Science.gov

Sample records for mev ni ion

  1. 120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water

    SciTech Connect

    Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir; Dhaliwal, A. S.

    2012-06-05

    We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10{sup 10} to 3 x 10{sup 12} ion/cm{sup 2}. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements show the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.

  2. 120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir; Dhaliwal, A. S.

    2012-06-01

    We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 × 1010 to 3 × 1012 ion/cm2. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements show the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.

  3. 100 MeV Ni{sup +7} swift heavy ion induced magnetism in cobalt doped ZnO thin films

    SciTech Connect

    Kumar, Sunil Singh, D. P.; Kumar, Ravi

    2014-04-24

    Zn{sub 0.90}Co{sub 0.10}O thin films were prepared using Sol-Gel spin coating method. Films were irradiated with 100 MeV Ni{sub +7} Swift Heavy Ions (SHI) with fluences 1× 10{sup 13} ions/cm{sup 2} using 15 UD tandem accelerator at IUAC New Delhi and its effect were studied on the structural, optical and magnetic properties of irradiated thin films. X-ray diffraction studies show single phase films with preferred c-axis orientation after irradiation. Ultraviolet-visible absorption spectroscopy shows red shift in the band gap of irradiated thin films. Magnetic field dependence of magnetization reveals weak ferromagnetism in irradiated thin films. AFM studies shows significant increase in the grain size and the surface roughness of the films after irradiation.

  4. Recent results on fast intermediate velocity electron production induced by 19 + 45 A MeV 58Ni highly charged ions on thin solid targets

    NASA Astrophysics Data System (ADS)

    Lanzanò, G.; De Filippo, E.; Anzalone, A.; Arena, N.; Geraci, M.; Giustolisi, F.; Pagano, A.; Rothard, H.; Volant, C.

    2003-05-01

    In order to study the emission of energetic electrons induced by the impact of swift heavy ions on thin solid targets, we carried out a series of experiments at the superconducting cyclotron of the Catania Laboratori Nazionali del Sud. We report results on a recent experiment where electron-electron coincidences were measured in a forward ring by bombarding a thin carbon target of 7.4 μg/cm 2 with 19 + 45 A MeV 58Ni beam. The velocity1-velocity2 bidimensional plot is dominated by events in which the two detected electrons have a velocity close to the beam velocity 9.03 cm/ns (convoy electrons). The remaining small fraction of coincidences has still a convoy electron and a second electron having either a velocity almost twice the beam velocity 16.5 cm/ns (binary encounter, BE electrons) or a velocity of about 12.7 cm/ns intermediate between BE and convoy velocities (IV electrons). We interprete this last intermediate component as due to in-flight de-excitation of highly excited n +58Ni ions by Auger electrons. Although less distinct, we observe also an intense peak close to the convoy velocity peak, centered at ≈9.7 cm/ns, corresponding to electrons emitted with an energy of only about ≈170 eV in the projectile rest frame of reference.

  5. Depth profiles of MeV heavy ions implanted into Si and lithium triborate

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Ming; Shi, Bo-Rong; Cue, Nelson; Shen, Ding-Yu; Chen, Feng; Wang, Xue-Lin; Lu, Fei

    2004-10-01

    MeV Cu + and Ni + ions were implanted into Si crystal and lithium triborate. The depth profiles of implanted Cu + and Ni + ions into Si and lithium triborate were measured by secondary ion mass spectrometry (SIMS). Mean projected range and range straggling extracted are compared with calculated values based on different versions of transport of ions in matter: TRIM'90, TRIM'98 and SRIM 2003. The results show that TRIM'90 has predicted well the experimental data of mean projected range and range straggling for MeV Cu + ions implanted into Si, the maximum differences between measured and calculated values are within 4%, but for the case of 2.0 MeV Ni + ions implanted into lithium triborate, the experimental value is significantly different from the calculated one based on TRIM'90.

  6. K-italic-shell ionization cross sections for Al, Ti, V, Cr, Fe, Ni, Cu, and Ag by protons and oxygen ions in the energy range 0. 3--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M.; Benka, O.

    1986-08-01

    Absolute K-italic-shell ionization cross sections have been measured for thin targets of Al, Ti, and Cu for protons in the energy range 0.3--2.0 MeV and for thin targets of Ti, V, Cr, Fe, Ni, Cu, and Ag for oxygen ions in the energy range 1.36--6.4 Mev. The experimental results are compared to the perturbed-stationary-state (PSS) approximation with energy-loss (E), Coulomb (C), and relativistic (R) corrections, i.e., the ECPSSR approximation (Brandt and Lapicki), to the semiclassical approximation (Laegsgaard, Andersen, and Lund), and to a theory for direct Coulomb ionization of the 1s-italicsigma molecular orbital (Montenegro and Sigaud (MS)). The proton results agree within 3% with empirical reference cross sections. Also, the ECPSSR provides best overall agreement for protons. For oxygen ions, ECPSSR and MS predict experimental results satisfactorily for scaled velocities xi> or =0.4. For lower scaled velocities, the experimental cross sections become considerably higher than theoretical predictions for Coulomb ionization. This deviation increases with increasing Z-italic/sub 1//Z/sub 2/; it cannot be explained by electron transfer to the projectile or by ionization due to target recoil atoms.

  7. Valine radiolysis by MeV ions

    NASA Astrophysics Data System (ADS)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  8. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  9. An RFQ accelerator system for MeV ion implantation

    NASA Astrophysics Data System (ADS)

    Hirakimoto, Akira; Nakanishi, Hiroaki; Fujita, Hiroyuki; Konishi, Ikuo; Nagamachi, Shinji; Nakahara, Hiroshi; Asari, Masatoshi

    1989-02-01

    A 4-vane-type Radio-Frequency Quadrupole (RFQ) accelerator system for MeV ion implantation has been constructed and ion beams of boron and nitrogen have been accelerated successfully up to an energy of 1.01 and 1.22 MeV, respectively. The acceleration of phosphorus is now ongoing. The design was performed with two computer codes called SUPERFISH and PARMTEQ. The energy of the accelerated ions was measured by Rutherford backscattering spectroscopy. The obtained values agreed well with the designed ones. Thus we have confirmed the validity of our design and have found the possibility that the present RFQ will break through the production-use difficulty of MeV ion implantation.

  10. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  11. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGESBeta

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  12. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    NASA Astrophysics Data System (ADS)

    Jin, K.; Bei, H.; Zhang, Y.

    2016-04-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm-2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  13. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  14. Resolution considerations in MeV ion microscopy and lithography

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Whitlow, Harry J.

    2015-04-01

    There a disparity between the way the resolution is specified in microscopy and lithography using light compared to MeV ion microscopy and lithography. In this work we explore the implications of the way the resolution is defined with a view to answering the questions; how are the resolving powers in MeV ion microscopy and lithography relate to their optical counterparts? and how do different forms of point spread function affect the modulation transfer function and the sharpness of the edge profile?

  15. Fast electron production in collisions of swift heavy ions (20 MeV/ u < E < 100 MeV/ u) with foils of solids

    NASA Astrophysics Data System (ADS)

    Lanzanò, G.; De Filippo, E.; Rothard, H.; Volant, C.; Anzalone, A.; Arena, N.; Geraci, M.; Giustolisi, F.; Pagano, A.

    2005-05-01

    In nuclear and atomic experiments at high incident ion energies, 20 MeV/ u < E < 100 MeV/ u, the impact of swift heavy ions on thin solid targets is a source of fast electrons. The knowledge of their spatial and kinematical distributions is very useful for experimental nuclear and radiobiological applications as well as testing atomic ionization theories. An overview on the main mechanisms underlying the production of the electrons is given. Some recent results obtained at the Catania LNS superconducting cyclotron, mainly with a 45 MeV/ u58Ni 19+ beam are shown. In particular, the production and the properties of binary encounter-, convoy-, in-flight Auger- and backward emitted electrons are discussed.

  16. Cylindrical nanopores in NiO induced by swift heavy ions

    SciTech Connect

    Schattat, B.; Bolse, W.; Klaumuenzer, S.; Zizak, I.; Scholz, R.

    2005-10-24

    NiO single crystals and polycrystalline films of about 100 nm thickness have been irradiated at liquid-nitrogen temperature with 90 MeV Ar, 140 MeV Kr, 230 MeV Xe, and 350 MeV Au ions. After bombardment with Xe or Au ions, transmission electron microscopy and small angle x-ray scattering reveal empty ion tracks with diameters between 2 and 4 nm. These nanopores extend through the specimens and are terminated by spherical nanoparticles containing the material which is missing in the pores.

  17. Charged pions from the isotopes sup 58,64 Ni by 201 MeV protons

    SciTech Connect

    Palmeri, A.; Aiello, S.; Badala, A.; Barbera, R.; Pappalardo, G.S. ); Bimbot, L. ); Reide, F. ); Willis, N.; Oeschler, H.

    1989-08-01

    Charged pion production induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni has been studied. The double differential cross sections have been measured over a wide angular range. Different behavior of the angular distribution is observed for low and high energy pions. The yield of positive pions shows a pronounced forward peaked component. The deduced total production yields are about the same for ({ital p},{pi}{sup +}) on both isotopes whereas that for {sup 64}Ni({ital p},{pi}{sup {minus}}) is twice as large as for {sup 58}Ni({ital p},{pi}{sup {minus}}).

  18. Reactions sup 58,64 Ni( p ,. pi. sup + ) at 201 MeV

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Bonasera, A. ); Riggi, F.; Adorno, A. ); Bimbot, L. )

    1992-08-01

    The production of positive and negative pions induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni isotopes has been studied. The double differential cross sections have been measured at the laboratory angles 22{degree}, 35{degree}, 55{degree}, 72{degree}, 90{degree}, 105{degree}, 120{degree}, 138{degree}, 155{degree} and from 20 MeV kinetic energy up to the kinematical limit. Features of the double differential cross sections relative to the two targets are discussed and compared to results obtained at higher incident energies.

  19. Development of a lithium liquid metal ion source for MeV ion beam analysis

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1988-01-01

    Lithium liquid metal ion sources are an attractive complement to the existing gaseous ion sources that are extensively used for ion beam analysis. This is due in part to the high brightness of the liquid metal ion source and in part to the availability of a lithium ion beam. High brightness is of particular importance to MeV ion microprobes which are now approaching current density limitations on targets determined by the ion source. The availability of a lithium beam provides increased capabilities for hydrogen profiling and high resolution Rutherford backscattering spectrometry. This paper describes the design and performance of a lithium liquid metal ion source suitable for use on a 5MV Laddertron accelerator. Operational experience with the source and some of its uses for ion beam analysis are discussed. 8 refs., 2 figs.

  20. The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.

    1996-10-01

    Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.

  1. ({ital p},{ital d}) reaction on {sup 62}Ni at 65 MeV

    SciTech Connect

    Matoba, M.; Kurohmaru, K.; Iwamoto, O.; Nohtomi, A.; Uozumi, Y.; Sakae, T.; Koori, N.; Ohgaki, H.; Ijiri, H.; Maki, T.; Nakano, M.; Sen Gupta, H.M.

    1996-04-01

    The {sup 62}Ni({ital p},{ital d}){sup 61}Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in {sup 61}Ni up to an excitation energy of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta {ital l} and {ital j} and spectroscopic factors for several strongly excited states. The 1{ital f}{sub 7/2} hole state spreads largely in the excitation energy region of 2{endash}6 MeV, while the 1{ital f}{sub 5/2}, 2{ital p}{sub 3/2}, and 2{ital p}{sub 1/2} hole states into only 2{endash}4 levels. The strength function of the 1{ital f}{sub 7/2} hole state is analyzed with an asymmetrical Lorentzian function. The damping mechanism of the single hole states is discussed. {copyright} {ital 1996 The American Physical Society.}

  2. Lattice structure transformation and change in surface hardness of Ni3Nb and Ni3Ta intermetallic compounds induced by energetic ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yoshizaki, H.; Kaneno, Y.; Semboshi, S.; Hori, F.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2016-04-01

    Ni3Nb and Ni3Ta intermetallic compounds, which show the complicated lattice structures were irradiated with 16 MeV Au5+ ions at room temperature. The X-ray diffraction measurement revealed that the lattice structure of these intermetallic compounds changed from the ordered structures to the amorphous state by the ion irradiation. The irradiation-induced amorphization caused the increase in Vickers hardness. The result was compared with our previous results for Ni3Al and Ni3V, and was discussed in terms of the intrinsic lattice structures of the samples.

  3. Formation of NiSi{sub 2} nanoclusters by Ni ion implantation into Si(100) and the effect of preinjection of Si{sub 2}{sup +} ions

    SciTech Connect

    Sundaravel, B.; Kalavathi, S.; SanthanaRaman, P.; Satyam, P. V.; Nair, K.G.M.

    2012-06-05

    Cluster ions can produce surface craters and amorphous ion tracks in semiconductors. This process in combination with defect mediated diffusion can be applied to fabricate buried nanowires. 1.4 MeV Si{sub 2}{sup +} ions at low fluences and 400 keV Ni{sup +} ions at high fluence are implanted into Si(100) and annealed at 600 deg. C. NiSi{sub 2} nanoclusters are formed and TEM measurements show surface craters of around 30 nm diameter which are followed by amorphous tracks of diameter 15 nm caused by the Si{sub 2}{sup +} ions in Si substrate. 50 nm long finger like buried vertical nanowires from the silicide clusters are formed along the amorphous track which is due to diffusion of Nickel atoms towards the surface mediated by the defects in the track. It is a step closer to the fabrication of buried nanowires.

  4. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  5. Thermoelectric Figures of Merit of Zn4Sb3 and Zrnisn-based Half-heusler Compounds Influenced by Mev Ion-beam Bombardments

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C. I.; Ila, D.

    Semiconducting β-Zn4Sb3 and ZrNiSn-based half-Heusler compound thin films with applications as thermoelectric (TE) materials were prepared using ion beam assisted deposition (IBAD). High-purity solid zinc (Zn) and antimony (Sb) were evaporated by electron beam to grow the β-Zn4Sb3 thin film while high-purity zirconium (Zr) powder and nickel (Ni) tin (Sn) powders were evaporated by electron beam to grow the ZrNiSn-based half-Heusler compound thin film. Rutherford backscattering spectrometry (RBS) was used to analyze the composition of the thin films. The grown thin films were subjected to 5 MeV Si ions bombardment for generation of nanostructures in the films. We measured the thermal conductivity, Seebeck coefficient, and electrical conductivity of these two systems before and after 5 MeV Si ions beam bombardment. The two material systems have been identified as promising TE materials for the application of thermal-to-electrical energy conversion, but the efficiency still limits their applications. The electronic energy deposited due to ionization in the track of MeV ion beam couldcause localized crystallization. The nanostructures produced by MeV ion beam can cause significant change in both the electrical and the thermal conductivity of thin films, thereby improving the efficiency. We used the 3ω-method (3rd harmonic) measurement system to measure the cross-plane thermal conductivity, the van der Pauw measurement system to measure the electrical conductivity, and the Seebeck-coefficient measurement system to measure the cross-plane Seebeck coefficient. The thermoelectric figures of merit of the two material systems were then derived by calculations using the measurement results. The MeV ion-beam bombardment was found to decrease the thermal conductivity of thin films and increase the efficiency of thermal-to-electrical energy conversion.

  6. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    SciTech Connect

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  7. XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Yoshizaki, H.; Saitoh, Y.; Ishikawa, N.; Iwase, A.

    2016-03-01

    To simulate energetic neutron irradiation effects, yttria-stabilized zirconia (YSZ) which is one of the major materials for electrical corrosion potential sensors (ECP sensors) was irradiated with heavy ions at energies ranging from 7.3 MeV to 2.2 GeV. Ion irradiation effects on the lattice structure were analyzed using the X-ray diffraction (XRD). The increase in lattice constant was induced by the ion irradiation. It was dominated by the elastic collision process and not by the electronic excitation process. The lattice disordering which was observed as a broadening of XRD peaks was also induced by the irradiation especially for 200 MeV Xe ion irradiation. The present result suggests that the expansion and/or the disordering of YSZ lattice induced by energetic neutrons may affect the durability of a joint interface between a metal housing and YSZ membrane for the usage of ECP sensors in nuclear power reactors.

  8. MeV negative ion generation from ultra-intense laser interaction with a water spray

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Borghesi, M.; Doria, D.; Zepf, M.; Sarri, G.; Ehrentraut, L.; Steinke, S.; Sandner, W.; Schnuerer, M.; Andreev, A.; Nickles, P. V.; Tikhonchuk, V.

    2011-08-01

    MeV negative oxygen ions are obtained from a water spray target irradiated by high intensity (5 x 10{sup 19} W/cm{sup 2}) and ultrashort (50 fs) laser pulses. Generation of negative ions is ascribed to electron-capture processes that the laser-accelerated high-energy positive ion experiences when it interacts with atoms in the spray. This mechanism implies the existence of a large number of MeV neutral oxygen atoms, which is consistent with indirect experimental evidence.

  9. Excitation function of the 60Ni(p ,γ )61Cu reaction from threshold to 16 MeV

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Sudár, S.; Spahn, I.; Shariff, M. A.; Qaim, S. M.

    2016-04-01

    Excitation function of the reaction 60Ni(p ,γ )61Cu was measured via the activation technique in the energy range of 1.3-16.0 MeV using a low-energy accelerator and a small cyclotron. The results are comparable to those previously obtained via prompt γ counting. In addition excitation functions of the more common competing 60Ni(p ,n )60Cu and 60Ni(p ,α )57Co reactions were also measured. Theoretical calculations on proton-induced reactions on 60Ni were performed using the nuclear model code talys. The results suggest that near the threshold of the reaction the compound nucleus mechanism dominates. Thereafter the contribution of direct interactions becomes rather strong, especially between 4 and 6 MeV, i.e., just below the threshold of the 60Ni(p ,n )60Cu reaction. The cross section at the maximum of the excitation function of each of the three reactions, namely, 60Ni(p ,γ )61Cu,60Ni(p ,n )60Cu , and 60Ni(p ,α )57Co , amounts to 2, 320, and 85 mb, respectively. The (p ,n ) reaction is thus the most commonly occurring process, and the (p ,γ ) reaction is the weakest, possibly due to higher probability of particle emission than γ-ray emission from the highly excited intermediate nucleus 61Cu formed in the interaction of a proton with the target nucleus 60Ni.

  10. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  11. A comparative study of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiated Si NPN BJTs

    SciTech Connect

    Kumar, M. Vinay Krishnaveni, S.; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani

    2015-06-24

    The impact of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor.

  12. Effective temperatures in complete fusion for the system {sup 58}Ni + {sup 58}Ni at 500 MeV bombarding energy

    SciTech Connect

    D`Onofrio, A.; Campajola, L.; Inglima, G.; Roca, V.

    1996-12-01

    Triple coincidences between complex fragments with Z > 3, light charged particles and {gamma} transitions have been measured for the system {sup 58}Ni+{sup 58}Ni at 500 MeV incident energy. To this end the HILI detector and a 19 pack BaF{sub 2} cluster made of 19 crystals of TAPS geometry have been used. Effective temperatures have been obtained from the ratios of the bound excited level cross sections to the ground states ones for C. N and 0 evaporated after complete fusion of {sup 58}Ni +{sup 58}Ni at 500 MeV incident energy. The dependence of the effective temperature on the charged light particle multiplicity has been investigated.

  13. Surface modification using MeV ion beams

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1983-01-01

    Electronic excitation induced by MeV/amu ion beams in a variety of materials has been employed successfully for a number of applications. The examples that will be presented are: modification of the surface reflectivities of optical materials; sputter-erosion of dielectrics; and enhancement of the adhesion of thin film coatings. All of these effects arise from the loss of energy by the ion beam to electrons in the target material; the mechanisms involved are at best qualitatively understood. This paper will stress not only the exploitation of such high energy bombardment techniques but will also briefly review attempts to expose the underlying causes.

  14. Acceleration of ampere class H(-) ion beam by MeV accelerator.

    PubMed

    Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

    2008-02-01

    The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding. PMID:18315236

  15. Scattering process for the system 7Be + 58Ni at 23.2 MeV beam energy

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Fierro, N.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parker, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2013-03-01

    We measured for the first time the scattering process of 7Be nuclei from a 58Ni target at 23.2 MeV beam energy. The experiment was performed at the Laboratori Nazionali di Legnaro (LNL, Italy), where the 7Be Radioactive Ion Beam was in-flight produced with the facility EXOTIC. Charged reaction products were detected by means of the detector array DINEX, arranged in a cylindrical configuration around the target to ensure a polar angle coverage in the ranges θcm = 40°-80° and 110°-150°. The scattering differential cross section was analyzed within the optical model formalism with the coupled-channel code FRESCO to extract the total reaction cross section. The result was compared with those obtained at lower beam energies in an earlier experiment performed at the University of Notre Dame (USA). At the present stage of our analysis, the two data sets were found to be not fully consistent each other.

  16. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  17. Simulation of electron behavior in PIG ion source for 9 MeV cyclotron

    NASA Astrophysics Data System (ADS)

    J. Mu, X.; Ghergherehchi, M.; H. Yeon, Y.; W. Kim, J.; S. Chai, J.

    2014-12-01

    In this paper, we focus on a PIG source for producing intense H-ions inside a 9 MeV cyclotron. The properties of the PIG ion source were simulated for a variety of electric field distributions and magnetic field strengths using a CST particle studio. After analyzing the secondary electron emission (SEE) as a function of both magnetic and electric field strengths, we found that for the modeled PIG geometry, a magnetic field strength of 0.2 T provided the best results in terms of the number of secondary electrons. Furthermore, at 0.2 T, the number of secondary electrons proved to be greatest regardless of the cathode potential. Also, the modified PIG ion source with quartz insulation tubes was tested in a KIRAMS-13 cyclotron by varying the gas flow rate and arc current, respectively. The capacity of the designed ion source was also demonstrated by producing plasma inside the constructed 9 MeV cyclotron. As a result, the ion source is verified as being capable of producing an intense H- beam and high ion beam current for the desired 9 MeV cyclotron. The simulation results provide experimental constraints for optimizing the strength of the plasma and final ion beam current at a target inside a cyclotron.

  18. MeV ion-beam analysis of optical data storage films

    NASA Technical Reports Server (NTRS)

    Leavitt, J. A.; Mcintyre, L. C., Jr.; Lin, Z.

    1993-01-01

    Our objectives are threefold: (1) to accurately characterize optical data storage films by MeV ion-beam analysis (IBA) for ODSC collaborators; (2) to develop new and/or improved analysis techniques; and (3) to expand the capabilities of the IBA facility itself. Using H-1(+), He-4(+), and N-15(++) ion beams in the 1.5 MeV to 10 MeV energy range from a 5.5 MV Van de Graaff accelerator, film thickness (in atoms/sq cm), stoichiometry, impurity concentration profiles, and crystalline structure were determined by Rutherford backscattering (RBS), high-energy backscattering, channeling, nuclear reaction analysis (NRA) and proton induced X-ray emission (PIXE). Most of these techniques are discussed in detail in the ODSC Annual Report (February 17, 1987), p. 74. The PIXE technique is briefly discussed in the ODSC Annual Report (March 15, 1991), p. 23.

  19. MeV H+ ion irradiation effect on the stoichiometry of polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Abdesselam, M.; Muller, D.; Djebara, M.; Ouichaoui, S.; Chami, A. C.

    2013-07-01

    Appropriate experimental conditions have been chosen to investigate the influence of main H+ ion irradiation parameters on stoichiometry changes induced in polyethylene terephthalate (PET) thin films. Stacks of six self-supporting identical films were irradiated perpendicularly to the target surface. Thus, the irradiations were realized simultaneously at different values of the target electronic stopping power, ɛ+. Indeed, the initial H+ ion energy of 1.1 MeV incident on the front polymer film was degraded down to 0.48 MeV at the entrance of the rear stacked film, which corresponds to an increase of ɛ+ from ˜0.22 up to ˜0.41 MeV cm2 mg-1. Ion fluences in the range (0.05-4) × 1015 cm-2 corresponding to an ion dose interval 1.80-263 MGy were used. The (H, O, C) atomic surface densities of the PET polymeric films were quantitatively determined by IBA techniques using a 1.62 MeV deuteron beam leading to the following main results: for each target film stacked at a given position thus fixed ɛ+, the oxygen atomic density decreases linearly versus ion fluence, ϕ; for the different ɛ+, the hydrogen impoverishment of the PET target is insignificant below critical fluence ϕc ˜ 1.5 × 1015 cm-2 and becomes substantial above ϕc; for fixed ϕ, the hydrogen and oxygen atomic densities exhibit linear decreases versus ɛ+; all measured such data versus ϕ and ɛ+ merge together into a unique decreasing curve for each (H, O, C) polymer content element when represented in function of the H+ ion dose, D, tightly correlating the latter two parameters; the O content element release from the PET target appears to be the most important, followed by the H content depletion, while the target C content is least affected under H+ ion irradiation.

  20. Optical absorption of Ni2+ and Ni3+ ions in gadolinium gallium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vasileva, N. V.; Gerus, P. A.; Sokolov, V. O.; Plotnichenko, V. G.

    2012-12-01

    Single-crystal Ni-doped gadolinium gallium garnet films were grown for the first time from supercooled Bi2O3-B2O3-based melt solutions by liquid-phase epitaxy. Optical absorption bands due to Ni2+, Ni3+ and Bi3+ ions were observed in those films. Interpretation and tabulation of all absorption bands of nickel ions occupying octahedral and tetrahedral sites in the garnet lattice are presented.

  1. Energy loss and straggling of MeV ions through biological samples

    SciTech Connect

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-10-15

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula.

  2. Energy loss and straggling of MeV ions through biological samples

    SciTech Connect

    Ma, Lie; Wang, Yugang; Xue, Jianming; Chen, Qizhong; Zhang, Weiming; Zhang, Yanwen

    2007-10-15

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat and tomato coat) with different mass thickness were studied, together with mylar for comparison, in this work. The energy loss and energy straggling of MeV H and He ions after penetrating from the biological and mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions, however, large deviation in energy straggling is observed between the measured result and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicated by the proposed formula.

  3. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  4. MeV negative ion source from ultra-intense laser-matter interaction

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Prasad, R.; Borghesi, M.; Andreev, A. A.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Tikhonchuk, V.

    2012-02-15

    Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 10{sup 9} negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.

  5. Dynamical fission in {sup 124}Sn+{sup 64}Ni collision at 35A MeV

    SciTech Connect

    De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Politi, G.; Piasecki, E.; Siwek-Wilczynska, K.; Skwira, I.; Swiderski, L.; Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.; Colonna, M.; Di Toro, M.; Giustolisi, F.; Iacono-Manno, M.

    2005-06-01

    Some properties of fast, nonequilibrium splitting of projectiles in the {sup 124}Sn+{sup 64}Ni reaction at 35A MeV were determined using the 4{pi} CHIMERA detector system. In particular the charge distributions, in- and out-of-plane angular distributions, and relative velocities of projectilelike fragments were measured. The time scale of the process was estimated and it turned out that the process is sequential but much faster than the ordinary, equilibrated fission.

  6. Irradiation effects in rapidly and conventionally solidified alloys. Phase stability in rapidly solidified N i-Nb under Ni ion irradiation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two alloy compositions in the Ni-Nb system (Ni60Nb40 and Ni85Nb15) were produced by rapidly quenching from the melt with the piston anvil technique. The Ni60Nb40 was transformed to a metastable, partially crystalline state by heat treatment in a differential scanning calorimeter. The Ni85Nb15 was fully crystalline, with the majority of the grains composed of collections of primary dendrite arms. Both compositions were irradiated with 4 MeV Ni++ ions. The irradiation induced microstructures were examined by transmission electron microscopy and compared with thermally aged samples. The thermal evolution was arrested by ion irradiation in the temperature range studied, by inhibiting the nucleation of the NiNb phase. No irradiation induced voids were observed. It is found that the ion irradiation drives the microstructure along a different path than thermal evolution.

  7. Fabrication of microfluidic devices using MeV ion beam Programmable Proximity Aperture Lithography (PPAL)

    NASA Astrophysics Data System (ADS)

    Gorelick, S.; Puttaraksa, N.; Sajavaara, T.; Laitinen, M.; Singkarat, S.; Whitlow, H. J.

    2008-05-01

    MeV ion beam lithography is a direct writing technique capable of producing microfluidic patterns and lab-on-chip devices with straight walls in thick resist films. In this technique a small beam spot of MeV ions is scanned over the resist surface to generate a latent image of the pattern. The microstructures in resist polymer can be then revealed using a chemical developer that removes exposed resist, while leaving unexposed resist unaffected. In our system the size of the rectangular beam spot is programmably defined by two L-shaped tantalum blades with well-polished edges. This allows rapid exposure of entire rectangular pattern elements up to 500 × 500 μm in one step. By combining different dimensions of the defining aperture with the sample movements relative to the beam spot, entire fluidic patterns with large reservoirs and narrow flow channels can be written over large areas in short time. Fluidic patterns were written in PMMA using 56 MeV 14N3+ and a 3 MeV 4He2+ beams from K130 cyclotron and a 1.7 MV Pelletron accelerators, respectively, at the University of Jyväskylä Accelerator Laboratory. The patterns were characterized using SEM, and the factors affecting patterns quality are discussed.

  8. Ion shaking in the 200 MeV XLS-ring

    SciTech Connect

    Bozoki, E.; Kramer, S.L.

    1992-12-31

    It has been shown that ions, trapped inside the beam`s potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 Mev XLS ring. The design of the ion clearing system for the ring and the first results obtained, were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H{sub 2} to CO{sub 2}) bounce frequencies in the ring (1--10 MHz). The response of the beam size, vertical betatron tune and lifetime was studied.

  9. Ion shaking in the 200 MeV XLS-ring

    SciTech Connect

    Bozoki, E.; Kramer, S.L.

    1992-01-01

    It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 Mev XLS ring. The design of the ion clearing system for the ring and the first results obtained, were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H[sub 2] to CO[sub 2]) bounce frequencies in the ring (1--10 MHz). The response of the beam size, vertical betatron tune and lifetime was studied.

  10. Ion shaking in the 200 MeV XLS-ring

    NASA Astrophysics Data System (ADS)

    Bozoki, E.; Kramer, S. L.

    1992-03-01

    It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 MeV XLS ring. The design of the ion clearing system for the ring and the first results obtained were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H2 to CO2) bounce frequencies in the ring (1-10 MHz). The response of the beam size, vertical betatron tune, and lifetime was studied.

  11. Acceleration of Solar Wind Ions to 1 Mev by Electromagnetic Moguls in the Foreshock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Strumik, M.; Markidis, S.; Eliasson, B.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients (divergence) of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal, basic mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas.

  12. Thorium and uranium M-shell x-ray production cross sections for 0.4--4.0 MeV protons, 0.4--6.0 MeV helium ions, 4.5--11.3 mev carbon ions, and 4.5--13.5 MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Phinney, Lucas C.

    The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4--4.0 MeV, helium ions of energy 0.4--6.0 MeV, carbon ions of energy 4.5--11.3 MeV and oxygen ions of energy 4.5--13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4-O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.

  13. Impurity/defect interactions during MeV Si{sup +} ion implantation annealing

    SciTech Connect

    Agarwal, A.; Koveshnikov, S.; Christensen, K.

    1995-08-01

    Ion implantation of dopant atoms at MeV energies is currently being explored in several integrated circuit device manufacturing processes. MeV implantation offers immediate advantages such as vertical well modulation, latch-up protection, device structure isolation, and reduced temperature processing. Simultaneously, it presents an opportunity to achieve {open_quotes}proximity{close_quotes} gettering of impurities from the active device region by placing high impurity solubility and/or secondary defect gettering sites within microns of the surface. If the MeV implanted species is a dopant ion, all three gettering mechanisms, i.e, segregation, relaxation and injection, can be involved in the gettering process, complicating the analysis and optimization of the process. However, investigation of gettering using non-dopant Si{sup +} ion damage allows the relaxation component of the gettering process to be isolated and examined separately. In general, gettering is verified by a reduction in impurity concentration in the region of interest, usually the device region, and/or a build-up of concentration/precipitation in a non-device sink region. An alternate and more meaningful approach is to use simple devices as materials characterization probes via changes in the electrical activity of the gettering sites. Device space charge probes also allow the evolution of the defect sites upon contamination to be tracked. We report here results of the electrical, structural, and chemical characterization of MeV implanted Si{sup +} damage using Deep Level Transient Spectroscopy (DLTS), Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectroscopy (SIMS). The damage has been characterized both as a function of annealing from 600 to 1100{degrees}C for 1 hr, and after contamination with Fe followed by low temperature gettering annealing.

  14. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  15. Conducting Ni nanoparticles in an ion-modified polymer

    SciTech Connect

    Sze, J.Y.; Tay, B.K.; Pakes, C.I.; Jamieson, D.N.; Prawer, S.

    2005-09-15

    Conductive-atomic force microscopy has been used to perform nanoscale current imaging of Ni-ion-implanted polythylene terephthlate films. A reduction in bulk sheet resistivity, as the Ni dose is increased, is found to be accompanied by an evolution in local conductivity from a spatially homogeneous insulator to an interconnected network of conducting Ni crystallites. The crystallites have a mean dimension of 12.3 nm, confirmed by x-ray-diffraction analysis.

  16. Measurement of 181 MeV H- ions stripping cross-sections by carbon stripper foil

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Yoshimoto, M.; Yamazaki, Y.; Hotchi, H.; Harada, H.; Okabe, K.; Kinsho, M.; Irie, Y.

    2015-03-01

    The stripping cross-sections of 181 MeV H- (negative hydrogen) ions by the carbon stripper foil are measured with good accuracy. The present experiment was carried out at the 3-GeV RCS (Rapid Cycling Synchrotron) of J-PARC (Japan Proton Accelerator Research Complex). The stripping cross-sections for different charge states, also known as electron loss cross-sections of H- ion, are denoted as σ-11, σ-10 and σ01, for both electrons stripping (H- →H+), one-electron stripping (H- →H0) and the 2nd-electron stripping (H0 →H+) proceeding σ-10, respectively. We have established very unique and precise techniques for such measurements so as also to determine a foil stripping efficiency very accurately. The cross-sections σ-11, σ-10 and σ01 are obtained to be (0.002 ± 0.001) ×10-18cm2, (1.580 ± 0.034) ×10-18cm2 and (0.648 ± 0.014) ×10-18cm2, respectively. The presently given cross-sections are newly available experimental results for an incident H- energy below 200 MeV and they are also shown to be consistent with recently proposed energy (1 /β2) scaled cross-sections calculated from the previously measured data at 200 and 800 MeV. The present results have a great importance not only at J-PARC for the upgraded H- beam energy of 400 MeV but also for many new and upgrading similar accelerators, where H- beam energies in most cases are considered to be lower than 200 MeV.

  17. MeV ion beam lithography of biocompatible halogenated Parylenes using aperture masks

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Norarat, Rattanaporn; Roccio, Marta; Jeanneret, Patrick; Guibert, Edouard; Bergamin, Maxime; Fiorucci, Gianni; Homsy, Alexandra; Laux, Edith; Keppner, Herbert; Senn, Pascal

    2015-07-01

    Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1 ×1013 - 1 ×1016 1 MeV 16O+ ions cm-2) through aperture masks under high vacuum and a low pressure (<10-3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.

  18. Imaging of single cells and tissue using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Bettiol, A. A.; van Kan, J. A.; Ynsa, M. D.; Minqin, Ren; Rajendran, R.; Huifang, Cui; Fwu-Shen, Sheu; Jenner, A. M.

    2009-06-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  19. Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni, and Xe ions

    NASA Astrophysics Data System (ADS)

    Mejía, C.; Bender, M.; Severin, D.; Trautmann, C.; Boduch, Ph.; Bordalo, V.; Domaracka, A.; Lv, X. Y.; Martinez, R.; Rothard, H.

    2015-12-01

    Solid carbon dioxide (CO2) is found in several bodies of the solar system, the interstellar medium (ISM) and young stellar objects, where it is exposed to cosmic and stellar wind radiation. Here, the chemical and physical modifications induced by heavy ion irradiation of pure solid CO2 at low temperature (T = 15-30 K) are analyzed. The experiments were performed with Ti (550 MeV) and Xe (630 MeV) ions at the UNILAC of GSI/Darmstadt and with Ni ions (46 and 52 MeV) at IRRSUD of GANIL/Caen. The evolution of the thin CO2 ice films (deposited on a CsI window) was monitored by mid-infrared absorption spectroscopy (FTIR). The dissociation rate of CO2, determined from the fluence dependence of the IR absorption peak intensity, is found to be proportional to the electronic stopping power Se. We also confirm that the sputtering yield shows a quadric increase with electronic stopping power. Furthermore, the production rates of daughter molecules such as CO, CO3 and O3 were found to be linear in Se.

  20. MeV ion beam interaction with polymer films containing cross-linking agents

    SciTech Connect

    Evelyn, A. L.

    1999-06-10

    Polymer films containing cross linking enhancers were irradiated with MeV alpha particles to determine the effects of MeV ion beam interaction on these materials. The contributed effects from the electronic and nuclear stopping powers were separated by irradiating stacked thin films of polyvinyl chloride (PVC), polystyrene (PS) and polyethersulfone (PES). This layered system allowed most of the effects of the electronic energy deposited to be experienced by the first layers and the last layers to receive most of the effects of the nuclear stopping power. RGA, Raman microprobe analysis, RBS and FTIR measured changes in the chemical structures of the irradiated films. The characterization resolved the effects of the stopping powers on the PVC, PS and PES and the results were compared with those from previously studied polymers that did not contain any cross linking agents.

  1. Ion scattering experiment on Ni(110) surface

    SciTech Connect

    Nicholas, B.; Rambabu, B.; Collins, W.E.

    1986-01-01

    Light emission from excited neutral scattered Ne and sputtered Ni were investigated using the LEIS method. A 5-keV Ne/sup +/ beam was used to bombard a Ni(110) surface. Results of the light emission data is presented and compared with neutral production of Ne. 4 refs., 3 figs.

  2. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Weber, William J.

    2012-09-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions inmatter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Over-estimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  3. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Pastuovic, Z.; Breese, M. B. H.; Garcia Lopez, J.; Jaksic, M.; Raisanen, J.; Siegele, R.; Simon, A.; Vizkelethy, G.

    2016-04-01

    This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  4. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGESBeta

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  5. New source of MeV negative ion and neutral atom beams.

    PubMed

    Ter-Avetisyan, S; Braenzel, J; Schnürer, M; Prasad, R; Borghesi, M; Jequier, S; Tikhonchuk, V

    2016-02-01

    The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities. PMID:26932016

  6. New source of MeV negative ion and neutral atom beams

    NASA Astrophysics Data System (ADS)

    Ter-Avetisyan, S.; Braenzel, J.; Schnürer, M.; Prasad, R.; Borghesi, M.; Jequier, S.; Tikhonchuk, V.

    2016-02-01

    The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  7. A gas ionisation Direct-STIM detector for MeV ion microscopy

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-04-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger-Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas.

  8. Engineering study of a 10 MeV heavy ion linear accelerator

    SciTech Connect

    Fong, C.G.; Fessenden, T.J.; Fulton, R.L.; Keefe, D.

    1989-03-01

    LBL's Heavy Ion Fusion Accelerator Research group has completed the engineering study of the Induction Linac Systems Experiment (ILSE). ILSE will address nearly all accelerator physics issues of a scaled heavy ion induction linac inertial fusion pellet driver. Designed as a series of subsystem experiments, ILSE will accelerate 16 parallel carbon ion beams from a 2 MeV injector presently under development to 10 MeV at one ..mu..sec. This overview paper will present the physics and engineering requirements and describe conceptual design approaches for building ILSE. Major ILSE subsystems consist of electrostatic focusing quadrupole matching and accelerating sections, a 16 to 4 beam transverse combining section, a 4 beam magnetic focusing quadrupole accelerating section, a single beam 180 degree bend section, a drift compression section and a final focus and target chamber. These subsystems are the subject of accompanying papers. Also discussed are vacuum and alignment, diagnostics/data acquisition and controls, key conclusions and plans for further development. 10 refs., 4 figs., 1 tab.

  9. Whole cell structural imaging at 20 nanometre resolutions using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Chen, X.; Chen, C.-B.; Udalagama, CNB; van Kan, J. A.; Bettiol, A. A.

    2013-07-01

    MeV proton and alpha (helium ion) particle beams can now be focused to 20 nm spot sizes, and ion/matter simulations using the DEEP computer code show that these resolutions are maintained through the top micrometre or so of organic material. In addition, the energy deposition profiles of the transmitted ions are laterally constrained to a few nanometers from the initial ion path. This paves the way for high resolution structural imaging of relatively thick biological material, e.g. biological cells. Examples are shown of high resolution structural imaging of whole biological cells (MRC5) using on-axis scanning transmission ion microscopy (STIM). Nanoparticles have the ability to cross the cell membrane, and may therefore prove useful as drug delivery probes. We show that the combination of on-axis STIM for imaging the cell interior, and off-axis STIM for imaging gold nanoparticles with enhanced contrast within the cell, represents a powerful set of ion beam techniques for tracking gold nanoparticles in biological cells. Whole cell imaging at high spatial resolutions represents a new area for nuclear microprobes.

  10. Long pulse H- ion beam acceleration in MeV accelerator.

    PubMed

    Taniguchi, M; Mizuno, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Kojima, A; Tanaka, Y; Dairaku, M; Hanada, M; Sakamoto, K; Inoue, T

    2010-02-01

    A multiaperture multigrid accelerator called "MeV accelerator" has been developed for neutral beam injection system of international thermonuclear experimental reactor. In the present work, long pulse H(-) ion beam acceleration was performed by the MeV accelerator equipped with new water-cooled grids. At present, the pulse length was extended to 5 s for the beams of 750 keV, 221 mA, and 10 s for the beams of 600 keV, 158 mA. Energy density, defined as products of beam energy (keV), current (mA), and pulse (s) divided by aperture area (m(2)), increased more than one order of magnitude higher compared with original MeV accelerator without water cooling in its grids. At higher energy and current, the grid was melted by beam deflection. Due to this grid melting, breakdowns occurred between the grids, and hence, the pulse length was limited. Beam deflection will be compensated by aperture displacement in next experiment. PMID:20192408

  11. Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl7+ beam

    NASA Astrophysics Data System (ADS)

    Jeromel, Luka; Siketić, Zdravko; Ogrinc Potočnik, Nina; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Pelicon, Primož

    2014-08-01

    Particle induced X-ray emission (PIXE) at microprobe of Jožef Stefan Institute is used to measure two-dimensional quantitative elemental maps of biological tissue. To improve chemical and biological understanding of the processes in vivo, supplementary information about chemical bonding and/or molecular distributions could be obtained by heavy-ion induced molecular desorption and a corresponding mass spectroscopy with Time-Of-Flight (TOF) mass spectrometer. As the method combines the use of heavy focused ions in MeV energy range and TOF Secondary Ion Mass Spectrometry, it is denoted as MeV SIMS. At Jožef Stefan Institute, we constructed a linear TOF spectrometer and mount it to our multipurpose nuclear microprobe. A beam of 8 MeV 35Cl7+ could be focused to a diameter of better than 3 μm × 3 μm and pulsed by electrostatic deflection at the high-energy side of accelerator. TOF mass spectrometer incorporates an 1 m long drift tube and a double stack microchannel plate (MCP) as a stop detector positioned at the end of the drift path. Secondary ions are focused at MCP using electrostatic cylindrical einzel lens. Time of flight spectra are currently acquired with a single-hit time-to-digital converter. Pulsed ion beam produces a shower of secondary ions that are ejected from positively biased target and accelerated towards MCP. We start our time measurement simultaneously with the start of the beam pulse. Signal of the first ion hitting MCP is used to stop the time measurement. Standard pulses proportional to the time of flight are produced with time to analog converter (TAC) and fed into analog-to-digital converter to obtain a time histogram. To enable efficient detection of desorbed fragments with higher molecular masses, which are of particular interest, we recently implemented a state-of art Field Programmable Gate Array (FPGA)-based multi-hit TOF acquisition. To test the system we used focused 8 MeV 35Cl7+ ion beam with pulse length of 180 ns. Mass resolution

  12. Formation of diamond in carbon onions under MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Wesolowski, P.; Lyutovich, Y.; Banhart, F.; Carstanjen, H. D.; Kronmüller, H.

    1997-10-01

    Spherical carbon onions are generated by irradiating graphitic carbon soot with Ne+ ions of 3 MeV energy. Under continued irradiation, a transformation of their cores to cubic diamond crystals is observed. In comparison to earlier electron irradiation experiments, the yield of diamond is much higher. The output of the irradiation experiment is characterized by electron microscopy and electron energy loss spectroscopy. Knock-on displacements of carbon atoms by Ne+ ions are assumed to be responsible for a self-compression of the onions, leading to the nucleation of diamond in their cores. The increased diamond yield is explained by the higher displacement cross-section, the higher energy transfer, and the higher total beam current on the specimen.

  13. Optical and structural properties of 100 MeV Fe9+ ion irradiated InP

    NASA Astrophysics Data System (ADS)

    Dubey, R. L.; Dubey, S. K.; Bodhane, S. P.; Kanjilal, D.

    2016-05-01

    Single crystal InP samples were irradiated with 100 MeV Fe9+ ions for ion fluences 1x1012 and 1x1013 cm-2. Optical properties of irradiated InP was investigated by Spectroscopic Ellipsometry and UV-VIS-NIR spectroscopy. The optical parameters like, refractive index, extinction coefficient, absorption coefficient is found to be fluence dependent near the surface as well as near the projected range. Small change in the optical parameters near the surface region as investigated by Spectroscopic Ellipsometry indicatesthat the surfaces of irradiated InP are similar to non-irradiated InP. This is also supported by RBS/C measurements. The UV-VIS-NIR study revealed the decrease in the band gap and increase in the defect concentration in the irradiated sample as a result of nuclear energy loss.

  14. Formation of diamond in carbon onions under MeV ion irradiation

    SciTech Connect

    Wesolowski, P.; Lyutovich, Y.; Banhart, F.; Carstanjen, H.D.; Kronmueller, H.

    1997-10-01

    Spherical carbon onions are generated by irradiating graphitic carbon soot with Ne{sup +} ions of 3 MeV energy. Under continued irradiation, a transformation of their cores to cubic diamond crystals is observed. In comparison to earlier electron irradiation experiments, the yield of diamond is much higher. The output of the irradiation experiment is characterized by electron microscopy and electron energy loss spectroscopy. Knock-on displacements of carbon atoms by Ne{sup +} ions are assumed to be responsible for a self-compression of the onions, leading to the nucleation of diamond in their cores. The increased diamond yield is explained by the higher displacement cross-section, the higher energy transfer, and the higher total beam current on the specimen. {copyright} {ital 1997 American Institute of Physics.}

  15. Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.

    1989-01-01

    Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.

  16. Electric-field-induced electron detachment of 800-MeV H{sup {minus}} ions

    SciTech Connect

    Keating, P.B.; Gulley, M.S.; Bryant, H.C.; MacKerrow, E.P.; Miller, W.A.; Rislove, D.C.; Cohen, S.; Donahue, J.B.; Fitzgerald, D.H.; Funk, D.J.; Frankle, S.C.; Hutson, R.L.; Macek, R.J.; Plum, M.A.; Stanciu, N.G.; van Dyck, O.B.; Wilkinson, C.A.

    1995-12-01

    The lifetime of 800-MeV H{sup {minus}} ions against electron detachment in a static electric field was measured over a range of eight orders of magnitude in experiments at the High Resolution Atomic Beam Facility of the Los Alamos Meson Physics Facility. The ions traversed a linear gradient magnetic field of 1.3-T peak strength resulting in a 6-MV/cm peak rest-frame electric field capable of stripping a large fraction of H{sup {minus}} ions. The unstripped H{sup {minus}} ions, neutral H{sup 0} atoms, and protons were detected 5.5 m from the magnet. This spectrum was analyzed to determine the lifetime of the H{sup {minus}} ion versus electric-field strength and the results were compared with previous studies. Three parametrizations of the lifetime formula based on an existing theory were used to calculate the stripping probability. The data were fit to the lifetime formula and good agreement with theoretical predictions was found. Finally, a possible experiment for observing excited states of H{sup {minus}} is briefly discussed.

  17. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    SciTech Connect

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Ni$_{50}$Co$_{50}$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.

  18. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  19. Strong enhancement of dynamical emission of heavy fragments in the neutron-rich {sup 124}Sn+{sup 64}Ni reaction at 35A MeV

    SciTech Connect

    Russotto, P.; Amorini, F.; Cavallaro, S.; Di Toro, M.; Giustolisi, F.; Porto, F.; Rizzo, F.; De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Piasecki, E.; Auditore, L.; Trifiro, A.; Trimarchi, M.

    2010-06-15

    A quantitative comparison is made between the absolute cross sections associated with statistical and dynamical emission of heavy fragments in the {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni collisions experimentally investigated at 35A MeV beam energy using the multidetector CHIMERA. The result shows that the dynamical process is about twice as probable in the neutron-rich {sup 124}Sn+{sup 64}Ni system as in the {sup 112}Sn+{sup 58}Ni neutron-poor one. This unexpected and significant difference indicates that the reaction mechanism is strongly dependent on the entrance-channel isospin (N/Z) content.

  20. Effects of swift heavy ion irradiation and thermal annealing on nearly immiscible W/Ni multilayer structure

    NASA Astrophysics Data System (ADS)

    Bagchi, Sharmistha; Potdar, Satish; Singh, F.; Lalla, N. P.

    2007-10-01

    The effect of 120 MeV Au9+ ion irradiation and thermal annealing on [W(25 Å)/Ni(25 Å)]×10 multilayers, grown on float-glass and silicon substrates, has been studied. Wide-angle x-ray diffraction studies of pristine, as well as irradiated W/Ni multilayers, show deterioration of the superlattice structure, but x-ray reflectivity (XRR) studies reveal a nearly unaffected multilayer structure. Analysis of the XRR data using "Parratt's formalism" does show a significant increase of W/Ni interface roughness. The observed differences in wide-angle and low-angle scattering results of the irradiated W/Ni multilayers suggest significant difference in the interlayer and intralayer mixing induced by swift heavy ion irradiation. XRR results also reveal the fluence dependence of layer densification. Plane, as well as cross-sectional transmission electron microscopy, carried out in imaging and diffraction modes very clearly shows that at higher fluence the intralayer microstructure becomes nanocrystalline (1-2 nm) and at some places amorphous too. But, the definition of the W and Ni layers still remains intact. This has been understood in terms of competition between low miscibility at the W/Ni interface and ion-beam mixing kinetics.

  1. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  2. Mass and charge transfer in the heavy ion reactions 208Ni and 208Ni

    NASA Astrophysics Data System (ADS)

    Sapotta, K.; Bass, R.; Hartmann, V.; Noll, H.; Renfordt, R. E.; Stelzer, K.

    1985-04-01

    Target-like reaction products corresponding to the transfer of one or several nucleons have been measured as a function of the total kinetic energy loss in the reactions 208Ni (1215 MeV) and 208Ni (1107 MeV) with a focusing time-of-flight spectrometer which provided a unique mass and charge separation and good energy resolution. The analysis of the experimental data covered the range from elastic scattering to deep-inelastic collisions. In the quasielastic region, neutron transfer dominates. The transfer probabilities as a function of the distance of closest approach can be described by a semiclassical theory of tunneling. Quasielastic transfer from the Ni targets to the 208Pb projectile is strongly inhibited by the reaction Q values. For the intermediate and deep-inelastic collisions, the mean values and variances of the mass and charge distributions as a function of the dissipated energy, as well as the correlations between neutron and proton transport, are discussed in a statistical diffusion theory. The important influence of the static potential energy surface on nucleon transport in the deep-inelastic region is demonstrated. Deviations from the simple diffusion model, observed at small to medium energy losses, are discussed.

  3. The Energy Loss of Li and C Ions with MeV Energies in the Polycarbonate and Polypropylene

    SciTech Connect

    Miksova, R.; Mackova, A.; Hnatowicz, V.

    2011-12-13

    Stopping power and straggling of Li ions and C ions at mean energy 3.8-5.4 MeV and 5.6-6.9 MeV, respectively, in polycarbonate (PC) and at mean energy 3.7-5.2 MeV and 6.8-8.0 MeV in polypropylene (PP) foils have been measured using ion beams from a Tandetron 4130 MC accelerator. The ions scattered from a thin, primary gold target were registered by a surface barrier detector partially covered with a thin foil of the investigated polymer. The stopping power was determined from the energy difference between the signals from the ions directly backscattered from the Au layer and the ions backscattered and slowed down in the foil. The foil thickness was determined by the weighing procedure. The experimentally determined stopping powers were compared with those calculated with the SRIM 2010 code. The measured stopping powers are in good agreement for Li and C in PC, the differences being within 0.1-1.6% for Li and 0.2-2.1% for C. For Li and C in PP, the stopping powers are lower than the calculated ones, the differences being within 0.5-2.8% for Li and 3.6-6.1% for C. The energy straggling was determined from the width of the RBS signals. The experimentally determined energy straggling was found to fluctuate around the values calculated according to Bohr theory.

  4. Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.

  5. Gas Desorption and Electron Emission from 1 MeV Potassium Ion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A W; Covo, M K; Bieniosek, F M; Prost, L; Seidl, P A; Baca, D; Coorey, A; Sakumi, A

    2004-07-19

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub sigma} were much larger, of order {gamma}{sub sigma} = 104. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to 230 had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  6. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGESBeta

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  7. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  8. Preparation of C/Ni-NiO composite nanofibers for anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chenghao; Lu, Weili; Li, Yu; Feng, Yiyu; Feng, Wei; Zhao, Yunhui; Yuan, Xiaoyan

    2013-11-01

    Carbon nanofibers (CNFs) embedded with various amounts of Ni and NiO nanoparticles (C/Ni-NiO) were prepared by electrospinning of polyacrylonitrile (PAN), followed by heat treatment. The structure and composition of the obtained C/Ni-NiO composite nanofibers were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results suggested that the morphology, nanofiber diameter, and the content of the Ni-NiO nanoparticles in the CNFs were controlled by different amounts of nickel acetate added into the PAN. The electrochemical measurements of a charge/discharge experiment and a cyclic voltammetry test indicated that the content and the size of Ni-NiO nanoparticles embedded in the CNFs had a great influence on the electrochemical performance of lithium-ion batteries. CNFs embedded with a certain content of Ni-NiO nanoparticles as binder-free anodes for rechargeable lithium-ion batteries exhibited improved electrochemical performance, including high reversible capacities, good capacity retention, and stable cycling performance. This is mainly ascribed to the formation of a well-distributed Ni-NiO nanoparticle structure and the buffering role of the carbon nanofiber matrix, together with the high theoretical capacity of NiO and the increase in electrode connectivity caused by the formation of electrochemically inactive Ni nanoparticles.

  9. On the Metastable Level in Ni-like Ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V; Terracol, S; Safronova, U I

    2004-09-14

    The lowest excited level in Ni-like ions, 3d{sup 9}4s {sup 3}D{sub 3}, decays only via a magnetic octupole (M3) decay. They present calculated values of transition wavelengths and rates for ions with 30 {le} Z {le} 100. They have observed this line in Xe{sup 26+}, using the Livermore EBIT-I electron beam ion trap and a microcalorimeter, as well as a high-resolution flat-field grating spectrometer.

  10. Swift heavy ion induced surface modification for tailoring coercivity in Fe-Ni based amorphous thin films

    SciTech Connect

    Thomas, Senoy; Thomas, Hysen; Anantharaman, M. R.; Avasthi, D. K.; Tripathi, A.; Ramanujan, R. V.

    2009-02-01

    Fe-Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag{sup 8+} ions at room temperature with fluences ranging from 1x10{sup 12} to 3x10{sup 13} ions/cm{sup 2} using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion (SHI) bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism.

  11. Stopping cross sections for 0.25-3.0-MeV He-4 ions in cadmium sulfide

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Hutchby, J. A.

    1975-01-01

    Stopping cross sections of He-4 ions with energies between 0.25 and 3.0 MeV have been measured for cadmium sulfide with a probable error of plus or minus 7% to 8%. The experimental method utilized the Rutherford backscattering technique and measured the energy loss of elastically scattered He-4 ions from films of cadmium sulfide sputtered on carbon substrates. The experimental data are compared with recent experimental and theoretical results.

  12. L-shell x-ray production cross sections of Ni, Cu, Ge, As, Rb, Sr, Y, Zr, and Pd by (0.25-2.5)-MeV protons

    NASA Astrophysics Data System (ADS)

    Duggan, J. L.; Kocur, P. M.; Price, J. L.; McDaniel, F. D.; Mehta, R.; Lapicki, G.

    1985-10-01

    L-shell x-ray production cross sections by 11H+ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were 28Ni, 29Cu, 32Ge, 33As, 37Rb, 38Sr, 39Y, 40Zr, and 46Pd. The first Born theory generally agrees with the data found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.

  13. Resistance of (Fe, Ni)/sub 3/V long-range-ordered alloys to neutron and ion irradiation

    SciTech Connect

    Braski, D.N.

    1981-01-01

    A series of (Fe, Ni)/sub 3/V long-range-ordered alloys were irradiated with neutrons in the Oak Ridge Research Reactor (ORR) and with 4 MeV Ni ions at temperatures above 250/sup 0/C. The displacement damage levels for the two irradiations were 3.8 and 70 dpa, and the helium levels were 29 and 560 at. ppM, respectively. Irradiation in ORR generally increased the yield strength and lowered the ductility of an LRO alloy, but produced relatively little swelling. The LRO alloys retained their long-range order after ion irradiation below the critical ordering temperature, T/sub c/, and exhibited low swelling. Above T/sub c/ the alloys were disordered and showed greater swelling. Adjustment of alloy composition to prevent sigma phase formation reduced swelling.

  14. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  15. Damage accumulation in MgO irradiated with MeV Au ions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Bachiller-Perea, Diana; Debelle, Aurélien; Thomé, Lionel; Behar, Moni

    2016-09-01

    The damage accumulation process in MgO single crystals under medium-energy heavy ion irradiation (1.2 MeV Au) at fluences up to 4 × 1014 cm-2 has been studied at three different temperatures: 573, 773, and 1073 K. Disorder depth profiles have been determined through the use of the Rutherford backscattering spectrometry in channeling configuration (RBS/C). The analysis of the RBS/C data reveals two steps in the MgO damage process, irrespective of the temperature. However, we find that for increasing irradiation temperature, the damage level decreases and the fluence at which the second step takes place increases. A shift of the damage peak at increasing fluence is observed for the three temperatures, although the position of the peak depends on the temperature. These results can be explained by an enhanced defect mobility which facilitates defect migration and may favor defect annealing. X-ray diffraction reciprocal space maps confirm the results obtained with the RBS/C technique.

  16. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states. PMID:26724017

  17. 84 MeV C-ions irradiation effects on Zr-45Ti-5Al-3V alloy

    NASA Astrophysics Data System (ADS)

    Wang, Weipeng; Li, Zhengcao; Zhang, Zhengjun; Zhang, Chonghong

    2014-09-01

    Newly developed Zr-45Ti-5Al-3V alloy were irradiated by 84 MeV carbon ions with doses of 4 * 1015 ions/cm2 and 12 * 1015 ions/cm2, respectively. XRD, SEM, TEM, SAD and tensile tests were performed to study the microstructural evolution and mechanical properties modification upon high energy carbon ion irradiation. XRD patterns show no phase change while the diffraction peak position and intensity vary with irradiation doses. Tensile tests verify monotonic change of alloy strengths and elongations upon irradiation. Microstructure observations of the irradiated samples reveal the irradiation-induced precipitation of (Zr,Ti)3C2, which was believed contributing to the alloy hardening. Superlattice was discovered by the SAD patterns of original and irradiated samples and the high energy C-ions implantation was demonstrated to promote the disorder-order transition by introducing lattice defects.

  18. Acceleration of solar wind ions to 1 MeV by electromagnetic structures upstream of the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Markidis, S.; Eliasson, B.; Strumik, M.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.

  19. Radiation hardness of n-type SiC Schottky barrier diodes irradiated with MeV He ion microbeam

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Capan, Ivana; Cohen, David D.; Forneris, Jacopo; Iwamoto, Naoya; Ohshima, Takeshi; Siegele, Rainer; Hoshino, Norihiro; Tsuchida, Hidekazu

    2015-04-01

    We studied the radiation hardness of 4H-SiC Schottky barrier diodes (SBD) for the light ion detection and spectroscopy in harsh radiation environments. n-Type SBD prepared on nitrogen-doped (∼4 × 1014 cm-3) epitaxial grown 4H-SiC thin wafers have been irradiated by a raster scanning alpha particle microbeam (2 and 4 MeV He2+ ions separately) in order to create patterned damage structures at different depths within a sensitive volume of tested diodes. Deep Level Transient Spectroscopy (DLTS) analysis revealed the formation of two deep electron traps in the irradiated and not thermally treated 4H-SiC within the ion implantation range (E1 and E2). The E2 state resembles the well-known Z1/2 center, while the E1 state could not be assigned to any particular defect reported in the literature. Ion Beam Induced Charge (IBIC) microscopy with multiple He ion probe microbeams (1-6 MeV) having different penetration depths in tested partly damaged 4H-SiC SBD has been used to determine the degradation of the charge collection efficiency (CCE) over a wide fluence range of damaging alpha particle. A non-linear behavior of the CCE decrease and a significant degradation of the spectroscopic performance with increasing He ion fluence were observed above the value of 1011 cm-2.

  20. Charge changing cross-sections for 300 A MeV Fe{sup 26+} ion beam in Al target

    SciTech Connect

    Gupta, Renu; Kumar, Ashavani

    2013-06-03

    In the present study, total and partial charge changing cross-sections of 300 A MeV Fe{sup 26+} ion beam in Al target were measured. The CR39 nuclear track detectors were used to identify the incident charged particles and their fragments using an automated image analyzer system installed with Leica QWin Plus software. The measured value of the total charge changing cross-section is {sigma}{sub tot}= (1663 {+-} 236) mb.

  1. Large pre-equilibrium contribution in {alpha}+{sup nat}Ni interactions at {approx_equal}8-40 MeV

    SciTech Connect

    Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Singh, Devendra P.; Unnati,; Singh, B. P.; Prasad, R.; Musthafa, M. M.

    2008-10-15

    To investigate pre-equilibrium emission of light nuclear particle(s), an experiment has been performed using {alpha} beams at the Variable Energy Cyclotron Center (VECC), Kolkata, India. In the present work, excitation functions for {sup 58}Ni({alpha},p){sup 61}Cu,{sup 58}Ni({alpha},pn){sup 60}Cu,{sup 60}Ni({alpha},p2n){sup 61}Cu,{sup 60}Ni({alpha},n){sup 63}Zn,{sup 60}Ni({alpha},2n) {sup 62}Zn,{sup 61}Ni({alpha},3n){sup 62}Zn, and {sup 61}Ni({alpha},2n){sup 63}Zn reactions have been measured by using the stacked foil activation technique followed by off-line {gamma}-ray spectroscopy. Experimentally measured excitation functions have been compared with the prediction of the theoretical model code ALICE-91 with and/or without the inclusion of pre-equilibrium emission. Analysis of the data suggests that an admixture of both equilibrium and pre-equilibrium emission is needed to reproduce experimental data at energies {approx_equal}8-40 MeV and reveals significant contribution from pre-equilibrium emission. An attempt has also been made to estimate the pre-equilibrium contribution, which has been found to depend on projectile energy and on number of emitted particle(s)

  2. Convoy electrons emitted by 2-MeV He + ions at grazing incidence on KCl(0 0 1)

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Nakamoto, A.; Suzuki, M.; Kimura, K.

    2006-07-01

    Convoy electrons produced during grazing angle scattering of 2-MeV He + ions at a clean (0 0 1) surface of KCl are measured to see the effect of the surface track potential. The measurement is performed at 230 °C with a beam current far below 1 pA to avoid macroscopic charging. The observed convoy electron energy coincides with the energy of the electron isotachic to the incident ion. This suggests that the effect of the surface track potential is accidentally cancelled out by the surface wake potential.

  3. Long pulse acceleration of MeV class high power density negative H- ion beam for ITER

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-01

    R&D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H- ion beam acceleration up to 1 MeV with 200 A/m2 for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m2 of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  4. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  5. Oxidation of ion-implanted NiAl

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.

    1994-12-31

    The oxidation of NiAl is complicated by the formation of transient alumina phases which result in convoluted scales which are prone to spallation. We have investigated high-dose implantation of oxygen as a technique for forming a protective oxide layer on the surface of NiAl and thereby bypassing the conditions that lead to transient oxide formation. Single crystal specimens of high purity NiAl were implanted with 1 {times} 10{sup 18} {sup 18}O ions/cm{sup 2} at 160 keV. Implanted specimens were annealed for times ranging from 5 to 60 minutes in a reducing atmosphere. Oxidation experiments were conducted for periods ranging from 1 hour to 42 hours under both cyclic and isothermal conditions. Specimens in the as-implanted, annealed, and oxidized conditions were examined using Auger electron microscopy. Oxygen implantation followed by annealing was found to form an epitaxial oxide layer. This layer is stable for the duration of the oxidation experiments conducted in this study, and was found to result in reduced oxidation and improved resistance to scale spallation.

  6. Cross sections of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction at 4.0, 5.0, and 6.0 MeV

    SciTech Connect

    Zhang Guohui; Liu Jiaming; Wu Hao; Liu Xiang; Chen Jinxiang; Gledenov, Yu. M.; Sedysheva, M. V.; Stolupin, V. A.; Khuukhenkhuu, G.; Szalanski, P. J.

    2010-11-15

    Experimental cross section data of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction are very scanty because the residual nucleus {sup 64}Ni is stable and the commonly used activation method is not feasible. As a result, very large deviations (about 10 times) exist among different nuclear data libraries. In the present work, cross sections of the partial {sup 67}Zn(n,{alpha}{sub 0}){sup 64}Ni and total {sup 67}Zn(n,{alpha}){sup 64}Ni reactions are measured at neutron energies of 4.0 and 5.0 MeV for the first time, and those of 6.0 MeV are remeasured for consistency checking. A twin-gridded ionization chamber was used as the charged-particle detector and two enriched back-to-back-set {sup 67}Zn samples were adopted. Experiments were performed at the 4.5 MV Van de Graaff Accelerator of Peking University. Neutrons were produced through the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target. Absolute neutron flux was determined by counting the fission fragments from a {sup 238}U sample placed inside the gridded ionization chamber while a BF{sub 3} long counter was employed as neutron flux monitor. Present data are compared with results of previous measurements, evaluations, and talys code calculations.

  7. Isobaric yield ratio difference between the 140 A MeV 58Ni + 9Be and 64Ni +9Be reactions studied by the antisymmetric molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Qiao, C. Y.; Wei, H. L.; Ma, C. W.; Zhang, Y. L.; Wang, S. S.

    2015-07-01

    Background: The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. Purpose: An investigation is performed to study the IBD results in the transport model. Methods: The antisymmetric molecular dynamics (AMD) model plus the sequential decay model gemini are adopted to simulate the 140 A MeV 58 ,64Ni +9Be reactions. A relative small coalescence radius Rc= 2.5 fm is used for the phase space at t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b 1 =0 -2 fm and b 2 =0 -9 fm) are used to study the effect of central collisions in IBD. Results: The isobaric yield ratios (IYRs) for the large-A fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron excess I = 0 and 1 are obtained. A small difference is found in the IBDs with the b 1 and b 2 limitations in the AMD simulated reactions. The IBD with b 1 and b 2 are quite similar in the AMD + GEMINI simulated reactions. Conclusions: The IBDs for the I =0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.

  8. Ion Beam Induced Charge Collection (IBICC) from Integrated Circuit Test Structures Using a 10 MeV Carbon Microbeam

    SciTech Connect

    Aton, T.J.; Doyle, B.L.; Duggan, J.L.; El Bouanani, M.; Guo, B.N.; McDaniel, F.D.; Renfrow, S.N.; Walsh, D.S.

    1998-11-18

    As future sizes of Integrated Circuits (ICs) continue to shrink the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICS. The IBICC measurements, conducted at the Sandia National Laboratories employed a 10 MeV carbon microbeam with 1pm diameter spot to scan test structures on specifically designed ICS. With the aid of layout information, an analysis of the charge collection efficiency from different test areas is presented. In the present work a 10 MeV Carbon high-resolution microbeam was used to demonstrate the differential charge collection efficiency in ICS with the aid of the IC design Information. When ions strike outside the FET, the charge was only measured on the outer ring, and decreased with strike distance from this diode. When ions directly strike the inner and ring diodes, the collected charge was localized to these diodes. The charge for ions striking the gate region was shared between the inner and ring diodes. I The IBICC measurements directly confirmed the interpretations made in the earlier work.

  9. An electrostatic quadrupole doublet focusing system for MeV heavy ions in MeV-SIMS

    NASA Astrophysics Data System (ADS)

    Seki, T.; Shitomoto, S.; Nakagawa, S.; Aoki, T.; Matsuo, J.

    2013-11-01

    The importance of imaging mass spectrometry (MS) for visualizing the spatial distribution of molecular species in biological tissues and cells is growing. In conventional SIMS with keV-energy ion beams, elastic collisions occur between projectiles and atoms in constituent molecules. The collisions produce fragments, making acquisition of molecular information difficult. In contrast, MeV-energy ion beams excite electrons near the surface and enhance the ionization of high-mass molecules, hence, fragment suppressed SIMS spectrum of ionized molecules can be obtained. This work is a further step on our previous report on the successful development of a MeV secondary ion mass spectrometry (MeV-SIMS) for biological samples. We have developed an electrostatic quadrupole doublet (EQ doublet) focusing system, made of two separate lenses, Q1 and Q2, to focus the MeV heavy ion beam and reduce measurement time. A primary beam of 6 MeV Cu4+ was focused with this EQ doublet. We applied 1120 V to the Q1 lens and 1430 V to the Q2 lens, and the current density increased by a factor of about 60. Using this arrangement, we obtained an MeV-SIMS image of 100 × 100 pixels of cholesterol-OH+ of cerebellum (m/z = 369.3) over a 4 mm × 4 mm field of view, with a pixel size of 40 μm within 5 min, showing that our EQ doublet reduces the measurement time of current imaging by a factor of about 30.

  10. Enhanced annealing of damage in ion-implanted 4H-SiC by MeV ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Chayahara, A.; Mokuno, Y.; Tsubouchi, N.; Horino, Y.

    2005-05-01

    The effect of ion-beam annealing for implantation-induced damage in single-crystalline 4H silicon carbide has been studied. Four sets of samples, implanted with two types of ions (C or Si) and two different damage levels (complete or incomplete amorphization), were prepared to investigate the influence of damaging conditions. The damaged samples were irradiated with a 3-MeV Ge ion beam at 600 °C in the range of 1×1015-2×1016cm-2 to induce the ion-beam annealing. Some of the damaged samples were thermally annealed without the Ge irradiation to evaluate pure thermal effects. Rutherford backscattering/channeling for these samples revealed substantial enhancements of damage annealing under the MeV ion-beam irradiation. The enhanced annealing effect was stronger for the incompletely amorphized samples than for the completely amorphized samples. For both cases, the annealing effects almost saturated with increasing ion fluence. The results suggest the competition between the annealing and damaging effects induced by the annealing beam, at least, for the incompletely amorphized samples.

  11. Enhanced annealing of damage in ion-implanted 4H-SiC by MeV ion-beam irradiation

    SciTech Connect

    Kinomura, A.; Chayahara, A.; Mokuno, Y.; Tsubouchi, N.; Horino, Y.

    2005-05-15

    The effect of ion-beam annealing for implantation-induced damage in single-crystalline 4H silicon carbide has been studied. Four sets of samples, implanted with two types of ions (C or Si) and two different damage levels (complete or incomplete amorphization), were prepared to investigate the influence of damaging conditions. The damaged samples were irradiated with a 3-MeV Ge ion beam at 600 deg. C in the range of 1x10{sup 15}-2x10{sup 16} cm{sup -2} to induce the ion-beam annealing. Some of the damaged samples were thermally annealed without the Ge irradiation to evaluate pure thermal effects. Rutherford backscattering/channeling for these samples revealed substantial enhancements of damage annealing under the MeV ion-beam irradiation. The enhanced annealing effect was stronger for the incompletely amorphized samples than for the completely amorphized samples. For both cases, the annealing effects almost saturated with increasing ion fluence. The results suggest the competition between the annealing and damaging effects induced by the annealing beam, at least, for the incompletely amorphized samples.

  12. Application of MeV ion bombardment to create micro-scale annealing of Silica-Gold films

    SciTech Connect

    Bouyard, A.; Blanchet, X.; Ila, D.; Muntele, C.I.; Muntele, I.C.; Zimmerman, R.L.

    2003-08-26

    This project studies the production of nanoscale annealing using MeV Si ion beams. To test the technique we produced thin films of Au-Silica by sequential deposition of Au and SiO2 on Suprasil substrates. We measured the thickness of the deposited films with an interferometer and by using Rutherford backscattering spectrometry (RBS). Using the measured thickness we calculated the concentration of Au in each film. TRIM simulation was used to confirm our results. Since the localized annealing causes the formation of gold nano-clusters, we performed optical absorption photospectrometry (OAP) on all slides, before deposition, after deposition, and after bombardment by MeV Si beams. Optical index changes are apparent in the sequentially deposited multilayer samples that were not seen in Au-silica co-deposited samples with the same volume fraction of gold.

  13. Dielectric response of polyethersulphone (PES) polymer irradiated with 145 MeV Ne{sup 6+} ions

    SciTech Connect

    Ali, S. Asad; Khan, Wasi; Naqvi, A. H.; Kumar, Rajesh; Prasad, R.

    2013-02-05

    Heavy ion irradiation produces modifications in polymers and adapts their electrical, chemical and optical properties in the form of rearrangement of bonding, cross-linking, chain scission and formation of carbon rich clusters. Modification depends on the ion, its energy and fluence and the polymeric material. In the present work, a study of the dielectric response of pristine and heavy ion irradiated Polyethersulphone (PES) polymer film is carried out. 250 {mu}m thick PES films were irradiated to the fluences of 10{sup 12} and 10{sup 13} ions/cm{sup 2} with Ne{sup 6+} ions of 145 MeV energy from Variable Energy Cyclotron Centre, Kolkata On irradiation with heavy ions dielectric constant ({epsilon} Prime ) decreases at higher frequencies and increases with fluences. Variation of loss factor (tan {delta}) with frequency for pristine and irradiated with Si ions reveals that tan {delta} increases as the frequency increases. The tan{delta} also increases with fluence. Tan {delta} has positive values indicating the dominance of inductive behavior.

  14. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  15. Thermal desorption behavior of deuterium for 6 MeV Fe ion irradiated W with various damage concentrations

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Li, Xiaochun; Sato, Misaki; Yuyama, Kenta; Zhang, Long; Kondo, Sosuke; Hinoki, Tatsuya; Hatano, Yuji; Watanabe, Hideo; Yoshida, Naoaki; Chikada, Takumi

    2015-06-01

    W samples were irradiated at 300 K with 6 MeV Fe ion with damage concentrations in the range from 0.0003 to 1.0 displacements per atom (dpa) and then implanted at 300 K with 500 eV D ions to a fluence of 5 × 1021 D/m2. Deuterium retention in the damaged samples was examined in situ by thermal desorption spectrometry (TDS). Simulation of the TDS spectra was performed using the Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code to reveal the binding energies for deuterium captured by the ion-induced defects. It has been shown that the deuterium TDS spectra consist of two or three peaks (depending on the damage concentration) at about 400, 600 and 800 K, and can be simulated by the HIDT simulation code with the use of hydrogen-trap binding energies of 0.65, 1.25, and 1.55 eV.

  16. Ion clearing and photoelectron production in the 200 MeV SXLS ring

    SciTech Connect

    Halama, H.; Bozoki, E.

    1991-01-01

    The design of the SXLS clearing system and its behavior are presented. In normal 200 MeV operation, clearing electrode current is dominated by photoelectrons. Clearing electrodes appear essential only in several locations but not in the dipoles. The effect of clearing voltage on the tune and the beam profile is also discussed. 4 refs., 5 figs.

  17. Elastic and inelastic scattering of 15N ions by 9Be at 84 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Chercas, K. A.; Kemper, K. W.; Rusek, K.; Rudchik, A. A.; Herashchenko, O. V.; Koshchy, E. I.; Pirnak, Val. M.; Piasecki, E.; Trzcińska, A.; Sakuta, S. B.; Siudak, R.; Strojek, I.; Stolarz, A.; Ilyin, A. P.; Ponkratenko, O. A.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Szczurek, A.; Uleshchenko, V. V.

    2016-03-01

    Angular distributions of the 9Be + 15N elastic and inelastic scattering were measured at Elab(15N) = 84 MeV (Ec.m. = 31.5 MeV) for the 0-6.76 MeV states of 9Be and 0-6.32 MeV states of 15N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 9Be in ground and excited states and 15N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the 9Be + 15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the 9Be + 15N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of 9Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  18. Effect of metal ion concentration in Ni-W plating solution on surface roughness of Ni-W film

    NASA Astrophysics Data System (ADS)

    Yasui, Manabu; Kaneko, Satoru; Kurouchi, Masahito; Ito, Hiroaki; Ozawa, Takeshi; Arai, Masahiro

    2016-01-01

    Since nanopatterns are used for various purposes including solar cells, super-hydrophilicity, and biosensors, it is necessary to miniaturize the patterns on glass devices from micro- to nano-order. We have studied glass imprinting as an excellent microfabrication technology for glass devices. Uniformity of the nanopattern height is required for a mold, since a nodular structure on the Ni-W surface is recognized as a problem in Ni-W nanopattern formation. We confirmed that the Ni-W plating bath increasing metal ion concentration is effective for inhibition of the nodular structure on the Ni-W film, and succeeded in Ni-W nano pattern formation with uniform height. However, the W content rate of plated Ni-W film was reduced in exchange for enhancing the flatness of the Ni-W film. It is necessary to examine the Ni-W plating condition for obtaining planarization of the Ni-W surface and a high content rate of W in the Ni-W film.

  19. Anisotropic expansion and amorphization of Ga2O3 irradiated with 946 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2016-05-01

    The structural response of β-Ga2O3 to irradiation-induced electronic excitation was investigated. A polycrystalline pellet of this material was irradiated with 946 MeV Au ions and the resulting structural modifications were characterized using in situ X-ray diffraction analysis at various ion fluences, up to 1 × 1013 cm-2. Amorphization was induced, with the accumulation of the amorphous phase following a single-impact mechanism in which each ion produces an amorphous ion track along its path. Concurrent with this phase transformation, an increase in the unit cell volume of the material was observed and quantified using Rietveld refinement. This unit cell expansion increased as a function of ion fluence before saturating at 1.8%. This effect is attributed to the generation of defects in an ion track shell region surrounding the amorphous track cores. The unit cell parameter increase was highly anisotropic, with no observed expansion in the [0 1 0] direction. This may be due to the structure of β-Ga2O3, which exhibits empty channels of connected interstitial sites oriented in this direction.

  20. Ion beam induced charge collection (IBICC) from integrated circuit test structures using a 10 MeV carbon microbeam

    SciTech Connect

    Guo, B. N.; El Bouanani, M.; Duggan, J. L.; McDaniel, F. D.; Renfrow, S. N.; Doyle, B. L.; Walsh, D. S.; Aton, T. J.

    1999-06-10

    As feature sizes of Integrated Circuits (ICs) continue to shrink, the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICs. The IBICC measurements, conducted at the Sandia National Laboratories, employed a 10 MeV carbon microbeam with 1{mu}m diameter spot to scan test structures on specifically designed ICs. With the aid of IC layout information, an analysis of the charge collection efficiency from different test areas is presented.

  1. Thorium and uranium M-shell x-ray production cross sections by 4.5-11.3 MeV carbon ion and 4.5-13.5 MeV oxygen ion bombardment

    NASA Astrophysics Data System (ADS)

    Phinney, L. C.; Lapicki, G.; Weathers, D. L.; Naab, F. U.; Duggan, J. L.; McDaniel, F. D.

    2012-02-01

    The M-shell x-ray production cross sections for thorium and uranium have been measured for carbon ions with energies from 4.5 to 11.3 MeV with the charge state q increasing from 2 to 4, and oxygen ions with energies from 4.5 to 13.5 MeV with the charge state q increasing from 2 to 5. These cross sections are compared to the predictions of the first Born (PWBA+OBKN) and ECUSAR ionization theories, which were evaluated in a novel manner for the C+q and O+q energies and charge states of the data and converted to x-ray production cross sections with atomic parameters for a singly ionized M-shell and multiple ionization in the outer shells. Individual groups of M-shell transitions are also compared to the two ionization theories. The ECUSAR theory is shown to describe the measurements better than the first Born approximation. It is found to be in generally good agreement for all the total M-shell x-ray production and M-shell lines except for the Mγ cross sections. Reasons for the overestimation of the Mγ data are discussed.

  2. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  3. Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures.

    PubMed

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  4. Neutron multiplicities and energy sharing in the inelastic collisions of [sup 32]S on [sup 64]Ni at [ital E]/[ital A]=4. 9 MeV

    SciTech Connect

    Fiore, L.; D'Erasmo, G.; Fiore, E.M.; Pantaleo, A.; Paticchio, V.; Petruzzelli, F.; Quirini, A.; Tagliente, G.; Lanzano, G.; Pagano, A. Dipartimento di Fisica dell'Universita 70126 Bari Istituto Nazionale di Fisica Nucleare, Sezione di Catania )

    1994-09-01

    The neutron emission from the targetlike fragments (TLF) of the inelastic reactions of 157 MeV [sup 32]S on [sup 64]Ni has been measured. Neutron energy spectra and multiplicities have been extracted as a function of the dissipated energy for six targetlike fragments mass gates between [ital A]=56 and [ital A]=70. The comparison between the data and the results of a Monte Carlo simulation based on statistical model calculations with different assumptions on the excitation energy sharing between the reaction partners evidences a dependence from the net mass flow of the evolution of the excitation energy ratios with the energy loss.

  5. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    NASA Astrophysics Data System (ADS)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  6. Friction wear and auger analysis of iron implanted with 1.5-MeV nitrogen ions

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Jones, W. R., Jr.

    1982-01-01

    The effect of implantation of 1.5-MeV nitrogen ions on the friction and wear characteristics of pure iron sliding against steel was studied in a pin-on disk apparatus. An implantation dose of 5 x 10 to the 17th power ions/sq cm was used. Small reductions in initial and steady-state wear rates were observed for nitrogen-implanted iron riders as compared with unimplanted controls. Auger electron spectroscopy revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 15 at. % at a depth of 8 x 10 to the -7th m. A similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration, thus giving no evidence for diffusion of nitrogen beyond the implanted range.

  7. MEV ion beam induced epitaxial crystallization of Si0.99C0.01 layers on silicon

    NASA Astrophysics Data System (ADS)

    Rey, S.; Muller, D.; Grob, J. J.; Grob, A.; Stoquert, J. P.

    1997-02-01

    Multiple energy carbon ion implantation was used to form a 150 nm thick uniformly 1 at. %-doped layers in preamorphized silicon. Unlike conventional furnace annealing, inefficient up to 700 °C, a 1.5 MeV 84Kr+ bombardment is shown to induce the crystallization of such layers at temperatures ranging between 400 and 500 °C. RBS-channeling measurements have been used to estimate the crystallization velocity which is in the order of 10 nm per 1015cm-2. After complete recrystallization, the films have been characterized by Fourier Transform Infra-Red spectroscopy showing that the carbon atoms are neither located in substitutional position nor precipitated in SiC clusters. However, the carbon profile, measured by Secondary Ion Mass Spectroscopy is not modified by the process and oblique incidence channeling angular scans demonstrate that the layers are strained.

  8. Rapid and direct micro-machining/patterning of polymer materials by oxygen MeV ion beam irradiation through masks

    NASA Astrophysics Data System (ADS)

    Brun, S.; Guibert, G.; Meunier, C.; Guibert, E.; Keppner, H.; Mikhailov, S.

    2011-10-01

    PTFE (PolyTetraFluoroEthylene), often called Teflon, is a well-known polymer for being a non-stick material with good thermal properties. Moreover, PTFE is biocompatible and especially it is a cyto-compatible polymer. To enable bonding, a chemical etching based on sodium solutions is generally used to modify surfaces. In this paper we study the etching of PTFE using an oxygen ion beam in the MeV energy range. We present micro-patterning of PTFE through masks with two fluences of 5 × 1015 and 1 × 1016 ion cm-2. As is demonstrated the use of a mask allows structuring of large areas while maintaining a distance between the mask and sample makes industrial applications possible.

  9. Microstructure and Nano-Hardness of 10 MeV Cl-Ion Irradiated T91 Steel

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Wang, Xianping; Gao, Yunxia; Zhuang, Zhong; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2015-12-01

    Hardening and elemental segregation of T91 martenstic steel irradiated by 10 MeV Cl ions to doses from 0.06 dpa to 0.83 dpa were investigated with the nanoindentation technique and transmission electron microscopy (TEM). The results demonstrated that the irradiation hardening was closely related with irradiation dose. By increasing the dose, the hardness increased rapidly at first from the initial value of 3.15 GPa before irradiation, and then tended to saturate at a value of 3.58 GPa at the highest dose of 0.83 dpa. Combined with TEM observation, the mechanism of hardening was preliminary attributed to the formation of M(Fe,Cr)23C6 carbides induced by the high energy Cl-ion irradiation. supported by National Natural Science Foundation of China (Nos. 11374299, 11375230, 11274309)

  10. 80 MeV C6+ ion irradiation effects on the DC electrical characteristics of silicon NPN power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Pushpa, N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana

    2016-05-01

    The total dose effects of 80 MeV C6+ ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔIB = IBpost - IBpre), dc forward current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics (VCE-IC) were studied systematically before and after irradiation. The significant degradation in base current (IB) and hFE was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with 60C0 gamma irradiation results in the same dose range.

  11. 50 MeV, Li3+ - ion irradiation effect on magnetic ordering of Y3+ - substituted yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Sharma, P. U.; Zankat, K. B.; Dolia, S. N.; Modi, K. B.

    2016-05-01

    This communication presents the effect of non-magnetic Y3+ ions substitution for magnetic Fe3+ ions and 50 MeV, Li3+ ion irradiation (fluence: 5 × 1013 ions/cm2) on magnetic ordering and Neel temperature of Y3+xFe5-xO12 (x = 0.0, 0.2, 0.4 and 0.6) garnet system, studied by means of X-ray powder diffractometry and thermal variation of low field (0.5 Oe) ac susceptibility measurements. The un-irradiated compositions exhibit normal ferrimagnetic behavior with decrease in transition temperature (TN) on increasing Y3+-concentration (x). The irradiated counterparts are characterized by tailing effect indicative of non-uniform effect of irradiation and lower value of TN. The results have been discussed based on the weakening of magnetic exchange interactions and cumulative effect of redistribution of cations and fractional creation of localized paramagnetic centers resulting from swift heavy ion irradiation. The Neel temperatures and exchange integrals have been calculated theoretically.

  12. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    SciTech Connect

    Lyazgin, Alexander Shugurov, Artur Sergeev, Viktor Neufeld, Vasily; Panin, Alexey; Shesterikov, Evgeny

    2015-10-27

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.

  13. Ground State Valency and Spin Configuration of the Ni Ions in Nickelates

    SciTech Connect

    Petit, Leon; Egami, Takeshi; Stocks, George Malcolm; Temmerman, Walter M; Szotek, Zdzislawa

    2006-01-01

    The ab initio self-interaction-corrected local-spin-density approximation is used to study the electronic structure of both stoichiometric and nonstoichiometric nickelates. From total energy considerations it emerges that, in their ground state, both LiNiO2 and NaNiO2 are insulators, with the Ni ion in the Ni3+ low-spin state (t2g6eg1) configuration. It is established that a substitution of a number of Li/Na atoms by divalent impurities drives an equivalent number of Ni ions in the NiO2 layers from the Jahn-Teller (JT)-active trivalent low-spin state to the JT-inactive divalent state. We describe how the observed considerable differences between LiNiO2 and NaNiO2 can be explained through the creation of Ni2+ impurities in LiNiO2. The indications are that the random distribution of the Ni2+ impurities might be responsible for the destruction of the long-range orbital ordering in LiNiO2.

  14. Stopping force and straggling of 0.6-4.7 MeV H, He and Li ions in the polyhydroxybutyrate foil

    NASA Astrophysics Data System (ADS)

    Hsu, J. Y.; Yu, Y. C.; Chen, K. M.

    2010-06-01

    Stopping force and straggling of 0.6-3.5 MeV 1H ions, 2.0-4.7 MeV 4He ions and 1.4-4.4 MeV 7Li ions in the polyhydroxybutyrate (PHB) foil were measured by means of a transmission technique. The measured stopping forces are in well agreement with the SRIM 2008 calculation and the ICRU Report tables, except for the lower energy region. The obtained energy loss straggling deviates from the Bohr's value by as much as 23.6% for the energies under study. The validity of the Bragg's rule has also been demonstrated in the stopping force and straggling for 1H, 4He and 7Li ions in the PHB foil.

  15. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  16. Simultaneous quiet time observations of energetic radiation belt protons and helium ions - The equatorial alpha/p ratio near 1 MeV

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Spjeldvik, W. N.

    1979-01-01

    Simultaneous monitoring of energetic helium ions and protons in the earth's radiation belts has been conducted with Explorer 45 in the immediate vicinity of the equatorial plane. Protons were measured from less than 1 keV to 1.6 MeV and also above 3.3 MeV in a channel responsive up to 22 MeV; helium ions were monitored in three passbands: 910 keV to 3.15 MeV, 590 to 910 keV, and 2.0 to 3.99 MeV. Alpha/proton flux ratios were found to vary significantly with energy and location in the radiation belts. At equal energy per nucleon a range of variability for alpha/p from 0.0001 to well above 0.001 was found, and at equal energy per ion the corresponding variability was from 0.001 to above 10. The latter findings emphasize the relative importance of the very energetic helium ions in the overall radiation belt ion populations.

  17. Dependence of the MeV ion-induced deformation of colloidal silica particles on the irradiation angle

    NASA Astrophysics Data System (ADS)

    Cheang-Wong, J. C.; Morales, U.; Reséndiz, E.; López-Suárez, A.; Rodríguez-Fernández, L.

    2008-06-01

    Colloidal silica particles are being intensively studied due to their potential applications in catalysis, intelligent materials, optoelectronic devices and coating technology. For this work, spherical sub-micrometer-sized silica particles were prepared by the Stöber process and deposited onto silicon wafers. The samples were then irradiated at room temperature with Si ions at 8 MeV and fluences up to 5 × 1015 Si/cm2, under different angles θ, ranging from 15° to 75° with respect to the sample normal. The size, size distribution and shape of the silica particles were determined using scanning electron microscopy. After the Si irradiation the as-prepared spherical silica particles turned into ellipsoidal particles, as a result of the increase of the particle dimension perpendicular to the ion beam and a decrease in the direction parallel to the ion beam. This effect increases with the ion fluence, and the dependence of the deformation rate on the irradiation angle is discussed.

  18. Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Vonrosenvinge, T. T.; Reames, D. V.

    1985-01-01

    Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown.

  19. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  20. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    PubMed Central

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  1. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  2. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE PAGESBeta

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; et al

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  3. Polypropylene compositional evolution under 3.5 MeV He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Abdesselam, M.; Muller, D.; Djebara, M.; Chami, A. C.; Montgomery, P.

    2012-05-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 μm in thickness. The fluence ranges from 2 × 1012 to 3.5 × 1015 cm-2. The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C(α, α)C) and hydrogen elastic recoil detection (H(α, H)α), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of ˜5 × 1013 He+ cm-2. The carbon depletion levels off at a fluence of ˜5 × 1014 He+ cm-2 approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 × 10-16 cm2, respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He+ beam is made.

  4. Cluster ion emission from LiF induced by MeV Nq+ projectiles and 252Cf fission fragments

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Farenzena, L. S.; Rothard, H.; Boduch, Ph.; Grande, P. L.; da Silveira, E. F.

    2011-08-01

    Ion cluster desorption yields from LiF were measured at PUC-Rio with ≈0.1 MeV/u N q+ ( q = 2,4,5,6) ion beams by means of a time-of-fight (TOF) mass spectrometer. A 252Cf source mounted in the irradiation chamber allows immediate comparison of cluster emissions induced by ≈65 MeV fission fragments (FF). Emission of (LiF) n Li+ clusters are observed for both the N beams and the 252Cf fission fragments. The observed cluster size n varies from 1 to 6 for N q+ projectiles and from 1 to ≈40 for the 252Cf-FF. The size dependence of the Y( n) distributions suggests two cluster formation regimes: (i) recombination process in the outgoing gas phase after impact and (ii) emission of pre-formed clusters from the periphery of the impact site. The corresponding distribution of ejected negative cluster ions (LiF) n F- closely resembles that of the positive secondary (LiF) n Li+ ions. The desorption yields of positive ions scale as Y( n) ˜ q 5. A calculation with the CASP code shows that this corresponds to a cubic scaling ˜S{/e 3} with the electronic stopping power S e , as predicted by collective shock wave models for sputtering and models involving multiple excitons (Frenkel pair sputtering). We discuss possible interpretations of the functional dependence of the evolution of the cluster emission yield Y( n) with cluster size n, fitted by a number of statistical distributions.

  5. Effect of 8 MeV Si ions irradiation and thermal annealing in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hernández-Socorro, D. R.; Montiel-González, Z.; Rodil-Posada, S. E.; Flores-Morales, L.; Cruz-Manjarrez, H.; Hernández-Alcántara, J. M.; Rodríguez-Fernández, L.

    2012-09-01

    ZnO thin films deposited by RF magnetron sputtering on silicon (100) wafers were irradiated by 8 MeV Si ions and thermal annealed in order to study optical properties. The presence of defects inside thin films as well as their implications was discussed by Photoluminescence and Spectroscopic Ellipsometry. Photoluminescence confirmed presence of energy states in forbidden band-gap associates with ultraviolet emission and Zni, Oi and OZn defects according to the treatment received. Spectroscopic Ellipsometry using the Tauc-Lorentz model plus a Lorentz oscillator was found to be the best model to describe the properties of irradiated samples that did not receive a second thermal annealing treatment. Through this model, it was possible to obtain optical band-gap in the range of 3.1-3.3 eV and excellent approximation of position in energy of the oscillator.

  6. The substitution of Fe2+ ions by Ni2+ ions in green rust one compounds

    NASA Astrophysics Data System (ADS)

    Refait, Ph.; Drissi, H.; Marie, Y.; Génin, J.-M. R.

    1994-12-01

    The oxidation of Fe(OH)2 in the presence of Cl- or CO{3/2-} ions leads, in the first stage of the reaction, to chloride-containing green rust one (GR1), 3Fe(OH)2· Fe(OH)2Cl· nH2O, or carbonate-containing GR1, 4Fe(OH)2·Fe2(OH)4CO3·nH2O, respectively. These GR1 compounds give the ferric oxyhydroxides by further oxidation. If a hydroxide Ni x Fe1- x (OH)2 is initially precipitated, the reaction leads to a nickelous-ferric compound isomorphous to the ferrous-ferric GR1, but stable with respect to the oxidizing action of air. Similarly, the oxidation of a nickelous-ferrous hydroxide, in the presence of excess OH- ions, leads to a nickelous-ferric GR1, a layered hydroxide with anionic interlayers made of OH- ions and water molecules. The Mössbauer spectra of these nickelousferric GR1 display two ferric doublets, D0 with IS=0.34 mm/s and QS=0.45 mm/s and D1 with IS=0.36 mm/s and QS=0.86 mm/s. The existence of a ferrous-ferric GR1 incorporating OH- ions, a compound never observed so far, is strongly suspected.

  7. Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, X. H.; Tu, J. P.; Zhang, B.; Zhang, C. Q.; Li, Y.; Yuan, Y. F.; Wu, H. M.

    NiO-Ni nanocomposite was prepared by calcining a mixture of Ni 2(OH) 2CO 3 and ethanol in a tube furnace at 700 °C for 45 min in air. The microstructure and morphology of the powders were characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). In the composite, nanoscale Ni particles (<10 nm) were dispersed in the NiO matrix (about 100 nm). Electrochemical tests showed that the nanocomposite had higher initial and reversible capacity than pure NiO. The presence of the nanoscale Ni phase had improved both of the initial coulombic efficiency and the cycling performance, due to its catalytic activity, which would facilitate the decomposition of Li 2O and the SEI during the charge process.

  8. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  9. Heavy residue masses as possible indicators of the impact parameter in the reaction 20Ni at 742 MeV

    NASA Astrophysics Data System (ADS)

    D'onofrio, A.; Delaunay, B.; Delaunay, J.; Dumont, H.; del Campo, J. Gomez; Andreozzi, F.; Brondi, A.; Moro, R.; Romano, M.; Terrasi, F.; Bruandet, J. F.

    1987-03-01

    Mass and charge distributions for heavy residues in the reaction 20Ni at 37.1 MeV/nucleon were measured by both in-beam and radioactivity γ-ray spectrometry. The general features of the experimental data are well reproduced by a massive transfer model. The heavier residues are also interpreted in the framework of a participant spectator model.

  10. MeV Ion Anisotropies in the Vicinity of Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2007-01-01

    The anticipated signatures of interplanetary shock acceleration to be found in energetic ion anisotropies in the vicinity of interplanetary shocks include near-isotropic particle distributions consistent with of diffusive shock acceleration, "pancake" distributions indicative of shock drift acceleration, and flow reversals, suggestive of a particle acceleration region passing by the observing spacecraft. In practice, while clear examples of these phenomena exist, more typically, particle anisotropies near interplanetary shocks show considerable variation in time and space, both in individual events and from event to event. We investigate the properties of MeV/n ions in the vicinity of a number of interplanetary shocks associated with the largest energetic particle events of solar cycle 23, and previous cycles, including their intensity-time profiles, anisotropies, and relationship with local solar wind structures, using observations from the IMP 8, ISEE-3, Helios 1 and 3 spacecraft. The aim is to help to understand the role of shocks in major solar energetic particle events.

  11. Augmentation of thermoelectric performance of VO2 thin films irradiated by 200 MeV Ag9+-ions

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Kandasami, A.; Bhat, B. A.

    2016-06-01

    Swift Heavy Ion (SHI) irradiation with 200 MeV Ag9+-ion beam at ion fluences of 1E11, 5E11, 1E12, and 5E12 for tuning of electrical transport properties of VO2 thin films fabricated by so-gel technique on alumina substrates has been demonstrated in the present paper. The point defects created by SHI irradiation modulate metal to insulator phase transition temperature, carrier concentration, carrier mobility, electrical conductivity, and Seebeck coefficient of VO2 thin films. The structural properties of the films were characterized by XRD and Raman spectroscopy and crystallite size was found to decrease upon irradiation. The atomic force microscopy revealed that the surface roughness of specimens first decreased and then increased with increasing fluence. Both resistance as well as Seebeck coefficient measurements demonstrated that all the samples exhibit metal-insulator phase transition and the transition temperatures decreases with increasing fluence. Hall effect measurements exhibited that carrier concentration increased continuously with increasing fluence which resulted in an increase of electrical conductivity by several orders of magnitude in the insulating phase. Seebeck coefficient in insulating phase remained almost constant in spite of an increase in the electrical conductivity by several orders of magnitude making SHI irradiation an alternative stratagem for augmentation of thermoelectric performance of the materials. The carrier mobility at room temperature decreased up to the beam fluence of 5E11 and then started increasing whereas Seebeck coefficient in metallic state first increased with increasing ion beam fluence up to 5E11 and thereafter decreased. Variation of these electrical transport parameters has been explained in detail.

  12. Understanding and engineering of NiGe/Ge junction formed by phosphorus ion implantation after germanidation

    SciTech Connect

    Oka, Hiroshi Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2014-08-11

    Modulation of the effective electron Schottky barrier height (eSBH) of NiGe/Ge contacts induced by phosphorus ion implantation after germanide formation was investigated by considering local inhomogeneity in the eSBH. Systematic studies of NiGe/Ge contact devices having various germanide thicknesses and ion implantation areas indicated the threshold dopant concentration at the NiGe/Ge interface required for eSBH modulation and negligible dopant diffusion even at NiGe/Ge interface during drive-in annealing, leading to variation in the eSBH between the bottom and sidewall portions of the NiGe regions. Consequently, this method makes it possible to design source/drain contacts with low-resistivity Ohmic and ideal rectifying characteristics for future Ge-based transistors.

  13. Mechanisms of the sup 64 Zn(d, sup 6 Li) sup 60 Ni reaction at E sub lab = 16. 4 MeV

    SciTech Connect

    Bowsher, J.E.

    1989-01-01

    Cross-sections, A{sub y}, A{sub yy}, and A{sub xx} for the {sup 64}Zn(d, {sup 6}Li) reaction forming the ground and first excited states of {sup 60}Ni were measured in 5{degree} steps from {theta}{sub lab} = 25{degree} to 80{degree} using an E{sub lab} = 16.4 MeV beam of vector and tensor polarized deuterons. These data include the first measurement of A{sub xx} and A{sub yy} for the (d, {sup 6}Li) reaction on a medium to heavy target nucleus. The A{sub y} measurement is also among the first for (d,{sup 6}Li) reactions. Also measured were excitation functions of d{sigma}/d{Omega}, A{sub y}, A{sub yy}, and A{sub xx} for {sup 64}Zn(d,d) scattering at E{sub lab} = 16.4 MeV. The {sup 6}Li ground state and seven other wave functions, each representing {sup 6}Li continuum states of a given spin, I, and internal orbital angular momentum, l, l {le} 2, were included in coupled-channels (CC) calculations of {sup 60}Ni({sup 6}Li, {sup 6}Li) elastic scattering and finite-range, coupled channel Born approximation (CCBA) calculations for the {sup 64}Zn(d,{sup 6}Li) reaction forming the {sup 60}Ni ground state. This analysis is the first to consider the influence of {sup 6}Li continuum states on the (d, {sup 6}Li) reaction. The {sup 6}Li-{sup 60}Ni interactions were generated using a cluster folding model. Both the folding model and the CC and CCBA calculations were performed by the code FRESCO. For the {sup 64}Zn(d, {sup 6}Li) reaction, CCBA calculations demonstrated that {alpha} transfers forming the 3{sup +} state of {sup 6}Li affect d{sigma}/d{Omega} and A{sub y} very strongly.

  14. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1992-01-01

    In preparation for experiments with surface modified Al2O3 reinforcements in (beta)NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al2O3, Al, Ni) and then composited with (beta)NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni3Al was studied.

  15. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Pakarinen, Janne; Khafizov, Marat; He, Lingfeng; Wetteland, Chris; Gan, Jian; Nelson, Andrew T.; Hurley, David H.; El-Azab, Anter; Allen, Todd R.

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in X-ray diffraction after ion irradiation up to 5 × 1016 He2+/cm2 at low-temperature (<200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 μm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 μm) in the sample subjected to 5 × 1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9 × 1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55% for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  16. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    SciTech Connect

    Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  17. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films

    NASA Astrophysics Data System (ADS)

    Mao, M.; Leng, Q.; Huai, Y.; Johnson, P.; Miller, M.; Tong, H.-C.; Miloslavsky, L.; Qian, C.; Wang, J.; Hegde, H.

    1999-04-01

    Thin Ta/NiFe films were deposited using ion beam deposition (IBD), pulsed, and static magnetron sputtering techniques. These NiFe films show anisotropy field values ˜4 Oe, easy axis coercivities ⩽1 Oe, and hard axis coercivities ⩽0.3 Oe. IBD films exhibit higher magnetoresistance ratios (ΔR/R), while little difference is noted between different deposition techniques in the sheet resistance of NiFe films. A ΔR/R value of 1.8% has been measured for a 90 Å IBD NiFe films. X-ray diffraction measurements indicate that NiFe films of the same thickness have about the same grain size regardless of deposition technique, however, IBD films exhibit superior (111) texture and crystallinity. Our results clearly indicate that the superior magnetic properties of thin IBD Ta/NiFe films are a result of high crystallographic quality of these films.

  18. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p

  19. Understanding transport simulations of heavy-ion collisions at 100 A and 400 A MeV: Comparison of heavy-ion transport codes under controlled conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Chen, Lie-Wen; Tsang, ManYee Betty; Wolter, Hermann; Zhang, Ying-Xun; Aichelin, Joerg; Colonna, Maria; Cozma, Dan; Danielewicz, Pawel; Feng, Zhao-Qing; Le Fèvre, Arnaud; Gaitanos, Theodoros; Hartnack, Christoph; Kim, Kyungil; Kim, Youngman; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Napolitani, Paolo; Ono, Akira; Papa, Massimo; Song, Taesoo; Su, Jun; Tian, Jun-Long; Wang, Ning; Wang, Yong-Jia; Weil, Janus; Xie, Wen-Jie; Zhang, Feng-Shou; Zhang, Guo-Qiang

    2016-04-01

    Transport simulations are very valuable for extracting physics information from heavy-ion-collision experiments. With the emergence of many different transport codes in recent years, it becomes important to estimate their robustness in extracting physics information from experiments. We report on the results of a transport-code-comparison project. Eighteen commonly used transport codes were included in this comparison: nine Boltzmann-Uehling-Uhlenbeck-type codes and nine quantum-molecular-dynamics-type codes. These codes have been asked to simulate Au +Au collisions using the same physics input for mean fields and for in-medium nucleon-nucleon cross sections, as well as the same impact parameter, the similar initialization setup, and other calculational parameters at 100 A and 400 A MeV incident energy. Among the codes we compare one-body observables such as rapidity and transverse flow distributions. We also monitor nonobservables such as the initialization of the internal states of colliding nuclei and their stability, the collision rates, and the Pauli blocking. We find that not completely identical initializations may have contributed partly to different evolutions. Different strategies to determine the collision probabilities and to enforce the Pauli blocking also produce considerably different results. There is a substantial spread in the predictions for the observables, which is much smaller at the higher incident energy. We quantify the uncertainties in the collective flow resulting from the simulation alone as about 30% at 100 A MeV and 13% at 400 A MeV, respectively. We propose further steps within the code comparison project to test the different aspects of transport simulations in a box calculation of infinite nuclear matter. This should, in particular, improve the robustness of transport model predictions at lower incident energies, where abundant amounts of data are available.

  20. L-shell X-ray production cross sections of Ce, Nd, Sm, Eu, Gd, and Dy by impact of 14N2+ ions with energies between 7.0 MeV and 10.5 MeV

    NASA Astrophysics Data System (ADS)

    Murillo, G.; Méndez, B.; López-Monroy, J.; Miranda, J.; Villaseñor, P.

    2016-09-01

    L-shell X-ray production cross sections from the lanthanoid elements Ce, Nd, Sm, Eu, Gd, and Dy, induced by the impact of 14N2+ ions with energies in the interval 7.0 MeV to 10.5 MeV (0.50 MeV/μ to 0.75 MeV/μ), were measured and then compared with theoretical calculations obtained with the ECPSSR model with exact limits of integration (eCPSSR) and related corrections. These include the electron capture by the incoming ion and multiple ionizations of higher shells. Data from this work were contrasted with previously published L X-ray production cross sections for 14N2+ ion impact. As with other ions, a universal behavior is found when Lα and Lγ X-ray production cross sections are plotted as a function of reduced velocity parameters. The agreement with theoretical predictions was very good when the corrections were applied to the eCPSSR model.

  1. Radiation Hardening of Ni-Ti Alloy Under Implantation of Inert Gases Heavy Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Satpaev, D.; Gyngazova, M.

    2016-02-01

    The consistent patterns of changes in nano- and micro-hardness of Ni-Ti alloy with the shape memory effect after implantation of 40Ar8+ and 84Kr15+ ions depending on phase composition and implantation parameters have been experimentally studied. It has been shown that softening by 4 and 14% near the surface of the two-phase Ni-Ti alloy after implantation of 40Ar8+ and 84Kr15+ ions is connected with the differences in the nanostructure. Hardening of the near-surface layer of this alloy maximum by 118% at h = ∼3 pm and single-phase alloy in the entire region of the 40Ar8+ and 84Kr15+ ions range and in the out-range (h > Rp) area have been detected. The role of the current intensity of the ions beam in the change of nanohardness for the two-phase Ni-Ti alloy has been established.

  2. Ion irradiation induced solid-state amorphous reaction in Ni/Ti multilayers

    NASA Astrophysics Data System (ADS)

    Milosavljević, Momir; Toprek, Dragan; Obradović, Marko; Grce, Ana; Peruško, Davor; Dražič, Goran; Kovač, Janez; Homewood, Kevin P.

    2013-03-01

    The effects of Ar ion irradiation on interfacial reactions induced in Ni/Ti multilayers were investigated. Structures consisting of 10 alternate Ni (˜26 nm) and Ti (˜20 nm) layers of a total thickness ˜230 nm were deposited by ion sputtering on Si (1 0 0) wafers. Argon irradiations were done at 180 keV, to the doses of 1-6 × 1016 ions/cm2, the samples being held at room temperature. The projected implanted ion range is 86 ± 36 nm, maximum energy loss is closer to the surface, and maximum displacements per atom (dpa) from 47 to 284 for Ni and 26 to 156 for Ti. Characterizations of samples were performed by transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS). It is shown that ion irradiation induced a progressed intermixing in the mostly affected zone already for the lowest dose, the thickness of the mix increasing linearly with the irradiation dose. The mixed phase is fully amorphous, starting with a higher concentration of Ni (which is the diffusing species) from the initial stages, and saturating at Ni:Ti˜66:34. A thick amorphous layer (˜127 nm) formed towards the surface region of the structure for the irradiation dose of 4 × 1016 ions/cm2 remains stable with increasing the dose to 6 × 1016 ions/cm2, which introduces up to 6-7 at.% of Ar within the mix. The results are discussed in light of the existing models. They can be interesting for introducing a selective and controlled solid-state reaction and towards further studies of ion irradiation stability of amorphous Ni-Ti phase.

  3. M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Andrews, M. C.; McDaniel, F. D.; Duggan, J. L.; Miller, P. D.; Pepmiller, P. L.; Krause, H. F.; Rosseel, T. M.; Rayburn, L. A.; Mehta, R.; Lapicki, G.

    1985-05-01

    M-shell X-ray production cross sections have been measured for thin solid targets of Au for 25 MeV 126C q+ ( q = 4, 5, 6) and for 32 MeV 168O q+ ( q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 μg/cm 2. For projectiles with one or two K-shell vacancies, the target M-shell X-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L, M, N.. shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared with the predictions of first Born theories, i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss. Coulomb deflection and relativistic effects in the perturbed stationary state theory.

  4. Glass nanoimprint using amorphous Ni-P mold etched by focused-ion beam

    SciTech Connect

    Mekaru, Harutaka; Kitadani, Takeshi; Yamashita, Michiru; Takahashi, Masaharu

    2007-07-15

    The authors succeeded in glass-nanoimprint lithography of micropatterns and nanopatterns using an amorphous Ni-P alloy mold. Glasslike carbon has been used as a mold material to mold not only Pyrex glass but also quartz, because it is still stable at a temperature of 1650 deg. C. However, it is difficult to process glasslike carbon substrates into arbitrary shapes by machining. They thought that amorphous Ni-P alloy could be used as a mold material for industrial glass molding. If Ni is electroless plated when mixed with suitable amount of P on a Si wafer, the Ni-P alloy layer becomes amorphous. An appropriate ratio of Ni and P was determined by the results of x-ray-diffraction measurements. The optimized composition ratio of Ni-P was Ni:P=92:8 wt %. Moreover, line and space patterns and dot arrays with linewidths of as little as 500 nm were etched on the mold using focused-ion beam (FIB) and the processing accuracy for the amorphous Ni-P layer was compared with that for the pure Ni layer. The result was that patterns of 500 nm width were etched to a depth of 2 {mu}m on an amorphous Ni-P alloy mold and the processed surfaces were smooth. In contrast, in the case of the pure Ni layer, the processing line was notched and the sidewalls were very rough. The crystal grain seems to hinder the processing of the nanopattern. After FIB etching, the amorphous Ni-P alloy was thermally treated at 400 deg. C to improve the hardness. Finally, line and space patterns and dot arrays on the amorphous Ni-P alloy mold were nanoimprinted on Pyrex glass using a glass-nanoimprint system (ASHE0201) that National Institute of Advanced Industrial Science and Technology developed.

  5. Electromagnetic Dissociation of Uranium in Heavy Ion Collisions at 120 Mev/a

    NASA Astrophysics Data System (ADS)

    Justice, Marvin Lealon

    The heavy-ion induced electromagnetic dissociation (EMD) of a 120 MeV/A ^{238}U beam incident on five targets (^9Be, ^{27}Al, ^ {nat}Cu, ^{nat} Ag, and ^{nat}U) has been studied experimentally. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution (~25%) of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state DeltaE-E detectors, allowing the charges of the fragments to be determined to within +/- .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events (i.e. those leading to charge sums of approximately 92) were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties associated with the normalization of the data make quantitative comparisons with theory difficult, however. The systematic uncertainties are discussed and

  6. Cosmic ray-ice interaction studied by radiolysis of 15 K methane ice with MeV O, Fe and Zn ions

    NASA Astrophysics Data System (ADS)

    Mejía, C. F.; de Barros, A. L. F.; Bordalo, V.; da Silveira, E. F.; Boduch, P.; Domaracka, A.; Rothard, H.

    2013-08-01

    Methane (CH4) ice is found in the interstellar medium and in several bodies of the Solar system, where it is commonly exposed to cosmic rays and stellar winds. The chemical, physical and structural effects induced by fast heavy ions in thin layers of pure CH4 ices at 15 K are analysed by mid-infrared spectroscopy (Fourier transform infrared). Different pure CH4 ice samples were irradiated with 6 MeV 16O2 +, 220 MeV 16O7 +, 267 MeV 56Fe22 + and 606 MeV 70Zn26 + ions at Grand Accélérateur National d'Ions Lourds/France. Results show that CnHm molecules, where n = 2-4 and m = 2(n - 1) to 2(n + 1) and radical species CH3, C2H3 and C2H5 are formed. The destruction cross-sections of CH4 ice and the formation cross-sections of new molecules CnHm are reported. The extrapolation of current results allow us to estimate the half lives of CH4 ices in the interstellar medium and the Solar system (Earth orbit) as about 600 × 106 and 600 yr, respectively. This huge ratio strongly suggests that the vast majority of chemical or even biochemical processes induced by ionizing radiation occur close to stars.

  7. Ferromagnetism in 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films

    SciTech Connect

    Angadi, Basavaraj; Jung, Y.S.; Choi, Won-Kook; Kumar, Ravi; Jeong, K.; Shin, S.W.; Lee, J.H.; Song, J.H.; Wasi Khan, M.; Srivastava, J.P.

    2006-04-03

    Structural, electrical resistivity, and magnetization properties of 200-MeV Ag{sup +15}-ion-irradiated Co-implanted ZnO thin films are presented. The structural studies show the presence of Co clusters whose size is found to increase with increase of Co implantation. The implanted films were irradiated with 200-MeV Ag{sup +15} ions to fluence of 1x10{sup 12} ions/cm{sup 2}. The Co clusters on irradiation dissolve in the ZnO matrix. The electrical resistivity of the irradiated samples is lowered to half. The magnetization hysteresis measurements show ferromagnetic behavior at 300 K, and the coercive field increases with the Co implantation. The ferromagnetism at room temperature is confirmed by magnetic force microscopy measurements. The results are explained on the basis of the close interplay between the electrical and the magnetic properties.

  8. Enhancement of Curie Temperature (T c) and Magnetization of Fe-Ni Invar alloy Through Cu Substitution and with He+2 Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Sajjad Ahmad; Ziya, Amer Bashir; Ibrahim, Ather; Atiq, Shabbar; Usman, Muhammad; Ahmad, Naseeb; Shakeel, Muhammad

    2016-04-01

    The magnetic properties of ternary Fe-Ni-Cu invar alloys are affected by ion irradiation, which goes on increasing with increasing ion fluence (Φ), and by increasing Cu content. In the present study, the ions used are He+2 with 2 MeV energy and with 1 × 1013 cm-2, 1 × 1014 cm-2, 5 × 1014 cm-2, 1 × 1015 cm-2 and 5 × 1015 cm-2 fluence (dose) for irradiation purpose. The face centered cubic structure of the alloy was investigated after ion irradiation using x-ray diffraction (XRD) and found unchanged. However, the peaks become broader with increasing ion dose. Additionally, the lattice fluctuations were observed in XRD study. Curie temperature (T c) is also increased after irradiation. Many factors are considered here for the reason for increasing T c, such as the stopping of incident ions, atomic mixing effect at micro scale level owing to ion irradiation, which might change local concentration and ordering already reported in diffuse scattering, and as a result the Fe-Fe interatomic distance and the Fe-Fe coupling are changed. A comparative study shows that the effect of irradiation on T c and magnetization with increasing ion fluence is more distinctive than the addition of Cu.

  9. MeV ion implantation induced damage in relaxed Si{sub 1{minus}x}Ge{sub x}

    SciTech Connect

    Nylandsted Larsen, A.; ORaifeartaigh, C.; Barklie, R.C.; Holm, B.; Priolo, F.; Franzo, G.; Lulli, G.; Bianconi, M.; Nipoti, R.; Lindner, J.K.; Mesli, A.; Grob, J.J.; Cristiano, F.; Hemment, P.L.

    1997-03-01

    The damage produced by implanting, at room temperature, 3-{mu}m-thick relaxed Si{sub 1{minus}x}Ge{sub x} alloys of high crystalline quality with 2 MeV Si{sup +} ions has been studied as a function of Ge content ({ital x}=0.04, 0.13, 0.24, or 0.36) and Si dose in the dose range 10{sup 10}{endash}2{times}10{sup 15} cm{sup {minus}2}. The accumulation of damage with increasing dose has been investigated by Rutherford backscattering spectrometry, optical reflectivity depth profiling, and transmission electron microscopy. An enhanced level of damage, and a strong decrease in the critical dose for the formation of a buried amorphous layer in Si{sub 1{minus}{ital x}}Ge{ital {sub x}} is observed with increasing {ital x}. Electron paramagnetic resonance studies show that the dominant defects produced by the implantation are Si and Ge dangling bonds in amorphouslike zones of structure similar to {ital a}-Si{sub 1{minus}{ital x}}Ge{ital {sub x}} films of the same {ital x}, and that the effect of increasing the ion dose is primarily to increase the volume fraction of material present in this form until a continuous amorphous layer is formed. A comparative study of the optically determined damage in the alloys with the use of a damage model indicates a significant increase in the primary production of amorphous nuclei in the alloys of Ge content {ital x}{gt}0.04. {copyright} {ital 1997 American Institute of Physics.}

  10. Study of physical and chemical modifications induced by 50 MeV Li3+ ion beam in polymers

    NASA Astrophysics Data System (ADS)

    Singh, Paramjit; Kumar, Satyendra; Prasad, Rajendra; Kumar, Rajesh

    2014-01-01

    Polyether-sulphone and polyamide-nylone-6 polymers were irradiated by 50 MeV Li3+ ions for modifications in structural, optical and chemical properties. The decrease in peak width and increase in peak intensity of XRD spectra indicated alignment of polymeric chains in a regular pattern and hence there was decrease in the amorphous character of the irradiated polymers. The gradual increase in the optical absorption and shift towards visible region was observed in optical absorption spectra of irradiated polymers. The increase in absorption was attributed to the generation of a conjugated system of bonds which lowered the band gap of irradiated polymers to significant values. The thermal fluctuations in the band gap energy due to temperature dependent self energies of the electrons were observed from the calculated values of the Urbach‧s energy. The FTIR spectra obtained after irradiation exhibited decrease in absorbance for various bands in case of PN-6 whereas opposite behavior was observed in case of PES polymer.

  11. Defect development and dopant location due to elevated temperature implantation of InP with MeV zinc ions

    NASA Astrophysics Data System (ADS)

    Krause, H.; Flagmeyer, R.-H.; Vogt, J.; Kling, A.; Butz, T.

    1996-06-01

    Zinc implantations in the MeV energy regime at temperatures of about 200°C within the dose range of 5 × 10 14-1 × 10 16 cm -2 were carried out. The investigations included RBS and PIXE measurements combined with ion channeling in the major crystallographic axes and additionally SNMS and XTEM. The implantation-induced damage is characterized by mobile point defects at the elevated implantation temperature. This results in damaged layers containing point-like defects, but far from amorphization. During rapid thermal annealing the surface up to about 0.6 Rp recovered channeling-perfect, while in a depth of (1-2) Rp a band of extrinsic dislocation loops was formed. Comparing the experimental with the calculated PIXE minimum yields, conclusions about the zinc positions were drawn: Due to the low ZnK aligned yield nearly all zinc atoms occupy substitutional lattice sites in the as-implanted samples. After annealing a remarkable diffusion of zinc combined with lattice site changes is observed.

  12. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    PubMed

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential. PMID:27487940

  13. Generation of over 5 MeV carbon ions from a fibrous polytetrafluoroethylene film irradiated with a 2.4 TW, 50 fs tabletop laser

    SciTech Connect

    Okihara, Shin-Ichiro; Fujimoto, Masatoshi; Takahashi, Hironori; Matsukado, Koji; Ohsuka, Shinji; Aoshima, Shin-Ichiro; Okazaki, Shigetoshi; Ito, Toshiaki; Tsuchiya, Yutaka

    2006-09-18

    The authors generated energetic carbon ions C{sup 4+} above 5 MeV by focusing 2.4 TW, 50 fs, 10 Hz laser pulses onto a fibrous polytetrafluoroethylene (PTFE) film. The PTFE film is composed only of carbon and fluorine and has microporous structure. A laser target made of this film is useful in generating carbon ions. A polyethyleneterephthalate film was also used as an alternative target for comparison. The results show that the number of carbon ions emitted from the PTFE target was approximately two orders of magnitude greater than that from a polyethyleneterephthalate target.

  14. Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN.

    PubMed

    Stoeva, Zlatka; Jäger, Bernd; Gomez, Ruben; Messaoudi, Sabri; Yahia, Mouna Ben; Rocquefelte, Xavier; Hix, Gary B; Wolf, Walter; Titman, Jeremy J; Gautier, Régis; Herzig, Peter; Gregory, Duncan H

    2007-02-21

    The layered ternary nitride LiNiN shows an interesting combination of fast Li+ ion diffusion and metallic behavior, properties which suggest potential applications as an electrode material in lithium ion batteries. A detailed investigation of the structure and properties of LiNiN using powder neutron diffraction, ab initio calculations, SQUID magnetometry, and solid-state NMR is described. Variable-temperature neutron diffraction demonstrates that LiNiN forms a variant of the parent Li3N structure in which Li+ ion vacancies are ordered within the [LiN] planes and with Ni exclusively occupying interlayer positions (at 280 K: hexagonal space group Pm2, a = 3.74304(5) A, c = 3.52542(6) A, Z = 1). Calculations suggest that LiNiN is a one-dimensional metal, as a result of the mixed pi- and sigma-bonding interactions between Ni and N along the c-axis. Solid-state 7Li NMR spectra are consistent with both fast Li+ motion and metallic behavior. PMID:17260984

  15. A novel coumarin Schiff-base as a Ni(II) ion colorimetric sensor.

    PubMed

    Wang, Lingyun; Ye, Decheng; Cao, Derong

    2012-05-01

    A novel coumarin Schiff base compound (L) prepared from 7-diethylaminocoumarin-3-aldehyde and 3-amino-7-hydroxycoumarin was synthesized and evaluated as a chemoselective Ni(2+) sensor. Addition of Ni(2+) to CH(3)CN solution of L resulted in a rapid color change from yellow to red together with a large red shift from 465 to 516 nm. Moreover, other common alkali-, alkaline earth-, transition- and rare earth metal ions induced no or minimal spectral changes. Experimental results indicated that L could be used as a potential Ni(2+) colorimetric and naked-eye chemosensor in CH(3)CN solution. PMID:22306449

  16. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  17. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  18. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  19. Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnOx/Carbon Nanofiber Composites for Lithium Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Chen, Yu-Ming; Guo, Yuanhao; Tangvijitsakul, Pattarasai; Soucek, Mark D; Cakmak, Miko; Zhu, Yu; Vogt, Bryan D

    2016-08-01

    A facile method to fabricate hierarchically structured fiber composites is described based on the electrospinning of a dope containing nickel and manganese nitrate salts, citric acid, phenolic resin, and an amphiphilic block copolymer. Carbonization of these fiber mats at 800 °C generates metallic Ni-encapsulated NiO/MnOx/carbon composite fibers with average BET surface area (150 m(2)/g) almost 3 times higher than those reported for nonporous metal oxide nanofibers. The average diameter (∼900 nm) of these fiber composites is nearly invariant of chemical composition and can be easily tuned by the dope concentration and electrospinning conditions. The metallic Ni nanoparticle encapsulation of NiO/MnOx/C fibers leads to enhanced electrical conductivity of the fibers, while the block copolymers template an internal nanoporous morphology and the carbon in these composite fibers helps to accommodate volumetric changes during charging. These attributes can lead to lithium ion battery anodes with decent rate performance and long-term cycle stability, but performance strongly depends on the composition of the composite fibers. The composite fibers produced from a dope where the metal nitrate is 66% Ni generates the anode that exhibits the highest reversible specific capacity at high rate for any composition, even when including the mass of the nonactive carbon and Ni(0) in the calculation of the capacity. On the basis of the active oxides alone, near-theoretical capacity and excellent cycling stability are achieved for this composition. These cooperatively assembled hierarchical composites provide a platform for fundamentally assessing compositional dependencies for electrochemical performance. Moreover, this electrospinning strategy is readily scalable for the fabrication of a wide variety of nanoporous transition metal oxide fibers. PMID:27399605

  20. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  1. Thermoelectric properties of Zn4Sb3/CeFe(4-x)CoxSb12 nano-layered superlattices modified by MeV Si ion beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Minamisawa, R. A.; Muntele, C. I.; Ila, D.

    2014-08-01

    We prepared multilayers of superlattice thin film system with 50 periodic alternating nano-layers of semiconducting half-Heusler β-Zn4Sb3 and skutterudite CeFe2Co2Sb12 compound thin films using ion beam assisted deposition (IBAD) with Au layers deposited on both sides as metal contacts. The deposited multilayer thin films have alternating layers about 5 nm thick. The total thickness of the multilayer system is 275 nm. The superlattices were then bombarded by 5 MeV Si ion at six different fluences to form nano-cluster structures. The film thicknesses and composition were monitored by Rutherford backscattering spectrometry (RBS) before and after MeV ion bombardment. We have measured the thermoelectric efficiency, Figure of Merit ZT, of the fabricated device by measuring the cross plane thermal conductivity by the 3rd harmonic (3ω) method, the cross plane Seebeck coefficient, and the electrical conductivity using the van der Pauw method before and after the MeV ion bombardments. We reached the remarkable thermoelectric Figure of Merit results at optimal fluences.

  2. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGESBeta

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  3. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  4. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  5. Creation of nanosize defects in LiF crystals under 5- and 10-MeV Au ion irradiation at room temperature

    SciTech Connect

    Lushchik, A.; Lushchik, Ch.; Vasil'chenko, E.; Schwartz, K.; Neumann, R.; Trautmann, C.; Papaleo, R.; Sorokin, M.; Volkov, A. E.

    2007-08-01

    Investigation of radiation defects induced by the irradiation of LiF crystals with 5- or 10-MeV Au ions (fluences of 10{sup 11}-2x10{sup 14} ions/cm{sup 2}; flux varies by 2 orders of magnitude) at room temperature has been performed using the methods of optical absorption and high-temperature (400-750 K) thermoactivation spectroscopy. The creation efficiency of color centers (F,F{sub 2},F{sub 3},...) and colloids drastically depends on both the fluence and ion flux (beam current). Besides impurity (magnesium) colloids with the absorption band peaked at 4.4-4.6 eV, the broad absorption band at 2.3-3.3 eV related to intrinsic Li colloids is reliably distinguished. The creation efficiency of Li colloids by 5-MeV Au ions is lower than that by 10-MeV ions, which form {delta} electrons with higher energies sufficient for the creation of cation excitons ({approx}62 eV). The cation exciton decays, in turn, with the formation of a group of spatially close F centers. At a high ion flux, the next bombarding ions hit the same crystal region with a small time delay (10-100 s) and also form, after similar intermediate processes, the groups of F centers that participate in the formation of stable agglomerates of several F{sub 3} or even more complex centers, which serve as stable (up to 620 K) seeds for nanosize Li colloids. The peculiarities of the formation, enlargement, and annealing of intrinsic colloids in LiF crystals are considered, invoking a formal analog with the processes in photographic materials based on silver halides.

  6. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    SciTech Connect

    Baccou, C. Yahia, V.; Labaune, C.; Depierreux, S.; Neuville, C.; Goyon, C.; Consoli, F.; De Angelis, R.; Ducret, J. E.; Boutoux, G.; Rafelski, J.

    2015-08-15

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  7. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state. PMID:26329181

  8. Effect of 79 MeV Br ion irradiation on the surface features of rutile TiO{sub 2} thin film

    SciTech Connect

    Rath, H.; Dash, P.; Som, T.; Dash, B. N.; Singh, U. P.; Kanjilal, D.; Mishra, N. C.

    2012-07-23

    In this study, rutile titanium dioxide thin films deposited on Si (100) substrates by DC magnetron sputtering are irradiated by 79 MeV Br ions. Though each Br ion is expected to amorphize the medium along its path, the film remains crystalline even at the highest fluence of irradiation. The evolution of surface of the films with Br ion fluence is studied using atomicforce microscopy. The films were found to smoothen under dense electronic excitation of Br ions. The irregular shape grain of the pristine films convert to circular shape at a fluence of 1 Multiplication-Sign 10{sup 13} Br ions cm{sup -2}. Power spectral density (PSD) analysis of the AFM images indicates that irradiation induced smoothing of the surfaces is governed by the surface diffusion process.

  9. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Bobby, A.; Shiwakoti, N.; Verma, S.; Asokan, K.; Antony, B. K.

    2016-05-01

    The Ni/n-GaAs Schottky barrier diode having thin interfacial oxide layer was subjected to 25 MeV C4+ ion irradiation at selected fluences. The in-situ capacitance and dielectric properties were investigated in the 1 KHz to 5 MHz frequency range. The results show a decrease in capacitance with increase in ion fluence at low frequencies. Interestingly, a negative capacitance effect was also observed in this frequency range in all the samples. As a consequence, changes were observed in parameters like series resistance, conductance, dielectric loss, dielectric constant, loss tangent and ac electrical conductivity. At high frequencies, the capacitance reaches the geometric value 'C0'. The results were interpreted in terms of the generation of irradiation induced traps, carrier capture and emission from deep and shallow states and its frequency dependent saturation effects.

  10. L-shell x-ray production cross sections in Nd, Gd, Ho, Yb, Au and Pb for 25-MeV carbon and 32-MeV oxygen ions

    SciTech Connect

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.; Mehta, R.; Lapicki, G.; Miller, P.D.; Pepmiller, P.L.; Krause, H.; Rosseel, T.M.; Rayburn, L.A.

    1984-01-01

    L-shell x-ray production cross sections in /sub 60/Nd, /sub 64/Gd, /sub 67/Ho, /sub 70/Yb, /sub 79/Au and /sub 82/Pb have been measured for incident 25 MeV /sub 6//sup 12/C/sup +q/(q = 4,5,6) and 32 MeV /sub 8//sup 16/O/sup +q/(q = 5,7,8) ions. Measurements were made on targets ranging in thickness from 1 to 100 ..mu..g/cm/sup 2/. Echancement in the L-shell x-ray production cross section for projectiles with one or two K-shell vacancies over those for projectiles with no K-shell vacancies is observed. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N ... shells and EC to the K-shell of the projectile have been extracted from the data. Calculations in the first Born approximation are approx. 10 times larger than the data. Predictions of the ECPSSR theory that accounts for the energy-loss, Coulomb deflection, perturbed-stationary state, and relativistic effects are in good agreement with the data for both ions.

  11. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    NASA Astrophysics Data System (ADS)

    Harres, K.; Schollmeier, M.; Brambrink, E.; Audebert, P.; Blažević, A.; Flippo, K.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Nürnberg, F.; Schreiber, J.; Wahl, H.; Roth, M.

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90×70) mm2 microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O+6), emitted from the rear surface of a laser-irradiated 50 μm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  12. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions.

    PubMed

    Harres, K; Schollmeier, M; Brambrink, E; Audebert, P; Blazević, A; Flippo, K; Gautier, D C; Geissel, M; Hegelich, B M; Nürnberg, F; Schreiber, J; Wahl, H; Roth, M

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented. PMID:19044406

  13. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    SciTech Connect

    Harres, K.; Schollmeier, M.; Nuernberg, F.; Roth, M.; Brambrink, E.; Audebert, P.; Blazevic, A.; Wahl, H.; Flippo, K.; Gautier, D. C.; Hegelich, B. M.; Geissel, M.; Schreiber, J.

    2008-09-15

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm{sup 2} microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O{sup +6}), emitted from the rear surface of a laser-irradiated 50 {mu}m Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  14. In-situ TEM/heavy ion irradiation on ultrafine-and nanocrystalline-grained tungsten: Effect of 3 MeV Si, Cu and W ions

    SciTech Connect

    El-Atwani, O.; Suslova, A.; Novakowski, T.J.; Hattar, K.; Efe, M.; Harilal, S.S.; Hassanein, A.

    2015-01-15

    Plasma facing components for future fusion applications will experience helium- and neutron-induced structural damage. Direct observation of the in-situ dynamic response of such components during particle beam exposure assists in fundamental understanding of the physical phenomena that give rise to their irradiation resistance. We investigated the response of ultrafine and nanocrystalline-grained tungsten to 3 MeV heavy ion irradiations (Si{sup 2} {sup +}, Cu{sup 3} {sup +} and W{sup 4} {sup +}) for the simulation of neutron-induced damage through transmutation reactions via in-situ ion irradiation–transmission electron microscopy experiments. Defect densities as a function of irradiation dose (displacement per atom) and fluence were studied. Four stages of defect densities evolution were observed, as a function of irradiation dose: 1) increase in defect density at lower doses, 2) higher defect production rate at the intermediate doses (before saturation), 3) reaching the maximum value, and 4) drop of the defect density in the case of W{sup 4} {sup +}, possibly due to defect coalescence and grain boundary absorption of small defect clusters. The effect of grain size on defect densities was investigated and found that defect densities were independent of grain size in the ultrafine and nanocrystalline region (60–400 nm). These results were compared to other heavy ion irradiation studies of structural materials. - Graphical abstract: Bright-field TEM micrographs and defect densities of UF and NC tungsten grains irradiated with a) Si{sup +} {sup 2} at 1.03 dpa: 1) 140 nm — 7.2 × 10{sup −} {sup 3} defects/nm{sup 2}, 2) 122 nm — 6.9 × 10{sup −} {sup 3} defects/nm{sup 2}, 3) 63 nm — 4.7 × 10{sup −} {sup 3} defects/nm{sup 2}, and 4) 367 nm — 6.4 × 10{sup −} {sup 3} defects/nm{sup 2}; b) Cu{sup +} {sup 3} to 3.79 dpa: 1) 228 nm — 4.3 × 10{sup −} {sup 3} defects/nm{sup 2}; 2) 202 nm — 5.9 × 10{sup −} {sup 3} defects/nm{sup 2}; and 3) 137 nm

  15. Production of beams of neutron-rich nuclei between Ca and Ni using the ion-guide technique

    SciTech Connect

    Perajarvi, K.; Cerny, J.; Hager, U.; Hakala, J.; Huikari, J.; Jokinen, A.; Karvonen, P.; Kurpeta, J.; Lee, D.; Moore, I.; Penttila, H.; Popov, A.; Aysto, J.

    2004-09-28

    Since several elements between Z = 20-28 are refractory in their nature, their neutron-rich isotopes are rarely available as low energy Radioactive Ion Beams (RIB) in ordinary Isotope Separator On-Line facilities [1-4]. These low energy RIBs would be especially interesting to have available under conditions which allow high-resolution beta-decay spectroscopy, ion-trapping and laser-spectroscopy. As an example, availability of these beams would open a way for research which could produce interesting and important data on neutron-rich nuclei around the doubly magic {sup 78}Ni. One way to overcome the intrinsic difficulty of producing these beams is to rely on the chemically unselective Ion Guide Isotope Separator On-Line (IGISOL) technique [5]. Quasi- and deep-inelastic reactions, such as {sup 197}Au({sup 65}Cu,X)Y, could be used to produce these nuclei in existing IGISOL facilities, but before they can be successfully incorporated into the IGISOL concept their kinematics must be well understood. Therefore the reaction kinematics part of this study was first performed at the Lawrence Berkeley National Laboratory using its 88'' cyclotron and, based on those results, a specialized target chamber was built[6]. The target chamber shown in Fig. 1 was recently tested on-line at the Jyvaaskylaa IGISOL facility. Yields of mass-separated radioactive projectile-like species such as {sup 62,63}Co are about 0.8 ions/s/pnA, corresponding to about 0.06 % of the total IGISOL efficiency for the products that hit the Ni-degrader. (The current maximum 443 MeV {sup 65}Cu beam intensity at Jyvaaskylaa is about 20 pnA.) This total IGISOL efficiency is a product of two coupled loss factors, namely inadequate thermalization and the intrinsic IGISOL efficiency. In our now tested chamber, about 9 % of the Co recoils are thermalized in the owing He gas (p{sub He}=300 mbar) and about 0.7 % of them are converted into the mass-separated ion beams. In the future, both of these physical

  16. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  17. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range. PMID:27587107

  18. Structural, optical and transport properties of 100 MeV oxygen ion irradiated V{sub 2}O{sub 5} thin film

    SciTech Connect

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Singh, J. P.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2012-06-05

    Thin films of V{sub 2}O{sub 5} were spray deposited at 450 deg. C on ITO coated glass substrates. The film with a thickness of 217 nm was irradiated with 100 MeV oxygen ion beam at a fluence of 5 x 10{sup 12} ions/cm{sup 2}. Upon irradiation, the optical transparency of the film decreased from 90% to 40% and the band gaps estimated using Tauc relation showed red shift. Transport parameters were also measured. The induced modifications are mainly due to electronic energy loss and the results are discussed.

  19. Quiet-time properties of low-energy (less than 10 MeV per nucleon) interplanetary ions during solar maximum and solar minimum

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Reames, D. V.; Wenzel, K.-P.; Rodriguez-Pacheco, J.

    1990-01-01

    The abundances and spectra of 1-10 MeV per nucleon protons, He-3, He-4, C, O, and Fe have been exmained during solar quiet periods from 1978 to 1987 in an effort to investigate the recent suggestion by Wenzel et al. (1990) that the ions may be of solar origin. It is found that the intensities of the ions, other than O, fall by an order of magnitude between solar maximum and solar minimum, and that the greater than 1 MeV per nucleon ions exhibit weak streaming away from the sun. More significantly, the quiet-time ions during solar maximum have He-3-rich and Fe-rich abundances which are established characteristics of small impulsive solar flares. Thus, it is suggested that small unresolved impulsive flares make a substantial contribution to the 'quiet-time' fluxes. He-4 from these flares may also contribute strongly to the ion spectra that were reported for the 35-1600 keV energy range by Wenzel et al.

  20. Modification of the microstructure and electronic properties of rutile TiO2 thin films with 79 MeV Br ion irradiation

    NASA Astrophysics Data System (ADS)

    Rath, Haripriya; Dash, P.; Singh, U. P.; Avasthi, D. K.; Kanjilal, D.; Mishra, N. C.

    2015-12-01

    Modifications induced by 79 MeV Br ions in rutile titanium dioxide thin films, synthesized by dc magnetron sputtering are presented. Irradiations did not induce any new XRD peak corresponding to any other phase. The area and the width of the XRD peaks were considerably affected by irradiation, and peaks shifted to lower angles. But the samples retained their crystallinity at the highest fluence (1 × 1013 ions cm-2) of irradiation even though the electronic energy loss of 79 MeV Br ions far exceeds the reported threshold value for amorphization of rutile TiO2. Fitting of the fluence dependence of the XRD peak area to Poisson equation yielded the radius of ion tracks as 2.4 nm. Ion track radius obtained from the simulation based on the thermal spike model matches closely with that obtained from the fluence dependence of the area under XRD peaks. Williamson-Hall analysis of the XRD spectra indicated broadening and shifting of the peaks are a consequence of irradiation induced defect accumulation leading to microstrains, as was also indicated by Raman and UV-Visible absorption study.

  1. Stopping powers of GaAs for 0.3-2.5 MeV 1H and 4He ions

    NASA Astrophysics Data System (ADS)

    Rajatora, M.; Väkeväinen, K.; Ahlgren, T.; Rauhala, E.; Räisänen, J.; Rakennus, K.

    1996-12-01

    Ion backscattering and foil transmission methods have been used to determine the energy loss of 0.3-2.5 MeV 1H and 4He ions in crystalline bulk GaAs and thin foil GaAs grown by molecular beam epitaxy (MBE). The self-supporting GaAs sample foil was produced by floating the MBE-grown GaAs film from an {AlAs}/{GaAs} backing by a lift-off process. The stopping powers, corresponding to energy loss of the ions in a nonchanneling direction in the crystal were extracted from the measurements. Ion backscattering and channeling were employed to study the effect of the crystal structure of the thin foil sample on the stopping powers deduced. Deviations from semi-empirical SRIM calculations (version 96.04) were observed in the case of 4He ions for which the stopping powers fall clearly below the calculated values. An average deviation of about 5% is found for the energies studied, from below the stopping power maximum at 0.8 to 2.2 MeV. The results obtained by the two independent experimental methods have been compared and discussed.

  2. High temperature stability, interface bonding, and mechanical behavior in. beta. -NiAl and Ni sub 3 Al matrix composites with reinforcements modified by ion beam enhanced deposition

    SciTech Connect

    Grummon, D.S.

    1992-01-22

    In preparation for experiments with surface modified Al{sub 2}O{sub 3} reinforcements in {beta}NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al{sub 2}O{sub 3}, Al, Ni) and then composited with {beta}NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni{sub 3}Al was studied. 3 figs, 1 tab. (DLC)

  3. Dissociation of multicharged CO molecular ions produced in collisions with 97-MeV Ar14+: Total-kinetic-energy distributions

    NASA Astrophysics Data System (ADS)

    Sampoll, G.; Watson, R. L.; Heber, O.; Horvat, V.; Wohrer, K.; Chabot, M.

    1992-03-01

    Transient molecular ions of COq+ (where q=2-7) were produced in single collisions of 97-MeV Ar14+ projectiles with neutral CO molecules. The resulting dissociation products were identified by coincidence time-of-flight spectroscopy in which the time of flight of the first ion to reach the detector and the time difference between the first ion and its partner were recorded event by event. An iterative matrix-transformation procedure was employed to convert the time-difference spectra for the prominent dissociation channels into total-kinetic-energy distributions. Analysis of the total-kinetic-energy distributions and comparisons with the available data for CO2+ and CO3+ from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization.

  4. Synthesis, characterization and analytical applications of Ni(II)-ion imprinted polymer

    NASA Astrophysics Data System (ADS)

    Singh, D. K.; Mishra, Shraddha

    2010-10-01

    Ion recognition-based separation techniques have received much attention because of their high selectivity for target ions. In this study, we have prepared a novel ion imprinted polymer (IIP) to remove nickel ions with high selectivity. The imprinted polymer was prepared by copolymerization of 2-hydroxy ethyl methacrylate (HEMA) with nickel vinylbenzoate complex in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The polymerization was carried out in bulk with free radical initiation using 2-methoxy ethanol as a solvent and porogen. The adsorbed nickel was completely eluted with 15 mL of 1 M HCl. Control polymer was also prepared by similar experimental conditions without using imprint ion. The above synthesized polymers were characterized by surface area measurements, FT-IR, microanalysis and SEM analysis. The adsorption capacity of IIP and CP was found to be 1.51 and 0.65 mmol g -1, respectively. The optimal pH for quantitative enrichment was 6.5. Nature of eluent, eluent concentration and eluent volume were also studied. The relative selectivity factor ( αr) values of Ni(II)/Zn(II), Ni(II)/Cu(II) and Ni(II)/Co(II) were 78.6, 111.1 and 91.6, respectively. Five replicate determinations of 30 μg L -1 of Ni(II) gave a mean absorbance of 0.067 with a relative standard deviation of 1.06%. The lowest concentration determined by GTA-AAS below which the recovery becomes non-quantitative is 6 μg L -1. IIP was tested for removal of Ni(II) from sea water sample.

  5. Ion irradiation induced element-enriched and depleted nanostructures in Zr-Al-Cu-Ni metallic glass

    SciTech Connect

    Chen, H. C.; Liu, R. D.; Yan, L. E-mail: zhouxingtai@sinap.ac.cn; Zhou, X. T. E-mail: zhouxingtai@sinap.ac.cn; Cao, G. Q.; Wang, G.

    2015-07-21

    The microstructural evolution of a Zr-Al-Cu-Ni metallic glass induced by irradiation with Ar ions was investigated. Under ion irradiation, the Cu- and Ni-enriched nanostructures (diameter of 30–50 nm) consisted of crystalline and amorphous structures were formed. Further, Cu- and Ni-depleted nanostructures with diameters of 5–20 nm were also observed. The formation of these nanostructures can be ascribed to the migration of Cu and Ni atoms in the irradiated metallic glass.

  6. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    SciTech Connect

    Huang, Peng; Zhang, Xin; Wei, Jumeng; Pan, Jiaqi; Sheng, Yingzhou; Feng, Boxue

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. The electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.

  7. Thermoelectric generators from SiO2/SiO2 + Ge nanolayer thin films modified by MeV Si ions

    NASA Astrophysics Data System (ADS)

    Budak, S.; Gulduren, E.; Allen, B.; Cole, J.; Lassiter, J.; Colon, T.; Muntele, C.; Alim, M. A.; Bhattacharjee, S.; Johnson, R. B.

    2015-01-01

    We prepared thermoelectric generator devices from 100 alternating layers of SiO2/SiO2 + Ge superlattice thin films using Magnetron DC/RF Sputtering. Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package were used to determine the proportions of Si and Ge in the grown multilayer films and the thickness of the grown multi-layer films. 5 MeV Si ion bombardments were performed using the AAMU-Pelletron ion beam accelerator, to form quantum clusters in the multi-layer superlattice thin films, in order to tailor the thermoelectrical and optical properties. We characterized the fabricated thermoelectric devices using cross-plane Seebeck coefficient, van der Pauw resistivity, mobility, density (carrier concentration), Hall Effect coefficient, Raman, Fluorescence, Photoluminescence, Atomic Force Microscopy (AFM) and Impedance analyzing measurements. Some suitable high energy ion fluences and thermal annealings caused some remarkable thermoelectrical and optical changes in the fabricated multilayer thin film systems.

  8. Electron capture from Ni surface resulting from H+ ion impact

    NASA Astrophysics Data System (ADS)

    Suzuki, Reiko; Suzuki, Reiko; Sato, Hiroshi; Kimura, Mineo

    1998-10-01

    Electron capture from Cu and Co surfaces by H+ and He+ ion bombardment has been investigated theoretically by using the molecular representation. Since an experimental condition was that the incoming particle was introduced on the surface with a large angle, the binary collision would be satisfied. We have obtained electronic states of the colliding pair by the ALCHEMY, and the scattering dynamics was solved by using the semiclassical close coupling treatment. We have included trajectories of compete recoils of the projectile through the coupling of electronic and nuclear motions. The preliminary result obtained shed much light on the understanding of the experimental finding.

  9. Ion beam mixing in binary amorphous metallic alloys. [Cu-Er; Ni-Ti

    SciTech Connect

    Hahn, H.; Averback, R.S.; Diaz de la Rubia, T.; Okamoto, P.R.

    1985-12-01

    Ion beam mixing (IM) was measured in homogeneous amorphous metallic alloys of Cu-Er and Ni-Ti as a function of temperature using tracer impurities, i.e., the so-called ''marker geometry''. In Cu-Er, a strong temperature dependence in IM was observed between 80 and 373K, indicating that radiation-enhanced diffusion mechanisms are operative in this metallic glass. Phase separation of the Cu-Er alloy was also observed under irradiation as Er segregated to the vacuum and SiO2 interfaces of the specimen. At low-temperatures, the amount of mixing in amorphous Ni-Ti is similar to that in pure Ni or Ti, but it is much greater in Cu-Er than in either Cu or Er.

  10. Inducing multiple functionalities in ZnS nanoparticles by doping Ni{sup +2} ions

    SciTech Connect

    Dixit, Namrata; Anasane, Nishant; Chavda, Mukesh; Bodas, Dhananjay; Soni, Hemant P.

    2013-06-01

    Graphical abstract: Figure shows spherical ZnS nanoparticle (light red) containing Ni as dopant ions (light green inside) exhibiting both optical (straight lines) as well as magnetic (elliptical field lines) activities simultaneously. Highlights: ► A simple method has been adopted to synthesize Ni{sup +2} doped ZnS nanoparticles. ► The enhancing and quenching of the PL intensity depended upon ‘purity of the phase’. ► The change in packing of the molecules in ZnS NPs directly depended on concentration of dopant. ► Magnetic and optical properties were found to be dopant dependent (e.g. Ni{sup +2} ions). ► Proper choice of solvent for synthesis shows a marked effect on magnetism. - Abstract: In this study, we propose that it is possible to induce multiple functionalities such as optical activity, electrical conductance and magnetism in single ZnS/Ni nanoparticles and exploit the same by only changing the external stimuli such as magnetic field, wavelength of light, electric field etc. Such type of material finds great significance in the field of electronics as well as in bioimaging. For the purpose, we have synthesized cubic ZnS:Ni{sup 2+} nanoparticles (NPs) using a simple wet-chemical method. Synthesized ZnS:Ni{sup 2+} NPs had been characterized by X-ray diffraction pattern (XRD) and energy dispersive X-ray (EDX) analysis. The amounts of Ni and Zn in the material were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Morphology of the NPs is studied by transmission electron microscopy (TEM). Optical studies are carried out using UV–visible (UV–Vis) and Photoluminescence (PL) spectroscopies. Quantum efficiency of the material was also computed. The enhancement and quenching of the PL intensity are correlated with the ‘purity of the phase’. It is observed that change in packing of the molecules of the host material directly depended on concentration of dopant ion. The thermal study of the material was carried out

  11. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    NASA Astrophysics Data System (ADS)

    Mäckel, V.; Meissl, W.; Ikeda, T.; Clever, M.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Imamoto, N.; Ogiwara, K.; Yamazaki, Y.

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He2+. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm3 resolution, while monitoring the target in real time during and after irradiation.

  12. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    SciTech Connect

    Mäckel, V. Meissl, W.; Ikeda, T.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Ogiwara, K.; Yamazaki, Y.; Clever, M.; Imamoto, N.

    2014-01-15

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He{sup 2+}. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1–2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm{sup 3} resolution, while monitoring the target in real time during and after irradiation.

  13. Electrical control of Co/Ni magnetism adjacent to gate oxides with low oxygen ion mobility

    SciTech Connect

    Yan, Y. N.; Zhou, X. J.; Li, F.; Cui, B.; Wang, Y. Y.; Wang, G. Y.; Pan, F.; Song, C.

    2015-09-21

    We investigate the electrical manipulation of Co/Ni magnetization through a combination of ionic liquid and oxide gating, where HfO{sub 2} with a low O{sup 2−} ion mobility is employed. A limited oxidation-reduction process at the metal/HfO{sub 2} interface can be induced by large electric field, which can greatly affect the saturated magnetization and Curie temperature of Co/Ni bilayer. Besides the oxidation/reduction process, first-principles calculations show that the variation of d electrons is also responsible for the magnetization variation. Our work discloses the role of gate oxides with a relatively low O{sup 2−} ion mobility in electrical control of magnetism, and might pave the way for the magneto-ionic memory with low power consumption and high endurance performance.

  14. Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2 + ion in water samples

    NASA Astrophysics Data System (ADS)

    Rajabi, Hamid Reza; Razmpour, Saham

    2016-01-01

    Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni2 + ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni2 + ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni2 + ion over other ions such as Na+, K+, Ag+, Co2 +, Cu2 +, Cd2 +, Hg2 +, Pb2 +, Zn2 +, Mn2 +, Mg2 +, Cr3 +, and Fe3 +. The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni2 + ion from different water samples.

  15. Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni²⁺ ion in water samples.

    PubMed

    Rajabi, Hamid Reza; Razmpour, Saham

    2016-01-15

    Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni(2+) ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni(2+) ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni(2+) ion over other ions such as Na(+), K(+), Ag(+), Co(2+), Cu(2+), Cd(2+), Hg(2+), Pb(2+), Zn(2+), Mn(2+), Mg(2+), Cr(3+), and Fe(3+). The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni(2+) ion from different water samples. PMID:26284601

  16. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    SciTech Connect

    Shao, Lin; Wei, C. -C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed not to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.

  17. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Wei, C.-C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.

    2014-10-01

    Ion irradiation has been widely used to simulate neutron-induced radiation damage. There are a number of features of ion-induced damage that differ from neutron-induced damage, however, and these differences require investigation before ion data can be confidently used to predict behavior arising from neutron bombardment. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. It was observed that the depth dependence of void swelling does not follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then moves to progressively deeper and higher-damage depths during continued irradiation. This indicates a strong initial suppression of void nucleation in the peak damage region that is eventually overcome with continued irradiation. Using the Boltzmann transport equation method, this phenomenon is shown to be due to depth-dependent defect imbalances created under ion irradiation. These findings demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extraction and interpretation of ion-induced swelling data.

  18. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    DOE PAGESBeta

    Shao, Lin; Wei, C. -C.; Gigax, J.; Aitkaliyeva, A.; Chen, D.; Sencer, B. H.; Garner, F. A.

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore » to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less

  19. Violence of heavy-ion reactions from neutron multiplicity: 11 to 20A-italic MeV /sup 20/Ne+ /sup 238/U

    SciTech Connect

    Jahnke, U.; Ingold, G.; Hilscher, D.; Lehmann, M.; Schwinn, E.; Zank, P.

    1986-07-14

    The suitability of the neutron multiplicity as a gauge for the violence of medium-energy heavy-ion reactions is investigated for the first time. For this purpose the number of neutrons emitted from fission reactions induced by 220-, 290-, and 400-MeV /sup 20/Ne on /sup 238/U is registered event-by-event with a large 4..pi.. scintillator tank. It is shown that the neutron multiplicity is indeed closely related to the two quantities characterizing the violence: the induced total intrinsic excitation and the linear momentum transfer.

  20. Mathematical Modeling of Ni/H2 and Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; White, Ralph E.; Dougal, Roger A.

    2001-01-01

    The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.

  1. Surface modification of NiTi by plasma based ion implantation for application in harsh environments

    NASA Astrophysics Data System (ADS)

    Oliveira, R. M.; Fernandes, B. B.; Carreri, F. C.; Gonçalves, J. A. N.; Ueda, M.; Silva, M. M. N. F.; Silva, M. M.; Pichon, L.; Camargo, E. N.; Otubo, J.

    2012-12-01

    The substitution of conventional components for NiTi in distinct devices such as actuators, valves, connectors, stents, orthodontic arc-wires, e.g., usually demands some kind of treatment to be performed on the surface of the alloy. A typical case is of biomaterials made of NiTi, in which the main drawback is the Ni out-diffusion, an issue that has been satisfactorily addressed by plasma based ion implantation (PBII). Even though PBII can tailor selective surface properties of diverse materials, usually, only thin modified layers are attained. When NiTi alloys are to be used in the harsh space environment, as is the case of devices designed to remotely release the solar panels and antenna arrays of satellites, e.g., superior mechanical and tribological properties are demanded. For this case the thickness of the modified layer must be larger than the one commonly achieved by conventional PBII. In this paper, new nitrogen PBII set up was used to treat samples of NiTi in moderate temperature of 450 °C, with negative voltage pulses of 7 kV/250 Hz/20 μs, in a process lasting 1 h. A rich nitrogen atomic concentration of 85 at.% was achieved on the near surface and nitrogen diffused at least for 11 μm depth. Tribological properties as well as corrosion resistance were evaluated.

  2. Particle size effect of Ni-rich cathode materials on lithium ion battery performance

    SciTech Connect

    Hwang, Ilkyu; Department of Chemical Engineering, Kyungppok National University, Daegu 702-701 ; Lee, Chul Wee; Kim, Jae Chang; Yoon, Songhun

    2012-01-15

    Graphical abstract: The preparation condition of Ni-rich cathode materials was investigated. When the retention time was short, a poor cathode performance was observed. For long retention time condition, cathode performance displayed a best result at pH 12. Highlights: Black-Right-Pointing-Pointer Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) were prepared by co-precipitation method using separate addition of Al salt. Black-Right-Pointing-Pointer Particle size of Ni-rich cathode materials became larger with increase of retention time and solution pH. Black-Right-Pointing-Pointer Cathode performance was poor for low retention time. Black-Right-Pointing-Pointer Optimal pH for co-precipitation was 12. -- Abstract: Herein, Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) in lithium ion batteries are prepared by a separate addition of Ni/Co salt and Al sol solution using a continuously stirred tank reactor. Retention time and solution pH were controlled in order to obtain high performance cathode material. Particle size increase was observed with a higher retention time of the reactants. Also, primary and secondary particles became smaller according to an increase of solution pH, which was probably due to a decrease of growth rate. From the cathode application, a high discharge capacity (175 mAh g{sup -1}), a high initial efficiency (90%) and a good cycleability were observed in the cathode material prepared under pH 12 condition, which was attributed to its well-developed layered property and the optimal particle size. However, rate capability was inversely proportional to the particle size, which was clarified by a decrease of charge-transfer resistance measured in the electrochemical impedance spectroscopy.

  3. Properties of polyimide, polyetheretherketone and polyethyleneterephthalate implanted by Ni ions to high fluences

    NASA Astrophysics Data System (ADS)

    Malinsky, P.; Mackova, A.; Hnatowicz, V.; Khaibullin, R. I.; Valeev, V. F.; Slepicka, P.; Svorcik, V.; Slouf, M.; Perina, V.

    2012-02-01

    Polyimide (PI), polyetheretherketone (PEEK) and polyethyleneterephthalate (PET) were implanted with 40 keV Ni + ions at RT to the fluences (0.25-1.5) × 10 17 cm -2 at ion current density of 4 μA cm -2. Then some of the samples were annealed at the temperatures close to the polymer glassy transition temperature. Depth profiles of the Ni atoms in the as implanted and annealed samples were determined by RBS method. The profiles in the as implanted samples agree reasonably with those simulated using TRYDIN code. The implanted Ni atoms tend to aggregate into nano-particles, the size and distribution of which was determined from TEM images. The nano-particle size increases with increasing ion fluence. Subsequent annealing leads to a reduction in the nanoparticle size. The surface morphology of the implanted and annealed samples was studied using AFM. The changes in the polymer sheet resistance of the implanted and annealed samples were measured by standard two-point technique. The sheet resistance decreases with increasing temperature of annealing.

  4. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-01

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump.

  5. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  6. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGESBeta

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  7. EFFECTS OF ION IRRADIATION ON Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) BULK METALLIC GLASS

    SciTech Connect

    Perez-Bergquist, Alex G; Bei, Hongbin; Leonard, Keith J; Zhang, Yanwen; Zinkle, Steven J

    2014-01-01

    Bulk metallic glasses are intriguing candidates for nuclear applications due to their inherent amorphous structure, but their radiation response is largely unknown due to the relatively recent nature of innovations in bulk metallic glass fabrication. Here, microstructural and mechanical property evaluations have been performed on a Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BAM-11) irradiated with 3 MeV Ni+ ions to 0.1 and 1.0 dpa at room temperature and 200 C. Nanoindentation hardness and Young s modulus both decreased by 6 to 20% in samples irradiated at room temperature, with the sample irradiated to 1.0 dpa experiencing the greatest change in mechanical properties. However, no significant changes in properties were observed in the samples irradiated at 200 C, and transmission electron microscopy showed no visible evidence of radiation damage or crystallization following ion irradiation at any of the tested conditions. These results suggest that BAM-11 bulk metallic glass may be useful for certain applications in nuclear environments.

  8. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber

    PubMed Central

    Cho, Jung Sang; Lee, Seung Yeon; Kang, Yun Chan

    2016-01-01

    The first-ever study of nickel selenide materials as efficient anode materials for Na-ion rechargeable batteries is conducted using the electrospinning process. NiSe2-reduced graphene oxide (rGO)-C composite nanofibers are successfully prepared via electrospinning and a subsequent selenization process. The electrospun nanofibers giving rise to these porous-structured composite nanofibers with optimum amount of amorphous C are obtained from the polystyrene to polyacrylonitrile ratio of 1/4. These composite nanofibers also consist of uniformly distributed single-crystalline NiSe2 nanocrystals that have a mean size of 27 nm. In contrast, the densely structured bare NiSe2 nanofibers formed via selenization of the pure NiO nanofibers consist of large crystallites. The initial discharge capacities of the NiSe2-rGO-C composite and bare NiSe2 nanofibers at a current density of 200 mA g−1 are 717 and 755 mA h g−1, respectively. However, the respective 100th-cycle discharge capacities of the former and latter are 468 and 35 mA h g−1. Electrochemical impedance spectroscopy measurements reveal the structural stability of the composite nanofibers during repeated Na-ion insertion and extraction processes. The excellent Na-ion storage properties of these nanofibers are attributed to this structural stability. PMID:26997350

  9. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Lee, Seung Yeon; Kang, Yun Chan

    2016-03-01

    The first-ever study of nickel selenide materials as efficient anode materials for Na-ion rechargeable batteries is conducted using the electrospinning process. NiSe2-reduced graphene oxide (rGO)-C composite nanofibers are successfully prepared via electrospinning and a subsequent selenization process. The electrospun nanofibers giving rise to these porous-structured composite nanofibers with optimum amount of amorphous C are obtained from the polystyrene to polyacrylonitrile ratio of 1/4. These composite nanofibers also consist of uniformly distributed single-crystalline NiSe2 nanocrystals that have a mean size of 27 nm. In contrast, the densely structured bare NiSe2 nanofibers formed via selenization of the pure NiO nanofibers consist of large crystallites. The initial discharge capacities of the NiSe2-rGO-C composite and bare NiSe2 nanofibers at a current density of 200 mA g‑1 are 717 and 755 mA h g‑1, respectively. However, the respective 100th-cycle discharge capacities of the former and latter are 468 and 35 mA h g‑1. Electrochemical impedance spectroscopy measurements reveal the structural stability of the composite nanofibers during repeated Na-ion insertion and extraction processes. The excellent Na-ion storage properties of these nanofibers are attributed to this structural stability.

  10. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber.

    PubMed

    Cho, Jung Sang; Lee, Seung Yeon; Kang, Yun Chan

    2016-01-01

    The first-ever study of nickel selenide materials as efficient anode materials for Na-ion rechargeable batteries is conducted using the electrospinning process. NiSe2-reduced graphene oxide (rGO)-C composite nanofibers are successfully prepared via electrospinning and a subsequent selenization process. The electrospun nanofibers giving rise to these porous-structured composite nanofibers with optimum amount of amorphous C are obtained from the polystyrene to polyacrylonitrile ratio of 1/4. These composite nanofibers also consist of uniformly distributed single-crystalline NiSe2 nanocrystals that have a mean size of 27 nm. In contrast, the densely structured bare NiSe2 nanofibers formed via selenization of the pure NiO nanofibers consist of large crystallites. The initial discharge capacities of the NiSe2-rGO-C composite and bare NiSe2 nanofibers at a current density of 200 mA g(-1) are 717 and 755 mA h g(-1), respectively. However, the respective 100(th)-cycle discharge capacities of the former and latter are 468 and 35 mA h g(-1). Electrochemical impedance spectroscopy measurements reveal the structural stability of the composite nanofibers during repeated Na-ion insertion and extraction processes. The excellent Na-ion storage properties of these nanofibers are attributed to this structural stability. PMID:26997350

  11. NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries

    SciTech Connect

    Cao, F.; Pan, G.X.; Tang, P.S.; Chen, H.F.

    2013-03-15

    Graphical abstract: Self-supported NiO nanowall array is fabricated by a facile hydrothermal synthesis method and exhibits noticeable Li ion battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. - Abstract: Free-standing quasi-single-crystalline NiO nanowall array is successfully fabricated via a simple hydrothermal synthesis method. The as-prepared NiO film exhibits a highly porous nanowall structure composed of many interconnected nanoflakes with thicknesses of ∼20 nm. The NiO nanowalls arrange vertically to the substrate resulting in the formation of extended porous net-like structure with pores of 30–300 nm. As anode material for lithium ion batteries, the quasi-single-crystalline NiO nanowall array exhibits pretty good electrochemical performances with high capacity, weaker polarization, higher coulombic efficiency and better cycling performance as compared to the dense polycrystalline NiO film. The quasi-single-crystalline NiO nanowall array presents an initial coulombic efficiency of 76% and good cycling life with a capacity of 564 mAh g{sup −1} at 0.5 A g{sup −1} after 50 cycles, higher than that of the dense polycrystalline NiO film (358 mAh g{sup −1}). The enhanced performance is due to the unique nanowall array structure providing faster ion/electron transport and better morphological stability.

  12. Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Singh, V. P.; Mishra, N. C.; Ojha, S.; Kanjilal, D.; Rath, Chandana

    2014-08-01

    In continuation to our earlier studies where we have shown room temperature ferromagnetism observed in TiO2 and Co-doped TiO2 (CTO) thin films independent of their phase (Mohanty et al 2012 J. Phys. D: Appl. Phys. 45 325301), here the modifications in structure and magnetic properties in CTO thin films using 100 MeV Ag7+ ion irradiation are reported. Owing to the important role of defects in tailoring the magnetic properties of the material, we vary the ion fluence from 5 × 1011 to 1 × 1012 ions cm-2 to create post-deposition defects. While the film deposited under 0.1 mTorr oxygen partial pressure retains its crystallinity showing radiation-resistant behaviour even at a fluence of 1 × 1012 ions cm-2, films deposited under 1 to 300 mTorr oxygen partial pressure becomes almost amorphous at the same fluence. Using Poisson's law, the diameter of the amorphized region surrounding the ion path is calculated to be ˜4.2 nm from the x-ray diffraction peak intensity ((1 1 0) for rutile phase) as a function of ion fluence. The saturation magnetization (Ms) decreases exponentially similar to the decrease in x-ray peak intensity with fluence, indicating magnetic disordered region surrounding the ion path. The diameter of the magnetic disordered region is found to be ˜6.6 nm which is larger than the diameter of the amorphized latent track. Therefore, it is confirmed that swift heavy ion irradiation induces a more significant magnetic disorder than the structural disorder.

  13. Charge State Dependence of M-Shell X-Ray Production in HOLMIUM-67 by 2-12 Mev Carbon Ions

    NASA Astrophysics Data System (ADS)

    Sun, Hsueh-Li.

    Charge state dependence of M-shell x-ray production cross sections of _{67}Ho bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiments were performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of University of North Texas. The high charge state carbon ions were produced by a post-accelerator gas stripper. The ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated by radioative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques. Experimental results are compared to the predictions of the first Born and ECPSSR theories using single-hole fluorescence yield. The theories include two ionization mechanisms, direct ionization (DI) of the target electron to the continuum and electron capture (EC) from the target to the projectile. The first Born theory describes the DI by plane wave Born approximation (PWBA) and electron capture (EC) by Oppenheimer-Brinkman-Kramers treatment of Nikolaev (OBKN). The ECPSSR theory accounts for the energy loss (E) and Coulomb deflection (C) of the projectile while passing the target atom as well as the perturbed stationary states (PSS) and the relativistic effects of the target electron during interaction with the projectile. The electron capture cross sections can be extracted from the charge state dependence of the x-ray production cross section. The first Born theory overpredicts all the data of the total M-shell x-ray production cross sections and the electron capture cross sections. The ECPSSR theory gives good agreement to the total M-shell x-ray production cross section for 6-12 MeV carbon ions with charge state 3+ and 4+, but overpredicts the result of charge state 5+ and 6+ and all of the data at energies 2 to 4 MeV. The ECPSSR theory also

  14. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  15. Synthesis characterization and luminescence studies of 100 MeV Si8+ ion irradiated sol gel derived nanocrystalline Y2O3

    NASA Astrophysics Data System (ADS)

    Lakshminarasappa, B. N.; Shivaramu, N. J.; Nagabhushana, K. R.; Singh, Fouran

    2014-06-01

    Nanoparticles of pure yttrium oxide (Y2O3) have been prepared by sol gel method. The powder X-ray diffraction (PXRD) pattern of as synthesized sample showed the amorphous nature. The as synthesized Y2O3 powders are annealed at 500, 600, 700, 800 and 900 °C for 2 h. Y2O3 powder heat treated for 600 °C showed cubic phase and the crystallite sizes are found to be ˜13 nm. Fourier transformed infrared spectroscopy (FTIR) revealed absorption with peaks at 3434, 1724, 1525, 1400, 847, 562 and 465 cm-1. Photoluminescence (PL) of 100 MeV Si8+ ion irradiated samples shows emission with peaks at 417, 432, 465 nm. It is found that PL intensity increases with increasing in ion fluence up to ˜3 × 1012 ions cm-2 and then decreases with further increase in ion fluence. A well resolved thermoluminescence (TL) glow with peak at ˜430 K (Tm1) and an unresolved TL glow with peak at ˜538 (Tm2), 584 K (Tm3) are observed in ion irradiated samples.

  16. Influence of 120 MeV Au+9 ions irradiation on resistive switching properties of Cr:SrZrO3/SRO junctions

    NASA Astrophysics Data System (ADS)

    Bhavsar, Komal H.; Joshi, Utpal S.

    2016-07-01

    Swift heavy ion (SHI) irradiation has been successfully used to modify structural and electrical properties of heterostructured Cr doped SrZrO3 thin films grown on 200 nm thick SrRuO3/SiO2 by chemical solution deposition method. Samples were irradiated by 120 MeV Au+9 ions with fluence value 1 × 1012 ions/cm2 in order to investigate the influence of SHI irradiation on the resistive switching (RS) phenomenon. Structural characterization with grazing angle X-ray diffraction exhibited an enhancement of crystallinity as well as crystallographic strain. Typical energy dispersive analysis of X-rays (EDAX) spectrum was carried out to study the interface mixing, if any, after the ion irradiation. The pristine sample exhibits a narrow hysteresis loop in the current voltage (I-V) curves with maximum RS ratio of 98. Highly reproducible resistive switching characteristics with pronounced loops in the I-V curves have been observed for the irradiated Ag/Cr:SZO/SRO structure with maximum RS ratio of 985. I-V curves in low resistive state (LRS) demonstrate linear Ohmic conduction mechanism for both positive as well as negative bias region. The high resistive state (HRS) is consistent with space charge limited (SCLC) mechanism. The observed electrical behavior can be attributed to the high energy density of electronic excitations resulting from the impact of swift heavy ions induced defects and strain.

  17. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2016-03-01

    Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz) was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200) is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS), Ultimate Tensile Strength (UTS) and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  18. Strain evolution in Si substrate due to implantation of MeV ion observed by extremely asymmetric x-ray diffraction

    SciTech Connect

    Emoto, T.; Ghatak, J.; Satyam, P. V.; Akimoto, K.

    2009-08-15

    We studied the strain introduced in a Si(111) substrate due to MeV ion implantation using extremely asymmetric x-ray diffraction and measured the rocking curves of asymmetrical 113 diffraction for the Si substrates implanted with a 1.5 MeV Au{sup 2+} ion at fluence values of 1x10{sup 13}, 5x10{sup 13}, and 1x10{sup 14}/cm{sup 2}. The measured curves consisted of a bulk peak and accompanying subpeak with an interference fringe. The positional relationship of the bulk peak to the subpeak and the intensity variation of those peaks with respect to the wavelengths of the x rays indicated that crystal lattices near the surface were strained; the lattice spacing of surface normal (111) planes near the surface was larger than that of the bulk. Detailed strain profiles along the depth direction were successfully estimated using a curve-fitting method based on Darwin's dynamical diffraction theory. Comparing the shapes of resultant strain profiles, we found that a strain evolution rapidly occurred within a depth of approx300 nm at fluence values between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2}. This indicates that formation of the complex defects progressed near the surface when the fluence value went beyond a critical value between 1x10{sup 13} and 5x10{sup 13}/cm{sup 2} and the defects brought a large strain to the substrate.

  19. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  20. Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Huang, H. F.; Xie, R.; Thorogood, G. J.; Yang, C.; Li, Z. J.; Xu, H. J.

    2015-12-01

    Silicon carbide nanoparticle-reinforced nickel metal (Ni-SiCNP composite) samples were bombarded by helium ions with fluences of 1 × 1016 and 3 × 1016 ions/cm2 at two different fluxes. The microstructural and mechanical changes were characterized via TEM and nanoindentation. Nano-scaled helium bubbles in the shape of spheres were observed in the samples irradiated at high flux and polygons at low flux. The number of helium bubbles increased with the fluence, whereas their mean size remained unaffected. In addition, the nanohardness of the damage layer also increased as the fluence increased. In addition this study suggests that a higher flux results in a higher number of smaller helium bubbles, while showing no obvious effect on the irradiation-induced hardening of the materials.

  1. Template-directed preparation of two-layer porous NiO film via hydrothermal synthesis for lithium ion batteries

    SciTech Connect

    Chen, Z.; Xiao, A.; Chen, Y.; Zuo, C.; Zhou, S.; Li, L.

    2012-08-15

    Graphical abstract: A two-layer porous NiO film is prepared via hydrothermal synthesis method based on monolayer polystyrene sphere template and shows noticeable Li battery performance with good cycle life and high capacity. Highlights: ► Two-layer porous NiO film is prepared via monolayer polystyrene spheres template. ► NiO film with high capacity as anode material for lithium ion batteries. ► Two-layer porous structure is favorable for fast lithium ion and electron transfer. -- Abstract: A two-layer porous NiO film is prepared by hydrothermal synthesis method through self-assembled monolayer polystyrene spheres template. The substructure of the NiO film is composed of ordered close-packed hollow-sphere array and the superstructure is made up of randomly NiO nanoflakes. The electrochemical properties are measured by galvanostatic charge/discharge tests and cyclic voltammetric analysis (CV). As anode material for lithium ion batteries, the two-layer porous NiO film exhibits high initial coulombic efficiency of 75%, high reversible capacity and rather good cycling performance. The discharge capacity of the two-layer porous NiO film is 501 mAh g{sup −1} at 0.5 C after 50 cycles. The two-layer porous architecture is responsible for the enhancement of electrochemical properties.

  2. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  3. Magnetic and structural modifications in Fe and Ni films prepared by ion-assisted deposition

    SciTech Connect

    Lewis, W.A. ); Farle, M. ); Clemens, B.M.; White, R.L. )

    1994-05-15

    We summarize our observations of in-plane uniaxial magnetic anisotropy induced in 1000 A Ni and Fe thin films by 100 eV Xe[sup +] ion bombardment during deposition. The anisotropy was measured by means of the magneto-optic Kerr effect and full angular scan ferromagnetic resonance. The maximum in-plane anisotropy field was 150 Oe for Ni and 80 Oe for Fe. The hard direction of magnetization lies parallel to the plane of incidence for Ni and perpendicular to it for Fe. An expansion of the lattice of up to 0.6% normal to the film and an enhancement of the fiber texture are found in both cases. This out-of-plane expansion is accompanied by an in-plane compression. In addition, a small in-plane difference in lattice spacings ([lt]0.2%) is found between directions parallel and perpendicular to the plane of incidence of the ions. The in-plane uniaxial magnetic anisotropy is attributed to the in-plane anisotropic strain using a simple magnetoelastic model.

  4. Magnetoimpedance studies on ion irradiated Co33Fe33Ni7Si7B20 ribbons

    NASA Astrophysics Data System (ADS)

    Kotagiri, Ganesh; Markandeyulu, G.; Thulasiram, K. V.; Fernandes, W. A.; Misra, D.; Tribedi, L. C.

    2016-04-01

    Magnetoimpedance (MI) effect was studied on amorphous Co33Fe33Ni7Si7B20 ribbons that were irradiated with N+1, Ar+2 and Xe+5 ions, at energy of 75 keV. The (MI)m [maximum MI in each case] values are 9.4% and 11%, 9.9% and 6.5%, the largest, for the as-quenched and N+1, Ar+2 and Xe+5 ion irradiated ribbons respectively, at 2 MHz. The (MI)m value of the N+1 ion irradiated ribbon was observed to be the highest, due to an induced in-plane transverse magnetic anisotropy. The saturation magnetizations of the ion-irradiated ribbons are not seen to change with respect to that of the as-quenched ribbon; a small increase in the Ms was observed only upon irradiation with Xe5+ ions. The interaction between the large number of domains, with large uniaxial anisotropy led to large (MI)m values, at frequencies above 8 MHz in the Ar+2 ion irradiated ribbon.

  5. HPRT mutations in V79 Chinese hamster cells induced by accelerated Ni, Au and Pb ions.

    PubMed

    Stoll, U; Barth, B; Scheerer, N; Schneider, E; Kiefer, J

    1996-07-01

    Mutation induction by accelerated heavy ions to 6-TG resistance (HPRT system) in V79 Chinese hamster cells was investigated with Ni (6-630 Me V/u), Au (2.2, 8.7 Me V/u) and Pb ions (11.6-980 Me V/u) corresponding to a LET range between 180 and 12895 ke V/microns. Most experiments could only be performed once due to technical limitations using accelerator beam times. Survival curves were exponential, mutation induction curves linear with fluence. From their slopes inactivation- and mutation-induction cross-sections were derived. If they are plotted versus LET, single, ion-specific curves are obtained. It is shown that other parameters like ion energy and effective charge play an important role. In the case of Au and Pb ions the cross-sections follow a common line, since these ions have nearly the same atomic weight, so that they should have similar spatial ionization patterns in matter at the same energies. Calculated RBEs were higher for mutation induction than for killing for all LETs. PMID:8691031

  6. Modification of a pulsed 14-MeV fast neutron generator to a medium-energy ion accelerator for TOF-RBS application

    NASA Astrophysics Data System (ADS)

    Junphong, P.; Suwannakachorn, D.; Yu, L. D.; Singkarat, S.

    2011-12-01

    The first drift-tube neutron generator in Thailand, developed during 1980s under the support by the International Atomic Energy Agency (IAEA), was a 150 kV deuteron accelerator-based 14 MeV fast neutron generator. The accelerator was featured by a nanosecond pulsing system consisting of a beam chopper in combination with a beam buncher. Following the rapid development of ion beam technology and increasing needs for materials applications in the laboratory, the accelerator has been upgraded and modified to a large extent into a medium-energy ion-accelerator for time-of-flight Rutherford backscattering spectrometry (TOF-RBS) applications. The modification of the accelerator included the changing of the ion source, the accelerating tube and the mass-analyzing magnet, the upgrading of the pulsing system, and the installation of a TOF-RBS detecting system. The new accelerator is capable of supplying a 400-keV He-ion beam with ns-pulses for nano-layered materials analysis. This paper provides technical details of the modification.

  7. Effect of irradiation by 140 Mev Ag 11+ ions on the optical and electrical properties of polypropylene/TiO 2 composite

    NASA Astrophysics Data System (ADS)

    Qureshi, Anjum; Singh, Dolly; Singh, N. L.; Ataoglu, S.; Gulluoglu, Arif N.; Tripathi, Ambuj; Avasthi, D. K.

    2009-10-01

    Changes in the optical, structural, dielectric properties and surface morphology of a polypropylene/TiO 2 composite due to swift heavy ion irradiation were studied by means of UV-visible spectroscopy, X-ray diffraction, impedance gain phase analyzer and atomic force microscopy. Samples were irradiated with 140 MeV Ag 11+ ions at fluences of 1 × 10 11 and 5 × 10 12 ions/cm 2. UV-visible absorption analysis reveals a decrease in optical direct band gap from 2.62 to 2.42 eV after a fluence of 5 × 10 12 ions/cm 2. X-ray diffractograms show an increase in crystallinity of the composite due to irradiation. The dielectric constants obey the Universal law given by ɛαfn-1, where n varies from 0.38 to 0.91. The dielectric constant and loss are observed to change significantly due to irradiation. Cole-cole diagrams have shown the frequency dependence of the complex impedance at different fluences. The average surface roughness of the composite decreases upon irradiation.

  8. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2O2 sensor

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Joshi, R. P.; Shateesh, B.; Asokan, K.; Kanjilal, D.; Late, D. J.; Dahiwale, S. S.; Bhoraskar, V. N.; Haram, S. K.; Dhole, S. D.

    2015-09-01

    Graphene oxide (GO) synthesized from a modified Hummer’s method was reduced (referred, rGO) by using 100 MeV Au ion species and its response to the sense H2O2 was investigated. The changes in the atomic composition and structural properties of rGO after irradiation were studied using x-ray diffraction, Fourier transform infrared spectroscopy and x-ray photo-electron spectroscopy. These results suggested that the removal of the oxygen-containing functional groups and the improvement of the electrochemical performance of reduced graphene oxide (rGO) after ion irradiation. Raman spectroscopic results revealed the increase in the disorder parameter (I D/I G) after Au ion irradiation and also the formation of a large number of small sp2 domains due to the electronic energy loss of ion beam. The resultant rGO was investigated for H2O2 sensing using electrochemical techniques and it showed a good response.

  9. M-shell x-ray production by 0.6-3.0-MeV 3He+ ions in tantalum, osmium, gold, bismuth, and thorium

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kobzev, A. P.; Sandrik, R.; Skrypnik, A. V.; Ilkhamov, R. A.; Khusmurodov, S. H.; Lapicki, G.

    1990-12-01

    M-shell x-ray production cross sections in 73Ta, 76Os, 79Au, 83Bi, and 90Th bombarded by 3He+ ions of energy 0.6-3.0 MeV are reported. The data are compared with the predictions of the semiclassical and the first-order Born approximations and the calculations of the perturbed-stationary-state (PSS) theory that accounts for energy-loss (E), Coulomb deflection (C), and relativistic (R) effects (ECPSSR). The ECPSSR theory gives the best description of the measured cross sections, although a systematical underestimation of the data is observed in the low-velocity region. For tantalum, uncertainties of the available M-shell Coster-Kronig factors and fluorescence yields are indicated, as they have been noted previously for Z2~=74 elements, bombarded by protons and 4He ions [Pajek et al., Phys. Rev. A 42, 261 (1990); 42, 5298 (1990)]. Using average M-shell fluorescence yields ω¯M, we have obtained the scaled M-shell ionization cross sections, which were highly universal as a function of projectile velocity scaled to the mean M-shell orbital velocity. Finally, comparing our previously measured M x-ray production cross sections for 4He+ ions with the present data for 3He+ ions-taken at the same velocities-we try to test a description of the Coulomb deflection effect within the ECPSSR theory.

  10. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    NASA Astrophysics Data System (ADS)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  11. A possible new origin of long absorption tail in Nd-doped yttrium aluminum garnet induced by 15 MeV gold-ion irradiation and heat treatment

    NASA Astrophysics Data System (ADS)

    Amekura, Hiro; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-05-01

    When ion irradiation introduces point-defects in semiconductors/insulators, discrete energy levels can be introduced in the bandgap, and then optical transitions whose energies are lower than the bandgap become possible. The electronic transitions between the discrete level and the continuous host band are observed as a continuous tail starting from the fundamental edge. This is the well-known mechanism of the absorption tail close to the band-edge observed in many semiconductors/insulators. In this paper, we propose another mechanism for the absorption tail, which is probably active in Nd-doped yttrium aluminum garnet (Nd:YAG) after ion irradiation and annealing. A Nd:YAG bulk crystal was irradiated with 15 MeV Au5+ ions to a fluence of 8 × 1014 ions/cm2. The irradiation generates an amorphous layer of ˜3 μm thick with refractive index reduction of Δn = -0.03. Thermal annealing at 1000 °C induces recrystallization to randomly aligned small crystalline grains. Simultaneously, an extraordinarily long absorption tail appeared in the optical spectrum covering from 0.24 to ˜2 μm without fringes. The origin of the tail is discussed based on two models: (i) conventional electronic transitions between defect levels and YAG host band and (ii) enhanced light scattering by randomly aligned small grains.

  12. Accelerator mass spectrometry with fully stripped 26Al, 63Cl, 41Ca and (su59)Ni ions

    NASA Astrophysics Data System (ADS)

    Faestermann, H.; Kato, K.; Korschinek, G.; Krauthan, P.; Nolte, E.; Rühm, W.; Zerle, L.

    1990-04-01

    The detection system of accelerator mass spectrometry (AMS) with completely stripped ions of 26Al, 36Cl, 41Ca and 59Ni at the Munich accelerator laboratory and measurements with these ions are presented. Detection limits are given. The presented applications are: dating of groundwater of the Milk River aquifer and deduction of the neutron fluence and spectrum of the Hiroshima A-bomb.

  13. Proton induced K X-ray production cross sections of the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range

    NASA Astrophysics Data System (ADS)

    Bertol, Ana Paula Lamberti; Hinrichs, Ruth; Vasconcellos, Marcos A. Z.

    2015-12-01

    Proton induced K-shell ionization cross sections were obtained for the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range. The accuracy of these fundamental parameters is essential for PIXE analysis and the data in the literature present a considerable spread, mainly for Al and Si. The values obtained for Ti, Fe and Ni are compatible with the current theories and the experimental results reported in the literature. However, Al and Si cross sections present important differences from theoretical and experimental data. We propose values for the fluorescent yields of Al and Si that are compatible with recent results and can be incorporated in the computations of K X-ray production cross sections.

  14. Nanostructured Si/Sn-Ni/C composite as negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Edfouf, Z.; Cuevas, F.; Latroche, M.; Georges, C.; Jordy, C.; Hézèque, T.; Caillon, G.; Jumas, J. C.; Sougrati, M. T.

    2011-05-01

    A nanostructured composite with overall atomic composition Ni0.14Sn0.17Si0.32Al0.037C0.346 has been prepared combining powder metallurgy and mechanical milling techniques for being used as anode material in Li-ion battery. Chemical and structural properties of the nanocomposite have been determined by X-ray diffraction (XRD), 119Sn Transmission Mössbauer Spectroscopy (TMS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite consists of Si particles with typical size ∼150 nm embedded in a poorly crystallized and complex multielemental matrix. The matrix is composed mostly by Ni3.4Sn4, and disordered carbon. Electrochemical evaluation shows a high reversible capacity of 920 mAh g-1, with reasonable reversible capacity retention (∼0.1% loss/cycle) over 280 cycles.

  15. Spatial distribution and yield of DNA double-strand breaks induced by 3-7 MeV helium ions in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, Bjorn; Heilbronn, Lawrence; Holley, William R.; Lobrich, Markus; Zeitlin, Cary; Chatterjee, Aloke; Cooper, Priscilla K.

    2002-01-01

    Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.

  16. Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography

    NASA Astrophysics Data System (ADS)

    Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn

    2012-02-01

    In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1-1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.

  17. Measurement of the 58Ni(n,t)56Co, 59Co(n,p)59Fe, and 63Cu(n,{alpha})60Co Reaction Cross Sections from 14 to 20 MeV

    SciTech Connect

    Semkova, V.; Plompen, A.J.M.; Smith, D.L.

    2005-05-24

    Neutron activation cross sections for the 63Cu(n,{alpha})60Co, 59Co(n,p)59Fe, and 58Ni(n,t)56Co reactions were measured in the energy range from 13 to 21 MeV. The irradiations were carried out at the 7-MV Van de Graaff accelerator at IRMM, Geel. Quasi-monoenergetic neutrons were produced via the 3H(d,n)4He reaction at 1-, 2-, 3-, and 4-MeV incident deuteron energy. All reaction cross sections measured in the present work are referenced to the 27Al(n,{alpha})24Na standard reaction cross section. Neutron flux spectra were determined by an activation spectral index method in combination with TOF spectrum measurements. Standard {gamma}-ray spectrometry was employed for the measurement of radioactivity. The measured results are compared with work by other authors, TALYS-0.57 and EMPIRE-II model calculations, and current evaluated data files. The new results contribute substantially to the experimental database of the measured reactions. Recommendations are provided for the best evaluations for the 59Co(n,p)59Fe, and 63Cu(n,{alpha})60Co reactions. For the 58Ni(n,t)56Co reaction no current evaluation is in good agreement with all available data. For this reaction further measurements would help to guide new modeling efforts.

  18. 50 MeV Li3 + ion irradiation induced modifications in structural and magnetic properties of Ti4 + -substituted Li Al and Li Cr ferrites

    NASA Astrophysics Data System (ADS)

    Chhantbar, M. C.; Yousif, Ali; Kumar, Ravi; Joshi, H. H.

    2008-06-01

    Using 50 MeV Li3 + ion irradiation, the change induced in polycrystalline ferrites Li0.5(1 + x)Ti x Al0.1Fe2.4 - 1.5 x O4 ( x = 0.0 to 0.3, step 0.1)[LTAF] and Li0.5(1 + x)Ti x Cr0.1Fe2.4 - 1.5 x O4 ( x = 0.0 to 0.3, step 0.1; LTCF) in the electronic stopping power regime is studied. Both the systems were irradiated with the same fluence of 5 × 1013 ions/cm2. The modifications of the structural and magnetic properties are studied by means of X-ray diffraction (XRD), magnetization, 57Fe Mössbauer spectroscopy and low field a. c. susceptibility. The contrast in the role of Ti4 + in the presence of Al3 + and Cr3 + causing the formation of paramagnetic centres through Swift Heavy Ion Irradiation (SHII) induced cation rearrangement has been revealed through the comparative Mössbauer signatures of both the systems. The hyperfine interaction parameters deduced through Mössbauer spectra are also discussed before and after irradiation. The observed reduction in the saturation magnetic moment and Curie temperature after irradiation supports the partial formation of paramagnetic centres and rearrangement of cations in the lattice.

  19. Charge-state dependence of {ital M}-shell x-ray production in {sub 67}Ho by 2--12-MeV carbon ions

    SciTech Connect

    Yu, Y.C.; Sun, H.L.; Duggan, J.L.; McDaniel, F.D.; Yin, J.Y.; Lapicki, G.

    1995-11-01

    Charge-state dependence of {ital M}-shell x-ray production cross sections of {sub 67}Ho bombarded by 2--12-MeV carbon ions, with and without {ital K}-shell vacancies, were measured using a windowless Si(Li) x-ray detector with a full-width-at-half-maximum resolution of 135 eV at 5.9 keV. Carbon ions of different charge states were produced using a postacceleration, nitrogen gas stripping cell. The carbon ions were then magnetically analyzed to select the desired charge state and energy before entering the target chamber. The total {ital M}-shell and {ital M}{zeta}, {ital M}{alpha},{beta}, and {ital M}{gamma} x-ray cross sections were measured. The electron-capture (EC) contributions as well as the direct-ionization (DI) contributions can be determined by making a comprehensive study of the projectile-charge-state dependence of the target x-ray production cross sections for targets in which the single-collision realm is maintained. In this paper, both EC and DI contributions and the total {ital M}-shell x-ray production cross sections are compared to both the first Born theory and to the perturbed-stationary-state theory with energy-loss, Coulomb-deflection, and relativistic corrections.

  20. Kinetic-energy release in N{sub 2} fragmentation by charge-changing collisions of 2-MeV C{sup +} ions

    SciTech Connect

    Mizuno, T.; Yamada, T.; Tsuchida, H.; Itoh, A.; Nakai, Y.

    2010-11-15

    Collision-induced fragmentation of N{sub 2} was investigated for 2-MeV C{sup +} ions under charge-changing conditions of C{sup +{yields}}C{sup q+} (q=0,2,3). Coincidence measurement of fragment ions was performed by means of a momentum three-dimensional imaging technique at scattering angles of {theta}=0 and 1.0 mrad. Kinetic-energy release (KER) obtained for a fragmentation channel of N{sub 2}{sup 2+{yields}}N{sup +}+N{sup +} was found to differ significantly in electron loss and capture collisions. In two-electron-loss collisions (C{sup +{yields}}C{sup 3+}), KER spectra were essentially identical for {theta}=0 and 1.0 mrad. It is concluded that the energy level of dissociating excited states of N{sub 2}{sup 2+} may be saturated when the interaction strength, defined as (q/vb), exceeds 0.65, where q and v are the charge and the velocity, respectively, of an incident ion, and b is the impact parameter.

  1. Charge-state dependence of M-shell x-ray production in 67Ho by 2-12-MeV carbon ions

    NASA Astrophysics Data System (ADS)

    Yu, Y. C.; Sun, H. L.; Duggan, J. L.; McDaniel, F. D.; Yin, J. Y.; Lapicki, G.

    1995-11-01

    Charge-state dependence of M-shell x-ray production cross sections of 67Ho bombarded by 2-12-MeV carbon ions, with and without K-shell vacancies, were measured using a windowless Si(Li) x-ray detector with a full-width-at-half-maximum resolution of 135 eV at 5.9 keV. Carbon ions of different charge states were produced using a postacceleration, nitrogen gas stripping cell. The carbon ions were then magnetically analyzed to select the desired charge state and energy before entering the target chamber. The total M-shell and Mζ, Mα,β, and Mγ x-ray cross sections were measured. The electron-capture (EC) contributions as well as the direct-ionization (DI) contributions can be determined by making a comprehensive study of the projectile-charge-state dependence of the target x-ray production cross sections for targets in which the single-collision realm is maintained. In this paper, both EC and DI contributions and the total M-shell x-ray production cross sections are compared to both the first Born theory and to the perturbed-stationary-state theory with energy-loss, Coulomb-deflection, and relativistic corrections.

  2. Effect of 100 MeV swift heavy ions [silver (Ag{sup 8+})] on morphological and electrical properties of polypyrrole

    SciTech Connect

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-10-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 10{sup 10} to 10{sup 12} ions/cm{sup 2} of 100 MeV silver (Ag{sup 8+}) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  3. 2.7 MeV Ar11+ ion irradiation induced structural evolution in Lu2(Ti2-xLux)O7-x/2 pyrochlores

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Liu, C. G.; Zhang, K. Q.; Xia, Y.; Chen, L. J.; Liu, H.; Li, Y. H.

    2015-11-01

    This paper aims to study the radiation effects of nonstoichiometric pyrochlore series Lu2(Ti2-xLux)O7-x/2 (x = 0-0.667). Polycrystalline Lu2(Ti2-xLux)O7-x/2 samples were irradiated with 2.7 MeV Ar11+ ions up to a fluence of 8 × 1014 ions/cm2. The irradiated samples were characterized using grazing incidence X-ray diffraction technique. The results reveal that Lu2(Ti2-xLux)O7-x/2 samples undergo significant amorphization and lattice swelling upon irradiation. Specifically, the amorphization process is predominantly driven by ballistic nuclear energy deposition of Ar11+ ions at this energy regime, which can be well described by a direct-impact/defect-stimulated model. Both the amorphization fraction and the relative variation of lattice parameter decrease with increasing x, showing a strong dependence on the chemical composition. The results are then discussed in the framework of the structural disorder and recovery ability from damage, applying an atomic layer model.

  4. Investigation on the dielectric response of NdMnO3/LSAT thin films: Effect of 200 MeV Ag+15 ion irradiation

    NASA Astrophysics Data System (ADS)

    Udeshi, Malay; Vyas, Brinda; Trivedi, Priyanka; Katba, Savan; Ravalia, Ashish; Solanki, P. S.; Shah, N. A.; Asokan, K.; Ojha, S.; Kuberkar, D. G.

    2015-12-01

    We report the results of the modifications in structural and dielectric behaviour of pulsed laser deposited NdMnO3 manganite thin films grown on (1 0 0) single crystalline (LaAlO3)0.3 (Sr2AlTaO6)0.7 substrate irradiated with the 200 MeV Ag+15 ion irradiation having different fluences, ∼5 × 1010, ∼5 × 1011, ∼5 × 1012 ions/cm2. Structural strain was quantified using analysis of X-ray Diffraction data while Rutherford Backscattering measurements were performed on pristine NdMnO3 film to confirm the elemental composition, thickness and oxygen content. Dielectric measurements performed on all the irradiated films show that, the dielectric constant decreases with increase in ion fluence which has been correlated with the irradiation induced increase in strain at the film-substrate interface. The dielectric relaxation behaviour of pristine and irradiated NdMnO3 films have been understood by fitting the dielectric data using the Cole-Cole plots.

  5. Elastic recoil cross section determination of deuterium by helium-4 ions at 30° with the energy range of 2.6-7.4 MeV

    NASA Astrophysics Data System (ADS)

    Han, Zhibin; Hao, Wanli; Wang, Chunjie; Shi, Liqun

    2016-05-01

    The elastic recoil cross section for D(4He, D) 4He was determined at a recoil angle of 30° over an incident helium energy range from 2.6 to 7.4 MeV. A thin solid target Ta/TiDx/Si used for cross section measurement was prepared by direct current magnetron sputtering, and it was so stable to ion beam bombardment that nearly no deuterium loss (less than 0.2%) exists over the whole experiment. A relative determination method is adopted in this measurement. It can avoid the error from the beam dose and the solid angle of the detectors and it is also free to direct measurement of D content in the film. The total uncertainty in the cross section determination is less than 5%.

  6. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  7. Quadrupole mass spectrometry and time-of-flight analysis of ions resulting from 532 nm pulsed laser ablation of Ni, Al, and ZnO targets

    SciTech Connect

    Sage, Rebecca S.; Cappel, Ute B.; Ashfold, Michael N. R.; Walker, Nicholas R.

    2008-05-01

    This work describes the design and validation of an instrument to measure the kinetic energies of ions ejected by the pulsed laser ablation (PLA) of a solid target. Mass spectra show that the PLA of Ni, Al, and ZnO targets, in vacuum, using the second harmonic of a Nd:YAG laser (532 nm, pulse duration {approx}10 ns) generates abundant X{sup n+} ions (n{<=}3 for Ni, {<=}2 for Al, {<=}3 and {<=}2 for Zn and O respectively from ZnO). Ions are selected by their mass/charge (m/z) ratio prior to the determination of their times of flight. PLA of Ni has been studied in most detail. The mean velocities of ablated Ni{sup n+} ions are shown to follow the trend v(Ni{sup 3+})>v(Ni{sup 2+})>v(Ni{sup +}). Data from Ni{sup 2+} and Ni{sup 3+} are fitted to shifted Maxwellian functions and agree well with a model which assumes both thermal and Coulombic contributions to ion velocities. The dependence of ion velocities on laser pulse energy (and fluence) is investigated, and the high energy data are shown to be consistent with an effective accelerating voltage of {approx}90 V within the plume. The distribution of velocities associated with Ni{sup 3+} indicates a population at cooler temperature than Ni{sup 2+}.

  8. Evolution of cavity microstructure in ion-irradiated 316 SS and Fe-20Ni-15Cr alloy. [Fe-20Ni-15Cr

    SciTech Connect

    Kohyama, A.; Loomis, B.; Ayrault, G.; Igata, N.

    1984-04-01

    The effect of helium implantation schedule on the evolution of the cavity microstructure in 316 SS and Fe-20Ni-15Cr alloy during heavy-ion irradiation was investigated for damage levels up to 100 dpa with three helium injection schedules, i.e., 15 appm He/dpa, 50 appm He/dpa and 15 appm He preinjected prior to Ni/sup +/ ion irradiation. In the case of the dual-ion irradiated specimens, there was a trend towards a saturation of the swelling with increasing damage level that was closely related to the saturation and subsequent decrease of the number density of the small cavities (<8 nm diameter for 316 SS and <4 nm for Fe-20Ni-15Cr) and the dislocation density. The bi-model cavity size distribution that was determined for the Fe-20Ni-15Cr alloy at 40 dpa changed to uni-modal distribution at 65 and 100 dpa. Radiation-induced segregation was high and this was related to the saturation tendency for the swelling.

  9. Composition of sputtered material from CuNi alloy during Xe + ion sputtering at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sekine, Shigeyuki; Shimizu, Hazime; Ichimura, Singo

    1995-04-01

    Polycrystalline CuNi alloys were sputtered by 3 kV Xe + ions at elevated temperatures to analyze the ion-beam-induced diffusion. The time evolution of the composition of the sputtered materials from the start of the sputtering was measured by TOF-SNMS (time-of-flight sputtered neutral mass spectrometry). During removal of the Gibbsian segregation layer of copper, the sputtered flux consisted of almost only copper atoms. Then, the copper content gradually decreased due to the formation of a sputter-induced copper-depleted surface layer, and reached an almost steady state with still higher copper content than the bulk composition. From the temperature dependence of the composition at the quasi-steady state the activation energy of copper transportation through a high diffusivity path was derived to be 54 kJ mol -1 (0.56 eV). The high diffusivity path was assigned to copper diffusion through grain boundaries.

  10. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation.

    PubMed

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  11. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    PubMed Central

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  12. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Wang, Jiexi; Xu, Daguo; Li, Xinhai; Yang, Yong; Zhang, Kaili

    2014-08-01

    We demonstrate the facile and well-controlled design and fabrication of heterostructured and hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell nanowire arrays on nickel foam through a facile chemical vapor deposition (CVD) technique combined with a simple but powerful chemical bath deposition (CBD) technique. The smart hybridization of NiCo2 O4 and NiSix nanostructures results in an intriguing mesoporous hierarchical core/shell nanowire-array architecture. The nanowire arrays demonstrate enhanced electrochemical performance as binder- and conductive-agent-free electrodes for lithium ion batteries (LIBs) with excellent capacity retention and high rate capability on cycling. The electrodes can maintain a high reversible capacity of 1693 mA h g(-1) after 50 cycles at 20 mA g(-1) . Given the outstanding performance and simple, efficient, cost-effective fabrication, we believe that these 3D NiSix /NiCo2 O4 core/shell heterostructured arrays have great potential application in high-performance LIBs. PMID:24828680

  13. Effect of plasma immersion ion implantation in TiNi implants on its interaction with animal subcutaneous tissues

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryavtseva, Yuliya A.; Shishkova, Darya K.; Krukovskii, Konstantin V.; Kudryashov, Andrey N.

    2016-08-01

    Here we investigated in vivo interaction of Si-modified titanium nickelide (TiNi) samples with adjacent tissues in a rat subcutaneous implant model to assess the impact of the modification on the biocompatibility of the implant. Modification was performed by plasma immersion ion processing, which allows doping of different elements into surface layers of complex-shaped articles. The aim of modification was to reduce the level of toxic Ni ions on the implant surface for increasing biocompatibility. We identified a thin connective tissue capsule, endothelial cells, and capillary-like structures around the Si-modified implants both 30 and 90 days postimplantation. No signs of inflammation were found. In conclusion, modification of TiNi samples with Si ions increases biocompatibility of the implant.

  14. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGESBeta

    Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  15. Electronic and magnetic structure of Fe ions in NiCr2S4

    NASA Astrophysics Data System (ADS)

    Park, Jae Yun; Ko, Heung Moon; Lee, Woon Hwa; Ji, Sang Hee; Kim, Chul Sung

    1993-05-01

    The magnetic semiconductor NixFe1-xCr2S4 (x=0.985, 0.97, 0.96) has been investigated over the temperature range from 12 to 600 K using a Mössbauer technique. The electronic structure of Fe ions in NiCr2S4 was calculated with the Hamiltonian incorporating free-ion term, axial and rhombic crystal field, spin-orbital couplings, and exchange interactions. The ground orbital state is separated by 9.64 ‖λ‖ from the first excited state, thereby making the quadrupole splitting somewhat insensitive to temperature. Using x-ray crystallographic data, the contribution of direct lattice sum to the electric-field gradient has been considered. In calculating the temperature dependence of quadrupole splitting, the axial field parameter Δ1=-3.0‖λ‖, the rhombic field parameter Δ2=-2.8‖λ‖, and the covalency factor α2=0.73 in Ni0.985Fe0.015Cr2S4 were determined. Magnetic hyperfine and quadrupole interactions in the antiferromagnetic state of Ni0.96Fe0.04Cr2S4 at 12 K have been studied, yielding the following results: H=147.8 kOe, 1/2e2qQ(1+1/3η2)1/2=-1.96 mm/s, θ=66°, φ=90°, and η=1.0. The line broadening which suggests the electron relaxation was observed with decreasing temperature.

  16. Negative Ion Photoelectron Spectroscopy Reveals Remarkable Noninnocence of Ligands in Nickel Bis(dithiolene) Complexes [Ni(dddt)2](-) and [Ni(edo)2](.).

    PubMed

    Liu, Xing; Hou, Gao-Lei; Wang, Xuefeng; Wang, Xue-Bin

    2016-05-12

    [Ni(dddt)2](-) (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) and [Ni(edo)2](-) (edo = 5,6-dihydro-1,4-dioxine-2,3-dithiolate) are two donor-type nickel bis(dithiolene) complexes, with the tendency of donating low binding energy electrons. These two structurally similar complexes differ only with respect to the outer atoms in the ligand framework where the former has four S atoms while the latter has four O atoms. Herein, we report a negative ion photoelectron spectroscopy (NIPES) study on these two complexes to probe the electronic structures of the anions and their corresponding neutrals. The NIPE spectra exhibit the adiabatic electron detachment energy (ADE) or, equivalently, the electron affinity (EA) of the neutral [Ni(L)2](0) to be relatively low for this type of complexes, 2.780 and 2.375 eV for L = dddt and edo, respectively. The 0.4 eV difference in ADEs shows a significant substitution effect for sulfur in dddt by oxygen in edo, i.e., noninnocence of the ligands, which has decreased the electronic stability of [Ni(edo)2](-) by lowering its electron binding energy by ∼0.4 eV. The observed substitution effect on gas-phase EA values correlates well with the measured redox potentials for [Ni(dddt)2](-/0) and [Ni(edo)2](-/0) in solutions. The singlet-triplet splitting (ΔEST) of [Ni(dddt)2](0) and [Ni(edo)2](0) is also determined from the spectra to be 0.57 and 0.53 eV, respectively. Accompanying DFT calculations and molecular orbital (MO) composition analyses show significant ligand contributions to the redox MOs and allow the components of the orbitals involved in each electronic transition and spectral assignments to be identified. PMID:27099986

  17. Thermally stimulated spontaneous current investigations in 75 MeV oxygen-ion-irradiated kapton-H polyimide

    NASA Astrophysics Data System (ADS)

    Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.

    2015-02-01

    Thermally stimulated spontaneous currents in 75 MeV oxygen-ion-irradiated kapton-H polyimide samples sandwiched between similar (M-P-M) and dissimilar (M1-P-M2) electrodes in the temperature range of 20-250°C have been studied. Metals used as electrodes in the present investigations are having different work functions (Bi: 4.22, Al: 4.28, Cr: 4.37, Cu: 4.70 and Au: 5.1 eV). One maxima in the temperature region 30-60°C and other in the temperature region 100-120°C have been observed, termed as γ and β relaxations, respectively. γ-Relaxation is associated with the water absorption and β-relaxation is associated with the presence of dipoles in the material. The magnitude of the current depends on the type of electrode combinations used: either similar (M-P-M) or dissimilar (M1-P-M2) electrode systems. The value of current in M1-P-M2 combinations is more in comparison with M-P-M systems, as the internal potential difference developed in dissimilar electrodes is more as compared with the similar electrode system. The carbonyl groups present in the structure of kapton-H polyimide are the most affected group, due to the contact electrode system and ion irradiation. Aluminum atoms interact with imide carbonyl groups in kapton-H polyimide form carbonyl (>C═O)-metal complex. As a result of ion irradiation, demerization of carbonyl groups and formation of some new polar-subpolar groups take place. The moisture in ion-irradiated samples promotes the current magnitude via helping in transport or conduction of charge carriers through polyimide.

  18. MeV per nucleon ion irradiation of nuclear materials with high energy synchrotron X-ray characterization

    NASA Astrophysics Data System (ADS)

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; Almer, Jonathan; Bhattacharya, S.; Mohamed, Walid; Seidman, D.; Ye, Bei; Yun, D.; Xu, Ruqing; Zhu, Shaofei

    2016-04-01

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ∼10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-ray and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.

  19. The Effect of Thermal Annealing on Structural-phase Changes in the Ni-Ti Alloy Implanted with Krypton Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V. P.; Kislitsin, S. B.; Ghyngazov, S. A.

    2016-06-01

    The influence of thermal annealing within the temperature range 100-300°C on the structural-phase state of a Ni-Ti alloy with shape memory effect (SME) implanted with 84Kr ions at the energies E = 280 keV and 1.75 MeV/nucl and the fluences within 5·1012-1·1020 ion/m2 is investigated. For the samples modified by 84Kr ions at E = 1.75 MeV/nucl up to the fluences 1·1020 and 5·1012 ion/m2, the formation of a martensitic NiTi phase with the B19 ' structure, responsible for the SME, is revealed at the annealing temperatures 100 and 300°C, respectively, in the near-surface region corresponding to the outrange area. This is accompanied by the formation of nanosized NiTi particles in the R-phase. As the implantation fluence increases, the probability of their formation decreases. It is shown that annealing of the implanted structures can increase the strength of the Ni-Ti alloy. The degree of hardening is determined by the value of annealing temperature, and an increase in strength is primarily due to ordering of the radiation-induced defect structures (phases). A correlation between the onset temperature of a forward martensitic transition and the structural-phase state of the thermally annealed Ni-Ti alloy is established.

  20. Structure and interfacial analysis of nanoscale TiNi thin film prepared by biased target ion beam deposition

    SciTech Connect

    Hou, Huilong; Hamilton, Reginald F. Horn, Mark W.

    2015-07-15

    Ultrathin, 65 nm thick, TiNi alloy films were fabricated by cosputtering Ti and Ni targets using the recently developed biased target ion beam deposition technique. Preheating the substrate by exposure to a low energy ion source resulted in as-deposited films with a pure B2 atomic crystal structure containing no secondary crystal structures or precipitates. Continuous films were produced with a smooth surface and minimal substrate/film interfacial diffusion. The diffusion layer was a small ratio of film thickness, which is a prerequisite for the B2 phase to undergo the martensitic transformation in ultrathin films.

  1. Tunneling behavior in ion-assist ion-beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet; Pandya, Dinesh K.

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Dual ion beam sputtered MgO barrier for MTJs. ► ∼12% TMR at 60 K. ► Glazman and Matveev model fitted for quantification of elastic and inelastic tunneling conductance through barrier. -- Abstract: Magnetic tunnel junctions (MTJs) consisting of CoFe and NiFe as ferromagnetic electrodes and MgO as insulating barrier fabricated through in situ shadow masking employing ion beam sputtering are studied for their tunneling magnetoresistance (TMR) and temperature dependence of the tunneling conductance behavior. The tunneling characteristics of these MTJs exhibited barrier height of 0.7 eV and width of 3.3 nm. These MTJs possessed ∼12% TMR at 60 K. The temperature dependence of conductance behavior of these junctions have revealed finite contributions from inelastic tunneling through the barrier via hopping conduction via present localized states which arise due to the presence of ionic interstitial defects in the MgO oxide barrier. The fitting of the data reveals that thirteenth order of hopping conduction is operative through MgO barrier.

  2. Variation in the uptake of nanoparticles by monolayer cultured cells using high resolution MeV ion beam imaging

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-Belle; Bettiol, Andrew A.; Watt, Frank

    2015-04-01

    Gold nanoparticle uptake by cells is being increasingly studied because of its potential in biomedical applications. In this work, we show how scanning transmission ion microscopy can be employed to visualize and quantify 50 nm gold nanoparticles taken up by individual cells. Preliminary studies have indicated that the cellular content of gold nanoparticles exhibits a wide variation (up to a factor of 10) among individual cells. This cell-to-cell variation can affect the efficiency of utilizing gold nanoparticles for therapeutic or diagnostic purposes.

  3. Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV 16O6+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kane, S. N.; Shah, M.; Satalkar, M.; Gehlot, K.; Kulriya, P. K.; Avasthi, D. K.; Sinha, A. K.; Modak, S. S.; Ghodke, N. L.; Reddy, V. R.; Varga, L. K.

    2016-07-01

    Effect of 80 MeV 16O6+ ion irradiation in amorphous Fe77P8Si3C5Al2Ga1B4 alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. - B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior - watt loss and, coercivity after an irradiation dose of 2 × 1013 ions/cm2 suggests prospective application of Fe77P8Si3C5Al2Ga1B4 alloy as core material in accelerators (radio frequency cavities).

  4. Enhanced magnetic and bolometric sensitivity of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films due to 200 MeV Ag ion irradiation

    SciTech Connect

    Choudhary, R.J.; Kumar, Ravi; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Malik, S.K.

    2005-05-30

    The parameters for bolometric performance [temperature coefficient of resistance (TCR) and noise value] and magnetic sensitivity of pulsed-laser-deposited thin films of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} and their dependence on the 200 MeV Ag ions irradiation are studied. It is observed that the TCR value and magnetic sensitivity can be tuned in different temperature regime by controlling the irradiation fluence value. It turns out that irradiation with a fluence value of 5x10{sup 10} ions/cm{sup 2} changes the TCR value in a positive direction and enhances magnetic sensitivity at room temperature, while irradiation with a fluence value of 1x10{sup 12} ions/cm{sup 2} enhances these parameters at 200 K. The observations are explained on the basis of structural and electrical transport modifications induced by the 200 MeV Ag ion irradiation.

  5. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1993-01-01

    Diffusion-bonded NiAl-Al2O3 and Ni3Al-Al2O3 couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al2O3 was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni3Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle-matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N(+)-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  6. Swift heavy ion irradiation of water ice from MeV to GeV energies. Approaching true cosmic ray compaction

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Ding, J. J.; de Barros, A. L. F.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Godard, M.; Lv, X. Y.; Mejía Guamán, C. F.; Pino, T.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2013-09-01

    Context. Cosmic ray ion irradiation affects the chemical composition of and triggers physical changes in interstellar ice mantles in space. One of the primary structural changes induced is the loss of porosity, and the mantles evolve toward a more compact amorphous state. Previously, ice compaction was monitored at low to moderate ion energies. The existence of a compaction threshold in stopping power has been suggested. Aims: In this article we experimentally study the effect of heavy ion irradiation at energies closer to true cosmic rays. This minimises extrapolation and allows a regime where electronic interaction always dominates to be explored, providing the ice compaction cross section over a wide range of electronic stopping power. Methods: High-energy ion irradiations provided by the GANIL accelerator, from the MeV up to the GeV range, are combined with in-situ infrared spectroscopy monitoring of ice mantles. We follow the IR spectral evolution of the ice as a function of increasing fluence (induced compaction of the initial microporous amorphous ice into a more compact amorphous phase). We use the number of OH dangling bonds of the water molecule, i.e. pending OH bonds not engaged in a hydrogen bond in the initially porous ice structure as a probe of the phase transition. These high-energy experiments are combined with lower energy experiments using light ions (H, He) from other facilities in Catania, Italy, and Washington, USA. Results: We evaluated the cross section for the disappearance of OH dangling bonds as a function of electronic stopping power. A cross-section law in a large energy range that includes data from different ice deposition setups is established. The relevant phase structuring time scale for the ice network is compared to interstellar chemical time scales using an astrophysical model. Conclusions: The presence of a threshold in compaction at low stopping power suggested in some previous works seems not to be confirmed for the high

  7. Study of structural and electrical properties of thin NiOx films prepared by ion beam sputtering of Ni and subsequent thermo-oxidation

    NASA Astrophysics Data System (ADS)

    Horak, P.; Lavrentiev, V.; Bejsovec, V.; Vacik, J.; Danis, S.; Vrnata, M.; Khun, J.

    2013-11-01

    Nickel oxide thin films were prepared by thermal annealing of thin Ni films (thickness ca 47 nm) deposited by ion beam sputtering. The thermal annealing was performed at 350 °C and 400 °C with elected time (1-7 hours) in a quartz furnace opened to air. During annealing the samples underwent structural changes, as well as changes of their electrical properties. The structural properties (surface morphology and occurrence of crystalline phases) were analyzed by the AFM and XRD methods, O and Ni depth concentration profiles by the NRA method, and electrical properties (sheet resistance) by the van der Pauw 4-point technique. The sheet resistance ( R S ) of the as-deposited sample was found to be 12.03 Ω/□; after open air thermal annealing at 350 °C for 1 h the value was found to be almost the same, 11.67 Ω/□. After 2 h of annealing, however, a sharp increase in the sheet resistance ( R S = 1.46 MΩ/□) was observed. At this stage the deposit formed largely oxidized Ni layer with a distinct polycrystalline structure. The sharp increase of sheet resistance was ascribed to the oxidation of the Ni layer, leaving only a smaller amount of isolated Ni particles unoxidized. Almost complete oxidation was found after 7 h of annealing at 350 °C. At 400 °C was almost complete oxidation recorded already after 1 h of annealing.

  8. Manufacturing of advanced Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Pröll, J.; Rakebrandt, J.-H.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Lithium-ion batteries require an increase in cell life-time as well as an improvement in cycle stability in order to be used as energy storage systems, e.g. for stationary devices or electric vehicles. Nowadays, several cathode materials such as Li(NiMnCo)O2 (NMC) are under intense investigation to enhanced cell cycling behavior by simultaneously providing reasonable costs. Previous studies have shown that processing of three-dimensional (3D) micro-features in electrodes using nanosecond laser radiation further increases the active surface area and therefore, the lithium-ion diffusion cell kinetics. Within this study, NMC cathodes were prepared by tape-casting and laser-structured using nanosecond laser radiation. Furthermore, laser-induced breakdown spectroscopy (LIBS) was used in a first experimental attempt to analyze the lithium distribution in unstructured NMC cathodes at different state-of-charges (SOC). LIBS will be applied to laser-structured cathodes in order to investigate the lithium distribution at different SOC. The results will be compared to those obtained for unstructured electrodes to examine advantages of 3D micro-structures with respect to lithium-ion diffusion kinetics.

  9. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.

  10. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zhao, Huayu; Zhou, Xiaming; Tao, Shunyan; Ding, Chuanxian

    2012-11-01

    CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 1017 atoms/cm2. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al2O3 scale to improve the oxidation resistance. The Al implanted coating could form Al2O3 scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  11. Structural phase states in NiTi near-surface layers modified by electron and ion beams

    SciTech Connect

    Meisner, Ludmila Meisner, Stanislav; Mironov, Yurii Kashin, Oleg Lotkov, Aleksandr; Kudryashov, Andrey

    2014-11-14

    The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surface layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)

  12. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  13. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability. PMID:24855459

  14. Experimental Data of Neutron Yields from Thick Targets Bombarded by 100 to 800 MeV / Nucleon Heavy Ions.

    Energy Science and Technology Software Center (ESTSC)

    2001-05-15

    Version 02 The recent experimental data by the authors listed above are summarized in this paper on differential neutron yields in energy and angle produced by 100, 155 and 180 MeV/nucleon He, 100, 155, 180 and 400 MeV/nucleon C, 100, 180, 400 MeV/nucleon Ne, 400MeV/nucleon Ar, Xe and Fe, 272 and 435MeV/nucleon Nb and 800 MeV/nucleon Si ions stopping in thick targets of C, Al, Cu, Pb and Nb. The paper referenced above is availablemore » on the RSICC web site. The numerical values of the data, which were used to plot figures in References 3, 4, 5, 6 and 8 of this paper, are available for download at no charge. To get access to the data, complete a RSICC registration form and order form. Both are available by clicking on "Ordering" from the RSICC web pages. You will be contacted with details about how to proceed.« less

  15. M-shell x-ray production by 0.8-4.0-MeV 4He+ ions in ten elements from hafnium to thorium

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kobzev, A. P.; Sandrik, R.; Skrypnik, A. V.; Ilkhamov, R. A.; Khusmurodov, S. H.; Lapicki, G.

    1990-11-01

    M-shell x-ray production cross sections are reported for 72Hf, 73Ta, 74W, 75Re, 76Os, 77Ir, 78Pt, 79Au, 83Bi, and 90Th bombarded by 4He ions of energy 0.8-4.0 MeV. The measured cross sections are compared with the predictions of the semiclassical and first-order Born approximations and the calculations of the perturbed-stationary-state (PSS) theory that accounts for energy-loss (E), Coulomb deflection (C), and relativistic (R) effects (ECPSSR). The ECPSSR theory gives the best overall description of the measured data, although systematical discrepancies are found in the low-velocity region. Apart from deficiency of the available M-shell Coster-Kronig factors and fluorescence yields near or above Z2=74, where strong M4-M5N6,7 Coster-Kronig transitions become energetically forbidden, the increasing underestimation of the data by the ECPSSR theory with decreasing projectile velocities is genuine. In fact, we have found previously [Pajek et al., Phys. Rev. A 42, 261 (1990)] the same discrepancy for identical target elements bombarded by protons at comparably low velocities.

  16. Production of projectile and target K-vacancy in near-symmetric collisions of 60-100 MeV Cu9+ ions with thin Zn target

    NASA Astrophysics Data System (ADS)

    Yipan, Guo; Zhihu, Yang; Shubin, Du; Hongwei, Chang; Qingliang, Xia; Qiumei, Xu

    2016-03-01

    We report studies on both target and projectile K-shell ionization by collisions of Cu9+ ions on the thin Zn target in the energy range of 60-100 MeV. In this work, the relative ratio for the production of the target to projectile K-vacancy is measured. The result shows that it almost remains stable over this energy range and has good consistency with the predictions by vacancy transfer via the 2pσ-1sσ rotational coupling, which gives experimental evidence for K-vacancy sharing between two partners. Furthermore, the discussion for comparisons between the experimental ionization cross sections and the possible theoretical estimations is presented. These comparisons suggest that the experimental data agree well with those predicted by the Binary-Encounter approximation (BEA) model but are not in good agreement with the modified BEA calculations. It allows us to infer that the direct ionization (and/or excitation) is of importance to initial K-vacancy production before 2pσ-1sσ transitions in the present collision condition. Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1332122).

  17. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  18. L{sub 3}-subshell alignment of Au and Bi in collisions with 12-55-MeV carbon ions

    SciTech Connect

    Kumar, Ajay; Choudhury, R. K.; Agnihotri, A. N.; Chatterjee, S.; Misra, D.; Tribedi, L. C.; Kasthurirangan, S.; Sarkadi, L.

    2010-06-15

    Angular distribution of the L x-ray intensities in Au and Bi induced by 12-55-MeV carbon ions has been measured. The L{sub {alpha}}, L{sub {beta}}, and L{sub {gamma}} x-ray intensities were found to be isotropic within experimental uncertainty. The alignment parameter A{sub 20} of the L{sub 3} (2p{sub 3/2}) subshell was deduced from the measured anisotropy parameter {beta} value of the well-resolved L{sub l} line, obtained from the angular distribution of the I{sub Ll}/I{sub L{alpha}}, I{sub Ll}/I{sub L{beta}}, and I{sub Ll}/I{sub L{gamma}} x-ray intensity ratios. The measured A{sub 20} values have been compared with those obtained using theoretical models that involve the plane-wave Born approximation; projectile's energy loss and its Coulomb deflection from the straight-line trajectory, perturbed-stationary-state, and relativistic effects (ECPSSR); and ECPSSR with the intrashell effect.

  19. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Matveeva, V. A.; Matveev, A. L.

    2015-11-17

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  20. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Matveeva, V. A.; Meisner, S. N.; Matveev, A. L.

    2015-11-01

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  1. Assessment and modelling of Ni(II) retention by an ion-imprinted polymer: application in natural samples.

    PubMed

    Lenoble, Véronique; Meouche, Walid; Laatikainen, Katri; Garnier, Cédric; Brisset, Hugues; Margaillan, André; Branger, Catherine

    2015-06-15

    Three novel Ni(II)-Ion-Imprinted Polymer (IIP) were synthesized by precipitation polymerization of ethylene glycol dimethacrylate (crosslinker) with a complex of nickel(II) and vinylbenzyl iminodiacetic acid (VbIDA). The three IIPs were prepared with various mixtures of porogen solvents: methanol, methanol/2-methoxyethanol and methanol/acetonitrile (IIP1, IIP2 and IIP3, respectively). Non-Imprinted Polymers (NIP1, NIP2 and NIP3) were prepared as control polymers in similar conditions but with pure VbIDA instead of VbIDA-Ni. These polymers were characterized by FTIR, BET, SEM and tested for their efficiency and selectivity in Ni(II) retention. The most efficient (IIP1, around 12 mg g(-1) of nickel) was then positively checked for Ni(II) retention in presence of some competing species over a wide range of concentration. Finally Ni(II) retention by IIP1 was successfully demonstrated in natural samples. The modelling of the different experiments (Langmuir, Freundlich but also PROSECE and WHAM VII, frequently used in environmental studies) allowed demonstrating the presence of completely different binding sites when considering the ion-imprinted polymer and the non-imprinted one, and therefore led to a better understanding of what the imprinting effect is. PMID:25771289

  2. A comparison of lower and higher LET heavy ion irradiation effects on silicon NPN rf power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Pushpa, N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana

    2016-06-01

    The Silicon NPN rf power transistors were irradiated with 180 MeV Au14+ and 150 MeV Ag12+ ions in the dose range of 1 Mrad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of these ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (∆IB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied systematically before and after irradiation. These results were compared with lower linear energy transfer (LET) ions such as 50 MeV Li3+, 95 MeV O7+, 100 MeV F8+, 140 MeV Si10+ and 175 MeV Ni13+ ions in the same dose range. The degradation for 180 MeV Au14+ and 150 MeV Ag12+ ion irradiated transistors was significantly more when compared to lower LET ions, indicating that the transistors are vulnerable to higher LET ion irradiations. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. After isochronal annealing, the recovery in hFE and other electrical parameters was around 67% for Ag12+ ion irradiated transistors and 60% for Au14+ ion irradiated transistors.

  3. Location and reducibility of Ni ions in HEU-type zeolites

    SciTech Connect

    Pozas, C. de las; Diaz-Aguila, C.; Cora, M.C.D.A.; Lopez-Cordero, R.; Roque-Malherbe, R.

    1995-01-01

    Starting from a well-characterized natural clinoptilolite (sample HC), the following samples were prepared by ionic exchange with the corresponding cations: NaHC, KHC, CaHC, and MgHC. These samples were exchanged with Ni{sup 2+} to obtain the samples NiNaHC, NiKHC, NiCaHC, and NiMgHC. Using absorption spectrometry, NH{sub 3} adsorption, thermoprogrammed reduction, and Moessbauer spectrometry we studied the reduction of iron in HC, the cationic composition and adsorption of NH{sub 3} in NaHC, KHC, CaHC, MgHC, NiNaHC, NiKHC, NiCaHC, and NIMGHC, and the thermoreduction in Ni-exchanged samples.

  4. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.

    PubMed

    Kim, Dongha; Lee, Daehee; Kim, Joosun; Moon, Jooho

    2012-10-24

    The SnO(2) anode is a promising anode for next-generation Li ion batteries because of its high theoretical capacity. However, it exhibits inherent capacity fading because of the large volume change and pulverization that occur during the charge/discharge cycles. The buffer matrix, such as electrospun carbon nanofibers (CNFs), can alleviate this problem to some extent, but SnO(2) particles are thermodynamically incompatible with the carbon matrix such that large Sn agglomerates form after carbonization upon melting of the Sn. Herein, we introduce well-dispersed nanosized SnO(2) attached to CNFs for high-performance anodes developed by Ni presence. The addition of Ni increases the stability of the SnO(2) such that the morphologies of the dispersed SnO(2) phase are modified as a function of the Ni composition. The optimal adding composition is determined to be Ni:Sn = 10:90 wt % in terms of the crystallite size and the distribution uniformity. A high capacity retention of 447.6 mA h g(-1) after 100 cycles can be obtained for 10 wt % Ni-added SnO(2)-CNFs, whereas Ni-free Sn/SnO(2)-CNFs have a capacity retention of 304.6 mA h g(-1). PMID:22999049

  5. Spontaneous formation of superconducting NiBi3 phase in Ni-Bi bilayer films

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Senapati, Kartik; Satpati, Biswarup; Prusty, Sudakshina; Avasthi, D. K.; Kanjilal, D.; Sahoo, Pratap K.

    2015-02-01

    We report the spontaneous formation of superconducting NiBi3 phase in thermally evaporated Ni-Bi bilayer films. High reaction-diffusion coefficient of Bi is believed to drive the formation of NiBi3 during the deposition of Bi on the Ni film. Cross sectional transmission electron microscopy and glancing incidence X-ray depth profiling confirmed the presence of NiBi3 throughout the top Bi layer. Superconducting transition at ˜3.9 K, close to the bulk value, was confirmed by transport and magnetization measurements. The bilayers were irradiated with varying fluence of 100 MeV Au ions to study the robustness of superconducting order in presence of large concentration of defects. Superconducting parameters of NiBi3, such as transition temperature and upper critical field, remained unchanged upto an ion dose of 1 × 1014 ions/cm2. The diffusive formation of NiBi3 in Ni opens the possibility of studying superconducting proximity effect at a truly clean superconductor-ferromagnet interface.

  6. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface. PMID:20355462

  7. Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite

    NASA Astrophysics Data System (ADS)

    Rajic, Nevenka; Stojakovic, Djordje; Jovanovic, Mina; Logar, Natasa Zabukovec; Mazaj, Matjaz; Kaucic, Venceslav

    2010-12-01

    The natural zeolite tuff (clinoptilolite) from a Serbian deposit has been studied as adsorbent for Ni(II) ions from aqueous solutions. Its sorption capacity at 298 K varies from 1.9 mg Ni g -1 (for the initial solution concentration of 100 mg Ni dm -3) to 3.8 mg Ni g -1 (for C0 = 600 mg Ni dm -3) and it increases 3 times at 338 K. The sorption is best described by the Sips isotherm model. The sorption kinetics follows the pseudo-second-order model, the activation energies being 7.44, 5.86, 6.62 and 6.63 kJ mol -1 for C0 = 100, 200, 300 and 400 mg Ni dm -3, respectively. The sorption involves a film diffusion, an intra-particle diffusion, and a chemical cation-exchange between the Na + ions of clinoptilolite and the Ni 2+ ions. The sorption is endothermic (Δ H° being 37.9, 33.4, 30.0, 27.7 and 24.3 kJ mol -1 for C0 = 100, 200, 300, 400 and 600 mg Ni dm -3, respectively) and spontaneous in the 298-338 K temperature range. Thermal treatment of the Ni(II)-loaded clinoptilolite results in the formation of spherical nano-NiO particles of approx. 5 nm in diameter which are randomly dispersed in the clinoptilolite lattice.

  8. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin.

    PubMed

    Monier, M; Ayad, D M; Wei, Y; Sarhan, A A

    2010-05-15

    Cross-linked magnetic chitosan-isatin Schiff's base resin (CSIS) was prepared for adsorption of metal ions. CSIS obtained was investigated by means of FTIR, (1)H NMR, wide-angle X-ray diffraction (WAXRD), magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of cross-linked magnetic CSIS resin toward Cu(2+), Co(2+) and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetic parameters were evaluated utilizing the pseudo-first-order and pseudo-second-order. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 103.16, 53.51, and 40.15mg/g for Cu(2+), Co(2+) and Ni(2+) ions, respectively. Cross-linked magnetic CSIS displayed higher adsorption capacity for Cu(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded cross-linked magnetic CSIS were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA). PMID:20122793

  9. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen. PMID:20355470

  10. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGESBeta

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  11. K -shell ionization cross sections of Al, Si, S, Ca, and Zn for oxygen ions in the energy range 1. 1--8 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Steinbauer, E. )

    1992-03-01

    {ital K}-shell ionization cross sections induced by 1.1--8-MeV oxygen ions in Al, Si, S, Ca, and Zn were measured using different target thicknesses. The cross sections for vanishingly thin and for charge-equilibrium targets were obtained by extrapolation. The experimental results are compared to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) cross sections (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), to the modification of the ECPSSR theory (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Colloq. Suppl. 12, C9-251 (1987)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B 18, 299 (1985)), and to several semiclassical approximation codes using either the united atom binding procedure or the variational approach of Andersen {ital et} {ital al}. (Nucl. Instrum. Methods 192, 79 (1982)). The cross sections were also compared to the statistical molecular-orbital theory of inner-shell ionization for (nearly) symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)). For fast collisions ({xi}{similar to}1), the ionization cross sections are well reproduced by theories for direct Coulomb ionization. For slower collisions ({xi}{lt}1), the experimental cross sections are systematically higher than the direct-ionization values, but they agree satisfactorily with the summed cross sections for direct Coulomb ionization and for molecular-orbital ionization. Best agreement (within a factor of 2) was found for the sums of MECPSSR and statistical cross sections.

  12. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Grummon, D.S.

    1992-01-22

    In preparation for experiments with surface modified Al{sub 2}O{sub 3} reinforcements in {beta}NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al{sub 2}O{sub 3}, Al, Ni) and then composited with {beta}NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni{sub 3}Al was studied. 3 figs, 1 tab. (DLC)

  13. Preparation of Chitosan Coated Magnetic Hydroxyapatite Nanoparticles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions

    PubMed Central

    Nguyen, Van Cuong; Pho, Quoc Hue

    2014-01-01

    An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158

  14. Non-equilibrium structures induced by ion irradiation in Ni[sub 4]Mo

    SciTech Connect

    Bellon, P. ); Okamoto, P.R. ); Schumacher, G. )

    1992-11-01

    We have studied the stability of equilibrium and metastable ordered phases (called LRO and SRO respectively) in Ni[sub 4]Mo during 500-keV Ne or 250-keV He irradiations. Some irradiations were performed in situ, allowing thus to follow the evolution of the samples, which were characterized by Transmission Electron Microscopy. Dynamical equilibrium phase diagrams are built, by varying the irradiation flux, temperature and dose. At a fixed ion flux, there exists a temperature range were a mixed'' ordered state is stabilized, and remains stable up to the maximum doses reached (1.7 dpa). This state, which cannot be obtained by electron irradiation, consists in the coexistence of the two ordered phases at a very fine scale ([le] 2nm). Comparison with results already reported after electron irradiation is made, stressing the role played by displacement cascades in our results. Furthermore we observed alignment of dislocation loops along, the [001] c-axis of the quadratic LRO phase.

  15. Non-equilibrium structures induced by ion irradiation in Ni{sub 4}Mo

    SciTech Connect

    Bellon, P.; Schumacher, G.

    1992-11-01

    We have studied the stability of equilibrium and metastable ordered phases (called LRO and SRO respectively) in Ni{sub 4}Mo during 500-keV Ne or 250-keV He irradiations. Some irradiations were performed in situ, allowing thus to follow the evolution of the samples, which were characterized by Transmission Electron Microscopy. Dynamical equilibrium phase diagrams are built, by varying the irradiation flux, temperature and dose. At a fixed ion flux, there exists a temperature range were a ``mixed`` ordered state is stabilized, and remains stable up to the maximum doses reached (1.7 dpa). This state, which cannot be obtained by electron irradiation, consists in the coexistence of the two ordered phases at a very fine scale ({le} 2nm). Comparison with results already reported after electron irradiation is made, stressing the role played by displacement cascades in our results. Furthermore we observed alignment of dislocation loops along, the [001] c-axis of the quadratic LRO phase.

  16. Ion bombardment of Ni(110) studied with inverse photoemission spectroscopy and low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Young, Benjamin; Warner, James; Heskett, David

    2016-02-01

    Inverse photoemission spectroscopy (IPES) performed on clean Ni(110) reveals an unoccupied electronic surface state with energy ~ 2.5 eV above the Fermi level for emission near the Ȳ point of the Surface Brillouin Zone. Ion bombardment of the sample creates defects that reduce the intensity of the peak in IPES spectra. Sharp, intense diffraction spots in low-energy electron diffraction (LEED) patterns taken of the clean surface become dimmer after bombardment. Results of these measurements are compared to Monte Carlo simulations of the sputtering process to ascertain the approximate size of clean patches on the sample necessary to sustain the IPES and LEED features. At 170 K, the IPES surface state peak appears closely associated with the population of surface atomic sites contained in clean circular patches of about 50 atoms. The LEED patterns persist to greater degrees of sputtering and are associated with smaller clean patches. Both measurements performed at 300 K indicate significant self-annealing of the sputtering damage.

  17. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed. PMID:24738358

  18. L- and M-shell x-ray production cross sections of Nd, Gd, Ho, Yb, Au, and Pb by 25-MeV carbon and 32-MeV oxygen ions

    SciTech Connect

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.; Miller, P.D.; Pepmiller, P.L.; Krause, H.F.; Rosseel, T.M.; Rayburn, L.A.; Mehta, R.; Lapicki, G.; and others

    1987-10-15

    L- and M-shell x-ray production cross sections have been measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25-MeV /sub //sub <1/ /sub 6//sup 2/C/sup q//sup +/ (q = 4,5,6) and by 32-MeV /sub //sub <1/ /sub 8//sup 6/O/sup q//sup +/ (q = 5,7,8). The cross sections were determined from measurements made with thin targets (less than 2.25 ..mu..g/cm/sup 2/). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N,. . . shells and EC to the K shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane-wave Born approximation for DI and Oppenheimer-Brinkman-Kramers formula of Nikolaev for EC, and to the ECPSSR that accounts for energy loss and Coulomb deflection of the projectile as well as for relativistic and perturbed stationary states of inner-shell electrons.

  19. L- and M-shell x-ray production cross sections of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25-MeV carbon and 32-MeV oxygen ions

    SciTech Connect

    Andrews, M.C. III

    1987-01-01

    L- and M-shell x-ray production cross sections were measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25-MeV /sup 12/C/sup q+/ (q = 4,5,6) and by 32-MeV /sup 16/O/sup q+/ (q = 5,7,8). The cross sections were determined from measurements made with thin targets (<2.5 ..mu..g/cm/sup 2/). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L, M, N... shells and EC to the K shell of the projectile were extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane-wave Born approximation for DI and Oppenheimer-Brinkman-Kramers formula of Nikolaev for EC and to the ECPSSR approach that accounts for energy loss and Coulomb deflection of the projectile as well as for relativistic and perturbed stationary states of inner-shell electrons.

  20. L- and M-shell x-ray production cross sections of Nd, Gd, Ho, Yb, Au, and Pb by 25-MeV carbon and 32-MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Andrews, M. C.; McDaniel, F. D.; Duggan, J. L.; Miller, P. D.; Pepmiller, P. L.; Krause, H. F.; Rosseel, T. M.; Rayburn, L. A.; Mehta, R.; Lapicki, G.

    1987-10-01

    L- and M-shell x-ray production cross sections have been measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25-MeV 1 26Cq+ (q=4,5,6) and by 32-MeV 1 68Oq+ (q=5,7,8). The cross sections were determined from measurements made with thin targets (less than 2.25 μg/cm2). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L,M,N,. . . shells and EC to the K shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane-wave Born approximation for DI and Oppenheimer-Brinkman-Kramers formula of Nikolaev for EC, and to the ECPSSR that accounts for energy loss and Coulomb deflection of the projectile as well as for relativistic and perturbed stationary states of inner-shell electrons.

  1. L and M-Shell X-Ray Production Cross-Sections of Neodymium, Gadolinium, Holmium, Ytterbium, Gold, and Lead by 25-MEV Carbon and 32-MEV Oxygen Ions.

    NASA Astrophysics Data System (ADS)

    Andrews, Mike C.(Io), III

    1987-12-01

    L- and M-shell x-ray production cross sections have been measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25 MeV _sp{6}{12}C ^{rm q+} (q = 4,5,6) and by 32 MeV _sp{8}{16} O^{rm q+} (q = 5,7,8). The cross sections were determined from measurements made with thin targets (<2.5 mu g/cm2). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L, M, Nldots shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane wave Born approximation for DI and Oppenheimer -Brinkman-Kramers formula of Nikolaev for EC and to the ECPSSR approach that accounts for Energy loss and Coulomb deflection of the projectile as well as for Relativistic and Perturbed Stationary States of inner shell electrons.

  2. Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray absorption near edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Jue-Hyuk; Chae, Byung-Mok; Oh, Hyun-Jung; Lee, Yong-Kul

    2016-02-01

    Nano-scaled NiO particles (nano-NiO) are prepared by a ligand stabilization method and compared with micron-sized NiO particles (micro-NiO) as anodic material of Li-ion battery. The structural and physical properties are characterized by N2 physisorption, transmission electron microscopy, and X-ray diffraction. The nano-NiO shows uniform spheres with an average particle size of 9 nm with high and stable discharge capacity of 637 mAh g-1, while the micro-NiO forms irregularly shaped particles with an average particle size of 750 nm with low capacity of 431 mAh g-1 at 0.5C. In situ X-ray absorption near edge structure (XANES) analysis reveals that the capacity and reversibility of the NiO anode is highly affected by the particle size of the NiO. The micro-NiO exhibits a low capacity with absence of phase transformation upon the discharge/charge cycles. In contrast, the nano-NiO exhibits a high capacity with reversible phase transformation between NiO and Ni metal upon the cycle test.

  3. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    SciTech Connect

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  4. Ion-ion repulsion and entropic effects on Na+ transport in Na2Ni2TeO6: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sau, Kartik

    2016-05-01

    Molecular dynamics (MD) study of Na+ transport in Na2Ni2TeO6 is performed systematically with varying strengths of Na+-Na+ repulsions. This virtual experiment is performed to understand the physics of the ion transport. The optimal short range Na-Na repulsion exhibits highest Na+ diffusion. The Na+ occupancy shows a systematic shift in favor of higher energy and the connecting channels between the interstitial sites are thicker as the short range repulsion between Na+ is increased. The microscopic energy barriers, covering volume in the population distribution profile of the Na+ as well as its site occupancy suggest increasing role of entropic factors for higher ion-ion repulsion.

  5. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  6. Features of radiation damage of Ni-Ti alloy under exposure to heavy ions of gaseous elements

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V. P.; Kislitsin, S. B.; Satpayev, D. A.; Mylnikova, T. S.; Chernyavskii, A. V.

    2015-04-01

    The consistent patterns of changes in structural and phase state, hardening and temperature ranges of martensitic transformations in Ni-Ti alloy with the shape memory effect after implantation of heavy ions 16O3+, 40Ar8+ and 84Kr15+ under comparable parameters have been experimentally studied. It is found that under the impact of 84Kr15+ ions, a two-layer surface structure with radiation-hardened second layer is formed, radiation-stimulated phase transformation B19'→B2 occurs in the near-surface layer and out-range area, and the martensitic transformation temperature increases toward higher values after implantation of 40Ar8+ and 84Kr15+ ions.

  7. Mg2+ and Ni2+ ion effect on stability and structure of triple poly I.poly A.poly I helix.

    PubMed

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Degtyar, M V; Andrus, E A; Karachevtsev, V A; Blagoi, Yu P

    2005-04-01

    The effects of Mg2+ and Ni2+ ions on the absorption spectra of IMP, single-stranded poly I and three-stranded A2I in solutions with 0.1 M Na+ (pH 7) have been studied. In contrast to Mg2+ ions, the Ni2+ ions affect the absorption spectra of these polynucleotides and IMP. The concentration dependences of the intensity at the extrema in the differential UV spectra suggest that in the region of high Ni2+ concentrations ionic complexes with poly I and A2I are formed, which are characterized by the association constants K'''I = 2000 M(-1) and K'''A2I = 550 M(-1), respectively. The shape of the DUV spectra prompts the conclusion that these complexes are formed due to the inner-sphere interaction of Ni2+ ions with N7 of poly I and A2I presumably due to the outer-sphere Ni2+-O6 interaction. The formation of the complexes leads to destruction of A2I triplexes. The dependences of the melting temperature (T(m)) of A2I on Mg2+ and Ni2+ concentrations have been measured. The thermal stability is observed to increase at the ionic contents up to 0.01 M Mg2+ and only to 2x10(-4) M Ni2+. At higher contents of Ni2+ ions, T(m) lowers and the cooperativity of A2I melting decreases continuously. In all the cases the melting process is the A2I-->A+I+I (3-->1) transition. According to the "ligand" theory, these effects are generated by the energy-advantageous Ni2+ binding to single-stranded poly I (K'''A2I < K'''I) and by the greater number of binding sites which appears during the 3-->1 transition and is entropy-advantageous. PMID:15811475

  8. Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Feng, Yangyang; Zhang, Huijuan; Li, Wenxiang; Fang, Ling; Wang, Yu

    2016-01-01

    In this contribution, the novel 2D sandwich-like NiO/C arrays on Ti foil are successfully designed and fabricated for the first time via simple and controllable hydrothermal process. In this strategy, we use green glucose as carbon source and ultrathin Ni(OH)2 nanosheet arrays as precursor for NiO nanoparticles and sacrificial templates for coupled graphitized carbon layers. This advanced sandwiched composite can not only provide large surface area for numerous active sites and continuous contact between active materials and electrolyte, but also protect the active nanoparticles from aggregation, pulverization and peeling off from conductive substrates. Furthermore, the porous structure derived from lots of substances loss under high-temperature calcinations can effectively buffer possible volume expansion and facilitate ion transfer. In this article, sandwiched NiO/C arrays, utilized as anode for LIBs, demonstrated high specific capacity (∼1458 mAh g-1 at 500 mA g-1) and excellent rate performance and cyclablity (∼95.7% retention after 300 cycles).

  9. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density. PMID:27437556

  10. One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries.

    PubMed

    Yang, Weiwei; Chen, Liang; Yang, Jie; Zhang, Xiang; Fang, Chun; Chen, Zhiling; Huang, Lin; Liu, Jianguo; Zhou, Yong; Zou, Zhigang

    2016-04-01

    3D CoNi2S4 and cross-linked NiCo2S4 arrays have been grown on carbon paper (CP) using a one-step hydrothermal method. The 3D cross-linked structure provides a convenient channel for electron and lithium-ion (Li(+)) transport and performs a facile strain relaxation during cycling, exhibits high capacity, excellent rate capability and superior cycle performance. PMID:27001486

  11. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    SciTech Connect

    Poletika, T. M. Girsova, S. L.; Meisner, L. L. Meisner, S. N.; Shulepov, I. A.

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  12. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.

    PubMed

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-08-30

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA-MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel-metal hydride (Ni-MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni-MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries. PMID:22763226

  13. Valences and Spin States of Ni and Pt Ions in the Quasi-One-Dimensional Compounds (Sr,A)3NiPtO6 (A = La and Na)

    NASA Astrophysics Data System (ADS)

    Takami, Tsuyoshi; Igarashi, Hirokazu; Itoh, Masayuki

    2010-04-01

    We report the preparation of polycrystalline samples of (Sr,A)3NiPtO6 (A = La and Na), in which a one-dimensional chain consists of alternating face-sharing NiO6 trigonal prisms and PtO6 octahedra, and the results of magnetization and X-ray photoemission spectroscopy (XPS) measurements. For the parent compound with a spin-liquid-like nature, the Ni 2p and Pt 4f core-level XPS spectra indicate mixed valence states of Ni2+/Ni3+/Ni4+ and Pt2+/Pt3+/Pt4+, respectively, even in a crystallographically independent site. Combining the effective magnetic moment derived from the magnetic susceptibility vs temperature curve, Ni ions in the prismatic site are in the high-spin state, whereas Pt ions in the octahedral site are in the low-spin state. Even when Sr is partially replaced with La or Na, a spin-liquid-like nature still remains.

  14. Structural, electrical transport, magnetization, and 1/f noise studies in 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films

    SciTech Connect

    Kumar, Ravi; Choudhary, R.J.; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Sanyal, S.P.; Lofland, S.E.

    2004-12-15

    The effect of 200 MeV Ag ion irradiation on structural, electrical transport, magnetization, and low-frequency conduction noise properties of electron-doped La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been investigated. The as-grown thin films show c-axis epitaxial structure along with a small amount of unreacted CeO{sub 2} phase. After the irradiation, at the lowest fluence both the magnetization and metal-insulator transition temperature increase. Further increase in fluence reduces the metal-insulator transition temperature and leads to larger resistivity; however, the unreacted phase of CeO{sub 2} disappears in the x-ray diffraction pattern. On the other hand, the normalized electrical noise is greatly enhanced even at the lowest nonzero fluence. Surprisingly the conducting noise in the irradiated samples is much higher in the metallic state than in the semiconducting one. The observed modifications in structural, electrical, magnetic, and noise properties of 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been explained on the basis of effects of the presence of swift heavy-ion irradiation-induced strain and defects.

  15. The structure of the NiTi surface layers after the ion-plasma alloying of Ta

    SciTech Connect

    Poletika, T. M. Girsova, S. L.; Meisner, L. L. Meisner, S. N.; Schmidt, E. Yu.

    2015-10-27

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  16. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:19962235

  17. Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gu, Lili; Xie, Wenhe; Bai, Shuai; Liu, Boli; Xue, Song; Li, Qun; He, Deyan

    2016-04-01

    NiO nanocone arrays are fabricated on nickel foam substrate by a simple hydrothermal synthesis and a subsequent annealing in air. The obtained architecture is directly used as an anode for lithium-ion batteries without any binder. It delivers a capacity of 969 mAh g-1 in the 120th cycle at a current density of 0.5 C. Even at 10 C, the electrode can still deliver a capacity as high as 605.9 mAh g-1. The excellent electrochemical performance could be ascribed to the integrity and porosity of the cycled electrodes.

  18. Influence of 85 MeV oxygen ion irradiation on magnetization behavior of micron-sized and nano-sized powders of strontium ferrite (SrFe 12O 19)

    NASA Astrophysics Data System (ADS)

    Shinde, S. R.; Bhagwat, A.; Patil, S. I.; Ogale, S. B.; Mehta, G. K.; Date, S. K.; Marest, G.

    1998-07-01

    The consequences of 85 MeV 16O ion irradiations on the magnetization behavior of micron-sized and nano-sized powders of hexagonal ferrite (SrFe 12O 19) are examined. The powders were characterized by vibrating sample magnetometery (VSM), Mössbauer spectroscopy and scanning electron microscopy (SEM). Significant changes in hysteresis loop features are observed after irradiation in the case of micron-sized powders, whereas no change is seen in the case of nano-sized powders. The issue of stability of defect states in small systems based on the consideration of elastic energy is discussed.

  19. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    SciTech Connect

    Burn, D. M. Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  20. Influence of Ni substitution at B-site for Fe3+ ions on morphological, optical, and magnetic properties of HoFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Habib, Zubida; Majid, Kowsar; Ikram, Mohd.; Sultan, Khalid; Mir, Sajad Ahmad; Asokan, K.

    2016-05-01

    Present study reports the effect of Ni substitution at B-site in HoFeO3 on the morphological, optical and magnetic properties. These compounds were prepared by solid-state reaction method. Scanning electron microscope reveals an increase in average grain sizes with Ni concentration. Absorption and emission spectra show redshift in band gap with increase in Ni ion concentrations. The Tauc plots show direct allowed transitions. Temperature-dependent magnetization studies on these compounds revealed the transition from ferromagnetism to paramagnetism. There is separation between temperature at which zero-field-cooled and field-cooled occurs at varied temperature with Ni substitution. The separation effect is related to the impact of the paramagnetic Ho3+ ions, whose magnitude becomes more prominent at higher temperature. The value of squareness ratio in these materials is below 0.5 indicating presence of multidomain structures.

  1. Acceleration of Hydrogen Ions up to 30 MeV and Generation of 3 × 1012 Neutrons in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.

    2013-10-01

    Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.

  2. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory. PMID:23524230

  3. Resistance of (Fe,Ni)/sub 3/V long-range-ordered alloys to radiation damage

    SciTech Connect

    Braski, D.N.

    1980-01-01

    The (Fe,Ni)/sub 3/V long-range-ordered (LRO) alloys (path D) are being developed at ORNL for possible application as a first-wall material for a fusion reactor. Alloys with different Fe/Ni ratios have been screened for their resistance to radiation by irradiating them with 4 MeV Ni ions to 70 dpa at temperatures from 525 to 680/sup 0/C. Helium (8 at. ppM/dpa) and deuterium ions (28 at. ppM/dpa) were simultaneously injected to better simulate fusion reactor conditions. Alloy LRO-16 (31 wt % Ni) contained sigma phase and showed swelling behavior similar to the 20%-cold-worked 316 stainless steel that was used as an internal standard. LRO-20 (39.5 wt % Ni), without sigma phase, swelled slightly less than the 316 stainless steel. Both alloys demonstrated noticeably lower swelling behavior when their composition was changed to include 0.4 wt % ti.

  4. Improvement of the magnetic properties for Mn-Ni-Zn ferrites by rare earth Nd(3+) ion substitution.

    PubMed

    Eltabey, M M; Agami, W R; Mohsen, H T

    2014-09-01

    Single spinel phases of Mn0.5Ni0.1Zn0.4Nd x Fe2- x O4 ferrite samples (x = 0.0, 0.01, 0.02, 0.05, 0.075, and 0.1) have been prepared by ceramic method and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that there is no considerable effect for the Nd(3+) ion substitution on the average grain size or porosity, whereas its concentration in the grain boundaries is higher than that in the grains. Saturation magnetization (M S) increased with the Nd(3+) ion concentration (x) and reached a maximum value at x = 0.05. In addition, both the initial permeability and the magnetic homogeneity increased by increasing the Nd(3+) ion content. The value of Curie temperature increased due to the substitution by Nd(3+) ions to record about 170 K, for the sample with x = 0.05, higher than that of the un-substituted one. PMID:25685529

  5. K -shell ionization cross sections for Si, P, K, Ca, Zn, and Ga by protons and carbon ions in the energy range 1--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Benka, O. )

    1990-01-01

    Absolute {ital K}-shell ionization cross sections have been measured for thin targets of Si, P, S, K, Ca, Zn, and Ga using carbon ions between 1.0 and 6.4 MeV and protons of 1 and 2 MeV. The dependence of x-ray production cross sections on target thickness was determined. The experimental results are compared to the semiclassical approximation (Laegsgaard, Andersen, and Lund in 3 Proceedings of the Tenth International Conference on the Physics of Electron and Atomic Collisions, Paris, 1977, edited by G. Watel (North-Holland, Amsterdam 1977)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B. 18, 299 (1985)), to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), and to the modification of the ECPSSR approximation (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Suppl. 12, C9-251 (1987)). The results for carbon ions are also compared to the statistical molecular orbital theory of inner-shell ionization for symmetric or nearly symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)).

  6. Flexible NiO-Graphene-Carbon Fiber Mats Containing Multifunctional Graphene for High Stability and High Specific Capacity Lithium-Ion Storage.

    PubMed

    Wang, Zhongqi; Zhang, Ming; Zhou, Ji

    2016-05-11

    An electrode's conductivity, ion diffusion rate, and flexibility are critical factors in determining its performance in a lithium-ion battery. In this study, NiO-carbon fibers were modified with multifunctional graphene sheets, resulting in flexible mats. These mats displayed high conductivities, and the transformation of active NiO to inert Ni(0) was effectively prevented at relatively low annealing temperatures in the presence of graphene. The mats were also highly flexible and contained large gaps for the rapid diffusion of ions, because of the addition of graphene sheets. The flexible NiO-graphene-carbon fiber mats achieved a reversible capacity of 750 mA h/g after 350 cycles at a current density of 500 mA/g as the binder-free anodes of lithium-ion batteries. The mats' rate capacities were also higher than those of either the NiO-carbon fibers or the graphene-carbon fibers. This work should provide a new route toward improving the mechanical properties, conductivities, and stabilities of mats using multifunctional graphene. PMID:27088813

  7. Distribution of the number of emitted electrons for MeV H[sup +]- and He[sup 2+]-ion impact on metals

    SciTech Connect

    Benka, O.; Schinner, A.; Fink, T. )

    1995-03-01

    The statistical distribution of the number of emitted electrons induced by MeV H[sup +] and He[sup 2+] impact on aluminum, copper, and gold targets was measured. The obtained results are very well represented by a Polya distribution. Based on a simplified theoretical picture the appearance of a Polya distribution in this context can be explained by cascade processes, which permits a quantitative estimation of the distributions in good agreement with the experiments for all investigated projectile-target combinations. The deviation from a Poisson distribution is given by the relative importance of cascade processes compared to projectile-induced processes.

  8. Kinetic-energy release in the dissociative capture-ionization of CO molecules by 97-MeV Ar14+ ions

    NASA Astrophysics Data System (ADS)

    Watson, R. L.; Sampoll, G.; Horvat, V.; Heber, O.

    1996-02-01

    The dissociation of COQ+ molecular ions (Q=4 to 9) produced in multiply ionizing collisions accompanied by the transfer of an electron to the projectile has been studied using time-of-flight techniques. Analysis of the coincident-ion-pair flight-time-difference distributions yielded average values of the kinetic-energy releases for the various dissociation reactions. These values were found to be as much as a factor of 2 greater than the kinetic-energy releases expected for dissociation along Coulombic potential curves. The average kinetic-energy release observed for a given ion pair with charges q1 and q2 are nearly equal to the point-charge Coulomb potential energies for an ion pair with charges q1+1 and q2+1, suggesting that the parent molecular ion is formed with two electrons, on average, in highly excited states that do not contribute to the screening of the nuclei.

  9. Measured and calculated differential and total yield cross-section data of {sup 58}Ni(n,x{alpha}) and {sup 63}Cu(n,xp) in the neutron energy range from 2.0 to 15.6 MeV

    SciTech Connect

    Tsabaris, C.; Papadopoulos, C.; Wattecamps, E.; Rollin, G.

    1998-01-01

    Double-differential (n,xp) and (n,x{alpha}) cross-section ratio measurements are performed at the 7-MV Van de Graaff accelerator laboratory for neutron energies between 2.0 and 15.6 MeV. The following reaction rate ratios are measured: {sup 58}Ni(n,x{alpha}) to {sup 27}(n,{alpha}), {sup 58}Ni(n,x{alpha}) to {sup 58}Ni(n,p), {sup 63}Cu(n,xp) to {sup 27}Al(n,{alpha}), and {sup 63}Cu(n,xp) to {sup 58}Ni(n,p). Protons or alphas are detected by {Delta}E-{Delta}E-E telescopes under 14, 51, 79, 109, and 141 degrees. The energy spectrum of the emitted particles and the angular yield distribution are measured. First, the measurements provide double-differential cross-section data for {sup 27}Al(n,{alpha}) and {sup 58}Ni(n,p) by normalization to the known total yield reference cross-section values. Subsequently, the reaction rate ratios of {sup 58}Ni(n,x{alpha}) and {sup 63}Cu(n,xp) to {sup 27}Al(n,{alpha}) or {sup 58}Ni(n,p) provide double-differential cross sections of {sup 58}Ni(n,x{alpha}) and {sup 63}Cu(n,xp) in b/(MeV {center_dot} sr). The measured double-differential cross section data, the particle energy spectra, the angular distributions, and the total yield cross-section data are compared with measured data from literature and with nuclear reaction model calculations performed at the Institute for Reference Materials and Measurements with the computer codes STAPRE-H and EXIFON.

  10. The effects of reactive-element, ion-implantation-induced amorphous layers on the oxidation of Co-12Cr and Ni-12Cr alloys

    SciTech Connect

    Hampikian, J.M.

    1998-08-01

    Nickel-chromium (Ni-12Cr, wt.%) and cobalt-chromium (Co-12Cr, wt.%) alloys were ion implanted with 150 keV yttrium to fluences that ranged between 2 {times} 10{sup 16} and 1 {times} 0{sup 17} ions/cm{sup 2}. The influence of the implantation on the microstructure of the alloy was determined. The effect of the highest dose implantation on the alloys` oxidation response at 1,000 C, 48 hr was measured. Both alloys contained an amorphous surface phase as a result of this fluence and one of the effects of oxidation was to recrystallize the amorphized alloy in the first few minutes of oxidation. The lower doses of 2 {times} 10{sup 16} ions/cm{sup 2} were sufficient to cause amorphization of both the Ni-12Cr and the Co-12Cr. The implantation reduced the isothermal mass gain by a factor of 25% for the Ni-12Cr, but had a negligible effect on the Co-12Cr alloy. Short-term oxidation of experiments at 600 C showed via transmission electron microscopy that, in the absence of the yttrium implant, the Ni-12Cr alloy forms NiO in the first minute of oxidation and the Co-12Cr alloy forms CoO and CoCr{sub 2}O{sub 4}. The implanted Ni-12Cr, on the other hand (1 {times} 10{sup 17} Y{sup +}/cm{sup 2}), forms recrystallized Ni-Cr, Y{sub 2}O{sub 3}, and NiO in the near-surface region, while the implanted Co-12Cr alloy forms CoO, CoCr{sub 2}O{sub 4}, and a recrystallized intermetallic alloy from the amorphized region.

  11. Structure of the near-surface layer of NiTi on the meso- and microscale levels after ion-beam surface treatment

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Poletika, T. M. Girsova, S. L.; Tverdichlebova, A. V.; Shulepov, I. A.

    2014-11-14

    Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were also examined.

  12. Core-Shell Sn-Ni-Cu-Alloy@Carbon Nanorods to Array as Three-Dimensional Anode by Nanoelectrodeposition for High-Performance Lithium Ion Batteries.

    PubMed

    Peng, Hao; Li, Rui; Hu, Jiangtao; Deng, Wenjun; Pan, Feng

    2016-05-18

    We report the synthesis of a novel three-dimensional anode based on the core-shell Sn-Ni-Cu-alloy@carbon nanorods which was fabricated by pulse nanoelectrodeposition. Li ion batteries equipped with the three-dimensional anode demonstrated almost 100% capacity retention over 400 cycles at 450 mA g(-1) and excellent rate performance even up to 9000 mA g(-1) for advanced Li-ion battery. Insight of the high performance can be attributed to three key factors, Li-Sn alloys for Li-ion storage, Ni-Cu matrix for the electronic conductive and nanorods structure, and the carbon shell for the electronic/Li-ion conductive and holding stable solid electrolyte interphase (SEI), because these shells always kept stable volumes after extension of initial charge-discharge cycles. PMID:27113033

  13. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    PubMed Central

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g−1 at a current density of 2 A g−1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g−1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g−1 is achieved at a rate of 120 mA g−1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes. PMID:26131926

  14. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-07-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g-1 at a current density of 2 A g-1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g-1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g-1 is achieved at a rate of 120 mA g-1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes.

  15. A codoping route to realize low resistive and stable p-type conduction in (Li, Ni):ZnO thin films grown by pulsed laser deposition.

    PubMed

    Kumar, E Senthil; Chatterjee, Jyotirmoy; Rama, N; DasGupta, Nandita; Rao, M S Ramachandra

    2011-06-01

    We report on the growth of Li-Ni codoped p-type ZnO thin films using pulsed laser deposition. Two mole percent Li monodoped ZnO film shows highly insulating behavior. However, a spectacular decrease in electrical resistivity, from 3.6 × 10(3) to 0.15 Ω cm, is observed by incorporating 2 mol % of Ni in the Li-doped ZnO film. Moreover, the activation energy drops to 6 meV from 78 meV with Ni incorporation in Li:ZnO lattice. The codoped [ZnO:(Li, Ni)] thin film shows p-type conduction with room temperature hole concentration of 3.2 × 10(17) cm(-3). Photo-Hall measurements show that the Li-Ni codoped p-ZnO film is highly stable even with UV illumination. XPS measurements reveal that most favorable chemical state of Ni is Ni(3+) in (Li, Ni): ZnO. We argue that these Ni(3+) ions act as reactive donors and increase the Li solubility limit. Codoping of Li, with other transitional metal ions (Mn, Co, etc.) in place of Ni could be the key to realize hole-dominated conductivity in ZnO to envisage ZnO-based homoepitaxial devices. PMID:21598966

  16. Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes.

    PubMed

    Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Park, Junsu; Yi, Jongheop

    2013-11-29

    We report on a simple strategy for the direct synthesis of a thin film comprising interconnected NiO nanoparticles deposited on both sides of a graphene sheet via cathodic deposition. For the co-electrodeposition, graphene oxide (GO) is treated with water-soluble cationic poly(ethyleneimine) (PEI) which acts as a stabilizer and trapping agent to form complexes of GO and Ni2+. The positively charged complexes migrate toward the stainless steel substrate, resulting in the electrochemical deposition of PEI-modified GO/Ni(OH)2 at the electrode surface under an applied electric field. The as-synthesized film is then converted to graphene/NiO after annealing at 350 ° C. The interconnected NiO nanoparticles are uniformly deposited on both sides of the graphene surface, as evidenced by field emission scanning electron microscopy, transmission electron microscopy and energy dispersive spectrometry. This graphene/NiO structure shows enhanced electrochemical performance with a large reversible capacity, good cyclic performance and improved electronic conductivity as an anode material for lithium ion batteries. A reversible capacity is retained above 586 mA h g−1 after 50 cycles. The findings reported herein suggest that this strategy can be effectively used to overcome a bottleneck problem associated with the electrochemical production of graphene/metal oxide films for lithium ion battery anodes. PMID:24192337

  17. Morphology-Tuned Synthesis of NiCo2 O4 -Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries.

    PubMed

    Zhang, Chunfei; Yu, Jong-Sung

    2016-03-18

    Nanostructured NiCo2 O4 is directly grown on the surface of three-dimensional graphene-coated nickel foam (3D-GNF) by a facile electrodeposition technique and subsequent annealing. The resulting NiCo2 O4 possesses a distinct flower or sheet morphology, tuned by potential or current variation electrodeposition, which are used as binder-free lithium-ion battery anodes for the first time. Both samples exhibit high lithium storage capacity, profiting from the unique binder-free electrode structures. The flower-type NiCo2 O4 demonstrates high reversible discharge capacity (1459 mAh g(-1) at 200 mA g(-1) ) and excellent cyclability with around 71 % retention of the reversible capacity after 60 cycles, which are superior to the sheet-type NiCo2 O4 . Such superb performance can be attributed to high volume utilization efficiency with unique morphological character, a well-preserved connection between the active materials and the current collector, a short lithium-ion diffusion path, and fast electrolyte transfer in the binder-free NiCo2 O4 -coated 3D graphene structure. The simple preparation process and easily controllable morphology make the binder-free NiCo2 O4 /3D-GNF hybrid a potential material for commercial applications. PMID:26918287

  18. Effect of 50MeV Li{sup 3+} ion irradiation on structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films

    SciTech Connect

    Ahmad, Shabir Sethi, Riti; Nasir, Mohd; Zulfequar, M.; Asokan, K.

    2015-08-28

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of the material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.

  19. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  20. Remediation of Cu(II), Ni(II), and Cr(III) ions from simulated wastewater by dendrimer/titania composites.

    PubMed

    Barakat, M A; Ramadan, M H; Alghamdi, M A; Algarny, S S; Woodcock, H L; Kuhn, J N

    2013-03-15

    Generation 4 polyamidoamine (PAMAM) dendrimers with ethylenediamine cores (G4-OH) were immobilized on titania (TiO(2)) and examined as novel metal chelation materials. Characterization results indicate both the effective immobilization of dendrimers onto titania and retention of the dendrimer on titania following remediation. The effective remediation of Cu(II), Ni(II), and Cr(III), which are model pollutants commonly found in industrial electroplating wastewater, is demonstrated in this work. Important parameters that influence the efficiency of metal ion removal were investigated; e.g. solution pH, retention time, metal ion concentration, and composite material dosage. Metal ion removal was achieved over a wide metal concentration range within a 1 h equilibration time. Maximum metal ion removal was achieved at pH ≥7 for both Cu(II) and Cr(III), and pH ≥9 for Ni(II). Further, the dendrimer/titania composite materials were even more effective when metal ion mixtures were tested. Specifically, a dramatic increase was observed for Ni(II) chelation when in a mixture was compared to a pure nickel solution. These findings suggest new strategies for improving metal ion removal from industrial wastewater. PMID:23353877

  1. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    SciTech Connect

    Mustansar Abbas, Syed; Tajammul Hussain, Syed; Ali, Saqib; Ahmad, Nisar; Ali, Nisar; Abbas, Saghir; Ali, Zulfiqar

    2013-06-15

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: • CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. • Monodispersity, shape and sizes of sample particles is specifically controlled. • Good quality adhesion between CNTs and CuNiO is visible from TEM image. • High electrochemical performance is achieved. • Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

  2. Tunneling conductance studies in the ion-beam sputtered CoFe/Mg/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2013-06-03

    Magnetic tunnel junctions consisting of CoFe(10 nm)/Mg(1 nm)/MgO(3.5 nm)/NiFe(10 nm) are grown at room temperature using dual ion beam sputtering via in-situ shadow masking. The effective barrier thickness and average barrier height are estimated to be 3.5 nm (2.9 nm) and 0.69 eV (1.09 eV) at 290 K (70 K), respectively. The tunnel magnetoresistance value of 0.2 % and 2.3 % was observed at 290 K and 60 K, respectively. The temperature dependence of tunneling conductance revealed the presence of localized states present within the forbidden gap of the MgO barrier leading to finite inelastic spin independent tunneling contributions, which degrade the TMR value.

  3. X-ray lasing on the 4d - 4p transitions of Ni-like molybdenum ions

    SciTech Connect

    Andriyash, Aleksandr V; Vikhlyaev, D A; Gavrilov, D S; Gorokhov, S A; Dmitrov, D A; Zapysov, A L; Kakshin, A G; Kapustin, I A; Loboda, E A; Lykov, V A; Politov, V Yu; Potapov, A V; Pronin, V A; Rykovanov, Georgii N; Sukhanov, V N; Ugodenko, A A; Chefonov, O V

    2012-11-30

    We outline the results of experiments in the generation of X-ray laser radiation on the 4d - 4p Ni-like ion transitions at a wavelength {lambda} = 189 A under sequential irradiation of plane targets by two laser pulses focused to a line. These experiments were executed on the Sokol-p picosecond laser facility. The average energy of a 4-ps long ultrashort pump pulse was equal to 6.5 J, the energy of a 0.44-ns long prepulse was equal to 2.7 J, and the time delay between them was equal to 1.5 ns. The effective gain for short target lengths was equal to {approx}24 cm{sup -1}. In the travelling pump wave regime, which was realised using a ladder mirror, we obtained an 8-fold increase in output X-ray laser energy in comparison with the output energy obtained in the ordinary target irradiation regime. (lasers)

  4. 700 keV Ni+2 ions induced modification in structural, surface, magneto-optic and optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Fiaz Khan, M.; Siraj, K.; Anwar, M. S.; Irshad, M.; Hussain, J.; Faiz, H.; Majeed, S.; Dosmailov, M.; Patek, J.; Pedarnig, J. D.; Rafique, M. S.; Naseem, S.

    2016-02-01

    We investigate the effect of 700 keV Ni+2 ions irradiation at different ion fluences (1 × 1013, 1 × 1014, 2 × 1014, 5 × 1014 ions/cm2) on the structural, surface, magneto-optic and optical properties of ZnO thin films. The X-ray diffraction (XRD) results show improved crystallinity when ion fluence is increased to 2 × 1014 ions/cm2, while deterioration is observed at the highest ion fluence of 5 × 1014 ions/cm2. Scanning electron micrographs (SEM) show the formation of small grains at ion fluence 1 × 1013 ions/cm2, micro-rods at fluences 1 × 1014 and 2 × 1014 ions/cm2 and ultimate fracturing of thin film surface at ion fluence 5 × 1014 ions/cm2. Faraday rotation measurements are also performed and show a decrease in Verdet constant from 53 to 31 rad/(T-m) when irradiated at 1 × 1013 ions/cm2, increasing up to 45 rad/(T-m) at 2 × 1014 ions/cm2, and then decreasing again to 36 rad/(T-m) at 5 × 1014 ions/cm2. The optical band gap energy of the films is determined using spectroscopic ellipsometry, which shows an increase in optical band gap energy (Eg) from 3.04 eV to 3.19 eV when the fluence increases to 2 × 1014 ions/cm2 and a decrease to 3 eV at fluence 5 × 1014 ions/cm2. We argue that these properties can be explained using ion heating effect of thin films.

  5. Solvent-Controlled Synthesis of NiO-CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage.

    PubMed

    Wei, Yuehua; Yan, Feilong; Tang, Xuan; Luo, Yazi; Zhang, Ming; Wei, Weifeng; Chen, Libao

    2015-10-01

    NiO-CoO nanoneedles are grown on carbon fibers by a solvothermal strategy to form nanobrushes. The density of nanobrushes can be easily controlled by altering the solvents. The synthesis mechanism of NiO-CoO/carbon fiber nanobrushes is investigated by the time-dependent experiments in detail. As anodes for lithium ion batteries, the NiO-CoO/carbon fiber nanobrushes synthesized in ethanol show excellent properties with a discharge capacity of 801 mA h g(-1) after 200 cycles at a current density of 200 mA g(-1). The improvement can be ascribed to the carbon fibers as the highway for electrons and the interspace between NiO-CoO nanoneedles to accommodate the volume change and maintain the structural stability. PMID:26372065

  6. Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zhong; Yuan, Xianxia; Li, Lin; Ma, Zi-Feng; Zhang, Lei; Mai, Liqiang; Zhang, Jiujun

    2015-09-01

    A uniformly dispersed bi-component nanocompotise of transition metal oxide (Mn2O3)/mixed transition metal oxide (NiMn2O4) with a porous and hollow microspheric sructure has been successfully prepared with a facile method based on the complexation between Ni2+ and NH3. The obtained nanocomposite of 0.29 Mn2O3/0.14 NiMn2O4, expressed as Ni0.14Mn0.86O1.43, with nanometer-sized building blocks exhibits a high reversible capacity of 615 mA h g-1, which is about 90% of theoretical value at the current density of 800 mA h g-1, and long lifespan with retained capacities of 553 and 408 mA h g-1 after 150 cycles at 200 and 800 mA g-1, respectively, as an anode material for lithium-ion batteries.

  7. Swift heavy ion induced phase transformation and thermoluminescence properties of zirconium oxide

    NASA Astrophysics Data System (ADS)

    Lokesha, H. S.; Nagabhushana, K. R.; Singh, Fouran

    2016-07-01

    Zirconium oxide (ZrO2) powder is synthesized by combustion technique. XRD pattern of ZrO2 shows monoclinic phase with average crystallite size 35 nm. Pellets of ZrO2 are irradiated with 100 MeV swift Si7+, Ni7+ and 120 MeV swift Ag9+ ions in the fluence range 3 × 1010-3 × 1013 ions cm-2. XRD pattern show the main diffraction peak correspond to monoclinic and tetragonal phase of ZrO2 in 2θ range 27-33°. Structural phase transformation is observed for Ni7+ and Ag9+ ion irradiated samples at a fluence 1 × 1013 ions cm-2 and 3 × 1012 ions cm-2 respectively, since the deposited electronic energy loss exceeds an effective threshold (>12 keV nm-1). Phase transition induced by Ag9+ ion is nearly 2.9 times faster than Ni7+ ion at 1 × 1013 ions cm-2. Ag9+ ion irradiation leads two ion impact processes. Thermoluminescence (TL) glow curves exhibit two glows, a well resolved peak at ∼424 K and unresolved peak at 550 K for all SHI irradiated samples. TL response is decreased with increase of ion fluence. Beyond 3 × 1012 ions cm-2, samples don't exhibit TL due to annihilation of defects.

  8. Dissociation of multicharged CO molecular ions produced in collisions with 97-MeV Ar14+: Dissociation fractions and branching ratios

    NASA Astrophysics Data System (ADS)

    Wohrer, K.; Sampoll, G.; Watson, R. L.; Chabot, M.; Heber, O.; Horvat, V.

    1992-10-01

    Data on the production and dissociation of COQ+ molecular ions (where Q=1 through 7) obtained by ion-ion coincidence time-of-flight measurements were analyzed to determine production yields, dissociation fractions, and branching ratios. A detailed comparison of the dissociation fractions for CO+ and CO2+ for several collision systems in the same perturbative regime revealed them to be quite similar, whereas the dissociation fraction for CO+ produced by valence-electron photoionization is a factor of 1.8 to 3.6 larger. The results for Q>=2 indicated a preference for dissociation channels leading to symmetric or nearly symmetric charge division. An enhancement of the total ionization yields for Q>4 was observed, and it suggests that electron transfer followed by LMM Auger decay plays an important role in determining the final charges of the dissociation products.

  9. X-ray spectral measurements and collisional radiative modeling of Ni- to Kr-like Au ions in electron beam ion trap plasmas.

    PubMed

    May, M J; Fournier, K B; Beiersdorfer, P; Chen, H; Wong, K L

    2003-09-01

    The line emission of n=7-->3, 6-->3, 5-->3, and 4-->3 transitions in Ni- to Kr-like gold ions produced in the Livermore electron beam ion traps EBIT-I and EBIT-II has been recorded with an x-ray crystal spectrometer and a photometrically calibrated microcalorimeter. The plasmas had either monoenergetic electron beams with E(beam)=2.66, 3.53, or 4.54 keV or an experimentally simulated thermal electron distributions with T(e)=2.5 keV. The electron densities were approximately 10(12)cm(-3). The measured spectra have been compared to atomic structure calculations and synthetic spectra provided by the Hebrew University Lawrence Livermore Atomic Code atomic data package. Line identifications and accurate photon energy measurements have been made for many collisionally excited transitions. Approximately 140 lines have been identified in nine charge states. Agreement within 20-30 % exists between the measured and modeled line intensities for most lines excited by the monoenergetic electron beam plasmas, although some larger discrepancies can be found for some weaker features. PMID:14524898

  10. Slowing down of 2-11 MeV 12C, 16O, 28Si and 63Cu heavy ions through Si3N4 thin foil by using Time-of-Flight spectrometry

    NASA Astrophysics Data System (ADS)

    Guesmia, A.; Msimanga, M.; Pineda-Vargas, C. A.; Ammi, H.; Dib, A.; Ster, M.

    2016-03-01

    The stopping force and the energy-loss straggling of 63Cu, 28Si, 16O and 12C partially stripped heavy ions crossing silicon nitride foil has been determined over a continuous range of energies 2-11 MeV, by using a method based on the Heavy Ion-Elastic Recoil Detection Analysis (HI-ERDA) technique using a Time of Flight (ToF) spectrometer. The obtained energy loss straggling values corrected for non-statistical straggling and the thickness variation using the Besenbacher's method have been analyzed and compared with the corresponding computed values. For computed electronic straggling we have used alternatively the widely used formulations such as, the universal Bohr straggling deduced from the Bohr stopping model, and the Lindhard-Scharff formula including the Bunching effect given by Hvelplund-Firsov formula according to the Besenbacher approach. The aim of such comparison is to check the reliability and accuracy of the existing energy loss straggling formulations, in the light of the present experimental results. The experimental results of energy loss straggling of all ions are found to be greater than those predicted by the Bohr stopping model or Lindhard-Scharff prediction model. The introduction of the bunching effect improves the comparison and gives an estimation of other effects such as charge exchange.

  11. K-shell x-ray production by 0. 5-2. 5-MeV /sub 4//sup 9/Be/sup +/ ions incident upon selected elements from fluorine to potassium

    SciTech Connect

    Price, J.L.; Duggan, J.L.; McDaniel, F.D.; Lapicki, G.; Mehta, R.

    1986-10-01

    K-shell x-ray production cross sections are reported for /sub 4//sup 9/Be/sup +/ ions incident upon thin /sub 9/F, /sub 11/Na, /sub 13/Al, /sub 14/Si, /sub 15/P, /sub 17/Cl, and /sub 19/K targets. Incident-beam energies range from 0.5 to 2.5 MeV. It is found that the first Born approximation (plane-wave Born approximation plus the Oppenheimer-Brinkman-Kramers treatment by Nikolaev) greatly overpredicts the data, while the predictions of the perturbed-stationary-state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR) are generally in good agreement with the data. There is a low-velocity discrepancy between the data and the ECPSSR predictions which may be due to multiple ionization effects on the fluorescence yields used to convert total ionization to x-ray production cross sections.

  12. Light particle probes of expansion and temperature evolution: Coalescence model analyses of heavy ion collisions at 47A MeV

    SciTech Connect

    Hagel, K.; Wada, R.; Cibor, J.; Lunardon, M.; Marie, N.; Alfaro, R.; Shen, W.; Xiao, B.; Zhao, Y.; Majka, Z.

    2000-09-01

    The reactions {sup 12}C+{sup 116}Sn, {sup 22}Ne+Ag, {sup 40}Ar+{sup 100}Mo, and {sup 64}Zn+{sup 89}Y have been studied at 47A MeV projectile energy. For these reactions the most violent collisions lead to increasing amounts of fragment and light particle emission as the projectile mass increases. This is consistent with quantum molecular dynamics (QMD) model simulations of the collisions. Moving source fits to the light charged particle data have been used to gain a global view of the evolution of the particle emission. Comparisons of the multiplicities and spectra of light charged particles emitted in the reactions with the four different projectiles indicate a common emission mechanism for early emitted ejectiles even though the deposited excitation energies differ greatly. The spectra for such ejectiles can be characterized as emission in the nucleon-nucleon frame. Evidence that the {sup 3}He yield is dominated by this type of emission and the role of the collision dynamics in determining the {sup 3}H/{sup 3}He yield ratio are discussed. Self-consistent coalescence model analyses are applied to the light cluster yields, in an attempt to probe emitter source sizes and to follow the evolution of the temperatures and densities from the time of first particle emission to equilibration. These analyses exploit correlations between ejectile energy and emission time, suggested by the QMD calculations. In this analysis the degree of expansion of the emitting system is found to increase with increasing projectile mass. The double isotope yield ratio temperature drops as the system expands. Average densities as low as 0.36{rho}{sub 0} are reached at a time near 100 fm/c after contact. Calorimetric methods were used to derive the mass and excitation energy of the excited nuclei which are present after preequilibrium emission. The derived masses range from 102 to 116 u and the derived excitation energies increase from 2.6 to 6.9 MeV/nucleon with increasing projectile mass. A

  13. Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries.

    PubMed

    Chen, Junfen; Ru, Qiang; Mo, Yudi; Hu, Shejun; Hou, Xianhua

    2016-07-28

    Hollow porous NiCo2O4-nanoboxes (NCO-NBs) were synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the template followed by a subsequent annealing treatment. The structure and morphology of the NCO-NBs were characterized using X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. When tested as potential anode materials for lithium-ion batteries, these porous NCO-NBs with a well-defined hollow structure manifested enhanced performance of Li storage. The discharge capacity of the NCO-NBs remained 1080 mA h g(-1) after 150 cycles at a current rate of 500 mA g(-1) and 884 mA h g(-1) could be obtained at a current density of 2000 mA g(-1) after 200 cycles. Even when cycled at a high density of 8000 mA g(-1), a comparable capacity of 630 mA h g(-1) could be achieved. Meanwhile, the Na storage behavior of NCO-NBs as anode materials of sodium ion batteries (SIBs) was initially investigated and they exhibited a high initial discharge capacity of 826 mA h g(-1), and a moderate capacity retention of 328 mA h g(-1) was retained after 30 cycles. The improved electrochemical performance for NCO-NBs could be attributed to the hierarchical hollow structure and the desirable composition, which provide enough space to alleviate volume expansion during the Li(+)/Na(+) insertion/extraction process and facilitate rapid transport of ions and electrons. PMID:27353639

  14. Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Palmieri, Alessandro; Beauregard, Nicole; Zhang, Lichun; Campanella, James; Mustain, William E.

    2015-02-01

    The roles of conductivity and structure in the reversibility, rate capability, capacity and capacity retention of nickel oxide anodes for lithium-ion batteries were investigated. Conductivity was controlled by the systematic addition of non-intercalating carbon. The NiO nanostructure was controlled through four different preparation procedures. Overall, the top-performing electrodes were made from tetrahedral-shaped particles with a broad particle size distribution that were derived from a simple direct calcination of nickel nitrate salt. Capacity values >700 mA h/g after 100 cycles at 1C were observed, and a rate capability >400 mA h/g at 5C was achieved for electrodes with 40% carbon added. The addition of carbon universally improved anode performance by influencing the charge transferability, as evidenced by SEI peak shifts and reduced resistances seen via EIS. Reversibility was greatly enhanced as the conductivity was improved through carbon addition, which enabled otherwise inactive anode particles to maintain activity after many cycles. This work suggests that improved conductivity, as opposed to the conventional opinion regarding nanostructure, is the key to creating high performance anodes for next generation lithium-ion batteries.

  15. Characterisation of radiation damage in W and W-based alloys from 2MeV self-ion near-bulk implantations

    DOE PAGESBeta

    Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; Hattar, Khalid; Edmondson, Philip D.; Roberts, Steve G.; Culham Science Centre, Abingdon

    2015-04-21

    The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W+ irradiation to doses 3.3×1017 - 2.5×1019 W+/m2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majority being ≤ 6 nm. Themore » loop number density varied between 1022 and 1023 loops/m3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less

  16. Comparison of the biological effectiveness of 45 MeV C-ions and {gamma}-rays in inducing early and late effects in normal human primary fibroblasts

    SciTech Connect

    Fratini, E.; Balduzzi, M.; Antonelli, F.; Sorrentino, E.; Esposito, G.; Cuttone, G.; Romano, F.; Dini, V.; Simone, G.; Campa, A.; Tabocchini, M. A.; Belli, M.

    2013-07-18

    Investigation of the mechanisms underlying the biological effects induced by densely ionizing radiation has relevant implications in both radiation protection and therapy. In particular, the possible advantages of hadrontherapy with respect to conventional radiotherapy in terms of high conformal tumor treatment and sparing of healthy tissues are well known. Further improvements are limited by lack of radiobiological knowledge, particularly about the specific cellular response to the damage induced by particles of potential interest for tumor treatment. This study compares early and late effects induced in AG01522 normal human primary fibroblasts by {gamma}-rays and C-ions having E {approx} 45 MeV/u at the cell entrance, corresponding to LET (in water) {approx} 49 keV/{mu}m. Different end points have been investigated, namely: cell killing and lethal mutation, evaluated as early and delayed reproductive cell death, respectively; chromosome damage, as measured by micronuclei induction (MN); DNA damage, in terms of DSB induction and repair, as measured by the H2AX phosphorylation/dephosphorylation kinetics. Linear dose-response relationships were found for cell killing and induction of lethal mutations, with RBEs of about 1.3 and 1.6 respectively, indicating that the presence of genomic instability is greater in the progeny of C-ions irradiated cells. H2AX phosphorylation/dephosphorylation kinetics have shown a maximum foci number at 30 min after irradiation, higher for {gamma}-rays than for C-ions. However, in the first 12 h the fraction of residual {gamma}-H2AX foci was higher for C-ions irradiated cells, indicating a lower removal rate, possibly related to multiple/more complex damage along the particle track, with respect to the sparse lesions produced by {gamma}-rays. MN induction, observed after 72 h from irradiation, was also greater for C-ions. Overall, these data indicate a more severe DNA damage induced by 45 MeV/u C-ions with respect to {gamma}-rays, likely

  17. Comparison of the biological effectiveness of 45 MeV C-ions and γ-rays in inducing early and late effects in normal human primary fibroblasts

    NASA Astrophysics Data System (ADS)

    Fratini, E.; Balduzzi, M.; Antonelli, F.; Sorrentino, E.; Esposito, G.; Cuttone, G.; Romano, F.; Dini, V.; Simone, G.; Belli, M.; Campa, A.; Tabocchini, M. A.

    2013-07-01

    Investigation of the mechanisms underlying the biological effects induced by densely ionizing radiation has relevant implications in both radiation protection and therapy. In particular, the possible advantages of hadrontherapy with respect to conventional radiotherapy in terms of high conformal tumor treatment and sparing of healthy tissues are well known. Further improvements are limited by lack of radiobiological knowledge, particularly about the specific cellular response to the damage induced by particles of potential interest for tumor treatment. This study compares early and late effects induced in AG01522 normal human primary fibroblasts by γ-rays and C-ions having E ˜ 45 MeV/u at the cell entrance, corresponding to LET (in water) ˜ 49 keV/μm. Different end points have been investigated, namely: cell killing and lethal mutation, evaluated as early and delayed reproductive cell death, respectively; chromosome damage, as measured by micronuclei induction (MN); DNA damage, in terms of DSB induction and repair, as measured by the H2AX phosphorylation/dephosphorylation kinetics. Linear dose-response relationships were found for cell killing and induction of lethal mutations, with RBEs of about 1.3 and 1.6 respectively, indicating that the presence of genomic instability is greater in the progeny of C-ions irradiated cells. H2AX phosphorylation/dephosphorylation kinetics have shown a maximum foci number at 30 min after irradiation, higher for γ-rays than for C-ions. However, in the first 12 h the fraction of residual γ-H2AX foci was higher for C-ions irradiated cells, indicating a lower removal rate, possibly related to multiple/more complex damage along the particle track, with respect to the sparse lesions produced by γ-rays. MN induction, observed after 72 h from irradiation, was also greater for C-ions. Overall, these data indicate a more severe DNA damage induced by 45 MeV/u C-ions with respect to γ-rays, likely responsible of an increased cellular

  18. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress summary report, June 1, 1993--May 31, 1994

    SciTech Connect

    Grummon, D.S.

    1993-01-21

    Diffusion-bonded NiAl-Al{sub 2}O{sub 3} and Ni{sub 3}Al-Al{sub 2}O{sub 3} couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al{sub 2}O{sub 3} was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni{sub 3}Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle- matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N{sup +}-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  19. High temperature stability, interface bonding, and mechanical behavior in [beta]-NiAl and Ni[sub 3]Al matrix composites with reinforcements modified by ion beam enhanced deposition

    SciTech Connect

    Grummon, D.S.

    1993-01-21

    Diffusion-bonded NiAl-Al[sub 2]O[sub 3] and Ni[sub 3]Al-Al[sub 2]O[sub 3] couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al[sub 2]O[sub 3] was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni[sub 3]Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle- matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N[sup +]-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  20. Tools for magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites: Comparative study with applications to Ni2+ ions in Y2BaNiO5 and Nd2BaNiO5

    NASA Astrophysics Data System (ADS)

    Gnutek, P.; Açıkgöz, M.; Rudowicz, C.

    2015-01-01

    Three approaches are employed to study magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d8 states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d8 ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin-orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)-(iii) are applied for Ni2+ (S=1) ions in the Haldane gap systems Y2BaNiO5 and Nd2BaNiO5. The contributions to the ZFSPs due to the spin-spin and spin-other-orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)-corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d8(3A2 state) ions at orthorhombic sites in crystals.

  1. Scanning picosecond tunable laser system for simulating MeV heavy ion-induced charge collection events as a function of temperature

    NASA Astrophysics Data System (ADS)

    Laird, Jamie Stuart; Chen, Yuan; Scheick, Leif; Vo, Tuan; Johnston, Allan

    2008-08-01

    A new methodology for using scanning picosecond laser microscopy to simulate cosmic ray induced radiation effects as a function of temperature is described in detail. The built system is centered on diffraction-limited focusing of the output from a broadband (690-960 nm) ultrafast Ti:sapphire Tsunami laser pumped by a 532 nm Millennia laser. An acousto-optic modulator is used to provide pulse picking down to event rates necessary for the technologies and effects under study. The temperature dependence of the charge generation process for ions and photons is briefly reviewed and the need for wavelength tunability is discussed. An appropriate wavelength selection is critical for proper emulation of ion events over a wide temperature range. The system developed is detailed and illustrated by way of example on a deep-submicron complementary metal-oxide semiconductor test structure.

  2. Influence of dose and ion concentration on formation of binary Al-Ni alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Abedini, Alam; Larki, Farhad; Saion, Elias; Zakaria, Azmi; Zobir Hussein, M.

    2012-10-01

    Colloidal Al-Ni nanoclusters were prepared in an aqueous polyvinyl alcohol solution containing aluminum chloride and nickel chloride as metal precursors, polyvinyl alcohol as a capping agent, isopropanol as a scavenger of hydroxyl radicals, and distilled water as a solvent. Gamma irradiations were carried out in a 60Co gamma source chamber at doses up to 100 kGy. The nanocluster properties were characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, and X-ray diffraction (XRD). By controlling the dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increase of precursor concentration and decreased with increase of dose. This is owing to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation.

  3. Probing Solvataion Shells of Ni(H_2O)_m2+ (m=4-10) and NiOH(H_2O)_n+ (n=2-5) with Cryogenic Ion Vibrational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Voss, Jonathan; Marsh, Brett; Zhou, Jia; Garand, Etienne

    2015-06-01

    The solvation of metal cations, a process that dictates chemistry in both catalytic and biological systems, has been well studied using gas-phase spectroscopy. However, until recently the solvation of cation-anion pairs has been poorly explored. Here we present gas-phase spectra of Ni(H_2O)_m2+ (m=4-10) and NiOH(H_2O)_n+ (n=2-5) obtained via cryogenic ion vibrational spectroscopy (CIVS). Our results indicate that as cluster size decreases, the NiOH(H_2O)_n+ moiety becomes more favorable over the Ni(H_2O)_m2+ moiety. Analysis of the spectral data in conjunction with density functional theory calculations shows that both species have a 1st solvation shell consisting of six lingands. However, the NiOH(H_2O)_n+ clusters show evidence of strong interactions between a first solvation shell water ligand and the OH- group of the metal, similar to the interactions previously observed in CaOH(H_2O)_n+ and MgOH(H_2O)_n+.

  4. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O3+ Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.; Duan, Xiaofeng F.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e--e+) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O3+ ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O3+ ions were implanted 10.8 μm deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-μm thick SiC samples was exposed to positrons from a 22Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O3+ ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e--e+ momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 Å forming a Si-O-C bond angle of ˜150°.

  5. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O{sup 3+} Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    SciTech Connect

    Williams, Christopher S.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e{sup -}-e{sup +}) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O{sup 3+} ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O{sup 3+} ions were implanted 10.8 {mu}m deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-{mu}m thick SiC samples was exposed to positrons from a {sup 22}Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O{sup 3+} ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e{sup -}-e{sup +} momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 A forming a Si-O-C bond angle of {approx}150 deg.

  6. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability

    NASA Astrophysics Data System (ADS)

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-07-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30–150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g‑1 at 0.5C (1C = 718 mA g‑1) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g‑1, respectively. The capacity can be recovered back to ca. 430 mAh g‑1 in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g‑1. The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production.

  7. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability.

    PubMed

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S; Ozkan, Mihrimah

    2016-01-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30-150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g(-1) at 0.5C (1C = 718 mA g(-1)) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g(-1), respectively. The capacity can be recovered back to ca. 430 mAh g(-1) in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g(-1). The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production. PMID:27426433

  8. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability

    PubMed Central

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-01-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30–150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g−1 at 0.5C (1C = 718 mA g−1) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g−1, respectively. The capacity can be recovered back to ca. 430 mAh g−1 in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g−1. The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production. PMID:27426433

  9. Characterisation of radiation damage in W and W-based alloys from 2MeV self-ion near-bulk implantations

    SciTech Connect

    Yi, Xiaoou; Jenkins, Michael L.; Hattar, Khalid; Edmondson, Philip D.; Roberts, Steve G.

    2015-04-21

    The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W+ irradiation to doses 3.3×1017 - 2.5×1019 W+/m2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majority being ≤ 6 nm. The loop number density varied between 1022 and 1023 loops/m3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.

  10. Improved Analytical Performance of Negative 63Ni Ion Mobility Spectrometry for On-line Measurement of Propofol Using Dichloromethane as Dopant

    NASA Astrophysics Data System (ADS)

    Zhou, Qinghua; Hua, Lei; Wang, Changsong; Li, Enyou; Li, Haiyang

    2015-01-01

    On-line monitoring of propofol in exhaled air is a potential way to evaluate the anaesthesia depth for patients during surgery. In this study, a negative 63Ni ionization high resolution ion mobility spectrometer with Bradbury-Nielsen-Gate-Grid structure was built to measure propofol with reactant ions Cl-(H2O) n using dichloromethane as dopant. Instead of forming three propofol ions (M - H)-, M · O2 -, and (M2 - H)- with reactant ions O2 -(H2O) n , only product ion M · Cl- was produced when introducing dichloromethane gas. The peak-to-peak resolution ( R p-p) between reactant ions Cl-(H2O) n and product ion M · Cl- was 17.4, which was 1.6 times larger than that between O2 -(H2O) n and product ion. Furthermore, the linear response range using reactant ions Cl-(H2O) n was 3.5 times wider than that obtained with reactant ions O2 -(H2O) n .

  11. Impulsive acceleration and scatter-free transport of about 1 MeV per nucleon ions in (He-3)-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Ng, C. K.; Klecker, B.; Green, G.

    1989-01-01

    Impulsive solar energetic particle (SEP) events are studied to: (1) describe a distinct class of SEP ion events observed in interplanetary space, and (2) test models of focused transport through detailed comparisons of numerical model prediction with the data. An attempt will also be made to describe the transport and scattering properties of the interplanetary medium during the times these events are observed and to derive source injection profiles in these events. ISEE 3 and Helios 1 magnetic field and plasma data are used to locate the approximate coronal connection points of the spacecraft to organize the particle anisotropy data and to constrain some free parameters in the modeling of flare events.

  12. Selective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang

    2007-02-01

    Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.

  13. Selective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using alpha-benzyl dioxime in surfactant media.

    PubMed

    Ghaedi, Mehrorang

    2007-02-01

    Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 microg mL-1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 microg mL-1 and a detection limit of 0.12 ng mL-1 and molar absorption coefficient of 68,600L mol-1 cm-1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction. PMID:16843047

  14. Comparison of 3 MeV C{sup +} Ion-Irradiation Effects between The Nuclear Graphites made of Pitch and Petroleum Cokes

    SciTech Connect

    Se-Hwan, Chi; Gen-Chan, Kim; Jong-Hwa, Chang

    2006-07-01

    Currently, all the commercially available nuclear graphite grades are being made from two different cokes, i.e., petroleum coke or coal-tar pitch coke, and a coal-tar pitch binder. Of these, since the coke composes most of the graphite volume, i.e., > 70 %, it is understood that a physical, chemical, thermal, and mechanical property as well as an irradiation-induced property change will be strongly dependent on the type of coke. To obtain first-hand information on the effects of the coke type, i.e., petroleum or pitch, on the irradiation sensitivity of graphite, specimens made of IG-110 of petroleum coke and IG-430 of pitch coke were irradiated up to {approx} 19 dpa by 3 MeV C{sup +} at room temperature, and the irradiation-induced changes in the hardness, Young's modulus, Raman spectrum, and oxidation properties were characterized. Results of the TEM show that the size and density of the Mrozowski cracks appeared to be far larger and higher in the IG-110 than the IG-430. Results of the hardness test revealed a slightly higher increase in the IG-430 than the IG-110 by around 10 dpa, and the Raman spectrum measurement showed a higher (FWHM){sub D}/(FWHM){sub G} value for IG-430 for 0.02 {approx} 0.25 dpa. Both the hardness and Raman measurement may imply a higher irradiation sensitivity of the IG-430 than the IG-110. Results of the Young's modulus measurements showed a large data scattering, which prevented us from estimating the differences between the grades. Oxidation experiments using a TG-DTA under a flow of dry air/He = 2.5 % (flow rate: 40 CC/min) at 750 and 1000 deg C show that the IG-110 of the petroleum coke exhibits a far higher oxidation rate than the IG-430. The discrepancy between the oxidation rate of the two grades increased with an increase in the oxidation temperature and the dose. Oxidized surface pore area was larger for IG-110. Judging from the results obtained from the present experimental conditions, the irradiation sensitivity appeared to be

  15. Recent development of LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium ion battery.

    PubMed

    Zhu, Ji-Ping; Xu, Quan-Bao; Yang, Hong-Wei; Zhao, Jun-Jie; Yang, Guang

    2011-12-01

    Layered LiNi1/3Co1/3Mn1/3O2, owing to its excellent electrochemical properties, has been used as cathode material for lithium-ion batteries, especially for hybrid electric vehicles. It has many merits such as high capacity, long cycle life, low cost and little harm to environment. Therefore, LiNi1/3Co1/3Mn1/3O2 has become a great concern by scholars on energy and material fields. However, the electronic conductivity and the charge-discharge capacity at high current should be enhanced before any materials modifications. Here, this paper summarizes the main synthetic technologies of LiNi1/3Co1/3Mn1/3O2 in recent years, including synthesis methods, doping, surface coating modification, and the future development trends discussed. PMID:22408910

  16. Terahertz Absorption Characteristics of NiCr Film and Enhanced Absorption by Reactive Ion Etching in a Microbolometer Focal Plane Array

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Wang, Jun; Li, Weizhi; Tai, Huiling; Gu, Deen; Jiang, Yadong

    2013-08-01

    Nano - scale metallic films have been proven to be an effective terahertz (THz) absorption layer in uncooled infrared (IR) microbolometers operated in THz spectral range. Optimized absorption can be achieved by adjusting the thickness of metallic film. Nickel - chromium (NiCr) thin films are deposited on the diaphragms of 320 × 240 VOx - based infrared focal plane arrays (IRFPA). Absorption measurements of the diaphragms with different thicknesses of NiCr (5 to 40 nm) agree reasonably well with the predicted absorption. To improve THz absorption further, a reactive ion etching (RIE) process applied to the dielectric support layer is first suggested, which generates nano - scale surface structures and increases the effective surface area of NiCr absorption film. This provides an effective way which is easy to accomplish and compatible with the manufacturing process of microbolometer IRFPAs to improve THz absorption and detection sensitivity.

  17. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries

    PubMed Central

    Tang, Xiao; Jan, S. Savut; Qian, Yanyan; Xia, Hui; Ni, Jiangfeng; Savilov, Serguei V.; Aldoshin, Serguei M.

    2015-01-01

    LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 space group. The morphological characterization by scanning electron microscopy and transmission electron microscopy reveals that the LiNi0.5Mn1.5O4 nanorods of 100–200 nm in diameter are well dispersed and wrapped in the graphene nanosheets for the composite. Benefiting from the highly conductive matrix provided by graphene nanosheets and one-dimensional nanostructure of the ordered spinel, the composite electrode exhibits superior rate capability and cycling stability. As a result, the LiNi0.5Mn1.5O4-graphene composite electrode delivers reversible capacities of 127.6 and 80.8 mAh g−1 at 0.1 and 10 C, respectively, and shows 94% capacity retention after 200 cycles at 1 C, greatly outperforming the bare LiNi0.5Mn1.5O4 nanorod cathode. The outstanding performance of the LiNi0.5Mn1.5O4-graphene composite makes it promising as cathode material for developing high energy and high power lithium-ion batteries. PMID:26148558

  18. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.

    PubMed

    Tang, Xiao; Jan, S Savut; Qian, Yanyan; Xia, Hui; Ni, Jiangfeng; Savilov, Serguei V; Aldoshin, Serguei M

    2015-01-01

    LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 space group. The morphological characterization by scanning electron microscopy and transmission electron microscopy reveals that the LiNi0.5Mn1.5O4 nanorods of 100-200 nm in diameter are well dispersed and wrapped in the graphene nanosheets for the composite. Benefiting from the highly conductive matrix provided by graphene nanosheets and one-dimensional nanostructure of the ordered spinel, the composite electrode exhibits superior rate capability and cycling stability. As a result, the LiNi0.5Mn1.5O4-graphene composite electrode delivers reversible capacities of 127.6 and 80.8 mAh g(-1) at 0.1 and 10 C, respectively, and shows 94% capacity retention after 200 cycles at 1 C, greatly outperforming the bare LiNi0.5Mn1.5O4 nanorod cathode. The outstanding performance of the LiNi0.5Mn1.5O4-graphene composite makes it promising as cathode material for developing high energy and high power lithium-ion batteries. PMID:26148558

  19. Dielectronic recombination of Ni-, Cu-, and Zn-like tungsten ions

    NASA Astrophysics Data System (ADS)

    Kwon, Duck-Hee; Lee, Wonwook

    2016-08-01

    Dielectronic recombination (DR) for Ni- and Zn-like Wq+ (q=46, 44) has been investigated extending the previous theoretical methodology (Kwon and Lee, 2016 [6]) applied for Cu-like W45+ which treats configuration mixing (CM) between resonances, non-resonant stabilization to non-closed inner-shells and decays to autoionizing levels possibly followed by cascades. For W46+ DR via 3[ s , p , d ] 17 4lnl‧ and 3[ s , p , d ] 17 5lnl‧ resonances (Δnc = 1, 2) are included to the total Maxwellian rate coefficient. CM between 3p6 3d9 4lnl‧ and 3p5 3d10 4lnl‧ resonances largely changes low energy DR near the threshold. For W45+ radiative decay channels 3d10 4l‧n‧ l ‧‧ (4

  20. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    SciTech Connect

    Gloss, Jonas; Shah Zaman, Sameena; Jonner, Jakub; Novotny, Zbynek; Schmid, Michael; Varga, Peter; Urbánek, Michal

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phase diagram revealing the transformable region is presented.

  1. A Non-Normal Incidence Pumped Ni-Like Zr XRL for Spectroscopy of Li-Like Heavy Ions at GSI/FAIR

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Ursescu, D.; Bagnoud, V.; Javorkova, D.; Rosmej, O.; Zimmer, D.; Cassou, K.; Kazamias, S.; Klisnick, A.; Ros, D.; Zielbauer, B.; Janulewicz, K.; Nickles, P.; Pert, G.; Neumayer, P.; Dunn, J.

    One of the unique features of the PHELIX laser installation is the combination of the ultra-high intensity laser with the heavy-ion accelerator facility at GSI and its planned extension FAIR. Due to this combination, PHELIX will allow novel investigations in the fields of plasma physics, atomic physics, nuclear physics, and accelerator studies. An important issue within the scientific program is the generation of high quality x-ray laser beams for x-ray laser spectroscopy of highly-charged ions. The long range perspective is the study of nuclear properties of radioactive isotopes within the FAIR [1] project. A novel single mirror focusing scheme for the TCE XRL has been successfully implemented by the LIXAM/MBI/GSI collaboration under different pump geometries. Intense and stable laser operation with Ni-like Zr and Ni-like Ag was demonstrated at pump energies between 2 J and 5 J from the PHELIX pre-amplifier section.

  2. Combined Experimental and Computational Studies of a Na2 Ni1-x Cux Fe(CN)6 Cathode with Tunable Potential for Aqueous Rechargeable Sodium-Ion Batteries.

    PubMed

    Hung, Tai-Feng; Chou, Hung-Lung; Yeh, Yu-Wen; Chang, Wen-Sheng; Yang, Chang-Chung

    2015-10-26

    Herein, potential-tunable Na2 Ni1-x Cux Fe(CN)6 nanoparticles with three-dimensional frameworks and large interstitial spaces were synthesized as alternative cathode materials for aqueous sodium-ion batteries by controlling the molar ratio of Ni(II) to Cu(II) at ambient temperature. The influence of the value of x on the crystalline structure, lattice parameters, electrochemical properties, and charge transfer of the resultant compound was explored by using powder X-ray diffractometry, density functional theory, cyclic voltammetry, galvanostatic charge-discharge techniques, and Bader charge analysis. Of the various formulations investigated, that with x=0.25 delivered the highest reversible capacity, superior rate capability, and outstanding cycling performance. These attributes are ascribed to its unique face-centered cubic structure for facile sodium-ion insertion/extraction and the strong interactions between Cu and N atoms, which promote structural stability. PMID:26350587

  3. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Xu, Huayun; Chen, Liang; Gu, Xin; Yang, Jian; Qian, Yitai

    2014-02-01

    MFe2O4 (M = Zn, Co, Ni) nanorods are synthesized by a template-engaged reaction, with β-FeOOH nanorods as precursors which are prepared by a hydrothermal method. The final products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical properties of the MFe2O4 (M = Zn, Co, Ni) nanorods are tested as the anode materials for lithium ion batteries. The reversible capacities of 800, 625 and 520 mAh g-1 are obtained for CoFe2O4, ZnFe2O4 and NiFe2O4, respectively, at the high current density of 1000 mA g-1 even after 300 cycles. The superior lithium-storage performances of MFe2O4 (M = Zn, Co, Ni) nanorods can be attributed to the one-dimensional (1D) nanostructure, which can shorten the diffusion paths of lithium ions and relax the strain generated during electrochemical cycling. These results indicate that this method is an effective, simple and general way to prepare good electrochemical properties of 1D spinel Fe-based binary transition metal oxides. In addition, the impact of different reaction temperatures on the electrochemical properties of MFe2O4 nanorods is also investigated.

  4. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated <111> Ni microspecimens

    DOE PAGESBeta

    Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.; He, Mo-rigen; Cheng, You -Jung; Pu, Jue; Stanford Univ., Stanford, CA; Hattar, Khalid; Gianola, Daniel S.

    2015-02-11

    We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less

  5. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Nieto, Nerea; Käbitz, Stefan; Schmalstieg, Johannes; Blanke, Holger; Warnecke, Alexander; Sauer, Dirk Uwe

    2014-02-01

    An extensive set of accelerated aging tests has been carried out employing a Li-ion high energy 18650 system (2.05 Ah), negative electrode: carbon, positive electrode: Li(NiMnCo)O2). It is manufactured by Sanyo, labeled UR18650E, and is a commercial off-the-shelf product. The tests comprise both calendar life tests at different ambient temperatures and constant cell voltages and cycle life tests operating the cells within several voltage ranges and levels using standard test profiles. In total, 73 cells have been tested. The calendar life test matrix especially investigates the influence of SOC on aging in detail, whereas the cycle life matrix focuses on a detailed analysis of the influence of cycle depth. The study shows significant impact of the staging behavior of the carbon electrode on cycle life. Furthermore a strong influence of the carbon potential on calendar aging has been detected. Observed relations between aging and the different influence factors as well as possible degradation mechanisms are discussed. Analysis of C/4 discharge voltage curves suggests that cycle aging results in different aging processes and changes in material properties compared to calendar aging. Cycling, especially with cycles crossing transitions between voltage plateaus of the carbon electrode seems to destroy the carbon structure.

  6. TEM investigation of the surface layer structure [111]{sub B2} of the single NiTi crystal modified by the Si-ion beam implantation

    SciTech Connect

    Girsova, S. L. Poletika, T. M.; Meisner, S. N. Meisner, L. L.

    2015-10-27

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  7. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Yu, Xianbo; Qu, Bin; Zhao, Yang; Li, Chunyan; Chen, Yujin; Sun, Chunwen; Gao, Peng; Zhu, Chunling

    2016-01-26

    A general strategy based on the nanoscale Kirkendall effect has been developed to grow hollow transition metal (Fe, Co or Ni) oxide nanoparticles on graphene sheets. When applied as lithium-ion battery anodes, these hollow transition metal oxide-based composites exhibit excellent electrochemical performance, with high reversible capacities and long-term stabilities at a high current density, superior to most transition metal oxides reported to date. PMID:26502895

  8. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  9. Role of pH value during chemical reaction, and site occupancy of Ni2+ and Fe3+ ions in spinel structure for tuning room temperature magnetic properties in Ni1.5Fe1.5O4 ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, K. S. Aneesh; Bhowmik, R. N.; Mahmood, Sami H.

    2016-05-01

    The magnetic properties of Ni1.5Fe1.5O4 ferrite have been investigated using the techniques of dc magnetometry and Mӧssbauer spectroscopy. The material has been prepared by chemical reaction of metal nitrates at different pH values and subsequently, annealed at different temperatures to improve the microstructure. The samples with single-phased cubic spinel structure have been used for magnetic study. The material showed a variety of magnetic features, including superparamagnetic and soft ferromagnetic properties. At room temperature, changes of the ferromagnetic parameters of the material have been found in the range 0-47 emu/g for spontaneous magnetization, 0-0.37 for squareness, and 0-195 Oe for coercivity. Variation of the pH value during chemical reaction and changes of the grain size by thermal treatment played an important role in tuning the coexisting superparamagnetic and ferromagnetic components in the material. Samples prepared at high pH value showed small grain size and superparamagnetic features, whereas the samples prepared at low pH value produced large grain size and better ferromagnetic features. The ferromagnetic properties of the material have been enhanced by lowering the pH value and increasing the annealing temperature. Mössbauer spectra provided insight of the local magnetic order, site occupancy of Ni and Fe ions and oxidation state of Fe ions in the spinel structure of Ni1.5Fe1.5O4 ferrite.

  10. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively. PMID:26961230

  11. Study on column SPE with synthesized graphene oxide and FAAS for determination of trace amount of Co(II) and Ni(II) ions in real samples.

    PubMed

    Pourjavid, Mohammad Reza; Arabieh, Masoud; Yousefi, Seyed Reza; Jamali, Mohammad Reza; Rezaee, Mohammad; Hosseini, Majid Haji; Sehat, Ali Akbari

    2015-02-01

    A selective method for the preconcentration and separation of trace amounts of Co(II) and Ni(II) by column solid phase extraction has been developed. The method is based on the adsorption of metal ions as N-(5-methyl-2-hydroxyacetophenone)-N'-(2-hydroxyacetophenone) ethylene diamine (MHE) complex on synthesized graphene oxide. Computational modeling based on PM6 semi-empirical potential energy surface was utilized to investigate the interaction of metallic complexes with graphene oxide sheet. The adsorption was achieved quantitatively on graphene oxide at pH6.0 and then the retained analyte contents on the column were quantitatively eluted with 3.0 mol L(-1) HNO3. Experimental conditions for effective separation of trace levels of the analyte ions such as pH, flow rate, concentration of eluent, sample volume and interference ions were investigated. A preconcentration factor of 250 was achieved by passing 1250 mL of sample through the solid phase, while the limit of detection of Co(II) and Ni(II) ions were found to be 0.25 and 0.18 ng mL(-1), respectively. The method was applied to the determination of analyte ions in water, black tea and tomato samples. PMID:25492179

  12. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped α-Fe2O3 nanocrystals: equilibrium, thermodynamic, and kinetic studies.

    PubMed

    OuldM'hamed, Mohamed; Khezami, L; Alshammari, Abdulrahman G; Ould-Mame, S M; Ghiloufi, I; Lemine, O M

    2015-01-01

    The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface. PMID:26247760

  13. Self-assembled hierarchical 3D - NiO microspheres with ultra-thin porous nanoflakes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Thorat, Gaurav M.; Mun, Junyoung; Seo, Jeong Gil

    2016-01-01

    Transition metal oxides have attracted great attention as an anode material for next generation lithium ion batteries. Here we report the preparation of self-assembled hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes by simple and cost effective urea assisted chemical co-precipitation method followed by annealing at different temperature. It is noteworthy that the annealing temperature has an impact on the formation of different morphologies and resultantly on the electrochemical performance. This hierarchical 3D-NiO microspheres with ultra-thin porous nanoflakes shows enhanced electrochemical performance with a large reversible capacity, superior cyclic performance, high rate capability, and improved ionic conductivity as an anode material for lithium ion batteries. A high reversible capacity up to 795 mA h g-1 after 150 cycles at a rate of 0.5 C, and a capacity higher than 460.2 mA h g-1 at a rate as high as 10 C were obtained for optimized NiO sample. In particular, enhancement of the electrochemical performance was attributed to the high specific surface area, good electric contact among the particles, and easier lithium ion diffusion.

  14. Classification of discarded NiMH and Li-Ion batteries and reuse of the cells still in operational conditions in prototypes

    NASA Astrophysics Data System (ADS)

    Schneider, E. L.; Oliveira, C. T.; Brito, R. M.; Malfatti, C. F.

    2014-09-01

    The growing production of high-tech devices is strongly associated to a great waste of natural resources and to environmental contamination caused either by the production process of such devices as the quick disposal of them. Cell phones have stood out from the most commercialized electronic devices, which have increased the demand for rechargeable batteries which are afterward discarded before the end of its useful life. The main objective of this paper is to improve a methodology for classify the amount of NiMH and Li-Ion batteries discarded still in operating condition through concepts given to the cells. Tests with 3 NiMH and 3 Li-Ion different battery models were done. This paper also aimed to promote the efficient use of batteries cells through their reuse in academic activities related to the manufacturing of prototypes. It presents the construction of an illuminator and of a portable power supply. The results obtained showed that approximately 40% of NiMH cells and 45% of Li-Ion cells assessed were in operational condition, with charge capacity between 62% and 90%, when compared to a new cell. Such results warn about the waste of natural resources and the proposal to test the same before the final disposal.

  15. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.

    PubMed

    Fan, Xin; Dou, Peng; Jiang, Anni; Ma, Daqian; Xu, Xinhua

    2014-12-24

    Various well-designed nanostructures have been proposed to optimize the electrode systems of lithium-ion batteries for problems like Li(+) diffusion, electron transport, and large volume changes so as to fulfill effective capacity utilization and increase electrode stability. Here, a novel three-dimensional (3D) hybrid Sn-Ni@PEO nanotube array is synthesized as a high performance anode for a lithium-ion battery through a simple one-step electrodeposition for the first time. Superior to the traditional stepwise synthesis processes of heterostructured nanomaterials, this one-step method is more suitable for practical applications. The electrode morphology is well preserved after repeated Li(+) insertion and extraction, indicating that the positive synergistic effect of the alloy nanotube array and 3D ultrathin PEO coating could authentically optimize the current volume-expansion electrode system. The electrochemistry results further confirm that the superiority of the Sn-Ni@PEO nanotube array electrode could largely boost durable high reversible capacities and superior rate performances compared to a Sn-Ni nanowire array. This proposed ternary hybrid structure is proven to be an ideal candidate for the development of high performance anodes for lithium-ion batteries. PMID:25423255

  16. Study of support effects on the reduction of Ni2+ ions in aqueous hydrazine.

    PubMed

    Boudjahem, Abdel-Ghani; Monteverdi, Serge; Mercy, Michel; Bettahar, Mohammed M

    2004-01-01

    We have studied the effect of silica of quartz-type on the reducibility of nickel acetate in aqueous hydrazine (80 degrees C, pH = 10-12) and metal particle formation. The obtained materials were characterized by X-ray diffraction, transmission electron microscopy, and thermodesorption experiments. With nickel acetate alone, the reduction was partial (45%) and a metal film at the liquid-gas interface or a powdered metal precipitate with an average particle size of 120 nm was obtained. In the presence of silica as the surfactant, the reduction of nickel acetate was total and the nickel phase deposited as a film on the support with an average particle size of 25 nm. Supported nickel acetate was also totally reduced. Crystallites of a mean particle size of about 3 nm were obtained. Decreasing the nickel content or increasing the hydrazine/nickel ratio decreased the metal particle size. Whiskers were formed for low nickel loadings. Hydrogen thermal treatment of the reduced phase showed that the organic acetate fragment, belonging to the precursor salt, still remained strongly attached to the nickel phase. The amount of the retained organic matrix depended on the metal particle size. Surface defects are suggested as active sites, which enhanced nickel ion reduction in the presence of silica as the surfactant or support. Metal-support interactions and the nucleation/ growth rate were the main factors determining the size and morphology of the supported metal particles formed. The organic matrix covered the reduced nickel phase. PMID:15745022

  17. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  18. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Shuib, Anis Suhaila; Shaharun, Maizatul S.; Borhan, Azry

    2014-10-01

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  19. Analysis of 6Li Scattering at 240 MeV Using Different Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, A. H.; Ibraheem, Awad A.

    2016-06-01

    Angular distributions of the elastic and inelastic scattering cross sections of 6Li projectile on different heavy ion target nuclei including the 24Mg, 28Si, 48Ca, 58Ni, 90Zr, and 116Sn at energy of 240 MeV have been analyzed by using two different folded potentials based on the CDM3Y6 and São Paulo potentials for the real part of the optical potential, while the imaginary parts have a phenomenological Woods-Saxon shape. Coupled channel calculations for the low-lying 2+ state at 1.369, 1.779, 3.832, 1.454, 2.186, and 1.29 MeV for 24Mg, 28Si, 48Ca, 58Ni, 90Zr, and 116Sn, respectively, have been carried out, and the best fit values for B(EL) with the above models have been extracted by fitting the inelastic scattering cross section and compared with the values of previous works. The total reaction cross section and real and imaginary volume integrals have also been investigated.

  20. The importance of a Ni correction with ion counter in the double spike analysis of Fe isotope compositions using a 57Fe/58Fe double spike

    NASA Astrophysics Data System (ADS)

    Finlayson, V. A.; Konter, J. G.; Ma, L.

    2015-12-01

    We present a new method capable of measuring iron isotope ratios of igneous materials to high precision by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) using a 57Fe-58Fe double spike. After sample purification, near-baseline signal levels of nickel are still present in the sample solution, acting as an isobaric interference on 58 amu. To correct for the interference, the minor 60Ni isotope is monitored and used to subtract a proportional 58Ni signal from the total 58 amu beam. The 60Ni signal is difficult to precisely measure on the Faraday detector due to Johnson noise occurring at similar magnitude. This noise-dominated signal is subtracted from the total 58 amu beam, and its error amplified during the double spike correction. Placing the 60Ni beam on an ion counter produces a more precise measurement, resulting in a near-threefold improvement in δ56Fe reproducibility, from ±0.145‰ when measured on Faraday to 0.052‰. Faraday detectors quantify the 60Ni signal poorly, and fail to discern the transient 20Ne40Ar interference visible on the ion counter, which is likely responsible for poor reproducibility. Another consideration is instrumental stability (defined herein as drift in peak center mass), which affects high-resolution analyses. Analyses experiencing large drift relative to bracketing standards often yield nonreplicating data. Based on this, we present a quantitative outlier detection method capable of detecting drift-affected data. After outlier rejection, long-term precision on individual runs of our secondary standard improves to ±0.046‰. Averaging 3-4 analyses further improves precision to 0.019‰, allowing distinction between ultramafic minerals.

  1. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    PubMed

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  2. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    PubMed Central

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-01-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  3. Solid phase extraction of Cu2+, Ni2+, and Co2+ ions by a new magnetic nano-composite: excellent reactivity combined with facile extraction and determination.

    PubMed

    Azizi, Parastou; Golshekan, Mostafa; Shariati, Shahab; Rahchamani, Jalal

    2015-04-01

    In the present study, silica magnetite mesoporous nanoparticles functionalized with a new chelating agent were synthesized and introduced as a magnetic solid phase for preconcentration of trace amounts of Cu2+, Ni2+, and Co2+ ions from aqueous solutions. Briefly, MCM-41 mesoporous-coated magnetite nano-particles (MMNPs) with particle size lower than 15 nm were synthesized via chemical co-precipitation methods. Then, N-(4-methoxysalicylidene)-4,5-dinitro-1,2-phenylenediamine (HL) as a new chelating agent was synthesized and used for surface modification of mesoporous magnetic solid phase by dispersive liquid-liquid functionalization (DLLF) as a new rapid method to form HL functionalized mesoporous magnetite nanoparticles (MMNPs─HL). The structure and morphology of prepared sorbent were characterized by FT-IR, XRD, VSM, and TEM. Finally, the prepared nanoparticles were utilized for preconcentration of Cu2+, Ni2+, and Co2+ ions prior to determination by atomic absorption spectrophotometery. The calibration graph was obtained under the optimized conditions with linear dynamic range of 1.0-300 μg L(-1) and correlation coefficient (r2) of 0.998. The detection limits of this method for cobalt, nickel, and copper ions were 0.03, 0.03, and 0.04 ng/mL, respectively. Finally, the method was successfully applied to the extraction and determination of the analyte ions in natural waters and reference plant samples. PMID:25784609

  4. High brightness sources for MeV microprobe applications

    SciTech Connect

    Read, P.M.; Alton, G.D.; Maskrey, J.T.

    1987-01-01

    State of the art MeV ion microprobe facilities are now approaching current density limitations on targets imposed by the fundamental nature of conventional gaseous ion sources. With a view to addressing this problem efforts are under way which have the ultimate objective of developing high brightness Li liquid metal ion sources suitable for MeV ion microprobe applications. Prototype Li/sup +/ and Ga/sup +/ liquid metal ion sources have been designed, fabricated and are undergoing preliminary testing. This paper describes the first total emittance and brightness measurements of a Ga liquid metal ion source. The effect of the geometry of the ion extraction system is investigated and the brightness data are compared to those of a radio frequency ion source.

  5. Magnetic and low temperature phonon studies of CoCr{sub 2}O{sub 4} powders doped with Fe(III) and Ni(II) ions

    SciTech Connect

    Ptak, M. Mączka, M.; Pikul, A.; Tomaszewski, P.E.; Hanuza, J.

    2014-04-01

    Extensive temperature-dependent phonon studies and low-temperature magnetic measurements of CoCr{sub 2−x}Fe{sub x}O{sub 4} (for x=0.5, 1 and 2) and Co{sub 0.9}Ni{sub 0.1}Cr{sub 2}O{sub 4} polycrystalline powders are presented. The main aim of these studies was to obtain information on phonon and structural properties of these compounds as well as strength of spin–phonon coupling in the magnetically ordered phases. IR and Raman spectra show that doping of CoCr{sub 2}O{sub 4} with Fe(III) ions leads to broadening of bands and appearance of new bands due to the formation of inverted spinel structure. In contrast to this behavior, doping with 10 mol% of Ni(II) ions leads to weak increase of band width only. Magnetization measured as a function of temperature and external magnetic field showed that magnetic properties of Co{sub 0.9}Ni{sub 0.1}Cr{sub 2}O{sub 4} sample are similar to those reported for pure CoCr{sub 2}O{sub 4}, i.e., partial substitution of Ni(II) for Co(II) leads to slight shift of the ferrimagnetic phase transition at T{sub C} and spiral spin order transition at T{sub S} towards lower values. The change of crystallization preference induced by incorporation of increasing concentration of Fe(III) ions in the spinel lattice causes significant increase of T{sub C} and decrease of T{sub S}. The latter transition disappears completely for higher concentrations of Fe(III). The performed temperature-dependent IR studies revealed interesting anomalous behavior of phonons below T{sub C} for CoCr{sub 1.5}Fe{sub 0.5}O{sub 4} and Co{sub 0.9}Ni{sub 0.1}Cr{sub 2}O{sub 4}, which was attributed to spin–phonon coupling. - Graphical abstract: Visualization of normal spinel-type AB{sub 2}O{sub 4} structure, where blue octahedrons denote BO{sub 6} and red tetrahedrons AO{sub 4} units as well as IR and Raman spectra of Co{sub 0.9}Ni{sub 0.1}Cr{sub 2}O{sub 4} powder. - Highlights: • T{sub C} (T{sub S}) increases (decreases) with increasing Fe(III) concentration.

  6. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag{sup 14+} ions

    SciTech Connect

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-20

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10{sup 11} ions/cm{sup 2} at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I{sub R} decreased with increase in fluence. But Schottky barrier height, ϕ{sub b} increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation.

  7. Relativistic many-body calculations of lifetimes, rates, and line strengths of multipole transitions between 3l-1 4l' states in Ni-like ions

    SciTech Connect

    Safronova, U I; Safronova, A S; Beiersdorfer, P

    2007-10-08

    Transition rates and line strengths are calculated for electric-multipole (E2 and E3) and magnetic-multipole (M1, M2, and M3) transitions between 3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l states (with 4l = 4s, 4p, 4d, and 4f) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded multipole matrix elements. Transition energies used in the calculation of line strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4s levels are given for Z = 34-100. Taking into account that calculations were performed in a very broad range of Z, most of the data are presented in graphs as Z-dependencies. The full set of data is given only for Ni-like W ion. In addition, we also give complete results for the 3d4s{sup 3}D{sub 2}-3d4s {sup 3}D{sub 1} magnetic-dipole transition, as the transition may be observed in future experiments, which measure both transition energies and radiative rates. These atomic data are important in the modeling of radiation spectra from Ni-like multiply-charged ions generated in electron beam ion trap experiments as well as for laboratory plasma diagnostics including fusion research.

  8. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin.

    PubMed

    Chen, Chia-Yun; Yang, Cheng-Yu; Chen, Arh-Hwang

    2011-03-01

    Cross-linked metal-imprinted chitosan microparticles were prepared from chitosan, using four metals (Cu(II), Zn(II), Ni(II), and Pb(II)) as templates, and epichlorohydrin as the cross-linker. The microparticles were characterized by Fourier transform infrared spectroscopy, solid state (13)C nuclear magnetic resonance spectroscopy, and energy-dispersive X-ray spectroscopy. They were used for comparative biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous solution. The results showed that the sorption capacities of Cu(II), Zn(II), Ni(II), and Pb(II) on the templated microparticles increased from 25 to 74%, 13 to 46%, 41 to 57%, and 12 to 43%, respectively, as compared to the microparticles without metal ion templates. The dynamic study showed that the sorption process followed the second-order kinetic equation. Three sorption models, Langmuir, Freundlich, and Dubinin-Radushkevich, were applied to the equilibrium isotherm data. The result showed that the Langmuir isotherm equation best fitted for monolayer sorption processes. Furthermore, the microparticles can be regenerated and reused for the metal removal. PMID:21044814

  9. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.

    PubMed

    Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R

    2015-06-01

    Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact. PMID:25970448

  10. Influence of Ni deposition and subsequent N + ion implantation at different substrate temperatures on nano-structure and corrosion behaviour of type 316 and 304 stainless steels

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Habibi, Maryam

    2011-10-01

    Ni thin films of 250 nm thicknesses were coated on type 304 and 316 stainless steels and post N + ion implanted at 15 keV energy with a fluence of 5 × 10 17 N + cm -2 at different substrate temperatures. Surface nano-structure of the samples were analysed using X-ray diffraction (XRD), atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behaviour of the samples in 1.0 M H 2SO 4 solution was investigated by means of potentiodynamic technique. Nano-structure and crystallography of the films showed the development of Ni 3N(1 1 1) and Ni 4N(2 0 0) orientations with a minimum surface roughness and grain size at 400 K substrate temperature. The highest corrosion resistance with a corrosion current of 0.01 μA cm -2 (for SS(316)) and 0.56 μA cm -2 (for SS(304)) was achieved in case of samples which were N + ion implanted at 400 K. Results for both types of stainless steels showed good agreement and the better performance of SS(316) was attributed to the 2% molybdenum contents in the alloy composition of this type of stainless steel, which enhances the effectiveness of nitrogen in retarding the corrosion process.

  11. In operando neutron diffraction study of a commercial graphite/(Ni, Mn, Co) oxide-based multi-component lithium ion battery

    NASA Astrophysics Data System (ADS)

    Nazer, N. S.; Yartys, V. A.; Azib, T.; Latroche, M.; Cuevas, F.; Forseth, S.; Vie, P. J. S.; Denys, R. V.; Sørby, M. H.; Hauback, B. C.; Arnberg, L.; Henry, P. F.

    2016-09-01

    In situ neutron diffraction was employed to investigate the structural evolution of the electrode materials in an ICR 10440 commercial cylindrical lithium-ion battery, which has a discharge capacity of 360 mAh and a nominal voltage of 3.7 V. A three-phase mixture of Li(Ni,Mn,Co)O2, LiCoO2 and LiMn2O4 was identified as the active material of the cathode, with graphite acting as the anode material. The study revealed that the graphite anode underwent structural changes to form a series of insertion-type lithiated derivatives, with up to 12.7% volume expansion for the Li-saturated compound LiC6. The charge-discharge behavior was more complex for the cathode. Here, the charge process was associated with partial lithium depletion from the initially Li-saturated compounds, leading to volume shrinkage for Li(Ni,Mn,Co)O2, in contrast to (Ni,Mn)-free LiCoO2. Electrochemical discharge experiments performed under a fast regime (2 C) at 5, 25 and 45 °C revealed that the discharge capacity followed the trend of an increased diffusion rate of Li+ ions in the electrolyte and Li atoms in both electrodes, being highest for 45 °C. At the lowest tested temperature (5 °C), a rapid drop in the discharge capacity took place using the same kinetic regime.

  12. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries.

    PubMed

    Mohanty, Debasish; Dahlberg, Kevin; King, David M; David, Lamuel A; Sefat, Athena S; Wood, David L; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-01-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. PMID:27226071

  13. Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries.

    PubMed

    Backert, Gregor; Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Lieberwirth, Ingo; Balke, Benjamin; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2016-09-15

    In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly improved performance as anode material in lithium-ion batteries (compared to unwrapped Ni@Fe2O3) as it offers a reversible capacity of 1051mAhg(-1) after 40 cycles at C/20, compared with 460mAhg(-1) for unwrapped Ni@Fe2O3. The C rate capability is also improved by the wrapping approach, as specific capacities for wrapped particles are about twice of those offered by unwrapped particles. Additionally, the benefit for the use of the advanced superparticle morphology is demonstrated by comparing wrapped Ni@Fe2O3 particles with wrapped Fe2O3 nanorice. PMID:27295319

  14. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries.

    PubMed

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-01-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn(3+) and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn(3+) and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability. PMID:26299774

  15. Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries.

    PubMed

    Huang, Gang; Zhang, Leilei; Zhang, Feifei; Wang, Limin

    2014-05-21

    Metal-organic frameworks (MOFs) with high surface areas and uniform microporous structures have shown potential application in many fields. Here we report a facial strategy to synthesize Fe2O3@NiCo2O4 porous nanocages by annealing core-shell Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 nanocubes in air. The obtained samples have been systematically characterized by XRD, SEM, TEM and N2 adsorption-desorption analysis. The results show that the Fe2O3@NiCo2O4 porous nanocages have an average diameter of 213 nm and a shell thickness of about 30 nm. As anode materials for Li-ion batteries, the Fe2O3@NiCo2O4 porous nanocages exhibit a high initial discharge capacity of 1311.4 mA h g(-1) at a current density of 100 mA g(-1) (about 0.1 C). The capacity is retained at 1079.6 mA h g(-1) after 100 cycles. The synergistic effect of the different components and the porous hollow structure contributes to the outstanding performance of the composite electrode. PMID:24730026

  16. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-08-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn3+ and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn3+ and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability.

  17. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    PubMed Central

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-01-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. PMID:27226071

  18. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries

    PubMed Central

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-01-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn3+ and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn3+ and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability. PMID:26299774

  19. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base.

    PubMed

    Monier, M; Ayad, D M; Abdel-Latif, D A

    2012-06-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base resin (CSAP) was studied in a batch adsorption system. Cu(II), Cd(II) and Ni(II) removal is pH dependent and the optimum adsorption was observed at pH 5.0. The adsorption was fast with estimated initial rate of 2.7, 2.4 and 1.4 mg/(g min) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption data could be well interpreted by the Langmuir, Freundlich and Temkin model. The maximum adsorption capacities obtained from the Langmuir model were 124±1, 84±2 and 67±2 mg g(-1) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption process could be described by pseudo-second-order kinetic model. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using EDTA and HCl solutions. PMID:22386793

  20. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/‑1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  1. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    DOE PAGESBeta

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; et al

    2016-05-26

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M=Ni, Mn, Co: NMC; M=Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cyclingmore » performance by 40% and the NCA cycling performance by 34% at 1C/₋1C with respectively 4.35V and 4.4V UCV in 2Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. Lastly, EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. In conclusion, the ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.« less

  2. Fabrication of Sn-Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle

    NASA Astrophysics Data System (ADS)

    Uysal, Mehmet; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-04-01

    Nanocrystalline Sn-Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath at different duty cycles. Surface morphology of produced Sn-Ni/MWCNT composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis (XRD) was carried out to investigate structure of Sn-Ni/MWCNT composites. The electrochemical performance of Sn-Ni/MWCNT composite electrodes were investigated by charge/discharge tests and cyclic voltammetric experiments. The cells discharge capacities were determined by cyclic testing by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The duty cycle was shown to be a crucial factor to improve Sn-Ni/MWCNT composite anodes for cyclability and reversible capacity.

  3. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  4. Spontaneous helical folding of bis(Ni-salphen) complexes in solution and in the solid state: spectroscopic tracking of the unfolding process induced by Na(+) ions.

    PubMed

    Achira, Hiroto; Ito, Muneyuki; Mutai, Toshiki; Yoshikawa, Isao; Araki, Koji; Houjou, Hirohiko

    2014-04-21

    Four kinds of bis(Ni-salphen) complexes containing a 2-methylenepropane-1,3-diyl linker were synthesised and characterised. Crystal structural analysis revealed that one of the complexes folded into a helical structure, in which two Ni atoms were at a distance of 3.2 Å from each other. NMR measurements suggested that a similar folded state was maintained in solution, and the energy barrier for refolding through an unfolded state was 47 kJ mol(-1). The folded complex also exhibited a significant bathochromic shift in its UV-Vis absorption structure. Addition of sodium ions caused unfolding of the complexes, and the corresponding spectra were attributed to a virtually isolated state. DFT calculations reproduced well the energy barrier and folding-induced bathochromic shift. PMID:24590352

  5. Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on ni foam for next-generation high-performance lithium-ion batteries.

    PubMed

    Gao, Chunhui; Zhao, Hailei; Lv, Pengpeng; Zhang, Tianhou; Xia, Qing; Wang, Jie

    2015-01-28

    Si-based electrodes for lithium ion batteries typically exhibit high specific capacity but poor cycling performance. A possible strategy to improve the cycling performance is to design a novel electrode nanostructure. Here we report the design and fabrication of Ni/Si-nanoparticles/graphite clothing hybrid electrodes with a sandwich structure. An efficient dip-coating of Si-NPs combined with carbon deposition was adopted to synthesize the unique architecture, where the Si-NPs are sandwiched between the Ni matrix and the graphite clothing. This material architecture offers many critical features that are desirable for high-performance Si-based electrodes, including efficient ion diffusion, high conductivity, and structure durability, thus ensuring the electrode with outstanding electrochemical performance (reversible capacity of 1800 mA h g(-1) at 2 A g(-1) after 500 cycles). In addition, the hybrid anode does not require any polymeric binder and conductive additives and holds great potential for application in Li-ion batteries. PMID:25561398

  6. Uranyl ion interaction at the water/NiO(100) interface: A predictive investigation by first-principles molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Sebbari, Karim; Roques, Jérôme; Domain, Christophe; Simoni, Eric

    2012-10-01

    The behavior of the UO22+ uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT + U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 Å above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d_{U{-O}_{adsorption}}= 2.39 Å. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  7. Uranyl ion interaction at the water/NiO(100) interface: A predictive investigation by first-principles molecular dynamic simulations

    SciTech Connect

    Sebbari, Karim; Roques, Jerome; Simoni, Eric; Domain, Christophe

    2012-10-28

    The behavior of the UO{sub 2}{sup 2+} uranyl ion at the water/NiO(100) interface was investigated for the first time using Born-Oppenheimer molecular dynamic simulations with the spin polarized DFT +U extension. A water/NiO(100) interface model was first optimized on a defect-free five layers slab thickness, proposed as a reliable surface model, with an explicit treatment of the solvent. Water molecules are adsorbed with a well-defined structure in a thickness of about 4 A above the surface. The first layer, adsorbed on nickel atoms, remains mainly in molecular form but can partly dissociate at 293 K. Considering low acidic conditions, a bidentate uranyl ion complex was characterized on two surface oxygen species (arising from water molecules adsorption on nickel atoms) with d{sub U-O{sub a{sub d{sub s{sub o{sub r{sub p{sub t{sub i{sub o{sub n}}}}}}}}}}}=2.39 A. This complex is stable at 293 K due to iono-covalent bonds with an estimated charge transfer of 0.58 electron from the surface to the uranyl ion.

  8. Analysis of 33 MeV Nitrogen irradiated UHMWPE

    SciTech Connect

    Grosso, Mariela del; Chappa, Veronica; Garcia Bermudez, Gerardo

    2007-10-26

    In this work, we irradiated UHMWPE with 33 MeV Nitrogen ions, at several fluences, to generate surface modifications without affecting the bulk properties. These modifications were quantified by means of wear resistance tests and Fourier transform infrared spectroscopy (FTIR) measurements. Experimental results show an optimum ion fluence value that maximizes UHMWPE wear resistance.

  9. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm 2 Cu

    NASA Astrophysics Data System (ADS)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-05-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu qi+ ions (7 ⩽ qi⩽ 24) to investigate the target thickness dependence of inner shell vacancy production processes in the symmetric collision of Cu + Cu. Doppler-shifted projectile K X-rays were discriminated from the target K X-rays, and the projectile and target K X-ray yields were separately measured as a function of target thickness. The K X-ray yields emitted from the projectile and the target Cu atoms are strongly dependent on the projectile initial charge state and target thickness for all the investigated collision systems of Cu qi+ + Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile overlineσ KV and target overlineσ ∗KV were separately derived taking into account the fluorescence yield that can be estimated from the Kα X-ray energy shift. When the values of overlineσ KV and overlineσ ∗KV are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of overlineσ ∗KV are greater than those of overlineσ KV presumably due to electron transfer of a target K electron to the projectile K vacancy. the evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed.

  10. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    NASA Astrophysics Data System (ADS)

    Tang Huang, Xin; Qing Wang, You; Wang, Qiu Liang; Chen, Qing Ming

    2000-02-01

    High critical current density and in-plane aligned YBa2 Cu3 O7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O+ ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18° and 11°, respectively. The critical current density of YBCO film is 7.9 × 105 A cm-2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K.

  11. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  12. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  13. Facile synthesis and electrochemical characterization of Sn{sub 4}Ni{sub 3}/C nanocomposites as anode materials for lithium ion batteries

    SciTech Connect

    Ma, Ruguang; Lu, Zhouguang; Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H.E.; Chung, C.Y.

    2012-12-15

    Sn{sub 4}Ni{sub 3}/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn{sub 4}Ni{sub 3}/C powders deliver an initial charge capacity of 525.2 mA h g{sup -1}, 400 mA h g{sup -1} over 10 cycles at 36 mA g{sup -1}, >300 mA h g{sup -1} after 40 cycles at 72 mA g{sup -1} and maintain 240 mA h g{sup -1} for 40 cycles at 150 mA g{sup -1}. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment. - Graphical abstract: TEM image of the annealed Sn{sub 4}Ni{sub 3}/C nanocomposites reveals that the crystallized Sn{sub 4}Ni{sub 3} nanoparticles are dispersed in the carbon layer. The synergetic effect of ductile Ni and carbon layer is beneficial to buffer the volume change of Sn during discharge/charge process, thus improving the electrochemical performance when used as anode materials for lithium ion batteries. Highlights: Black-Right-Pointing-Pointer Sn{sub 4}Ni{sub 3} nanoparticles well dispersed in carbon matrix were successfully fabricated. Black-Right-Pointing-Pointer Stable cycling property was achieved due to the synergetic effect of Ni and carbon. Black-Right-Pointing-Pointer The cycling process did not change the structure and crystallinity of the materials.

  14. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zou, Yuqin; Wang, Yong

    2011-06-01

    This paper reports a hydrothermal preparation of NiO-graphene sheet-on-sheet and nanoparticle-on-sheet nanostructures. The sheet-on-sheet nanocomposite showed highly reversible large capacities at a common current of 0.1 C and good rate capabilities. A large initial charge capacity of 1056 mAh/g was observed for the sheet-on-sheet composite at 0.1 C, which decreased by only 2.4% to 1031 mAh/g after 40 cycles of discharge and charge. This cycling performance is better than that of NiO nanosheets, graphene nanosheets, NiO-graphene nanoparticle-on-sheet, and previous carbon/carbon nanotube supported NiO composites. It is believed that the mechanical stability and electrical conductivity of NiO nanosheets are increased by graphene nanosheets (GNS), the aggregation or restacking of which to graphite platelets are, on the other hand, effectively prevented by NiO nanosheets.

  15. Evaporation Residue Yields in Reactions of Heavy Neutron-Rich Radioactive Ion Beams with 64Ni and 96Zr Targets

    SciTech Connect

    Shapira, Dan; Liang, J Felix; Gross, Carl J; Varner Jr, Robert L; Beene, James R; Stracener, Daniel W; Mueller, Paul Edward; Kolata, Jim J; Roberts, Amy; Loveland, Walter; Vinodkumar, A. M.; Prisbrey, Landon; Sprunger, Peter H; Grzywacz-Jones, Kate L; Caraley, Anne L

    2009-01-01

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  16. Evaporation residue yields in reactions of heavy neutron-rich radioactive ion beams with {sup 64}Ni and {sup 96}Zr targets

    SciTech Connect

    Shapira, D.; Liang, J. F.; Gross, C. J.; Varner, R. L.; Beene, J. R.; Stracener, D. W.; Mueller, P. E.; Kolata, J. J.; Roberts, A.; Loveland, W.; Vinodkumar, A. M.; Prisbrey, L.; Sprunger, P.; Jones, K. L.; Caraley, A. L.

    2009-03-04

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  17. Facile synthesis of a novel structured Li[Ni0.66Co0.1Mn0.24]O2 cathode material with improved cycle life and thermal stability via ion diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Yongheng; Shi, Hua; Song, Dawei; Zhang, Hongzhou; Shi, Xixi; Zhang, Lianqi

    2016-09-01

    In order to combine the advantages of core-shell and concentration-gradient Li[Ni1-xMx]O2 materials, a novel structured Li[Ni0.66Co0.1Mn0.24]O2 (NSsbnd Li[Ni0.66Co0.1Mn0.24]O2) cathode material is facilely synthesized from core-shell precursor [(Ni0.8Co0.1Mn0.1)0.6(Ni0.45Co0.1Mn0.45)0.4](OH)2 via ion diffusion during high temperature calcination. NSsbnd Li[Ni0.66Co0.1Mn0.24]O2 is constructed by core layer, concentration-gradient layer and shell layer. From the detailed comparative investigations, it is found that NSsbnd Li[Ni0.66Co0.1Mn0.24]O2 delivers remarkably improved cycle life and thermal stability compared with normal Li[Ni0.66Co0.1Mn0.24]O2 (Nsbnd Li[Ni0.66Co0.1Mn0.24]O2).

  18. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State (17)O MAS NMR Spectroscopy.

    PubMed

    Halat, David M; Dervişoğlu, Rıza; Kim, Gunwoo; Dunstan, Matthew T; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2016-09-14

    While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides. PMID:27538437

  19. Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries

    PubMed Central

    Long, Hu; Shi, Tielin; Hu, Hao; Jiang, Shulan; Xi, Shuang; Tang, Zirong

    2014-01-01

    Mesoporous NiO nanosheets were directly grown on three-dimensional (3D) carbon cloth substrate, which can be used as binder-free anode for lithium-ion batteries (LIBs). These mesoporous nanosheets were interconnected with each other and forming a network with interval voids, which give rise to large surface area and efficient buffering of the volume change. The integrated hierarchical electrode maintains all the advantageous features of directly building two-dimensional (2D) nanostructues on 3D conductive substrate, such as short diffusion length, strain relaxation and fast electron transport. As the LIB anode, it presents a high reversible capacity of 892.6 mAh g−1 after 120 cycles at a current density of 100 mA g−1 and 758.1 mAh g−1 at a high charging rate of 700 mA g−1 after 150 cycles. As demonstrated in this work, the hierarchical NiO nanosheets/carbon cloth also shows high flexibility, which can be directly used as the anode to build flexible LIBs. The introduced facile and low-cost method to prepare NiO nanosheets on flexible and conductive carbon cloth substrate is promising for the fabrication of high performance energy storage devices, especially for next-generation wearable electronic devices. PMID:25491432

  20. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  1. Relativistic Configuration Interaction calculations of the atomic properties of selected transition metal positive ions; Ni II, V II and W II

    NASA Astrophysics Data System (ADS)

    Abdalmoneam, Marwa Hefny

    -quantitative agreement with experiment for the oscillator strength and branching fractions. However the calculated lifetimes and Lande g-values are in very good agreement with the available measured quantities. We found the sums of lifetimes and the sums of Lande g-values of the nearby levels were almost independent of the calculation stage. The calculated atomic properties for Ni II, V II, and W II fill in many gaps in the available atomic data for these three ions. Also, they are expected to facilitate the fundamental understanding of electric and magnetic behaviors of most of the transition metal ions and atoms with similar electronic configurations.

  2. Ion-pair triple helicates and mesocates self-assembled from ditopic 2,2 -bipyridine-bis(urea) ligands and Ni(II) and Fe(II) sulfate salts

    SciTech Connect

    Custelcean, Radu; Bonnesen, Peter V; Roach, Benjamin D; Duncan, Nathan C

    2012-01-01

    NiSO{sub 4} and FeSO{sub 4} self-assemble with heteroditopic ligands (L) comprising 2,2{prime}-bipyridine and o-phenylene-(bis)urea cation- and anion-binding sites, respectively, into [ML{sub 3}SO{sub 4}] (M = Ni{sup 2+}, Fe{sup 2+}) triple-stranded ion-pair helicates and mesocates.

  3. Solvation and electronic spectrum of Ni 2+ ion in aqueous and ammonia solutions: A sequential Monte Carlo/TD-DFT study

    NASA Astrophysics Data System (ADS)

    Aguilar, Charles M.; De Almeida, Wagner B.; Rocha, Willian R.

    2008-11-01

    A sequential Monte Carlo/Quantum Mechanics approach was used to investigate the solvent effects on d → d transition of the Ni 2+ ion in aqueous and ammonia solutions. A set of Lennard-Jones parameters were generated by modification of the UFF Force Field. The structural results obtained for the liquid structure around the Ni 2+ ion are in very good agreement with the experimental findings. The water molecules in the second coordination shell interact strongly with the first shell, with hydrogen bonds of -14.6 ± 3.3 kcal mol -1 which is 30% stronger than in the ammonia complex. The electronic spectrum was evaluated within the TD-DFT approach on the gas phase geometry and also on the Monte Carlo generated clusters, including the long range solvent effects by means of the PCM continuum model. We show that the computed electronic transitions are all red-shifted compared with the experimental results and, the agreement with the experimental values are only qualitative.

  4. Mesoporous MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) for anode materials of lithium-ion batteries: Synthesis and electrochemical properties

    SciTech Connect

    Duan, Lianfeng; Wang, Yuanxin; Wang, Linan; Zhang, Feifei; Wang, Limin

    2015-01-15

    Highlights: • MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) are synthesized by a template-free hydrothermal method. • The mesoporous morphology is formed by self-assembly of crystal nucleus. • The mesporous MnFe{sub 2}O{sub 4} have the active phase and the synergy for Li-ion storage. - Abstract: The MFe{sub 2}O{sub 4} (M = Mn, Co, and Ni) mesoporous spheres with an average diameter of 250 nm were synthesized through a template-free hydrothermal method. The mesoporous MnFe{sub 2}O{sub 4} with a large surface area of 87.5 m{sup 2}/g and an average pore size of 27.52 nm were obtained. As the anode materials for Li-ion batteries, the mesoporous MnFe{sub 2}O{sub 4} exhibits excellent initial charge and discharge capacities of 1010 and 642.5 mA h/g. After 50 cycles, the discharge capacity could still remain at 379 mA h/g. The results showed that the active phase and the synergy between different metal oxides greatly improved the electrochemical performance, and the mesoporous composite could stabilize the structure of the electrodes.

  5. Performance Testing of Yardney MCMB-LiNiCoAlO2 Lithium-ion Cells Possessing Electrolytes with Improved Safety Characteristics

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitcanack, Larry D.; Krause, Frederick C.; Hwang, Constanza; Bugga, Ratnakumar V.; Santee, Stuart; Puglia, Frank J.; Gitzendanner, Rob

    2012-01-01

    Many future NASA missions aimed at exploring the Moon and Mars require high specific energy rechargeable batteries that possess enhanced safety characteristics. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for HEV and PHEV automotive applications. In previous work focused upon evaluating various potential flame retardant additives1, triphenyl phosphate (TPP)2 was observed to have the most desirable attributes, including good life characteristics and resilience to high voltage operation. We have employed a number of approaches in the design of promising TPP-based electrolytes with improved safety, including: (a) varying the flame retardant additive (FRA) content (from 5 to 15%), (b) the use of fluorinated co-solvents, (c) the use of additives to improve compatibility, and (c) the use of ester co-solvents to decrease the viscosity and increase the conductivity. In recent work, we have demonstrated a number of these electrolyte formulations to be compatible with a number of chemistries, including: MCMB carbon-LiNi0.8Co0.2O2, graphite-LiNi0.8Co0.15Al0.05O2, Li-Li(Li0.17Ni 0.25 Mn 0.58 )O2, Li-LiNiCoMnO2 and graphite- LiNiCoMnO2.3,4 In the current study, we have demonstrated the performance of a number of TPP-containing electrolytes in 7 Ah prototype MCMB-LiNiCoO2 cells. We will describe the results of a number of performance tests, including: a) 100% DOD cycle life testing at various temperatures, b) discharge rate characterization as a function of temperature, c) charge rate characterization as a function of temperature, and d) impedance as a function of temperature. In addition to displaying good life characteristics, being comparable to baseline chemistries, a number of cells were observed to provide good performance over a wide temperature range.

  6. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    SciTech Connect

    Wang Yue; Shi Yongfang; Chen Yubiao; Wu Liming

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  7. Enhancement of the magnetic interfacial exchange energy at a specific interface in NiFe/CoO/Co trilayer thin films via ion-beam modification

    SciTech Connect

    Cortie, D. L.; Ting, Y.-W.; Chen, P.-S.; Lin, K.-W.; Tan, X.; Klose, F.

    2014-02-21

    A series of ferromagnetic Ni{sub 80}Fe{sub 20}(55 nm)/antiferromagnetic CoO (25 to 200 nm)/ferromagnetic Co (55 nm)/SiO{sub 2}(substrate) trilayer thin films were fabricated by ion-beam assisted deposition in order to understand the role of ion beam modification on the interfacial and interlayer coupling. The microstructural study using transmission electron microscopy, X-ray reflectometry, and polarised neutron reflectometry showed that ion-beam modification during the deposition process led to an oxygen-rich Co/CoO nanocomposite interface region at the bottom layer. This interface caused a high exchange bias field for the ferromagnetic cobalt. However, the exchange bias for top permalloy ferromagnet remained low, in line with expectations from the literature for the typical interfacial energy. This suggest that the ion-beam enhancement of the magnetic exchange bias is localized to the Co/CoO interface where local microstructural effects provide the dominant mechanism.

  8. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGESBeta

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  9. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O₂: Honeycomb-ordered cathodes for Na-ion batteries

    DOE PAGESBeta

    Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; Khalifah, Peter G.; Grey, Clare P.; Zhu, Yimei

    2015-04-14

    Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni2/3Sb1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms, depending onmore » the synthesis conditions. The average structure of Na(Ni2/3Sb1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants (C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni2/3Sb1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the

  10. Selective extraction and release using (EDTA-Ni)-layered double hydroxide coupled with catalytic oxidation of 3,3',5,5'-tetramethylbenzidine for sensitive detection of copper ion.

    PubMed

    Tang, Sheng; Chang, Yuepeng; Chia, Guo Hui; Lee, Hian Kee

    2015-07-23

    Copper is an important heavy metal in various biological processes. Many methods have been developed for detecting of copper ions (Cu(2+)) in aqueous samples. However, an easy, cheap, selective and sensitive method is still desired. In this study, a selective extraction-release-catalysis approach has been developed for sensitive detection of copper ion. Ethylenediaminetetraacetic acid (EDTA) chelated with nickel ion (Ni(2+)) were intercalated in a layered double hydroxide via a co-precipitation reaction. The product was subsequently applied as sorbent in dispersive solid-phase extraction for the enrichment of Cu(2+) at pH 6. Since Cu(2+) has a stronger complex formation constant with EDTA, Ni(2+) exchanged with Cu(2+) selectively. The resulting sorbent containing Cu(2+) was transferred to catalyze the 3,3',5,5'-tetramethylbenzidine oxidation reaction, since Cu(2+) could be released by the sorbent effectively and has high catalytic ability for the reaction. Blue light emitted from the oxidation product was measured by ultraviolet-visible spectrophotometry for the determination of Cu(2+). The extraction temperature, extraction time, and catalysis time were optimized. The results showed that this method provided a low limit of detection of 10nM, a wide linear range (0.05-100μM) and good linearity (r(2)=0.9977). The optimized conditions were applied to environmental water samples. Using Cu(2+) as an example, this work provided a new and interesting approach for the convenient and efficient detection of metal cations in aqueous samples. PMID:26231895

  11. Semiclassical approach to sequential fission in peripheral heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Strazzeri, Andrea; Italiano, Antonio

    2016-05-01

    A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their "formation-to-fast fission lifetimes" are obtained.

  12. Insertion of lattice strains into ordered LiNi0.5Mn1.5O4 spinel by mechanical stress: A comparison of perfect versus imperfect structures as a cathode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio

    2016-07-01

    The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.

  13. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries.

    PubMed

    Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi

    2016-08-01

    High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. PMID:27389965

  14. Low dose irradiation creep of pure nickel. [17 or 15 MeV deuterons

    SciTech Connect

    Henager, C.H. Jr.

    1984-10-01

    A detailed climb-controlled glide model of low dose irradiation creep has been developed to rationalize irradiation creep data of pure nickel irradiated in a light ion irradiation creep apparatus. Experimental irradiation creep data were obtained to study the effects of initial microstructure and stress on low dose irradiation creep in pure nickel. Pure nickel specimens (99.992% Ni), with three different microstructures, were irradiated with 17 or 15 MeV deuterons at 473 K and stresses ranging from 0.35 to 0.9 of the unirradiated yield stress. Transmission electron microscopy revealed that the microstructure following irradiation to 0.05 dpa consisted of a high density of small dislocation loops, some small voids and network dislocations. The creep model predicted creep rates proportional to the mobile dislocation density and a comparison of experimental irradiation creep rates as a function of homologous stress revealed a dependence on initial microstructure of the magnitude predicted by the measured dislocation densities. The three microstructures that were irradiated consisted of 85% and 25% cold-worked Ni specimens and well-annealed Ni specimens. A weak stress dependence of irradiation creep was observed in 85% cold-worked Ni in agreement with experimental determinations of the stress dependence of irradiation creep by others. The weak stress dependence was shown to be a consequence of the stress independence of the dislocation climb velocity and the weak stress dependence of the barrier removal process. The irradiation creep rate was observed to be proportional to the applied stress. This linear stress dependence was suggested to be due to the stress dependence of the mobile dislocation density. 101 references, 27 figures, 11 tables.

  15. Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries.

    PubMed

    Lu, Jun; Peng, Qing; Wang, Weiyang; Nan, Caiyun; Li, Lihong; Li, Yadong

    2013-02-01

    By using a novel coating approach based on the reaction between MC(2)O(4)·xH(2)O and Ti(OC(4)H(9))(4), a series of nanoscale Li(2)TiO(3)-coated LiMO(2) nanobelts with varied Ni, Co, and Mn contents was prepared for the first time. The complete, thin Li(2)TiO(3) coating layer strongly adheres to the host material and has a 3D diffusion path for Li(+) ions. It is doped with Ni(2+) and Co(3+) ions in addition to Ti(4+) in LiMO(2), both of which were found to favor Li(+)-ion transfer at the interface. As a result, the coated nanobelts show improved rate, cycling, and thermal capabilities when used as the cathode for Li-ion battery. PMID:23301844

  16. Frustrated Ising chains on the triangular lattice in Sr3NiIrO6

    NASA Astrophysics Data System (ADS)

    Toth, S.; Wu, W.; Adroja, D. T.; Rayaprol, S.; Sampathkumaran, E. V.

    2016-05-01

    Inelastic neutron scattering study on the spin-chain compound Sr3NiIrO6 reveals gapped quasi-1D magnetic excitations. The observed one-magnon band between 29.5 and 39 meV consists of magnon modes of the Ni2 + ions. The fitting of the spin wave spectrum reveals strongly coupled Ising-like chains along the c axis that are weakly coupled into a frustrated triangular lattice in the a b plane. The magnetic excitations survive up to 200 K well above the magnetic ordering temperature of TN˜75 K, also indicating a quasi-1D nature of the magnetic interactions in Sr3NiIrO6 . Our microscopic model is in agreement with ab initio electronic structure calculations and explains the giant spin-flip field observed in bulk magnetization measurements.

  17. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  18. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2016-02-14

    Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process. PMID:26796603

  19. CEMS and SEM studies of the ion-beam mixed Ni-Sn and Al-Sn systems

    NASA Astrophysics Data System (ADS)

    Czako-Nagy, I.; Fedrizzi, L.; Gratton, L. M.; Principi, G.; Vertes, A.

    1986-02-01

    Metallic119Sn was vapour deposited on Al and Ni substrates to form layers about 40nm thick and subsequently irradiated with 100keV Xe+ at fluences 1, 5 and 10·1015 Xe+/cm2. Irradiation with 100keV N+ at 5·1016N+/cm2 fluence was also accomplished on an Al sample on which a layer of 100nm119Sn was previously electrodeposited. Surface evolution of the deposited layers due to irradiation has been observed by SEM and loss of Tin due to sputtering has been evidenced by EDX microanalysis. Changes of chemical structure at the irradiated surfaces have been followed by CEMS: β-Sn, SnO, SnAl2O4, SnO2 and SnAl2O5 or β-Sn, dissolved Tin in Nickel, SnO2, Ni3Sn and Ni3Sn2 phases were recognized on the surface of Aluminium and Nickel substrates respectively.

  20. Effect of Ni(II) substitution on phase stabilization electrical properties of BICo(III)VOX.20 oxide-ion conductor

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Al-Areqi, Niyazi A. S.; Ghaleb, Kh. A. S.; Al-Alas, Ahlam; Hafeez, Shehla

    2014-05-01

    The BICO0.20-xNIxVOX solid electrolyte was synthesized by the standard solid-state reaction. The effect of Ni(II) substitution for Co(III) on phase stabilization and oxide-ion performance has been investigated in the compositional range 0 ≤ x ≤ 0.20 using X-ray powder diffraction, differential thermal analysis and AC impedance spectroscopy. The highly conductive γ‧-phase was effectively stabilized at room temperature for compositions with x ≥ 0.13 whose thermal stability increases with Ni content. The complex plane plots of impedance were typically represented at temperatures below 380 °C, suggesting a major contribution of polycrystalline grains to the overall electrical conductivity. The dielectric permittivity measurements revealed the fact that suppression of the ferroelectric transition is compositionally dependent. Interestingly, the maximum ionic conductivity at lower temperatures (~2.56 × 10-4 Scm-1 at 300 °C) was observed for the composition with x = 0.13. The variation of low-temperature conductivity with Ni content was accompanied with a general drop in the corresponding values of ΔELT. However, the local minimum high-temperature conductivity, σ600 °C ~ 2.26 × 10-2 Scm-1 for x = 0.10, coupled with a local maximum value of ΔEHT ~ 0.48 eV was attributed to an increased defect trapping effect correlated with the V(V) → V(IV) reduction at elevated temperatures.

  1. Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery.

    PubMed

    Wu, Zhongzhen; Ji, Shunping; Hu, Zongxiang; Zheng, Jiaxin; Xiao, Shu; Lin, Yuan; Xu, Kang; Amine, Khalil; Pan, Feng

    2016-06-22

    Transition metal oxide materials Li(NixMnyCoz)O2 (NMCxyz) based on layered structure are potential cathode candidates for automotive Li-ion batteries because of their high specific capacities and operating potentials. However, the actual usable capacity, cycling stability, and first-cycle Coulombic efficiency remain far from practical. Previously, we reported a combined strategy consisting of depolarization with embedded carbon nanotube (CNT) and activation through pre-lithiation of the NMC host, which significantly improved the reversible capacity and cycling stability of NMC532-based material. In the present work we attempt to understand how pre-lithiation leads to these improvements on an atomic level with experimental investigation and ab initio calculations. By lithiating a series of NMC materials with varying chemical compositions prepared via a conventional approach, we identified the Ni in the NMC lattice as the component responsible for accommodating a double-layered Li structure. Specifically, much better improvements in the cycling stability and capacity can be achieved with the NMC lattices populated with Ni(3+) than those populated with only Ni(2+). Using the XRD we also found that the emergence of a double-layer Li structure is not only reversible during the pre-lithiation and the following delithiation, but also stable against elevated temperatures up to 320 °C. These new findings regarding the mechanism of pre-lithiation as well as how it affects the reversibility and stability of NMC-based cathode materials prepared by the conventional slurry approach will promote the possibility of their application in the future battery industry. PMID:27237226

  2. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  3. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  4. Observation of Electron Cloud Stabilized 1 MeV Beam-Beam d+d Reactons in Self-Colliding Orbits and Feasibility of Electric Isotope Breeder

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Druey, Christian; Iyengar, P. K.; Srinivasan, Mahadeva

    2012-03-01

    D-D Self-Collider ^1,2 is only system in which beam-beam nuclear reactions demonstrated MeV energies. 1.45 MeV DC beam of D2^+ was injected into center of a weak-focusing magnetic field (Ni Ti) B=3.12 Tesla, and dissociated into 2 d^+ stored in Self-Colliding Orbits^3. Energy confinement time T = 23 s (vacuum limited p=10-9 torr), stabilized by driven electron oscillations^4. A simulation^5 shows that 1 DD neutron is produced at an energy cost of 5.36 MeV/n i.e. 140 MWh/g= 8,360/g vs. 160,000/g from beam - target. Simultaneously produced He^3 and T are not only free, but bring 45 fold gain. 5 d's of 0.75 MeV generate 1He^3 +1T +1p+ 1n at cost 5.36 MeV. Hence, it will produce 2 He^3 nuclei (1 He-3, 1 T) plus energy gain of 161 MeV. This will be reduced by the energy gain thus reducing cost to 4.5 from 5.6 MeV. Assumed ion density 5x10 ^14 was achieved in plasmas. Beam injection 100 mA. 1. PRL 54, 796 (1985) NIM A 271 p,.1-167; 2. AIP CP 311, 292 (93); 3. PRL 70, 1818 (93); 4.Part. Acc.1, (70); 5. ``50 Years with Fission'' Symp.Nat. Ac Sci., p. 761 (89)

  5. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Woo; Kim, Hyungsub; Kim, Myeong-Seong; Youn, Hee-Chang; Kang, Kisuk; Cho, Byung-Won; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-05-01

    A citric acid assisted sol-gel method is employed for synthesizing LiNi0.6Co0.2Mn0.2O2 for use as a cathode material in lithium-ion batteries. The effects of heat-treatment temperature and oxygen atmosphere on the structural and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 are investigated, in order to determine optimal conditions for the synthesis of LiNi0.6Co0.2Mn0.2O2 via the citric acid assisted sol-gel method. In particular, the presence of oxygen in the atmosphere effectively leads to a decrease in the degree of cation mixing and the formation of LiOH and Li2CO3 on the surface of LiNi0.6Co0.2Mn0.2O2. Furthermore, heat-treatment in an oxygen atmosphere improves the uniformity of oxidation state of Ni ions between the surface and bulk. LiNi0.6Co0.2Mn0.2O2 synthesized by heat-treatment at 850 °C under an oxygen atmosphere shows a discharge capacity of 174 mA h g-1 and 89% capacity retention after 100 cycles. In addition, it shows high rate capability (i.e., 41% capacity retention at 10 C), which is an improved rate performance over a previous report. The results of this study should provide useful information for the synthesis of Ni-rich layered oxides for lithium ion batteries.

  6. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect

    Lee, Sanghun Park, Sung Soo

    2013-08-15

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The core–shell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: • Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. • The unit-cell parameters from experimental studies are reproduced by the core–shell model. • Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. • It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  7. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe

  8. Effect of using stencil masks made by focused ion beam milling on permalloy (Ni81Fe19) nanostructures.

    PubMed

    Bates, J R; Miyahara, Y; Burgess, J A J; Iglesias-Freire, O; Grütter, P

    2013-03-22

    Focused ion beam (FIB) milling is a common fabrication technique to make nanostencil masks which has the unintended consequence of gallium ion implantation surrounding milled features in silicon nitride membranes. We observe major changes in film structure, chemical composition, and magnetic behaviour of permalloy nanostructures deposited by electron beam evaporation using silicon nitride stencil masks made by a FIB as compared to stencil masks made by regular lithography techniques. We characterize the stenciled structures and both types of masks using transmission electron microscopy, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy, magnetic force microscopy and kelvin probe force microscopy. All these techniques demonstrate distinct differences at a length scale of a 1-100 nm for the structures made using stencil mask fabricated using a FIB. The origin of these differences seems to be related to the presence of implanted ions, a detailed understanding of the mechanism however remains to be developed. PMID:23449320

  9. Capacity fade of LiNi(1-x-y)CoxAlyO2 cathode for lithium-ion batteries during accelerated calendar and cycle life test. I. Comparison analysis between LiNi(1-x-y)CoxAlyO2 and LiCoO2 cathodes in cylindrical lithium-ion cells during long term storage test

    NASA Astrophysics Data System (ADS)

    Watanabe, Shoichiro; Kinoshita, Masahiro; Nakura, Kensuke

    2014-02-01

    Ni-based LiNi(1-x-y)CoxAlyO2 (NCA) and LiCoO2 (LCO) cathode materials taken out of lithium-ion cells after storage for 2 years at 45 °C were analyzed by various spectroscopic techniques. X-ray photoelectron spectroscopy exhibited that there was no difference between NCA and LCO. On the other hand, scanning transmission electron microscopy-electron energy-loss spectroscopy demonstrated there was a remarkably large difference between the two cathode materials. Ni-L2,3 energy-loss near-edge structure (ELNES) spectra of the NCA showed a peak at about 856.5 eV, which was assigned to trivalent nickel, was maintained even after storage, indicating that the NCA had no significant change in its surface structure during storage. On the other hand, in the Co-L2,3 ELNES spectra of the LCO a peak at about 782.5 eV, which was assigned to trivalent cobalt, significantly shifted to the lower energies after storage. These results suggest that crystal structure change of the active material surface is a predominant reason of deterioration during the storage test.

  10. Facile synthesis and electrochemical characterization of Sn4Ni3/C nanocomposites as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Ruguang; Lu, Zhouguang; Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H. E.; Chung, C. Y.

    2012-12-01

    Sn4Ni3/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn4Ni3/C powders deliver an initial charge capacity of 525.2 mA h g-1, 400 mA h g-1 over 10 cycles at 36 mA g-1, >300 mA h g-1 after 40 cycles at 72 mA g-1 and maintain 240 mA h g-1 for 40 cycles at 150 mA g-1. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment.

  11. Integrating 3D Flower-Like Hierarchical Cu2NiSnS4 with Reduced Graphene Oxide as Advanced Anode Materials for Na-Ion Batteries.

    PubMed

    Yuan, Shuang; Wang, Sai; Li, Lin; Zhu, Yun-hai; Zhang, Xin-bo; Yan, Jun-min

    2016-04-13

    Development of an anode material with high performance and low cost is crucial for implementation of next-generation Na-ion batteries (NIBs) electrode, which is proposed to meet the challenges of large scale renewable energy storage. Metal chalcogenides are considered as promising anode materials for NIBs due to their high theoretical capacity, low cost, and abundant sources. Unfortunately, their practical application in NIBs is still hindered because of low conductivity and morphological collapse caused by their volume expansion and shrinkage during Na(+) intercalation/deintercalation. To solve the daunting challenges, herein, we fabricated novel three-dimensional (3D) Cu2NiSnS4 nanoflowers (CNTSNs) as a proof-of-concept experiment using a facile and low-cost method. Furthermore, homogeneous integration with reduced graphene oxide nanosheets (RGNs) endows intrinsically insulated CNTSNs with superior electrochemical performances, including high specific capacity (up to 837 mAh g(-1)), good rate capability, and long cycling stability, which could be attributed to the unique 3D hierarchical structure providing fast ion diffusion pathway and high contact area at the electrode/electrolyte interface. PMID:26986821

  12. Metal ion release and surface composition of the Cu 18Ni 20Zn nickel silver during 30 days immersion in artificial sweat

    NASA Astrophysics Data System (ADS)

    Milošev, Ingrid; Kosec, Tadeja

    2007-11-01

    In order to study nickel ion release associated with nickel allergy, Cu-18Ni-20Zn nickel-silver alloy was immersed in artificial sweat and Ringer physiological solution for 30 days. Dissolution of metal ions was measured as a function of time, and the characteristics of the solid surface layer formed after 30 days were studied by SEM/EDS and XPS. The dissolution of nickel prevails over dissolution of copper and zinc. Nickel release in artificial sweat is approximately 10 times higher than in Ringer physiological solution and in both solutions the nickel release exceeds 0.5 μg cm -2 week -1, the threshold above which the allergy is triggered. Evidence of selective nickel dissolution is reported. The composition of the surface layer formed in artificial sweat and in Ringer physiological solution differs in the content of nickel and chlorine. In artificial sweat, the major constituents of the surface layer are dominantly oxides, Cu 2O and ZnO, with traces of chlorine. In Ringer physiological solution, the composition of the surface layer changes to a mixture of oxides, chlorides and/or oxychlorides. Two components peaks were detected in the Cl 2p 3/2 peak; however, it was not possible to distinguish the exact nature of the chloride compound formed. The mechanism of nickel release is discussed as a function of the composition of the solution.

  13. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  14. Energy levels, transition rates, oscillator strengths and lifetimes in Ne-like, Ni-like, and Cu-like uranium ions

    NASA Astrophysics Data System (ADS)

    Bari, M. A.; Nazir, R. T.; Nasim, M. H.; Duan, B.; Azeem, M.; Shabbir Naz, G.; Salahuddin, M.

    2015-01-01

    We present the fine-structure energy levels, wavelengths, oscillator strengths, transition energies, and transition rates of optically allowed inner-shell transitions of Ne-, Ni-, and Cu-like uranium ions by using the multiconfiguration Dirac-Fock method with the fully relativistic GRASP2 code (partly improved by us). In order to compare these results, we have performed other independent calculations with a fully relativistic Flexible Atomic Code (FAC). We have determined extensive configuration interaction wavefunctions to calculate the level energies of the inner-shell excited states of these three uranium ionic states. Overall, our calculated energy levels, wavelengths, transition rates, and oscillator strengths within the levels of selected configurations show better agreement with the available experimental and other theoretical results. Furthermore, we report radiative lifetimes of all the excited states of these three uranium ions. We also present many unpublished data about energy values, wavelengths, transitions rates, and oscillator strengths for inner-shell transitions. We believe that our calculated inner shell transition energies are of interest for the analysis of uranium x-ray spectra.

  15. Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM - Co or Ni78Fe22

    NASA Astrophysics Data System (ADS)

    Stognij, Alexander; Novitskii, Nikolai; Sazanovich, Andrei; Poddubnaya, Nadezhda; Sharko, Sergei; Mikhailov, Vladimir; Nizhankovski, Viktor; Dyakonov, Vladimir; Szymczak, Henryk

    2013-08-01

    Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2-3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

  16. Magnetic interactions, weak ferromagnetism, and field-induced transitions in Nd2NiO4

    NASA Astrophysics Data System (ADS)

    Batlle, X.; Obradors, X.; Martnez, B.

    1992-02-01

    The magnetic properties of stoichiometric Nd2NiO4 have been investigated by means of dc- and ac-magnetic-susceptibility and isothermal-magnetization measurements. Five different magnetic phase transitions have been identified and characterized. A collinear antiferromagnetic ordering of Ni2+ magnetic moments exists between TN1~=320 K and Tc1~=130 K (gx mode) where an orthorhombic-to-tetragonal (Bmab to P42/ncm) structural phase transition occurs. In this temperature range, the Nd3+ ions behave as a paramagnet being polarized by the effect of an internal magnetic field associated with the Ni-Nd antiferromagnetic superexchange interaction. A weak ferromagnetic component appears below 130 K, which is consistent with the gxcyfz and gx+cyfz magnetic modes for Ni2+ proposed from a neutron-powder-diffraction experiment. An additional out-of-plane component of the internal magnetic field on the Nd3+ ions develops with this structural phase transition and strongly polarizes these ions. Two additional transitions are observed at Tc2~=68 K (very prominent) and Tc3~=45 K (very smooth), which are characterized by a sudden increase in the internal magnetic field acting on the Nd ions. This internal magnetic field is evaluated and an antiparallel ordering between the Ni and Nd weak ferromagnetic spin components is inferred. A field-induced transition has been identified. A peak on both the differential susceptibility and the real part of the ac susceptibility at TN2~=11 K marks a long-range antiferromagnetic ordering of the Nd3+ ions. The out-of-plane component of the Ni2+ magnetic moments is attributed to the antisymmetric interaction DNi-Ni, which turns out to be quite important (DNi-Ni~=-16.0 meV) as compared to La2NiO4 and La2CuO4, probably because of a greater tilting angle of the octahedra. Finally, the magnetocrystalline anisotropy associated with Nd ions is found to be high below 20 K.

  17. Evolution Of Lattice Structure And Chemical Composition Of The Surface Reconstruction Layer In Li1.2Ni0.2Mn0.6O2 Cathode Material For Lithium Ion Batteries

    SciTech Connect

    Yan, Pengfei; Nie, Anmin; Zheng, Jianming; Zhou, Yungang; Lu, Dongping; Zhang, Xiaofeng; Xu, Rui; Belharouak, Ilias; Zu, Xiaotao; Xiao, Jie; Amine, Khalil; Liu, Jun; Gao, Fei; Shahbazian-Yassar, Reza; Zhang, Jiguang; Wang, Chong M.

    2015-01-14

    Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.

  18. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na 0.8 Ni 0.4 Ti 0.6 O 2

    SciTech Connect

    Guo, Shaohua; Yu, Haijun; Liu, Pan; Ren, Yang; Zhang, Tao; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2015-01-01

    Based on low-cost and rich resources, sodium-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in the large-scale energy applications of renewable energy and smart grids. However, there are some critical drawbacks limiting its application, such as safety and stability problems. In this work, a stable symmetric sodium-ion battery based on the bipolar, active O3-type material, Na0.8Ni0.4Ti0.6O2, is developed. This bipolar material shows a typical O3-type layered structure, containing two electrochemically active transition metals with redox couples of Ni4+/Ni2+ and Ti4+/Ti3+, respectively. This Na0.8Ni0.4Ti0.6O2-based symmetric cell exhibits a high average voltage of 2.8 V, a reversible discharge capacity of 85 mA h g(-1), 75% capacity retention after 150 cycles and good rate capability. This full symmetric cell will greatly contribute to the development of room-temperature sodium-ion batteries with a view towards safety, low cost and long life, and it will stimulate further research on symmetric cells using the same active materials as both cathode and anode.

  19. Photosensitivity and imaging characteristics of ion-implanted PLZT ceramics

    SciTech Connect

    Land, C.E.

    1985-01-01

    We reported in previous papers that both the near-uv and the visible photosensitivities of ferroelectric-phase PLZT (lead lanthanum zirconate titanate) ceramics are increased by as much as four orders of magnitude by ion implantation or a combination of thermal diffusion of Al and ion implantation. New results are presented here on high-energy (1 MeV) implants of Al and Ni and coimplants of Al + Ne and Ni + Ne, and these results are compared with earlier 500 keV implants of Al and Cr and coimplants of Al + Ne and Cr + Ne as surface modification techniques for increasing the visible photosensitivity of PLZT. The important role of grain size in determining optimum contrast and resolution of stored optical information is described in terms of new experimental results.

  20. Applications of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.