29.4%) of 119 suspected cases had leptospiral antibody titers ≥ 1:80, which confirmed the diagnosis of leptospirosis. Nested PCR assay also determined that 60 (50.4%) of 119 samples showed Leptospira infection. Furthermore, 44 (73.3%) of 60 confirmed leptospirosis amplified products were subjected to sequencing analysis. Sequence alignment identified L. interrogans, L. kirschneri, and L. wolffii species. All positive cases diagnosed by IFAT or PCR were in patients who reported contact with animals, high-risk occupational activities, and exposure to contaminated water. Therefore, it is important to increase attention about this disease among physicians and to strengthen laboratory capacity for its diagnosis in infected patients in Iran. PMID:20439973

  19. Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Bounamous, Azzedine; Lehrter, Véronique; Hadj-Henni, Leila; Delecolle, Jean-Claude; Depaquit, Jérôme

    2014-07-01

    A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin. PMID:24936911

  20. Determination of DNA methylation associated with Acer rubrum (red maple) adaptation to metals: analysis of global DNA modifications and methylation-sensitive amplified polymorphism.

    PubMed

    Kim, Nam-Soo; Im, Min-Ji; Nkongolo, Kabwe

    2016-08-01

    Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal-contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation-sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal-contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal-contaminated site compared to uncontaminated populations. Other genotypes from a different metal-contaminated site within the same region appear to be recalcitrant to metal-induced DNA alterations even ≥30 years of tree life exposure to nickel and copper. MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal-contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed. PMID:27547351

  1. Homocysteine metabolism and the associations of global DNA methylation with selected gene polymorphisms and nutritional factors in patients with dementia.

    PubMed

    Bednarska-Makaruk, Małgorzata; Graban, Ałła; Sobczyńska-Malefora, Agata; Harrington, Dominic J; Mitchell, Michael; Voong, Kieran; Dai, Letian; Łojkowska, Wanda; Bochyńska, Anna; Ryglewicz, Danuta; Wiśniewska, Anna; Wehr, Hanna

    2016-08-01

    Epigenetics (particularly DNA methylation) together with environmental and genetic factors, are key to understanding the pathogenesis of many diseases including dementia. Disturbances in DNA methylation have already been implicated in dementia. Homocysteine metabolism, with folate and vitamin B12 as essential cofactors, is integral to methylation processes. We evaluated in a case-control study the association of global DNA methylation, homocysteine, folate and vitamin B12 status with dementia. Selected polymorphisms of genes previously associated with dementia development and the influence of various factors on DNA methylation were also investigated. 102 patients with dementia (53 with Alzheimer's disease, 17 with vascular dementia and 32 with mixed dementia) were recruited. The non-demented controls consisted of 45 age-matched subjects without dementia and 47 individuals with mild cognitive impairment. Global DNA methylation was determined by Imprint Methylated DNA Quantification Kit MDQ1 (Sigma-Aldrich, Gillingham, Dorset, UK). Plasma homocysteine, serum folate and vitamin B12 were determined by chemiluminescence. Plasma and erythrocyte 5-methyltetrahydrofolate and plasma methylmalonic acid (markers of folate and vitamin B12 status) were measured by HPLC. APOE, PON1 p.Q192R, MTHFR 677C>T (c.665C>T) and IL1B-511C>T polymorphisms were identified using PCR-RFLP methods. Patients with dementia had significantly higher concentrations of homocysteine (p=0.012) and methylmalonic acid (p=0.016) and lower folate (p=0.002) and plasma 5-methyltetrahydrofolate (p=0.005) than non-demented subjects. There was no difference in DNA methylation between patients and controls. A non-significant tendency to higher DNA methylation in patients with vascular dementia (p=0.061) was observed. Multivariate regression analysis of all recruited individuals demonstrated a significant positive association between DNA methylation and folate (p=0.013), creatinine (p=0.003) concentrations and IL

  2. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans

    PubMed Central

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S.; Mittelman, David; Sharp, Andrew J.

    2016-01-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  3. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    PubMed

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  4. Crystal structure of the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate.

    PubMed

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-07-01

    Both unique Cd atoms in the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra-hedral [CdBr4](2-) anions which are surrounded by 1-ethyl-3-methyl-imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)(+) cations display three weak C-H⋯Br hydrogen-bond inter-actions through the imidazolium ring H atoms with the Br(-) ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  5. Influence of cobalt uptake by Vicia faba seeds on chlorophyll morphosis induction, SOD polymorphism, and DNA methylation.

    PubMed

    Rancelis, Vytautas; Cesniene, Tatjana; Kleizaite, Violeta; Zvingila, Donatas; Balciuniene, Laimute

    2012-01-01

    Vicia faba plants show polymorphism to cobalt (Co) excess, expressed by a different degree of chlorophyll morphosis (CM)-from normally green (N) to yellow (Y) seedlings. For superoxide dismutase (SOD), the high V. faba polymorphism was revealed and increased by Co stress. Epigenetic mechanisms may be involved in both phenomena. For such reasons, we investigated the effect of 5-azacytosine (AzaC) and Na butyrate (NaBut) on CM induction, SOD polymorphism, and DNA methylation-demethylation events in Co(NO(3) )(2) affected plants, without or with AzaC or NaBut. CMs were induced after treatment of seeds for 8 h with 7.5 mM Co(NO(3) )(2) plus 12 h with H(2) O or 8 h with H(2) O plus 12 h with Co(NO(3) )(2) . In the same order AzaC and NaBut were applied in concentrations equimolar to Co(NO(3) )(2) . SOD isoforms were investigated electrophoretically, and for DNA methylation-demethylation events the Aina [Aina et al. (2004) Physiol Plant 121:472-480] system was applied upon using the random amplified polymorphic DNA (RAPD) method employing restrictases MspI and HpaII. The effect of AzaC and NaBut on CM induction in combination with Co was unclear. Posttreatment with Co was more effective than Co-pretreatment. SOD polymorphism was significantly strengthened by NaBut. Detection of DNA methylation-demethylation events depended on the primers used for RAPD analysis. With AP5 and MP4 primers, DNA demethylation was observed in N-seedlings after exposure to Co, AzaC or NaBut applied separately. With primer A6, only DNA methylation events were determined in N-seedlings from seeds exposed to Co or Co-AzaC, and in Y-seedlings after Co-AzaC or Co-NaBut treatment. UPGMA grouping of the results showed that all N-seedlings comprised one common cluster after Co exposure, independently of treatment combinations (Co alone, Co with AzaC, Co with NaBut). On the contrary, no significant differences were determined in SOD polymorphism among the most resistant N-seedlings and the most severely

  6. Distinction of deep versus superficial clinical and nonclinical isolates of Trichosporon beigelii by isoenzymes and restriction fragment length polymorphisms of rDNA generated by polymerase chain reaction.

    PubMed Central

    Kemker, B J; Lehmann, P F; Lee, J W; Walsh, T J

    1991-01-01

    Fifteen clinical and environmental strains of Trichosporon beigelii were analyzed for similarities by using morphological features, biochemical profiles based on carbon compound assimilation and uric acid utilization, isoenzyme electrophoresis, and restriction fragment length polymorphisms of a segment of genes coding for rRNA expanded with the polymerase chain reaction. The findings suggest that strains that cause invasive disease are distinct from the superficial and the nonclinical isolates and that isolates from the skin and mucosae represent a number of different organisms, including some environmental forms. The study shows that T. beigelii is a complex of genetically distinct organisms and that more than one type is found in clinical samples. Images PMID:1684798

  7. Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases.

    PubMed

    Christov, Plamen P; Yamanaka, Kinrin; Choi, Jeong-Yun; Takata, Kei-ichi; Wood, Richard D; Guengerich, F Peter; Lloyd, R Stephen; Rizzo, Carmelo J

    2012-08-20

    N(6)-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dGuo) has been identified as a stable DNA adduct that arises from the reaction of DNA with a variety of methylating agents. Since this lesion persists in DNA and may contribute to the overall mutagenesis from electrophilic methylating agents, the MeFapy-dGuo lesion was incorporated into oligonucleotides, and its replication bypass was examined in vitro with a panel of eukaryotic high fidelity (hPols α, β, and δ/PCNA) and translesion (hPols η, κ, ι, Rev1, ν, and yPol ζ) polymerases to address its miscoding potential. The MeFapy-dGuo was found to be a strong block to the high fidelity polymerases at either the insertion or the extension step. Efficient translesion synthesis was observed for hPols η and κ, and the combined activities of hRev1 and yPol ζ. The nucleotide sequences of the extension products were determined by mass spectrometry. The error-free extension product was the most abundant product observed for each polymerase. Misreplication products, which included misinsertion of Thy, Gua, and Ade opposite the MeFapy-dGuo lesion, as well as an interesting one-nucleotide deletion product, were observed when hPols η and κ were employed; these events accounted for 8-29% of the total extension products observed. The distribution and abundance of the misreplication products were dependent on the polymerases and local sequence context of the lesion. Collectively, these data suggest that although MeFapy-dGuo adducts represent a relatively minor proportion of the total alkylated lesions, their miscoding potentials could significantly contribute to genomic instability. PMID:22721435

  8. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    PubMed Central

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  9. The Essential WD Repeat Protein Swd2 Has Dual Functions in RNA Polymerase II Transcription Termination and Lysine 4 Methylation of Histone H3

    PubMed Central

    Cheng, Hailing; He, Xiaoyuan; Moore, Claire

    2004-01-01

    Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled. PMID:15024081

  10. Role and importance of polymorphisms with respect to DNA methylation for the expression of CYP2E1 enzyme.

    PubMed

    Naselli, Flores; Catanzaro, Irene; Bellavia, Daniele; Perez, Alessandro; Sposito, Laura; Caradonna, Fabio

    2014-02-15

    Different individuals possess slightly different genetic information and show genetically-determined differences in several enzyme activities due to genetic variability. Following an integrated approach, we studied the polymorphisms and methylation of sites contained in the 5' flanking region of the metabolizing enzyme CYP2E1 in correlation to its expression in both tumor and non-neoplastic liver cell lines, since to date little is known about the influence of these (epi)genetic elements in basal conditions and under induction by the specific inductor and a demethylating agent. In treated cells, reduced DNA methylation, assessed both at genomic and gene level, was not consistently associated with the increase of enzyme expression. Interestingly, the Rsa/Pst haplotype differentially influenced CYP2E1 enzyme expression. In addition, regarding the Variable Number of Tandem Repeats polymorphism, cells with A4/A4 genotype showed a greater expression inhibition (ranging from 20% to 30%) compared with others carrying the A2/A2 one, while those cells bringing A2/A3 genotype showed an increase of expression (of 25%, about). Finally, we demonstrated for the first time that the A2 and A3 CYP2E1 alleles play a more important role in the expression of the enzyme, compared with other (epi)genetic factors, since they are binding sites for trans-acting proteins. PMID:24333271

  11. Inter- and Intraspecific Identification of the New World Screwworm Using Random Amplified Polymorphic DNA-Polymerase Chain Reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New World screwworms (NWS), Cochliomyia hominivorax (Coquerel), are one of the most important arthropod pests of livestock in the Western Hemisphere. Early instars are very difficult to distinguish morphologically from several closely related blow fly species. Random amplified polymorphic DNA polyme...

  12. Examination of meat components in commercial dog and cat feed by using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) technique.

    PubMed

    Wang, Hsien-Chi; Lee, Shu-Hwae; Chang, Tien-Jye; Wong, Min-Liang

    2004-07-01

    It has been shown that certain slow neurological diseases such as bovine spongiform encephalopathy (also known as "mad cow" disease) could be transmitted through contaminated food intake by animals; therefore, the examination of meat components in commercial feeds is important for the control of the disease in public health. The combination of polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) technique was applied to examine the meat components in dog and cat commercial feeds. The partial nucleotide sequence (359 bp) of animal mitochondrial cytochrome b (cytb, CYT) gene was amplified by PCR and then digested with restriction enzyme Alu I or Mbo I. In this work, eight brands of commercial dog and cat feeds available in Taiwan were examined. All brands of dog feeds that were tested contained meat from four different animals (cattle, pig, goat and chicken). In cat feeds, the chicken meat was found in five out of eight brands. PMID:15297759

  13. Double Gene Targeting Multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay Discriminates Beef, Buffalo, and Pork Substitution in Frankfurter Products.

    PubMed

    Hossain, M A Motalib; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Asing; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Zaidul, I S M

    2016-08-17

    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials. PMID:27501408

  14. Molecular variation analysis of Aspergillus flavus using polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer rDNA region

    PubMed Central

    Zarrin, Majid; Erfaninejad, Maryam

    2016-01-01

    Aspergillus flavus is the second most common disease-causing species of Aspergillus in humans. The fungus is frequently associated with life-threatening infections in immunocompromised hosts. The primary aim of the present study was to analyze the genetic variability among different isolates of A. flavus using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP). A total of 62 A. flavus isolates were tested in the study. Molecular variability was searched for by analysis of the PCR amplification of the internal transcribed spacer (ITS) regions of ribosomal DNA using restriction enzymes. PCR using primers for ITS1 and ITS4 resulted in a product of ~600 bp. Amplicons were subjected to digestion with restriction endonucleases EcoRI, HaeIII and TaqI. Digestion of the PCR products using these restriction enzymes produced different patterns of fragments among the isolates, with different sizes and numbers of fragments, revealing genetic variability. In conclusion, ITS-RFLP is a useful molecular tool in screening for nucleotide polymorphisms among A. flavus isolates. PMID:27588085

  15. Length polymorphisms in tRNA intergenic spacers detected by using the polymerase chain reaction can distinguish streptococcal strains and species.

    PubMed Central

    McClelland, M; Petersen, C; Welsh, J

    1992-01-01

    Intergenic tRNA spacers from strains of streptococcal groups A, B, and G were amplified by using the polymerase chain reaction (PCR) at low stringency with consensus tRNA gene primers. Cloning and sequencing showed that many of the homologous intergenic spacers differed in length between species. The sequences of the tRNA genes that flank these polymorphic spacers were determined and used to synthesize fully complementary primers. With these primers at high stringency, PCR products which varied in lengths from 53 to 71 bp, depending on the species or strain, were obtained from streptococcal DNAs, even in the presence of a 1,000-fold mass excess of human DNA. PCR products, the lengths of which could also be used for classification, were obtained at high stringency from a few genera closely related to Streptococcus. No products were obtained from genomic DNAs from more distantly related genera. Production of species- or strain-specific tRNA intergenic length polymorphisms with primers that generate characteristic products from a variety of species within the same genus should be applicable to many organisms, including those that would otherwise be difficult to culture or identify. Images PMID:1378058

  16. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay.

    PubMed

    Zhang, Yi; Guo, Gang; Huang, Hetian; Lu, Lu; Wang, Lijie; Fang, Lingzhao; Liu, Lin; Wang, Yachun; Zhang, Shengli

    2015-09-01

    An autosomal recessive genetic defect termed JH1 has been associated with early embryonic loss in the Jersey cattle breed. The genetic basis has been identified as a cytosine to thymine mutation in the CWC15 gene that changes an amino acid from arginine to a stop code. To screen for JH1 carriers in an imported Jersey population in China, a method based on a polymerase chain reaction amplification followed by a restriction fragment length polymorphism assay (PCR-RFLP) was developed for the accurate diagnosis of the JH1 allele. A total of 449 randomly chosen cows were examined with the PCR-RFLP assay, and 31 were identified as JH1 carriers, corresponding to a carrier frequency of 6.9%. The PCR-RFLP method was validated by DNA sequencing of 8 positive and 13 negative samples, with all 21 samples giving the expected DNA sequence. In addition, 3 negative and 3 positive samples were confirmed by a commercial microarray-based single nucleotide polymorphism assay. Finally, samples from 9 bulls in the United States of known status were correctly identified as carriers (5 bulls) or noncarriers (4 bulls). As the JH1 defect has most likely spread worldwide, implementing routine screening is necessary to avoid the risk of carrier-to-carrier matings and to gradually eradicate the deleterious gene. PMID:26179100

  17. Analysis of the rDNA internal transcribed spacer region of the Fusarium species by polymerase chain reaction-restriction fragment length polymorphism

    PubMed Central

    ZARRIN, MAJID; GANJ, FARZANEH; FARAMARZI, SAMA

    2016-01-01

    The Fusarium species are a widely spread phytopathogen identified in an extensive variety of hosts. The Fusarium genus is one of the most heterogeneous fungi and is difficult to classify. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis is a useful method in detection of DNA polymorphism in objective sequences. The aim of the present study was to identify the phylogenetic associations and usefulness of the internal transcribed spacer (ITS) region as a genetic marker within the most clinically important strain of the Fusarium species. A total of 50 strains of Fusarium spp. were used in the study, including environmental, clinical and reference isolates. The primers ITS1 and ITS4 were used in the study. Two restriction enzymes, HaeIII and SmaI, were assessed for the digestion of PCR products. A PCR product of ~550-base pairs was generated for each Fusarium species. The digested products with HaeIII and SmaI demonstrated that the bands generated for the medically significant Fusarium species, including F. solani, F. oxysporum, F. verticillidea, F. proliferatum and F. fujikuri, have different restriction enzyme patterns. In conclusion, it appears that the PCR-RFLP method used in the present study produces a sufficient restriction profile for differentiation of the most medically significant Fusarium species. PMID:27073635

  18. A duplicated region is responsible for the poly(ADP-ribose) polymerase polymorphism, on chromosome 13, associated with a predisposition to cancer

    SciTech Connect

    Lyn, D.; Cherney, B.W.; Lupold, S.; Smulson, M. ); Lalande, M. Harvard Medical School, Boston, MA ); Berenson, J.R.; Lichtenstein, A. Veterans Administration Medical Center, Los Angeles, CA ); Bhatia, K.G. )

    1993-01-01

    The poly(ADP-ribose) polymerase (PADPRP) gene (13q33-qter) depicts a two-allele (A/B) polymorphism. In the noncancer population, the frequency of the B allele is higher among blacks than among whites. Since the incidence of multiple myeloma and prostate and lung cancer is higher in the US black population, the authors have analyzed the B-allele frequency in germ-line DNA to determine whether the PADPRP gene correlates with a polymorphic susceptibility to these diseases. For multiple myeloma and prostate cancer, an increased frequency of the B allele appeared to be striking only in black patients. In contrast, the distribution of the B allele in germ-line DNA did not differ among white patients with these diseases, when compared with the control group. An elevated B-allele frequency was also found in germ-line DNA in blacks with colon cancer. These observations suggest that the PADPRP polymorphism may provide a valid marker for a predisposition to these cancers in black individuals. To determine the genomic structure of the polymorphic PADPRP sequences, a 2.68-kb HindIII clone was isolated and sequenced from a chromosome 13-enriched library. Sequence analysis of this clone (A allele) revealed a close sequence similarity (91.8%) to PADPRP cDNA (1q42) and an absence of introns, suggesting that the gene on 13q exists as a processed pseudogene. A 193-bp conserved duplicated region within the A allele was identified as the source of the polymorphism. The nucleotide differences between the PADPRP gene on chromosome 13 and related PADPRP genes were exploited to develop oligonucleotides that can detect the difference between the A/B genotypes in a PCR. This PCR assay offers the opportunity for analyzing additional black cancer patients, to determine how the PADPRP processed pseudogene or an unidentified gene that cosegregates with the PADPRP gene might be involved with the development of malignancy. 16 refs., 6 figs., 1 tab.

  19. Methylation of Arsenic by Recombinant Human Wild-Type Arsenic (+3 Oxidation State) Methyltransferase and its Methionine 287 Threonine (M287T) Polymorph

    EPA Science Inventory

    ABSTRACT Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency...

  20. Mismatch extension of DNA polymerases and high-accuracy single nucleotide polymorphism diagnostics by gold nanoparticle-improved isothermal amplification.

    PubMed

    Chen, Feng; Zhao, Yue; Fan, Chunhai; Zhao, Yongxi

    2015-09-01

    Sequence mismatches may induce nonspecific extension reaction, causing false results for SNP diagnostics. Herein, we systematically investigated the impact of various 3'-terminal mismatches on isothermal amplification catalyzed by representative DNA polymerases. Despite their diverse efficiencies depending on types of mismatch and kinds of DNA polymerase, all 12 kinds of single 3'-terminal mismatches induced the extension reaction. Generally, only several mismatches (primer-template, C-C, G-A, A-G, and A-A) present an observable inhibitory effect on the amplification reaction, whereas other mismatches trigger amplified signals as high as those of Watson-Crick pairs. The related mechanism was deeply discussed, and a primer-design guideline for specific SNP analysis was summarized. Furthermore, we found that the addition of appropriate gold nanoparticles (AuNPs) can significantly inhibit mismatch extension and enhance the amplification specificity. Also the high-accuracy SNP analysis of human blood genomic DNA has been demonstrated by AuNPs-improved isothermal amplification, the result of which was verified by sequencing (the gold standard method for SNP assay). Collectively, this work provides mechanistic insight into mismatch behavior and achieves accurate SNP diagnostics, holding great potential for the application in molecular diagnostics and personalized medicine. PMID:26249366

  1. Interaction between Methylation and CpG Single-Nucleotide Polymorphisms in the HTR2A Gene: Association Analysis with Suicide Attempt in Schizophrenia.

    PubMed

    Bani-Fatemi, Ali; Howe, Aaron S; Matmari, Michelle; Koga, Arthur; Zai, Clement; Strauss, John; De Luca, Vincenzo

    2016-01-01

    Dysfunctional mechanisms in the serotonergic system have been implicated in suicidal behavior among patients with schizophrenia. However, previous association analyses of major serotonin genes have provided inconsistent findings regarding their role in suicidal behavior. The goal of the current study was to identify single-nucleotide polymorphisms (SNP) within HTR2A that directly affect CpG methylation sites in schizophrenic patients with suicidal behavior. Furthermore, direct methylation analysis was performed using genomic DNA from peripheral leukocytes employing bisulfite pyrosequencing to assess the contributions of six CpG sites in HTR2A exon I in 67 schizophrenia patients assessed for lifetime suicide attempt. Potential methylation in 25 CpG SNPs across the entire HTR2A gene was analyzed considering their direct contribution to methylation. When we compared direct methylation between attempters and nonattempters, we found that only the polymorphic T102C (rs6313) was significantly different between the two groups (p = 0.02). Furthermore, in the potential methylation analysis, we found a nominal association with suicide attempt for six of the 25 SNPs analyzed, i.e. rs2770293 (p = 0.045), rs6313 (p = 0.033), rs17068986 (p = 0.029), rs4942578 (p = 0.024), rs1728872 (p = 0.014), and rs9534511 (p = 0.003). The results of this investigation provide preliminary evidence that the combined analysis of CpG SNPs and methylation may be useful for investigating the genetic and epigenetic factors involved in suicidal behavior. PMID:26812280

  2. NRPD4, a Protein Related to the RPB4 Subunit of RNA Polymerase II, is a Component of RNA Polymerases IV and V and is Required for RNA-directed DNA methylation

    SciTech Connect

    He, Xin-Jian; Hsu, Yi-Feng; Pontes, Olga; Zhu, Jianhua; Lu, Jian; Bressan, Ray A.; Pikaard, Craig S.; Wang, Co-Shine; Zhu, Jian-Kang

    2009-01-01

    RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V.

  3. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    SciTech Connect

    Chiang, Chien-I; Huang, Ya-Li; Chen, Wei-Jen; Shiue, Horng-Sheng; Huang, Chao-Yuan; Pu, Yeong-Shiau; Lin, Ying-Chin; Hsueh, Yu-Mei

    2014-09-15

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on

  4. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker

    PubMed Central

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  5. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker.

    PubMed

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  6. Determination of locust bean gum and guar gum by polymerase chain reaction and restriction fragment length polymorphism analysis.

    PubMed

    Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R

    2001-01-01

    A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%. PMID:11234856

  7. Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber

    NASA Astrophysics Data System (ADS)

    Majeed, Bivragh; Jones, Ben; Tezcan, Deniz S.; Tutunjyan, Nina; Haspeslagh, Luc; Peeters, Sara; Fiorini, Paolo; de Beeck, Maaike Op; Van Hoof, Chris; Hiraoka, Maki; Tanaka, Hiroyuki; Yamashita, Ichiro

    2012-04-01

    A single nucleotide polymorphism (SNP) is a difference in the DNA sequence of one nucleotide only. We recently proposed a lab-on-a-chip (LoC) system which has the potentiality of fast, sensitive and highly specific SNP detection. Most of the chip components are silicon based and fabricated within a single process. In this paper, the newly developed fabrication method for the silicon chip is presented. The robust and reliable process allows etching structures on the same chip with very different aspect ratios. The characterization of a crucial component to the LoC SNP detector, the microreactor where DNA amplification is performed, is also detailed. Thanks to innovative design and fabrication methodologies, the microreactor has an excellent thermal isolation from the surrounding silicon substrate. This allows for highly localized temperature control. Furthermore, the microreactor is demonstrated to have rapid heating and cooling rates, allowing for rapid amplification of the target DNA fragments. Successful DNA amplification in the microreactor is demonstrated.

  8. Associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic in the residents exposed to low-level arsenic in drinking water in China.

    PubMed

    Yang, Jinyou; Yan, Li; Zhang, Min; Wang, Yijun; Wang, Chun; Xiang, Quanyong

    2015-07-01

    We carry out a study to analyze the relation between polymorphisms of GSTT1, GSTM1 and the capacity of arsenic methylation in a human population exposed to arsenic in drinking water. 230 randomly chose subjects were divided into four subgroups based on the arsenic levels, and then the associations between the polymorphisms of GSTT1, GSTM1 and methylation of arsenic were investigated. The levels of inorganic arsenic (iAs), monomethylated arsenic (MMA), dimethylated arsenic (DMA) and total arsenic (TAs) in urine were higher in males than that in females. Moreover, the levels of iAs and TAs in urine in the subjects with genotype of GSTM1(+) were significantly higher than those with GSTM1(-); the level of DMA in the subjects with GSTT1(+) and GSTM1(+) were higher than those with GSTT1(-) and GSTM1(-), although it is not statistically significant. Secondary methylation index (SMI) was significantly higher in the subjects with genotype of GSTT1(+) than those with GSTT1(-). The levels of TAs in urine, together with the genotypes of GSTT1/GSTM1 were associated with the levels of MMA and DMA. Our results suggested that the polymorphisms of GSTT1 and GSTM1 were associated with the methylation of arsenic, especially the levels of DMA and SMI. PMID:25876999

  9. Conformational polymorphs of isobutyl-6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate: spectroscopic, structural and DFT approach.

    PubMed

    Prasad, A Aditya; Kumar, C Udhaya; Prakasam, B Arul; Meenakshisundaram, S P

    2016-06-01

    The crystal structure of a new crystalline phase, polymorph (II) of isobutyl-6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate, was accurately determined by single-crystal X-ray diffraction analysis providing a clean identification of polymorphic forms. Comparison with a known phase, referred to as polymorph (I), reveals the type of supramolecular assembly. Inter- and intramolecular hydrogen-bonding interactions exhibit various supramolecular architectures in crystal packing and these variations confirm well the polymorphism in isobutyl-6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate (IAPC) crystal structure. Crystal cohesion is achieved by N-H...N, N-H...O and C-H...H-C interactions, responsible for the formation and strengthening of the supramolecular assembly. The objective of this investigation is to study crystalline forms which can offer enhanced physicochemical properties, and also to recognize the molecular orientations between such forms. The conformational polymorphs of IAPC were compared spectroscopically by FT-IR and FT-Raman. The bulk phases were studied by X-ray powder diffraction patterns. External morphology was investigated using scanning electron microscopic images. The molecular interactions were quantified using Hirshfeld surface and fingerprint analysis. Density functional theory (DFT) computations were used to optimize the structure. The optimized structure is further subjected to an analysis of Mulliken population, natural population and electrostatic potential. PMID:27240761

  10. Rapid diagnosis and genotyping of Leishmania isolates from cutaneous and visceral leishmaniasis by microcapillary cultivation and polymerase chain reaction-restriction fragment length polymorphism of miniexon region.

    PubMed

    Serin, Mehmet S; Daglioglu, Kenan; Bagirova, Melahat; Allahverdiyev, Adil; Uzun, Soner; Vural, Zeynep; Kayar, Begum; Tezcan, Seda; Yetkin, Mesut; Aslan, Gonul; Emekdas, Gurol; Koksal, Fatih

    2005-11-01

    We have performed a combination of microcapillary cultivation method and restriction fragment length polymorphism (RFLP) analysis of amplified products by 1 single PCR of miniexon region of Leishmania for molecular diagnosis and genotyping of different Leishmania species isolated from cutaneous leishmaniasis (CL) and visceral leishmaniasis. We have analyzed 10 microcapillary cultivated isolates from cutaneous cases and 5 microcapillary cultivated isolates from visceral cases (totally 15) by polymerase chain reaction-RFLP (PCR-RFLP). Of 10 isolates, 3 (30%) were genotyped as Leishmania infantum and 7 (70%) of 10 isolates were genotyped as Leishmania tropica from the microcapillary cultivated isolates of cutaneous cases. On the other hand, all 5 isolates (100%) were genotyped as L. infantum from microcapillary cultivated visceral cases. Our most interesting finding is the presence of 3 L. infantum isolates in CL cases without kala-azar history. Therefore, we suggest that further investigations must be done about this subject. On the other hand, we suggest the combination of microcapillary culture method and PCR-RFLP of miniexon region of leishmaniae can be used in routine laboratory experimentation because of their simple, cheap, and rapid benefits (within a week), whereas other different approaches offer a multitude of valid taxonomic characters for species identification. PMID:16249065

  11. Comparison of detection platforms and post-polymerase chain reaction DNA purification methods for use in conjunction with Cleavase fragment length polymorphism analysis.

    PubMed

    Sander, T; Olson, S; Hall, J; Siebert, M; Grooms, K; Heisler, L; de Arruda, M; Neri, B

    1999-06-01

    The removal of impurities and contaminants from PCR-amplified fragments is important for mutation detection methods which identify mutations based on shifts in electrophoretic mobility. This is particularly critical for assays and detection methods which use target DNA that is labeled prior to analysis and electrophoretic detection. We examined several procedures for purifying DNA amplified by the polymerase chain reaction (PCR) and their use in conjunction with a novel DNA scanning method, the Cleavase fragment length polymorphism (CFLP)* assay. In this study, a 480 bp DNA fragment, fluorescently labeled on the 5'-end of one strand, was amplified and subjected to various widely used purification procedures, including several commercially available clean-up kits. We demonstrate that visualization of the fluorescent label, as opposed to simple ethidium bromide staining, reveals the presence of considerable levels of labeled, truncated, amplification products. The various procedures were evaluated on the basis of their ability to remove these unwanted DNA fragments as well as on the degree to which they inhibited or promoted the CFLP reaction. Several procedures are recommended for use with CFLP analysis, including isopropanol precipitation, gel excision, and several commercially available spin columns. Concurrently, we evaluated (compared) a number of commonly used visualization platforms, including fluorescence imaging, chemiluminescence, and post-electrophoretic staining, for the ability to detect CFLP pattern changes. The advantages and disadvantages of different methods are discussed and amounts of DNA to be used for CFLP analysis on different detection platforms are recommended. PMID:10380752

  12. Development of Fok-I based nested polymerase chain reaction-restriction fragment length polymorphism analysis for detection of hepatitis B virus X region V5M mutation

    PubMed Central

    Kim, Hong; Hong, Seok-Hyun; Lee, Seoung-Ae; Gong, Jeong-Ryeol; Kim, Bum-Joon

    2015-01-01

    AIM: To develop a Fok-I nested polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) method for the detection of hepatitis B virus X region (HBx) V5M mutation. METHODS: Nested PCR was applied into DNAs from 198 chronic patients at 2 different stages [121 patients with hepatocellular carcinoma (HCC) and 77 carrier patients]. To identify V5M mutants, digestion of nested PCR amplicons by the restriction enzyme Fok-I (GGA TGN9↓) was done. For size comparison, the enzyme-treated products were analyzed by electrophoresis on 2.5% agarose gels, stained with ethidium bromide, and visualized on a UV transilluminator. RESULTS: The assay enabled the identification of 69 patients (sensitivity of 34.8%; 46 HCC patients and 23 carrier patients). Our data also showed that V5M prevalence in HCC patients was significantly higher than in carrier patients (47.8%, 22/46 patients vs 0%, 0/23 patients, P < 0.001), suggesting that HBxAg V5M mutation may play a pivotal role in HCC generation in chronic patients with genotype C infections. CONCLUSION: The Fok-I nested PRA developed in this study is a reliable and cost-effective method to detect HBxAg V5M mutation in chronic patients with genotype C2 infection. PMID:26715821

  13. Identification of Echinococcus granulosus strains using polymerase chain reaction-restriction fragment length polymorphism amongst livestock in Moroto district, Uganda.

    PubMed

    Chamai, Martin; Omadang, Leonard; Erume, Joseph; Ocaido, Michael; Oba, Peter; Othieno, Emmanuel; Bonaventure, Straton; Kitibwa, Annah

    2016-01-01

    A descriptive study was conducted to identify the different strains of Echinococcus granulosus occurring in livestock in Moroto district, Uganda. Echinococcus cysts from 104 domestic animals, including cattle, sheep, goats and camels, were taken and examined by microscopy, polymerase chain reaction with restriction fragment length polymorphism and Sanger DNA sequencing. Echinococcus granulosus genotypes or strains were identified through use of Bioinformatics tools: BioEdit, BLAST and MEGA6. The major finding of this study was the existence of a limited number of E. granulosus genotypes from cattle, goats, sheep and camels. The most predominant genotype was G1 (96.05%), corresponding to the common sheep strain. To a limited extent (3.95%), the study revealed the existence of Echinococcus canadensis G6/7 in three (n = 3) of the E. granulosus-positive samples. No other strains of E. granulosus were identified. It was concluded that the common sheep strain of Echinococcus sensu stricto and G6/7 of E. canadensis were responsible for echinococcal disease in Moroto district, Uganda. PMID:27543147

  14. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene

    PubMed Central

    Soares, Vítor Yamashiro Rocha; da Silva, Jailthon Carlos; da Silva, Kleverton Ribeiro; Cruz, Maria do Socorro Pires e; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-01-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056

  15. Polymerase chain reaction-restriction fragment length polymorphism assays to distinguish Liriomyza huidobrensis (Diptera: Agromyzidae) from associated species on lettuce cropping systems in Italy.

    PubMed

    Masetti, Antonio; Luchetti, Andrea; Mantovani, Barbara; Burgio, Giovanni

    2006-08-01

    The pea leafminer, Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae), is a serious insect pest infesting open field lettuce plantings in northern Italy. In these cropping systems, it coexists with several other agromyzid species that have negligible economic importance on open field vegetables. The rapid detection of L. huidobrensis is crucial for effective management strategies, but the identification of agromyzids to species can be very difficult at adult as well at immature stages. In this study, a polymerase chain reaction (PCR)-restriction fragment length polymorphism assay is proposed to separate L. huidobrensis from Liriomyza bryoniae (Kaltenbach), Liriomyza trifolii (Burgess), and Chromatomyia horticola (Goureau), which usually occur in the same lettuce plantings. An approximately 1,031-bp region of the mitochondrial genome encompassing the 3' region of cytochrome oxidase I, the whole leucine tRNA, and all of the cytochrome oxidase II was amplified by PCR and digested using the enzymes PvuII and SnaBI separately. Both endonucleases cut the amplicons of L. huidobrensis in two fragments, whereas the original band was not cleaved in the other analyzed species. The presence of Dacnusa spp. DNA does not bias the assay, because the PCR conditions and the primer set here described do not amplify any tract of this endoparasitic wasp genome. PMID:16937681

  16. A preliminary trial using multi-target polymerase chain reaction (multiplex PCR) and restriction fragment length polymorphism (PCR-RFLP) on the same feedstuffs to detect tissues of animal origin.

    PubMed

    Colombo, F; Marchisio, E; Trezzi, I E; Peri, V; Pinotti, L; Baldi, A; Soncini, G

    2004-08-01

    A preliminary study using multi-target polymerase chain reaction (multiplex PCR) and restriction fragment length polymorphism (PCR-RFLP) was done on the same feedstuffs to detect animal tissues. The results of the two methods differ somewhat: PCR-RFLP did not detect any signal in any sample, but multiplex PCR detected a signal in one sample. These findings could be a basis for further investigations. PMID:15509020

  17. Methyl-CpG-Binding Protein 2 (MECP2) Polymorphism in Iranian Patients with Systemic Lupus Erythematosus.

    PubMed

    Alesaeidi, Samira; Karami, Jafar; Mahmoudi, Mahdi; Akbarian, Mahmoud; Poursani, Shiva; Amirzadeh, Azadeh; Haddadi, Nazgol-Sadat; Saffari, Elahe; Jamshidi, Ahmad Reza

    2015-12-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which involves many organs and presents with various symptoms. It has been shown that genetic and environmental factors play a major role in this disease and may affect the onset, activity, damage, and mortality of the disease. According to recent studies, methyl-CpG-binding protein 2 (MECP2) has been associated with SLE in various populations. Herein, we studied MECP2 polymorphism in Iranian lupus patients and controls. The study included a total of 884 samples of Iranian ancestry (492 independent SLE patients and 392 unrelated healthy controls). Healthy controls were gender-, ethnic-, and age-matched with the patients. Patient and control samples were genotyped for rs1734787, rs1734791, rs1734792, and rs17435 by applying the Allelic Discrimination Real-Time PCR System. Our results showed a significant association between rs1734787 and rs1734791 SNPs and the risk of SLE in the Iranian population (p = 0.028, p = 0.028), but did not show any significant association with rs1734792 and rs17435 SNPs (p = 075, p = 0.75). The rs1734787 C and the rs1734791 T allele frequencies in the patients were significantly higher than the control group (p = 0.014, p = 0.012). In addition, a significant CTAT haplotype frequency was observed in cases with SLE (p = 0.012), and a significant AAAT haplotype frequency was observed in the control group (p = 0.0003). However, there was no significant association between genotype frequencies and SLE patients. Also, there was no significant association between these SNPs and clinical features. The result of this study suggests that polymorphism in the MECP2 locus is associated with the susceptibility of Iranian SLE patients. PMID:26156810

  18. Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus

    PubMed Central

    Acevedo, Nathalie; Reinius, Lovisa E.; Greco, Dario; Gref, Anna; Orsmark-Pietras, Christina; Persson, Helena; Pershagen, Göran; Hedlin, Gunilla; Melén, Erik; Scheynius, Annika; Kere, Juha; Söderhäll, Cilla

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5′ UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8+ T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression. PMID:25256354

  19. The catechol-O-methyl transferase Val158Met polymorphism and experience of reward in the flow of daily life.

    PubMed

    Wichers, Marieke; Aguilera, Mari; Kenis, Gunter; Krabbendam, Lydia; Myin-Germeys, Inez; Jacobs, Nele; Peeters, Frenk; Derom, Catherine; Vlietinck, Robert; Mengelers, Ron; Delespaul, Philippe; van Os, Jim

    2008-12-01

    Genetic moderation of experience of reward in response to environmental stimuli is relevant for the study of many psychiatric disorders. Experience of reward, however, is difficult to capture, as it involves small fluctuations in affect in response to small events in the flow of daily life. This study examined a momentary assessment reward phenotype in relation to the catechol-O-methyl transferase (COMT) Val(158)Met polymorphism. A total of 351 participants from a twin study participated in an Experience Sampling Method procedure to collect daily life experiences concerning events, event appraisals, and affect. Reward experience was operationalized, as the effect of event appraisal on positive affect (PA). Associations between COMT Val(158)Met genotype and event appraisal on the one hand and PA on the other were examined using multilevel random regression analysis. Ability to experience reward increased with the number of 'Met' alleles of the subject, and this differential effect of genotype was greater for events that were experienced as more pleasant. The effect size of genotypic moderation was quite large: subjects with the Val/Val genotype generated almost similar amounts of PA from a 'very pleasant event' as Met/Met subjects did from a 'bit pleasant event'. Genetic variation with functional impact on cortical dopamine tone has a strong influence on reward experience in the flow of daily life. Genetic moderation of ecological measures of reward experience is hypothesized to be of major relevance to the development of various behavioral disorders, including depression and addiction. PMID:17687265

  20. APPLICATION OF POLYMERASE CHAIN REACTION (PCR) AND PCR BASED RESTRICTION FRAGMENT LENGTH POLYMORPHISM FOR DETECTION AND IDENTIFICATION OF DERMATOPHYTES FROM DERMATOLOGICAL SPECIMENS

    PubMed Central

    Bagyalakshmi, R; Senthilvelan, B; Therese, K L; Murugusundram, S; Madhavan, H N

    2008-01-01

    Objective: To develop and optimize polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) targeting 18S rDNA and internal transcribed spacer (ITS) region of fungi for rapid detection and identification of dermatophytes. Materials and Methods: Two PCR-RFLP methods targeting 18S rDNA and ITS regions of fungi were optimized using standard and laboratory isolates of dermatophytes and other fungi. Sixty-eight dermatological clinical specimens (nail clippings (56), material obtained from blisters (8), hair root (2), scraping from scaly plaque of foot (1) and skin scraping (1) collected by the dermatologist were subjected to both the optimized PCR-RFLP and conventional mycological (smear and culture) methods. Results: PCRs targeting 18S rDNA and the ITS region were sensitive to detect 10 picograms and 1 femtogram of T. rubrum DNA, respectively. PCR targeting 18S rDNA was specific for dermatophytes and subsequent RFLP identified them to species level. PCR-RFLP targeting the ITS region differentiated dermatophytes from other fungi with identification to species level. Among the 68 clinical specimens tested, both PCR-RFLP methods revealed the presence of dermatophytes in 27 cases (39.7%), whereas culture revealed the same only in 2 cases (7.40%), increasing the clinical sensitivity by 32.3%. Among 20 smear positive specimens, both PCR-RFLP methods detected dermatophytes in 12 (17.6%). Both the methods detected the presence of dermatophytes in 13 (19.11%) smear and culture negative specimens, increasing the clinical sensitivity by 36.1%. Conclusion: PCR-RFLP methods targeting 18S rDNA and the ITS regions of fungi were specific and highly sensitive for detection and speciation of dermatophytes. PMID:19967012

  1. Natural Polymorphisms Conferring Resistance to HCV Protease and Polymerase Inhibitors in Treatment-Naïve HIV/HCV Co-Infected Patients in China

    PubMed Central

    Wang, Charles; Hu, Fengyu; Ning, Chuanyi; Lan, Yun; Tang, Xiaoping; Tucker, Joseph D.; Cai, Weiping

    2016-01-01

    Background The advent of direct-acting agents (DAAs) has improved treatment of HCV in HIV co-infection, but may be limited by primary drug resistance. This study reports the prevalence of natural polymorphisms conferring resistance to NS3/4A protease inhibitors and NS5B polymerase inhibitors in treatment-naïve HIV/HCV co-infected individuals in China. Methods Population based NS3/4A sequencing was completed for 778 treatment-naïve HIV/HCV co-infected patients from twelve provinces. NS3 sequences were amplified by nested PCR using in-house primers for genotypes 1–6. NS5B sequencing was completed for genotyping in 350 sequences. Resistance-associated variants (RAVs) were identified in positions associated with HCV resistance. Results Overall, 72.8% (566/778) of all HCV sequences had at least one RAV associated with HCV NS3/4A protease inhibitor resistance. Variants were found in 3.6% (7/193) of genotype 1, 100% (23/23) of genotype 2, 100% (237/237) of genotype 3 and 92% (299/325) of genotype 6 sequences. The Q80K variant was present in 98.4% of genotype 6a sequences. High-level RAVs were rare, occurring in only 0.8% of patients. 93% (64/69) patients with genotype 1b also carried the C316N variant associated with NS5B low-level resistance. Conclusions The low frequency of high-level RAVs associated with primary HCV DAA resistance among all genotypes in HIV/HCV co-infected patients is encouraging. Further phenotypic studies and clinical research are needed. PMID:27341031

  2. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons.

    PubMed

    Papadopoulou, Evanthia; Goodchild, Sarah A; Cleary, David W; Weller, Simon A; Gale, Nittaya; Stubberfield, Michael R; Brown, Tom; Bartlett, Philip N

    2015-02-01

    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples. PMID:25551670

  3. Characterization of infectious laryngotracheitis virus isolates from the US by polymerase chain reaction and restriction fragment length polymorphism of multiple genome regions.

    PubMed

    Oldoni, Ivomar; García, Maricarmen

    2007-04-01

    Infectious laryngotracheitis (ILT) is an acute viral respiratory disease, primarily of chickens. Economic losses attributable to ILT affect many poultry-producing areas throughout the United States (US) and the world. Despite efforts to control the disease by vaccination, prolonged epidemics of ILT remain a threat to the poultry industry. Earlier epidemiological and molecular evidence indicated that outbreaks in the US are caused by vaccine-related strains. In this study, polymerase chain reaction and restriction fragment polymorphism (PCR-RFLP) of four genome regions was utilized to characterize 25 isolates from commercial poultry and backyard flocks from the US. Combinations of PCR-RFLP patterns classified the ILT virus isolates into nine groups. Backyard flock isolates were categorized in three separate groups. The ILT virus US Department of Agriculture (USDA) reference strain and the tissue culture origin (TCO) vaccine strain were categorized into two separate groups. Twenty-two isolates from commercial poultry were categorized into four groups: one group, of six isolates, showed patterns identical to the chicken embryo origin (CEO) vaccines; a second group, of nine isolates, differed in only one pattern from the CEO vaccines; a third group, of two isolates, differed in only one pattern from the TCO vaccine; a fourth group, of five isolates, differed in six and nine patterns from the CEO and TCO vaccines, respectively. Results obtained from this study clearly demonstrated that most of the commercial poultry isolates (17 of 22 isolates) were closely related to the vaccine strains. However, isolates different to the vaccine strains were also identified in commercial poultry. PMID:17479379

  4. Characterization of infectious laryngotracheitis virus (ILTV) isolates from commercial poultry by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP).

    PubMed

    Oldoni, Ivomar; Rodríguez-Avila, Andrés; Riblet, Sylva; García, Maricarmen

    2008-03-01

    Infectious laryngotracheitis (ILT) is a highly contagious, acute respiratory disease of chickens, of worldwide distribution, that affects growth and egg production and leads to significant economic losses during periodic outbreaks of the disease. Live attenuated vaccines (chicken embryo origin [CEO] and tissue-culture origin [TCO]) have been widely used to control the disease in the United States. It is believed that most of the outbreaks in the United States are caused by vaccine-related isolates that persist in the field and spill over into naïve poultry populations. The objective of this study was to utilize the previously developed polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis to genotype recent ILT virus (ILTV) isolates from commercial poultry. Forty-six samples were collected during January 2006 to April 2007 from five poultry production regions of the United States and were characterized within PCR-RFLP groups III-VI. Sixty-three percent of the samples analyzed were categorized as closely related to the vaccine strains (groups III-V), whereas 33% were categorized as group VI viruses that differed in six and nine PCR-RFLP patterns from the CEO and TCO vaccines; a mixture of group IV and V viruses was detected in two samples (4%). In general, groups V and VI were the most prevalent viruses, found in 52% and 33% of the samples tested respectively. Both types of viruses were detected in vaccinated and nonvaccinated flocks. Although genetically different, both viruses produced severe disease in the field. PMID:18459297

  5. Detection of Clonal T-Cell Receptor γ Gene Rearrangements in Paraffin-Embedded Tissue by Polymerase Chain Reaction and Nonradioactive Single-Strand Conformational Polymorphism Analysis

    PubMed Central

    Signoretti, Sabina; Murphy, Michael; Cangi, Maria Giulia; Puddu, Pietro; Kadin, Marshall E.; Loda, Massimo

    1999-01-01

    The diagnosis of T-cell lymphoproliferative disorders, which frequently involve the skin and other extranodal sites, is often problematic because of the difficulty in establishing clonality in paraffin-embedded tissue. To this end, we developed a simple, nonradioactive method to detect T-cell receptor γ (TCR-γ) gene rearrangements by polymerase chain reaction single-strand conformational polymorphism (PCR-SSCP) in paraffin-embedded tissue. Jurkat and HSB-2 cell lines and peripheral blood samples from normal individuals were used as monoclonal and polyclonal controls, respectively. DNA was extracted from 24 biopsies of T-cell lymphomas, 12 biopsies of reactive lymphoid infiltrates, and 2 biopsies of primary cutaneous large B-cell lymphomas. Vγ1–8, Vγ9, Vγ10, Vγ11, and Jγ1/Jγ2 consensus primers were used for TCR-γ gene rearrangement amplification and PCR products were analyzed by nonradioactive SSCP. Monoclonal controls yielded a well-defined banded pattern, whereas all polyclonal T-cell controls showed a reproducible pattern of smears. We detected monoclonality in 20/21 (95%) T-cell lymphoma cases, whereas no dominant T-cell clones were found in any of the reactive lymphoid infiltrates or B-cell lymphomas. Sensitivity of 1–5% was demonstrated by serially diluting Jurkat cells in mononuclear blood cells from normal individuals. We conclude that nonradioactive PCR-SSCP for TCR-γ gene rearrangement analysis is a useful adjunct to routine histological and immunophenotypic methods in the diagnosis of T-cell lymphoproliferative disorders in paraffin-embedded tissue. PMID:9916920

  6. Molecular typing of Iranian mycobacteria isolates by polymerase chain reaction-restriction fragment length polymorphism analysis of 360-bp rpoB gene

    PubMed Central

    Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr

    2015-01-01

    Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species. PMID:26380237

  7. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains.

    PubMed

    Baruch, Omer; Kashkush, Khalil

    2012-05-01

    Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they may compose up to 90% of the genome. Many studies, both in plants and animals reported that in fact non-autonomous elements that have lost their protein-coding sequences and became miniature elements were highly associated with genes, and showed a high level of transpositional activity such as mPing family in rice. In this study, we have investigated in detail the copy number, insertional polymorphism and the methylation status of the tiniest LTR retrotransposon family, termed TRIM, in nine rice strains, in comparison with mPing. While TRIM showed similar copy numbers (average of 79 insertions) in all the nine rice strains, the copy number of mPing varied dramatically (ranging from 6 to 203 insertions) in the same strains. Site-specific PCR analysis revealed that ~58% of the TRIM elements have identical insertion sites among the nine rice strains, while none of the mPing elements (100% polymorphism) have identical insertion sites in the same strains. Finally, over 65% of the TRIM insertion sites were cytosine methylated in all nine rice strains, while the level of the methylated mPing insertion sites ranged between 43 and 81.5%. The findings of this study indicate that unlike mPing, TRIM is most probably a fossil TE family in rice. In addition, the data shows that there might be a strong correlation between TE methylation and copy number. PMID:22183295

  8. Crystal structure of the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate

    PubMed Central

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-01-01

    Both unique Cd atoms in the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra­hedral [CdBr4]2− anions which are surrounded by 1-ethyl-3-methyl­imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)+ cations display three weak C—H⋯Br hydrogen-bond inter­actions through the imidazolium ring H atoms with the Br− ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  9. Effects of EZH2 promoter polymorphisms and methylation status on oral squamous cell carcinoma susceptibility and pathology

    PubMed Central

    Su, Kuo-Jung; Lin, Chiao-Wen; Chen, Mu-Kuan; Yang, Shun-Fa; Yu, Yung-Luen

    2015-01-01

    Oral squamous cell carcinoma (OSCC), which is malignant tumors in oral cavity, is the fourth most common male cancer in Taiwan. EZH2 plays a key role in transcriptional repression through chromatin remodeling and in cancer development. Although the EZH2 expression in OSCC is highly correlated with tumorigenesis, it has not been determined if specific EZH2 genetic variants are associated with OSCC risk. The aim of this study was to investigate the relationship between genetic polymorphisms of EZH2 and susceptibility to OSCC in Taiwan. Here, four SNPs of EZH2 (rs6950683, rs2302427, rs3757441, and rs41277434) were analyzed by a real-time PCR genotyping in 576 patients with oral cancer and 552 cancer-free controls. After adjusting for other co-variants, we found that carrying CC genotype at EZH2 rs6950683 and rs3757441 had a lower risk of developing OSCC than did wild-type carriers. The CCCA or CCTA haplotype among the four EZH2 sites was also associated with a reduced risk of OSCC. Furthermore, OSCC patients who carried CC genotype at EZH2 rs6950683 had a higher methylation than TC genotype. Our results suggest that the two SNPs of EZH2 (rs6950683 and rs3757441) might contribute to the prediction of OSCC susceptibility. Moreover, rs6950683 CC genotype exhibits hypermethylation in EZH2 promoter. This is the first study to provide insight into risk factors associated with EZH2 variants and epigenetic changes in carcinogenesis of OSCC in Taiwan. PMID:26807327

  10. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    PubMed

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-01

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. PMID:26417689

  11. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation

    SciTech Connect

    Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. )

    1992-12-01

    The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. The authors have found that the methylation of HpaII and HhaI sites less than 100 pb away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27[beta] probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, the authors examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia. 42 refs., 5 figs., 1 tab.

  12. Quantitative genotyping by amplifying the polymorphic sequences of Pre-Melanosomal Protein (PMEL17) gene using real-time polymerase chain reaction in chickens.

    PubMed

    Minematsu, T; Harumi, T; Naito, M

    2008-09-01

    1. This study was conducted to develop a quantitative genotyping system of chimaeric chickens by real-time PCR. 2. The polymorphisms in exons 7 and 11 of PMEL17 gene, which is one of the major genes affecting plumage colour, were identified from White Leghorn, Barred Plymouth Rock and Rhode Island Red chickens. 3. Quantitative genotyping was successfully performed by real-time PCR using polymorphic sequence-specific TaqMan Probes. 4. This methodology can support future research of germline chimaeric chickens as well as the application of germ cell transfer technique. PMID:18836900

  13. DNA methylation and genetic polymorphisms of the Leptin gene interact to influence lung function outcomes and asthma at 18 years of age

    PubMed Central

    Mukherjee, Nandini; Lockett, Gabrielle A; Merid, Simon K; Melén, Erik; Pershagen, Göran; Holloway, John W; Arshad, Syed Hasan; Ewart, Susan; Zhang, Hongmei; Karmaus, Wilfried

    2016-01-01

    The leptin gene (LEP) plays a regulatory role in satiety, inflammation, and allergy. Prior findings linking leptin to asthma motivated us to investigate whether DNA methylation (DNA-M) of CpG (cytosine-phosphate-guanine) sites in concert with single nucleotide polymorphisms (SNPs) of LEP can explain the risk of asthma and lung function. Methylation of CpG sites was assessed using the Illumina Infinium Human Methylation 450 beadchip in blood samples collected from 10- and 18-year-old boys and girls from the Isle of Wight (IOW) birth cohort (UK). Four LEP SNPs were genotyped. Linear and log linear models were used for the analysis, adjusting for false discovery rate (FDR). The analyses were repeated in the BAMSE cohort (Sweden). In the IOW study, the interaction of cg00666422 and rs11763517 (CT vs TT and CC) was associated with FEV1 (FDR-adjusted p-value: 0.03), FEV1/FVC ratio (FDR-adjusted p-value: 0.0096), and FEF25-75% (FDR-adjusted p-value: 0.00048) such that they decreased with increasing DNA-M. The interaction of the same CpG-SNP pair was also associated with increased risk of asthma at age 18. We replicated the findings for FEV1/FVC and FEF25-75% in a smaller sample of 34 participants at age 10. Regarding the BAMSE cohort, although, the interaction of cg00666422 and rs11763517 on lung function were not significant, the direction of the effect was the same as in IOW cohort. Thus, penetrance of LEP genotype seems to be modified by methylation at cg00666422 and is linked to airway obstruction and asthma. PMID:27186323

  14. Cell-Specific Polymorphism and Hormonal Regulation of DNA Methylation in Scavenger Receptor Class B, Type I.

    PubMed

    Hu, Zhigang; Li, Jiaxin; Kuang, Zhihui; Wang, Meina; Azhar, Salman; Guo, Zhigang

    2016-06-01

    The scavenger receptor class B, type I (SR-BI), is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein (HDL)-derived cholesteryl ester. SR-BI plays an important role in cellular delivery of cholesterol. Both human and rodent SR-BI are expressed most abundantly in the liver parenchymal cells and steroidogenic cells of the adrenal gland and gonads, where the selective pathway exhibits its highest activity. In steroidogenic cells, the expression of SR-BI is regulated by trophic hormones (adrenocorticotropic hormone or gonadotropins luteinizing hormone or follicle-stimulating hormone) in concert with the regulation of steroid hormone production. DNA methylation has been implicated in a large number of biological processes mainly by regulating gene expression. The SR-BI promoter contains one CpG island (CGI) in its promoter and seven CGIs in its intronic regions. Here, we studied the DNA methylation status of SR-BI gene and provide evidence that the DNA methylation is cell specific in this gene promoter as well as in intronic regions. The DNA methylation in the SR-BI promoter is subject to N(6), 2'-O-dibutyryladenosine3':5'-cyclic monophosphate regulation in mouse adrenal Y1 cells and mouse Leydig tumor cells (MLTCs). The seven intron CGIs are methylated differentially in Y1 cells, MLTCs, ovarian granulosa cells, and mouse liver hepa 1-6 cells. Our experiments raised the possibility that DNA methylation participates in hormonal regulation of SR-BI expression in a tissue-specific manner. We further suggest that the cell-specific DNA methylation in SR-BI intronic regions may be associated with specific biological function(s) of these regions, including regulation of gene expression. PMID:26981684

  15. Extended haplotype analysis of ovine ADRB3 using polymerase chain reaction single strand conformational polymorphism on two regions of the gene.

    PubMed

    Yang, Guo; Hickford, Jon G H; Zhou, Huitong; Fang, Qian; Forrest, Rachel H

    2011-07-01

    The β3 adrenergic receptor (ADRB3) plays a critical role in the regulation of energy metabolism in mammals. In sheep, intronic polymorphism of the ADRB3 gene has been associated with lamb survival and various production traits. This study investigates variation in the ovine ADRB3 3' untranslated region (3'UTR), a region that may impact expression of the gene. Using PCR- single strand conformational polymorphism (SSCP), six unique patterns (named a-f) were observed in an approximately 304-bp amplicon. Sequencing revealed three single-nucleotide polymorphisms (c.*233A>C, c.*271G>C, c.*357A>T) and a single-nucleotide deletion (c.*257delG). Haplotype analyses showed that the previously described allele A defined by variation in the ovine ADRB3 intron can be divided into three haplotypes (Aa, Ab, and Ac). In total, 16 haplotypes through ovine ADRB3 were detected. This study suggests that ovine ADRB3 is highly polymorphic and that the extended haplotype analysis through the promoter, 5'UTR, coding sequence, intron, and 3'UTR needs to be performed to define the full extent of variation in this gene. PMID:21348572

  16. Isolation of Coxiella burnetii by a centrifugation shell-vial assay from ticks collected in Cyprus: detection by nested polymerase chain reaction (PCR) and by PCR-restriction fragment length polymorphism analyses.

    PubMed

    Spyridaki, Ioanna; Psaroulaki, Anna; Loukaides, Fidias; Antoniou, Maria; Hadjichristodolou, Christos; Tselentis, Yannis

    2002-01-01

    Ticks are the principal vectors and reservoirs of Coxiella burnetii. The identification of isolates is necessary for understanding the clinical diversity of Q fever in different geographic areas. This is the first report of isolation of C. burnetii from ticks by the shell-vial assay and by nested polymerase chain reaction (PCR) assay for the detection of this pathogen in ticks. Of 141 ticks collected in Cyprus (Rhipicephalus sanguineus and Hyalloma spp.), 10% were found to be infected with C. burnetii. Three ticks were positive by hemolymph test, and 11 triturated ticks were positive by nested PCR. Three isolates were obtained by the centrifugation shell-vial technique. Analysis by PCR, then restriction fragment length polymorphism showed that the 3 Cyprus isolates had identical restriction profiles to reference strains Nine Mile and Q212. The methods described are useful in studying the epidemiology and ecology of C. burnetii. PMID:12135275

  17. Molecular diagnosis of Prader-Willi syndrome: Parent-of-origin dependent methylation sites and non-isotopic detection of (CA){sub n} dinucleotide repeat polymorphisms

    SciTech Connect

    Lerer, I.; Meiner, V.; Pashut-Lavon, I.; Abeliovich, D.

    1994-08-01

    We describe our experience in the molecular diagnosis of 22 patients suspected of Prader-Willi syndrome (PWS) using a DNA probe PW71 (D15S63) which detects a parent-of-origin specific methylated site in the PWS critical region. The cause of the syndrome was determined as deletion or uniparental disomy according to the segregation of (CA){sub n} dinucleotide repeat polymorphisms of the PWS/AS region and more distal markers of chromosome 15. In 10 patients the clinical diagnosis was confirmed by the segregation of (CA){sub n}, probably due to paternal microdeletion in the PWs critical region which did not include the loci D15S97, D15S113, GABRB3, and GABRA5. This case demonstrates the advantage of the DNA probe PW71 in the diagnosis of PWS. 31 refs., 2 figs., 3 tabs.

  18. Identification of raw and heat-processed meats from game bird species by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial D-loop region.

    PubMed

    Rojas, M; González, I; Fajardo, V; Martín, I; Hernández, P E; García, T; Martín, R

    2009-03-01

    Polymerase chain reaction-RFLP analysis has been applied to the identification of meats from quail (Coturnix coturnix), pheasant (Phasianus colchicus), red-legged partridge (Alectoris rufa), chukar partridge (Alectoris chukar), guinea fowl (Numida meleagris), capercaillie (Tetrao urogallus), Eurasian woodcock (Scolopax rusticola), and woodpigeon (Columba palumbus). Polymerase chain reaction amplification was carried out using a set of primers flanking a conserved region of approximately 310 bp from the mitochondrial D-loop region. Restriction site analysis based on sequence data from this DNA fragment permitted the selection of HinfI, MboII, and Hpy188III endonucleases for species identification. The restriction profiles obtained when amplicons were digested with the chosen enzymes allowed the unequivocal identification of all game bird species analyzed. Consistent results were obtained with both raw and heat-processed meats. PMID:19211540

  19. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    PubMed Central

    2011-01-01

    Background The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably. PMID:21269507

  20. Oral contraceptives modify the effect of GATA3 polymorphisms on the risk of asthma at the age of 18 years via DNA methylation

    PubMed Central

    2014-01-01

    Background The prevalence of asthma in girls increases after puberty. Previous studies have detected associations between sex hormones and asthma, as well as between sex hormones and T helper 2 (Th2) asthma-typical immune responses. Therefore, we hypothesized that exogenous or endogenous sex hormone exposure (represented by oral contraceptive pill (OCP) use and early menarche, respectively) are associated with DNA methylation (DNA-M) of the Th2 transcription factor gene, GATA3, in turn affecting the risk of asthma in girls, possibly in interaction with genetic variants. Blood samples were collected from 245 female participants aged 18 years randomly selected for methylation analysis from the Isle of Wight birth cohort, UK. Information on use of OCPs, age at menarche, and concurrent asthma were assessed by questionnaire. Genome-wide DNA-M was determined using the Illumina Infinium HumanMethylation450 beadchip. In a first stage, we tested the interaction between sex hormone exposure and genetic variants on DNA-M of specific cytosine-phosphate-guanine (CpG) sites. In a second stage, we determined whether these CpG sites interact with genetic variants in GATA3 to explain the risk of asthma. Results Interactions between OCP use and seven single nucleotide polymorphisms (SNPs) of GATA3 were analyzed for 14 CpG sites (stage 1). The interaction between OCP use and SNP rs1269486 was found to be associated with the methylation level of cg17124583 (P = 0.002, false discovery rate (FDR) adjusted P = 0.04). DNA-M of this same CpG site was also influenced by the interaction between age at menarche and rs1269486 (P = 0.0017). In stage 2, we found that cg17124583 modified the association of SNP rs422628 with asthma risk at the age of 18 years (P = 0.006, FDR adjusted P = 0.04). Subjects with genotype AG showed an increase in average risk ratio (RR) from 0.31 (95% CI: 0.10 to 0.8) to 11.65 (95% CI: 1.71 to 79.5) when methylation level increased from 0.02 to 0

  1. Simultaneous genotyping of CYP2D6*3, *4, *5 and *6 polymorphisms in a Spanish population through multiplex long polymerase chain reaction and minisequencing multiplex single base extension analysis.

    PubMed

    Crescenti, A; Mas, S; Gassó, P; Baiget, M; Bernardo, M; Lafuente, A

    2007-10-01

    1. The aim of the present study was to perform a descriptive study of the prevalence of the four major CYP2D6 poor metaboliser (PM) alleles (*3, *4, *5 and *6) in a Spanish population (n = 290) using a method based on a new combination of multiplex long polymerase chain reaction (PCR) and minisequencing through multiplex single base extension (SBE) analysis. 2. The method was validated using different strategies, such as allelic discrimination assay and PCR-restriction fragment length polymorphism (RFLP). 3. The allele frequencies were similar to those described for other Spanish populations, namely 0.9% (95% confidence interval (CI) 0.5-1.3), 16.4% (95% CI 14.9-18.0), 2.7% (95% CI 2.0-3.4) and 0.7% (95% CI 0.3-1.0) for the *3, *4, *5 and *6 alleles, respectively. The results were satisfactory and left little doubt as to the genotypes, which were confirmed either by allelic discrimination assay (*4 and *6) or PCR-RFLP (*3) with 100% concordance. 4. The present study corroborates the low prevalence of the most frequent polymorphism (CYP2D6*4) that leads to null CYP2D6 activity in Spain and the allelic geographical gradient between Caucasian populations in the north and south. The present study reports a technique for the detection of four polymorphisms that account for 98% of the CYP2D6 defect alleles. This multiplex long PCR-SBE technique is a combination of several known methods to genotype CYP2D6 alleles (*3, *4, *5 and*6). Given the importance of CYP2D6 in drug metabolism and the need to genotype a large number of samples, we believe that this method will find broad application. PMID:17714084

  2. Methylation of arsenic by recombinant human wild-type arsenic (+ 3 oxidation state) methyltransferase and its methionine 287 threonine (M287T) polymorph: Role of glutathione

    SciTech Connect

    Ding, Lan; Saunders, R. Jesse; Drobná, Zuzana; Walton, Felecia S.; Xun, Pencheng; Thomas, David J.; Stýblo, Miroslav

    2012-10-01

    Arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency of about 10% among populations worldwide. Here, we compared catalytic properties of recombinant human wild-type (wt) AS3MT and AS3MT/M287T in reaction mixtures containing S-adenosylmethionine, arsenite (iAs{sup III}) or methylarsonous acid (MAs{sup III}) as substrates and endogenous or synthetic reductants, including glutathione (GSH), a thioredoxin reductase (TR)/thioredoxin (Trx)/NADPH reducing system, or tris (2-carboxyethyl) phosphine hydrochloride (TCEP). With either TR/Trx/NADPH or TCEP, wtAS3MT or AS3MT/M287T catalyzed conversion of iAs{sup III} to MAs{sup III}, methylarsonic acid (MAs{sup V}), dimethylarsinous acid (DMAs{sup III}), and dimethylarsinic acid (DMAs{sup V}); MAs{sup III} was converted to DMAs{sup III} and DMAs{sup V}. Although neither enzyme required GSH to support methylation of iAs{sup III} or MAs{sup III}, addition of 1 mM GSH decreased K{sub m} and increased V{sub max} estimates for either substrate in reaction mixtures containing TR/Trx/NADPH. Without GSH, V{sub max} and K{sub m} values were significantly lower for AS3MT/M287T than for wtAS3MT. In the presence of 1 mM GSH, significantly more DMAs{sup III} was produced from iAs{sup III} in reactions catalyzed by the M287T variant than in wtAS3MT-catalyzed reactions. Thus, 1 mM GSH modulates AS3MT activity, increasing both methylation rates and yield of DMAs{sup III}. AS3MT genotype exemplified by differences in regulation of wtAS3MT and AS3MT/M287T-catalyzed reactions by GSH may contribute to differences in the phenotype for arsenic methylation and, ultimately, to differences in the disease susceptibility in individuals chronically exposed to inorganic arsenic. -- Highlights: ► Human AS3MT and AS3MT(M287T) require a dithiol

  3. Excitotoxicity in the lung: N-methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase.

    PubMed Central

    Said, S I; Berisha, H I; Pakbaz, H

    1996-01-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase. Images Fig. 3 PMID:8643465

  4. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    NASA Astrophysics Data System (ADS)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  5. Evaluation of p16 hypermethylation in oral submucous fibrosis: A quantitative and comparative analysis in buccal cells and saliva using real-time methylation-specific polymerase chain reaction

    PubMed Central

    Kaliyaperumal, Subadra; Sankarapandian, Sathasivasubramanian

    2016-01-01

    Aims: The aim of this study was to quantitatively investigate the hypermethylation of p16 gene in buccal cells and saliva of oral submucous fibrosis (OSMF) patients using real-time quantitative methylation-specific polymerase chain reaction (PCR) and to compare the values of two methods. Subjects and Methods: A total of 120 samples were taken from 60 subjects selected for this study, of which 30 were controls and 30 patients were clinically and histopathologically diagnosed with OSMF. In both groups, two sets of samples were collected, one directly from the buccal cells through cytobrush technique and the other through salivary rinse. We analyzed the samples for the presence of p16 hypermethylation using quantitative real-time PCR. Results: In OSMF, the hypermethylation status of p16 in buccal cells was very high (93.3%) and in salivary samples, it was partially methylated (50%). However, no hypermethylation was found in controls suggesting that significant quantity of p16 hypermethylation was present in buccal cells and saliva in OSMF. Conclusions: This study indicates that buccal cell sampling may be a better method for evaluation than the salivary samples. It signifies that hypermethylation of p16 is an important factor to be considered in epigenetic alterations of normal cells to oral precancer, i.e. OSMF. PMID:27275454

  6. Developmentally Restricted Genetic Determinants of Human Arsenic Metabolism: Association between Urinary Methylated Arsenic and CYT19 Polymorphisms in Children

    PubMed Central

    Meza, Maria Mercedes; Yu, Lizhi; Rodriguez, Yelitza Y.; Guild, Mischa; Thompson, David; Gandolfi, A. Jay; Klimecki, Walter T.

    2005-01-01

    We report the results of a screen for genetic association with urinary arsenic metabolite levels in three arsenic metabolism candidate genes, PNP, GSTO, and CYT19, in 135 arsenic-exposed subjects from the Yaqui Valley in Sonora, Mexico, who were exposed to drinking water concentrations ranging from 5.5 to 43.3 ppb. We chose 23 polymorphic sites to test in the arsenic-exposed population. Initial phenotypes evaluated included the ratio of urinary inorganic arsenic(III) to inorganic arsenic(V) and the ratio of urinary dimethylarsenic(V) to monomethylarsenic(V) (D:M). In the initial association screening, three polymorphic sites in the CYT19 gene were significantly associated with D:M ratios in the total population. Subsequent analysis of this association revealed that the association signal for the entire population was actually caused by an extremely strong association in only the children (7–11 years of age) between CYT19 genotype and D:M levels. With children removed from the analysis, no significant genetic association was observed in adults (18–79 years). The existence of a strong, developmentally regulated genetic association between CYT19 and arsenic metabolism carries import for both arsenic pharmacogenetics and arsenic toxicology, as well as for public health and governmental regulatory officials. PMID:15929903

  7. Developmentally restricted genetic determinants of human arsenic metabolism: association between urinary methylated arsenic and CYT19 polymorphisms in children.

    PubMed

    Meza, Maria Mercedes; Yu, Lizhi; Rodriguez, Yelitza Y; Guild, Mischa; Thompson, David; Gandolfi, A Jay; Klimecki, Walter T

    2005-06-01

    We report the results of a screen for genetic association with urinary arsenic metabolite levels in three arsenic metabolism candidate genes, PNP, GSTO, and CYT19, in 135 arsenic-exposed subjects from the Yaqui Valley in Sonora, Mexico, who were exposed to drinking water concentrations ranging from 5.5 to 43.3 ppb. We chose 23 polymorphic sites to test in the arsenic-exposed population. Initial phenotypes evaluated included the ratio of urinary inorganic arsenic(III) to inorganic arsenic(V) and the ratio of urinary dimethylarsenic(V) to monomethylarsenic(V) (D:M). In the initial association screening, three polymorphic sites in the CYT19 gene were significantly associated with D:M ratios in the total population. Subsequent analysis of this association revealed that the association signal for the entire population was actually caused by an extremely strong association in only the children (7-11 years of age) between CYT19 genotype and D:M levels. With children removed from the analysis, no significant genetic association was observed in adults (18-79 years). The existence of a strong, developmentally regulated genetic association between CYT19 and arsenic metabolism carries import for both arsenic pharmacogenetics and arsenic toxicology, as well as for public health and governmental regulatory officials. PMID:15929903

  8. Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function

    PubMed Central

    Lucio-Eterovic, Agda Karina; Singh, Melissa M.; Gardner, Jeffrey E.; Veerappan, Chendhore S.; Rice, Judd C.; Carpenter, Phillip B.

    2010-01-01

    The NSD (nuclear receptor-binding SET domain protein) family encodes methyltransferases that are important in multiple aspects of development and disease. Perturbations in NSD family members can lead to Sotos syndrome and Wolf–Hirschhorn syndrome as well as cancers such as acute myeloid leukemia. Previous studies have implicated NSD1 (KMT3B) in transcription and methylation of histone H3 at lysine 36 (H3-K36), but its molecular mechanism in these processes remains largely unknown. Here we describe an NSD1 regulatory network in human cells. We show that NSD1 binds near various promoter elements and regulates multiple genes that appear to have a concerted role in various processes, such as cell growth/cancer, keratin biology, and bone morphogenesis. In particular, we show that NSD1 binding is concentrated upstream of gene targets such as the bone morphogenetic protein 4 (BMP4) and zinc finger protein 36 C3H type-like 1 (ZFP36L1/TPP). NSD1 regulates the levels of the various forms of methylation at H3-K36 primarily, but not exclusively, within the promoter proximal region occupied by NSD1. At BMP4 we find that this reduces the levels of RNAP II recruited to the promoter, suggesting a role for NSD1-dependent methylation in initiation. Interestingly, we also observe that the RNAP II molecules that lie within BMP4 have inappropriate persistence of serine-5 phosphorylation and reduced levels of serine-2 phosphorylation within the C-terminal domain (CTD) of the large subunit of RNAP II. Our findings indicate that NSD1 regulates RNAP II recruitment to BMP4, and failure to do so leads to reduced gene expression and abrogated levels of H3K36Me and CTD phosphorylation. PMID:20837538

  9. Polymorphisms of human 8-oxoguanine DNA glycosylase 1 and 8-hydroxydeoxyguanosine increase susceptibility to arsenic methylation capacity-related urothelial carcinoma.

    PubMed

    Huang, Chao-Yuan; Pu, Yeong-Shiau; Shiue, Horng-Sheng; Chen, Wei-Jen; Lin, Ying-Chin; Hsueh, Yu-Mei

    2016-08-01

    Arsenic causes oxidative stress in cultured animal and human cells, and it is a well-documented human carcinogen. We conducted a hospital-based case-control study including 167 cases of urothelial carcinoma (UC) and 334 age- and gender-matched healthy controls to evaluate the relationships between urinary arsenic profiles, urinary 8-hydroxydeoxyguanosine (8-OHdG) levels, and human 8-oxoguanine DNA glycosylase (hOGG1) genotypes and UC. The urinary arsenic species were analyzed by high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Genotyping for hOGG1 (Ser326Cys) and hOGG1 (-15C>G) was performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Urinary 8-OHdG was measured with high-sensitivity enzyme-linked immunosorbent assay kits. The results indicated that the hOGG1 326 Cys/Cys genotype and the hOGG1 -15C>G G/G genotype were associated with an increased risk of UC (OR [95 % CI] 1.57 [1.04-2.35] and 1.57 [1.04-2.35], respectively). Participants with high urinary total arsenic, regardless of the haplotype of hOGG1 Ser326Cys and the -15C>G polymorphism, had significantly higher urinary 8-OHdG compared to participants with low urinary total arsenic. This is the first study to investigate the joint effects of high urinary total arsenic or inefficient arsenic methylation capacity indices, and the high-risk G-G haplotype of hOGG1 on the risk of UC. The findings are especially meaningful for participants with risk factors such as high urinary total arsenic, inefficient arsenic methylation indices, high urinary 8-OHdG, and the high-risk G-G haplotype of hOGG1 which are all associated with an increased UC risk. PMID:26359225

  10. Association Study of N-Methyl-D-Aspartate Receptor Subunit 2B (GRIN2B) Polymorphisms and Schizophrenia Symptoms in the Han Chinese Population

    PubMed Central

    Zhang, Hongxing; Yang, Ge; Wang, Xiujuan; Ding, Minli; Jiang, Tianzi; Lv, Luxian

    2015-01-01

    Schizophrenia (SZ) is a common and complex psychiatric disorder that has a significant genetic component. The glutamatergic system is the major excitatory neurotransmitter system in the central nervous system, and is mediated by N-methyl-D-aspartate (NMDA) receptors. Disturbances in this system have been hypothesized to play a major role in SZ pathogenesis. Several studies have revealed that the NMDA receptor subunit 2B (GRIN2B) potentially associates with SZ and its psychiatric symptoms. In this study, we performed a case–control study to identify polymorphisms of the GRIN2B gene that may confer susceptibility to SZ in the Han Chinese population. Thirty-four single nucleotide polymorphisms (SNPs) were genotyped in 528 paranoid SZ patients and 528 control subjects. A significant association was observed in allele and genotype between SZ and controls at rs2098469 (χ2 = 8.425 and 4.994; p = 0.025 and 0.014, respectively). Significant associations were found in the allele at rs12319804 (χ2 = 4.436; p = 0.035), as well as in the genotype at rs12820037 and rs7298664 between SZ and controls (χ2 = 11.162 and 38.204; p = 0.003 and 4.27×10-8, respectively). After applying the Bonferroni correction, rs7298664 still had significant genotype associations with SZ (p = 1.71×10-7). In addition, rs2098469 genotype and allele frequencies, and 12820037 allele frequencies were nominally associated with SZ. Three haplotypes, CGA (rs10845849—rs12319804—rs10845851), CC (rs12582848—rs7952915), and AAGAC (rs2041986—rs11055665—rs7314376—rs7297101—rs2098469), had significant differences between SZ and controls (χ2 = 4.324, 4.582, and 4.492; p = 0.037, 0.032, and 0.034, respectively). In addition, three SNPs, rs2098469, rs12820037, and rs7298664, were significantly associated with cognition factors PANSS subscores in SZ (F = 16.799, 7.112, and 13.357; p = 0.000, 0.017, and 0.000, respectively). In conclusion, our study provides novel evidence for an association between

  11. Association Study of N-Methyl-D-Aspartate Receptor Subunit 2B (GRIN2B) Polymorphisms and Schizophrenia Symptoms in the Han Chinese Population.

    PubMed

    Yang, Yongfeng; Li, Wenqiang; Zhang, Hongxing; Yang, Ge; Wang, Xiujuan; Ding, Minli; Jiang, Tianzi; Lv, Luxian

    2015-01-01

    Schizophrenia (SZ) is a common and complex psychiatric disorder that has a significant genetic component. The glutamatergic system is the major excitatory neurotransmitter system in the central nervous system, and is mediated by N-methyl-D-aspartate (NMDA) receptors. Disturbances in this system have been hypothesized to play a major role in SZ pathogenesis. Several studies have revealed that the NMDA receptor subunit 2B (GRIN2B) potentially associates with SZ and its psychiatric symptoms. In this study, we performed a case-control study to identify polymorphisms of the GRIN2B gene that may confer susceptibility to SZ in the Han Chinese population. Thirty-four single nucleotide polymorphisms (SNPs) were genotyped in 528 paranoid SZ patients and 528 control subjects. A significant association was observed in allele and genotype between SZ and controls at rs2098469 (χ2 = 8.425 and 4.994; p = 0.025 and 0.014, respectively). Significant associations were found in the allele at rs12319804 (χ2 = 4.436; p = 0.035), as well as in the genotype at rs12820037 and rs7298664 between SZ and controls (χ2 = 11.162 and 38.204; p = 0.003 and 4.27×10(-8), respectively). After applying the Bonferroni correction, rs7298664 still had significant genotype associations with SZ (p = 1.71×10(-7)). In addition, rs2098469 genotype and allele frequencies, and 12820037 allele frequencies were nominally associated with SZ. Three haplotypes, CGA (rs10845849-rs12319804-rs10845851), CC (rs12582848-rs7952915), and AAGAC (rs2041986-rs11055665-rs7314376-rs7297101-rs2098469), had significant differences between SZ and controls (χ2 = 4.324, 4.582, and 4.492; p = 0.037, 0.032, and 0.034, respectively). In addition, three SNPs, rs2098469, rs12820037, and rs7298664, were significantly associated with cognition factors PANSS subscores in SZ (F = 16.799, 7.112, and 13.357; p = 0.000, 0.017, and 0.000, respectively). In conclusion, our study provides novel evidence for an association between GRIN2B

  12. Giardia duodenalis in Damascus, Syria: Identification of Giardia genotypes in a sample of human fecal isolates using polymerase chain reaction and restriction fragment length polymorphism analyzing method.

    PubMed

    Skhal, Dania; Aboualchamat, Ghalia; Al Nahhas, Samar

    2016-02-01

    Giardia duodenalis is a common gastrointestinal parasite that infects humans and many other mammals. It is most prevalent in many developing and industrialized countries. G. duodenalis is considered to be a complex species. While no morphological distinction among different assemblages exist, it can be genetically differentiated into eight major assemblages: A to H. The aim of this study was to determine the genetic heterogeneity of G. duodenalis in human isolates (a study conducted for the first time in Syria). 40 fecal samples were collected from three different hospitals during the hot summer season of 2014. Extraction of genomic DNA from all Giardia positive samples (based on a microscopic examination) was performed using QIAamp DNA Stool Mini Kit. β-giardin gene was used to differentiate between different Giardia assemblages. The 514 bp fragment was amplified using the Polymerase Chain Reaction method, followed by digestion in HaeIII restriction enzyme. Our result showed that genotype A was more frequent than genotype B, 27/40 (67.5%); 4/40 (10%) respectively. A mixed genotype of A+B was only detected in 9 isolates (22.5%). This is the first molecular study performed on G. duodenalis isolates in Syria in order to discriminate among the different genotypes. Further expanded studies using more genes are needed to detect and identify the Giardia parasite at the level of assemblage and sub-assemblage. PMID:26524628

  13. Genotypic characterization of Indian isolates of infectious bursal disease virus strains by reverse transcription-polymerase chain reaction combined with restriction fragment length polymorphism analysis.

    PubMed

    Priyadharsini, C V; Senthilkumar, T M A; Raja, P; Kumanan, K

    2016-03-01

    The reverse transcription PCR (RT-PCR) combined with restriction fragment length polymorphism (RFLP) is used for the differentiation of classical virulent (cv), virulent (v) and very virulent (vv) strains of infectious bursal disease virus (IBDV) isolates from chicken bursal tissues in southern states of India. In the present study, six different isolates (MB11, HY12, PY12, BGE14, VCN14 and NKL14) of IBDV strains were subjected for genotyping along with vaccine virus (Georgia, intermediate strain) using RT-PCR for amplification of a 743 bp sequence in the hypervariable region of VP2 gene followed by restriction enzyme digestion with 5 different restriction enzymes (BspMI, SacI, HhaI, StuI and SspI). The RT-PCR products obtained from vvIBDV strains were digested by SspI enzyme except PY12, BGE14 and MB11 isolates. The SacI digested the isolate MB11, PY12 and the vaccine strain, but it did not cleave the very virulent isolates of IBDV. HhaI cleaved all the isolates with different restriction profile patterns. StuI digested all the vvIBDV isolates and BspMI was not able to differentiate field isolates from vaccine strain. Though RT-PCR combined with RFLP is a genotypic method, further confirmation of serotypes to distinguish the vvIBDV from cvIBDV has to be carried out using pathogenicity studies. PMID:26982465

  14. Crystal structure of a new monoclinic polymorph of N-(4-methyl-phen-yl)-3-nitro-pyridin-2-amine.

    PubMed

    Aznan, Aina Mardia Akhmad; Abdullah, Zanariah; Lee, Vannajan Sanghiran; Tiekink, Edward R T

    2014-08-01

    The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z' = 4) of the previously reported monoclinic (P21/c, with Z' = 2) form [Akhmad Aznan et al. (2010 ▶). Acta Cryst. E66, o2400]. Four independent mol-ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra-molecular amine-nitro N-H⋯O hydrogen bond. The differences between mol-ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6-311 g+(d,p) basis set] has the same features except that the entire mol-ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C-H⋯O, C-H⋯π, nitro-N-O⋯π and π-π inter-actions [inter-centroid distances = 3.649 (2)-3.916 (2) Å]. PMID:25249854

  15. The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA

    PubMed Central

    Barbedo, Leonardo Silva; Figueiredo-Carvalho, Maria Helena Galdino; Muniz, Mauro de Medeiros; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories. PMID:27074256

  16. Differentiation of canine distemper virus isolates in fur animals from various vaccine strains by reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations in china

    PubMed Central

    2011-01-01

    In order to effectively identify the vaccine and field strains of Canine distemper virus (CDV), a new differential diagnostic test has been developed based on reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP). We selected an 829 bp fragment of the nucleoprotein (N) gene of CDV. By RFLP analysis using BamHI, field isolates were distinguishable from the vaccine strains. Two fragments were obtained from the vaccine strains by RT-PCR-RFLP analysis while three were observed in the field strains. An 829 nucleotide region of the CDV N gene was analyzed in 19 CDV field strains isolated from minks, raccoon dogs and foxes in China between 2005 and 2007. The results suggest this method is precise, accurate and efficient. It was also determined that three different genotypes exist in CDV field strains in fur animal herds of the north of China, most of which belong to Asian type. Mutated field strains, JSY06-R1, JSY06-R2 and JDH07-F1 also exist in Northern China, but are most closely related to the standard virulent strain A75/17, designated in Arctic and America-2 genetype in the present study, respectively. PMID:21352564

  17. Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation.

    PubMed

    Hunter, Gerald O; Fox, Melanie J; Smith-Kinnaman, Whitney R; Gogol, Madelaine; Fleharty, Brian; Mosley, Amber L

    2016-09-01

    In eukaryotes, the C-terminal domain (CTD) of Rpb1 contains a heptapeptide repeat sequence of (Y1S2P3T4S5P6S7)n that undergoes reversible phosphorylation through the opposing action of kinases and phosphatases. Rtr1 is a conserved protein that colocalizes with RNA polymerase II (RNAPII) and has been shown to be important for the transition from elongation to termination during transcription by removing RNAPII CTD serine 5 phosphorylation (Ser5-P) at a selection of target genes. In this study, we show that Rtr1 is a global regulator of the CTD code with deletion of RTR1 causing genome-wide changes in Ser5-P CTD phosphorylation and cotranscriptional histone H3 lysine 36 trimethylation (H3K36me3). Using chromatin immunoprecipitation and high-resolution microarrays, we show that RTR1 deletion results in global changes in RNAPII Ser5-P levels on genes with different lengths and transcription rates consistent with its role as a CTD phosphatase. Although Ser5-P levels increase, the overall occupancy of RNAPII either decreases or stays the same in the absence of RTR1 Additionally, the loss of Rtr1 in vivo leads to increases in H3K36me3 levels genome-wide, while total histone H3 levels remain relatively constant within coding regions. Overall, these findings suggest that Rtr1 regulates H3K36me3 levels through changes in the number of binding sites for the histone methyltransferase Set2, thereby influencing both the CTD and histone codes. PMID:27247267

  18. Performance Assessment of the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Method for Rapid Detection of Susceptibility to Ethambutol and Molecular Prediction of Extensively Drug-resistant Tuberculosis in Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Arjomandzadegan, M; Nazari, R; Zolfaghari, MR; Taherahmadi, M; Sadrnia, M; Titov, LP; Ahmadi, A; Shojapoor, M

    2015-01-01

    ABSTRACT Introduction: The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was employed for rapid detection of ethambutol (EMB) resistant clinical isolates of Mycobacterium tuberculosis. Materials and Methods: From 182 clinical isolates of M tuberculosis collected from different regions, 103 strains were entered in the investigation. DNA was extracted by Chelex 100 method and PCR was performed using specific primers for embB gene. Polymerase chain reaction products were digested with HaeIII and NlaII restriction endonucleases and the patterns of restriction fragments were analysed. Some randomly selected samples were sequenced. Results: Out of 103 studied strains, 52 were resistant to EMB. The cases of secondary tuberculosis were 53 (51.50 ± 1.77%), and primary cases 50 (48.50 ± 1.77%; p > 0.05). From 63 extensively drug-resistant (XDR), pre-XDR and multidrug-resistant (MDR) isolates, 27 (87%), 18 (81.8%) and 7 (70%) strains were resistant to EMB, respectively. Results of PCR-RFLP method showed that from 27R EMB XDR isolates, 13 (sensitivity 48% with CI: 0.307, 0.66 and specificity 100%), from 18R EMB pre-XDR strains, 4 (sensitivity 22% with CI: 0.09, 0.45 and specificity 100%) and of 7R EMB MDR, 2 (sensitivity 28% with CI: 0.082, 0.64 and specificity 100%) had mutation in ATG-Met codon 306. Results of sequencing were concordant with RFLP method. Overall, sensitivity of the molecular method was 36.5% (CI: 0.09, 0.45) and specificity 100%. None of the 40 pansusceptible strains was embB306 mutants. Extensively drug-resistant strains had a higher proportion of embB306 mutants (43%) than pre-XDR and MDR isolates (odds ratio 6.78; p < 0.001). Conclusion: Fast detection of susceptibility to EMB drug is possible by PCR-RFLP. The embB306 locus is a candidate marker for rapid prediction of high resistance of MDR and XDR forms to anti-tuberculosis drugs using this method. PMID:26624582

  19. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer

    PubMed Central

    Song, Binbin; Ai, Jiang; Kong, Xianghong; Liu, Dexin; Li, Jun

    2013-01-01

    Objective: We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). Methods: 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. Conclusion: We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer. PMID:24550949

  20. Salt stress alters DNA methylation levels in alfalfa (Medicago spp).

    PubMed

    Al-Lawati, A; Al-Bahry, S; Victor, R; Al-Lawati, A H; Yaish, M W

    2016-01-01

    Modification of DNA methylation status is one of the mechanisms used by plants to adjust gene expression at both the transcriptional and posttranscriptional levels when plants are exposed to suboptimal conditions. Under abiotic stress, different cultivars often show heritable phenotypic variation accompanied by epigenetic polymorphisms at the DNA methylation level. This variation may provide the raw materials for plant breeding programs that aim to enhance abiotic stress tolerance, including salt tolerance. In this study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to assess cytosine methylation levels in alfalfa (Medicago spp) roots exposed to increasing NaCl concentrations (0.0, 8.0, 12.0, and 20.0 dS/m). Eleven indigenous landraces were analyzed, in addition to a salt-tolerant cultivar that was used as a control. There was a slight increase in DNA methylation upon exposure to high levels of soil salinity. Phylogenetic analysis using MSAP showed epigenetic variation within and between the alfalfa landraces when exposed to saline conditions. Based on MSAP and enzyme-linked immunosorbent assay results, we found that salinity increased global DNA methylation status, particularly in plants exposed to the highest level of salinity (20 dS/m). Quantitative reverse transcription-polymerase chain reaction indicated that this might be mediated by the overexpression of methyltransferase homolog genes after exposure to saline conditions. DNA demethylation using 5-azacytidine reduced seedling lengths and dry and fresh weights, indicating a possible decrease in salinity tolerance. These results suggest that salinity affects DNA methylation flexibility. PMID:26985924

  1. Polymorphisms and haplotypes in methylenetetrahydrofolate reductase gene and head and neck squamous cell carcinoma risk.

    PubMed

    Galbiatti, Ana Lívia Silva; Ruiz, Mariangela Torreglosa; Rodrigues, Juliana Olsen; Raposo, Luiz Sérgio; Maníglia, José Victor; Pavarino, Érika Cristina; Goloni-Bertollo, Eny Maria

    2012-01-01

    Functional polymorphisms in genes encoding enzymes involved in folate metabolism might modulate head and neck carcinoma risk because folate participates in DNA methylation and synthesis. We therefore conducted a case-control study of 853 individuals (322 head and neck cancer cases and 531 non-cancer controls) to investigate associations among MTHFR C677T and MTHFR A1298C polymorphisms and head and neck squamous cell carcinoma risk. Interactions between these two polymorphisms and risk factors and clinical histopathological parameters were also evaluated. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to genotype the polymorphisms and Chi-square test and multiple logistic regression were used for statistical analyses. The variables age≥49 years, male gender, tobacco habits and alcohol consumption, MTHFR 1298 AC or CC genotypes, combined genotypes with two or more polymorphic alleles and 677T and 1298C polymorphic alleles were associated with increased risk for this disease (P<0.05). Furthermore, we found that 1298 AC or CC genotypes were associated with age≥49 years, tobacco and alcohol habits (P<0.05). Regarding clinical histopathological parameters, the A1298C polymorphism was more frequent in patients with oral cavity as primary site (P<0.05). MTHFR polymorphisms may contribute for increase risk for head and neck carcinoma and the variables age≥49 years, male gender, tobacco and alcohol habits were associated with MTHFR 1298AC or CC genotypes, confirming that individuals with these variables and MTHFR A1298C polymorphism has higher risk for this disease. PMID:21556759

  2. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  3. DNA polymerases and cancer

    PubMed Central

    Lange, Sabine S.; Takata, Kei-ichi; Wood, Richard D.

    2013-01-01

    There are fifteen different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells and at least one DNA polymerase, POLζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes may be viable targets for therapeutic strategies. PMID:21258395

  4. [Relationship of MTHFR gene polymorphisms with infertility].

    PubMed

    Guo, Kai-min; Tian, Run-hui; Wang, Hong-liang

    2016-02-01

    The folate metabolic pathway plays important roles in cellular physiology by participating in nucleotide synthesis, DNA repair and methylation, and maintenance and stability of the genome. Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme involved in folate metabolism. Polymorphisms of MTHFR may change the level of homocysteine and affect DNA synthesis and methylation, leading to an increased oxidative stress and disturbed methylation reactions and consequently affecting reproductive function. This article presents an overview on MTHFR gene polymorphisms, proposing that multicentered, large-sample and long-term prospective studies are needed to reveal the relationship between MTHFR gene polymorphisms and infertility. PMID:26939404

  5. Association between folate metabolism-related polymorphisms and colorectal cancer risk

    PubMed Central

    KIM, JONG WOO; JEON, YOUNG JOO; JANG, MOON JU; KIM, JUNG O; CHONG, SO YOUNG; KO, KWANG HYUN; HWANG, SEONG GYU; OH, DOYEUN; OH, JISU; KIM, NAM KEUN

    2015-01-01

    Folate has essential roles in DNA synthesis, repair and methylation. Folate metabolism-related gene variants may modulate the levels of this vitamin and affect the cancer risk. Thus, whether these polymorphisms play an important role in carcinogenesis, particularly colorectal cancer (CRC) development, has been a subject interest. The present study investigated the association between polymorphisms in the methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS) and the reduced folate carrier 1 (RFC1) genes and CRC risk. Polymorphisms in MTHFR (677C>T and 1298A>C), TS [1494del6 and the TS enhancer region (TSER)] and RFC1 (−43T>C, 80G>A and 696C>T) were characterized using polymerase chain reaction-restriction fragment length polymorphism in 477 CRC cases and 514 controls. Although no polymorphisms were significantly associated with the CRC risk in the overall sample, significant associations between folate metabolism-related polymorphisms and CRC risk were identified in the stratified analyses. The MTHFR 677CT/1298AC and MTHFR 1298AC+CC/TSER 2R3R genotypes in the presence of plasma folate levels ≤4.12 ng/ml were associated with significantly increased CRC risk. In addition, individuals with the MTHFR 677TT/TSER 3R3R or MTHFR 677/TSER 3R3R/TS 1494 0bp6bp+6bp6bp genotypes and diabetes mellitus (DM) were at an increased risk for CRC. Therefore, the data suggest that i) MTHFR polymorphisms combined with low plasma folate levels and ii) polymorphisms in folate metabolism-related genes combined with metabolic syndrome risk factors (hypertension and DM) increase the odds of developing CRC. PMID:26137281

  6. Eukaryotic TLS polymerases.

    PubMed

    Tomczyk, Przemysław; Synowiec, Ewelina; Wysokiński, Daniel; Woźniak, Katarzyna

    2016-01-01

    TLS polymerases are able to replicate damaged DNA (called translesion DNA synthesis, TLS). Their presence prevents cell death as a result of violating the integrity of the genome. In vitro, they are mutator, but in vivo are recruited by specific types of DNA damage and usually replicate them in a correct manner. The best-known TLS polymerases belong to the Y family, such as Rev1, κ, η, ι, and polymerase ζ from the B family. There are two mechanisms of TLS polymerases action: polymerase-switching model and the gap-filling model. Selection of the mechanism primarily depends on the phase of the cell cycle. The regulation of these polymerases may take place at the transcriptional level and at level of recruitment to the sites of DNA damage. In the latter case post-translational modification of proteins - ubiquitination and sumoylation, and protein-protein interactions are crucial. PMID:27333922

  7. A monoclinic polymorph of 4-(2H-1,3-benzodioxol-5-yl)-1-(4-methyl­phen­yl)-1H-pyrazol-5-amine

    PubMed Central

    Jotani, Mukesh M.; Gajera, Nilesh N.; Patel, Mukesh C.; Sung, Herman H. Y.; Tiekink, Edward R. T.

    2015-01-01

    The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z′ = 1) of the previously reported triclinic (P-1 with Z′ = 2) form [Gajera et al. (2013 ▸). Acta Cryst. E69, o736–o737]. The mol­ecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the mol­ecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methyl­ene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent mol­ecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, mol­ecules assemble into supra­molecular helical chains via amino–pyrazolyl N—H⋯N hydrogen bonds. These are linked into layers via C—H⋯π inter­actions, and layers stack along the a axis with no specific inter­actions between them. PMID:26594387

  8. Crystal structure of 2,4-di­nitro­phenyl 4-methyl­benzene­sulfonate: a new polymorph

    PubMed Central

    Cooley, Tyler A.; Riley, Sean; Biros, Shannon M.; Staples, Richard J.; Ngassa, Felix N.

    2015-01-01

    The title compound, C13H10N2O7S, was synthesized via a nucleophilic substitution reaction between 2,4-di­nitro­phenol and p-toluene­sulfonyl chloride. This crystal structure is a polymorph of CSD entry WUVYUH [Vembu et al. (2003). Acta Cryst, E59, o378–380]. The aromatic substituents on the sulfonate group are oriented gauche to one another with a C—O—S—C torsion angle of −62.0 (3)°. The supra­molecular features that contribute to the crystal stability are offset π–π [centroid–centroid distance = 3.729 (2) Å] and multiple C—H⋯O inter­actions. PMID:26396855

  9. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean

    PubMed Central

    Xu, Wei; Dai, Mengyuan; Li, Fei; Liu, Aizhong

    2014-01-01

    Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm, which persists throughout seed development. After mapping out the polymorphic SNP loci between accessions ZB306 and ZB107, we generated deep sequencing RNA profiles of F1 hybrid seeds derived from reciprocal crosses. Using polymorphic SNP sites to quantify allele-specific expression levels, we identified 209 genes in reciprocal endosperms with potential parent-of-origin specific expression, including 200 maternally expressed genes and 9 paternally expressed genes. In total, 57 of the imprinted genes were validated via reverse transcriptase-polymerase chain reaction sequencing, and analysis of the genomic DNA methylation distribution between embryo and endosperm tissues showed significant hypomethylation in the endosperm and an enrichment of differentially methylated regions around the identified genes. Curiously, the expression of the imprinted genes was not tightly linked to DNA methylation. These results largely extended gene imprinting information existing in plants, providing potential directions for further research in gene imprinting. PMID:24799438

  10. Crystal structure of a new monoclinic polymorph of N-(4-methyl­phen­yl)-3-nitro­pyridin-2-amine

    PubMed Central

    Aznan, Aina Mardia Akhmad; Abdullah, Zanariah; Lee, Vannajan Sanghiran; Tiekink, Edward R. T.

    2014-01-01

    The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, with Z′ = 4) of the previously reported monoclinic (P21/c, with Z′ = 2) form [Akhmad Aznan et al. (2010 ▶). Acta Cryst. E66, o2400]. Four independent mol­ecules comprise the asymmetric unit, which have the common features of a syn disposition of the pyridine N atom and the toluene ring, and an intra­molecular amine–nitro N—H⋯O hydrogen bond. The differences between mol­ecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p) basis set] has the same features except that the entire mol­ecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H⋯O, C—H⋯π, nitro-N—O⋯π and π–π inter­actions [inter-centroid distances = 3.649 (2)–3.916 (2) Å]. PMID:25249854

  11. Crystal structure of a new monoclinic polymorph of 2,4-di­hydroxy­benzaldehyde 4-methyl­thio­semi­carbazone

    PubMed Central

    Salam, M. A.; Hussein, Mouayed A.; Tiekink, Edward R. T.

    2015-01-01

    The title compound, C9H11N3O2S, is a second monoclinic (P21/c) polymorph of the previously reported Cc form [Tan et al. (2008b ▸). Acta Cryst. E64, o2224]. The mol­ecule is non-planar, with the dihedral angle between the N3CS residue (r.m.s. deviation = 0.0816 Å) and the benzene ring being 21.36 (4)°. The conformation about the C=N bond [1.292 (2) Å] is E, the two N-bound H atoms are anti, and the inner hy­droxy O-bound and outer amide N-bound H atoms form intra­molecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hy­droxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hy­droxy substituents. This arrangement enables the formation of supra­molecular tubes aligned along [010] and sustained by N—H⋯O, O—H⋯S and N—H⋯S hydrogen bonds; the tubes pack with no specific inter­actions between them. While the mol­ecular structure in the Cc form is comparable, the H atom of the outer hy­droxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on N—H⋯O and O—H⋯S hydrogen bonds. PMID:25705451

  12. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation

    PubMed Central

    Varzari, Alexander; Deyneko, Igor V.; Tudor, Elena; Turcan, Svetlana

    2015-01-01

    Background Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. Methods In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype–phenotype correlations were examined using logistic regression analysis. Results None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04–0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10–0.54). Conclusion The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required. PMID:26862484

  13. Analysis of CYP1A1 and COMT polymorphisms in women with cervical cancer.

    PubMed

    Kleine, J P; Camargo-Kosugi, C M; Carvalho, C V; Silva, F C; Silva, I D C G

    2015-01-01

    The aim of this case-control study was to obtain a comprehensive panel of genetic polymorphisms present only in genes (cytochrome P-450 1A1--CYP1A1 and catechol-O-methyl transferase--COMT) within the metabolic pathway of sex steroids and determine their possible associations with the presence or absence of cervical cancer. Genotypes of 222 women were analyzed: a) 81 with cancer of the cervix treated at the Cancer Hospital Alfredo Abram, between June 2012 and May 2013, with diagnosis confirmed surgically and/or through histomorphological examination; and b) 141 healthy women who assisted at the Endocrine Gynecology and Climacteric Ambulatory, Department of Gynecology, UNIFESP-EPM. These polymorphisms were detected by polymerase chain reaction amplification-restriction fragment length polymorphism analysis and visualized on 3% agarose gels stained with ethidium bromide. We found a significant association between the frequency of the CYP1A1 polymorphism and the development of cervical cancer. A statistical difference was observed between patient and control groups for CYP1A1 polymorphism genotype distributions (P < 0.05). However, no significant differences were found in the COMT gene polymorphism genotype distributions between the patient and control groups (P > 0.05) or between other risk variables analyzed. The CYP1A1 gene involved in the metabolic pathway of sex steroids might influence the emergence of pathological conditions such as cervical cancer in women who carry a mutated allele, and result in 1.80 and 13.46 times increased risk for women with heterozygous or homozygous mutated genotypes, respectively. PMID:26782546

  14. DNA polymorphism identity determination using flow cytometry

    DOEpatents

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.

  15. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  16. Replicative DNA polymerases.

    PubMed

    Johansson, Erik; Dixon, Nicholas

    2013-06-01

    In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact. PMID:23732474

  17. Association between PDCD1, CTLA4, and MECP2 gene polymorphisms and systemic lupus erythematosus in the Chinese Northern Han.

    PubMed

    Dong, H R; Li, H S; Wang, S C; Balin, Q M; Chang, P Y

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that results in chronic inflammation of different organ systems. Several susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes has yet to be determined. The programmed cell death 1 gene (PDCD1), the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) gene, and the methyl-CpG-binding protein 2 gene (MECP2) are considered to be the candidate genes associated with SLE. We analyzed the role of PDCD1, CTLA4, and MECP2 gene polymorphisms in Han patients suffering from SLE. Using a case-control study, 263 SLE patients and 263 healthy controls were collected from Chinese Northern Han people. Genomic DNA was prepared from peripheral blood leukocytes and the genotyping was performed using a polymerase chain reaction/ligase detection reaction assay. A statistically significant difference was observed in the rs2239464 and rs2075596 polymorphisms of MECP2 between SLE subjects and controls. The GG genotype in rs2239464 and the GG genotype in rs2075596 might protect against SLE. In contrast, no such association was found in the CTLA4 or PDCD1 polymorphisms. The rs2239464 and rs2075596 polymorphisms of MECP2 might play a significant role in the development of SLE in the Northern Han of China. PMID:26782401

  18. Lack of association between MTHFR C677T polymorphism and breast cancer risk in Ahvaz, west south-Iran

    PubMed Central

    Mohammadzadeh, Ghorban; Karimi, Maryam; Bazyar, Mohammad; Hosseini, Seyed-Mohammad

    2016-01-01

    Background: Association between C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR), a key enzyme involved in folate metabolism and DNA methylation, and breast cancer risk are inconsistent. We investigated in a case-control study, possible effect of the common MTHFR C677T polymorphism on breast cancer risk in a sample of Iranian patients. Materials and Methods: The study subjects comprised of 123 breast cancer cases and 110 cancer-free control, who were matched for age and body mass index (BMI). C677T genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Lipid profile was measured in all subjects by standard method. Results: The genotypes distributions (CC, CT, and TT) were 55.3, 39, and 5.7% in breast cancer cases and 51.8, 44.5, and 3.6% in controls. Chi square analysis revealed that there was no significant association between breast cancer risk and MTHFR genotypes and alleles. Additionally, no significant association was observed between C677T genotypes and biochemistry parameters. A multinomial logistic regression model with MTHFR genotypes, lipid profiles, BMI and age as covariates revealed that there is no significant association between MTHFR genotypes and risk of breast cancer, but higher values of LDL and HDL significantly increase risk of breast cancer. Conclusions: Our findings do not support the hypothesis that genetic variation in the MTHFR C677T polymorphism is implicated in the breast cancer risk in a sample of Iranian patients. PMID:27014653

  19. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics. PMID:23384180

  20. Association of TLR9 polymorphisms with sporadic Parkinson's disease in Chinese Han population.

    PubMed

    Zhu, Konghua; Teng, Jijun; Zhao, Jing; Liu, Hongxin; Xie, Anmu

    2016-07-01

    Previous studies have acknowledged that inflammatory reaction has implicated in Parkinson's disease (PD) pathogenesis nowadays. Toll-like receptors (TLRs), as key players in the inflammatory reaction, play a pivotal role in the PD pathogenesis and accumulating evidences have shown that TLRs are increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of PD. Therefore, the present study aimed to identify the role of the polymorphisms of rs187084 and rs352140 in TLR9 gene with PD. The genotypes were detected by polymerase chain reaction and restriction fragment length polymorphism analysis in 380 PD patients and 380 healthy matched individuals in Chinese Han population. For rs352140, our data revealed a significant difference in allele distribution in female PD group and its healthy matched control (P = 0.040). Moreover, rs352140 T allele carriers of female group were associated with a reduced risk of PD (TT + TC vs. CC, P = 0.018). However, no significant differences in genotype and allele distribution were found between the age and gender subgroups for rs187084. Therefore, our studies indicate that the rs352140 gene polymorphism may be associated with the susceptibility of female PD in Chinese Han population. PMID:26000920

  1. Comparative Performance of Single Nucleotide Polymorphism (SNP) and Microsatellite Markers for the Detection of Population Differentiation in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Putative single nucleotide polymorphisms (SNPs) were identified from contiguous sequences assembled from Diabrotica virgifera virgifera midgut expressed sequence tags (ESTs). Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP)-based assays confirmed variation at 20 biallel...

  2. Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanacearum by polymerase chain reaction amplification.

    PubMed Central

    Seal, S E; Jackson, L A; Daniels, M J

    1992-01-01

    Polymerase chain reaction amplification of DNA from 112 Pseudomonas solanacearum strains with the tRNA consensus primers T3A and T5A divided the species into three fingerprint groups. These groups correspond well with previous divisions made by restriction fragment length polymorphism analysis. This polymerase chain reaction test is a facile method for rapidly classifying P. solanacearum strains. Images PMID:1482194

  3. Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan.

    PubMed

    Chiou, H Y; Hsueh, Y M; Hsieh, L L; Hsu, L I; Hsu, Y H; Hsieh, F I; Wei, M L; Chen, H C; Yang, H T; Leu, L C; Chu, T H; Chen-Wu, C; Yang, M H; Chen, C J

    1997-06-01

    In order to elucidate the relationships among arsenic methylation capacity, body retention, and genetic polymorphisms of glutathione S-transferase (GST) M1 and T1, a total of 115 study subjects were recruited from Lanyang Basin located on the northeast coast of Taiwan. Specimens of drinking water, blood, urine, hair and toenail were collected from each study subject. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic absorption spectrometry. Arsenic concentration in hair and toenail were quantitated by atomic absorption spectrophotometry. The polymerase chain reaction was used to determine genetic polymorphisms of GST M1 and T1. Arsenic concentrations in urine, hair, and toenail of study subjects were positively correlated with arsenic levels in their drinking water. Percentages of various arsenic species in urine (mean +/- standard error (SE) were 11.8 +/- 1.0, 26.9 +/- 1.2 and 61.3 +/- 1.4, respectively, for inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Men and women had similar arsenic methylation capability. No associations were observed between arsenic methylation capability and arsenic content in either drinking water or urine. Ratios of arsenic contents in hair and toenail to urinary arsenic content (mean +/- standard error) were 6.2 +/- 0.7 and 16.5 +/- 1.7, respectively. Genetic polymorphisms of GST M1 and T1 were significantly associated with arsenic methylation. Subjects having the null genotype of GST M1 had an increased percentage of inorganic arsenic in urine, while those with null genotype of GST T1 had an elevated percentage of DMA in urine. Arsenic contents in hair and toenail were significantly correlated with the increase in arsenic concentrations of drinking water and urine, while no significant associations were observed between arsenic contents in hair and toenail and polymorphisms of GST M1 and T1. The relationship between

  4. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  5. Methyl chloroform

    SciTech Connect

    Wray, T.K.

    1994-04-01

    Methyl chloroform is identified as a Class 1 ozone-depleting substance under Title VI of the CAA Amendments. On Nov. 30, 1993, EPA ordered the phaseout of Class 1 ozone-depleting substances -- chlorofluorocarbons (CFCs), halons, carbon tetrachloride and methyl chloroform -- by Jan. 1, 1996. Methyl chloroform and other Class 1 substances may be used after the dead-line if sources can be found through recycling or existing inventories. Methyl chloroform is listed as a hazardous air pollutant under CAA. It also is a SARA Title III, Sec. 313 compound with a reportable quantity of 1,000 pounds. OSHA and the American Conference of Government Industrial Hygienists have set 350 ppm as the time-weighted average airborne exposure level for methyl chloroform. NIOSH lists its immediately dangerous to life or health'' concentration as 1,000 parts per million. DOT identifies the substance as a hazardous material, Class 6.1 (poison).

  6. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    PubMed Central

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  7. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    PubMed

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  8. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGESBeta

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Errormore » rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  9. Mouse models of DNA polymerases.

    PubMed

    Menezes, Miriam R; Sweasy, Joann B

    2012-12-01

    In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression. PMID:23001998

  10. Application of real-time polymerase chain reaction in the clinical genetic practice

    PubMed Central

    Nagy, Bálint

    2013-01-01

    The development of polymerase chain reaction revolutionized the molecular genetics and diagnostics. Technical improvements helped to make more specific and sensitive target determinations. Introduction of real-time polymerase chain reaction makes possible several applications in clinical genetics like detection of gene mutations, single nucleotide polymorphisms, deletions, measurement of gene expressions, micro ribonucleic acids, free nucleic acids and microbial genomes. Here I discuss a few examples for specific applications in prenatal clinical genetic practice. These are the detection of microbial genomes, deletions, trisomies, mutations, single nucleotide polymorphisms and free nucleic acids.

  11. Polymerase Activity of Pichinde Virus

    PubMed Central

    Carter, Michael F.; Biswal, Nilambar; Rawls, William E.

    1974-01-01

    Pichinde virus, a member of the arenavirus group, was examined for polymerase activity. Purified virus was found to contain RNA-dependent RNA polymerase but not RNA-dependent DNA polymerase activity. Since RNase but neither DNase nor actinomycin D inhibited the endogenous polymerase reaction, RNA of the virus appeared to be used as the template. The divalent cations Mg2+ and Mn2+ were required for optimal reactivity. The RNA product was partially resistant to RNase and the resistant portion had a sedimentation coefficient of 22 to 26S in sucrose gradients. PMID:4132669

  12. CD14 C-159T polymorphism and its association with chronic lung diseases: A pilot study on isocyanate exposed population of Central India

    PubMed Central

    Bose, Protiti; Bathri, Rashmi; De, Sajal; Maudar, K. K.

    2013-01-01

    CONTEXT: CD14 functions as a multifunctional receptor for bacterial cell wall components including endotoxin and lipopolysaccharide and is likely to influence the cytokine profile and subsequent immunoglobulin E production in response to antigen/allergen contact in allergic phenotypes. AIMS: The present study was to investigate genetic polymorphism in CD14 gene - 159C/T, which may be one of the risk factor for increased prevalence of Chronic Lung Diseases in the Central India. SETTINGS AND DESIGN: Survivors of Methyl isocyanates toxicity in Bhopal still suffering from various respiratory ailments were examined. MATERIALS AND METHODS: Polymerase chain reaction-restriction fragment length polymorphism was performed to determine the polymorphism of C-159T. RESULTS: The genotype and allelic frequencies were in Hardy-Weinberg’s equilibrium. Prevalence of CC, CT, and TT were 5.5%, 22.2% and 9.25% respectively in asthmatics; 16.6%, 20.3% and 5.5% respectively in chronic obstructive pulmonary disease (COPD) patients and 5.5%, 14.8% and 1.85 respectively among interstitial lung disorder (ILD) patients; whereas the control cohort with no methyl isocyanate exposure displayed (CC, CT, and TT) cytosine, thymine as 2%, 1.6% and 2% respectively. Increased risk of Asthma among those carrying TT genotype and T allele (odds ratio [OR] =2.61 and 2.02 respectively). CONCLUSION: COPD risk significantly found among those with CC genotype and C allele (OR = 2.81 and 1.50 respectively), whereas ILD risk found significantly among CT genotype and C allele (OR = 1.75 and 1.40 respectively). Therefore, single nucleotide polymorphism (SNP) C-159T polymorphism in CD14 gene might be a risk factor for development of CLD in this population. PMID:24019621

  13. Exploring RNA polymerase regulation by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Wöhrl, Birgitta M.; Knauer, Stefan H.; Rösch, Paul

    2015-01-01

    RNA synthesis is a central process in all organisms, with RNA polymerase (RNAP) as the key enzyme. Multisubunit RNAPs are evolutionary related and are tightly regulated by a multitude of transcription factors. Although Escherichia coli RNAP has been studied extensively, only little information is available about its dynamics and transient interactions. This information, however, are crucial for the complete understanding of transcription regulation in atomic detail. To study RNAP by NMR spectroscopy we developed a highly efficient procedure for the assembly of active RNAP from separately expressed subunits that allows specific labeling of the individual constituents. We recorded [1H,13C] correlation spectra of isoleucine, leucine, and valine methyl groups of complete RNAP and the separately labeled β’ subunit within reconstituted RNAP. We further produced all RNAP subunits individually, established experiments to determine which RNAP subunit a certain regulator binds to, and identified the β subunit to bind NusE. PMID:26043358

  14. Investigation of a Privileged Polymorphic Motif: a Dimeric ROY Derivative

    PubMed Central

    Lutker, Katie M.; Tolstyka, Zachary P.; Matzger, Adam J.

    2009-01-01

    Bis(5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrilyl)acetylene, a derivative of the highly polymorphic compound 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) that possesses two chromophores electronically coupled through a triple bond, was found to be trimorphic. Structural data for two of these forms indicates that symmetry is maintained in one structure and broken in the other leading to spontaneous differentiation of the methyl-thiophenecarbonitrile units. This study contributes to the mounting evidence that ROY and its derivatives are particularly prone to polymorphism. PMID:19367341

  15. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  16. DNA Polymerase β Ribonucleotide Discrimination

    PubMed Central

    Cavanaugh, Nisha A.; Beard, William A.; Wilson, Samuel H.

    2010-01-01

    DNA polymerases must select nucleotides that preserve Watson-Crick base pairing rules and choose substrates with the correct (deoxyribose) sugar. Sugar discrimination represents a great challenge because ribonucleotide triphosphates are present at much higher cellular concentrations than their deoxy-counterparts. Although DNA polymerases discriminate against ribonucleotides, many therapeutic nucleotide analogs that target polymerases have sugar modifications, and their efficacy depends on their ability to be incorporated into DNA. Here, we investigate the ability of DNA polymerase β to utilize nucleotides with modified sugars. DNA polymerase β readily inserts dideoxynucleoside triphosphates but inserts ribonucleotides nearly 4 orders of magnitude less efficiently than natural deoxynucleotides. The efficiency of ribonucleotide insertion is similar to that reported for other DNA polymerases. The poor polymerase-dependent insertion represents a key step in discriminating against ribonucleotides because, once inserted, a ribonucleotide is easily extended. Likewise, a templating ribonucleotide has little effect on insertion efficiency or fidelity. In contrast to insertion and extension of a ribonucleotide, the chemotherapeutic drug arabinofuranosylcytosine triphosphate is efficiently inserted but poorly extended. These results suggest that the sugar pucker at the primer terminus plays a crucial role in DNA synthesis; a 3′-endo sugar pucker facilitates nucleotide insertion, whereas a 2′-endo conformation inhibits insertion. PMID:20519499

  17. Antimutator Variants of DNA Polymerases

    PubMed Central

    Herr, Alan J.; Williams, Lindsey N.; Preston, Bradley D.

    2011-01-01

    Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino-acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino-acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino-acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype. PMID:21977975

  18. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice.

    PubMed

    Pan, Feiyan; Zhao, Jing; Zhou, Ting; Kuang, Zhihui; Dai, Huifang; Wu, Huan; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; Hu, Zhigang; He, Lingfeng; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development. PMID:27358192

  19. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice

    PubMed Central

    Pan, Feiyan; Zhao, Jing; Zhou, Ting; Kuang, Zhihui; Dai, Huifang; Wu, Huan; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; Hu, Zhigang; He, Lingfeng; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development. PMID:27358192

  20. Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA.

    PubMed

    Watanabe, Ken; Akutsu, Tomoko; Takamura, Ayari; Sakurada, Koichi

    2016-09-01

    The identification of blood samples obtained from crime scenes has been an important step in forensic investigation. Recently, a novel approach using the blood-specific methylated CpG site cg06379435 has been reported. In this study, we developed a real-time polymerase-chain-reaction-based method that can simply and rapidly quantitate the methylation ratio of cg06379435 and its neighboring CpGs and set the threshold ratios for blood identification by analyzing various body fluid samples. Blood identification using the thresholds was successfully performed in the analysis of a small amount (1ng) of DNA from blood and various aged blood samples, including 29-year-old stains. We also demonstrated a test for allele-specific blood identification from a mixed DNA sample by bisulfite sequencing analysis of these CpG sites and their neighboring single nucleotide polymorphism, rs7359943 (A/G), which is of relevance in cases where mixed samples are obtained from crime scenes. The stability of DNA methylation in aged samples and the usefulness of neighboring genetic information shown in this study suggest that DNA-methylation-based body fluid identification will play a major role in future forensic investigations. PMID:27591539

  1. Absence of a role for DNA polymerase II in SOS-induced translesion bypass of phi X174.

    PubMed Central

    Kow, Y W; Faundez, G; Hays, S; Bonner, C A; Goodman, M F; Wallace, S S

    1993-01-01

    In order to examine the possible role of Escherichia coli DNA polymerase II in SOS-induced translesion bypass, Weigle reactivation and mutation induction were measured with single-stranded phi X174 transfecting DNA containing individual lesions. No decrease in bypass of thymine glycol or cyclobutane pyrimidine dimers in the absence of DNA polymerase II was observed. Furthermore, DNA polymerase II did not affect bypass of abasic sites when either survival or mutagenesis was the endpoint. Lastly, repair of gapped DNA molecules, intermediates in methyl-directed mismatch repair, was also unaffected by the presence or absence of DNA polymerase II. PMID:8419305

  2. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  3. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  5. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  6. Methyl parathion

    Integrated Risk Information System (IRIS)

    Methyl parathion ; CASRN 298 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Methyl chlorocarbonate

    Integrated Risk Information System (IRIS)

    Methyl chlorocarbonate ; CASRN 79 - 22 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  8. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  9. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia.

    PubMed

    Li, Ming-Li; Xiang, Bo; Li, Yin-Fei; Hu, Xun; Wang, Qiang; Guo, Wan-Jun; Lei, Wei; Huang, Chao-Hua; Zhao, Lian-Sheng; Li, Na; Ren, Hong-Yan; Wang, Hui-Yao; Ma, Xiao-Hong; Deng, Wei; Li, Tao

    2015-02-01

    The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area. PMID:25564193

  10. Genome-wide analysis of DNA methylation in hepatoblastoma tissues

    PubMed Central

    Cui, Ximao; Liu, Baihui; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2016-01-01

    DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology. PMID:27446465

  11. Directed evolution of novel polymerase activities: Mutation of a DNA polymerase into an efficient RNA polymerase

    PubMed Central

    Xia, Gang; Chen, Liangjing; Sera, Takashi; Fa, Ming; Schultz, Peter G.; Romesberg, Floyd E.

    2002-01-01

    The creation of novel enzymatic function is of great interest, but remains a challenge because of the large sequence space of proteins. We have developed an activity-based selection method to evolve DNA polymerases with RNA polymerase activity. The Stoffel fragment (SF) of Thermus aquaticus DNA polymerase I is displayed on a filamentous phage by fusing it to a pIII coat protein, and the substrate DNA template/primer duplexes are attached to other adjacent pIII coat proteins. Phage particles displaying SF polymerases, which are able to extend the attached oligonucleotide primer by incorporating ribonucleoside triphosphates and biotinylated UTP, are immobilized to streptavidin-coated magnetic beads and subsequently recovered. After four rounds of screening an SF library, three SF mutants were isolated and shown to incorporate ribonucleoside triphosphates virtually as efficiently as the wild-type enzyme incorporates dNTP substrates. PMID:12011423

  12. Polymerase chain reaction: A molecular diagnostic tool in periodontology.

    PubMed

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease. PMID:27143822

  13. Polymerase chain reaction: A molecular diagnostic tool in periodontology

    PubMed Central

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease. PMID:27143822

  14. Molecular typing among beef isolates of Escherichia coli using consensus repetitive intergenic enterobacteria-polymerase chain reaction (ERIC-PCR)

    NASA Astrophysics Data System (ADS)

    Zoolkifli, Nurliyana Wan; Mutalib, Sahilah Abd

    2013-11-01

    Genomic DNA of Escherichia coli were characterized by enterobacterial repetitive intergenic consensus-Polymerase chain reaction (ERIC-PCR) and the presence of Shiga toxin gene-I (Stx1) and Shiga toxin gene-2 (Stx2). These isolates were originated from imported raw beef which are come from two countries namely Australia and India. The isolation of E. coli was conducted by using Eosin Methylene Blue Agar (EMBA). A total of 94 strains had been isolated from 30 samples of imported raw beefand 42 strains had been detected positively E. coli by doing biochemical tests. All strains had been tested and the results of biochemical tests showed that 3 strains were from Australia samples while the other 39 strains were from India samples. The biochemical tests used are Indole test, Methyl Red test, Voges-Proskauer test and Citrate test. All the 42 strains were examined for Shiga toxin (stx1 and stx2) gene detection by two pair primers which are stx2F (5'-TTCTTCGGTATCCTATTCCC-3'), stx2R (5'-ATGCATCTCTGGTCATTGTA-3'), stx1F (5'-CAGTTAATGTGGTGGCGAAG-3'), and stx1R (5'-CTGTCACAGTAACAACCGT-3'). The results showed that none of the strains are positive for Shiga toxin gene. Application of ERIC-PCR method towards E. coli had successfully shown the high diversity polymorphism in 21 different genome types of DNA with primers ERIC1R (5'- CACTTAGGGGTCCTCGAATGTA- 3') and ERIC2R (5'- AAGTAAGTGACTGGGGTGACGC- 3').

  15. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  16. Polymorphisms in CYP17, COMT, and ESR1 genes in women after menopause and association with bone mineral density.

    PubMed

    Gonçalves, C G; Almeida, B C; Camargo-Kosugi, C M; Costa, A M M; Silva, I D C G; Haidar, M A

    2015-01-01

    In this study, we evaluated genetic factors related to the mineral density during post-menopause. We evaluated 110 women in the first 5 years post-menopause, without previous hormone replacement therapy. Cytochrome P450 17 (CYP17) (rs743572), catechol-O-methyl transferase (COMT) (rs4680), and estrogen receptor 1 (ESR1) (rs9322331) were examined for the presence of polymorphisms. Clinical data were collected by anamnesis; all patients had the osseous densitometry examined using a lunar instrument to determine mineral osseous densitometry in the lumbar column (L2-L4). CYP17, COMT, and ESR1 genotyping was carried out by polymerase chain reaction with DNA collected from buccal swabs. The average age was 51.96 years. The average weights of the patients in control and osteopenia groups were 70.25 ± 12.00 and 62.45 ± 11.64, respectively (P = 0.001) and body mass index (P = 0.006; control: 29.43 ± 5.25; osteopenia: 26.72 ± 4.57). Related to CYP17 polymorphisms, 28.18% of women were TT (wild-type homozygous), 60% were TC (heterozygous), and 11.82% were CC (mutated homozygous). Related to COMT polymorphisms, 53.64% of women were GG (wild-type homozygous), 37.27% were GA (heterozygous), and 9.09% were AA (mutated homozygous). Related to ESR1, 53.64% of women were CC (wild-type homozygous), 40.91% were CT (heterozygous), and 5.45% were TT (mutated homozygous). The ESR1 variant allele was significantly higher in the osteopenia group when compared with women in the normal group (P = 0.02). ESR1 may be associated with low mineral osseous densitometry, while CYP17 and COMT gene polymorphisms were not associated with mineral osseous densitometry. PMID:26634548

  17. Analysis of DNA Methylation by Pyrosequencing

    PubMed Central

    Delaney, Colin; Garg, Sanjay K.; Yung, Raymond

    2016-01-01

    Pyrosequencing is a technique that uses a sequencing-by-synthesis system which is designed to quantify single-nucleotide polymorphisms (SNPs). Artificial C/T SNP creation via bisulfite modification permits measurement of DNA methylation locally and globally in real time. Alteration in DNA methylation has been implicated in aging, as well as aging-related conditions such as cancer, as well as cardiovascular, neurodegenerative, and autoimmune diseases. Considering its ubiquitous presence in divergent clinical pathologies, quantitative analysis of DNA CpG methylation both globally and at individual genes helps to elucidate the regulation of genes involved in pathophysiological conditions. The ability to detect and quantify the methylation pattern of DNA has the potential to serve as an early detection marker and potential drug target for several diseases. Here, we provide a detailed technical protocol for pyrosequencing supplemented by critical information about assay design and nuances of the system that provides a strong foundation for beginners in the field. PMID:26420722

  18. A monoclinic polymorph of [(Z)-N-(3-chloro-phen-yl)-O-methyl-thio-carbamato-κS](tri-phenyl-phosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis.

    PubMed

    Yeo, Chien Ing; Tan, Sang Loon; Tiekink, Edward R T

    2016-08-01

    The title compound, [Au(C8H7ClNOS)(C18H15P)], is a monoclinic (P21/n, Z' = 1; form β) polymorph of the previously reported triclinic form (P-1, Z' = 1; form α) [Tadbuppa & Tiekink (2010 ▸). Acta Cryst. E66, m664]. The mol-ecular structures of both forms feature an almost linear gold(I) coordination geometry [P-Au-S = 175.62 (5)° in the title polymorph], being coordinated by thiol-ate S and phosphane P atoms, a Z conformation about the C=N bond and an intra-molecular Au⋯O contact. The major conformational difference relates to the relative orientations of the residues about the Au-S bond: the P-Au-S-C torsion angles are -8.4 (7) and 106.2 (7)° in forms α and β, respectively. The mol-ecular packing of form β features centrosymmetric aggregates sustained by aryl-C-H⋯O inter-actions, which are connected into a three-dimensional network by aryl-C-H⋯π contacts. The Hirshfeld analysis of forms α and β shows many similarities with the notable exception of the influence of C-H⋯O inter-actions in form β. PMID:27536384

  19. A monoclinic polymorph of [(Z)-N-(3-chloro­phen­yl)-O-methyl­thio­carbamato-κS](tri­phenyl­phosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis

    PubMed Central

    Yeo, Chien Ing; Tan, Sang Loon; Tiekink, Edward R. T.

    2016-01-01

    The title compound, [Au(C8H7ClNOS)(C18H15P)], is a monoclinic (P21/n, Z′ = 1; form β) polymorph of the previously reported triclinic form (P-1, Z′ = 1; form α) [Tadbuppa & Tiekink (2010 ▸). Acta Cryst. E66, m664]. The mol­ecular structures of both forms feature an almost linear gold(I) coordination geometry [P—Au—S = 175.62 (5)° in the title polymorph], being coordinated by thiol­ate S and phosphane P atoms, a Z conformation about the C=N bond and an intra­molecular Au⋯O contact. The major conformational difference relates to the relative orientations of the residues about the Au—S bond: the P—Au—S—C torsion angles are −8.4 (7) and 106.2 (7)° in forms α and β, respectively. The mol­ecular packing of form β features centrosymmetric aggregates sustained by aryl-C—H⋯O inter­actions, which are connected into a three-dimensional network by aryl-C—H⋯π contacts. The Hirshfeld analysis of forms α and β shows many similarities with the notable exception of the influence of C—H⋯O inter­actions in form β. PMID:27536384

  20. Genome walking by Klenow polymerase.

    PubMed

    Volpicella, Mariateresa; Leoni, Claudia; Fanizza, Immacolata; Rius, Sebastian; Gallerani, Raffaele; Ceci, Luigi R

    2012-11-15

    Genome walking procedures are all based on a final polymerase chain reaction amplification, regardless of the strategy employed for the synthesis of the substrate molecule. Here we report a modification of an already established genome walking strategy in which a single-strand DNA substrate is obtained by primer extension driven by Klenow polymerase and which results suitable for the direct sequencing of complex eukaryotic genomes. The efficacy of the method is demonstrated by the identification of nucleotide sequences in the case of two gene families (chiA and P1) in the genomes of several maize species. PMID:22922302

  1. Subunit Compositions of the RNA-Silencing Enzymes Pol IV and Pol V Reveal Their Origins as Specialized Forms of RNA Polymerase II

    SciTech Connect

    Ream, Thomas S.; Haag, J. R.; Wierzbicki, A. T.; Nicora, Carrie D.; Norbeck, Angela D.; Zhu, J. K.; Hagen, G.; Guilfoyle, T. J.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2009-01-30

    In addition to RNA polymerases I, II and III, which are multi-subunit RNA polymerases found in all eukaryotes, plants have catalytic subunits for two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V (formerly Pol IVa and Pol IVb, respectively). Pol IV and Pol V play non-redundant roles in siRNA-directed DNA methylation and gene silencing pathways.

  2. Methyl gallate.

    PubMed

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    THE CRYSTAL STRUCTURE OF THE TITLE COMPOUND (SYSTEMATIC NAME: methyl 3,4,5-trihydroxy-benzoate), C(8)H(8)O(5), is composed of essentially planar mol-ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra-molecular hydrogen bonds, each mol-ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  3. Methyl gallate

    PubMed Central

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    The crystal structure of the title compound (systematic name: methyl 3,4,5-trihydroxy­benzoate), C8H8O5, is composed of essentially planar mol­ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra­molecular hydrogen bonds, each mol­ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  4. Is the Fungus Magnaporthe Losing DNA Methylation?

    PubMed Central

    Ikeda, Ken-ichi; Van Vu, Ba; Kadotani, Naoki; Tanaka, Masaki; Murata, Toshiki; Shiina, Kohta; Chuma, Izumi; Tosa, Yukio; Nakayashiki, Hitoshi

    2013-01-01

    The long terminal repeat retrotransposon, Magnaporthe gypsy-like element (MAGGY), has been shown to be targeted for cytosine methylation in a subset of Magnaporthe oryzae field isolates. Analysis of the F1 progeny from a genetic cross between methylation-proficient (Br48) and methylation-deficient (GFSI1-7-2) isolates revealed that methylation of the MAGGY element was governed by a single dominant gene. Positional cloning followed by gene disruption and complementation experiments revealed that the responsible gene was the DNA methyltransferase, MoDMT1, an ortholog of Neurospora crassa Dim-2. A survey of MAGGY methylation in 60 Magnaporthe field isolates revealed that 42 isolates from rice, common millet, wheat, finger millet, and buffelgrass were methylation proficient while 18 isolates from foxtail millet, green bristlegrass, Japanese panicgrass, torpedo grass, Guinea grass, and crabgrass were methylation deficient. Phenotypic analyses showed that MoDMT1 plays no major role in development and pathogenicity of the fungus. Quantitative polymerase chain reaction analysis showed that the average copy number of genomic MAGGY elements was not significantly different between methylation-deficient and -proficient field isolates even though the levels of MAGGY transcript were generally higher in the former group. MoDMT1 gene sequences in the methylation-deficient isolates suggested that at least three independent mutations were responsible for the loss of MoDMT1 function. Overall, our data suggest that MoDMT1 is not essential for the natural life cycle of the fungus and raise the possibility that the genus Magnaporthe may be losing the mechanism of DNA methylation on the evolutionary time scale. PMID:23979580

  5. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton

    PubMed Central

    Schmidt, Helen F; Sakowski, Eric G; Williamson, Shannon J; Polson, Shawn W; Wommack, KEric

    2014-01-01

    Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton. PMID:23985748

  6. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton.

    PubMed

    Schmidt, Helen F; Sakowski, Eric G; Williamson, Shannon J; Polson, Shawn W; Wommack, K Eric

    2014-01-01

    Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton. PMID:23985748

  7. Applicability of genetic polymorphism analysis for the diagnosis of Angelman syndrome and the correlation between language difficulties and disease phenotype.

    PubMed

    Wang, K; Li, Y T; Hou, M

    2016-01-01

    Angelman syndrome (AS) is a neurogenetic disorder caused by a defect in the expression of the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene in chromosome 15. The most common genetic defects include maternal deletions in chromosome 15q11-13; however, paternal uniparental disomy and imprinting defects allow for the identification of mutations in UBE3A in 10% of patients with AS. The aim of this study was to validate the clinical features and genetic polymorphisms of AS, and to discuss the relationship between functional language lateralization and the arcuate fasciculus in the Broca's and Wernicke's areas. Six children with AS (mean age = 32.57 months) presenting characteristic behavioral patterns of AS (frequent laughter and happy demeanor, hand flapping, and hypermotor behavior) were recruited to this study. The patients underwent a clinical evaluation (clinical history, dysmorphological and neurological examinations, and psychological evaluations) and paraclinical investigations [genetic tests (fluorescence in situ hybridization and methylation polymerase chain reaction), electroencephalogram, and magnetic resonance imaging]. We conclude that AS diagnosis cannot rely solely on genetic testing for polymorphisms in UBE3A and must consider its clinical characteristics. Moreover, functional language lateralization and the arcuate fasciculus in the Broca's and Wernicke's areas were found to be closely correlated. Therefore, UBE3A gene mutation analysis combined with comprehensive clinical evaluations may be suitable for the diagnosis of AS. PMID:27323188

  8. Population differences in the human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method

    SciTech Connect

    Fujihara, Junko; Kunito, Takashi; Agusa, Tetsuro; Yasuda, Toshihiro; Iida, Reiko; Fujii, Yoshimi; Takeshita, Haruo

    2007-12-15

    Arsenic poisoning from drinking groundwater is a serious problem, particularly in developing Asian countries. Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. Recently, a single nucleotide polymorphism (SNPs; rs17885947, M287T (T860C)) in the AS3MT gene was shown to be related to enzyme activity and considered to be related to genetic susceptibility to arsenic. In the present study, a useful genotyping method for M287T was developed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Applying this method, the genotype distribution of M287T in Ovambo (n = 185), Turkish (n = 191), Mongolian (n = 233), Korean (n = 200), and Japanese (n = 370) populations were investigated. The mutation frequencies in Asian populations were relatively lower than those of African and Caucasian populations, including those from previous studies: the frequencies of mutation in the Mongolian, Korean, and Japanese populations were 0.040, 0.010, and 0.010, respectively. In the course of this study, a PCR-based genotyping method that is inexpensive and does not require specialized equipment was developed. This method could be applied to a large number of residents at risk for arsenic poisoning.

  9. Population differences in the human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene polymorphism detected by using genotyping method.

    PubMed

    Fujihara, Junko; Kunito, Takashi; Agusa, Tetsuro; Yasuda, Toshihiro; Iida, Reiko; Fujii, Yoshimi; Takeshita, Haruo

    2007-12-15

    Arsenic poisoning from drinking groundwater is a serious problem, particularly in developing Asian countries. Human arsenic (+3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. Recently, a single nucleotide polymorphism (SNPs; rs17885947, M287T (T860C)) in the AS3MT gene was shown to be related to enzyme activity and considered to be related to genetic susceptibility to arsenic. In the present study, a useful genotyping method for M287T was developed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Applying this method, the genotype distribution of M287T in Ovambo (n=185), Turkish (n=191), Mongolian (n=233), Korean (n=200), and Japanese (n=370) populations were investigated. The mutation frequencies in Asian populations were relatively lower than those of African and Caucasian populations, including those from previous studies: the frequencies of mutation in the Mongolian, Korean, and Japanese populations were 0.040, 0.010, and 0.010, respectively. In the course of this study, a PCR-based genotyping method that is inexpensive and does not require specialized equipment was developed. This method could be applied to a large number of residents at risk for arsenic poisoning. PMID:17889916

  10. RNA-directed DNA methylation in plants.

    PubMed

    Movahedi, Ali; Sun, Weibu; Zhang, Jiaxin; Wu, Xiaolong; Mousavi, Mohaddesseh; Mohammadi, Kourosh; Yin, Tongming; Zhuge, Qiang

    2015-11-01

    In plants, many small interfering RNAs (siRNAs) direct de novo methylation by DNA methyltransferase. DNA methylation typically occurs by RNA-directed DNA methylation (RdDM), which directs transcriptional gene silencing of transposons and endogenous transgenes. RdDM is driven by non-coding RNAs (ncRNAs) produced by DNA-dependent RNA polymerases IV and V (PolIV and PolV). The production of siRNAs is initiated by PolIV and ncRNAs produced by PolIV are precursors of 24-nucleotide siRNAs. In contrast, ncRNAs produced by PolV are involved in scaffolding RNAs. In this review, we summarize recent studies of RdDM. In particular, we focus on the mechanisms involved in chromatin remodeling by PolIV and PolV. PMID:26183954

  11. A bridge to transcription by RNA polymerase.

    PubMed

    Kaplan, Craig D; Kornberg, Roger D

    2008-01-01

    A comprehensive survey of single amino-acid substitution mutations critical for RNA polymerase function published in Journal of Biology supports a proposed mechanism for polymerase action in which movement of the polymerase 'bridge helix' promotes transcriptional activity in cooperation with a critical substrate-interaction domain, the 'trigger loop'. PMID:19090964

  12. Ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) prefers the parallel propeller-type human telomeric G-quadruplex DNA over its other polymorphs.

    PubMed

    Ali, Asfa; Bansal, Manju; Bhattacharya, Santanu

    2015-01-01

    The binding of ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) with telomeric and genomic G-quadruplex DNA has been extensively studied. However, a comparative study of interactions of TMPyP4 with different conformations of human telomeric G-quadruplex DNA, namely, parallel propeller-type (PP), antiparallel basket-type (AB), and mixed hybrid-type (MH) G-quadruplex DNA, has not been done. We considered all the possible binding sites in each of the G-quadruplex DNA structures and docked TMPyP4 to each one of them. The resultant most potent sites for binding were analyzed from the mean binding free energy of the complexes. Molecular dynamics simulations were then carried out, and analysis of the binding free energy of the TMPyP4-G-quadruplex complex showed that the binding of TMPyP4 with parallel propeller-type G-quadruplex DNA is preferred over the other two G-quadruplex DNA conformations. The results obtained from the change in solvent excluded surface area (SESA) and solvent accessible surface area (SASA) also support the more pronounced binding of the ligand with the parallel propeller-type G-quadruplex DNA. PMID:25526532

  13. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic

    PubMed Central

    Kinloch, Natalie N.; MacMillan, Daniel R.; Le, Anh Q.; Cotton, Laura A.; Bangsberg, David R.; Buchbinder, Susan; Carrington, Mary; Fuchs, Jonathan; Harrigan, P. Richard; Koblin, Beryl; Kushel, Margot; Markowitz, Martin; Mayer, Kenneth; Milloy, M. J.; Schechter, Martin T.; Wagner, Theresa; Walker, Bruce D.; Carlson, Jonathan M.; Poon, Art F. Y.

    2015-01-01

    ABSTRACT Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may

  14. The evolutionary conservation of DNA polymerase. alpha

    SciTech Connect

    Miller, M.A.; Korn, D.; Wang, T.S.F. )

    1988-08-25

    The evolutionary conservation of DNA polymerase {alpha} was assessed by immunological and molecular genetic approaches. Four anti-human KB cell DNA polymerase {alpha} monoclonal antibodies were tested for their ability to recognize a phylogenetically broad array of eukaryotic DNA polymerases. While the single non-neutralizing antibody used in this study recognizes higher mammalian (human, simian, canine, and bovine) polymerases only, three neutralizing antibodies exhibit greater, but variable, extents of cross-reactivity among vertebrate species. Genomic Southern hybridization studies with the cDNA of the human DNA polymerase {alpha} catalytic polypeptide identify the existence of many consensus DNA sequences within the DNA polymerase genes of vertebrate, invertebrate, plant and unicellular organisms. These findings illustrate the differential evolutionary conservation of four unique epitopes on DNA sequences, presumably reflective of critical functional domains, in the DNA polymerase genes from a broad diversity of living forms.

  15. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male sterile cytoplasm plays an important role in hybrid rice and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation sensitive amplified polymorphism (MSAP) technique to charac...

  16. MTHFR A1298C and C677T gene polymorphisms and susceptibility to chronic myeloid leukemia in Egypt.

    PubMed

    Aly, Rabab M; Taalab, Mona M; Ghazy, Hayam F

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation. We aimed to evaluate the association between MTHFR A1298C and C677T polymorphisms and the risks of chronic myeloid leukemia (CML). Eighty-five patients with CML and a control group containing 100 healthy, age and sex matched individuals were examined for MTHFR C677T and A1298C polymorphisms using polymerase chain reaction-restriction fragment-length (PCR-RFLP) method. The frequency of 677TT genotype in patients with CML was significantly higher compared to controls (OR=2.513, 95% CI: 0.722-4.086, P=0.025). No such association was shown for heterozygous 677CT (OR=1.010, 95% CI: 0.460-2.218, P=0.981). Moreover, for A1298C genotype, a statistically significant higher frequency of 1298CC was also detected in CML patients compared to control group (OR=1.1816, 95% CI: 0.952-3.573, P=0.036), 0.036). No such statistical significance was demonstrable for heterozygote 1298AC (OR=1.046, 95% CI: 0.740-1.759, P=0.092). In addition, patients with joint 677CT/1298AC or 677TT/1298CC genotypes showed an association with increased risk of CML (OR=1.849, 95% CI: 0.935-2.540, P=0.024; OR=1.915, 95% CI: 1.202-3.845, P=0.020 respectively). .A statistically significant increased risk of resistant to therapy was observed with 677CT and 1298AC genotypes (P=0.001, P=0.002 respectively). We conclude that both MTHFR 677TT and 1298CC polymorphisms have been associated with risk of CML and both 677CT and 1298AC genotypes are associated with higher risk of resistant to therapy. PMID:24966971

  17. The methylation status of plant genomic DNA influences PCR efficiency.

    PubMed

    Kiselev, K V; Dubrovina, A S; Tyunin, A P

    2015-03-01

    During the polymerase chain reaction (PCR), which is a versatile and widely used method, certain DNA sequences are rapidly amplified through thermocycling. Although there are numerous protocols of PCR optimization for different applications, little is known about the effect of DNA modifications, such as DNA methylation, on PCR efficiency. Recent studies show that cytosine methylation alters DNA mechanical properties and suggest that DNA methylation may directly or indirectly influence the effectiveness of DNA amplification during PCR. In the present study, using plant DNA, we found that highly methylated plant DNA genomic regions were amplified with lower efficiencies compared to that for the regions methylated at a lower level. The correlation was observed when amplifying stilbene synthase (STS1, STS10) genes of Vitis amurensis, the Actin2 gene of Arabidopsis thaliana, the internal transcribed spacer (AtITS), and tRNAPro of A. thaliana. The level of DNA methylation within the analyzed DNA regions has been analyzed with bisulfite sequencing. The obtained data show that efficient PCRs of highly methylated plant DNA regions can be hampered. Proteinase K treatment of the plant DNA prior to PCR and using HotTaq DNA polymerase improved amplification of the highly methylated plant DNA regions. We suggest that increased DNA denaturation temperatures of the highly methylated DNA and contamination with DNA-binding proteins contribute to the hampered PCR amplification of highly methylated DNA. The data show that it is necessary to use current DNA purification protocols and commercial kits with caution to ensure appropriate PCR product yield and prevent bias toward unmethylated DNA amplification in PCRs. PMID:25506767

  18. Prenatal detection of trisomy 21 and 18 from amniotic fluid by quantitative fluorescent polymerase chain reaction.

    PubMed Central

    Tóth, T; Findlay, I; Papp, C; Tóth-Pál, E; Marton, T; Nagy, B; Quirke, P; Papp, Z

    1998-01-01

    Prenatal diagnosis of fetal trisomies is usually performed by cytogenetic analysis on amniotic fluid. This requires lengthy laboratory procedures and high costs, and is unsuitable for large scale screening of pregnant women. An alternative method, which is both rapid and inexpensive and suitable for diagnosing trisomies even from single fetal cells, is the fluorescent polymerase chain reaction using polymorphic small tandem repeats (STRs). In this paper we present the preliminary results of a larger study comparing parallel prenatal diagnoses of trisomies 21 and 18 using cytogenetics with quantitative fluorescent polymerase chain reaction using STR markers. The results obtained by the two techniques were concordant in all cases. This is the first study reporting significant numbers of prenatal diagnoses using the quantitative fluorescent polymerase chain reaction. We believe that further studies on greater numbers of samples will determine the absolute reliability of this technique. These results also provide a model for diagnosis of trisomy from single fetal cells isolated from maternal blood. PMID:9507392

  19. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases.

    PubMed

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. PMID:18834537

  20. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    PubMed Central

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2008-01-01

    Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537

  1. The Influence of DNA Methylation on Bone Cells

    PubMed Central

    Reppe, Sjur; Datta, Harish; Gautvik, Kaare M.

    2015-01-01

    DNA methylation in eukaryotes invokes heritable alterations of the of the cytosine base in DNA without changing the underlying genomic DNA sequence. DNA methylation may be modified by environmental exposures as well as gene polymorphisms and may be a mechanistic link between environmental risk factors and the development of disease. In this review, we consider the role of DNA methylation in bone cells (osteoclasts/osteoblasts/osteocytes) and their progenitors with special focus on in vitro and ex vivo analyses. The number of studies on DNA methylation in bone cells is still somewhat limited, nevertheless it is getting increasingly clear that this type of the epigenetic changes is a critical regulator of gene expression. DNA methylation is necessary for proper development and function of bone cells and is accompanied by disease characteristic functional alterations as presently reviewed including postmenopausal osteoporosis and mechanical strain. PMID:27019613

  2. Pharmacogenetics and human genetic polymorphisms.

    PubMed

    Daly, Ann K

    2010-08-01

    The term pharmacogenetics was first used in the late 1950s and can be defined as the study of genetic factors affecting drug response. Prior to formal use of this term, there was already clinical data available in relation to variable patient responses to the drugs isoniazid, primaquine and succinylcholine. The subject area developed rapidly, particularly with regard to genetic factors affecting drug disposition. There is now comprehensive understanding of the molecular basis for variable drug metabolism by the cytochromes P450 and also for variable glucuronidation, acetylation and methylation of certain drugs. Some of this knowledge has already been translated to the clinic. The molecular basis of variation in drug targets, such as receptors and enzymes, is generally less well understood, although there is consistent evidence that polymorphisms in the genes encoding the beta-adrenergic receptors and the enzyme vitamin K epoxide reductase is of clinical importance. The genetic basis of rare idiosyncratic adverse drug reactions had also been examined. Susceptibility to reactions affecting skin and liver appears to be determined in part by the HLA (human leucocyte antigen) genotype, whereas reactions affecting the heart and muscle may be determined by polymorphisms in genes encoding ion channels and transporters respectively. Genome-wide association studies are increasingly being used to study drug response and susceptibility to adverse drug reactions, resulting in identification of some novel pharmacogenetic associations. PMID:20626352

  3. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans.

    PubMed

    Kesäniemi, Jenni E; Heikkinen, Liisa; Knott, K Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  4. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans

    PubMed Central

    Kesäniemi, Jenni E.; Heikkinen, Liisa; Knott, K. Emily

    2016-01-01

    Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species. PMID:27008314

  5. Discovery of (7R)-14-cyclohexyl-7-{[2-(dimethylamino)ethyl](methyl) amino}-7,8-dihydro-6H-indolo[1,2-e][1,5]benzoxazocine-11-carboxylic acid (MK-3281), a potent and orally bioavailable finger-loop inhibitor of the hepatitis C virus NS5B polymerase.

    PubMed

    Narjes, Frank; Crescenzi, Benedetta; Ferrara, Marco; Habermann, Jörg; Colarusso, Stefania; Ferreira, Maria del Rosario Rico; Stansfield, Ian; Mackay, Angela Claire; Conte, Immacolata; Ercolani, Caterina; Zaramella, Simone; Palumbi, Maria-Cecilia; Meuleman, Philip; Leroux-Roels, Geert; Giuliano, Claudio; Fiore, Fabrizio; Di Marco, Stefania; Baiocco, Paola; Koch, Uwe; Migliaccio, Giovanni; Altamura, Sergio; Laufer, Ralph; De Francesco, Raffaele; Rowley, Michael

    2011-01-13

    Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The polymerase of HCV is responsible for the replication of viral genome and has been a prime target for drug discovery efforts. Here, we report on the further development of tetracyclic indole inhibitors, binding to an allosteric site on the thumb domain. Structure-activity relationship (SAR) studies around an indolo-benzoxazocine scaffold led to the identification of compound 33 (MK-3281), an inhibitor with good potency in the HCV subgenomic replication assay and attractive molecular properties suitable for a clinical candidate. The compound caused a consistent decrease in viremia in vivo using the chimeric mouse model of HCV infection. PMID:21141896

  6. The negative regulators of Wnt pathway-DACH1, DKK1, and WIF1 are methylated in oral and oropharyngeal cancer and WIF1 methylation predicts shorter survival.

    PubMed

    Paluszczak, Jarosław; Sarbak, Joanna; Kostrzewska-Poczekaj, Magdalena; Kiwerska, Katarzyna; Jarmuż-Szymczak, Małgorzata; Grenman, Reidar; Mielcarek-Kuchta, Daniela; Baer-Dubowska, Wanda

    2015-04-01

    The deregulation of Wnt signaling has recently emerged as one of the drivers of head and neck cancers. This is frequently related to the methylation of several antagonists of this pathway. This study aimed at the assessment of the profile of methylation of Wnt pathway antagonists and the determination of the prognostic value of the methylation of selected genes in oral carcinomas. The methylation of DACH1, DKK1, LKB1, PPP2R2B, RUNX3, SFRP2, and WIF-1 was analyzed in 16 oral squamous cell carcinoma cell lines using the methylation-specific polymerase chain reaction. The methylation of selected genes was further analyzed in tumor sections from 43 primary oral carcinoma patients. The analysis of oral carcinoma cell lines showed very frequent methylation of SFRP2 and WIF-1 and also a less frequent methylation of DACH1 and DKK1. On the other hand, RUNX3 was methylated only in one cell line, while LKB1 and PPP2R2B were not methylated in any of the cell lines. The biallelic methylation of DKK1 correlated with the low level of expression of this gene. Further evaluation of the methylation of DACH1, DKK1, and WIF1 in a clinical patient group confirmed the frequent methylation of WIF1 and intermediate or low frequency of methylation of DACH1 or DKK1, respectively. Importantly, the methylation of WIF-1 correlated with shorter survival in oral cancer patients. Overall, the methylation of the antagonists of Wnt pathway is frequently detected in oral squamous cell carcinomas. The methylation of WIF1 may be considered a prognostic marker in oral cancers. PMID:25487617

  7. Methyl salicylate overdose

    MedlinePlus

    Methyl salicylate (oil of wintergreen) is a chemical that smells like wintergreen. It is used in many over- ... muscle ache creams. It is related to aspirin. Methyl salicylate overdose occurs when someone swallows a dangerous amount ...

  8. Replication dynamics in fission and budding yeasts through DNA polymerase tracking.

    PubMed

    Vázquez, Enrique; Antequera, Francisco

    2015-10-01

    The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof-read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions. PMID:26293347

  9. Polymerase Gamma Disease through the Ages

    ERIC Educational Resources Information Center

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  10. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  11. A global profile of replicative polymerase usage

    PubMed Central

    Müller, Carolin A.; Miyabe, Izumi; Brooks, Tony; Retkute, Renata; Hubank, Mike; Nieduszyski, Conrad A.; Carr, Antony M.

    2014-01-01

    Three eukaryotic DNA polymerases are essential for genome replication. Polα-primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: Polε replicates the leading strand while Polδ performs lagging strand synthesis. However, it is not known whether this division of labour is maintained across the whole genome or how uniform it is within single replicons. Using S. pombe, we have developed a polymerase usage sequencing (Pu-seq) strategy to map polymerase usage genome–wide. Pu–seq provides direct replication origin location and efficiency data and indirect estimates of replication timing. We confirm that the division of labour is broadly maintained across an entire genome. However, our data suggest a subtle variability in the usage of the two polymerases within individual replicons. We propose this results from occasional leading strand initiation by Polδ followed by exchange for Polε. PMID:25664722

  12. Techniques in protein methylation.

    PubMed

    Lee, Jaeho; Cheng, Donghang; Bedford, Mark T

    2004-01-01

    Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated. PMID:15173617

  13. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  14. Archaeal DNA polymerases in biotechnology.

    PubMed

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Huang, Yanchao

    2015-08-01

    DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols. PMID:26150245

  15. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  16. DNA Methylation Variation Trends during the Embryonic Development of Chicken

    PubMed Central

    Li, Shizhao; Zhu, Yufei; Zhi, Lihui; Han, Xiaoying; Shen, Jing; Liu, Yanli; Yao, Junhu; Yang, Xiaojun

    2016-01-01

    The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation

  17. Classification of mutations at the HLA-A locus by use of the polymerase chain reaction

    SciTech Connect

    Joseph, G.; Grist, S.; Firgaira, F.; Turner, D.; Morley, A. )

    1993-01-01

    The authors investigated whether the polymerase chain reaction (PCR) could be used to determine the mechanism of mutation in lymphocyte clones mutated at the HLA-A locus. Three polymorphisms, at Factor XIIIA, D6S109, and intron 3 of the HLA-A gene, were used to study a series of clones previously characterized by Southern blotting (SB) at multiple loci on chromosome 6. For detection of loss of heterozygosity, the results of PCR and SB were concordant in 140 of 141 clones when polymorphism in the Factor XIIIA region was studied and in 144 of 145 clones when polymorphism in the HLA-A gene was studied. For classification of the mechanism of mutation, PCR and SB gave the same result in 88 of 92 clones (96%) when a combination of the HLA-A and Factor XIIIA polymorphisms was used and in 46 of 47 clones (98%) when a combination of the HLA-A and D6S109 polymorphisms was used. The results indicate that PCR provides a simple and reliable method for categorizing mutations at the HLA-A locus as arising from mitotic recombination, deletion, or from presumptive minor changes within the gene. Rare events such as gene conversion, nondisjunction, or large deletions extending to the telomere will be misclassified. However, such events are rare for mutations at this locus. 9 refs., 2 figs., 5 tabs.

  18. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed Central

    Melquist, S; Luff, B; Bender, J

    1999-01-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  19. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed

    Melquist, S; Luff, B; Bender, J

    1999-09-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  20. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  1. A tumour necrosis factor alpha polymorphism is not associated with rheumatoid arthritis.

    PubMed Central

    Wilson, A G; de Vries, N; van de Putte, L B; Duff, G W

    1995-01-01

    OBJECTIVE--To determine whether a polymorphism within the tumour necrosis factor alpha (TNF alpha) gene is associated with susceptibility to, or severity of, rheumatoid arthritis (RA). METHODS--Consecutive patients with recent onset RA were enrolled in a prospective trial. DNA was collected, disease activity was measured at presentation, and radiographic progression at three years was assessed. Typing of TNF alpha was by polymerase chain reaction and single stranded conformation polymorphism analysis. RESULTS--No association of TNF alpha alleles and susceptibility to, or severity of, RA was demonstrated. CONCLUSIONS--These results indicate that this TNF alpha polymorphism does not play a part in the genetic background of RA. PMID:7668906

  2. Structural Basis for Proficient Incorporation of dTTP Opposite O[superscript 6]-Methylguanine by Human DNA Polymerase [iota

    SciTech Connect

    Pence, Matthew G.; Choi, Jeong-Yun; Egli, Martin; Guengerich, F. Peter

    2012-03-15

    O{sup 6}-Methylguanine (O{sup 6}-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase L core enzyme was determined for nucleoside triphosphate incorporation opposite O{sup 6}-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol L, which showed that dTTP incorporation occurs with high efficiency opposite O{sup 6}-methylG. Misincorporation of dTTP opposite O{sup 6}-methylG occurred with {approx}6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol L with O{sup 6}-methylG as the template base and incoming dCTP or dTTP were solved and showed that O{sup 6}-methylG is rotated into the syn conformation in the pol L active site and that dTTP misincorporation by pol L is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O{sup 6}-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O{sup 6}-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O{sup 6} atoms of O{sup 6}-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O{sup 6}-methylG by human pol L, in contrast to the mispairing modes observed previously for O{sup 6}-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.

  3. Interleukin-1 gene polymorphisms and toxoplasmic retinochoroiditis

    PubMed Central

    Moreira, Paula R.; Costa, Germano C.; Dutra, Walderez O.; Oréfice, Fernando; Teixeira, Antônio L.

    2008-01-01

    Purpose It has been proposed that cytokine gene polymorphisms can predispose individuals to disease by enhancing inflammatory processes. Considering the relevance of interleukin-1 (IL-1) in the pathogenesis of toxoplasmic retinochoroiditis (TR), we investigated whether IL1A −889 C/T and IL1B +3954C/T promoter polymorphisms are associated with TR in humans. Methods We performed a cross-sectional study that involved 100 Brazilian TR patients and 100 age- and gender-matched control subjects. Genomic DNA was obtained from oral swabs of all participants and amplified using polymerase chain reaction (PCR) with specific primers flanking the locus −889 of IL1A and +3954 of IL1B. PCR products were submitted to digestion and analyzed by PAGE to distinguish C and T alleles. Results There was no significant difference in the genotype or allele distributions of the IL1A −889 C/T and IL1B +3954C/T polymorphisms in patients with TR when compared with controls. However, in a subgroup analysis, the frequency of genotype and allele distributions of IL1A −889 C/T differed significantly between TR patients with and without recurrent episodes. Conclusion This study suggests that the genotypes related with a high production of IL-1a may be associated with the recurrence of TR. PMID:18941541

  4. Genotyping for cytochrome P450 polymorphisms.

    PubMed

    Daly, Ann K; King, Barry P; Leathart, Julian B S

    2006-01-01

    Protocols for the extraction of DNA from human blood and for genotyping for a number of common cytochrome P450 polymorphisms using either polymerase chain reaction (PCR)-restriction fragment length polymorphism or PCR-single-strand conformational polymorphism (SSCP) analysis are described. Rapid high-throughput techniques are also available for analyses of this type, but they require access to specialized equipment and are not considered here. General guidelines for performing amplification using PCR are described together with electrophoresis protocols for analysis of restriction digests of PCR products with agarose and polyacrylamide gels including the use of polyacrylamide-based gels for SSCP analysis. Protocols for the following specific isoforms and alleles are also provided: CYP1A1 (*2B and *4 alleles), CYP2C8 (*3 and *4 alleles), CYP2C9 (*2, *3, and *11 alleles), CYP2C19 (*2 and *3 alleles), CYP2D6 (*3, *4, *5, and *6 alleles), CYP2E1 (*5A, *5B, and *6 alleles), and CYP3A5 (*3 allele). PMID:16719392

  5. Involvement of DNA polymerase beta overexpression in the malignant transformation induced by benzo[a]pyrene

    PubMed Central

    Zhao, Wei; Wu, Mei; Lai, Yanhao; Deng, Wenwen; Liu, Yuan; Zhang, Zunzhen

    2014-01-01

    Objective To explore the relationship between DNA polymerase β (pol β) overexpression and benzo[a]pyrene (BaP) carcinogenesis. Methods Firstly, mouse embryonic fibroblasts that express wild-type level of DNA polymerase β (pol β cell) and high level of pol β (pol β oe cell) were treated by various concentrations of BaP to determine genetic instability induced by BaP under differential expression levels of pol β. Secondly, malignant transformation of pol β cells by low concentration of BaP (20 μM) was determined by soft agar colony formation assay and transformation focus assay. Thirdly, the mRNA and protein levels of BaP-transformed pol β cells (named pol β-T cells) was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot, and the genetic instability of these cells were examined by HPRT gene mutation assay and random amplified polymorphic DNA (RAPD) assay. Results Pol β cells were successfully transformed into malignant pol β-T cells by an exposure to low concentration of BaP for 6 months. Pol β-T cells exhibited increased levels of pol β gene expression, HPRT gene mutation frequency and polymorphisms of RAPD products that were comparable to those of pol β oe cells. Conclusion Pol β overexpression and its-associated genetic instability may play a key role in BaP carcinogenesis. PMID:23652152

  6. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  7. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  8. DNA methylation perspectives in the pathogenesis of autoimmune diseases.

    PubMed

    Sun, Bao; Hu, Lei; Luo, Zhi-Ying; Chen, Xiao-Ping; Zhou, Hong-Hao; Zhang, Wei

    2016-03-01

    DNA methylation is now widely recognized as being critical to maintain the function of immune cells. Recent studies suggest that aberrant DNA methylation levels not only can result in immune cells autoreactivity in vitro, but also are related to autoimmunity in vivo. Environmental factors and genetic polymorphisms cause abnormal methylation, which affects the expression of certain immune-related genes, being becoming hot spot of explaining the mechanism of autoimmune diseases. This paper reviews the importance of abnormal methylation during the development of common autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and type 1 diabetes, aiming at a better understanding of the pathogenesis of autoimmune diseases and providing new ideas for the treatment of these diseases. PMID:26821302

  9. Childhood Maltreatment and Methylation of FKBP5

    PubMed Central

    Tyrka, Audrey R.; Ridout, Kathryn K.; Parade, Stephanie H.; Paquette, Alison; Marsit, Carmen J.; Seifer, Ronald

    2016-01-01

    A growing body of evidence suggests that alterations of the stress response system may be a mechanism by which childhood maltreatment alters risk for psychopathology. FK506 binding protein 51 (FKBP5) binds to the glucocorticoid receptor and alters its ability to respond to stress signaling. The aim of the present study was to examine methylation of the FKBP5 gene (FKBP5), and the role of an FKBP5 genetic variant, in relation to childhood maltreatment in a sample of impoverished preschool-aged children. One hundred seventy-four families, including n=69 with child welfare documentation of moderate-severe maltreatment in the past six months, participated in this study. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of two CpG sites in intron 7 of FKBP5 was measured via sodium bisulfite pyrosequencing. Maltreated children had significantly lower levels of methylation at both CpG sites (p<.05). Lifetime contextual stress exposure showed a trend for lower levels of methylation at one of the sites, and a trend for an interaction with the FKBP5 polymorphism. A composite adversity variable was associated with lower levels of methylation at one of the sites as well (p<.05). FKBP5 alters glucocorticoid receptor responsiveness and FKBP5 gene methylation may be a mechanism of the bio-behavioral effects of adverse exposures in young children. PMID:26535949

  10. Ethnic differences in five intronic polymorphisms associated with arsenic metabolism within human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) gene

    SciTech Connect

    Fujihara, Junko; Fujii, Yoshimi; Agusa, Tetsuro; Kunito, Takashi; Yasuda, Toshihiro; Moritani, Tamami; Takeshita, Haruo

    2009-01-01

    Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite, and intronic single-nucleotide polymorphisms (SNPs: G7395A, G12390C, T14215C, T35587C, and G35991A) in the AS3MT gene were shown to be related to inter-individual variation in the arsenic metabolism. In the present study, the genotyping for these SNPs was developed using the polymerase chain reaction and restriction fragment length polymorphism technique. Applying this method, the genotype distribution among the Ovambo, Turkish, Mongolian, Korean, and Japanese populations was investigated, and our results were compared with those from other studies. G7395, G12390, T35587, and A35991 were predominant among the five populations in our study. However, a previous study in Argentina, C12390 and G35991 showed the highest allele frequency among the eight populations studied in other studies. The dominant allele of T14215C differed among populations: the T14215 allele was predominant in Argentina, the allele frequency of C14215 was higher than that of T14215 among Turks, Mongolians, Europeans, and American ancestry. In Korea and Japan, similar allele frequencies were observed in T14215 and C14215. Higher allele frequencies were observed in haplotype G7395/G12390/C14215/T35587 with frequencies of 0.40 (Turks), 0.28 (Mongolians), and 0.23 (Koreans). On the other hand, the allele frequency for G7395/G14215/T35587/A35991 was the highest among the Ovambos (0.32), and the frequency for G7395/G12390/C35587/G35991 was the highest among the Japanese (0.27). It is noteworthy that the Japanese haplotype differs from that of the Koreans and Mongolians, which indicates the importance of investigating other intronic polymorphisms in AS3MT, especially in Asians.