Science.gov

Sample records for mev proton inelastic

  1. Proton-nucleus total inelastic cross sections - An empirical formula for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1983-01-01

    An empirical formula for the total inelastic cross section of protons on nuclei with charge greater than 1 is presented. The formula is valid with a varying degree of accuracy down to proton energies of 10 MeV. At high energies (equal to or greater than 2 GeV) the formula reproduces experimental data to within reported errors (about 2%).

  2. Study of 180 Mev Proton Inelastic Scattering from SILICON-28 and SILICON-30.

    NASA Astrophysics Data System (ADS)

    Chen, Quan

    This thesis reports the measurement of cross section and analyzing power angular distribution of elastic and inelastic scattering of 180 MeV proton for ^ {28}Si and ^{30} Si. Measurements were carried out using the proton beam available at the Indiana University Cyclotron Facility. The scattered protons were detected using the QDDM magnetic spectrometer. The DWIA framework, in which most inelastic proton scattering observables are analyzed, has three ingredients, (1) NN-effective interaction, (2) transition density, and (3) distorted waves. The procedure used here to obtain effective NN-interaction empirically is that first suggested by J. J. Kelly. It models effective NN-interaction guided by the nuclear matter theory(G-matrix) and employs the local density approximation(LDA). By using the transitions, for which transition densities are known, it fits the inelastic observable to determine the parameters used to model the momentum transfer(q) and density(k_{F }) dependence of the effective interaction (here reference to as empirical interaction). The distorted waves are calculated in a self-consistent manner from the model empirical interaction. The salient results are: (1) It is observed that, although the data base was increased by combining the ^{16}O observable with those of ^{28}Si, it still was not large enough to determine all the parameters without ambiguity in terms of which the effective NN-interaction was modeled. (2) The model prediction of cross section and analyzing power in terms of DWIA, using both the Paris -g and empirical interaction, with the observed are compared. It is clear that the results and the technique used to obtain effective NN-interaction shows that there is substantial potential to gain both qualitative and quantitative insight into how the interaction between two nucleons is modified within the nuclear medium. In particular, at low-q effective interaction is reduced and at high-q repulsion is enhanced compared to free interaction

  3. Elastic and inelastic scattering of polarized protons from carbon-12 at 400, 600, and 700 MeV

    SciTech Connect

    Jones, K.W.

    1984-04-01

    Good resolution cross section and analyzing power (p vector, p') data for many states in /sup 12/C up to an excitation energy of 21 MeV and spanning a momentum transfer range of 0.3 to 2.1 fm/sup -1/ were obtained using the High Resolution Spectrometer at the Clinton P. Anderson Meson Physics Facility at incident beam energies of 398, 597, and 698 MeV. Optical model potentials were obtained from the elastic scattering data. Inelastic data were analyzed in the Distorted Wave Impulse Approximation using the Love-Franey effective nucleon-nucleon interaction. The energy dependent isoscalar natural parity cross sections were underestimated, while phase difficulties were encountered in fitting analyzing powers. The energy independent isovector natural parity cross sections were reasonably reproduced, but analyzing powers were not, the calculations yielding positive trends whereas the data are of opposite sign. The energy independent isoscalar and isovector unnatural parity cross sections were quite well reproduced up to moderate momentum transfers, and striking successes were observed for some analyzing power data. Systematics of energy dependence together with the results of the DWIA calculations permitted the assignment of spin, parity and isospin quantum numbers to states in the 18-21 MeV excitation region. 64 references.

  4. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments Database

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  5. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  6. Shielding measurements for 230-Mev protons

    SciTech Connect

    Siebers, J.V.; DeLuca, P.M. Jr.; Pearson, D.W. . Dept. of Medical Physics); Coutrakon, G. . Medical Center)

    1993-09-01

    Energetic neutrons, produced as protons interact with matter, dominate the radiation shielding environment for proton accelerators. Because of the scarcity of data describing the shielding required to protect personnel from these neutrons, absorbed dose and dose-equivalent values are measured as a function of depth in a thick concrete shield at neutron emission angles of 0, 22, 45, and 90 deg for 230-MeV protons incident upon stopping-length aluminum, iron, and lead targets. Neutron attenuation lengths vary sharply with angle but are independent of the target material. Comparing results with prior shielding calculations, the High-Energy Transport Code overestimates neutron production and attenuation lengths in the forward direction. Analytical methods compare favorably in the forward direction but overestimate the production and attenuation lengths at large angles. The results presented are useful for determining the shielding requirements for proton radiotherapy facilities and as a benchmark for future calculations.

  7. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W.

    2015-10-01

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction.

  8. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy.

    PubMed

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W

    2015-10-01

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction. PMID:26389549

  9. Parity Violation in Proton-Proton Scattering at 47 Mev.

    NASA Astrophysics Data System (ADS)

    Tanner, Danelle Mary

    A measurement of parity-violation in proton-proton scattering at 47 MeV has been completed by observing the longitudinal analyzing power. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where (sigma)('+)((sigma)('-)) is the scattering cross section for positive (negative) helicity. Polarized protons from an atomic beam ion source were accelerated by the 224-cm Texas A&M University cyclotron to an energy of 50 MeV, producing a vertically polarized beam. A superconducting solenoid magnet precessed the beam polarization into the horizontal plane after which a 47.6(DEGREES) bending magnet precessed the polarization into the longtitudinal direction (p(,z) = 0.69 (+OR-) 0.02). RF transitions reversed the polarization direction every 21 msec. Protons scattered from the high pressure ((DBLTURN)37 atm), 42-cm long H(,2) gas target were detected by four plastic scintillators located in the target chamber. Photomultiplier tubes amplified the light from the scintillators, providing a signal proportional to the scattered beam intensity. A lock-in amplifier (LIA) synchronized to the spin-flip frequency compared the scattered intensity to the total beam intensity, measured with a Faraday cup. The output of the LIA was integrated for one second and then read by an ADC. Polarimeters were used to monitor both beam intensity and polarization profiles. A series of tests were performed to determine the role of spurious asymmetries due to changes in beam position and angle, and due to beam intensity modulations correlated with the spin reversal. The result after correction for beam intensity modulation was A(,z) = -(4.6 (+OR-) 2.6) x 10('-7). A more conservative result, taking into account all of the possible spurious asymmetries was A(,z) = -(4.6 (+OR-) 4.2) x 10('-7).

  10. Measurement of high energy resolution inelastic proton scattering at and close to zero degrees

    NASA Astrophysics Data System (ADS)

    Tamii, A.; Fujita, Y.; Matsubara, H.; Adachi, T.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.; Hashimoto, H.; Hatanaka, K.; Itahashi, T.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Ninomiya, S.; Perez-Cerdan, A. B.; Popescu, L.; Rubio, B.; Saito, T.; Sakaguchi, H.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Shimizu, Y.; Smit, F. D.; Tameshige, Y.; Yosoi, M.; Zenhiro, J.

    2009-07-01

    Measurements of inelastic proton scattering with high energy resolution at forward scattering angles including 0∘ are described. High-resolution halo-free beams were accelerated by the cyclotron complex at the Research Center for Nuclear Physics. Instrumental background events were minimized using the high-quality beam. The remaining instrumental background events were eliminated by applying a background subtraction method. As a result, clean spectra were obtained even for a heavy target nucleus such as Pb208. A high energy resolution of 20 keV (FWHM) and a scattering angle resolution of ±0.6∘ were achieved at an incident proton energy of 295 MeV.

  11. A P + DEUTERON PROTON POLARIMETER AT 200 MEV.

    SciTech Connect

    HUANG,H.; ROSER,T.; ZELENSKI,A.; KURITA,K.; STEPHENSON,E.; TOOLE,R.

    2002-06-02

    There has been concern about the analyzing power of the p-Carbon polarimeter at the end of 200 MeV LINAC of BNL. A new polarimeter based on proton-deuteron scattering was installed and we have repeated the calibration of proton-Carbon scattering at 12 degrees and 200 MeV against proton-deuteron scattering. The result is consistent with the value of A=0.62 now used to measure the beam polarization at the end of the LINAC.

  12. Study of M1 and E1 excitations by high-resolution proton inelastic scattering measurement at forward angles

    SciTech Connect

    Tamii, A.; Adachi, T.; Hatanaka, K.; Hashimoto, H.; Kaneda, T.; Matsubara, H.; Okamura, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, Y.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Sasamoto, Y.; Neumann-Cosel, P. von

    2007-06-13

    Experimental technique for measuring proton inelastic scattering with high-resolution at 295 MeV and at forward angles including zero degrees is described. The method is useful for extracting spin part of the M1 strength via nuclear excitation as well as E1 strength via Coulomb excitation. An excitation energy resolution of 20 keV, good scattering angle resolution, and low background condition have been achieved. The experimental technique was applied for several sd and pf shell nuclei.

  13. Neutron transition densities for 48Ca from proton scattering at 200 and 318 MeV

    NASA Astrophysics Data System (ADS)

    Feldman, A. E.; Kelly, J. J.; Flanders, B. S.; Khandaker, M. A.; Seifert, H.; Boberg, P.; Hyman, S. D.; Karen, P. H.; Norum, B. E.; Welch, P.; Chen, Q.; Bacher, A. D.; Berg, G. P.; Stephenson, E. J.; Nanda, S.; Saha, A.; Scott, A.

    1994-04-01

    Differential cross sections and analyzing powers for scattering of 200 and 318 MeV protons have been measured for states of 48Ca up to 7 MeV of excitation. The data cover c.m. momentum transfers from approximately 0.4 to 3.0 fm-1. Neutron transition densities were extracted for the 2+1,3-1,3-2,4+2, and 5-1 states using density-dependent empirical effective interactions previously calibrated upon elastic and inelastic scattering data for 16O and 40Ca. The corresponding proton transition densities were obtained from electron scattering data and held fixed during the analysis. Fits performed to the data for either energy provide excellent predictions for the other. Neutron densities fitted to data for either energy independently agree very well with each other and with the densities fitted to both data sets simultaneously. These densities are also consistent with earlier data for 500 MeV protons. The energy-independence of the extracted transition densities demonstrates that residual errors in the reaction model are compatible with the error bands estimated by the fitting procedure. Several additional tests of the model dependence of the results were performed also. The proton and neutron transition densities are compared with calculations based upon the extended random phase approximation, which includes 2p2h correlations. These calculations are most successful for densities dominated by 1p1h configurations, whereas densities requiring substantial 2p2h contributions tend to be underestimated.

  14. Magnifying lens for 800 MeV proton radiography

    SciTech Connect

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-10-15

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  15. Elastic and inelastic scattering of 15N ions by 9Be at 84 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Chercas, K. A.; Kemper, K. W.; Rusek, K.; Rudchik, A. A.; Herashchenko, O. V.; Koshchy, E. I.; Pirnak, Val. M.; Piasecki, E.; Trzcińska, A.; Sakuta, S. B.; Siudak, R.; Strojek, I.; Stolarz, A.; Ilyin, A. P.; Ponkratenko, O. A.; Stepanenko, Yu. M.; Shyrma, Yu. O.; Szczurek, A.; Uleshchenko, V. V.

    2016-03-01

    Angular distributions of the 9Be + 15N elastic and inelastic scattering were measured at Elab(15N) = 84 MeV (Ec.m. = 31.5 MeV) for the 0-6.76 MeV states of 9Be and 0-6.32 MeV states of 15N. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 9Be in ground and excited states and 15N in excited states as well as the most important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of the 9Be + 15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the 9Be + 15N pure potential elastic scattering dominates at the forward angles whereas the ground state spin reorientation of 9Be gives a major contribution to the elastic scattering cross sections at the large angles. Contributions from particle transfers are found to be negligible for the present scattering system.

  16. Measurement of the Wolfenstein parameters for proton-proton and proton-neutron scattering at 500 MeV

    SciTech Connect

    Marshall, J.A.

    1984-07-01

    Using liquid hydrogen and liquid deuterium targets respectively, forward angle (ten degrees to sixty degrees in the center of Mass) free proton-proton and quasielastic proton-proton and proton-neutron triple scattering data at 500 MeV have been obtained using the high resolution spectrometer at the Los Alamos Meson Physics Facility. The data are in reasonable agreement with recent predictions from phase shift analyses, indicating that the proton-nucleon scattering amplitudes are fairly well determined at 500 MeV. 32 references.

  17. Inelastic proton scattering of Sn isotopes studied with GRETINA

    NASA Astrophysics Data System (ADS)

    Campbell, Christopher

    2014-03-01

    The chain of semi-magic Sn nuclei, with many stable isotopes, has been a fertile ground for experimental and theoretical studies. Encompassing a major neutron shell from N = 50 to 82, the properties and structure of these nuclei provided important data for the development of the pairing-plus-quadrupole model. Recent experimental information on B(E2) for 106,108,110,112Sn came as a surprise as it indicated a larger collectivity than the predicted parabolic trend of quadrupole collectivity. These data, instead, show an unexpectedly flat trend even as the number of valence particles is reduced from 12 to 6. To fully understand how collectivity is evolving in these isotopes, 108,110,112Sn have been studied using thick-target, inelastic proton scattering with GRETINA tagging inelastic scattering events by detecting gamma-rays from the prompt decay of states excited in the reaction. We will present the trend of 2 + excitation cross-sections, the deduced quadrupole deformation parameters, and observations of other low-lying collective states. Comparison of these (p,p') quadrupole deformation parameters with B(E2) data will provide new insights into the relative importance of proton and neutron contributions to collectivity in these nuclei. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

  18. Proton Polarimeter Calibration between 82 and 217 MeV

    SciTech Connect

    Glister, J; Lee, B; Beck, A; Brash, E; Camsonne, A; Choi, S; Dumas, J; Feuerbach, R; Gilman, R; Higinbotham, D W; Jiang, X; Jones, M K; May-Tal Beck, S; McCullough, E; Paolone, M; Piasetzky, E; Roche, J; Rousseau, Y; Sarty, A J; Sawatzky, B; Strauch, S

    2009-07-01

    The proton analyzing power in carbon has been measured for energies of 82 to 217 MeV and proton scattering angles of 5 to 41 degrees. The measurements were carried out using polarized protons from the elastic scattering H(pol. e, pol. p) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies.

  19. MeV proton flux predictions near Saturn's D ring

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Cooper, J. F.; Mitchell, D. G.; Krupp, N.; Paranicas, C.

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  20. Shielding measurements for a 230 MeV proton beam

    SciTech Connect

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  1. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    SciTech Connect

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV.

  2. Predicting solar energetic proton events (E > 10 MeV)

    NASA Astrophysics Data System (ADS)

    NúñEz, Marlon

    2011-07-01

    A high level of proton radiation exposure can be dangerous to astronauts, satellite equipment, and air passengers/crew flying along polar routes. The presented solar energetic proton (SEP) event forecaster is based on a dual-model approach for predicting the time interval within which the integral proton flux is expected to meet or surpass the Space Weather Prediction Center threshold of J (E > 10 MeV) = 10 pr cm-2 sr-1 s-1 and the intensity of the first hours of well- and poorly connected SEP events. This forecaster analyzes flare and near-Earth space environment data (soft X-ray, differential and integral proton fluxes). The purpose of the first model is to identify precursors of well-connected events by empirically estimating the magnetic connectivity from the associated CME/flare process zone to the near-Earth environment and identifying the flare temporally associated with the phenomenon. The goal of the second model is to identify precursors of poorly connected events by using a regression model that checks whether the differential proton flux behavior is similar to that in the beginning phases of previous historically poorly connected SEP events and thus deduce similar consequences. An additional module applies a higher-level analysis for inferring additional information about the situation by filtering out inconsistent preliminary forecasts and estimating the intensity of the first hours of the predicted SEP events. The high-level module periodically retrieves solar data and, in the case of well-connected events, automatically identifies the associated flare and active region. For the events of solar cycles 22 and 23 of the NOAA/SWPC SEP list, the presented dual-model system, called UMASEP, has a probability of detection of all well- and poorly connected events of 80.72% (134/166) and a false alarm rate of 33.99% (69/203), which outperforms current automatic forecasters in predicting >10 MeV SEP events. The presented forecaster has an average warning time

  3. Elastic and inelastic scattering of polarized [sup 6]Li by [sup 26]Mg at 60 MeV

    SciTech Connect

    Ward, R.P.; Clarke, N.M. School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B152TT ); Pearce, K.I.; Pinder, C.N. ); Blyth, C.O.; Choi, H.D.; Dee, P.R.; Roman, S.; Tungate, G. ); Davis, N.J. )

    1994-08-01

    Angular distributions of differential cross section and vector analyzing power have been measured for the elastic and inelastic scattering of polarized [sup 6]Li by [sup 26]Mg at 60 MeV bombarding energy. The data have been compared with the results of coupled-channels calculations using phenomenological potentials and coupling strengths derived from inelastic scattering cross-section data and [ital B]([ital E]2) values. The data are reproduced by calculations including couplings between the ground and excited states of the projectile.

  4. Angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Grozdanov, D. N.; Zontikov, A. O.; Kopach, Yu. N.; Rogov, Yu. N.; Ruskov, I. N.; Sadovsky, A. B.; Skoy, V. R.; Barmakov, Yu. N.; Bogolyubov, E. P.; Ryzhkov, V. I.; Yurkov, D. I.

    2016-07-01

    The work is devoted to measuring the angular distribution of 4.43-MeV γ-rays produced in inelastic scattering of 14.1-MeV neutrons by 12C nuclei. A portable ING-27 neutron generator (designed and fabricated at VNIIA, Moscow) with a built-in 64-pixel silicon α-detector was used as a source of tagged neutrons. The γ-rays of characteristic nuclear radiation from 12C were detected with a spectrometric system that consisted of 22 γ-detectors based on NaI(Tl) crystals arranged around the carbon target. The measured angular distribution of 4.43-MeV γ-rays is analyzed and compared with the results of other published experimental works.

  5. {sup {bold 6}}Li(vector)+{sup {bold 12}}C inelastic scattering at 30 and 50 MeV

    SciTech Connect

    Kerr, P.L.; Kemper, K.W.; Green, P.V.; Mohajeri, K.; Myers, E.G.; Schmidt, B.G.; Hnizdo, V.

    1996-09-01

    A complete set of analyzing powers (AP`s), {ital iT}{sub 11}, {ital T}{sub 20}, {ital T}{sub 21}, and {ital T}{sub 22}, for 50 MeV {sup 12}C({sup 6}Li(vector),{sup 6}Li) elastic scattering and inelastic scattering to the {sup 12}C(2{sup +}, 4.44 MeV), {sup 12}C(0{sup +}, 7.65 MeV), and {sup 12}C(3{sup {minus}}, 9.64 MeV) states over the center-of-mass (c.m.) angular range 10{degree}{endash}115{degree} is reported. In addition, cross sections for the excited states 3{sup +}(2.18 MeV), 2{sup +}(4.31 MeV), and 1{sup +}(5.65 MeV) of {sup 6}Li were measured by using the inverse-kinematics reaction {sup 6}Li({sup 12}C,{sup 12}C) at 100 MeV. A combined analysis of the new 50 MeV data and previous 30 MeV data has been carried out using the coupled-channels (CC) code FRESCO. The CC calculations use an optical potential with double-folded (DF) real central, Woods-Saxon imaginary central, and Thomas real spin-orbit (SO) potentials. Calculations include reorientation terms and coupling to the first three excited states of {sup 6}Li and the first two nonzerospin states of {sup 12}C. The {sup 6}Li coupling strengths were fixed by the measured {sup 6}Li excited-state cross sections. The elastic-scattering cross sections and A.P.`s are described well. The need for an explicit SO potential is apparent in the elastic and inelastic-scattering AP`s {ital iT}{sub 11}, more so at 30 MeV than at 50 MeV. The rank-2 AP`s up to 50{degree} c.m. arise mainly from ground-state reorientation effects. The DF potential normalization constant {ital N} approaches unity for the 50 MeV data. At both energies, the {sup 12}C(2{sup +}) cross sections are underestimated at large angles, and the description of the {sup 12}C(3{sup {minus}}) cross sections is poor in detail. The {sup 12}C(3{sup {minus}}) AP`s and the {sup 12}C(2{sup +}) {ital iT}{sub 11} are not reproduced at either energy. {copyright} {ital 1996 The American Physical Society.}

  6. Measurement of proton-proton inelastic scattering cross-section at \\chem{\\sqrt {s} = 7\\,{ {TeV}}}

    NASA Astrophysics Data System (ADS)

    The TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Csörgő, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, R. A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodríguez, F. Lucas; Macrí, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.; Wyszkowski, P.

    2013-01-01

    The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at \\sqrt {s}= 7\\,{ { TeV}} in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle was determined to be (70.5 ± 2.9) mb. This cross-section includes all central diffractive events of which maximally 0.25 mb is estimated to escape the detection of the telescopes. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be (73.7 ± 3.4) mb. An upper limit of 6.31 mb at 95% confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| ⩽ 6.5 final-state particle.

  7. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    SciTech Connect

    Spin Muon Collaboration

    1997-11-01

    We have measured the spin-dependent structure function g{sub 1}{sup p} in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003{lt}x{lt}0.7 and 1GeV{sup 2}{lt}Q{sup 2}{lt}60GeV{sup 2}. A next-to-leading order QCD analysis is used to evolve the measured g{sub 1}{sup p}(x,Q{sup 2}) to a fixed Q{sub 0}{sup 2}. The first moment of g{sub 1}{sup p} at Q{sub 0}{sup 2}=10GeV{sup 2} is {Gamma}{sub 1}{sup p}=0.136{plus_minus}0.013 (stat) {plus_minus}0.009 (syst) {plus_minus}0.005 (evol). This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge a{sub 0} is found to be 0.28{plus_minus}0.16. In the Adler-Bardeen factorization scheme, {Delta}g{approx_equal}2 is required to bring {Delta}{Sigma} in agreement with the quark-parton model. A combined analysis of all available proton, deuteron, and {sup 3}He data confirms the Bjorken sum rule. {copyright} {ital 1997} {ital The American Physical Society}

  8. Recent searches for superheavy elements in deep-inelastic reactions. [Approximately 7 MeV/. mu.

    SciTech Connect

    Hulet, E.K.; Lougheed, R.W.; Nitschke, J.M.

    1980-10-01

    New attempts have been made to synthesize superheavy elements (SHE) by nuclear reactions that may possibly form the products at low excitation energies. Survival of the superheavy elements would then be enhanced because of reduced losses from prompt fission. Classical and diffusion-model calculations of deep-inelastic reactions indicate there should be detectable yields of SHE formed with less than 30 MeV of excitation energy. Accordingly, superheavy elements have been sought in such reactions where targets of /sup 248/Cm and /sup 238/U have been irradiated with /sup 136/Xe and /sup 238/U ions. In the most recent experiments, targets of /sup 248/Cm metal (3.5 to 7 mg-cm/sup -2/) were bombarded with 1.8-GeV /sup 238/U ions from the UNILAC accelerator. The longer-lived SHE and actinides near the target Z were chemically separated, and the yields of a number of isotopes of Bk, Cf, Es, and Fm were measured. An upper limit of 30 nb was obtained for the formation of 1-h /sup 259/No. In addition to the off-line chemical recovery and search for SHE, an on-line experiment was performed to detect volatile SHE with half-lives of a minute or more. All experiments to produce and detect superheavy elements were much less than optimum because of premature failures in the Cm-metal targets. The outcome and status of these experiments and the implications of the actinide yields in estimating the chances for forming superheavy elements in the /sup 248/Cm + /sup 238/U reactions are discussed. 5 figures, 1 table.

  9. Proton-air inelastic cross section at S(1/2) = 30 TeV

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The distribution of the maxima of high energy cosmic ray induced extensive air showers in the atmosphere was measured as a function of atmospheric depth. From the exponential tail of this distribution, it was determined that the proton-air inelastic cross section at 30 TeV center-of-mass energy to be 540 + or - 40mb.

  10. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Botta, E.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Busch, O.; Buthelezi, Z.; Caballero Orduna, D.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, K.; Das, I.; Dash, S.; Dash, A.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; Demanov, V.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.

    2013-06-01

    Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass M X <200 GeV/ c 2) σ_{SD}/σ_{INEL} = 0.21 ± 0.03, 0.20^{+0.07}_{-0.08}, and 0.20^{+0.04}_{-0.07}, respectively at centre-of-mass energies √{s} = 0.9, 2.76{, and }7 {TeV}; for double diffraction (for a pseudorapidity gap Δ η>3) σ DD/ σ INEL=0.11±0.03,0.12±0.05, and 0.12^{+0.05}_{-0.04}, respectively at √{s} = 0.9, 2.76{, and }7 {TeV}. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: σ_{INEL} = 62.8^{+2.4}_{-4.0} (model) ±1.2 (lumi) mb at √{s} = 2.76 {TeV} and 73.2^{+2.0}_{-4.6} (model) ±2.6 (lumi) {mb} at √{s} = 7 {TeV}. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.

  11. Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Flammini, D.; Pietropaolo, A.; Senesi, R.; Andreani, C.; McBride, F.; Hodgson, A.; Adams, M. A.; Lin, L.; Car, R.

    2012-01-01

    The spherical momentum distribution of the protons in ice is extracted from a high resolution deep inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with a statistical accuracy comparable to that of the model independent scheme used previously, but providing more detailed information on the three dimensional potential energy surface experienced by the proton. A recently proposed theoretical concept is also employed to directly calculate the mean force from the experimental neutron Compton profile, and to evaluate the accuracy required to unambiguously resolve and extract the effective proton potential from the experimental data.

  12. Inelastic Proton Scattering on 21Na in Inverse Kinematics

    NASA Astrophysics Data System (ADS)

    Austin, Roby

    2009-10-01

    R.A.E. Austin, R. Kanungo, S. Reeve, Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, A.G. Tuff, O. Roberts, University of York, UK; P.J. Woods, T. Davinson, G. J. Lotay, University of Edinburgh; C.-Y. Wu, Lawrence Livermore National Laboratory; H. Al Falou, G.C. Ball, M. Djongolov, A. Garnsworthy, G. Hackman, J.N. Orce, C.J. Pearson, S. Triambak, S.J. Williams, TRIUMF; C. Andreiou, D.S. Cross, N. Galinski, R. Kshetri, Simon Fraser University; C. Sumithrarachchi, M.A. Schumaker, University of Guelph; M.P. Jones, S.V. Rigby, University of Liverpool; D. Cline, A. Hayes, University of Rochester; T.E. Drake, University of Toronto; We describe an experiment and associated technique [1] to measure resonances of interest in astrophysical reactions. At the TRIUMF ISAC-II radioactive beam accelerator facility in Canada, particles inelastically scattered in inverse kinematics are detected with Bambino, a δE-E silicon telescope spanning 15-40 degrees in the lab. We use the TIGRESS to detect gamma rays in coincidence with the charged particles to cleanly select inelastic scattering events. We measured resonances above the alpha threshold in ^22Mg of relevance to the rate of break-out from the hot-CNO cycle via the reaction ^ 18Ne(α,p)^21Na. [1] PJ Woods et al. Rex-ISOLDE proposal 424 Cern (2003).

  13. Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge

    DOE PAGESBeta

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavaş, Hasan

    2015-06-27

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.

  14. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    SciTech Connect

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.

  15. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  16. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  17. Inelastic scattering of 72,74Ni off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Werner, V.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs; Wu, J.; Xu, Z.

    2016-06-01

    Inelastic scattering of 72,74Ni off a proton target was performed at RIBF, RIKEN, Japan. The isotopes were produced by the fission of 238U on a thick Beryllium target and were then selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes were focused onto the liquid hydrogen target of the MINOS device and gamma rays from the reactions were measured with the DALI2 array. The energy of the ions in the middle of the target was 213 MeV/u. Outgoing particles were identified using the ZeroDegree spectrometer. Here, we report on the current status of the data analysis and preliminary results for the proton inelastic scattering cross sections for both isotopes.

  18. Toward a QCD analysis of jet rates in deep-inelastic Muon-Proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates in deep-inelastic Muon-Proton scattering at Fermilab-E665 are presented. Jet rates defined by the JADE clustering algorithm are compared to perturbative Quantum chromodynamics (PQCD) and different Monte Carlo model predictions. The applicability of the jet-parton duality hypothesis is studied. We obtain hadronic jet rates which are approximately a factor of two higher than PQCD predictions at the parton level. Possible causes for this discrepancy are discussed.

  19. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W. )

    1992-02-01

    Measurements of forward multi-jet production rates in deep-inelastic muon-proton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, [ital y][sub [ital cut

  20. Interplay of the elastic and inelastic channels in the 16O+27Al scattering at Elab = 280 MeV

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Nicolosi, D.; Linares, R.; Oliveira, J. R. B.; Lubian, J.; Agodi, C.; Carbone, D.; Cavallaro, M.; de Faria, P. N.; Foti, A.; Rodrigues, M. R. D.

    2016-06-01

    Recent data indicated a nuclear rainbow-like pattern in the elastic scattering of 16O + 27Al at E_{lab}=100 MeV that arises from couplings of the ground to the low-lying states of the 27Al nucleus. Similar effect was identified in the elastic angular distribution of 16O + 12C at E_{lab}=281 and 330 MeV. These experiments show a crucial role of microscopic details of nuclear structure in the elastic scattering of heavy ions at energies well above the Coulomb barrier. In this work we investigate the 16O + 27Al system at E_{lab}=280 MeV for which a coupled channel calculation predicts a pronounced nuclear rainbow-like structure. Obtained experimental data show evidences of an important coupling of the elastic channel to the inelastic. Coupled channel calculations reproduce the experimental angular distributions when a re-normalization factor on the real part of the optical potential is introduced. A proper theoretical approach still requires a high degree of accuracy for the nuclear structure models and new tools to deal with collective excitations.

  1. Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions

    SciTech Connect

    Igenbergs, K.; Schweinzer, J.; Bray, I.; Bridi, D.; Aumayr, F.

    2008-11-15

    The available experimental and theoretical cross section data for inelastic collision processes of ground (3s) and excited (3p, 4s, 3d, 4p, 5s, 4d, and 4f) state Na atoms with electrons, protons, and multiply charged ions have been collected and critically assessed. In addition to existing data, electron-impact cross sections, for both excitation and ionization, have been calculated using the convergent close-coupling approach. In the case of proton-impact cross section, the database was enlarged by new atomic-orbital close-coupling calculations. Both electron-impact and proton-impact processes include excitation from the ground state and between excited states (n = 3-5). For electron-impact, ionization from all states is also considered. In the case of proton-impact electron loss, cross sections (the sum of ionization and single-electron charge transfer) are given. Well-established analytical formulae used to fit cross sections, published by Wutte et al. and Schweinzer et al. for collisions with lithium atoms, were adapted to sodium. The 'recommended cross sections' for the processes considered have been critically evaluated and fitted using the adapted analytical formulae. For each inelastic process the fit parameters determined are tabulated. We also present the assessed data in graphical form. The criteria for comprehensively evaluating the accuracy of the experimental data, theoretical calculations, and procedures used in determining the recommended cross sections are discussed.

  2. First experimental results from 2MeV proton tandem accelerator for neutron productiona)

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A.; Belchenko, Yu.; Burdakov, A.; Davydenko, V.; Ivanov, A.; Khilchenko, A.; Konstantinov, S.; Krivenko, A.; Kuznetsov, A.; Mekler, K.; Sanin, A.; Shirokov, V.; Sorokin, I.; Sulyaev, Yu.; Tiunov, M.

    2008-02-01

    A 2MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction Li7(p,n)Be7 for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724MeV resonance gamma, which are produced via reaction C13(p,γ)N14, absorption in nitrogen.

  3. Radiation shielding for 250 MeV protons

    SciTech Connect

    Awschalom, M.

    1987-04-01

    This paper is targetted at personnel who have the responsibility of designing the radiation shielding against neutron fluences created when protons interact with matter. Shielding of walls and roofs are discussed, as well as neutron dose leakage through labyrinths. Experimental data on neutron flux attenuation are considered, as well as some calculations using the intranuclear cascade calculations and parameterizations.

  4. Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

    NASA Astrophysics Data System (ADS)

    Wimmer, K.; Bazin, D.; Gade, A.; Tostevin, J. A.; Baugher, T.; Chajecki, Z.; Coupland, D.; Famiano, M. A.; Ghosh, T. K.; Grinyer, G. F.; Hodges, R.; Howard, M. E.; Kilburn, M.; Lynch, W. G.; Manning, B.; Meierbachtol, K.; Quarterman, P.; Ratkiewicz, A.; Sanetullaev, A.; Stroberg, S. R.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J.; Winkler, R.; Youngs, M.

    2012-05-01

    The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons, and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations based on the use of eikonal dynamics and sd-shell-model structure amplitudes.

  5. Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac

    SciTech Connect

    Halfon, Shlomi

    2007-11-26

    The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance {sup 103}Pd for prostate brachytherapy.

  6. 1000 MeV Proton beam therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. K.; Gavrikov, Yu A.; Ivanov, E. M.; Karlin, D. L.; Khanzadeev, A. V.; Yalynych, N. N.; Riabov, G. A.; Seliverstov, D. M.; Vinogradov, V. M.

    2006-05-01

    Since 1975 proton beam of PNPI synchrocyclotron with fixed energy of 1000 MeV is used for the stereotaxic proton therapy of different head brain diseases. 1300 patients have been treated during this time. The advantage of high energy beam (1000 MeV) is low scattering of protons in the irradiated tissue. This factor allows to form the dose field with high edge gradients (20%/mm) that is especially important for the irradiation of the intra-cranium targets placed in immediate proximity to the life critical parts of the brain. Fixation of the 6 0mm diameter proton beam at the isodose centre with accuracy of ±1.0 mm, two-dimensional rotation technique of the irradiation provide a very high ratio of the dose in the irradiation zone to the dose at the object's surface equal to 200:1. The absorbed doses are: 120-150 Gy for normal hypophysis, 100-120 Gy for pituitary adenomas and 40-70 Gy for arterio-venous malformation at the rate of absorbed dose up to 50 Gy/min. In the paper the dynamics and the efficiency of 1000 MeV proton therapy treatment of the brain deceases are given. At present time the feasibility study is in progress with the goal to create a proton therapy on Bragg peak by means of the moderation of 1000 MeV proton beam in the absorber down to 200 MeV, energy required for radiotherapy of deep seated tumors.

  7. Spectral measurements of neutrons produced by 52 MeV protons with activation detectors

    NASA Astrophysics Data System (ADS)

    Shin, Kazuo; Saito, Takatsugu; Fujii, Masahiko; Nakamura, Takashi

    The accuracy of the neutron spectral measurement of energy up to ˜40 MeV with activation detectors was examined using high energy neutrons from thick targets bombarded by 52 MeV protons. The measured activation rates were unfolded with the modified SAND-II code and compared with the neutron spectra measured by the NE-213 scintillator. Quite good agreement in absolute values was obtained between the spectra recorded by these two different detectors. The activation detector was shown to be useful for neutron spectroscopy at energies higher than ˜ 10 MeV.

  8. The Single Event Upset (SEU) response to 590 MeV protons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Smith, L. S.; Soli, G. A.

    1984-01-01

    The presence of high-energy protons in cosmic rays, solar flares, and trapped radiation belts around Jupiter poses a threat to the Galileo project. Results of a test of 10 device types (including 1K RAM, 4-bit microP sequencer, 4-bit slice, 9-bit data register, 4-bit shift register, octal flip-flop, and 4-bit counter) exposed to 590 MeV protons at the Swiss Institute of Nuclear Research are presented to clarify the picture of SEU response to the high-energy proton environment of Jupiter. It is concluded that the data obtained should remove the concern that nuclear reaction products generated by protons external to the device can cause significant alteration in the device SEU response. The data also show only modest increases in SEU cross section as proton energies are increased up to the upper limits of energy for both the terrestrial and Jovian trapped proton belts.

  9. 200 MeV Proton Radiography Studies with a Hand Phantom Using a Prototype Proton CT Scanner

    PubMed Central

    Plautz, Tia; Bashkirov, V.; Feng, V.; Hurley, F.; Johnson, R.P.; Leary, C.; Macafee, S.; Plumb, A.; Rykalin, V.; Sadrozinski, H.F.-W.; Schubert, K.; Schulte, R.; Schultze, B.; Steinberg, D.; Witt, M.; Zatserklyaniy, A.

    2014-01-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton CT scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center (LLUMC). It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  10. 200 MeV proton radiography studies with a hand phantom using a prototype proton CT scanner.

    PubMed

    Plautz, Tia; Bashkirov, V; Feng, V; Hurley, F; Johnson, R P; Leary, C; Macafee, S; Plumb, A; Rykalin, V; Sadrozinski, H F-W; Schubert, K; Schulte, R; Schultze, B; Steinberg, D; Witt, M; Zatserklyaniy, A

    2014-04-01

    Proton radiography has applications in patient alignment and verification procedures for proton beam radiation therapy. In this paper, we report an experiment which used 200 MeV protons to generate proton energy-loss and scattering radiographs of a hand phantom. The experiment used the first-generation proton computed tomography (CT) scanner prototype, which was installed on the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. It was found that while both radiographs displayed anatomical details of the hand phantom, the energy-loss radiograph had a noticeably higher resolution. Nonetheless, scattering radiography may yield more contrast between soft and bone tissue than energy-loss radiography, however, this requires further study. This study contributes to the optimization of the performance of the next-generation of clinical proton CT scanners. Furthermore, it demonstrates the potential of proton imaging (proton radiography and CT), which is now within reach of becoming available as a new, potentially low-dose medical imaging modality. PMID:24710156

  11. The gamma rays associated with the inelastic scattering of 14 MeV neutrons in large samples of iron

    NASA Astrophysics Data System (ADS)

    Al-Shalabi, B.; Cox, A. J.

    1983-02-01

    Iron is likely to be a common construction material in the first generation of fusion reactors and a knowledge of the effect of multiple scattering processes in large samples of this material is important for reactor design. In the present work, the angular distributions of gamma rays produced after the inelastic scattering of 14 MeV neutrons in increasing thicknesses of iron samples have been measured. The measurements were performed using an associated particle time of flight system to gate the gamma-ray signals and reduce the background to an acceptable level. The 14 MeV neutrons were produced by the T(d, n) 4He reaction with the deuterons being accelerated in a 150 KV SAMES type J accelerator at Aston and in the 3 MeV dynamitron at the Joint Radiation Centre, Birmingham. The incident neutron flux was monitored by counting the alpha particles associated with the neutrons passing through the sample. The gamma rays were detected by a NaI(Tl) scintillator mounted on a 56 AVP photo-multiplier tube. The samples of iron varied in thickness from 2 to 10.5 cm. In each case, the differential cross sections for gamma ray production at angles varying between 20° and 90° to the incident neutron beam were measured. The results were fitted to an even order Legendre polynomial. The increase in effective cross section σ due to multiple scattering effects as the sample thickness increased was found to obey the law σ = σ0 exp αx in the region considered for each sample where x is the sample thickness in mean free paths and α has an average value of 0.17 ± 1 (mean free paths) -1. The results have been analysed on a semi-empirical model based on the assumption of continuous slowing down.

  12. First measurements of jet production rates in deep-inelastic lepton-proton scattering

    SciTech Connect

    Adams, M.R.; Aied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitz, N.; Schueler, K.P.; Seyerlein, H.J.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; Swanson, R.A.; Talaga, R.; T

    1992-08-17

    The first measurements of forward multijet rates in deep-inelastic lepton scattering are presented. Data were taken with a 490-GeV muon beam incident on a hydrogen target. The jets were defined using the GADE algorithm. The measured rates are presented as a function of the jet resolution parameter {ital y}{sub cut}, and as a function of the virtual-photon--proton center-of-momentum energy {ital W}, in the range 13{le}{ital W}{le}33 GeV. Comparisons are made to the predictions of the Lund Monte Carlo programs and good agreement is obtained when QCD corrections are included in the model.

  13. First measurements of jet production rates in deep-inelastic lepton-proton scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kobrak, H. G.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1992-08-01

    The first measurements of forward multijet rates in deep-inelastic lepton scattering are presented. Data were taken with a 490-GeV muon beam incident on a hydrogen target. The jets were defined using the gade algorithm. The measured rates are presented as a function of the jet resolution parameter ycut, and as a function of the virtual-photon-proton center-of-momentum energy W, in the range 13<=W<=33 GeV. Comparisons are made to the predictions of the Lund Monte Carlo programs and good agreement is obtained when QCD corrections are included in the model.

  14. Proton irradiation of conventional and lithium solar cells - 11-37 MeV

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Carter, J. R.

    1974-01-01

    Conventional n/p and lithium solar cells were irradiated with 11- to 37-MeV protons. The energy dependence of the solar cell degradation, calculated from electrical parameters and lifetime measurements, is shown to be very slight. Damage coefficients for the n/p cells are calculated. Annealing characteristics of both the lithium cells and the n/p cells are presented.

  15. Dose distribution outside the target volume for 170-MeV proton beam.

    PubMed

    Pachnerová Brabcová, K; Ambrožová, I; Kubančák, J; Puchalska, M; Vondráček, V; Molokanov, A G; Sihver, L; Davídková, M

    2014-10-01

    Dose delivered outside the proton field during radiotherapy can potentially lead to secondary cancer development. Measurements with a 170-MeV proton beam were performed with passive detectors (track etched detectors and thermoluminescence dosemeters) in three different depths along the Bragg curve. The measurement showed an uneven decrease of the dose outside of the beam field with local enhancements. The major contribution to the delivered dose is due to high-energy protons with linear energy transfer (LET) up to 10 keV µm(-1). However, both measurement and preliminary Monte Carlo calculation also confirmed the presence of particles with higher LET. PMID:24759915

  16. Measurements of the differential cross sections for elastic and inelastic scattering of 14-MeV neutrons in natural chromium, iron, nickel, and niobium

    SciTech Connect

    Christodoulou, E.G. . Dept. of Radiology); Tsirliganis, N.C. . Dept. of Electrical Engineering and Electronics); Knoll, G.F. . Dept. of Nuclear Engineering and Radiological Sciences)

    1999-07-01

    The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron-scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14-MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering, the measurements included the 1.43- and 4.56-MeV levels of [sup 52]Cr; the 0.85-, (2.94 to 3.12)-, and (4.46 to 4.51)-MeV level groups of [sup 56]Fe; the 1.33-MeV level of [sup 60]Ni combined with the 1.45-MeV level of [sup 58]Ni; and the 4.48-MeV level of [sup 58]Ni. Pulses of neutrons with time width of 0.9 to 1.1 ns were produced via the D-T reaction in a 150-keV linear accelerator, with average intensities of 9 [times] 10[sup 8] n/s. The scattering angles ranged from [approximately]16 to [approximately]160 deg, with a typical step of [approximately]10 deg. The overall uncertainty for the elastic scattering cross section was in the range of 7 to 10% for all materials, except around the minima of the angular distribution for niobium. The uncertainties for the inelastic scattering cross sections were estimated to be between 8 and 24%. The measured angular distributions were compared with the evaluations in the ENDF/B-VI, JENDL-3, CENDL-2, BROND-2, and JEF-2 nuclear data libraries. For elastic scattering, there are no significant discrepancies in general, neither among the evaluations nor between the present data and the evaluations. For the inelastic scattering there are substantial discrepancies both in shape and magnitude among the evaluations (when available) as well as between the present data and the evaluations.

  17. A new proton fluence model for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1988-01-01

    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.

  18. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGESBeta

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  19. Analysing powers and spin correlations in deuteron-proton charge exchange at 726 MeV

    NASA Astrophysics Data System (ADS)

    Dymov, S.; Azaryan, T.; Bagdasarian, Z.; Barsov, S.; Carbonell, J.; Chiladze, D.; Engels, R.; Gebel, R.; Grigoryev, K.; Hartmann, M.; Kacharava, A.; Khoukaz, A.; Komarov, V.; Kulessa, P.; Kulikov, A.; Kurbatov, V.; Lomidze, N.; Lorentz, B.; Macharashvili, G.; Mchedlishvili, D.; Merzliakov, S.; Mielke, M.; Mikirtychyants, M.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Seyfarth, H.; Shmakova, V.; Ströher, H.; Tabidze, M.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Weidemann, C.; Wilkin, C.

    2015-05-01

    The charge exchange of vector polarised deuterons on a polarised hydrogen target has been studied in a high statistics experiment at the COSY-ANKE facility at a deuteron beam energy of Td = 726 MeV. By selecting two fast protons at low relative energy Epp, the measured analysing powers and spin correlations are sensitive to interference terms between specific neutron-proton charge-exchange amplitudes at a neutron kinetic energy of Tn ≈1/2Td = 363 MeV. An impulse approximation calculation, which takes into account corrections due to the angular distribution in the diproton, describes reasonably the dependence of the data on both Epp and the momentum transfer. This lends broad support to the current neutron-proton partial wave solution that was used in the estimation.

  20. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  1. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles. PMID:16604637

  2. Filamentation control and collimation of laser accelerated MeV protons

    NASA Astrophysics Data System (ADS)

    Ramakrishna, B.; Tayyab, M.; Bagchi, S.; Mandal, T.; Upadhyay, A.; Weng, S. M.; Murakami, M.; Cowan, T. E.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-12-01

    We demonstrate experimentally that the proton beam filamentation in dense plasma can be controlled in multi-layered (Al-CH-Al) sandwich targets. We observe up to three-fold reduction in the MeV proton beam divergence (~12°) from these targets as a result of decrease in filamentary structures in the proton beam profile. Strong self-generated resistive magnetic fields in targets with a high-Z transport layer are mainly responsible for this observed effect. Enhancement in the proton flux and energy is also observed from these targets. Supported by a matching 2D particle-in-cell (PIC) simulation and theoretical considerations, we suggest that these targets can be very effectively implemented to collimate proton beams useful for ion oncology applications or advanced fast igniter approach of inertial confinement fusion (ICF).

  3. From deep inelastic scattering to proton-nucleus collisions in the color glass condensate model

    NASA Astrophysics Data System (ADS)

    Gelis, François; Jalilian-Marian, Jamal

    2003-04-01

    We show that particle production in proton-nucleus (pA) collisions in the color glass condensate model can be related to deep inelastic scattering (DIS) of leptons on protons or nuclei. The common building block is the quark-antiquark (or gluon-gluon) dipole cross section which is present in both DIS and pA processes. This correspondence in a sense generalizes the standard leading twist approach to pA collisions based on collinear factorization and perturbative QCD, and allows one to express the pA cross sections in terms of a universal quantity (dipole cross section) which, in principle, can be measured in DIS or other processes. Therefore, using the parametrization of the dipole cross section at DESY HERA, one can calculate particle production cross sections in proton-nucleus collisions at high energies. Alternatively, one could use proton-nucleus experiments to further constrain models of the dipole cross section. We show that the McLerran-Venugopalan model predicts an enhancement of the cross sections at large p⊥ (Cronin effect) and a suppression of the cross sections at low p⊥. The crossover depends on rapidity and moves to higher p⊥ as one goes to more forward rapidities.

  4. Effects of 3 MeV proton irradiation on the mechanical properties of polyimide films

    NASA Astrophysics Data System (ADS)

    Hill, David J. T.; Hopewell, Jefferson L.

    1996-11-01

    The effects of 3 MeV proton irradiation on the elongation to break, fracture energy and Young's Modulus have been investigated for films of Kapton and Ultem over the dose range 0-75 MGy at ambient temperature. The results have been compared with those reported by other workers for irradiation by 60Co gamma rays and 2 MeV electron beams under similar conditions, and little difference was found between the damage to the mechanical properties of the films induced by these three beam types.

  5. First experimental results from 2 MeV proton tandem accelerator for neutron production.

    PubMed

    Kudryavtsev, A; Belchenko, Yu; Burdakov, A; Davydenko, V; Ivanov, A; Khilchenko, A; Konstantinov, S; Krivenko, A; Kuznetsov, A; Mekler, K; Sanin, A; Shirokov, V; Sorokin, I; Sulyaev, Yu; Tiunov, M

    2008-02-01

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction (7)Li(p,n)(7)Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction (13)C(p,gamma)(14)N, absorption in nitrogen. PMID:18315262

  6. First experimental results from 2 MeV proton tandem accelerator for neutron production

    SciTech Connect

    Kudryavtsev, A.; Belchenko, Yu.; Burdakov, A.; Davydenko, V.; Ivanov, A.; Khilchenko, A.; Konstantinov, S.; Krivenko, A.; Kuznetsov, A.; Mekler, K.; Sanin, A.; Shirokov, V.; Sorokin, I.; Sulyaev, Yu.; Tiunov, M.

    2008-02-15

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction {sup 7}Li(p,n){sup 7}Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction {sup 13}C(p,{gamma}){sup 14}N, absorption in nitrogen.

  7. Experimental evidence of the superfocusing effect for axially channeled MeV protons

    NASA Astrophysics Data System (ADS)

    Motapothula, M.; Petrović, S.; Nešković, N.; Breese, M. B. H.

    2016-08-01

    Sub-Ångström focusing of megaelectronvolt (MeV) ions within axial channels was predicted over 10 years ago, but evidence proved elusive. We present experimental angular distributions of axially channeled MeV protons in a 55-nm-thick (001) silicon membrane through which multiple scattering is negligible. Fine angular structure is in excellent agreement with Monte Carlo simulations based on three interaction potentials, providing indirect evidence of the existence of the superfocusing effect with flux enhancement of around 800 within a focused beam width of ˜20 pm .

  8. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  9. Transport mechanism of MeV protons in tapered glass capillaries

    SciTech Connect

    Hasegawa, Jun; Oguri, Yoshiyuki; Jaiyen, Sarawut; Polee, Chalermpong; Chankow, Nares

    2011-08-15

    To investigate the transport mechanism of MeV protons in tapered glass capillaries, spatially resolved energy spectra were measured for proton microbeams focused by 20-{mu}m-outlet capillaries having various taper angles. Three-dimensional Monte Carlo (MC) simulations were also performed to support the experiments and trace each particle in the capillary in more detail. The dependence of the proton energy distribution on the outgoing angle proved that the capillary-focused proton beam consists of two different components, protons traveling straight through the capillary without colliding with the capillary wall and protons scattered by the capillary inner wall. Moreover, the focusing effect of the tapered glass capillary was found to be mainly due to the scattered beam component. The MC simulations well reproduced the experimental results and showed that beam focusing ratios of 1.6-2.4 are possible with capillaries having a convex inner wall. The flight distance of the scattered proton in the capillary glass body was found to play an important role in determining transport efficiency of the protons through the capillary.

  10. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  11. Preliminary shielding assessment for the 100 MeV proton linac (KOMAC).

    PubMed

    Lee, Young-Ouk; Cho, Y S; Chang, J

    2005-01-01

    The Proton Engineering Frontier Project is building the Korea Multipurpose Accelerator Complex facilities from 2002 to 2012, which consists of a high-current 100 MeV proton linear accelerator and various beam-lines. This paper provides a preliminary estimate of the shielding required for the 20 mA proton linac and the beam-dump. For an accurate information on secondary neutron production from the guiding magnet and primary heat sink of the beam dump, proton-induced 63Cu and 65Cu cross section data were evaluated and applied to shielding calculations. The required thickness of the concrete was assessed by a simple line-of-sight model for the lateral shielding of the beam-line and the full shielding of the beam dump. Monte Carlo simulations were also performed using the MCNPX code to obtain the source term and attenuation coefficients for the three-dimensional lateral shielding model of the beam-line. PMID:16381787

  12. The dependence of single event upset on proton energy /15-590 MeV/

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Andrews, J. L.

    1982-01-01

    Low earth orbit satellite and Jupiter orbiter probe semiconductor devices may incur soft errors or single event upsets, manifested as bit flips, during exposure to such nuclear particles or heavy ions as trapped protons with energies ranging up to 1000 MeV. Experimental data is given on the average proton fluence needed to cause a bit flip as a function of proton energy for isoplanar bipolar TTL RAMs. Error dependence data shape and threshold energy can be related to the existing body of theoretical data on energy deposition following proton nuclear reactions. Experimental data also show that the relative cross sectional amplitude for functionally identical devices can be related to the device's power consumption.

  13. Collective excitation of /sup 172/Yb from inelastic. cap alpha. scattering at 36 MeV

    SciTech Connect

    Govil, I.M.; Fulbright, H.W.; Cline, D.

    1987-10-01

    The collective excitation of the natural parity states in /sup 172/Yb has been studied with 36 MeV ..cap alpha.. particles. An analysis of the ground-state band data through I/sup ..pi../ = 6/sup +/ gave deformation parameters ..beta../sub 2/ = +0.21 +- 0.01, ..beta../sub 4/ = -0.028 +- 0.004, and ..beta../sub 6/ = 0 +- 0.002. Two K/sup ..pi../ = 2/sup +/ bands, with band heads at 1465 and 1608 keV, and the ..beta.. vibrational K/sup ..pi../ = 0/sup +/ band with a 2/sup +/ state at 1118 keV are excited weakly. Other 2/sup +/ states at 2184, 2255, 2367, 2465, 2580, 2650, 2738, 2836, 2890, and 2955 keV are seen, and their isoscalar strengths are found for the first time. The B(E2) strengths found are roughly in agreement with interacting boson model predictions close to the SU(3) limit. At 1263 keV, the 4/sup +/ state of the K/sup ..pi../ = 3/sup +/ band is found to have an isoscalar E4 strength = 0.036 e/sup 2/b/sup 4/ (7 single particle units). A compilation plus reanalysis of earlier data exhibits unexpectedly strong E4 strength to the 4/sup +/ members of the lowest K = 2/sup +/ and 3/sup +/ bands in strongly deformed rare earth nuclei. The octupole strength in this nucleus lies mainly in four 3/sup -/ states at 1222, 1710, 1822, and 2030 keV with total isoscalar E3 strength of 0.147 e/sup 2/b/sup 3/. The results for the negative parity states are compared with the theory of Neergaerd and Vogel.

  14. Radiation accompanying the absorption of 2-MeV protons in various materials

    NASA Astrophysics Data System (ADS)

    Kasatov, D. A.; Makarov, A. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2015-11-01

    For the development of boron neutron-capture therapy of malignant tumors, a source of epithermal neutrons on the basis of a tandem accelerator with a vacuum insulation and a lithium target was created and launched. With the aim of optimizing the neutron-producing target, various structure materials were irradiated with a proton beam. The results obtained bymeasuring the dose rate and radiation spectrum upon the absorption of 2-MeV protons are presented, and the choice of tantalum for an optimum material of the target substrate was explained.

  15. Effects of 22 MeV protons on single junction and silicon controlled rectifiers

    NASA Technical Reports Server (NTRS)

    Beatty, M. E., III

    1972-01-01

    The effects of 22-MeV protons on various types of silicon single junction and silicon controlled rectifiers were investigated. The results show that low-leakage devices and silicon controlled rectifiers are the most susceptable to radiation damage. There are also differences noted between single junction rectifiers of the same type made by different manufacturers, which emphasizes the need for better selection of devices used in spacecraft.

  16. Isotopic production cross sections in proton-nucleus collisions at 200 MeV

    SciTech Connect

    Machner, H.; Aschman, D.G.; Steyn, D.; Baruth-Ram, K.; Carter, J.; Sideras-Haddad, E.; Sellschop, J.P.F.; Cowley, A.A.; Goldenbaum, F.; Nangu, B.M.; Spoelstra, B.; Pilcher, J.V.; Smit, F.D.

    2006-04-15

    Intermediate-mass fragments from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200-MeV protons were measured in an angular range from 20 deg. to 120 deg. in the laboratory system. The fragments, ranging from isotopes of helium up to isotopes of carbon, were isotopically resolved. Double-differential cross sections, energy-differential cross sections, and total cross sections were extracted.

  17. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na Between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Chakraborty, A.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Hicks, S. F.; Kersting, L. J.; Luke, C. J.; McDonough, P. J.; Sigillito, A. J.; Vanhoy, J. R.

    2013-03-01

    Elastic and inelastic neutron scattering angular distributions have been measured from 23Na for incident neutron energies between 2 and 4 MeV at the University of Kentucky using neutron time-of-flight techniques. The cross sections obtained are important for applications in nuclear reactor development and other areas, and they are an energy region in which existing data are very sparse. Absolute cross sections were obtained by normalizing Na angular distributions to the well-known np cross sections.

  18. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    NASA Astrophysics Data System (ADS)

    Scopel, Stefano; Yoon, Kook-Hyun

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  19. RF phase stability in the 100-MeV proton linac operation

    NASA Astrophysics Data System (ADS)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  20. Occurrence of brain tumors in rhesus monkeys exposed to 55-MeV protons

    NASA Astrophysics Data System (ADS)

    Wood, D. H.; Yochmowitz, M. G.; Hardy, K. A.; Salmon, Y. L.

    Twenty-year observation of monkeys exposed to single doses of high energy protons simulating solar particles revealed that the most prevalent fatal cancers were brain tumors in the group of animals exposed to 55-MeV protons. Of 72 animals (50 males and 22 females) receiving 0.25 to 8.0 Gy total body surface dose, nine developed fatal tumors classified as grade IV astrocytoma or glioblastoma multiforme. The latent period for tumor development ranged from 14 months to 20 years, with a median of 5 years. Doses associated with the tumors were 4.0 to 8.0 Gy. Eight males and one female were affected. Depth-dose determinations suggest that the high incidence of cerebral neoplasia is associated with the Bragg Peak energy distribution of the 55-MeV protons. Comparison of the tumor incidence with that in humans with brain exposures incidental to radiotherapy indicates a high biological effectiveness compared with gamma radiation. Studies are in progress to attempt to replicate the results in rodents and establish a dose-response curve for proton-induced brain tumors.

  1. A statistical survey of 5-MeV proton events at transient interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Kallenrode, May-Britt

    1996-11-01

    Between 1974 and 1985 the two Helios spacecraft observed 351 transient interplanetary shocks. For 5-MeV protons the particle events associated with these shocks can be divided into three groups: (1) events without intensity increase above quiet time or increased background (47%), (2) solar and interplanetary particle (SIP) events consisting of particles accelerated on or close to the Sun (solar or near-Sun component) as well as at the interplanetary shock (24%), and (3) pure interplanetary particle (PIP) events (29%) which consist of particles accelerated at the shock in interplanetary space but do not show evidence for significant or even excess particle acceleration on the Sun. This classification shows that (1) only about half of the shocks accelerate MeV protons in interplanetary space and (2) MeV protons accelerated on the Sun are neither a necessary nor a sufficient condition for the acceleration of MeV protons in interplanetary space. Shock parameters such as speed or shock strength alone do not give an indication for the class of the associated particle event, because in the parameter range which covers most of the shocks, all three classes are distributed rather evenly. However, the shocks strongest in these parameters tend to accelerate particles. The intensity at the time of shock-passage, which can be used as a crude measure for the local acceleration efficiency, is correlated with the local shock speed and the magnetic compression. The correlation coefficients are small but statistically significant, indicating that (1) the correlations are real and (2) the intensity is influenced by additional parameters, which are not necessarily shock inherent. As an example I will show that the local acceleration at the shock decreases roughly symmetrically with increasing distance from the nose of the shock with a median e-folding angle of 10°. Occasionally, larger e-folding angles are observed close to the nose of the shock. The question of how the shock

  2. Modification of radiobiological effects of 171 MeV protons by elements of physical protection

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Shurshakov, Vyacheslav; Ivanov, Alexander; Molokanov, Alexander

    2016-07-01

    Space radiation includes protons of various energies. Physical protection is effective in the case of low energy protons (50-100 MeV) and becomes insufficient for radiation with a high part of high-energy protons. In the experiment performed on outbred mice, the purpose of the study was to evaluate the radiobiological effect of 171 MeV protons and protons modified by elements of physical protection of the spacecraft, on a complex of indicators of the functional condition of the system hematopoiesis and the central nervous system in 24 hours after irradiation at 20 cGy dose. The spacecraft radiation protection elements used in the experiment were a construction of wet hygiene wipes called a «protective curtain», and a glass plate imitating an ISS window. Mass thickness of the " protective curtain" in terms of water equivalent was ̴ 6,2 g/cm2. Physical shielding along the path of 171 MeV protons increases their linear energy transfer leading to the absorbed dose elevation and strengthening of the radiobiological effect. In the experiment, the two types of shielding together raised the absorbed dose from 20 to 23.2 cGy. Chemically different materials (glass and water in the wipes) were found to exert unequal modifying effects on physical and biological parameters of the proton-irradiated mice. There was a distinct dose-dependent reduction of bone marrow cellularity within the dose range from 20 cGy to 23.2 cGy in 24 hours after exposure. No modifying effect of the radiation protection elements on spontaneous motor activity was discovered when compared with entrance protons. The group of animals protected by the glass plate exhibited normal orientative-trying reactions and weakened grip with the forelimbs. The effects observed in the experiment indicate the necessity to carry out comprehensive radiobiological researches (physical, biological and mathematical) in assessing the effects of physical protection, that are actual for ensuring radiation safety of crews in

  3. Radiation effects induced in pin photodiodes by 40- and 85-MeV protons

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.; Reft, C. S.

    1985-01-01

    PIN photodiodes were bombarded with 40- and 85-MeV protons to a fluence of 1.5 x 10 to the 11th power p/sq cm, and the resulting change in spectral response in the near infrared was determined. The photocurrent, dark current and pulse amplitude were measured as a function of proton fluence. Changes in these three measured properties are discussed in terms of changes in the diode's spectral response, minority carrier diffusion length and depletion width. A simple model of induced radiation effects is presented which is in good agreement with the experimental results. The model assumes that incident protons produce charged defects within the depletion region simulating donor type impurities.

  4. Anomalous effects in silicon solar cell irradiated by 1-MeV protons

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Anspaugh, B. E.

    1989-01-01

    Several silicon solar cells having thicknesses of approximately 63 microns, with and without back-surface fields (BSF), were irradiated with 1-MeV protons having fluences between 10 to the 10th and 10 to the 12th sq cm. The irradiations were performed using both normal and isotropic incidence on the rear surfaces of the cells. It was observed that after irradiation with fluences greater than 10 to the 11th protons/sq cm, all BSF cells degraded at a faster rate than cells without BSF. The irradiation results are analyzed using a model in which irradiation-induced defects in the BSF region are taken into account. Tentatively, it is concluded that an increase in defect density due to the formation of aluminum and proton complexes in BSF cells is responsible for the higher-power loss in the BSF cells compared to the non-BSF cells.

  5. Response of Cellulose detectors to different doses of 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Mishra, R.; Dwivedi, K. K.; Ghosh, S.; Fink, D.; Khathing, D. T.

    2003-08-01

    Optical and thermal responses of two cellulose detectors, Cellulose triacetate (Triafol-TN) and Cellulose acetate butyrate (Triafol-BN), to four different doses of 62 MeV protons were studied using spectroscopic, thermal and track-etching techniques. The spectroscopic analysis revealed that though the optical band-gap in the polymers was affected by proton irradiation, the polymers showed high resistance against any major structural modification by radiation. The thermal stability of the polymers was found to be affected by proton irradiation. The activation energy of etching was found to be almost constant for both the polymers even after irradiation. It is hoped that the findings in this work would be of significant relevance to material science and applications of polymers.

  6. Results of hybrid photodiode irradiation by 200 MeV protons

    SciTech Connect

    Baumbaugh A. et al.

    2001-12-03

    Hybrid Photodiodes (HPD, [1]) will be used as the photodetector for the Compact Muon Solenoid (CMS) Hadron Calorimeter (HCAL) readout [2]. The HPDs are required to operate in a high radiation environment, where the HCAL detector will receive a total ionizing dose of about 330 rads and a fluence of 4 x 10{sup 11} n/cm{sup 2} over a 10 year running period [3]. Effects of HPD irradiation by low energy neutrons were studied and reported previously [1]. In these studies, high energy protons are used to study possible effects of single event burnout [4], since high energy protons are more likely to induce large energy transfer within the HPD silicon. The HPDs were irradiated by 200 MeV protons at the Indiana University Cyclotron Facility [IUCF, 5]. The results of the study are presented.

  7. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    SciTech Connect

    Chadwick, M.B.; Normand, E.

    1999-06-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data.

  8. A 100 MeV Multi-Tank Drift Tube Linac for the Linear Proton Accelerator of the Energy Amplifier

    NASA Astrophysics Data System (ADS)

    D'Auria, Gerardo; Rossi, Carlo

    1997-05-01

    For the acceleration of protons from the exit of the RFQ at about 6 MeV up to 100 MeV, a Multi-Tank Drift Tube Linac (MTDTL) has been proposed with the goal of being technologically simple, compact, efficient and economical. Theoretical design studies and first measurements on a prototype tank are presented.

  9. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    SciTech Connect

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-15

    We have determined ''effective'' Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  10. Analytic expressions for the inelastic scattering and energy loss of electron and proton beams in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Emfietzoglou, D.; Kyriakou, I.; Garcia-Molina, R.; Abril, I.; Kostarelos, K.

    2010-09-01

    We have determined "effective" Bethe coefficients and the mean excitation energy of stopping theory (I-value) for multiwalled carbon nanotubes (MWCNTs) and single-walled carbon nanotube (SWCNT) bundles based on a sum-rule constrained optical-data model energy loss function with improved asymptotic properties. Noticeable differences between MWCNTs, SWCNT bundles, and the three allotropes of carbon (diamond, graphite, glassy carbon) are found. By means of Bethe's asymptotic approximation, the inelastic scattering cross section, the electronic stopping power, and the average energy transfer to target electrons in a single inelastic collision, are calculated analytically for a broad range of electron and proton beam energies using realistic excitation parameters.

  11. Excitation functions of inelastic and transfer channels in {sup 12}C+{sup 12}C around E{sub c.m.}=32.5 MeV

    SciTech Connect

    Szilner, S.; Basrak, Z.

    1997-03-01

    A prominent and wide resonance centered at E{sub c.m.}=32.5 MeV has recently been found in the (0{sub 2}{sup +},0{sub 2}{sup +}) inelastic channel of the {sup 12}C+{sup 12}C reaction. It has been suggested that it corresponds to a 6{alpha}-particle-chain state in {sup 24}Mg. In the present work we study {sup 12}C+{sup 12}C excitation functions between center-of-mass energies of 30 and 35 MeV in steps of 250 keV for weakly populated outgoing channels. We present the inelastic channels to the states above the {alpha}-particle decay threshold, (0{sub 1}{sup +},0{sub 2}{sup +}), (0{sub 1}{sup +},3{sub 1}{sup {minus}}), and (0{sub 1}{sup +},4{sub 1}{sup +}), and the one- and two-nucleon transfer channels. In the inelastic and the transfer channels we observe correlated intermediate-width structures at E{sub c.m.}=31, 32.5, and 33.5 MeV, whose widths are appreciably smaller than the width measured in the (0{sub 2}{sup +},0{sub 2}{sup +}) channel. Our E{sub c.m.}=32.5 MeV angular distribution of the (0{sub 1}{sup +},0{sub 2}{sup +}) channel exhibits oscillatory behavior and, unlike that of the (0{sub 2}{sup +},0{sub 2}{sup +}) channel, does not display enhancement around {theta}{sub c.m.}=90{degree}. Data were collected via the kinematic coincidence technique. For data reduction we use a novel approach allowing for the extraction of results on nonbinary channels. {copyright} {ital 1997} {ital The American Physical Society}

  12. An 800-MeV proton radiography facility for dynamic experiments

    SciTech Connect

    King, N.S.P.; Adams, K.; Ables, E.

    1998-12-01

    The capability has been successfully developed at the Los Alamos Nuclear Science Center (LANSCE) to utilize a spatially and temporally prepared 800-MeV proton beam to produce proton radiographs. A series of proton bursts are transmitted through a dynamically varying object and transported, via a unique magnetic lens system, to an image plane. The magnetic lens system permits correcting for the effects of multiple coulomb scattering which would otherwise completely blur the spatially transmitted information at the image plane. The proton radiographs are recorded on either a time integrating film plate or with a recently developed multi-frame electronic imaging camera system. The latter technique permits obtaining a time dependent series of proton radiographs with time intervals (modulo 358 ns) up to many microseconds and variable time intervals between images. One electronically shuttered, intensified, CCD camera is required per image. These cameras can detect single protons interacting with a scintillating fiber optic array in the image plane but also have a dynamic range which permits recording radiographs with better than 5% statistics for observation of detailed density variations in the object. A number of tests have been carried out to characterize the quality of the proton radiography system for absolute mass determination, resolution, and dynamic range. Initial dynamic experiments characterized the temporal and spatial behavior of shock propagation in high explosives with up to six images per experiment. Based on experience with the prototype system, a number of upgrades are being implemented including the anticipated capability for enhanced mass discrimination through differential multiple coulomb scattering radiographs and more images with improved imaging techniques.

  13. Beam optics of the 2 MeV proton injection line at the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Hubbard, J.; Sanders, E.

    2005-12-01

    Simulations of the beam optics of the LLUMC proton accelerator injection line have been modeled using the computer codes Parmila [Los Alamos Nat'l Lab, Internal Report LA-UR-98-4478, Los Alamos Accelerator Code Group, Los Alamos, NM] and Trace 3D [Distributed by AccelSoft Inc, P.O. Box 2813. Del Mar, CA 92014, United States]. These simulations give reasonable agreement with the known accelerator dispersion, beam energy spread and optimal debuncher setting. The purpose of this paper is to understand the beam losses and show where improvements can be made, if required, in the future. It has previously been found [G. Coutrakon et al., J. Med. Phys. 20 (11) (1994) 1691] that most intensity losses in the synchrotron can be ascribed to the narrow energy acceptance of the synchrotron. While the present intensity of the accelerator is quite adequate for patient treatments, future plans to treat larger fields will make higher intensity more desirable. A simulation has been performed which adds a second debuncher, or energy compactor, which shows a reduction in energy spread by a factor of two yielding a factor of two increase in the available intensity. The present intensity of 2.5 × 1010 protons per pulse with 34% of the injected intensity captured in the ring can possibly be improved to 5 × 1010 protons per pulse by capturing 68% of the injected beam intensity. These results are discussed in this paper.

  14. Proton vibrational dynamics in lithium imide investigated through incoherent inelastic and Compton neutron scattering.

    PubMed

    Pietropaolo, A; Colognesi, D; Catti, M; Nale, A-C; Adams, M A; Ramirez-Cuesta, A J; Mayers, J

    2012-11-28

    In the present study we report neutron spectroscopic measurements on polycrystalline lithium imide, namely, incoherent inelastic neutron scattering at 20 K, and neutron Compton scattering from 10 K up to room temperature. From the former technique the H-projected density of phonon states up to 100 meV is derived, while the latter works out the spherically averaged single-particle (i.e., H, Li, and N) momentum distributions and, from this, the mean kinetic energies. Only for H at the lowest investigated temperature, non-gaussian components of its momentum distribution are detected. However, these components do not seem directly connected to the system anharmonicity, being fully compatible with the simple N-H bond anisotropy. Neutron data are also complemented by ab initio lattice dynamics simulations, both harmonic and, at room temperature, carried out in the framework of the so-called "quantum colored noise thermostat" method. The single-particle mean kinetic energies in lithium imide as a function of temperature show a quite peculiar behavior at the moment not reproduced by ab initio lattice dynamics methods, at least as far as H and Li are concerned. As matter of fact, neither their low temperature values nor their temperature trends can be precisely explained in terms of standard phonon calculations. PMID:23206005

  15. Design study for a superconducting proton linac from 20 to 100 MeV

    SciTech Connect

    Wangler, T.P.; Garnett, R.; Krawczyk, F.; Billen, J.; Bultman, N.; Christensen, K.; Fox, W.; Wood, R.

    1993-07-01

    Advances in superconducting radiofrequency technology during the past 15 years have made possible the large-scale application of superconducting niobium accelerators. So far this development has been restricted to rather low-current electron and heavy-ion accelerators. In addition to the power savings, the improved capability of superconducting cavities to provide acceleration of high currents with low beam losses, which follows from the ability to use larger beam apertures without a large economic penalty from increased rf losses, could make superconducting proton linacs very attractive for high-intensity applications, where activation of the accelerator is a major concern. During the past year, at Los Alamos, the authors have been looking at a possible upgrade to the 800-MeV LAMPF proton accelerator, to provide higher intensity injection into a new storage ring for a new high-intensity pulsed neutron source. As part of this upgrade to the LAMPF accelerator, the entire linac below 100 MeV would be rebuilt to provide improved beam quality, improved reliability, and to include funneling at 20 MeV for higher beam currents. Both a room-temperature and a superconducting option are being considered for the section from 20 to 100 MeV. At present, this section is a 201.25 MHz room-temperature copper drift-tube linac (DTL). For this new upgrade scenario the frequency from 20 to 100 MeV was fixed at 805 MHz. The new duty factor is assumed to be 7.2%, and the authors show some results at two currents, 30 mA and 150 mA, that span the range of interest. Their superconducting linac concept consists of individual multicell cavities, each driven by a klystrode. Focusing would be provided by superconducting quadrupole lenses between cavities. In the remainder of the paper they describe their study to evaluate the potential of a superconducting proton linac section for this application, and address some of the many design choices.

  16. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., 152Tb, 155Tb, 155Eu, and 156Eu) and 153Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  17. Parity Nonconservation in Proton-water Scattering at 800 MeV

    DOE R&D Accomplishments Database

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  18. Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.

  19. Neutron-proton spin-correlation parameter A sub z z at 68 MeV

    SciTech Connect

    Hammans, M.; Brogli-Gysin, C.; Burzynski, S.; Campbell, J.; Haffter, P.; Henneck, R.; Lorenzon, W.; Pickar, M.A.; Sick, I. ); Konter, J.A.; Mango, S.; van den Brandt, B. )

    1991-05-06

    We report a first measurement of the spin-correlation parameter {ital A}{sub {ital z}{ital z}} in neutron-proton scattering at 67.5 MeV. The results, obtained in the angular range 105{degree}{le}{theta}{sub c.m.}{le}170{degree} with typical accuracies of 0.008, are highly sensitive to the {sup 3}{ital S}{sub 1}-{sup 3}{ital D}{sub 1} mixing parameter {epsilon}{sub 1}. A phase-shift analysis based on the current world data yields a value of {epsilon}{sub 1} significantly higher than predicted by modern potential models.

  20. Charged pions from the isotopes sup 58,64 Ni by 201 MeV protons

    SciTech Connect

    Palmeri, A.; Aiello, S.; Badala, A.; Barbera, R.; Pappalardo, G.S. ); Bimbot, L. ); Reide, F. ); Willis, N.; Oeschler, H.

    1989-08-01

    Charged pion production induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni has been studied. The double differential cross sections have been measured over a wide angular range. Different behavior of the angular distribution is observed for low and high energy pions. The yield of positive pions shows a pronounced forward peaked component. The deduced total production yields are about the same for ({ital p},{pi}{sup +}) on both isotopes whereas that for {sup 64}Ni({ital p},{pi}{sup {minus}}) is twice as large as for {sup 58}Ni({ital p},{pi}{sup {minus}}).

  1. Double folding analysis of 3He elastic and inelastic scattering to low lying states on 90Zr, 116Sn and 208Pb at 270 MeV

    NASA Astrophysics Data System (ADS)

    Marwa, N. El-Hammamy

    2015-03-01

    The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.

  2. Performance of GaAs and silicon concentrator cells under 37 MeV proton irradiation

    NASA Technical Reports Server (NTRS)

    Curtis, Henry B.; Swartz, Clifford K.

    1987-01-01

    Gallium arsenide concentrator cells from three sources and silicon concentrator cells from one source were exposed to 37 MeV protons at fluences up to 2.8 x 10 to the 12th protons/sq cm. Performance data were taken after several fluences, at two temperatures (25 and 80 C), and at concentration levels from 1 to about 150 x AMO. Data at one sun and 25 C were taken with an X-25 xenon lamp solar simulator. Data at concentration were taken using a pulsed solar simulator with the assumption of a linear relationship between short circuit current and irradiance. The cells are 5 x 5 mm with a 4-mm diameter illuminated area.

  3. Activation cross sections of proton induced nuclear reactions on gold up to 65MeV.

    PubMed

    Ditrói, F; Tárkányi, F; Takács, S; Hermanne, A

    2016-07-01

    Activation cross sections of proton induced reactions on gold for production of (197m,197g,195m,195g, 193m,193g,192)Hg, (196m,196g(cum),195g(cum),194,191(cum))Au, (191(cum))Pt and (192)Ir were measured up to 65MeV proton energy, some of them for the first time. The new data are in acceptably good agreement with the recently published earlier experimental data in the overlapping energy region. The experimental data are compared with the predictions of the TALYS 1.6 (results in TENDL-2015 on-line library) and EMPIRE 3.2 code. PMID:27156194

  4. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  5. Anomalous effects in silicon solar cell irradiated by 1-MeV protons

    SciTech Connect

    Kachare, R.; Anspaugh, B.E. )

    1989-09-15

    Several silicon solar cells having thicknesses of approximately 63 {mu}m, with and without back-surface fields (BSF), were irradiated with 1-MeV protons having fluences between 10{sup 10} and 10{sup 12} protons/cm{sup 2}. The irradiations were performed using both normal and isotropic incidence on the rear surfaces of the cells. It was observed that after irradiation with fluences greater than 10{sup 11} protons/cm{sup 2}, all BSF cells degraded at a faster rate than cells without BSF. The irradiation results are analyzed using a model in which irradiation-induced defects in the BSF region are taken into account. A number of other possibilities for BSF cell degradation are considered. Tentatively, it is concluded that an increase in defect density due to the formation of aluminum and proton complexes in BSF cells is responsible for the higher-power loss in the BSF cells compared to the non-BSF cells.

  6. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  7. Stochastic spatial energy deposition profiles for MeV protons and keV electrons

    NASA Astrophysics Data System (ADS)

    Udalagama, C.; Bettiol, A. A.; Watt, F.

    2009-12-01

    With the rapid advances being made in novel high-energy ion-beam techniques such as proton beam writing, single-ion-event effects, ion-beam-radiation therapy, ion-induced fluorescence imaging, proton/ion microscopy, and ion-induced electron imaging, it is becoming increasingly important to understand the spatial energy-deposition profiles of energetic ions as they penetrate matter. In this work we present the results of comprehensive yet straightforward event-by-event Monte Carlo calculations that simulate ion/electron propagation and secondary electron ( δ ray) generation to yield spatial energy-deposition data. These calculations combine SRIM/TRIM features, EEDL97 data and volume-plasmon-localization models with a modified version of one of the newer δ ray generation models, namely, the Hansen-Kocbach-Stolterfoht. The development of the computer code DEEP (deposition of energy due to electrons and protons) offers a unique means of studying the energy-deposition/redistribution problem while still retaining the important stochastic nature inherent in these processes which cannot be achieved with analytical modeling. As an example of an application of DEEP we present results that compare the energy-deposition profiles of primary MeV protons and primary keV electrons in polymethymethacrylate. Such data are important when comparing proximity effects in the direct write lithography processes of proton-beam writing and electron-beam writing. Our calculations demonstrate that protons are able to maintain highly compact spatial energy-deposition profiles compared with electrons.

  8. Compact superconducting 250 MeV proton cyclotron for the PSI PROSCAN proton therapy project

    NASA Astrophysics Data System (ADS)

    Schillo, M.; Geisler, A.; Hobl, A.; Klein, H. U.; Krischel, D.; Meyer-Reumers, M.; Piel, C.; Blosser, H.; Kim, J.-W.; Marti, F.; Vincent, J.; Brandenburg, S.; Beijers, J. P. M.

    2001-12-01

    A cyclotron for proton therapy has to fulfill many requirements set by the specific operational and safety needs of a medical facility and the medical environment. These are for instance high extraction efficiency, high availability and reliability, simple and robust operation. ACCEL Instruments GmbH has refined the design concept of a medical cyclotron for the PSI PROSCAN project with the objective to use this cyclotron as the standard accelerator in complete proton therapy facilities, which ACCEL intends to market. Starting from the design in [1], we have carried out further detail clarifications, optimizations and adaptations to the needs of PSI [2]. The work was performed in a collaboration between ACCEL, NSCL and KVI in view of the requirements from the PSI PROSCAN project. An overview on the design will be given touching on subjects such as the 3D structural analysis of the coil, detailed magnetic modeling for optimization of the inner region and the spiral, optimization of the RF power, optimization of the cryogenic design based on available cryocoolers instead of a liquefaction plant and Monte Carlo simulations to estimate the heat balance produced by neutrons at 4K components.

  9. Neutron multiplicities and energy sharing in the inelastic collisions of [sup 32]S on [sup 64]Ni at [ital E]/[ital A]=4. 9 MeV

    SciTech Connect

    Fiore, L.; D'Erasmo, G.; Fiore, E.M.; Pantaleo, A.; Paticchio, V.; Petruzzelli, F.; Quirini, A.; Tagliente, G.; Lanzano, G.; Pagano, A. Dipartimento di Fisica dell'Universita 70126 Bari Istituto Nazionale di Fisica Nucleare, Sezione di Catania )

    1994-09-01

    The neutron emission from the targetlike fragments (TLF) of the inelastic reactions of 157 MeV [sup 32]S on [sup 64]Ni has been measured. Neutron energy spectra and multiplicities have been extracted as a function of the dissipated energy for six targetlike fragments mass gates between [ital A]=56 and [ital A]=70. The comparison between the data and the results of a Monte Carlo simulation based on statistical model calculations with different assumptions on the excitation energy sharing between the reaction partners evidences a dependence from the net mass flow of the evolution of the excitation energy ratios with the energy loss.

  10. Formation of hydrogen atom in 2s state in proton-sodium inelastic scattering

    NASA Astrophysics Data System (ADS)

    Sabbah, A. Elkilany

    2015-03-01

    The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupled-static and frozen core approximations. The method is used for calculating partial and total cross-sections with the assumption that only two channels (elastic and hydrogen formation in 2s state) are open. In each case, the calculations are carried out for seven values of the total angular momentum ℓ(0 ≤ ℓ ≤ 6). The target is described using the Clementi Roetti wave functions within the framework of the one valence electron model. We use Lipmann-Swinger equation to solve the derived equations of the problem, then apply an iterative numerical method to obtain the code of computer to calculate iterative partial cross-sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. The present results for total hydrogen (2s state) formation cross sections are in agreement with results of other available ones in wide range of incident energy.

  11. A novel source of MeV positron bunches driven by energetic protons for PAS application

    NASA Astrophysics Data System (ADS)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  12. A Monte Carlo Model for LET Spectra of 200 MeV Protons Used for Microelectronic Testing

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Culpepper, William X.

    2003-01-01

    The direct ionization Linear Energy Transfer (LET) for 200 MeV protons in silicon is much smaller than that for higher charged particles since LET increases as the square of the ion charge. However, occasionally the proton interacts with the silicon nuclei and produces a shower of fragments and a recoiling nucleus. When this happens, the LET produced is much greater than the direct ionization LET. Testing the single event effect susceptibility of components using energetic (200 MeV) protons is often the only viable option for system level testing commercial-off-the-shelf (COTS) avionics that have not been designed for space environments. However, the question of how a system tested with protons will perform in a heavy ion environment arises. Here the concern is not only with prediction of on-orbit upset rate, but also about possibility of on-orbit failures that were not observed during proton testing.

  13. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    SciTech Connect

    Loewe, W.E.

    1980-04-03

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work.

  14. Radiation protection studies for a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Mauro, Egidio; Silari, Marco

    2009-07-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H - linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of the accelerator in its low-energy section, where the access area is located, and to calculate the induced radioactivity in the air and in the components of the accelerator. The latter study is particularly important for maintenance interventions and final disposal of radioactive waste. Two possible layouts for the CCDTL section of the machine were considered in order to evaluate the feasibility, from the radiological standpoint, of replacing electromagnetic quadrupoles with permanent magnet quadrupoles with a high content of cobalt.

  15. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.

    2016-04-01

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.

  16. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  17. Comparison of radiobiological effective depths in 65-MeV modulated proton beams.

    PubMed Central

    Tang, J. T.; Inoue, T.; Inoue, T.; Yamazaki, H.; Fukushima, S.; Fournier-Bidoz, N.; Koizumi, M.; Ozeki, S.; Hatanaka, K.

    1997-01-01

    To assess the achievement of uniformity of radiobiological effectiveness at different depths in the proton spread-out Bragg peak (SOBP), Chinese hamster ovary (CHO) cells were exposed to 65-MeV modulated proton beams at the Research Center for Nuclear Physics (RCNP) of Osaka University. We selected four different irradiation positions: 2 mm depth, corresponding to the entrance, and 10, 18 and 23 mm depths, corresponding to different positions in the SOBP. Cell survival curves were generated with the in vitro colony formation method and fitted to the linear-quadratic model. With 137Cs gamma-rays as the reference irradiation, the relative biological effectiveness (RBE) values for a surviving fraction (SF) level of 0.1 are 1.05, 1.10, 1.12 and 1.19 for depths of 2, 10, 18 and 23 mm respectively. A significant difference was found between the survival curves at 10 and 23 mm (P < 0.05), but not between 18 and 10 mm or between 18 and 23 mm. There was a significant dependence of RBE on depths in modulated proton beams at the 0.1 surviving fraction level (P < 0.05). Moreover, the rise of RBEs significantly depended on increasing SF level or decreased approximately in correspondence with irradiation dose (P = 0.0001). To maintain uniformity of radiobiological effectiveness for the target volume, careful attention should be paid to the influence of depth of beam and irradiation dose. PMID:9231922

  18. Relative biological effectiveness and microdosimetry of a mixed energy field of protons up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Robertson, J. B.; Eaddy, J. M.; Archambeau, J. O.; Coutrakon, G. B.; Miller, D. W.; Moyers, M. F.; Siebers, J. V.; Slater, J. M.; Dicello, J. F.

    1994-10-01

    We have studied radiation effects utilizing the new 250 MeV Synchrotron at Loma Linda University Medical Center. In this paper we present the data collected for the survival of Chinese hamster lung (V79) cells, that were irradiated with a beam of mixed energy protons up to 200 MeV. The RBE for protons, when compared to 60Co gamma rays, ranged from a low of 1.2 at the high energy portion of the field to 1.3+ at the low energy portion of the field. These results are consistent with the measured lineal energy (microdosimetric) spectra.

  19. Relative biological effectiveness and microdosimetry of a mixed energy field of protons up to 200 MeV.

    PubMed

    Robertson, J B; Eaddy, J M; Archambeau, J O; Coutrakon, G B; Miller, D W; Moyers, M F; Siebers, J V; Slater, J M; Dicello, J F

    1994-10-01

    We have studied radiation effects utilizing the new 250 MeV Synchrotron at Loma Linda University Medical Center. In this paper we present the data collected for the survival of Chinese hamster lung (V79) cells, that were irradiated with a beam of mixed energy protons up to 200 MeV. The RBE for protons, when compared to 60Co gamma rays, ranged from a low of 1.2 at the high energy portion of the field to 1.3+ at the low energy portion of the field. These results are consistent with the measured lineal energy (microdosimetric) spectra. PMID:11539961

  20. Near realtime forecasting of MeV protons on the basis of sub relativistic electrons

    NASA Astrophysics Data System (ADS)

    Labrenz, Johannes; Heber, Bernd; Kuehl, Patrick; Sarlanis, Christos; Malandraki, Olga; Posner, Arik

    2016-04-01

    A major impact on human and robotic space exploration activities is the sudden and prompt occurrence of solar energetic ion events. In order to provide up to an hour warning before these particles arrive at Earth, relativistic electron and below 50 MeV proton data from the Electron Proton Helium Instrument (EPHIN) on SOHO were used to implement the 'Relativistic Electron Alert System for Exploration (REleASE)'. It has been demonstrated that the analysis of relativistic electron time profiles provides a low miss and false alarm rate. High Energy Solar Particle Events foRecastIng and Analysis (HESPERIA) is a project funded within the European Union's Horizon 2020 research and innovation programme (PROTEC-1-2014 Call: Space Weather). Within this project the REleASE forecasting scheme was rewritten in the open access programming language PYTHON and will be made public. As a next step, we have analyzed the possibility to also use, along with relativistic electrons (v > 0.9 c) provided by SOHO, near-relativistic (v <0.8 c) electron measurements from other instruments like the Electron Proton Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE). This would prove to be particularly useful during periods that SOHO does not provide continuous near real-time data. We show that the ACE/EPAM observations can be adapted to the REleASE forecasting scheme to provide reliable SEP forecasts. A comparison of measured and forecast proton intensities by SOHO/EPHIN and ACE/EPAM will be presented. In addition we investigated the false alarm rate and detection probability of solar ion events. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.

  1. Measurement of the inelastic proton-proton cross-section at √s=7 TeV with the ATLAS detector.

    PubMed

    2011-01-01

    The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3 ± 2.1 mb is measured for ξ > 5×10⁻⁶, where ξ is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. PMID:21897374

  2. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  3. Track nanodosimetry of 20-MeV protons at 20 nm.

    PubMed

    Conte, V; Colautti, P; De Nardo, L; Ferretti, A; Poggi, M; Moro, D; Lombardi, M; Tornielli, G; Grosswendt, B

    2011-02-01

    Track nanodosimetry is the theoretical and experimental research which studies the stochastic aspects of ionisation yield produced by ionising particles in nanometric target volumes, positioned at different distances from the primary particle track. The STARTRACK experimental set-up, mounted on the +50° beam line at the Tandem-Alpi particle accelerator of Legnaro National Laboratories, has been conceived to give an experimental basis to nanodosimetric calculations. STARTRACK is a detection system able to measure the ionisation cluster-size distributions in a 20 nm propane site, by counting the electrons set in motion by different ion tracks, with the resolution of one electron. The 'sensitive volume' SV can be moved at different distances from the primary particle track (different impact parameter). Distributions of 20-MeV protons have been measured and compared with Monte Carlo calculations. PMID:21127036

  4. Activation cross sections of proton induced nuclear reactions on palladium up to 80MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Csikai, J; Hermanne, A; Uddin, M S; Baba, M

    2016-08-01

    Activation cross sections of proton induced nuclear reactions on palladium were measured up to 80MeV by using the stacked foil irradiation technique and gamma ray spectrometry. The beam intensity, the incident energy and the energy degradation were controlled by a method based on flux constancy via normalization to the excitation functions of monitor reactions measured in parallel. Excitation functions for direct and cumulative cross-sections were measured for the production of (104m,104g,105g,106m,110m)Ag, (100,101)Pd, (99m,99g,100,101m,101g,102m,102g,105)Rh and (103,97)Ru radioisotopes. The cross section data were compared with the theoretical predictions of TENDL-2014 and -2015 libraries. For practical applications thick target yields were derived from the measured excitation functions. Application in the field of medical radionuclide production is shortly discussed. PMID:27235887

  5. Radiative capture of polarized neutrons by polarized protons at Tn=183 MeV

    NASA Astrophysics Data System (ADS)

    Xu, G.; Pate, S. F.; Bloch, C.; Vigdor, S. E.; Bowyer, S. M.; Bowyer, T. W.; Jacobs, W. W.; Meyer, H. O.; Pierce, E.; Sowinski, J.; Whiddon, C.; Wissink, S. W.; Jolivette, P. L.; Pickar, M. A.

    1995-12-01

    In order to provide a quantitative test of theoretical calculations incorporating meson-exchange currents and intermediate Δ resonances, we measure the normal-component spin correlation coefficient CNN, the differential cross section dσ/dΩ, and the neutron and proton analyzing powers An and Ap, each as a function of angle, for n-->p-->-->dγ at Tn=183 MeV. Our n-->p-->-->dγ results, combined with the previous cross section and photon asymmetry data collected in the past decade, place quite strong constraints on model calculations. Our data are in excellent agreement with theoretical predictions by Jaus and Woolcock that incorporate meson-exchange and isobar current effects and relativistic corrections, signifying great recent progress in our understanding of these effects in the nucleon-nucleon system.

  6. Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus

    NASA Astrophysics Data System (ADS)

    Yang, Y. N.; Ren, N.; Xue, J. M.; Yang, J.; Rong, B. L.

    2007-09-01

    A 3.2 MeV proton beam was used to irradiate bioflocculant bacteria (Bacillus cereus) to achieve mutation. The ion fluence ranged from 1011 to 1014/cm2. Most of the bacteria were killed when the ion fluence reached 1012 ions/cm2. The survival ratio drops in an exponential way on further increasing the ion fluence. The flocculating activity of 7 samples out of 51 showed a positive change, and a perfect mutant C7-23 with a stable high capacity of bioflocculant production was found. RAPD measurements showed that a new lane appears in this sample. The flocculating activity of the C7-23 bacteria increased by factors of 22%, 54% and 217% under pH values of 4, 7 or 10, respectively.

  7. Utilization of new 150-MeV neutron and proton evaluations in MCNP

    SciTech Connect

    Little, R.C.; Frankle, S.C.; Hughes, H.G. III; Prael, R.E.

    1997-10-01

    MCNP{trademark} and LAHET{trademark} are two of the codes included in the LARAMIE (Los Alamos Radiation Modeling Interactive Environment) code system. Both MCNP and LAHET are three-dimensional continuous-energy Monte Carlo radiation transport codes. The capabilities of MCNP and LAHET are currently being merged into one code for the Accelerator Production of Tritium (APT) program at Los Alamos National Laboratory. Concurrently, a significant effort is underway to improve the accuracy of the physics in the merged code. In particular, full nuclear-data evaluations (in ENDF6 format) for many materials of importance to APT are being produced for incident neutrons and protons up to an energy of 150-MeV. After processing, cross-section tables based on these new evaluations will be available for use fin the merged code. In order to utilize these new cross-section tables, significant enhancements are required for the merged code. Neutron cross-section tables for MCNP currently specify emission data for neutrons and photons only; the new evaluations also include complete neutron-induced data for protons, deuterons, tritons, and alphas. In addition, no provision in either MCNP or LAHET currently exists for the use of incident charged-particle tables other than for electrons. To accommodate the new neutron-induced data, it was first necessary to expand the format definition of an MCNP neutron cross-section table. The authors have prepared a 150-MeV neutron cross-section library in this expanded format for 15 nuclides. Modifications to MCNP have been implemented so that this expanded neutron library can be utilized.

  8. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  9. Interlock system for machine protection of the KOMAC 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2015-02-01

    The 100-MeV proton linear accelerator of the Korea Multi-purpose Accelerator Complex (KOMAC) has been developed. The beam service started this year after performing the beam commissioning. If the very sensitive and essential equipment is to be protected during machine operation, a machine interlock system is required, and the interlock system has been implemented. The purpose of the interlock system is to shut off the beam when the radio-frequency (RF) and ion source are unstable or a beam loss occurs. The interlock signal of the KOMAC linac includes a variety of sources, such as the beam loss, RF and high-voltage converter modulator faults, and fast closing valves of the vacuum window at the beam lines and so on. This system consists of a hardware-based interlock system using analog circuits and a software-based interlock system using an industrial programmable logic controller (PLC). The hardware-based interlock system has been fabricated, and the requirement has been satisfied with the results being within 10 µs. The software logic interlock system using the PLC has been connected to the framework of with the experimental physics and industrial control system (EPICS) to integrate a variety of interlock signals and to control the machine components when an interlock occurs. This paper will describe the design and the construction of the machine interlock system for the KOMAC 100-MeV linac.

  10. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    NASA Technical Reports Server (NTRS)

    Dupieux, P.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; Charmensat, P.; De Marco, N.; Fanet, H.; Fodor, Z.; Fraysse, L.; Girard, J.; Gorodetzky, P.; Gosset, J.; Laspalles, C.; Lemaire, M. C.; L'Hote, D.; Lucas, B.; Marroncle, J.; Montarou, G.; Parizet, M. J.; Poitou, J.; Qassoud, D.; Racca, C.; Schimmerling, W.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.

  11. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl. D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-02-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton ({approximately} 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation enviro nment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment.

  12. Shielding variation effects for 250 MeV protons on tissue targets.

    PubMed

    Brandl, A; Hranitzky, C; Rollet, S

    2005-01-01

    This paper provides results of computer simulation studies with the goal to analyse issues regarding radiation protection for personnel, patients and third persons involved in hadron therapy treatment. The treatment room and the patient are modelled by simple cylindrical geometries at incident proton energies of 250 MeV. Monte Carlo simulations of the energy and angular dependence of proton, neutron and photon radiation fields and resulting ambient dose equivalent distributions outside the shielding walls are performed. In order to investigate systematic uncertainties due to the shielding materials and inherent to the computer models, various concrete compositions, densities and water contents are modelled, and the influence of simulation parameters on the results obtained is determined. Generally, good agreement is found between results provided by MCNPX and FLUKA computer codes. Variations in neutron ambient dose attenuation from -50 to +/-30% are found due to varying concrete composition. Changes in the water content of the concrete in the order of 8% may cause variations up to 20%. PMID:16381711

  13. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  14. EAS-TOP: The proton-air inelastic cross-section at √{s}≈2 TeV

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Castellina, A.; Cantoni, E.; Chiavassa, A.; Piazzoli, B. D'Ettorre; Di Sciascio, G.; Fulgione, W.; Galeotti, P.; Ghia, P. L.; Iacovacci, M.; Mannocchi, G.; Morello, C.; Navarra, G.; Saavedra, O.; Stamerra, A.; Trinchero, G. C.; Vallania, P.; Vernetto, S.; Vigorito, C.

    2009-12-01

    The proton-air inelastic cross section measurement at √{s}≈2 TeV from the EAS-TOP Extensive Air Shower experiment is reported. The technique exploits cosmic ray proton primaries, in the energy region E=(1.5÷2.5)ṡ10 eV, studying the absorption length of their cascades when detected at maximum development. Primary energies are selected through the EAS muon number ( N), and proton originated cascades at maximum development by means of the shower size ( N). The shower and detector fluctuations are obtained with simulations performed using the CORSIKA code and the QGSJET II and SIBYLL interaction models. The simulations provide the conversion factor ( k=λ/λ), from the observed absorption length ( λobsexp) to the interaction length ( λ). The obtained value of the p-air inelastic cross section at √{s}≈2 TeV is σp-airinel=338±21(stat)±19(syst)-28(syst) mb. The relevant issue of systematic uncertainties have been studied. The connections with the pp ( p¯p) total cross section measurements are discussed.

  15. Limits on the antiproton/proton ratio in the cosmic radiation from 100 MeV to 1580 MeV

    NASA Technical Reports Server (NTRS)

    Salamon, M. H.; Mckee, S.; Musser, J. A.; Tarle, G.; Tomasch, A.

    1990-01-01

    A search for antiprotons (p-bars) in the cosmic radiation with energies below 1580 MeV at the top of the atmosphere was performed using the PBAR balloon-borne magnetic spectrometer. No antiprotons were observed in 124,000 proton events. For the energy interval 100-640 MeV, an upper limit is reported to the p-bar/p ratio of 2.8 x 10 to the -5th at the top of the atmosphere, after correcting for instrumental efficiencies and contributions from secondary particles. No antiproton was observed in the energy interval 640-1580 MeV, which yields an upper limit to the p-bar/p ratio of 6.1 x 10. By combining both data sets, the limits on the p-bar/p ratio can be improved to 2.0 x 10 to the -5th. The detector performance and instrumental efficiencies of the individual detector components are discussed. A detail Monte Carlo calculation was used to evaluate the instrumental efficiency for both antiprotons and protons as a function of momentum.

  16. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Kuznetsov, A.; Makarov, A.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2014-12-01

    A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for boron neutron capture therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability has just been obtained.

  17. Internuclear cascade-evaporation model for LET spectra of 200 MeV protons used for parts testing

    SciTech Connect

    O`Neill, P.M.; Badhwar, G.D.; Culpepper, W.X.

    1998-12-01

    The Linear Energy Transfer (LET) spectrum produced in microelectronic components during testing with 200 MeV protons is calculated with an internuclear cascade-evaporation code. This spectrum is compared to the natural space heavy ion environment for various earth orbits. This comparison is used to evaluate the results of proton testing in terms of determining a firm upper bound to the on-orbit heavy ion upset rate and the risk of on-orbit heavy ion failures that would not be detected with protons.

  18. Energy dependence of pion inelastic scattering from sup 208 Pb

    SciTech Connect

    Oakley, D.S. Lewis and Clark College, Portland, Oregon ); Peterson, R.J. ); Seestrom, S.J.; Morris, C.L.; Plum, M.A. ); Zumbro, J.D. ); Williams, A.L.; Bryan, M.A.; McDonald, J.W.; Moore, C.F. )

    1991-11-01

    Differential cross sections were measured for pion elastic and inelastic scattering from {sup 208}Pb at {ital T}{sub {pi}}=120 and 250 MeV. Energy-dependent neutron- and proton-transition matrix elements for a range of excited states were extracted and tested for consistency, using several structure models.

  19. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; McEllistrem, M. T.; Crider, B. P.; Peters, E. E.; Prados-Estevez, F. M.; Chakraborty, A.; Yates, S. W.; Sigillito, A.; McDonough, P. J.; Kersting, L. J.; Luke, C. J.; Hicks, S. F.; Vanhoy, J. R.

    2011-10-01

    Elastic and inelastic neutron scattering angular distributions for 23Na sample were measured at the University of Kentucky using the time-of-flight (ToF) technique, between 2 and 4 MeV incident neutron energies.Normalization of yields into scattering cross sections was accomplished by comparison of Na yields to the yields obtained from hydrogen in polyethylene samples via the well-known n-p scattering cross sections.The 3H(p,n) differential cross sections are used to determine the energy-dependent efficiency of the main detector. Because the efficiency of this detector appears as a ratio in the comparison of scattered yields from different samples, the absolute values of the 3H(p,n) cross sections are not critical, but their energy dependence is. This work is supported by the U.S. DOE contract no. DE-AC07-051D14517.

  20. Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge

    SciTech Connect

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavaş, Hasan

    2015-06-27

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.

  1. Short term prediction of E greater than or equal to 10 MeV proton fluxes from solar flares

    NASA Technical Reports Server (NTRS)

    Kuck, G. A.

    1972-01-01

    Both the anisotropic and isotropic diffusion theories can be used to extrapolate proton fluxes for E greater than or equal to 10 meV for over 50% of the particle events. The isotropic diffusion theory uses a diffusion coefficient: D = Mr sup beta. It was found that M and beta tended to be functions of flare position on the solar disk. A measurement of the interplanetary flux in near earth space gives a good indication of the polar cap fluxes. It was found that the 30 MHz absorption over the poles during a PCA is proportional to the square root of the integral proton flux E greater than or equal to 11 meV in interplanetary space, J = KA squared, with K = 8 plus or minus 2 and J in protons/sq cm-sec-ster.

  2. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  3. COPPER-64 Production Studies with Natural Zinc Targets at Deuteron Energy up to 19 Mev and Proton Energy from 141 Down to 31 Mev

    NASA Astrophysics Data System (ADS)

    Bonardi, Mauro L.; Birattari, Claudio; Groppi, Flavia; Song Mainard, Hae; Zhuikov, Boris L.; Kokhanyuk, Vladimir M.; Lapshina, Elena V.; Mebel, Michail V.; Menapace, Enzo

    2004-07-01

    High specific activity no-carrier-added 64Cu is a β-/β+ emitting radionuclide of increasing interest for PET imaging, as well as systemic and targeted radioimmunotherapy of tumors. Its peculiarity of intense Auger emitter is still under investigation. The cross-sections for production of 64Cu from Zn target of natural isotopic composition were measured in the deuteron energy range from threshold up to 19 MeV and proton energy range from 141 down to 31 MeV. The stacked-foil technique was used at both K=38 cyclotron of JRC-Ispra of CEC, Italy and 160 MeV intersection point of INR proton-LINAC in Troitsk, Russia. Several Ga, Zn, Cu, Ni, Co, V, Fe and Mn radionuclides were detected in Zn targets at the EOB. Optimized irradiation conditions are reported as a function of deuteron energy and energy loss into the Zn target, as well as target irradiation time and cooling time after radiochemistry. The activity of n.c.a. 64Cu was measured through its only γ emission of 1346 keV (i.e. 0.473 % intensity) both by instrumental and radiochemical methods, due to the non-specificity of annihilation radiation at 511 keV. To this last purpose, it was necessary to carry out a selective radiochemical separation of GaIII radionuclides by liquid/liquid extraction from the bulk of irradiated Zn targets and other spallation products, which remained in the 7 M HCl aqueous phase. Anion exchange chromatography tests had been carried out to separate the 64Cu from all others radionuclides in n.c.a. form. Theoretical calculations of cross-sections were performed with codes EMPIRE II and PENELOPE for deuteron reactions and CEF model and HMS-ALICE hybrid model for proton reactions. The theoretical results are presented and compared with the experimental values.

  4. Hydrogen release from 800 MeV proton-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; Venhaus, T. J.; Causey, R. A.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    Tungsten irradiated in spallation neutron sources, such as those proposed for the accelerator production of tritium (APT) project, will contain large quantities of generated helium and hydrogen gas. Tungsten used in proposed fusion reactors will also be exposed to neutrons, and the generated protium will be accompanied by deuterium and tritium diffusing in from the plasma-facing surface. The release kinetics of these gases during various off-normal scenarios involving loss of coolant and after heat-induced rises in temperature are of particular interest for both applications. To determine the release kinetics of hydrogen from tungsten, tungsten rods irradiated with 800 MeV protons in the Los Alamos Neutron Science Center (LANSCE) to high exposures as part of the APT project have been examined. Hydrogen evolution from the tungsten has been measured using a dedicated mass-spectrometer system by subjecting the specimens to an essentially linear temperature ramp from ˜300 to ˜1500 K. Release profiles are compared with predictions obtained using the Tritium Migration Analysis Program (TMAP4). The measurements show that for high proton doses, the majority of the hydrogen is released gradually, starting at about 900 K and reaching a maximum at about 1400 K, where it drops fairly rapidly. Comparisons with TMAP show quite reasonable agreement using a trap energy of 1.4 eV and a trap density of ˜7%. There is a small additional release fraction occurring at ˜550 K, which is believed to be associated with low-energy trapping at or near the surface, and, therefore, was not included in the bulk TMAP model.

  5. Proton-induced fragmentation of carbon at energies below 100 MeV

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Streibel, T.; Roecher, H.; Dreute, J.; Hirzebruch, S. E.; Huentrup, G.; Heinrich, Wolfgang

    1994-01-01

    Radiation effects caused by single cosmic ray particles have been studied for many years in radiobiological experiments for different biological objects and biological end-points. Additionally, single event effects in microelectronic devices have gained large interest. There are two fundamental mechanisms by which a single particle can cause radiation effects. On the one hand, a cosmic ray ion with high linear energy transfer can deposit a high dose along its path. On the other hand, in a nuclear collision, a high dose can be deposited by short range particles emitted from the target nucleus. In low earth orbits a large contribution to target fragmentation events originates from trapped protons which are encountered in the South Atlantic Anomaly. These protons have energies up to a few hundred MeV. We study the fragmentation of C, O and Si nuclei - the target nuclei of biological material and microelectronic devices - in nuclear collisions. Our aim is to measure production cross sections, energy spectra, emission directions and charge correlations of the emitted fragments. The present knowledge concerning these data is rather poor. M. Alurralde et al. have calculated cross sections and average energies of fragments produced from Si using the cascade-evaporation model. D.M. Ngo et al. have used the semiempirical cross section formula of Silberberg and Tsao to calculate fragment yields and the statistical model of Goldhaber to describe the reaction kinematics. Cross sections used in these models have uncertainties within a factor of two. Our data will help to test and improve existing models especially for energies below 300 MeV/nucleon. Charge correlations of fragments emitted in the same interaction are of particular importance, since high doses can be deposited if more than one heavy fragment with a short range is produced.

  6. Structure of low-lying states of {sup 10,11}C from proton elastic and inelastic scattering

    SciTech Connect

    Jouanne, C.; Lapoux, V.; Auger, F.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lobo, G.; Musumarra, A.; Nalpas, L.; Pollacco, E.; Sida, J.-L.; Trotta, M.; Blumenfeld, Y.; Khan, E.; Suomijaervi, T.; Zerguerras, T.; Roussel-Chomaz, P.; Savajols, H.; Lagoyannis, A.; Pakou, A.

    2005-07-01

    To probe the ground state and transition densities, elastic and inelastic scattering on a proton target were measured in inverse kinematics for the unstable {sup 10}C and {sup 11}C nuclei at 45.3 and 40.6 MeV/nucleon, respectively. The detection of the recoil proton was performed by the MUST telescope array, in coincidence with a wall of scintillators for the quasiprojectile. The differential cross sections for elastic and inelastic scattering to the first excited states are compared to the optical model calculations performed within the framework of the microscopic nucleon-nucleus Jeukenne-Lejeune-Mahaux potential. Elastic scattering is sensitive to the matter-root-mean square radius found to be 2.42{+-}0.1 and 2.33{+-}0.1 fm, for {sup 10,11}C, respectively. The transition densities from cluster and mean-field models are tested, and the cluster model predicts the correct order of magnitude of cross sections for the transitions of both isotopes. Using the Bohr-Mottelson prescription, a profile for the {sup 10}C transition density from the 0{sup +} ground to the 2{sub 1}{sup +} state is deduced from the data. The corresponding neutron transition matrix element is extracted: M{sub n}=5.51{+-}1.09 fm{sup 2}.

  7. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  8. Design and operation of a proton microscope for radiography at 800 MEV

    SciTech Connect

    Mottershead, C. T.; Barlow, D. B.; Blind, B.; Hogan, G. E.; Jason, A. J.; Merrill, F. E.; Morley, Kevin B.; Morris, C.; Saunders, A.; Valdiviez, R.

    2003-01-01

    A high-magnification high-resolution option is desirable for the study of small-scale dynamic experiments at the LANSCE 800-MeV Proton Radiography Facility. Magnification is achievable by either repowering the existing imaging-lens quadrupoles, using new high-gradient quadrupoles, or some hybrid combination of the two. The large and complex parameter space of magnetic optics solutions was studied extensively with the 3rd order optics code MARYLIE. Some of the hybrid solutions achieve magnifications up to 150, but at the price of high chromatic aberrations. In the end, a design using only new high-gradient permanent-magnet quadrupoles was selected and built at the design parameters that minimized chromatic aberration per unit magnification. The design has a moderate magnification of 7.1 and 15.8 at the two existing image stations. First-beam commissioning results exceeded expectations. Image contrast is produced by multiple Coulomb scattering in the thin objects. Early experimental objectives are to optimize this contrast by collimator design and by adjusting the correlation in the illuminating beam, as well as to characterize the (quite high) resolution limits of the system.

  9. Test of charge symmetry in neutron-proton elastic scattering at 477 MeV

    SciTech Connect

    Abegg, R.; Bandyopadhyay, D.; Birchall, J.; Cairns, E.W.; Coombes, H.; Davis, C.A.; Davison, N.E.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Gubler, H.P.; Healy, D.C.; Lapointe, C.; Lee, W.P.; McDonald, W.J.; Miller, C.A.; Moss, G.A.; Plattner, G.R.; Poffenberger, P.R.; Ramsay, W.D.; Roy, G.; Soukup, J.; Svenne, J.P.; Tkachuk, R.; van Oers, W.T.H.; Wait, G.D.; Zhang, Y.P.

    1986-06-16

    An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry violating component of the n-italic-p-italic interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers A-italic/sub n-italic/ and A-italic/sub p-italic/ at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference t-italich-italice-italict-italica-italic/sub 0//sub n-italic/(A/sub n/)= -t-italich-italice-italict-italica-italic/sub 0//sub n-italic/(A/sub p/) = +0.13X(de +- 0.06 X(de( +- 0.03X(de) where the second error is a worst case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle A-italic/sub n-italic/-A/sub p/ = +0.0037 +- 0.0017( +- 0 .0008).

  10. {sup 7}Li(p,n) NUCLEAR DATA LIBRARY FOR INCIDENT PROTON ENERGIES TO 150 MEV

    SciTech Connect

    S. MASHNIK; ET AL

    2000-11-01

    Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Accelerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+{sup 7}Li reaction, to predict neutron production from thin and thick lithium targets. In this report we describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for incident protons with energies up to 150 MeV. The important {sup 7}Li(p,n{sub 0}) and {sup 7}Li(p,n{sub 1}) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. This leads to the emission of lower-energy neutrons and other charged particles and gamma-rays from preequilibrium and compound nucleus decay processes. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.

  11. Resonant inelastic X-ray scattering spectrometer with 25 meV resolution at the Cu K-edge.

    PubMed

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank Uwe; Wille, Hans Christian; Yavaş, Hasan

    2015-07-01

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the Cu K-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO₂) pixels, the spectrometer delivers a resolution near 25 meV (FWHM) at 8981 eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick-Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal. PMID:26134800

  12. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  13. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  14. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV.

    PubMed

    Sjue, S K L; Mariam, F G; Merrill, F E; Morris, C L; Saunders, A

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets. PMID:26827356

  15. Assessment of nuclear-reaction codes for proton-induced reactions on light nuclei below 250 MeV

    NASA Astrophysics Data System (ADS)

    Braunn, Benjamin; Boudard, Alain; David, Jean-Christophe; Koning, Arjan J.; Leprince, Anne; Leray, Sylvie; Mancusi, Davide

    2015-07-01

    We assess the suitability of nuclear-reaction codes for the generation of accurate cross-section libraries targeted at the simulation of the transport of high-energy protons (up to 250 MeV) in the human body, or in any material containing light nuclides. To this end we present an extensive study of elastic, reaction and fragmentation cross sections for proton-induced reactions on several nuclides. We compare TALYS evaluations against experimental data and, wherever applicable, against the predictions of the INCL/ABLA07 nuclear-reaction model. The TALYS evaluations have been cast in the form of a new cross-section library, which also includes evaluated proton-proton cross sections based on the NN-OnLine tool.

  16. Development of a gaseous proton-recoil detector for fission cross section measurements below 1 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2016-03-01

    The elastic H(n,p) reaction is sometimes used to measure neutron flux, in order to produce high precision measurements. The use of this technique is not straightforward to use below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments have been carried out at the AIFIRA facility to investigate such background and determine its origin and components. Based on these investigations, a gaseous proton-recoil detector has been designed, with a reduced low energy background.

  17. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method. PMID:22944532

  18. Stopping powers of polycarbonate for 0.36-5.94-MeV protons and 1.0-24.0-MeV α particles

    NASA Astrophysics Data System (ADS)

    Räisänen, J.; Trzaska, W. H.; Alanko, T.; Lyapin, V.; Porter, L. E.

    2003-08-01

    The stopping powers of polycarbonate for protons of energy 0.6-5.9 MeV and α particles of energy 2.0-24.0 MeV have been measured in a transmission experiment employing thin-foil targets. The essence of the novel experimental method employed in the present measurements is to record both projectile energy and time of flight while constantly alternating measurements with and without the target foil in place. The accuracies of the proton data and α-particle data range from 2.0% to 3.0% and 2.2% to 2.7%, respectively. All of the resulting measurements were analyzed in terms of modified Bethe-Bloch theory in order to extract values of the target mean excitation energy (I) and Barkas-effect parameter (b). The composite results for the two projectiles are that I=71.52 eV and b=1.13, the former value lying about one standard deviation below the additivity value and the latter value lying about one standard deviation below the expected value of 1.4±0.1. Previous measurements of the stopping power of polycarbonate for 7Li ions were analyzed by the same method, but with the inclusion of an effective charge parameter (λ). The proton and α-particle data, with a few lower-energy points included, were analyzed for a three-parameter fit, also. Results for the three projectiles studied indicate both internal consistency and agreement with expectations based on modified Bethe-Bloch theory.

  19. Stopping powers of havar for 0.63 5.9 MeV protons and 2.6 24 MeV alpha particles

    NASA Astrophysics Data System (ADS)

    Porter, L. E.; Trzaska, W. H.; Räisänen, J.; Lyapin, V.

    2004-11-01

    A transmission experiment utilizing thin foil targets has been conducted in order to establish the stopping powers of the cobalt-base alloy, havar, for 0.6-5.9 MeV protons and 2.6-24 MeV alpha particles. The basic technique of the novel experimental method used was to record both the projectile energy and the time of flight while alternating measurements with and without the target in place. The uncertainties of the proton and alpha particle data sets ranged from 1.4 to 2.3% and 1.1 to 1.5%, respectively. Modified Bethe-Bloch theory was applied to the measurements in order to ascertain values of the target mean excitation energy (I) and Barkas-effect parameter (b) for each projectile. The extracted values were I = 304.3 ± 2.4 eV and b = 1.37 ± 0.04 for the case of protons, and I = 306.3 ± 2.3 eV and b = 1.47 ± 0.03 for the case of alpha particles. The I-values are somewhat higher than the additivity-based expectation of 295.7 eV, whereas the b-values are clearly consistent with the expected range of 1.4 ± 0.1. The parameter values extracted from the measurements are appraised for compatibility with recently observed trends in values of I and of b with increasing projectile atomic number.

  20. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  1. Routine production of copper-64 using 11.7MeV protons

    SciTech Connect

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I.

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  2. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6-3.2 MeV

    SciTech Connect

    Bonnet, T.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M. M.

    2013-01-15

    We have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV. Monoenergetic protons were produced with the 3.5 MV AIFIRA (Applications Interdisciplinaires de Faisceaux d'Ions en Region Aquitaine) accelerator at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG). The IPs were irradiated with protons backscattered off a tantalum target. We present the photo-stimulated luminescence response of the IPs together with the fading measurements for these IPs. A method is applied to allow correction of fading effects for variable proton irradiation duration. Using the IP fading corrections, a model of the IP response function to protons was developed. The model enables extrapolation of the IP response to protons up to proton energies of 10 MeV. Our work is finally compared to previous works conducted on Fuji TR IP response to protons.

  3. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  4. Hadron multiplicity variation with Q2 and scale breaking of the Hadron distributions in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hamacher, K.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Korzen, B.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Malecki, P.; Maire, M.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Sholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1985-12-01

    Measurements are presented of the variation with Q2 (scaling violation) of the hadron multiplicity in deep inelastic muon-proton scattering. An increase in the average multiplicity of both the charged hadrons and K0 mesons is observed with increasing Q2 or xBj for fixed centre-of-mass energy W. The study of the shape of the effective fragmentation function Dh (z, W, Q2) shows that the increase of the particle yield with Q2 takes place for low z particles. The variation of the hadron distributions with Q2 is also studied in the current fragmentation region where a decrease in multiplicity is observed. Such effects are expected from QCD.

  5. Electromagnetic M 1 transition strengths from inelastic proton scattering: The cases of 48Ca and 208Pb

    NASA Astrophysics Data System (ADS)

    Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.; Wambach, J.

    2016-04-01

    Inelastic proton scattering at energies of a few hundred million electron volts and extreme forward angles selectively excite the isovector spin-flip M 1 (IVS M 1 ) resonance. A method based on isospin symmetry is presented to extract its electromagnetic transition strength from the (p ,p') cross sections. It is applied to 48Ca, a key case for an interpretation of the quenching phenomenon of the spin-isospin response, and leads to a M 1 strength consistent with an older (e ,e') experiment excluding the almost two times larger value from a recent (γ ,n ) experiment. Good agreement with electromagnetic probes is observed in 208Pb, suggesting the possibility of extracting systematic information on the IVSM1 resonance in heavy nuclei.

  6. An Observational Test of the Stability of Inner Belt Protons Above 60 Mev Using Measurements Separated By 41 Years

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; O'Brien, T. P., III; Looper, M. D.; Blake, J. B.; George, J. S.

    2014-12-01

    The relative stability of protons trapped in the inner Van Allen radiation belt is a unique signature of the near-Earth radiation environment. While the outer electron belt changes its topography and intensity on timescales of less than a day, calculations indicate that protons in the deepest portions of the inner belt can remain on drift shells for centuries. The long lifetimes for equatorially mirroring protons have never been experimentally verified because few missions traverse this challenging environment, and those that have attempted to quantify the proton flux there have faced potentially large backgrounds from penetrating protons outside the instrument field of view. Today, the Relativistic Proton Spectrometer (RPS) investigation on board the Van Allen Probes offers a background-free reference and hence a unique opportunity to compare the present state of inner belt protons with prior measurements. In this study we revisit one relatively clean, and possibly the most accurate historical dataset: a Cherenkov proton spectrometer that operated in a highly inclined 132x1932 km orbit in 1971. The OV1-20P proton spectrometer covered the energy range of ~65-550 MeV (completely within the RPS energy range), had good background rejection because of a fast scintillator coincidence requirement, but operated off of a flight battery for only 10 days. The short lifetime of the OV1-20P mission is the primary reason it did not have significant impact on subsequent studies of the inner belt. At the meeting we will report on a comparison of OV1-20P and RPS fluxes at the same magnetic field coordinates. Our 41-year measurement baseline is not anywhere near a continuous record of course, but it is rare in space science that we have the opportunity to measure a trapped radiation environment on the timescale of decades.

  7. Most probable charge of fission products in 24 MeV proton induced fission of {sup 238}U

    SciTech Connect

    Kudo, H.; Maruyama, M.; Tanikawa, M.; Shinozuka, T.; Fujioka, M.

    1998-01-01

    The charge distributions of fission products in 24 MeV proton-induced fission of {sup 238}U were measured by the use of an ion-guide isotope separator on line. The most probable charge (Z{sub p}) of the charge distribution was discussed in view of the charge polarization in the fission process. It was found that Z{sub p} mainly lies on the proton-rich side in the light mass region and on the proton-deficient side in the heavy mass region compared with the postulate of the unchanged charge distribution. The charge polarization was examined with respect to production Q values. {copyright} {ital 1998} {ital The American Physical Society}

  8. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    SciTech Connect

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; Morley, Deborah J.; Saunders, Alexander

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  9. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGESBeta

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  10. Optically stimulated luminescence from Al 2O 3:C irradiated with 10-60 MeV protons

    NASA Astrophysics Data System (ADS)

    Edmund, J. M.; Andersen, C. E.; Greilich, S.; Sawakuchi, G. O.; Yukihara, E. G.; Jain, M.; Hajdas, W.; Mattsson, S.

    2007-09-01

    We investigated the potential use of Al 2O 3:C for medical proton dosimetry. Detector crystals coupled to fiber-optic cables were irradiated in proton beams with energies from 10 to 60 MeV. The key finding is that the initial intensity of the optically stimulated luminescence (OSL) signal is energy independent for small detectors (<0.5 mm) and relatively small doses (<0.3 Gy). This feature is related to the supralinearity of the detectors dose-response to low linear energy transfer (LET) radiation. The results show that our system can be used in medical proton dosimetry without LET-dependent correction factors in the dose and energy interval investigated.

  11. 2.6 MeV proton irradiation effects on the surface integrity of depleted UO2

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; He, L.; Gupta, M.; Gan, J.; Nelson, A.; El-Azab, A.; Allen, T. R.

    2014-01-01

    The effect of low temperature proton irradiation in depleted uranium dioxide was examined as a function of fluence. With 2.6 MeV protons, the fluence limit for preserving a good surface quality was found to be relatively low, about 1.4 and 7.0 × 1017 protons/cm2 for single and poly crystalline samples, respectively. Upon increasing the fluence above this threshold, severe surface flaking and disintegration of samples was observed. Based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) observations the causes of surface failure were associated to high H atomic percent at the peak damage region due to low solubility of H in UO2. The resulting lattice stress is believed to exceed the fracture stress of the crystal at the observed fluencies. The oxygen point defects from the displacement damage may hinder the H diffusion and further increase the lattice stress, especially at the peak damage region.

  12. Inelastic Interactions of Proton with Emulsion Nuclei without Shower Particle Creation

    SciTech Connect

    Abdelsalam, A.; El-Nagdy, M. S.; Rashed, N.; Badawy, B. M.

    2007-02-14

    This paper presents exhaustively the general characteristics of the inelastic interactions of P, 4He and 7Li with emulsion nuclei distinguished without relativistic hadrons (ns = 0) in Lab. system. The dependence of these interactions on the projectile and target sizes is presented. It is found that, the probability of the events having (ns = 0) is dependent on projectile size and incident energy. The average no. of grey particles and black particles as well as the ratio / are displayed for different target size. The multiplicity distribution of different target fragments for the events having (ns = 0), ns {>=} 0 and those of complete destruction (Nh {>=} 28) are presented.

  13. Measurement of hadron azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pavel, N.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Sandacz, A.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    A study of the distribution of the azimuthal angle ϕ of charged hadrons in deep inelastic μ- p scattering is presented. The dependence of the moments of this distribution on the Feynman x variable and the momentum transverse to the virtual photon indicates that non-zero moments arise mainly from the effects of the intrinsic K T of the struck quark with < K {/T 2}>>≳(0.44 GeV)2, and to a lesser extent from QCD processes. No significant variation with Q 2 or W 2 is observed.

  14. Proton and antiproton production in deep inelastic muon-nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jansco, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-12-01

    New results on proton and antiproton production in the target and current fragmentation regions of high energy muon-nucleon scattering are presented. Proton and antiproton production is investigated as a function of Feynman x and rapidity. No significant difference is observed between production on hydrogen and deuterium targets. Correlations between pp,pbar p andbar pbar p pairs are analysed and the results are compared with the predictions of the Lund fragmentation model.

  15. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    SciTech Connect

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165/sup 0/ and 180/sup 0/ center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done.

  16. Electrophilic FLUORIDE-18 from AN 11 Mev Proton Cyclotron for Radiolabeling of Presynaptic Dopaminergic PET Tracers

    NASA Astrophysics Data System (ADS)

    Sunderland, John Joseph

    1990-01-01

    The reliable production of (^{18 }F) F_2 from an 11 MeV proton cyclotron has been achieved through the implementation of two accelerator targets built to exploit the copious ^{18}O(p,n)^ {18}F cross-section. Yields of electrophilic (^{18}F) F_2 from the targets reached deciCurie levels with specific activities approaching 3 Ci/mmole with 75 minute irradiations at 10 muA. Higher specific activities are expected with longer bombardments and increased beam current. The targets, one nickel, the other with a gold -plated target chamber, have been tested for (^ {18}F) F_2 production efficiency under two bombardment protocols. An economic two-step protocol cryogenically reclaims the precious enriched ^{18}O_{2 } target material following ^ {18}F production, followed by a second (^{18}F) F_2 recovery irradiation of Kr + F_2 . Studies of target performance using this protocol under variable irradiation conditions suggest a five compartment model governing the in-target kinetics. Similarly, the (^{18}F) F_2 yields have been tested using a single irradiation protocol consisting of bombardment of ^{18}O_{2} + F _2. Theoretical descriptions of beam induced phenomena in the irradiated target are also presented. The behavior of these targets cannot be judged solely on the amount of reactive ^{18 }F which elutes from the target; successful radiochemical synthesis utilizing this ^ {18}F activity in a model reaction is the true test. Synthesis of 6- (^{18 }F) fluoro-L-DOPA (6-FD) by the fluoro-demercuration method of Luxen served this purpose, testing the eletrophilic (^{18}F) F_2 gas from the two targets and two irradiation protocols. Elution of Kr + (^{18}F) F _2 from the two-step method achieved the expected 12% radiochemical yields from (^ {18}F) F_2, while experience with ^{18}F activity eluted with oxygen from the single irradiation protocol suffered lower yields. Solutions to problems associated with 6-FD studies for Positron Emission Tomography (PET) are addressed. A

  17. Irradiation of strontium chloride targets at proton energies above 35 MeV to produce PET radioisotope Y-86

    SciTech Connect

    Medvedev D. G.; Mausner, L.F.; Srivastava, S.C.

    2011-12-01

    Proton irradiation of natural and enriched SrCl{sub 2} targets was used to produce PET radioisotope {sup 86}. The proton energy was degraded from the incident 117.8 MeV to induce the {sup 88}Sr(p,3n) reaction. For the irradiation three pellets made of {sup nat}SrCl{sub 2} (6.61 and 74.49 g) and {sup 88}SrCl{sub 2} (5.02 g) were pressed and individually encapsulated in stainless steel target bodies. The two smaller targets were irradiated for 0.5-1 h at the energy - 46 {yields} 37 MeV to take advantage of the peak in the excitation function of the {sup 88}Sr(p,3n) reaction. The larger target was irradiated at 66.4 {yields} 44.6 MeV. The irradiated pellets were chemically processed to selectively separate {sup 86}Y radioisotope using Eichrom DGA (N,N,N{prime},N{prime}-tetra-n-octyldiglycolamide) resin. The production yields of {sup 86}Y were determined to be 10-13 mCi/{mu}A h. Coproduction of {sup 87m}Y in the final product was 34% for {sup nat}SrCl{sub 2} and 54% for {sup 88}SrCl{sub 2} target. The chemical separation yield of yttrium reached 88-92%. The developed chemical procedure allows for the same day processing and shipment of the isotope to users.

  18. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  19. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    NASA Astrophysics Data System (ADS)

    Huerta-Parajon, M.; Martinez-Ballarin, R.; Abad, E.

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 106 protons/cm2 s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  20. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Hemez, F; Ballard, B; Bach, H; Birnbaum, E R; Bitteker, L J; Couture, A; Dry, D; Fassbender, M E; Gulley, M S; Jackman, K R; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for (223,)(225)Ra, (225)Ac and (227)Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for (223,)(225)Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of (225)Ac and (223)Ra below 200 MeV is a viable production method. PMID:22940414

  1. Excitation functions of (nat)Zn(p,x) nuclear reactions with proton beam energy below 18 MeV.

    PubMed

    Asad, Ali H; Chan, Sun; Morandeau, Laurence; Cryer, David; Smith, Suzanne V; Price, Roger I

    2014-12-01

    We measured the excitation functions of (nat)Zn (p,x) reactions up to 17.6MeV, using the stacked-foils activation technique. High-purity natural zinc (and copper) foils were irradiated with proton beams generated by an 18MeV isochronous cyclotron. Activated foils were measured using high-purity Ge gamma spectroscopy to quantify the radionuclides (61)Cu, (66)Ga, (67)Ga, and (65)Zn produced from the reactions. Thick-target integral yields were also deduced from the measured excitation functions of the produced radioisotopes. These results were compared with the published literature and were found to be in good agreement with most reports, particularly those most recently compiled. PMID:25108597

  2. Anisotropies in the interplanetary intensity of solar protons with energies greater than 0.3 MeV.

    NASA Technical Reports Server (NTRS)

    Innanen, W. G.; Van Allen, J. A.

    1973-01-01

    By using Explorer 35 interplanetary observations of solar protons with energies greater than 0.3 MeV during ten selected solar events (1967-1970) the tine dependence of intensity and of the angular distribution of intensity has been studied for the first time in the sub-MeV range of energy. The respective contributions of diffusive and convective transport are resolved. Results are qualitatively similar to those of McCracken et al. (1968, 1971) in the energy range from 7.5to 45 MeV; but, as was expected, convective transport is found to be relatively more important at the lower energies. The convective component of the anisotropy vector yields values of the solar wind velocity in good agreement with directly measured values.

  3. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y[sub cut], in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W [approx equal] 20 GeV. Sensitivities of the jet rate measurements to the low x (x [approx equal] 0.02) gluon content of the nucleon and the evolution of [alpha][sub s], are studied.

  4. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y{sub cut}, in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W {approx_equal} 20 GeV. Sensitivities of the jet rate measurements to the low x (x {approx_equal} 0.02) gluon content of the nucleon and the evolution of {alpha}{sub s}, are studied.

  5. Calculations of Neutron- and Proton-Induced Reactions up to 200 MeV for Target 238U

    SciTech Connect

    Yu Hongwei; Zhao Zhixiang; Cai Chonghai

    2005-05-24

    The calculations of neutron- and proton-induced reaction up to 200 MeV for target 238U are performed; the calculated results are generally in good agreement with experimental data, and the physics is rational. The theoretical framework consists of the spherical optical model, intranuclear cascade mechanism for nucleon emission based on empirical formula, preequilibrium emission theory based on exciton model, evaporation model, and Hauser-Feshbach statistical theory with a width fluctuation correction. The fission widths are calculated using the Bohr-Wheeler formula.

  6. Dynamic Strain on Thin Diaphragms of a Mercury Target During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    1999-11-13

    Extrinsic Fabry-Perot Interferometric fiber optic sensors were used to measure dynamic strains on thin diaphragms of a liquid mercury target, which was subjected to intense 800-MeV proton thermal shock tests. The mercury target is engineered with very thin end plates or diaphragms (either 0.6 mm or 1.9 mm) for studying large strain effects. During thermal shock tests, the mercury in the target interacted with an intense pulsed beam of 2.4x10{sup 13 protons}. The resulting pressure waves lead to large strains exceeding 250 microstrains on a 0.6-mm diaphragm. Significant factors relative to the accuracy of strain measurements are emphasized, such as the sensor air gap, alignment of sensors, and frequency response of the strain instrument. In this paper, dynamic strains measured on thin diaphragms are described and discussed.

  7. Application of a PAGAT/MgCl2 gel for dose measurements in a 150 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Tominaga, T.; Hayashi, S.; Usui, S.; Kawamura, H.; Katahira, K.

    2013-06-01

    The purpose of this study is to evaluate the dose response of polyacrylamide-based gel (PAGAT) when irradiated with clinical proton beams. Recently inorganic salt additive in gel has been reported to improve dose sensitivity substantially. We attempted to add MgCl2 (0.5M) to regular PAGAT gel in order to compensate its lower radiation sensitivity. The spin-spin relaxation rates (R2) as dose readout was calculated from MR imaging after irradiation with 150MeV proton beam. The dose sensitivity was discussed from the slope at dose-R2 response curve. As the result, the sensitivity of the gel with MgCl2 is approximately 3 times higher than that of regular PAGAT gel without spoiling dose response stability under the various irradiation conditions such as dose rate and dose integration.

  8. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    PubMed Central

    Chaudhary, Pankaj; Marshall, Thomas I.; Currell, Frederick J.; Kacperek, Andrzej; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions. PMID:26452569

  9. The radiation dosimetry of a quartz viewer irradiated with a 4.5 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Ouyasathian, Kalong

    The present dissertation describes a procedure to measure the radiation dose received by an accelerator operator who uses a quartz viewer to locate an ion beam. This procedure consists of the following steps: (i) A solid-state gamma radiation detector was calibrated to determine its efficiency and its energy scale. (ii) The calibrated detector was used to measure the gamma energy spectrum obtained when bombarding the viewer with the ion beam. This measurement was normalized, that is, beam current and measurement duration were determined. (iii) Individual gamma energy lines were extracted from the gamma spectrum and the respective energies and emission rates were obtained. Energies were checked with known transitions in silicon and oxygen, to ensure correct identification. (iv) The Compton gamma energy spectrum generated by the primary gamma rays was determined using a Compton code. (v) Finally the charged-ion bremsstrahlung spectrum was obtained using the formalism of Alder et. al. In this dissertation several prospective contributors to the radiation dose have been checked and were found to be insignificant. They were: the radiation dose due to x-rays generated by Compton electrons and the radiation dose generated by electrons produced by collisions with the incident ions. With a proton energy of 4.5 MeV the eye dose equivalent was determined at 0 and 90 degrees to the proton beam. At 0 degree with a proton fluence rate of 8.9 x 1011 protons/s the dose was 8.7 x 10-3 rem/hr. At 90 degrees with a proton fluence rate of 1.1 x 1012 protons/s the dose was 8.1 x 10-3 rem/hr.

  10. HETC96/MORSE calculations of activations in KEK beam stop and room by 500-MeV protons and comparisons with experiments

    SciTech Connect

    Fu, C.Y.; Gabriel, T.A.

    1997-05-01

    The 1996 version of HETC has a pre-equilibrium reaction model to bridge the gap between the existing intranuclear-cascade and evaporation models. This code was used to calculate proton-induced activations, to calculate neutron fluxes for neutron energies above 19.6 MeV, and to write the neutron source for lower energies to be transported further by MORSE. For MORSE, the HILO cross section library was used for neutron transport for all detectors. Additionally for the {sup 197}Au(n, {gamma}) detector, the BUGLE96 library was used to study the effects of the low-lying {sup 57}Fe inelastic levels and the resonance self-shielding in iron. Neutron fluxes were obtained from the track-length estimator for detectors inside the beam stop and from the boundary-crossing estimator for detectors attached to the surfaces of the concrete walls. Activation cross sections given in JAERI-Data/Code are combined with the calculated neutron fluxes to get the saturated activities induced by neutrons. C/E values are too low (0.5) for Fe(N, {chi}){sup 54}Mn, close to unity for Cu(n, {chi}){sup 58}Co, and too high (6.0) for {sup 197}Au (n, {gamma}){sup 198}Au. It is difficult to interpret the disagreements because most of the activation cross sections are also calculated and their uncertainties are not known. However, the calculated results are in good agreement with those calculated by others using different codes. Calculated results for four of the ten activations reported here have not been done previously, and among the four, {sup 197}Au(n, {gamma}) is the most bothersome because its cross section is the most well known while the calculated activations for most detector locations are in largest disagreement with experiments.

  11. Further results in the search for the direct two-proton decay of ^94Ag^m (J^π= 21^+, 6.7 MeV)

    NASA Astrophysics Data System (ADS)

    Cerny, J.; Lee, D. W.; Perajarvi, K.; Moltz, D. M.; Barquest, B. R.; Grossman, L. E.; Jeong, W.; Jewett, C. C.

    2008-10-01

    Both direct one-proton decay and direct two-proton decay of ^94Ag^m from this 0.4 s isomeric state have been reported in experiments utilizing the GSI on-line mass separator [1]. In the latter decay, coincident events between silicon E detectors with a threshold energy of 0.4 MeV and a summed decay energy of 1.9±0.1 MeV were observed with a yield of 350±210 pb in coincidence with γ-decays in the ^92Rh daughter. We utilized our helium-jet system at the LBNL 88-inch cyclotron to repeat this experiment, again employing the ^58Ni(^40Ca,p3n) reaction at 197 MeV. Reaction products were transported via a capillary to a detection area and collected on a slowly rotating wheel in front of an assembly of 24 δEgas-δEgas-ESi detector telescopes with a threshold of 0.4 MeV for identifying protons. Five of these telescopes observe the 0.79 MeV single proton decay from ^94Ag^m at the reported yield of 1.3 nb. In the 240/276 identified proton detector combinations with low background, no proton-proton coincidences have been observed. Data from the remaining 36 detector combinations require a separate analysis, which is in progress. Monte Carlo analyses of our anticipated proton-proton coincidences for both sets of detector combinations will be presented. ^ 1Mukha et al., Nature 439, 298 (2006).

  12. Activation calculations for trapped protons below 200 MeV: Appendix

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1991-01-01

    Tables are given displaying of the results of the activation calculations of metal samples and other material aboard the Long Duration Exposure Facility-1 (LDEF-1) and Spacelab-2 with the computer program, PTRAP4. The computer printouts give the reaction, the reactant product, the proton reaction cross sections as a function of the energy of the incident protons, and the activation as a function of distance into the sample from the exposed surface.

  13. Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV

    SciTech Connect

    Li, Z. P.; Hillhouse, G. C.; Meng, J.

    2008-07-15

    We present the first study to examine the validity of the relativistic impulse approximation (RIA) for describing elastic proton-nucleus scattering at incident laboratory kinetic energies lower than 200 MeV. For simplicity we choose a {sup 208}Pb target, which is a spin-saturated spherical nucleus for which reliable nuclear structure models exist. Microscopic scalar and vector optical potentials are generated by folding invariant scalar and vector scattering nucleon-nucleon (NN) amplitudes, based on our recently developed relativistic meson-exchange model, with Lorentz scalar and vector densities resulting from the accurately calibrated PK1 relativistic mean field model of nuclear structure. It is seen that phenomenological Pauli blocking (PB) effects and density-dependent corrections to {sigma}N and {omega}N meson-nucleon coupling constants modify the RIA microscopic scalar and vector optical potentials so as to provide a consistent and quantitative description of all elastic scattering observables, namely, total reaction cross sections, differential cross sections, analyzing powers and spin rotation functions. In particular, the effect of PB becomes more significant at energies lower than 200 MeV, whereas phenomenological density-dependent corrections to the NN interaction also play an increasingly important role at energies lower than 100 MeV.

  14. Charge and transverse momentum correlations in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C.; Benchouk, C.; Berghoff, G.; Bird, I.; Blurn, D.; Bohm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Hruck, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; Agostini, G. D'; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Adwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Wolf, G.

    1986-09-01

    Correlations between charged hadrons are investigated in a 280 GeV muon-proton scattering experiment. Although most of the observed particles are decay products it is shown that the correlations found originate in the fragmentation process and are not due simply to resonance production. Correlations are demonstrated between hadrons close in rapidity with respect to their charges and to the directions of their momentum components perpendicular to the virtual photon axis. Such short range correlations are predicted by the standard hadronization models.

  15. Characterization of radiation damage caused by 23 MeV protons in Multi-Pixel Photon Counter (MPPC)

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Xu, Yupeng; Liu, Congzhan; Gu, Yudong; Xie, Fei; Li, Yanguo; Hu, Hongliang; Zhou, Xu; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Zhang, Juan; Xu, Zhenling; Zhang, Yifei; Zhao, Jianling

    2016-06-01

    A automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors onboard the Hard X-ray Modulation Telescope (HXMT). It consists of a Am241 radioactive source and a photo-detector. The Am241 radioactive source is tagged within a plastic scintillator (BC440M). The scintillating photons produced by the decayed alpha particles from the radioactive source is readout by the photo-detector. The Multi-Pixel Photon Counter (MPPC) produced by Hamamatsu is used as the photo-detector for AGC. To verify the feasibility of its application in space environment, four MPPCs (S10362-33-050C) were irradiated by a beam of 23 MeV protons. The integrated proton fluence that exposed to the four MPPC samples are 1.0 ×108 p cm-2 , 2.0 ×108 p cm-2 , 4.0 ×108 p cm-2 and 1.0 ×1010 p cm-2 respectively. It is found that the increment leakage current of the MPPC samples caused by irradiation damage increase linearly with the integrated fluence. The pulse-height resolution of the MPPC has deteriorated hardly after irradiation. When irradiated up to 1.1 ×109cm-2 1 MeV equivalent neutrons, the MPPC completely lost its photon-counting capability but could still work as a photo-detector for AGC. The MPPC fails as a photo-detector for the AGC when the irradiated 1 MeV neutron equivalent fluences is up to 2.7 ×1010cm-2 .

  16. Reinvestigation of the Direct Two-proton Decay of the Long-lived Isomer 94Agm [0.4 s, 6.7 MeV, (21+)

    SciTech Connect

    Cerny, J.; Moltz, D. M.; Lee, D. W.; Perajarvi, K.; Barquest, B. R.; Grossman, L. E.; Jeong, W.; Jewett, C.

    2009-03-05

    An attempt to confirm the reported direct one-proton and two-proton decays of the (21+) isomer at 6.7(5) MeV in 94Ag has been made. The 0.39(4) s half-life of the isomer permitted use of a helium-jet system to transport reaction products from the 40Ca + natNi reaction at 197 MeV to a low-background area; 24 gas Delta E-(Si) E detector telescopes were used to identify emitted protons down to 0.4 MeV. No evidence was obtained for two-proton radioactivity with a summed energy of 1.9(1) MeV and a branching ratio of 0.5(3)percent. Two groups of one-proton radioactivity from this isomer had also been reported; our data confirm the lower energy group at 0.79(3) MeV with its branching ratio of 1.9(5)percent.

  17. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGESBeta

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; Chen, Ching-Fong; Hogan, Gary E.; Hunter, James F.; Kwiatkowski, Kris K.; Mariam, Fesseha G.; McClellan, Kenneth J.; Merrill, Frank E.; et al

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  18. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets.

    PubMed

    Morris, C L; Bourke, M; Byler, D D; Chen, C F; Hogan, G; Hunter, J F; Kwiatkowski, K; Mariam, F G; McClellan, K J; Merrill, F; Morley, D J; Saunders, A

    2013-02-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods. PMID:23464222

  19. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. PMID:25628454

  20. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam

    NASA Astrophysics Data System (ADS)

    Hall, David C.; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  1. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. PMID:12539753

  3. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Astrophysics Data System (ADS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm 2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  4. 2.6 MeV Proton Irradiation Effects on the Surface Integrity of Depleted UO2

    SciTech Connect

    Pakarinen, Janne; He, Lingfeng; Gupta, Mahima; Gan, Jian; Nelson, Andrew; El-Azab, Anter; Allen, Todd

    2014-01-01

    The effect of low temperature proton irradiation in depleted uranium dioxide was examined as a function of fluence. With 2.6 MeV protons, the fluence limit for preserving a good surface quality was found to be relatively low, about 1.4 and 7.0 x 1017 protons/cm2 for single and poly crystalline samples, respectively. Upon increasing the fluence above this threshold, severe surface flaking and disintegration of samples was observed. Based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) observations the causes of surface failure were associated to high H atomic percent at the peak damage region due to low solubility of H in UO2. The resulting lattice stress is believed to exceed the fracture stress of the crystal at the observed fluencies. The oxygen point defects from the displacement damage may hinder the H diffusion and further increase the lattice stress, especially at the peak damage region.

  5. Proton Radiography of Field Distributions in Ultra-Intense-Laser Plasma Interactions with Pulse of MeV Proton Beams

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Kodama, Ryosuke; Tampo, Motonobu; Borghesi, Marco; Romagnani, Lorenzo; Fuchs, Julien; Amin, Munib; Pipahl, Ariane; Willi, Oswald; Michibata, Takuya; Mima, Kunioki; Azechi, Hiroshi

    2008-11-01

    Proton radiography has been used to observe transient electric and magnetic fields in laser plasma interactions. We report an experimental investigation of a transient electric field generated around a laser-irradiated-plasma-fiber attached on a tip of a cone-geometry target. The electric field guided and collimated energetic electrons generated by the laser-plasma interactions in the fiber. The front of these fields propagated along the fiber with the energetic electrons at almost the light velocity. Simulation with the Geant4 Monte Carlo code shows the electric field above a few TV/m were excited around the fiber.

  6. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    SciTech Connect

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.

    1998-12-31

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.

  7. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  8. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events

    NASA Astrophysics Data System (ADS)

    Núñez, Marlon

    2015-11-01

    A new model for predicting the occurrence of >100 MeV solar energetic proton (SEP) events and the first hours of the >100 MeV integral proton flux is presented. This model uses a novel approach based on the lag correlation between strong positive derivatives of X-ray flux and proton flux. The new model has been validated with data from January 1994 to September 2013, obtaining a probability of detection of all >100 MeV SEP events of 80.85%, a false alarm ratio of 29.62%, and an average warning time of 1 h and 6 min. The model identifies the associated flare and active region. Currently, there is no other automatic empirical or physics-based system able to predict SEP events of energies in the interval of 100 MeV to ~430 MeV (lower GLE cutoff according to Clem and Dorman (2000)). This paper also proposes the combined use of the new prediction model and the existing one for predicting >10 MeV SEP events. The combined SEP prediction models have been developed to improve mitigation of adverse effects on near-Earth and interplanetary missions.

  9. Measurement of the proton-air inelastic cross section at {radical}(s){approx_equal}2 TeV from the EAS-TOP experiment

    SciTech Connect

    Aglietta, M.; Castellina, A.; Fulgione, W.; Mannocchi, G.; Morello, C.; Trinchero, G. C.; Vallania, P.; Vernetto, S.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Chiavassa, A.; Galeotti, P.; Navarra, G.; Saavedra, O.; Vigorito, C.; Cantoni, E.; D'Ettorre Piazzoli, B.

    2009-02-01

    The proton-air inelastic cross section ({sigma}{sub p-air}{sup inel}) is measured at {radical}(s){approx_equal}2 TeV at the EAS-TOP extensive air shower experiment by studying the absorption length of cosmic ray proton primaries cascades reaching the maximum development at the observation level. Primary energies, in the region E{sub 0}=(1.5 divide 2.5){center_dot}10{sup 15} eV, are selected through the EAS muon number (N{sub {mu}}), and proton originated cascades at maximum development are selected by means of the shower size (N{sub e}). The observed absorption length ({lambda}{sub obs}) is a convolution of the proton-air interaction length ({lambda}{sub p-air}) and of the shower and detector fluctuations. The conversion factor k={lambda}{sub obs}/{lambda}{sub int} is obtained by means of simulations performed with the CORSIKA code and the QGSJET II and SIBYLL interaction models. The obtained value of the p-air inelastic cross section at {radical}(s){approx_equal}2 TeV is {sigma}{sub p-air}{sup inel}=338{+-}21(stat){+-}19(syst)-28(syst) mb. The statistical and systematic uncertainties, as well as the relationships with the pp (pp) total cross section measurements are discussed.

  10. Measurement of the inelastic cross section in proton-lead collisions at $\\sqrt{s_{_\\mathrm{NN}}}=$ 5.02 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-09-15

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. Our data sample, corresponding to an integrated luminosity of L = 12.6 ± 0.4 nb-1, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or -5 < η < -3, corrected for photon-induced contributions, experimental acceptance, and other instrumental effects. The inelastic cross section is measured to be σinel(pPb) = 2061 ± 3 (stat) ± 34 (syst) ± 72 (lumi) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. Furthermore, the value of σinel(pPb) is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.

  11. Measurement of the inelastic cross section in proton-lead collisions at √{sNN} = 5.02TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Trapani, P. P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-08-01

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. The data sample, corresponding to an integrated luminosity of L = 12.6 ± 0.4 nb-1, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or - 5 < η < - 3, corrected for photon-induced contributions, experimental acceptance, and other instrumental effects. The inelastic cross section is measured to be σinel (pPb) = 2061 ± 3 (stat) ± 34 (syst) ± 72 (lumi) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. The value of σinel (pPb) is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.

  12. MECHANICAL PROPERTIES AND MICROSTRUCTURE IN LOW ACTIVATION MARTENSITIC STEELS F82H AND OPTIMAX AFTER 800 MEV PROTON IRRADIATION

    SciTech Connect

    Y. DAI; ET AL

    1999-10-01

    Low-activation martensitic steels, F82H (mod.) and Optimax-A, have been irradiated with 800-MeV protons up to 5.9 dpa. The tensile properties and microstructure have been studied. The results show that radiation hardening increases continuously with irradiation dose. F82H has lesser irradiation hardening as compared to Optimax-A in the present work and DIN1.4926 from a previous study. The irradiation embrittlement effects are evident in the materials since the uniform elongation is reduced sharply to less than 2%. However, all the irradiated samples ruptured in a ductile-fracture mode. Defect clusters have been observed. The size and the density of defect clusters increase with the irradiation dose. Precipitates are amorphous after irradiation.

  13. Stopping power of palladium for protons in the energy range 0.300-3.100 MeV

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Sepúlveda, A.; Morales, J. R.; Rodriguez, T.; Burgos, E.; Fernández, H.

    2014-01-01

    The stopping power of palladium for protons has been measured using the transmission method with an overall uncertainty of around 5% over the energy range Ep=(0.300-3.100) MeV. These stopping power data are then compared to stopping power values calculated by the SRIM-2010 code and to those derived from a model based on the dielectric formalism. Subsequently, and within the framework of the modified Bethe-Bloch theory, this stopping power data were used for extracting Pd target mean excitation and ionization potential, (I = 468 ± 5 eV), and Barkas effect parameter, (b = 1.51 ± 0.06). A good agreement is found between the obtained results and values reported in literature.

  14. Measurement of excitation functions in proton induced reactions on natural copper from their threshold to 43 MeV

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Kim, Kwangsoo; Naik, Haladhara; Zaman, Muhammad; Yang, Sung-Chul; Kim, Guinyun

    2015-01-01

    We have measured the production cross-sections of the residual radionuclides from proton-induced reactions of natCu by using a stacked-foil activation and off-line γ-ray spectrometric technique in the energy range from their respective threshold to 43 MeV at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The measured results were compared with the earlier reported data as well as with the theoretical values obtained from the TENDL-2013 library based on the TALYS 1.6 code. The integral yields for thick target of the investigated radio-nuclides were calculated from the measured excitation function and the stopping power of natCu.

  15. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  16. Activation cross-sections of proton induced reactions on natSm up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Takács, S.; Ditrói, F.; Ignatyuk, A. V.

    2015-03-01

    Activation cross sections for proton induced reactions on Sm are presented for the first time for natSm(p,xn)154,152m2,152m1,152g,150m,150g,149,148,147,146,145Eu, natSm(p,x)153,145Sm, natSm(p,x)151,150,149,148g,148m,146,144,143Pm and natSm(p,x)141Nd up to 65 MeV. The cross sections were measured via activation method by using a stacked-foil irradiation technique and high resolution gamma ray spectroscopy. The results were compared with results of the nuclear reaction codes ALICE, EMPIRE and TALYS (results taken from TENDL libraries). Integral yields of the activation products were calculated from the excitation functions.

  17. Results of 1 MeV proton irradiation of front and back surfaces of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Kachare, R.; Weizer, V. G.

    1987-01-01

    Several silicon solar cells with and without back surface fields (BSF), having thicknesses of 200 microns and 63 microns were irradiated with 1 MeV protons having fluences between 1 times 10 to the 10th power and 1 times 10 to the 12th power p/square cm. The irradiation was performed using both normal and isotropic incidence on the front as well as back surfaces of the solar cells. The results of the back surface irradiations are analyzed using a model in which irradiation induced defects across the high-low (BSF) junction are considered. It is concluded that degradation of the high-low junction is responsible for the severe performance loss in thinner cells when irradiated from the rear.

  18. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  19. Spectroscopic determination of hypochlorous acid, in chloride brine solutions, featuring 5 MeV proton beam line experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, Thomas; Paviet-Hartmann, Patricia; Wetteland, Christopher; Lu, Ningping

    2003-04-01

    The irradiation effects of 4.9 MeV protons on salt repository related brines are investigated spectrophotometrically. The induced formation of hypochlorous acid is determined up to doses of 11 kGy in 3.7 M MgCl 2·6H 2O and in a multicomponent brine of high concentration: Brine G. The build-up of hypochlorous acid to a steady-state concentration is found to be independent on the chloride concentration. The ultimate objective of this experiment is the estimation of the G value for HOCl in which meaningful predictions of long-term redox conditions in a nuclear repository strongly depend on. This paper describes our first steps towards the determination of HOCl.

  20. Elastic scattering and breakup of 11Be on protons at 26.9 A MeV

    NASA Astrophysics Data System (ADS)

    Chen, J.; Lou, J. L.; Ye, Y. L.; Li, Z. H.; Ge, Y. C.; Li, Q. T.; Li, J.; Jiang, W.; Sun, Y. L.; Zang, H. L.; Aoi, N.; Ideguchi, E.; Ong, H. J.; Ayyad, Y.; Hatanaka, K.; Tran, D. T.; Yamamoto, T.; Tanaka, M.; Suzuki, T.; Tho, N. T.; Rangel, J.; Moro, A. M.; Pang, D. Y.; Lee, J.; Wu, J.; Liu, H. N.; Wen, C.

    2016-03-01

    The elastic scattering and breakup of the halo nucleus 11Be on protons at an incident energy of 26.9 A MeV have been measured. The 11Be+p elastic scattering cross sections at various energies, including the present one, are systematically analyzed with the Chapel Hill 89 (CH89) and Koning-Delaroche (KD) global optical model potentials (OMPs), and the corresponding normalization factors are obtained. An extended version of the continuum-discretized coupled-channels (XCDCC) formalism, including dynamic core excitation effects, is applied to analyze the elastic scattering and breakup data. It is found that the core excitation plays a moderate role in the elastic scattering and breakup reaction of the halo nucleus 11Be, being consistent with previous results at higher energies.

  1. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam

    PubMed Central

    Carante, Mario Pietro; Ballarini, Francesca

    2016-01-01

    A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA “cluster lesion” (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose–responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of

  2. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam.

    PubMed

    Carante, Mario Pietro; Ballarini, Francesca

    2016-01-01

    A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA "cluster lesion" (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose-responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of

  3. Polarized-target asymmetry in pion-proton bremsstrahlung at 298 MeV

    SciTech Connect

    Bosshard, A.; Amsler, C.; Bistirlich, J.A.; van den Brandt, B.; Crowe, K.M.; Doebeli, M.; Doser, M.; Haddock, R.P.; Konter, J.A.; Ljungfelt, S.; Loude, J.F.; Mango, S.; Meyer, C.A.; Perroud, J.P.; Riedlberger, J.; Renker, D.; Schaad, M.; Sober, D.I.; Truoel, P.; Weymuth, P. Lawrence Berkeley Laboratory, University of California at Berkeley, Berkeley California 94720 Paul Scherrer Institut, 5232 Villigen, Paul Scherrer Institut, Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 Institut de Physique Nucleaire, Universite de Lausanne, 1015 Lausanne, Department of Physics, Catholic University of America, Washington, D.C. 10024 )

    1990-05-28

    First data are presented for the polarized-target asymmetry in the reaction {pi}{sup +}{ital p}{r arrow}{pi}{sup +}{ital p}{gamma} at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment {mu}{sub {Delta}} of the {Delta}{sup ++}(1232 MeV). A fit of the asymmetry in the cross section {ital d}{sup 5}{sigma}/{ital d}{Omega}{sub {pi}} {ital d}{Omega}{sub {gamma}} {ital dk} as a function of the photon energy {ital k} to predictions from a recent isobar-model calculation with {mu}{sub {Delta}} as the only free parameter yields {mu}{sub {Delta}}=1.64({plus minus}0.19exp{Delta},{plus minus}0.14 theor){mu}{sub {ital p}}. Though this value agrees with bag-model corrections to the SU(6) prediction {mu}{sub {Delta}}=2{mu}{sub {ital p}}, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

  4. Characterization of the proton beam at the output of the 6.7MeV LEDA RFQ.

    SciTech Connect

    Allen, C. K.; Colestock, P. L. ,; Gilpatrick, J. D.; Lysenko, W. P.; Rybarcyk, L. J.; Schneider, J. D.; Sheffield, R. L.; Smith, H. V.; Wangler, Thomas P.,; Crandall, K. R.; Chan, D.; Garnett, R. W.; Schulze, M. E.

    2001-01-01

    The present configuration of the Low-Energy Demonstration Accelerator (LEDA) consists of a 75-keV proton injector, a 6.7-MeV 350-MHz cw radio-frequency quadrupole (RFQ) with associated high-power and lowlevel rf systems, a 52-magnet periodic lattice followed by a short high-energy beam transport (HEBT) and highpower (670-kW cw) beam stop. The rms beam emittance was measured prior to the installation of the 52-magnet lattice, based on wire-scanner measurements of the beam profile at a single location in the HEBT. New measurements with additional diagnostic hardware have been performed to determine the rms transverse beam properties of the beam at the output of the 6.7-MeV LEDA RFQ. The 52-magnet periodic lattice also includes ten beam position monitors (BPMs) evenly spaced in pairs of two. The BPMs provide a measure of the bunched beam current that exhibits nulls at different locations in the lattice. Model predictions of the locations of the nulls and the strength of the bunched beam current are made to determine what information this data can provide regarding the longitudinal beam emittance.

  5. Forward-angle neutron-proton scattering at 96 MeV

    SciTech Connect

    Johansson, C.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Klug, J.; Mermod, P.; Pomp, S.; Oesterlund, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.

    2005-02-01

    The differential np scattering cross section has been measured at 96 MeV in the angular range {theta}{sub c.m.}=20 deg. -76 deg. Together with an earlier data set at the same energy, covering the angles {theta}{sub c.m.}=74 deg. -180 deg., a new data set has been formed in the angular range {theta}{sub c.m.}=20 deg. - 180 deg. This extended data set has been normalized to the experimental total np cross section, resulting in a renormalization of the earlier data of 0.7%, which is well within the reported normalization uncertainty for that experiment. A novel normalization technique has been investigated. The results on forward np scattering are in reasonable agreement with theory models and partial wave analyses and have been compared with data from the literature.

  6. Cross-field diffusion of energetic (100 keV to 2 MeV) protons in interplanetary space

    SciTech Connect

    Costa Jr, Edio da; Tsurutani, Bruce T.; Alves, Maria Virgínia; Echer, Ezequiel; Lakhina, Gurbax S. E-mail: costajr.e@gmail.com

    2013-12-01

    Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in this paper can be applied to other space regions where MDs are observed, once their local features are well known.

  7. Interplanetary protons (E/sub p/ approx. 1 MeV) 1973-1986 and out to 22. 4 AU

    SciTech Connect

    Van Allen, J.A.; Decker, R.B.

    1988-03-01

    This reprint uses annual mean counting rate data from detectors on two long-lived spacecraft, Pioneer 11 and IMP 8, to study the temporal and and heliocentric radial distance variations of the intensity of interplanetary protons (E/sub p/ about = 1 MeV) over solar activity cycle 21. The Pioneer 11 data cover the time period April 1973 through 1986 and the heliocentric radial distance range 1.0 < r < 22.4 AU. IMP 8, in an approximately circular geocentric orbit of semimajor axis 35 earth radii, provides comparable data at 1 AU over the time period 1974-1986. The combination of two bodies of data shows that the annual mean intensity of such protons varies as the inverse square of the distance from the sun, i.e., as r to the -alpha power with alpha = 2.0 (+ or - 0.2), irrespective of solar activity as measured by the annual mean sunspot number S. Also it is found (a) that the annual mean intensity at 1 AU is approximately proportional to S, except for anomalously low values in 1979 and 1980 and (b) that the product of the annual mean intensity at Pioneer 11 by r-square is also approximately proportional to S, except for anomalously low values in 1979, 1980 (in particular), and 1981. The common 1980 anomaly is attributed to gross changes in interplanetary conditions associated with the reversal of the polarity of the sun's polar magnetic field.

  8. Measurement of a 200 MeV proton beam using a polyurethane dosimeter

    NASA Astrophysics Data System (ADS)

    Heard, Malcolm; Adamovics, John; Ibbott, Geoffrey

    2006-12-01

    PRESAGETM (Heuris Pharma LLC, Skillman, NJ) is a three-dimensional polyurethane dosimeter containing a leuco dye that generates a color change when irradiated. The dosimeter is solid and does not require a container to maintain its shape. The dosimeter is transparent before irradiation and the maximum absorbance of the leuco dye occurs at 633 nm which is compatible with the OCT-OPUSTM laser CT scanner (MGS Research, Inc., Madison, CT). The purpose of this study was to investigate the response of PRESAGETM to proton beam radiotherapy.

  9. Two-Proton Intensity Interferometry for Impact - Selected ARGON-36 + SCANDIUM-45 Collisions at E/a = 80, 120 and 160 Mev.

    NASA Astrophysics Data System (ADS)

    Handzy, Damian Orest

    1995-01-01

    Impact-parameter selected two-proton intensity interferometry is used to study the space-time characteristics of emitting sources formed in medium-energy heavy-ion collisions. Building on a previous study for the same system at a lower energy, a high-resolution 56-element Si-CsI(Tl) hodoscope was used to collect single- and two-proton yields, for collisions of ^{36}Ar + ^{45}Sc at E/A = 120 MeV and 160 MeV. Coincident measurements of other charged particles emitted in the reaction were made with the MSU 4pi Array, providing information about the impact-parameter of the collision. The Boltzmann-Uehling-Uhlenbeck (BUU) equation is used to predict the emission of protons from the reaction zone created in heavy-ion collisions. The Koonin-Pratt formalism is then used to calculate theoretical correlation functions from the predicted single-particle phase space probability density. Dependencies of predicted longitudinal and transverse correlation functions on source velocity are examined for central and peripheral ^ {36}A + ^{45} Sc collisions at E/A = 80 MeV, and are compared to previously measured values. The usefulness of the correlation function to distinguish exotically shaped sources, predicted by microscopic transport models at this energy, is investigated. Consistent with previous measurements, proton correlations are shown to have larger peaks for more energetic protons, regardless of impact-parameter. However, the measured correlations are shown to decrease as beam energy increases from E/A = 80 to 160 MeV, indicating that proton -emitting sources formed in more energetic collisions appear to have larger space-time extents. For central collisions at E/A = 160 MeV, the correlation function shows no dependence on the momentum of the proton pair, suggesting that the source emits fast and slow protons on similar time scales. The BUU theory is shown to over predict the magnitude of the measured correlations for the reactions at E/A = 120 and 160 MeV, possibly because

  10. Elastic scattering of polarized protons on helium three at 800 MeV

    SciTech Connect

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  11. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  12. An application of GafChromic MD-55 film for 67.5 MeV clinical proton beam dosimetry.

    PubMed

    Daftari, I; Castenadas, C; Petti, P L; Singh, R P; Verhey, L J

    1999-11-01

    The purpose of this study is to explore the use of GafChromic MD-55 (RC) film for 67.5 MeV clinical proton beam dosimetry at the Crocker Nuclear Laboratory, University of California, Davis. Several strips of RC film 6 cm x 6 cm in dimension were irradiated at a depth of 18.2 mm corresponding to the middle of a 24 mm spread-out Bragg peak (SOBP). The films were irradiated to a proton dose in the range of 0.5 Gy to 100 Gy. The beam profiles were also measured at the middle of the 24 mm SOBP. The Bragg peak was measured by using a wedge shaped phantom made of Lucite. The Bragg peak measured with RC film was compared with diode and ionization chamber measurements. After background subtraction, the calibration of the dose response of RC film showed, to a maximum deviation of 10%, a linear increase of optical density (OD) with dose from 0.5 to 100 Gy. The uniformity of OD over a single sheet of film showed a variation of +/-6%. The distal-fall off between 90% and 20% measured with GafChromic film for the Bragg peak was 1.3 mm as compared to 1.1 mm for a diode measurement and 1.4 mm for an ionization chamber measurement. The FWHM of the Bragg peak was 7.5 mm when measured with GafChromic film, 5.3 mm when measured with a diode and 8.1 mm as measured by an ionization chamber. The peak/plateau ratio with GafChromic film was 3.3 as compared to 3.7 with a diode and 3.2 with an ionization chamber. In conclusion, GafChromic MD-55 film may be a useful and convenient detector for dose measurement and quality assurance programmes of proton beams. PMID:10588281

  13. Simultaneous quiet time observations of energetic radiation belt protons and helium ions - The equatorial alpha/p ratio near 1 MeV

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Spjeldvik, W. N.

    1979-01-01

    Simultaneous monitoring of energetic helium ions and protons in the earth's radiation belts has been conducted with Explorer 45 in the immediate vicinity of the equatorial plane. Protons were measured from less than 1 keV to 1.6 MeV and also above 3.3 MeV in a channel responsive up to 22 MeV; helium ions were monitored in three passbands: 910 keV to 3.15 MeV, 590 to 910 keV, and 2.0 to 3.99 MeV. Alpha/proton flux ratios were found to vary significantly with energy and location in the radiation belts. At equal energy per nucleon a range of variability for alpha/p from 0.0001 to well above 0.001 was found, and at equal energy per ion the corresponding variability was from 0.001 to above 10. The latter findings emphasize the relative importance of the very energetic helium ions in the overall radiation belt ion populations.

  14. RBE and genetic susceptibility of mouse and rat spermatogonial stem cells to protons, heavy charged particles and 1.5 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Vaglenov, A.; Fedorenko, B.; Kaltenboeck, B.

    The main purpose of the present study is to provide data on RBE and genetic susceptibility in the mouse and the rat when exposed to protons, HZE particles and neutrons. Genetic damage from exposure to 50 MeV and 9 GeV protons, 4 GeV/nucleon helium ions, 4 GeV/nucleon carbon ions and 1.5 MeV neutrons was studied in adult (CBA × C57Bl/6J) F1 mice. Damage from 9 GeV protons and 4 GeV helium ions was studied in adult Wistar rats. The incidence of reciprocal translocations (RT) induced in the spermatogonial stem cells of each species was recorded. RBE values were derived by comparing linear regression coefficients from dose-responses within the same dose-range for each of the radiation types tested and 60Co γ-rays or by means of a direct nonparametric method. RT yields measured after mouse and rat spermatogonial irradiation with protons, heavy charged particles and neutrons fit the linear model of the dose-response relationship. Relative to 60Co γ-rays, RBE values are as follows for mouse spermatogonia: 0.9 for 50 MeV protons; 1.3 for 9 GeV protons; 0.7 for 4 GeV helium ions; and 1.3 for 4 GeV carbon ions. For rat spermatogonia, values were: 1.7 for 9 GeV protons and 1.3 for helium ions. Compared to mice irradiated using the same experimental design, rats were more susceptible to high-LET radiations, with susceptibility assessed by genetic damage to their spermatogonial stem cells. The RBE of 1.5 MeV neutron is about 6.6.

  15. Noise performance of 0.35-(mu)m SOI CMOS devices and micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation

    NASA Technical Reports Server (NTRS)

    Binkley, D. M.; Hopper, C. E.; Cressler, J. D.; Mojarradi, M. M.; Blalock, B. J.

    2004-01-01

    This paper presents measured noise for 0.35(mu)m, silicon-on-insulator devices and a micropower preamplifier following 63-MeV, 1-Mrad (Si) proton irradiation. Flicker noise voltage, important for gyros having low frequency output, increases less than 32% after irradiation.

  16. Calculation of proton total reaction cross sections for some target nuclei in incident energy range of 10-600 MeV

    SciTech Connect

    Bueyuekuslu, H.; Kaplan, A.; Aydin, A.; Tel, E.; Yildirim, G.

    2010-10-15

    In this study, proton total reaction cross sections have been investigated for some isotopes such as {sup 12}C, {sup 27}Al, {sup 9}Be, {sup 16}O, {sup 181}Ta, {sup 197}Au, {sup 6}Li, and {sup 14}N by a proton beam up to 600 MeV. Calculation of the proton total cross sections has been carried out by the analytic expression formulated by M.A. Alvi by using Coulomb-modified Glauber theory with the Helm model nuclear form factor. The obtained results have been discussed and compared with the available experimental data and found to be in agreement with each other.

  17. Microscopic description of proton scattering at 295 MeV from Pb isotopes

    SciTech Connect

    Rafi, Syed; Pachouri, Dipti; Sharma, Manjari; Haider, W.; Bhagwat, A.; Gambhir, Y. K.

    2011-09-15

    Microscopic analysis of the recently reported 295-MeV-proton scattering data from Pb isotopes and {sup 58}Ni is presented within the framework of the Brueckner-Hartree-Fock theory. The effective interaction (g matrix) has been calculated using three Hamiltonians with Urbana v-14, Argonne v-18, and Ried93 internucleon potentials. The microscopic optical potential is calculated by folding the effective interactions over nucleon density distributions obtained in the relativistic mean field framework. The Argonne v-18 and Ried93 interactions have been used for the first time to calculate the nucleon-nucleus optical potential. The calculations reproduce the experiment well thus revalidating the use of microscopic optical potential in such analyses.

  18. Energy loss of MeV protons specularly reflected from metal surfaces

    SciTech Connect

    Juaristi, J.I.

    1996-05-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. {copyright} {ital 1996 The American Physical Society.}

  19. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  20. Cross-field transport of less than 1 MeV protons in energetic particle events

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Roelof, E. C.; Gold, R. E.

    1980-01-01

    A systematic analysis of hourly averaged low-energy anisotropy data (0.3-0.5 MeV) has been carried out with the JHU/APL detectors onboard the IMP-7 and 8 spacecraft from 1972-1975. The energetic particle events were divided into two major groups: flare-associated or nonimpulsive. Resolving the anistropy vectors into components parallel and perpendicular to the measured magnetic field leads directly to the following model-independent conclusions: (1) the average perpendicular anisotropy component is entirely accounted for in terms of the ExB drift, and hence transverse diffusion is negligible at these energies; application of the diffusion model to the nonimpulsive data set implies a ratio of the diffusion mean free paths parallel and perpendicular to the magnetic field much less than 0.051; (2) the parallel anisotropy component averages nearly to zero in the nonimpulsive data set, indicating virtually no net streaming along the field at 1 AU, averaged over all events.

  1. High-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed-Symmetry 2{sup +} States in {sup 94}Mo

    SciTech Connect

    Burda, O.; Kuhar, M.; Lenhardt, A.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Holt, J. D.; Pietralla, N.; Scholten, O.

    2007-08-31

    High-energy-resolution inelastic electron scattering (at the S-DALINAC) and proton scattering (at iThemba LABS) experiments permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2{sup +} states of the nucleus {sup 94}Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic nuclear model calculations. The purity of two-phonon 2{sup +} states is extracted.

  2. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    NASA Astrophysics Data System (ADS)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  3. Stopping of 236 keV - 3.019 MeV protons in mylar and polypropylene films

    NASA Astrophysics Data System (ADS)

    Damache, S.; Ouichaoui, S.; Belhout, A.; Medouni, A.; Toumert, I.

    2004-10-01

    The stopping powers of polypropylene and mylar polymers for protons have been accurately measured over the energy intervals Ep=(0.352-3.009) MeV and Ep=(0.236-3.019) MeV, respectively. Ab initio calculations using the Sigmund-Schinner binary collision theory for electronic stopping yielded S( E) values fairly consistent with the measured data that show no noticeable deviations from the Bragg-Kleeman additivity rule. The data have also been analyzed in the framework of the modified Bethe-Bloch theory assuming additivity. Values of the mean excitation and ionization potential, I, and of the Barkas parameter, b, have been deduced for the two polymers and for their (C, O) atomic constituents by adopting values of these parameters recommended in the ICRU-49 report for the H element. Thus, the respective I-values {(56.90 ± 0.72) eV, (79.92 ± 1.30) eV} for the two polymers and the same b-value 1.39 for their (C, O) atomic constituents have been determined by adopting for H the value b=1.8, while the I-values {(81.73 ± 1.38) eV, (109.46 ± 6.55) eV} have been deduced for the (C, O) constituents by adopting for H the value I=19.2 eV. Priorily, the shell, Barkas and Bloch corrections to the calculated S( E) values have been evaluated for both polymers over the explored respective energy ranges. The obtained results are discussed in comparison with previous ones when reported in the literature to our knowledge.

  4. Determination of the cross section of the proton, pion and neutron inelastic interaction with lead and carbon nuclei at 0.5 - 5.0 TeV energies (PION experiment)

    NASA Technical Reports Server (NTRS)

    Keropian, M. I.; Martirosov, R. M.; Avakian, V. V.; Karagjozian, G. V.; Mamidjanian, E. A.; Ovsepian, G. G.; Sokhoyan, S. O.

    1985-01-01

    Experimental results on the cross section of the single pion, proton and neutron inelastic interaction with carbon and lead nuclei in the 0.5 to 5.0 TeV energy interval obtained on the PION installation (Mount Aragats, Armenia, 3250 m) are presented. For this purpose the (N pi)/(N p) and inelastic (p Fe)/(pi Fe) ratios measured directly on the installation as well as the calculated inelastic (p A)/(pi A) dependence on the target nucleus atomic numbers were used.

  5. Thorium and uranium M-shell x-ray production cross sections for 0.4--4.0 MeV protons, 0.4--6.0 MeV helium ions, 4.5--11.3 mev carbon ions, and 4.5--13.5 MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Phinney, Lucas C.

    The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4--4.0 MeV, helium ions of energy 0.4--6.0 MeV, carbon ions of energy 4.5--11.3 MeV and oxygen ions of energy 4.5--13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4-O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.

  6. Evaluation of 10MeV proton irradiation on 5.5 Mpixel scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Vu, Paul; Fowler, Boyd; Rodricks, Brian; Balicki, Janusz; Mims, Steve..; Li, Wang

    2010-10-01

    We evaluate the effects of 10 MeV proton irradiation on the performance of a 5.5 Mpixel scientific grade CMOS image sensor based on a 5T pixel architecture with pinned photodiode and transfer gate. The sensor has on-chip dual column level amplifiers and 11-bit single slope analog to digital converters (ADC) for high speed readout and wide dynamic range. The operation of the sensor is programmable and controlled by on-chip digital control modules. Since the image sensor features two identical halves capable of operating independently, we used a mask to expose only one half of the sensor to the proton beam, leaving the other half intact to serve as a reference. In addition, the pixel array and the digital logic control section were irradiated separately, at dose rates varying from 4 rad/s to 367 rad/s, for a total accumulated dose of 146 krad(Si) to assess the radiation effects on these key components of the image sensor. We report the resulting damage effects on the performance of the sensor including increase in dark current, temporal noise, dark spikes, transient effects and latch-up. The dark signal increased by about 55 e-/pixel after exposure to 14 krad (Si) and the dark noise increased from about 2.75e- to 6.5e-. While the number of hot pixels increased by 6 percent and the dark signal non uniformity degraded, no catastrophic failure mechanisms were observed during the tests, and the sensor did not suffer from functional failures.

  7. Measurement of Dynamic Strain on a Mercury Target Vessel During 800-MeV Proton Thermal Shock Tests

    SciTech Connect

    Cates, M.R.

    2001-01-11

    A mercury target vessel, designed to simulate some aspects of the eventual target design for the proposed Spallation Neutron Source (SNS) to be built in Oak Ridge by the Department of Energy, was used in a test at the Los Alamos Neutron Science Center (LANSCE) to study the strain induced from thermal shock of bombarding protons. In the SNS, intense thermal shock loads are expected to cause an enormous rate of temperature rise ({approximately}10{sup 7} K/s), with resulting pressure waves in the mercury that may lead to large stresses on the thin walls of the mercury target. To guide the mercury target design and to benchmark the computer design codes, transient strain was measured using fiber optic Fabry-Perot sensors. Twenty strain sensors were attached in various axial and transverse orientations to a cylindrical stainless steel target vessel containing mercury. The vessel was 10 cm in diameter, about 15 cm long, and with a 5-cm radius hemispherical shell welded to the forward end. The test was done at the LANSCE Weapons Neutron Research (WNR) beam facility on 30-31 January 1999. The sensors were attached with gauge lengths of about two centimeters, and were located in pairs in most areas, for redundancy and facilitation of data analysis. The 800-MeV proton deposition of 0.5--2.3 x 10{sup 13} over a full-width at half maximum beam size of {approximately}25 mm, produced axial strains peaking at a few microstrains, with transverse (hoop) strains more than an order of magnitude higher. We describe the experiments, including the sensors and measurement configuration, and discuss the strain data analysis.

  8. The depth-dependent radiation response of human melanoma cells exposed to 65 MeV protons.

    PubMed

    Courdi, A; Brassart, N; Hérault, J; Chauvel, P

    1994-08-01

    Radiation therapy with positively charged particles implies that the Bragg peak be spread out to deliver a homogeneous dose to the tumour. The spread-out Bragg peak (SOBP) has a higher linear energy transfer (LET) than the entrance beam. In addition, there is an LET gradient from proximal to distal SOBP. The aim of this study is to find out whether these small LET variations lead to differences in radiation response. Human melanoma cells (CAL4) were exposed to 65 MeV proton beams produced by the cyclotron Medicyc at five different positions: 2 mm depth corresponding to the entrance, 15, 20, 25 and 26.8 mm depth corresponding to four different positions in the half-modulated SOBP. Survival curves were generated using the in vitro colony method and fitted with the linear-quadratic model. Survival differences were observed at high doses; they were statistically significant at a dose of 8 Gy. With respect to the entrance position (2 mm), the relative biological effectiveness (RBE) at 1% survival was 1.09, 1.12, 1.19 and 1.27 at 15, 20, 25 and 26.8 mm in the SOBP, respectively. Whereas RBE values in the SOBP greater than 1.0 relative to the entrance beam represent a small biological advantage to be added to the well-known physical advantage of high energy proton beams; the RBE gradient along the SOBP would imply that the distal end of the tumour would receive a higher biologically equivalent dose than the proximal end, despite a homogeneous physical dose, especially at the high doses per fraction given in ocular melanomas. Although the increase in effectiveness with depth is mild, it should be kept in mind during eye treatment planning, in case a critical target is present at the extreme end of the SOBP. PMID:8087487

  9. [BIOLOGICAL EFFECTIVENESS OF FISSION SPECTRUM NEUTRONS AND PROTONS WITH ENERGIES OF 60-126 MEV DURING ACUTE AND PROLONGED IRRADIATION].

    PubMed

    Shafirkin, A V

    2015-01-01

    Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40. PMID:26934784

  10. Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Higginson, D. P.; Davis, J.; Petrova, Tz B.; McGuffey, C.; Qiao, B.; Beg, F. N.

    2013-10-01

    A roadmap is proposed for the production of high-energy (>15 MeV) neutrons using short pulse lasers. Different approaches are suggested for the two limiting cases of small (E1 ≪ Q) and large (E1 ≫ Q) projectile energies E1 depending on the Q-value of the nuclear reaction. The neutron fluence from many converter materials is evaluated for two projectiles: protons and deuterons. We found profound differences between proton- and deuteron-driven reactions with regard to both converter material and generated neutron fluence. The optimum converter material for deuteron-driven reactions is low-Z elements such as Li and Be, while for proton-driven reactions the converter material is not critical. For a projectile energy of 50 MeV the deuteron-driven reactions are two orders of magnitude more efficient compared to the proton-driven reactions. Two-dimensional particle-in-cell simulations have been performed for laser pulses with peak intensity 3 × 1020 W cm-2, pulse duration 40 fs, spot size 5 µm and energy 3 J interacting with ultrathin (0.1 µm) CD foil. The calculated deuteron beam is highly directional along the laser propagation direction with maximum energy of 45 MeV. The interaction of the deuteron beam with a lithium converter and the production of neutrons is modeled using a Monte Carlo code. The computed neutron spectra show that a forward directed neutron beam is generated with an opening angle of ˜1 sr, maximum energy of 60 MeV and a fluence in the forward direction 1.8 × 108 n sr-1, ˜20% of which are with energy above 15 MeV.

  11. Orientation features of {sup 24}Mg(2+) aligned nuclei in (p, p) and (d, d) reactions at E{sub x} ≈ 7.5 MeV per nucleon

    SciTech Connect

    Galanina, L. I. Zelenskaya, N. S.; Lebedev, V. M.; Orlova, N. V.; Spassky, A. V.

    2015-09-15

    Experimental angular dependences of cross sections for elastic and inelastic scattering and the result obtained by reconstructing the populations of magnetic sublevels, multipole-moment orientation tensors, and polarization tensors are presented for {sup 24}Mg (2{sup +}, 1.369 MeV) aligned nuclei produced in inelastic proton scattering at E{sub p} = 7.4 MeV. The experimental results in question are compared with the results of calculations based on the coupled-channel method and on the compound-nucleus model, the 3/2{sup +} resonance in the {sup 25}Al compound nucleus being taken into account. The orientation features of {sup 24}Mg (2{sup +}, 1.369 MeV) nuclei produced in inelastic proton and deuteron scattering on {sup 24}Mg at E{sub x} ≈ 7.5 MeV per nucleon are found to be generally similar despite a substantial difference in the respective differential cross sections.

  12. Measurement of the inelastic proton–proton cross-section at √s=7 TeV with the ATLAS detector

    PubMed Central

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Akiyama, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H.S.; Barak, L.; Baranov, S.P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A.E.; Bartsch, D.; Bartsch, V.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bedikian, S.; Bednyakov, V.A.; Bee, C.P.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Bieniek, S.P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bobrovnikov, V.B.; Bocchetta, S.S.; Bocci, A.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N.M.; Bona, M.; Bondarenko, V.G.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brown, H.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckingham, R.M.; Buckley, A.G.

    2011-01-01

    The dependence of the rate of proton–proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton–proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3±2.1 mb is measured for ξ>5×10−6, where ξ is calculated from the invariant mass, MX, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. PMID:21897374

  13. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  14. A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs

    NASA Astrophysics Data System (ADS)

    Anjum, Arshiya; Vinayakprasanna, N. H.; Pradeep, T. M.; Pushpa, N.; Krishna, J. B. M.; Gnana Prakash, A. P.

    2016-07-01

    N-channel depletion MOSFETs were irradiated with 4 MeV Proton and Co-60 gamma radiation in the dose range of 100 krad(Si) to 100 Mrad(Si). The electrical characteristics of MOSFET such as threshold voltage (Vth), density of interface trapped charges (ΔNit), density of oxide trapped charges (ΔNot), transconductance (gm), mobility (μ), leakage current (IL) and drain saturation current (ID Sat) were studied as a function of dose. A considerable increase in ΔNit and ΔNot and decrease in Vth,gm, μ, and ID Sat was observed after irradiation. The results of 4 MeV Proton irradiation were compared with that of Co-60 gamma radiation and it is found that the degradation is more for the devices irradiated with 4 MeV Protons when compared with the Co-60 gamma radiation. This indicates that Protons induce more trapped charges in the field oxide region when compared to the gamma radiation.

  15. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  16. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  17. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2016-09-01

    New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  18. Stopping powers of havar for protons from 0.45 to 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Shiomi-Tsuda, N.; Sakamoto, N.; Ogawa, H.; Saitoh, M.; Kitoba, U.

    1998-02-01

    Stopping powers of havar (a cobalt based alloy) for protons from 0.45 to 3.0 MeV have been measured with an uncertainty of ±0.35% using the accelerator at Nara Women's University. The results agree fairly well with experimental data reported by Duder et al. [J.C. Duder, J.F. Clare, H. Naylor, Nucl. Instr. and Meth. 123 (1975) 89] within the uncertainties. The results also have been compared with the calculated stopping power values obtained by Bragg's additivity rule using the stopping power values for constituent elements calculated by Janni [J.F. Janni, At. Data Nucl. Data Tables 27 (1982) 147] and by Andersen and Ziegler's formula [H.H. Andersen, J.F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements, Pergamon Press, New York, 1977]. Applying the modified Bethe-Bloch formula for the stopping power of compounds assuming the validity of Bragg's additivity rule, we extracted an effective mean excitation energy, I value, for havar from the stopping power data.

  19. Radiation performance of GaAs concentrator cells for 0.4 to 12 MeV electrons and 0.1 to 37 MeV protons

    NASA Technical Reports Server (NTRS)

    Curtis, Henry B.; Anspaugh, Bruce

    1991-01-01

    Gallium arsenide concentrator cells have been irradiated with both electrons and protons with a wide variety of energies. The cells are made using OM-VPE growth process with a junction depth of a half micron. All data are taken with bare cells without coverglasses or shielding. Performance data are given at the designed concentration level of 100X AMO. Results are presented in a number of ways, including performance of electrical parameters (Pmax, Isc, and Voc) as a function of fluence for different electron and proton energies. Critical fluences (defined at a degradation of 25 percent in Pmax) are calculated for each energy level and presented for both electron and proton irradiations.

  20. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  1. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  2. MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz

    SciTech Connect

    Hou Bixue; Nees, John; Easter, James; Thomas, Alexander; Krushelnick, Karl; Davis, Jack; Petrov, George

    2009-09-07

    Well-collimated proton beams are generated from bulk glass along the target normal direction by tightly focused 55 fs, 3 mJ pulses from a laser operating at 0.5 kHz repetition rate. Proton beams with energies of >265 keV have an emission angle of about 16 deg. full width at half maximum. Spectral measurements indicate proton energies exceeding 0.5 MeV with a flux of 3.2x10{sup 9} s{sup -1} sr{sup -1} and the flux of measured protons with energies of greater than 90 keV is 8.5x10{sup 11} s{sup -1} sr{sup -1} on center.

  3. Light response of YAP:Ce and LaBr3:Ce scintillators to 4-30 MeV protons for applications to Telescope Proton Recoil neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Cremona, A.; Nocente, M.; Rebai, M.; Rigamonti, D.; Tardocchi, M.; Croci, G.; Ericsson, G.; Fazzi, A.; Hjalmarsson, A.; Mazzocco, M.; Strano, E.; Gorini, G.

    2016-06-01

    The light response of two thin inorganic scintillators based on YAP:Ce and LaBr3:Ce crystals has been measured with protons in the 4-8 MeV energy range at the Uppsala tandem accelerator and in the 8-26 MeV energy range at the Legnaro tandem accelerator. The crystals have been calibrated in situ with 137Cs and 60Co γ-ray sources. The relative light yields of protons with respect to gammas have been measured and are here reported to be (96±2)% and (80±2)% for YAP:Ce and LaBr3:Ce, respectively. The results open up to the development of a Telescope Proton Recoil spectrometer based on either of the two crystals as alternative to a silicon based spectrometer for applications to high neutron fluxes.

  4. Measured and simulated transport of 1.9 MeV laser-accelerated proton bunches through an integrated test beam line at 1 Hz

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Hori, T.; Bolton, P. R.; Ogura, K.; Sagisaka, A.; Yogo, A.; Mori, M.; Orimo, S.; Pirozhkov, A. S.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Tanoue, M.; Nakai, Y.; Sasao, H.; Wakai, D.; Daido, H.; Kondo, K.; Souda, H.; Tongu, H.; Noda, A.; Iseki, Y.; Nagafuchi, T.; Maeda, K.; Hanawa, K.; Yoshiyuki, T.; Shirai, T.

    2010-07-01

    A laser-driven repetition-rated 1.9 MeV proton beam line composed of permanent quadrupole magnets (PMQs), a radio frequency (rf) phase rotation cavity, and a tunable monochromator is developed to evaluate and to test the simulation of laser-accelerated proton beam transport through an integrated system for the first time. In addition, the proton spectral modulation and focusing behavior of the rf phase rotation cavity device is monitored with input from a PMQ triplet. In the 1.9 MeV region we observe very weak proton defocusing by the phase rotation cavity. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code. The transmitted proton beam duration of 6 ns corresponds to an energy spread near 5% for which the transport efficiency is simulated to be 10%. The predictive capability of PARMILA suggests that it can be useful in the design of future higher energy transport beam lines as part of an integrated laser-driven ion accelerator system.

  5. Pitch Angle Distributions of 0.6-1.8 MeV Protons Observed by Voyager 1 at 85-87 AU

    SciTech Connect

    Decker, R.B.; Krimigis, S.M.; Roelof, E.C.; Burlaga, L.F.; Ness, N.F.

    2004-09-15

    We combined daily averages of magnetic field vector data and 0.6-1.8 MeV proton angular intensity data to construct 32 pitch angle distributions (PADs) for measurements made by Voyager 1 (V1) at 85-87 AU. The PADs were observed during the period 2002.6-2003.1, when energetic particle instruments on V1 measured unusually high intensities. The angular data show large, mainly unidirectional beaming of protons most often in the -T direction, i.e., away from the sun in the sense of a spiral magnetic field. The mean anisotropy amplitude based on the 32 samples is 0.55{+-}0.21.

  6. Measurement of LET (linear energy transfer) spectra using CR-39 at different depths of water irradiated by 171 MeV protons: A comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Tripathy, S. P.; Molokanov, A. G.; Aleynikov, V. E.; Sharma, S. D.; Bandyopadhyay, T.

    2016-05-01

    In this work, we have used CR-39 detectors to estimate the LET (linear energy transfer) spectrum of secondary particles due to 171 MeV proton beam at different depths of water including the Bragg peak region. The measured LET spectra were compared with those obtained from FLUKA Monte Carlo simulation. The absorbed dose (DLET), dose equivalent (HLET) were estimated using the LET spectra. The values of DLET and HLET per incident proton fluence were found to increase with the increase in depth of water and were maximum at Bragg peak.

  7. Cross-section for proton tritium scattering from 1.4 to 3.4 MeV at the laboratory angle of 165°

    NASA Astrophysics Data System (ADS)

    Xia, X. J.; Ding, W.; Zhang, B.; Long, X. G.; Luo, S. Z.; Peng, S. M.; Hutton, R.; Shi, L. Q.

    2008-03-01

    The elastic scattering cross-section for proton scattering from tritium was measured at a laboratory angle of 165° and over an incident proton energy range from 1.4 to 3.4 MeV. A thin solid target containing 1.62 × 1017 T atoms/cm2 was prepared by absorption of tritium into a film of titanium on aluminium foil backing. The cross-section increases almost linearly with decreasing energy in the higher energy region of 2-3.4 MeV. The currently measured cross-section data are compared with data available in the literature values and they show a similarly linear trend in a similar higher energy range. The maximum difference in the cross-section at almost the same scattering angle between current data and the previous results is no worse than 2.3%.

  8. Traceable stopping cross sections of Al and Mo elemental targets for 0.9-3.6-MeV protons

    NASA Astrophysics Data System (ADS)

    Moro, M. V.; Silva, T. F.; Mangiarotti, A.; Guimarães-Filho, Z. O.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2016-02-01

    Accurate knowledge about the energy loss of ions in matter is essential in many problems, ranging from fundamental to applied nuclear physics. Indeed, there is a recent and increasing demand for new data on stopping cross sections measured with high accuracy and with a rigorous budget of their uncertainty sources. In the present paper we describe an accurate and traceable approach to determine the stopping cross sections in pure elemental materials—aluminum and molybdenum—for protons in the energy range of 0.9-3.6 MeV by the transmission method. The main sources of uncertainties here considered are (i) (random) the uncertainty in the peak positions and in the Gaussian fits and (ii) (systematic) the presence of thickness nonuniformity (a special procedure has been developed to correct it as far as possible). The accuracy in the final stopping cross section is 0.63 % (0.32 % random and 0.54 % systematic) for Al and 1.5 % (0.44 % random and 1.4 % systematic) for Mo, both mainly limited by the quality and homogeneity of the foils. For Al, this high accuracy represents an improvement compared to previous publications and serves as a benchmark for our procedure. For Mo, even though the uncertainty is somewhat higher, our results will help in improving the few data currently available in the energy range here considered. The data were also compared to the most commonly employed theoretical models (srim 1985, srim 2013, pstar, and casp 5.2) and Monte Carlo codes (geant 3 and geant 4). The experimental results are electronically available as supplemental material.

  9. 0.5 - 165 MeV proton and 102 - 312 keV electron injections during the 2006 December 13 SEP event

    NASA Astrophysics Data System (ADS)

    Aran, A.; Agueda, N.; Jacobs, C.; Lario, D.; Sanahuja, B.; Poedts, S.; Marsden, R. G.

    2010-12-01

    The last large solar energetic particle event of solar cycle 23 was observed on 2006 December 13. The origin of this event was associated with a X3.4 flare from AR10930 at S06W23 and a fast (> 1700 km/s) halo CME. A long-lasting type III and a metric type II radio burst were also recorded. We combine proton observations from ACE/EPAM, SOHO/ERNE and STEREO/IMPACT (24 energy channels from 0.5 to 165 MeV) to model the proton differential intensities measured during this event. We simulate both the propagation of the CME-driven shock (from 4 solar radii to 1 AU) and the transport of shock-accelerated protons along the upstream interplanetary magnetic field lines. Near-relativistic (102 - 312 keV) electron observations by ACE/EPAM during the early phase of the event are used to constrain the electron transport conditions along the field lines and deduce, via a Monte Carlo transport model, the electron injection profile close to the Sun. The best-fit electron injection profile shows one prompt component consistent with the timing and duration of both the radio type III and the hard X-ray bursts and a second delayed injection component timely associated with the type II radio burst. From the proton modelling we quantify the injection rate of shock accelerated protons and show that most of the > 50 MeV protons are injected when the shock is still close to the Sun (i.e. within 42 solar radii). We compare the inferred electron and proton injections and discuss the possible contribution of flare-related particles in the early phase of the event.

  10. Measurements of proton induced γ-ray emission cross-sections on Mg from 1.0 to 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, N.; Kakuee, O.; Mohammadi, S.

    2016-04-01

    Differential cross-section of proton induced γ-ray emission from the reactions 24Mg(p,p‧γ)24Mg (Eγ = 1369 keV), 25Mg(p,p‧γ)25Mg (Eγ = 390, 585, 975 keV) and 26Mg(p,γ)27Al (Eγ = 1014 keV) were measured for proton energies from 1 to 3 MeV using a 60 μg/cm2 Mg target evaporated on a 40 μg/cm2 Ag thin film. The γ-rays were collected by a 50% relative efficiency HPGe detector placed at an angle of 90° with respect to the beam direction, while the backscattered protons were collected by an ion implanted Si detector placed at a scattering angle of 165°. Simultaneous collection of γ-ray and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. Measured cross-section values were compared with the previously reported data in the literature. Absolute γ-ray differential cross-sections were obtained with an overall systematic uncertainty of about ±6% and statistical uncertainty of less than ±5% for proton energies higher than 2.24 MeV.

  11. Search for narrow structure in proton-antiproton annihilation cross sections from 1900 to 1960 MeV

    SciTech Connect

    Lowenstein, D.I.; Pealsee, D.C.; Miller, R.J.; Lewis, R.A.; Oh, B.Y.; Smith, G.A.; Whitmore, J.; Brando, T.; Daftari, I.; deGuzman, A.

    1985-01-01

    The anti pp annihilation cross section has been measured with good resolution (approx.2 MeV rms) in the mass range 1900-1960 MeV. No narrow structures are seen, the 90% confidence level upper limit being 8-12 mb-MeV for the integrated area of a resonance in this mass range. However, we do not rule out a very narrow bump-dip structure seen in an earlier experiment in the 1935-1941 MeV mass interval. The data also do not support the existence of a broad structure previously reported at 1937 MeV.

  12. Comparison of Schroedinger and Dirac coupled-channels analyses of the sup 28 Si( p , p prime ) sup 28 Si reaction at 500 MeV

    SciTech Connect

    de Swiniarski, R.; Beatty, D.; Donoghue, E.; Fergerson, R.W.; Franey, M.; Gazzaly, M.; Glashausser, C.; Hintz, N.; Jones, K.W.; McClelland, J.B.; Nanda, S.; Plum, M. Serin Physics Laboratory, Rutgers University, Piscataway, NJ School of Physics and Astronomy, University of Minnesota, Minneapolis, MN Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, NM )

    1990-09-01

    Analyzing powers have been measured for elastic and inelastic scattering of 500-MeV protons from {sup 28}Si. These data for the first 0{sup +}, 2{sup +}, and 4{sup +} states and the corresponding cross-section data have been analyzed with both Schroedinger and Dirac equation phenomenological coupled-channels methods. Good, qualitatively similar, results are achieved with the two methods.

  13. Analyses of stopping power measurements for 0.90-2.50 MeV protons and deuterons traversing Al 2O 3 targets

    NASA Astrophysics Data System (ADS)

    Porter, L. E.

    2000-09-01

    Recently reported measurements of the stopping power of Al 2O 3 for 0.90-2.50 MeV protons and deuterons have been analyzed in terms of modified Bethe-Bloch theory. Values of the mean excitation energy ( I) and Barkas-effect parameter ( b) have been extracted from the data, yielding results for I and b, respectively, of 176.8 eV and 0.83 for protons, and of 182.7 eV and 1.02 for deuterons. These values of I exceed the additivity-based value by 32% for proton data and by 36% for deuteron data. Moreover, both extracted values of b lie well below the expected interval of 1.3-1.5.

  14. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  15. Recovery of the chemical ordering in L1{sub 0} MnAl epitaxial thin films irradiated by 2 MeV protons

    SciTech Connect

    Anuniwat, Nattawut; Cui, Yishen; Wolf, Stuart A.; Lu, Jiwei; Weaver, Bradley D.

    2013-03-11

    Epitaxial MnAl films with a high chemical ordering were synthesized and characterized during a series of irradiations by 2 MeV protons (H{sup +}). The chemical ordering was first reduced to a minimum at a total fluence (TF) of 1 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}, and consequently was recovered at the final total fluence of 2 Multiplication-Sign 10{sup 15} H{sup +}/cm{sup 2}. We attributed the recovery of chemical ordering to thermal effects and the enhanced diffusion caused by the high energy protons. In addition, the damages by the protons have little effect on the magnetic scattering processing in MnAl characterized by the anomalous Hall effect.

  16. Radiation tolerance characterization of dual band InAs/GaSb type-II strain-layer superlattice pBp detectors using 63 MeV protons

    SciTech Connect

    Cowan, V. M.; Morath, C. P.; Hubbs, J. E.; Myers, S.; Plis, E.; Krishna, S.

    2012-12-17

    The radiation tolerance characterization of dual band InAs/GaSb type-II strain-layer superlattice pBp detectors of varying size using 63 MeV proton irradiation is presented. The detectors' mid-wave infrared performance degraded with increasing proton fluence {Phi}{sub P} up to 3.75 Multiplication-Sign 10{sup 12} cm{sup -2} or, equivalently, a total ionizing dose = 500 kRad (Si). At this {Phi}{sub P}, an {approx}31% drop in quantum efficiency {eta}, {approx}2 order increase in dark current density J{sub D}, and consequently, >1 order drop in calculated detectivity D* were observed. Proton damage factors were determined for {eta} and D*. Arrhenius-analysis of temperature-dependent J{sub D} measurements reflected significant changes in the activation energies following irradiation.

  17. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Karamitros, M.; Ivanchenko, V. N.; Guatelli, S.; McKinnon, S.; Murakami, K.; Sasaki, T.; Okada, S.; Bordage, M. C.; Francis, Z.; El Bitar, Z.; Bernal, M. A.; Shin, J. I.; Lee, S. B.; Barberet, Ph.; Tran, T. T.; Brown, J. M. C.; Nhan Hao, T. V.; Incerti, S.

    2016-04-01

    Gold nanoparticles have been reported as a possible radio-sensitizer agent in radiation therapy due to their ability to increase energy deposition and subsequent direct damage to cells and DNA within their local vicinity. Moreover, this increase in energy deposition also results in an increase of the radiochemical yields. In this work we present, for the first time, an in silico investigation, based on the general purpose Monte Carlo simulation toolkit Geant4, into energy deposition and radical species production around a spherical gold nanoparticle 50 nm in diameter via proton irradiation. Simulations were preformed for incident proton energies ranging from 2 to 170 MeV, which are of interest for clinical proton therapy.

  18. Magnetic Nature of the 500 meV peak in La2−xSrxCuO4 Observed with Resonant Inelastic X-ray Scattering at the Cu K-edge

    SciTech Connect

    Hill, J.P.; Ellis, D.S.; Kim, J.; Wakimoto, S.; Birgeneau, R.J.; Shvyd’ko, Y.; Casa, D.; Gog, T.; Ishii, K.; Ikeuchi, K.; Paramekanti, A.; Kim, Y.-J.

    2010-02-15

    We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q = ({pi},0) in resonant inelastic x-ray scattering (RIXS) experiments on La{sub 2}CuO{sub 4}. The intensity of this peak persists above the Neel temperature (T{sub N} = 320 K), but decreases gradually with increasing temperature, reaching zero at around T = 500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B{sub 1g} Raman peak in La{sub 2}CuO{sub 4} and, with suitable rescaling, agrees with the Raman peak shifts in EuBa{sub 2}Cu{sub 3}O{sub 6} and K{sub 2}NiF{sub 4}. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.

  19. A high-statistics measurement of transverse spin effects in dihadron production from muon-proton semi-inclusive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-09-01

    A measurement of the azimuthal asymmetry in dihadron production in deep-inelastic scattering of muons on transversely polarised proton (NH3) targets is presented. They provide independent access to the transversity distribution functions through the measurement of the Collins asymmetry in single hadron production. The data were taken in the year 2010 with the COMPASS spectrometer using a 160 GeV/c muon beam of the CERN SPS, increasing by a factor of about four the overall statistics with respect to the previously published data taken in the year 2007. The measured sizeable asymmetry is in good agreement with the published data. An approximate equality of the Collins asymmetry and the dihadron asymmetry is observed, suggesting a common physical mechanism in the underlying fragmentation.

  20. Cross sections for proton induced high energy γ -ray emission (PIGE) in reaction 19 F(p, αγ)16 O at incident proton energies between 1.5 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Cabanelas, P.; Cruz, J.; Fonseca, M.; Henriques, A.; Lourenço, F.; Luís, H.; Machado, J.; Pires Ribeiro, J.; Sánchez-Benítez, A. M.; Teubig, P.; Velho, P.; Zarza-Moreno, M.; Galaviz, D.; Jesus, A. P.

    2016-08-01

    We have studied the high energy gamma-rays produced in the reaction 19 F(p, αγ)16 O for incident proton energies from 1.5 to 4.0 MeV over NaF/Ag and CaF2/Ag thin targets in two different sets of data. Gamma-rays were detected with a High Purity Ge detector with an angle of 130° with respect to the beam axis. The cross-sections for the high energy gamma-rays of 6.129, 6.915 and 7.115 MeV have been measured for the whole group between 5 and 7.2 MeV with accuracy better than 10%. A new energy range was covered and more points are included in the cross-sections data base expanding the existing set of data. Results are in agreement with previous measurements in similar conditions.

  1. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber

    NASA Astrophysics Data System (ADS)

    Medin, Joakim

    2010-06-01

    Water calorimetric measurements have been performed in a 180 MeV scanned pulsed proton beam and the absorbed dose determined has been compared with the results obtained using two NE2571 Farmer chambers and the IAEA TRS-398 code of practice. The depth of measurement in water corresponded to a residual range of Rres = 16.5 cm, corresponding to a mean energy of about 150 MeV. Ionization chambers were calibrated in terms of the absorbed dose to water in 60Co at the Swedish Secondary Standard Dosimetry Laboratory, directly traceable to Bureau International des Poids et Mesures. The present experimental investigation has shown that water calorimetry is feasible in a high-energy scanned pulsed proton beam. When comparing the results obtained with water calorimetry and ionometry, the beam quality correction factor, kQ, could be determined for the two NE2571 ionization chambers used. The kQ-factor was found to be 1.032 ± 0.013, which is in good agreement with the factor tabulated in IAEA TRS-398 for this chamber type (1.039 ± 0.018). The present result has also been compared with a previously obtained result in a passively scattered proton beam having similar energy. This comparison yielded a 1.1% deviation, which is not significant considering the combined uncertainties of the two experimental determinations of kQ. The dominating contribution to the combined uncertainty stems from the correction factor for ion recombination in the scanned proton beam (1%), and further studies are required in order to reduce this uncertainty and reveal any possible differences in the kQ-factor between these two proton beam delivery techniques.

  2. Estimate of the radiation source term for 18F production via thick H218O targets bombarded with 18 MeV protons

    NASA Astrophysics Data System (ADS)

    Cruzate, Juan Ángel

    2015-12-01

    The positron-emitting radionuclide most important from the point of view of radiation protection is 18F. This isotope is usually produced by bombarding 18O-enriched water with protons. Currently there are few experimental data on the radiation source term generated during these reactions. In addition, presently there is no theoretical estimates of this source term, for use in radiation protection, validated by experimental data. Up till now this term is calculated by using nuclear interactions' simulation codes, such as ALICE91. An estimate of the energy spectra for neutrons and photons, induced by 18 MeV protons on H218O target, have been calculated by using MCNPX code with cross sections from release 0 of ENDF/B VII library for all materials except 18O, for which TENDL-2012 library was used. This estimate was validated against a recent experiment carried out at the Japan Atomic Energy Agency (JAEA). The calculated spectra have generally well reproduced experiments. The results show that the calculated radiation source term may be used to estimate the neutron activation of the accelerator components and the cyclotron building, to calculate the cyclotron shielding, and to carry out radiation protection evaluations in general, for the case of cyclotrons producing 18F by means of the 18O(p,n)18F nuclear reactions, for proton energies up to 18 MeV.

  3. Changes of structure and electrical conductivity of multi-walled carbon nanotubes film caused by 3 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Li, Xingji; Liu, Chaoming; Ma, Guoliang

    2015-01-01

    The effects of 3 MeV proton irradiation for fluences of 3.5 × 1010 cm-2 to 3.1 × 1012 cm-2 on structure and electrical conductivity of multi-walled carbon nanotubes (MWCNTs) film were investigated. The pristine and the irradiated MWCNTs films were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and electron paramagnetic resonance (EPR) spectroscopy in order to investigate the effects of irradiation on their structure. Electrical conductivity of the MWCNTs films was characterized before and after irradiation. SEM analysis reveals that the proton irradiation for the high fluence (more than 3.6 × 1011 cm-2) leads to evident changes in morphology of the MWCNTs film, such as forming uneven film surface, curve, shrinkage and fragmentation of nanotubes. Based on Raman, XPS, FTIR and EA analyses, it is confirmed that the 3 MeV protons with high fluence (more than 3.6 × 1011 cm-2) can damage the structure of the MWCNTs, including increase of the disorder and the formation of functional groups. EPR spectroscopy shows that the electrons delocalized over carbon nanotubes increase with increasing irradiation fluence, implying that the MWCNTs film might be sensitive to ionizing radiation to some extent. With increasing the irradiation fluence, the electrical conductivity of the MWCNTs film decreases due to the structural and morphological damage.

  4. Measurement of the stochastic radial dose distribution for a 30-MeV proton beam using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, S; Sato, T; Ogawa, T

    2016-02-01

    The frequency distribution of the lineal energy, y, of a 30-MeV proton beam was measured as a function of the radial distance from the beam path, and the dosed mean of [Formula: see text] was obtained to investigate the radial dependence of [Formula: see text] A wall-less tissue-equivalent proportional counter, in a cylindrical volume with simulated diameters of 0.36, 0.72 and 1.44 µm was used for the measurement of y distributions, yf(y). The measured values of yf(y) summed in the radial direction agreed fairly well with the corresponding data taken from the microdosimetric calculations using the PHITS code. The [Formula: see text] value of the 30-MeV proton beam presented its smallest value at r = 0.0 and gradually increased with radial distance, and the [Formula: see text] values of heavy ions such as iron showed rapid decrease with radial distance. This experimental result demonstrated that the stochastic deposited energy distribution of high-energy protons in the microscopic region is rather constant in the core as well as in the penumbra region of the track structure. PMID:25956785

  5. RBE for late somatic effects in mice irradiated with 60 MeV protons relative to X-rays.

    NASA Technical Reports Server (NTRS)

    Darden, E. B., Jr.; Clapp, N. K.; Bender, R. S.; Jernigan, M. C.; Upton, A. C.

    1971-01-01

    Investigation of the relative biological effectiveness of energetic protons for the induction of somatic effects in a mammal (mice) following whole body irradiation. The proton energy used approximates the mean energy for proton spectra accompanying solar events. The effects on longevity and the incidence of major neoplastic diseases are summarized. The results obtained suggest that medium energy proton irradiation is no more effective, and on the whole, probably less effective, than conventional X radiation for the induction of late radiation effects in the mouse.

  6. Stopping powers and energy loss straggling for (0.9-3.4) MeV protons in a kapton polyimide thin film

    NASA Astrophysics Data System (ADS)

    Damache, S.; Djaroum, S.; Ouichaoui, S.; Amari, L.; Moussa, D.

    2016-09-01

    The energy loss and energy loss straggling widths have been measured in transmission for Ep ≈ (0.9-3.4) MeV protons traversing a thin kapton polyimide foil. In a prior step, the thickness and non-uniformity of the target foil were carefully investigated. The overall relative uncertainties in the stopping power and energy loss straggling variance data amount, respectively, to less than 2% and 8%. The S(E) experimental data show to be in excellent agreement with available previous ones and with those compiled in the ICRU-49 report. They are fully consistent with the predictions of Sigmund-Schinner's binary collision theory of electronic stopping over the whole proton energy range explored. An average deviation of ∼2.5% relative to values calculated by the SRIM-2008 code, likely due to effects of valence electrons involving the Csbnd H, Cdbnd C and Cdbnd O bonds, is however observed at low proton velocities. The measured energy loss straggling data, which are unique to our knowledge, are found to be in good agreement with values derived by the classical Bohr formula for Ep ≳ 1300 keV but they significantly exceed Bohr's collisional energy loss straggling at lower proton velocities where target electrons can no longer be considered as free. They also show to be consistent with the predictions of the Bethe-Livingston and Sigmund-Schinner theories over the low proton velocity region (Ep < 1300 keV). However, they are significantly overestimated by these theories over the intermediate and high proton velocity regions, which may be due to bunching effect by inner shell electrons of the polymer target. Besides, our energy loss straggling data are in better overall consistency with the Yang, O'Connor and Wang empirical formula for Ep > 1300 keV, while deviations above the latter amounting up to ∼18% are observed at lower proton velocities.

  7. K-MM radiative Auger effect in solid Ca, Ti and Cr targets after ionization with 0.7-1.5 MeV protons

    NASA Astrophysics Data System (ADS)

    Budnar, M.; Mühleisen, A.; Hribar, M.; Janžekovič, H.; Ravnikar, M.; Šmit, Ž.; Žitnik, M.

    1992-03-01

    Radiative Auger (RAE) X-ray spectra were measured for the first time on Ca, Cr, and Ti targets after ionization by 0.7-1.5 MeV protons. The energies of the RAE X-ray transitions were compared with the energies obtained from the Auger transitions. The RAE intensities relative to the diagram K β13 line were deduced and compared with the available data from X-ray fluorescence and electron capture ionization. The relative yields obtained for Ca, Ti, and Cr were (3.14 ± 0.47), (2.44 ± 0.37) and (2.91 ± 0.58)%, respectively.

  8. Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays.

    PubMed

    Stephens, Bryan J; Mendenhall, Marcus H

    2010-10-01

    We present a novel technique to produce narrow-band X-rays by preparing (161)Ho from the bombardment of dysprosium foil by 11.6 MeV protons. The activated foil produces predominantly 45-55 keV X-rays, which are suitable for activating iodinated radio-sensitizing agents (e.g. IUdR) for oncological therapy. We demonstrate that clinically useful quantities of the nuclide are easily produced with a medical cyclotron which is far from the current state of the art. PMID:20554211

  9. Comparison of the (p,xn) cross sections from /sup 238/U, /sup 235/U, and /sup 232/Th targets irradiated with 200-MeV protons

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1982-01-01

    We have measured absolute cross sections for (p,xn) reactions (x ranges from 0 to 8) from /sup 238/U, /sup 235/U, and /sup 232/Th targets irradiated with 200-MeV protons at the Brookhaven AGS Linac injector. Chemical yields were determined by using /sup 239/Np and /sup 233/Pa as tracers. Yield patterns obtained in this work can be compared to the experimental results and theoretical calculations from earlier work, and they are consistent within the framework of intranuclear cascade followed by neutron evaporation and fission competition.

  10. Activation cross-sections of proton induced nuclear reactions on thulium in the 20-45 MeV energy range.

    PubMed

    Tárkányi, F; Hermanne, A; Takács, S; Ditrói, F; Spahn, I; Ignatyuk, A V

    2012-01-01

    Cross-sections of proton induced nuclear reactions on (169)Tm were measured in the 20-45MeV energy range using the standard stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. Experimental cross-sections and derived integral yields are reported for the production of (169,167,166)Yb and (168,167,166)Tm radioisotopes. The experimental data are analysed and compared to results of the earlier measurements and the theoretical model codes ALICE-IPPE, EMPIRE and TALYS. Application of the new cross-sections to the production of the (167)Tm medical radioisotope is discussed. PMID:21920768

  11. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials.

    PubMed

    Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S

    2015-12-01

    Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. PMID:26298434

  12. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    NASA Astrophysics Data System (ADS)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  13. Proton beam simulation with MCNPX: Gallium metal activation estimates below 30 MeV relevant to the bulk production of 68Ge and 65Zn

    NASA Astrophysics Data System (ADS)

    Fassbender, M.; Arzumanov, A.; Jamriska, D. J.; Lyssukhin, S. N.; Trellue, H.; Waters, L. S.

    2007-08-01

    Several gallium metal targets containing Ga metal encapsulated in Nb shells were irradiated in a 30 MeV cyclotron beam. Proton and secondary neutron beam fluences as well as radionuclide activity formation were modeled using MCNP-X in combination with CINDER90. Targets were chemically processed using two anion exchange steps. Good agreement between measured radiochemical yields and MCNPX/CINDER estimates was observed. The separation principle introduced in this work was utilized for a small 68Ge/Ga generator column for 68Ga labeling purposes.

  14. Oxidation of SO2 and formation of water droplets under irradiation of 20 MeV protons in N2/H2O/SO2

    NASA Astrophysics Data System (ADS)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei; Tanikawa, Hideomi; Harayama, Isao; Kobara, Hitomi; Sasa, Kimikazu; Pedersen, Jens Olaf Pepke; Hvelplund, Preben

    2015-12-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20 MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both droplet number and droplet size increased with SO2 consumption for the proton irradiation. The total charged droplet numbers entering the differential mobility analyzer per unit time were proportional to the 0.68 power of the SO2 consumption. These two findings suggest that coagulation among the small droplets contributes to the formation of the droplets. The charged droplet volume detected per unit time is proportional to the SO2 consumption, which indicates that a constant amount of sulfur atoms is contained in a unit volume of droplet, regardless of different droplet-size distributions depending on the SO2 consumption.

  15. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  16. Selenium-72 formation via nat Br(p,x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system.

    PubMed

    Ballard, B; Wycoff, D; Birnbaum, E R; John, K D; Lenz, J W; Jurisson, S S; Cutler, C S; Nortier, F M; Taylor, W A; Fassbender, M E

    2012-04-01

    Selenium-72 production by the proton bombardment of a natural NaBr target has been successfully demonstrated at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF). Arsenic-72 (half life 26 h) is a medium-lived positron emitting radionuclide with the major advantage of being formed as the daughter of another "generator" radioisotope (Se-72, 8.5 d). A (72)Se/(72)As generator would be the preferred mechanism for clinical utilization of (72)As for positron emission tomography (PET). No portable (72)Se/(72)As generator system has been demonstrated for convenient, repeated (72)As elution ("milking"). In this work, we describe (72)Se production and recovery from irradiated NaBr targets using a 100 MeV proton beam. We also introduce an (72)As generator principle based on (72)Se chelation followed by liquid-liquid extraction, which will be transferred to a solid-phase sorption/elution system. PMID:22326368

  17. The streaming of 1.3 - 2.3 MeV cosmic-ray protons during periods between prompt solar particle events. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    1977-01-01

    The anisotropy of 1.3 to 2.3 MeV protons in interplanetary space was measured using the Caltech electron/isotope spectrometer aboard IMP-7 for 317 6 hour periods from 72/273 to 74/2. Periods dominated by prompt solar particle events are not included. The convective and diffusive anisotropies were determined from the observed anisotropy using concurrent solar wind speed measurements and observed energy spectra. The diffusive flow of particles was found to be typically toward the sun, indicating a positive radial gradient in the particle density. This anisotropy was inconsistent with previously proposed sources of low energy proton increases seen at 1 AU which involve continual solar acceleration. The typical properties of this new component of low-energy cosmic rays were determined for this period which is near solar minimum.

  18. Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions

    NASA Astrophysics Data System (ADS)

    Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.

    2016-03-01

    In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.

  19. Analysis of gamma-ray spectra from foils activated in a range-thick lead target by 800-MeV protons. Final technical report

    SciTech Connect

    Laird, C.E.; Mullins, D.H.

    1995-06-12

    Approximately 400 gamma-ray spectra have been analyzed to obtain the types and quantities of radioisotopes produced when 800-MeV protons interact with a range-thick lead target. These spectra were obtained from the radioactive decay of product isotopes in lead disks placed at various depths and radial positions within the target. These spectra were analyzed with the computer code HYPERMET and the photopeak areas were reduced to nuclei produced per incident proton per cubic centimeter of material. Product nuclei ranged from atomic mass 160 to mass 206 and over a range of half lives from a few minutes to several weeks. The results of this analysis have been outlined in this report and transmitted on computer disk to Los Alamos National Laboratory. The consistency of these analyses have been confirmed by a comparison of photopeak areas obtained at LANL with the computer code GAMANAL with those from HYPERMET for two gamma-ray spectra. Also, the nuclear production per proton per cm{sub 3} obtained from these two spectra analyzed both at LANL and at EKU have been found to agree to within the statistical accuracy of the peak-fitting programs. This analysis of these 400 gamma-ray spectra has determined the nuclear production per incident proton per cm{sub 3} at five regularly-spaced radial positions and depths up to 40 cm into a range-thick lead target.

  20. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Medin, Joakim; Ross, Carl K.; Klassen, Norman V.; Palmans, Hugo; Grusell, Erik; Grindborg, Jan-Erik

    2006-03-01

    Absorbed doses determined with a sealed water calorimeter operated at 4 °C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR20,10 = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, Rres = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in 60Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the kQ values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm-2 depth, suggesting that the TRS-398 tabulated kQ values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (wair/e)Q of 33.6 J C-1 ± 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (wair/e)Q value by the same amount.

  1. Experimental determination of beam quality factors, kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam.

    PubMed

    Medin, Joakim; Ross, Carl K; Klassen, Norman V; Palmans, Hugo; Grusell, Erik; Grindborg, Jan-Erik

    2006-03-21

    Absorbed doses determined with a sealed water calorimeter operated at 4 degrees C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR(20,10) = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, R(res) = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in (60)Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the k(Q) values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm(-2) depth, suggesting that the TRS-398 tabulated k(Q) values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (w(air)/e)(Q) of 33.6 J C(-1) +/- 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (w(air)/e)(Q) value by the same amount. PMID:16510959

  2. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  3. K-shell ionization probability in close collisions of 7--12-MeV protons with targets of Z = 24 --83

    SciTech Connect

    Dost, M.; Hoppenau, S.; Kising, J.; Roehl, S.; Schorn, P.

    1981-08-01

    K-shell ionization probabilities were measured by the particle--x-ray coincidence technique for 7-MeV protons of 15 to 39 fm impact parameter on 24 targets from Cr to Bi. For 22 of these targets, total K-shell ionization cross sections are also reported. Additional K-shell ionization probabilities were measured for 7-, 10-, and 12-MeV protons on Mo, Cd, and Sn, at impact parameters down to 2 fm. While the total K-shell cross sections closely follow relativistic semiclassical (RSCA) calculations supplemented by minor binding-plus-polarization corrections, significant discrepancies of up to 70% occur for the K-shell ionization probabilities at small impact parameters, particularly for the targets from Cr to Zr. They can be traced back to the use of hydrogenic wave functions in the RSCA calculation, whereas nuclear recoil may account only for a few percent of the discrepancies. The data on both K-shell total cross sections and ionization probabilities exhibit the pattern characteristic for small distortions of the K-electron binding energy by the projectile charge: adiabatic binding for xi/sub K/<1 and nonadiabatic polarization for xi/sub K/>1. The perturbed-stationary-state approximation somewhat underestimates these distortion effects.

  4. Effect of irradiation with MeV protons and electrons on the conductivity compensation and photoluminescence of moderately doped p-4H-SiC (CVD)

    SciTech Connect

    Kozlovski, V. V.; Lebedev, A. A. Bogdanova, E. V.; Seredova, N. V.

    2015-09-15

    The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstrated that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.

  5. Global magnetohydrodynamic simulation of the 15 March 2013 coronal mass ejection event—Interpretation of the 30-80 MeV proton flux

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Vourlidas, Angelos; Plunkett, Simon; Dryer, Murray; Wu, S. T.; Mewaldt, Richard A.

    2016-01-01

    The coronal mass ejection (CME) event on 15 March 2013 is one of the few solar events in Cycle 24 that produced a large solar energetic particle (SEP) event and severe geomagnetic activity. Observations of SEP from the ACE spacecraft show a complex time-intensity SEP profile that is not easily understood with current empirical SEP models. In this study, we employ a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation to help interpret the observations. The simulation is based on the H3DMHD code and incorporates extrapolations of photospheric magnetic field as the inner boundary condition at a solar radial distance (r) of 2.5 solar radii. A Gaussian-shaped velocity pulse is imposed at the inner boundary as a proxy for the complex physical conditions that initiated the CME. It is found that the time-intensity profile of the high-energy (>10 MeV) SEPs can be explained by the evolution of the CME-driven shock and its interaction with the heliospheric current sheet and the nonuniform solar wind. We also demonstrate in more detail that the simulated fast-mode shock Mach number at the magnetically connected shock location is well correlated (rcc ≥ 0.7) with the concurrent 30-80 MeV proton flux. A better correlation occurs when the 30-80 MeV proton flux is scaled by r-1.4(rcc = 0.87). When scaled by r-2.8, the correlation for 10-30 MeV proton flux improves significantly from rcc = 0.12 to rcc = 0.73, with 1 h delay. The present study suggests that (1) sector boundary can act as an obstacle to the propagation of SEPs; (2) the background solar wind is an important factor in the variation of IP shock strength and thus plays an important role in manipulation of SEP flux; (3) at least 50% of the variance in SEP flux can be explained by the fast-mode shock Mach number. This study demonstrates that global MHD simulation, despite the limitation implied by its physics-based ideal fluid continuum assumption, can be a viable tool for SEP data analysis.

  6. Production of (28)Mg by bombardment of (nat)Cl with 200MeV protons: Proof-of-concept study for a stacked LiCl target.

    PubMed

    van der Meulen, N P; Steyn, G F; Vermeulen, C; van Rooyen, T J

    2016-09-01

    A stacked target consisting of ten Al-encapsulated LiCl discs, for producing (28)Mg via the (nat)Cl(p,X)(28)Mg process in the energy region 50-200MeV, is described. This target was irradiated with a 200MeV beam at an intensity of 100nA, providing information on both yield and outscattering losses. Results of a Monte Carlo modelling of the beam and target, by means of the code MCNPX, are also presented. Similar Al-encapsulated LiCl discs were individually irradiated with 66MeV proton beams of 65 and 90μA, respectively, to study their behaviour under high-intensity bombardment. Once removed from the Al encapsulation, the (28)Mg can be separated from the LiCl target material efficiently, using a 12.5cm x 1cm(2) column containing Purolite S950 chelating resin. The eluate contains (7)Be but no other measurable radio-contaminants. The removal of the (7)Be contaminant is performed by cation exchange chromatography in malate media, with (28)Mg being retained by the resin and (7)Be eluted. PMID:27372806

  7. Neutron transition strengths of 2{sub 1}{sup +} states in the neutron-rich oxygen isotopes determined from inelastic proton scattering

    SciTech Connect

    Nguyen Dang Chien; Khoa, Dao T.

    2009-03-15

    A coupled-channel analysis of the {sup 18,20,22}O(p,p{sup '}) data has been performed to determine the neutron transition strengths of the 2{sub 1}{sup +} states in oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and isospin-dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hartree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar ({delta}{sub 0}) and isovector ({delta}{sub 1}) deformation lengths of the 2{sub 1}{sup +} states in {sup 18,20,22}O have been extracted from the folding model analysis of the (p,p{sup '}) data. A specific N dependence of {delta}{sub 0} and {delta}{sub 1} has been established which can be linked to the neutron shell closure occurring at N approaching 16. The strongest isovector deformation was found for the 2{sub 1}{sup +} state in {sup 20}O, with {delta}{sub 1} about 2.5 times larger than {delta}{sub 0}, which indicates a strong core polarization by the valence neutrons in {sup 20}O. The ratios of the neutron/proton transition matrix elements (M{sub n}/M{sub p}) determined for the 2{sub 1}{sup +} states in {sup 18,20}O have been compared with those deduced from the mirror symmetry, using the measured B(E2) values of the 2{sub 1}{sup +} states in the proton-rich {sup 18}Ne and {sup 20}Mg nuclei, to discuss the isospin impurity in the 2{sub 1}{sup +} excitation of the A=18, T=1 and A=20, T=2 isobars.

  8. Intrinsic radial sensitivity of nucleon inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.

    1988-02-01

    A linear expansion analysis of the folding model transition amplitude is used to study the intrinsic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the neutron transition density, given known proton transition densities from electron scattering. Realistic density-dependent effective interactions are used to construct pseudodata. These pseudodata are then reanalyzed and the error matrix is used to calculate an error band for the radial transition density. This approach reveals the sensitivity of the extracted transition density to absorption, medium modifications of the interaction, and the extent and quality of the data in a manner that is largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data. We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile energies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transition densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV. We have also compared our method with scale-factor analyses which assume proportionality between neutron and proton densities. For states whose transition densities are similar in the surface, we find scaling to be accurate at the 20% level. However, for light nuclei substantial deviations beyond the first peak of the differential cross section reveal sensitivity to shape differences. This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also studied. A high-q constraint is used to analyze the contribution of incompleteness error to the deduced error bands and to reduce the model dependence.

  9. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

    SciTech Connect

    Chaudhary, Pankaj; Marshall, Thomas I.; Perozziello, Francesca M.; Manti, Lorenzo; Currell, Frederick J.; Hanton, Fiona; McMahon, Stephen J.; Kavanagh, Joy N.; Cirrone, Giuseppe Antonio Pablo; Romano, Francesco; Prise, Kevin M.; Schettino, Giuseppe

    2014-09-01

    Purpose: The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. Methods and Materials: Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). Results: We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. Conclusions: The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.

  10. Delayed entry of solar protons (E/p/ over 0.3 MeV) into the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Saflekos, N. A.; Sarris, E. T.

    1987-01-01

    The delayed entry of solar protons into the earth's magnetotail is studied using simultaneous observations from three earth-orbiting spacecraft of a number of interplanetary proton events which exhibited abrupt and relatively large discontinuities in intensity associated with magnetic field discontinuities. It is found that such protons have immediate access to the magnetosheath and that delay times increase discontinuously from essentially zero in the magnetosheath to tens of minutes as an observing point moves inward across the magnetopause. Well-defined delay times from 30 to 160 min occur for points interior to the magnetotail. The inferred entry points lie at downstream distances of 80-500 R(E). No discernible relationship is found between the direction and sense of the interplanetary magnetic field and the entry times in the northern and southern lobes of the magnetotail or the entry tiems at various distances from its central axis. These results favor some form of an open model of the magnetotail.

  11. Investigation of activation cross-sections of proton induced nuclear reactions on natMo up to 40 MeV: New data and evaluation

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Ditrói, F.; Hermanne, A.; Takács, S.; Ignatyuk, A. V.

    2012-06-01

    Cross-sections of proton induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 90Mo(cum), 93mMo, 99Mo(cum), 90Nb(cum), 92mNb, 95mNb, 95gNb, 96Nb and 88Zr(cum), 89Zr(cum) were measured up to 40 MeV proton energy by a using stacked foil technique and activation method. The main goals of this work were to study the production possibility of the medically important 99mTc and its 99Mo parent nucleus, to get experimental data for accelerator technology, for monitoring of proton beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analysed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE-II and TALYS codes.

  12. Effects of high-dose 40 MeV proton irradiation on the electroluminescent and electrical performance of InGaN light-emitting diodes

    SciTech Connect

    Khanna, Rohit; Allums, K.K.; Abernathy, C.R.; Pearton, S.J.; Kim, Jihyun; Ren, F.; Dwivedi, R.; Fogarty, T.N.; Wilkins, R.

    2004-10-11

    InGaN multi-quantum-well light-emitting diodes (LEDs) in the form of unpackaged die with emission wavelengths from 410 to 525 nm were irradiated with 40 MeV protons to doses of 5x10{sup 9}-5x10{sup 10} cm{sup -2}. The highest dose is equivalent to more than 100 years in low-earth orbit. The projected range of these protons is >50 {mu}m in GaN and thus they traverse the entire active region. The electroluminescent intensity from the LEDs decreased by only 15%-25% even for the highest doses and the reverse breakdown voltage increased by 1-2 V from their control values of {approx}21-29 V. The percentage change in breakdown voltage and electroluminescence intensity was independent of the initial emission wavelength over the range investigated, within experimental error. The GaN LEDs exhibit extremely good stability to these high-energy proton irradiations with no measurable change in contact resistance or contact morphology.

  13. 1.5 MeV proton irradiation effects on electrical and structural properties of TiO2/n-Si interface

    NASA Astrophysics Data System (ADS)

    Ishfaq, M.; Rizwan Khan, M.; Bhopal, M. F.; Nasim, F.; Ali, A.; Bhatti, A. S.; Ahmed, I.; Bhardwaj, Sunil; Cepek, Cinzia

    2014-05-01

    In this paper, we report the effect of 1.5 MeV proton beam irradiation dose on the structural and electrical properties of TiO2 thin films deposited on n-Si substrates. The formation and transformation of different TiO2 phases in the irradiated thin films were characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). X-ray diffraction measurements revealed that the as grown film was rich in Ti5O9 phase and then converted to mixed phases of TiO2 (rutile and anatase) after exposure with radiation doses up to 5 × 1014 cm-2. The XPS results revealed the formation of oxygen vacancy (negative) traps in the exposed TiO2 films, which showed strong dependence on the dose. The C-V measurements showed that proton radiations also damaged the Si substrate and created deep level defects in the substrate, which caused a shift of 0.26 ± 0.01 V in the flat band voltage (VFB). I-V measurements showed that the ideality factor increased and the rectification ratio dropped with the increase in the radiation dose. The present study showed the stability of TiO2/Si interface and TiO2 film as an oxide layer against proton radiations.

  14. Acceleration of protons to above 6 MeV using H{sub 2}O 'snow' nanowire targets

    SciTech Connect

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-09

    A scheme is presented for using H{sub 2}O 'snow' nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  15. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect

    ., Nuruzzaman

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  16. Beam normal single spin asymmetry in forward angle inelastic electron-proton scattering using the q-weak apparatus

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, FNU

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (Bn) on H2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic Bn is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of Bn background studies, we made the first measurement of Bn in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be Bn = 42.82 +- 2.45 (stat) +- 16.07 (sys) ppm at beam energy Ebeam = 1.155 GeV, scattering angle theta = 8.3 degrees, and missing mass W = 1.2 GeV. Bn from electron-nucleon scattering is a unique tool to study the gamma*DeltaDelta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ˜10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has

  17. SU-E-T-554: Monte Carlo Calculation of Source Terms and Attenuation Lengths for Neutrons Produced by 50–200 MeV Protons On Brass

    SciTech Connect

    Ramos-Mendez, J; Faddegon, B; Paganetti, H

    2015-06-15

    Purpose: We used TOPAS (TOPAS wraps and extends Geant4 for medical physicists) to compare Geant4 physics models with published data for neutron shielding calculations. Subsequently, we calculated the source terms and attenuation lengths (shielding data) of the total ambient dose equivalent (TADE) in concrete for neutrons produced by protons in brass. Methods: Stage1: The Bertini and Binary nuclear models available in Geant4 were compared with published attenuation at depth of the TADE in concrete and iron. Stage2: Shielding data of the TADE in concrete was calculated for 50– 200 MeV proton beams on brass. Stage3: Shielding data from Stage2 was extrapolated for 235 MeV proton beams. This data was used in a point-line-source analytical model to calculate the ambient dose per unit therapeutic dose at two locations inside one treatment room at the Francis H Burr Proton Therapy Center. Finally, we compared these results with experimental data and full TOPAS simulations. Results: At larger angles (∼130o) the TADE in concrete calculated with the Bertini model was about 9 times larger than that calculated with the Binary model. The attenuation length in concrete calculated with the Binary model agreed with published data within 7%±0.4% (statistical uncertainty) for the deepest regions and 5%±0.1% for shallower regions. For iron the agreement was within 3%±0.1%. The ambient dose per therapeutic dose calculated with the Binary model, relative to the experimental data, was a ratio of 0.93±0.16 and 1.23±0.24 for two locations. The analytical model overestimated the dose by four orders of magnitude. These differences are attributed to the complexity of the geometry. Conclusion: The Binary and Bertini models gave comparable results, with the Binary model giving the best agreement with published data at large angle. Shielding data we calculated using the Binary model is useful for fast shielding calculations with other analytical models. This work was supported by

  18. Production cross sections of products in the proton induced reactions on natNd in the energy region up to 45 MeV

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Chul; Kim, Kwangsoo; Song, Tae-Yung; Lee, Young-Ouk; Kim, Guinyun

    2015-11-01

    The production cross sections of 141,143,144,146,148m,148g,149,150Pm, 139m,147,149Nd, 138m,142gPr, and 139gCe in the natNd(p,x) reactions were determined by a stacked-foil activation technique for the proton energy range up to 45 MeV using the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences. The measured cross sections were compared with literature data as well as data from the TENDL-2014 library based on TALYS 1.6. The production cross sections of the above radionuclides are slightly higher than the literature data but are in general agreement with values in TENDL-2014 library except for 148mPm, 148gPm, 139mNd, and 142gPr. The thick target integral yields of the produced radionuclides were also deducted from the measured cross sections.

  19. Geometrical effect on the measurement of stopping power: Angle-dependent energy loss of 7-MeV protons in metallic and organic thin foils

    SciTech Connect

    Ishiwari, R.; Shiomi, N.; Sakamoto, N.

    1982-05-01

    Energy losses of 7-MeV protons in metallic and organic thin foils have been obtained as a function of emergence angles. Angular distributions due to multiple scattering have been also measured. The energy loss is found to increase for all targets with increasing emergence angles. The increase of the energy loss cannot be explained by the following three effects: (1) the increase of the target thickness caused by the deflection of the particle, (2) the increase of the path length due to multiple scattering with atomic nuclei, and (3) the energy transfer to the recoil nuclei during the multiple-scattering process. From this consideration, the observed increase of the energy loss with increasing emergence angle is concluded to be due to a hitherto unknown effect. This effect is very likely the dependence of the energy loss on the average impact parameter with the atomic nucleus.

  20. Measurement of the total photoabsorption cross section on a proton in the energy range 600-1500 MeV at the GRAAL

    SciTech Connect

    Bartalini, O.; Bellini, V.; Bocquet, J. P.; Calvat, P.; D'Angelo, A.; Didelez, J.-P.; Di Salvo, R.; Fantini, A.; Ghio, F.; Girolami, B.; Guidal, M.; Giusa, A.; Hourany, E.; Ignatov, A. S.; Kunne, R.; Lapik, A. M.; Sandri, P. Levi; Lleres, A.; Moricciani, D.; Mushkarenkov, A. N.; and others

    2008-01-15

    The total photoabsorption cross section on a free proton was measured at the GRAAL facility in the energy range E{sub {gamma}} = 600-1500 MeV. The large-aperture LAGRAN{gamma}E detector and a liquid hydrogen target were used in the experiment performed with a back-scattered Compton gamma beam. To improve the accuracy, two alternative methods were employed. First, a subtraction method of using empty-target measurements allowed the cross section {sigma}{sub tot} to be evaluated directly because of a low level of the electromagnetic background. Second, an algorithm for evaluating {sigma}{sub tot} on the basis of summing the dominating partial cross sections was developed. Experimental results obtained for {sigma}{sub tot} by the two methods are compared with existing data.

  1. Measurement of Recoil Losses and Ranges for Spallation Products Produced in Proton Interactions with Al, Si, Mg at 200 and 500 MeV

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2005-01-01

    Cosmic rays interact with extraterrestrial materials to produce a variety of spallation products. If these cosmogenic nuclides are produced within an inclusion in such material, then an important consideration is the loss of the product nuclei, which recoil out of the inclusion. Of course, at the same time, some atoms of the product nuclei under study may be knocked into the inclusion from the surrounding material, which is likely to have a different composition to that of the inclusion [1]. For example, Ne-21 would be produced in presolar grains, such as SiC, when irradiated in interstellar space. However, to calculate a presolar age, one needs to know how much 21Ne is retained in the grain. For small grains, the recoil losses might be large [2, 3] To study this effect under laboratory conditions, recoil measurements were made using protons with energies from 66 - 1600 MeV on Si, Al and Ba targets [3, 4, 5].

  2. Auger electron spectroscopy study of alloy 718 and 304L stainless steel irradiated with 800 MeV protons

    NASA Astrophysics Data System (ADS)

    García-Mazarío, M.; Hernández-Mayoral, M.; Lancha, A. M.

    2001-07-01

    It is well known that radiation produces changes in materials microstructure such as formation of defects, dissolution and redistribution of secondary phases, precipitation of new phases, etc. and changes in the grain boundary microchemistry by a process known as radiation-induced segregation (RIS). This paper describes the grain boundary microchemical characterization of alloy 718 and 304L stainless steel irradiated with high-energy protons at Los Alamos Neutron Science Center (LANSCE), performed by means of Auger electron spectroscopy (AES). In addition, non-irradiated alloy 718 was characterized as reference. The Auger results showed that as a consequence of exposure to proton radiation, the changes observed in alloy 718 were the disappearance of the nickel and niobium rich grain boundaries precipitates and RIS of the major alloying elements (nickel to grain boundaries, and chromium and iron away from grain boundaries). On the other hand, in irradiated AISI 304L no differences were observed between intergranular and transgranular areas.

  3. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  4. Use of 70 MeV Proton Beam for Medical Applications at INFN-LNS: CATANA Project

    SciTech Connect

    Sabini, M.G.; Cirrone, G.A.P.; Barone Tonghi, L.; Bartolotta, A.; Brai, M.; Cuttone, G.; Lo Nigro, S.; Marano, F.; Nicoletti, G.A.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romeo, N.; Rovelli, A.; Salamone, V.; Teri, G.

    2000-12-31

    The project CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) is a collaboration between the INFN-Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute and Radiology Institute of the Catania University and CSFNSM Catania. The main goal of CATANA is the study and the application of proton therapy for the treatment of shallow tumors (4 cm max) like uveal melanomas and subfoveal macular degenerations.

  5. Excitation functions of proton induced reactions on natOs up to 65 MeV: Experiments and comparison with results from theoretical codes

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam Rebeles, R.; Tárkányi, F.; Takács, S.

    2015-02-01

    Activation of thin natOs targets, electrodeposited on Ni backings, was investigated for the first time in stacked foil irradiations with 65 MeV and 34 MeV proton beams. Assessments of the produced radionuclides by high resolution gamma-ray spectroscopy yielded excitation functions for formation of 184, 185, 186m,m+g, 187m+g, 188m+g, 189m2+m1+g, 190m2,m1+g, 192m1+gIr and 185cum, 191m+gOs, 183m+gRe. Where available comparisons with the reaction cross sections obtained in 2 earlier studies on enriched 192Os were made. Reduced uncertainty on cross sections is obtained by simultaneous remeasurement of the 27Al(p,x)22,24Na, natNi(p,x)57Ni and natTi(p,x)48V monitor reactions over wide relevant energy ranges. Confirmation of monitoring took place by assessment of excitation functions of 61Cu, 56Ni, 55,56,57,58Co and 52Mn induced in the Ni backings and comparison with a recent compilation for most of these radionuclides. Contributing reactions and overall cross sections are discussed and were evaluated in comparison with the results of the theoretical code TALYS 1.6 (values from the on-line library TENDL-2013).

  6. Evaluated Nuclear Data Library for Transport Calculations Involving Incident Neutrons and Protons of Energy Up to 100 MeV.

    Energy Science and Technology Software Center (ESTSC)

    1993-08-09

    Version 00 This data base was developed for use in Monte Carlo or discrete ordinate transport codes, for example, the general Monte Carlo code MCNP. Various modules of the NJOY processing code system have been enhanced to permit processing of the ENDF/B-VI formatted evaluations into both continuous-energy and multi-group format. The transport data files for all 18 projectile-plus-target systems have been processed through NJOY, and coupled multi-particle, multi-group transport libraries for MCNP now exist. Inmore » addition, pointwise MCNP libraries to 100 MeV for incident neutrons have been prepared for the nine targets. The production version of the MCNP code is being modified to handle the new pointwise libraries. The production version of MCNP already supports the use of coupled multi-group libraries.« less

  7. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  8. Measurement of proton induced thick target γ-ray yields on B, N, Na, Al and Si from 2.5 to 4.1 MeV

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Ferraccioli, G.; Melon, B.; Nannini, A.; Perego, A.; Salvestrini, L.; Lagoyannis, A.; Preketes-Sigalas, K.

    2016-01-01

    Thick target yields for proton induced γ-ray emission (PIGE) on low-Z nuclei, namely B, N, Na, Al and Si, were measured for proton energies from 2.5 to 4.1 MeV and emission angles of 0°, 45° and 90°, at the 3 MV Tandetron laboratory of INFN-LABEC in Florence. The studied reactions were: 10B(p,α‧γ)7Be (Eγ = 429 keV), 10B(p,p‧γ)10B (Eγ = 718 keV) and 11B(p,p‧γ)11B (Eγ = 2125 keV) for boron; 14N(p,p‧γ)14N (Eγ = 2313 keV) for nitrogen; 23Na(p,p‧γ)23Na (Eγ = 441 and 1636 keV) and 23Na(p,α‧γ)20Ne (Eγ = 1634 keV) for sodium; 27Al(p,p‧γ)27Al (Eγ = 844 and 1014 keV) and 27Al(p,α‧γ)24Mg (Eγ = 1369 keV) for aluminum; 28Si(p,p‧γ)28Si (Eγ = 1779 keV) and 29Si(p,p‧γ)29Si (Eγ = 1273 keV) for silicon. The PIGE thick target yields have been measured with an overall uncertainty typically better than 10%. The use of the measured thick target yield to benchmark and validate experimental cross sections available in the literature is demonstrated.

  9. K-shell-ionization cross sections for low-Z elements (11<=Z<=22) by protons in the energy range 0.5-2.5 MeV

    NASA Astrophysics Data System (ADS)

    Tribedi, L. C.; Tandon, P. N.

    1992-06-01

    K-shell-ionization cross sections for Na, Mg, Al, Si, Cl, K, Ca, and Ti by protons in the energy range 0.5-2.5 MeV have been measured using thin targets. Measurements have also been performed for thin targets of Fe, Ni, and Cu at a few energies. The energy range of protons for these targets corresponds to the reduced velocity (v1/v2K) range 0.2-1.1, in which the cross sections are very sensitive to the increased binding energy and the Coulomb-deflection effects. The measured ionization cross sections are compared with the predictions of the theory based on the perturbed-stationary-state approach including the Coulomb-deflection, energy-loss, and relativistic corrections. The data have been scaled according to various scaling laws to test the validity of the universal nature of the various Coulomb ionization theories based on the plane-wave Born approximation, the binary-encounter approximation, and the simplified semiclassical approximation model as given by Lægsgaard, Andersen, and Lund [in Proceedings of the Tenth International Conference on the Physics of Electronic and Atomic Collisions, edited by G. Watel (North-Holland, Amsterdam, 1978), p. 353]. The measured data have also been compared with the calculations of Montenegro and Siguad [J. Phys. B 18, 299 (1985)] based on the theory of 1sσ molecular-orbital ionization.

  10. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    SciTech Connect

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-15

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C{sub 5}H{sub 5}N{sub 5}) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45 Degree-Sign parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15 Degree-Sign to 165 Degree-Sign . Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  11. Stopping power and energy loss straggling of thin Formvar foil for 0.3-2.7 MeV protons and alpha particles

    NASA Astrophysics Data System (ADS)

    Mammeri, S.; Ammi, H.; Dib, A.; Pineda-Vargas, C. A.; Ourabah, S.; Msimanga, M.; Chekirine, M.; Guesmia, A.

    2012-12-01

    Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ˜0.3 μm) have been measured in the energy range (0.3-2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe-Bloch theory to extract the target mean excitation and ionization potential . A resulting value of ≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe-Livingston's classical theories or by Yang's empirical formula. A deviation of ˜40%-80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.

  12. Interplanetary protons (E/sub p/approx. =1 MeV) 1973--1986 and out to 22. 4 AU

    SciTech Connect

    Van Allen, J.A.; Decker, R.B.

    1988-03-01

    This paper uses annual mean counting rate data from detectors on two long-lived spacecraft, Pioneer 11 and IMP 8, to study the temporal and heliocentric radial distance variations of the intensity of interplanetary protons (E/sub p/approx. =1 MeV) over solar activity cycle 21. The Pioneer 11 data cover the time period April 1973 through 1986 and the heliocentric radial distance range 1.0protons varies as the inverse square of the distance from the sun, i.e., as r/sup -//sup ..cap alpha../ with ..cap alpha.. = 2.0 ( +- 0.2), irrespective of solar activity as measured by the annual mean sunspot number S. Also it is found (a) that the annual mean intensity at 1 AU is approximately proportional to S, except for anomalously low values in 1979 and 1980 and (b) that the product of the annual mean intensity at Pioneer 11 by r/sup 2/ is also approximately proportional to S, except for anomalously low values in 1979, 1980 (in particular), and 1981. The common ''1980 anomaly'' is attributed to gross changes in the interplanetary conditions associated with the reversal of the polarity of the sun's polar magnetic field.

  13. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  14. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen

    SciTech Connect

    Jana, M. R.; Chung, M.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Yonehara, K.; Freemire, B.; Hanlet, P.; Torun, Y.

    2013-06-15

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  15. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen.

    PubMed

    Jana, M R; Chung, M; Freemire, B; Hanlet, P; Leonova, M; Moretti, A; Palmer, M; Schwarz, T; Tollestrup, A; Torun, Y; Yonehara, K

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and∕or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment. PMID:23822337

  16. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen

    NASA Astrophysics Data System (ADS)

    Jana, M. R.; Chung, M.; Freemire, B.; Hanlet, P.; Leonova, M.; Moretti, A.; Palmer, M.; Schwarz, T.; Tollestrup, A.; Torun, Y.; Yonehara, K.

    2013-06-01

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, feasibility studies of various types of RF cavities in a high magnetic field environment are in progress. As a unique approach, we have tested a RF cavity filled with a high pressure hydrogen gas with a 400 MeV proton beam in an external magnetic field (B = 3 T). Quantitative information about the number of protons passing through this cavity is an essential requirement of the beam test. The MTA is a flammable gas (hydrogen) hazard zone. Due to safety reasons, no active (energized) beam diagnostic instrument can be used. Moreover, when the magnetic field is on, current transformers (toroids) used for beam intensity measurements do not work due to the saturation of the ferrite material of the transformer. Based on these requirements, we have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera. This paper describes details of the beam profile and position obtained from the CCD image with B = 0 T and B = 3 T, and for high and low intensity proton beams. A comparison is made with beam size obtained from multi-wires detector. Beam transmission efficiency through a collimator with a 4 mm diameter hole is measured by the toroids and CCD image of the scintillation screen. Results show that the transmission efficiency estimated from the CCD image is consistent with the toroid measurement, which enables us to monitor the beam transmission efficiency even in a high magnetic field environment.

  17. Cross sections for production of the 15.10 MeV and other astrophysically significant gamma-ray lines through excitation and spallation of sup 12 C and sup 16 O with protons

    NASA Technical Reports Server (NTRS)

    Lang, F. L.; Werntz, C. W.; Crannell, C. J.; Trombka, J. I.; Chang, C. C.

    1986-01-01

    The ratio of the flux of 15.10-MeV gamma rays to the flux of 4.438-MeV gamma rays resulting from excitation of the corresponding states in C-12 as a sensitive measure of the spectrum of the exciting particles produced in solar flares and other cosmic sources. These gamma rays are produced predominantly by interactions with C-12 and O-16, both of which are relatively abundant in the solar photosphere. Gamma ray production cross sections for proton interactions have been reported previously for all important channels except for the production of 15.10-MeV gamma rays from O-16. The first reported measurement of the 15.10-MeV gamma ray production cross section from p + O-16 is presented here. The University of Maryland cyclotron was employed to produce 40-, 65-, and 86-MeV protons which interacted with CH2 and BeO targets. The resultant gamma ray spectra were measured with a high-purity germanium semiconductor detector at 70, 90, 110, 125, and 140 degrees relative to the direction of the incident beam for each proton energy. Other gamma ray lines resulting from direct excitation and spallation reactions with C-12 and 0-16 were observed as well, and their gamma ray production cross sections described.

  18. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation

    PubMed Central

    Faddegon, Bruce A.; Shin, Jungwook; Castenada, Carlos M.; Ramos-Méndez, José; Daftari, Inder K.

    2015-01-01

    Purpose: To measure depth dose curves for a 67.5 ± 0.1 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Methods: Depth dose curves were measured in 2 beam lines. Protons in the raw beam line traversed a Ta scattering foil, 0.1016 or 0.381 mm thick, a secondary emission monitor comprised of thin Al foils, and a thin Kapton exit window. The beam energy and peak width and the composition and density of material traversed by the beam were known with sufficient accuracy to permit benchmark quality measurements. Diodes for charged particle dosimetry from two different manufacturers were used to scan the depth dose curves with 0.003 mm depth reproducibility in a water tank placed 300 mm from the exit window. Depth in water was determined with an uncertainty of 0.15 mm, including the uncertainty in the water equivalent depth of the sensitive volume of the detector. Parallel-plate chambers were used to verify the accuracy of the shape of the Bragg peak and the peak-to-plateau ratio measured with the diodes. The uncertainty in the measured peak-to-plateau ratio was 4%. Depth dose curves were also measured with a diode for a Bragg curve and treatment beam spread out Bragg peak (SOBP) on the beam line used for eye treatment. The measurements were compared to Monte Carlo simulation done with geant4 using topas. Results: The 80% dose at the distal side of the Bragg peak for the thinner foil was at 37.47 ± 0.11 mm (average of measurement with diodes from two different manufacturers), compared to the simulated value of 37.20 mm. The 80% dose for the thicker foil was at 35.08 ± 0.15 mm, compared to the simulated value of 34.90 mm. The measured peak-to-plateau ratio was within one standard deviation experimental uncertainty of the simulated result for the thinnest foil and two standard deviations for the thickest foil. It was necessary to include the collimation in the simulation, which had a more pronounced effect on the peak-to-plateau ratio for the

  19. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  20. Measurements of radiobiological effectiveness in the 85 MeV proton beam produced at the cyclotron CYCLONE of Louvain-la-Neuve, Belgium

    SciTech Connect

    Gueulette, J.; Gregoire, V.; Octave-Prignot, M.; Wambersie, A.

    1996-01-01

    The RBE of the 85 MeV proton beam produced at the cyclotron of Louvain-la-Neuve using {sup 60}Co {gamma} rays as the reference radiation was determined for survival of Chinese hamster ovary cells in vitro and for intestinal crypt regeneration in mice in vivo. Cell survival curves determined at different depths yielded, for a surviving fraction (SF) of 0.01, RBE values of 1.11 {+-} 0.05 at the initial plateau of the unmodulated beam, 1.10 {+-} 0.03 at the middle of a 0.5-cm spread-out Bragg peak (SOBP), 1.03 {+-} 0.03 at the beginning of a 3-cm SOBP and 1.07 {+-} 0.03 at the end of a 3-cm SOBP. The highest RBE values were obtained at the middle of the 0.5-cm SOBP and at the end of the 3-cm SOBP (RBE = 1.22 and 1.16, respectively, at SF = 0.5), although the variations are not statistically significant. Irradiations with 3-Gy fractions separated by an interval of 3.5 h yielded RBEs of 1.11 {+-} 0.30 and 0.90 {+-} 0.32 at the initial plateau and at the middle of the 0.5-cm SOBP, respectively. Irradiations of mice at the middle of the 3-cm SOBP yielded an RBE of 1.08 {+-} 0.03 for 20 regenerated crypts at a proton dose of 12.3 Gy. 18 refs., 4 figs., 1 tab.

  1. Annual Cosmic Ray Spectra from 250 MeV up to 1.6 GeV from 1995 - 2014 Measured with the Electron Proton Helium Instrument onboard SOHO

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Gómez-Herrero, R.; Heber, B.

    2016-03-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by examining long-term variations of the GCR energy spectrum ( e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) onboard the SOlar and Heliospheric Observatory (SOHO) is well suited for this kind of investigation. Although the design of the instrument is optimised to measure proton and helium isotope spectra up to 50 MeV nucleon^{-1}, the capability exists to determine proton energy spectra from 250 MeV up to above 1.6 GeV. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy-response function of EPHIN for electrons, protons, and heavier ions. For validation purposes, proton spectra based on this method are compared to various balloon missions and space instrumentation. As a result we present annual galactic cosmic-ray spectra from 1995 to 2014.

  2. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  3. North/South Hemispheric Periodicities in the {>} 25 MeV Solar Proton Event Rate During the Rising and Peak Phases of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2016-08-01

    We present evidence that >25~MeV solar proton events show a clustering in time at intervals of about six months that persisted during the rising and peak phases of Solar Cycle 24. This phenomenon is most clearly demonstrated by considering events originating in the northern or southern solar hemispheres separately. We examine how these variations in the solar energetic particle (SEP) event rate are related to other phenomena, such as hemispheric sunspot numbers and areas, rates of coronal mass ejections, and the mean solar magnetic field. Most obviously, the SEP event rate closely follows the sunspot number and area in the same hemisphere. The variations of about six months are associated with features in many of the other parameters we examine, indicating that they are just one signature of the episodic development of Cycle 24. They may be related to periodicities of about 150 days reported in various solar and interplanetary phenomena during previous solar cycles. The clear presence of periodicities of about six months in Cycle 24 that evolve independently in each hemisphere contradicts a scenario suggested by McIntosh et al. ( Nature Com. 6, 6491, 2015) for the variational timescales of solar magnetism.

  4. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  5. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  6. Systematic study of three-nucleon force effects in the cross section of the deuteron-proton breakup at 130 MeV

    SciTech Connect

    St. Kistryn; E. Stephan; A. Biegun; K. Bodek; A. Deltuva; E. Epelbaum; K. Ermisch; W. Gloeckle; J. Golak; N. Kalantar-Nayestanaki; H. Kamada; M. Kis; B. Klos; A. Kozela; J. Kuros-Zolnierczuk; M. Mahjour-Shafiei; U.-G. Meissner; A. Micherdzinska; A. Nogga; P. U. Sauer; R. Skibinski; R. Sworst; H. Witala; J. Zejma; W. Zipper

    2005-08-11

    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear preference for the predictions in which the 3NF's are included. The majority of the experimental data points is well reproduced by the theoretical predictions. The remaining discrepancies are investigated by inspecting cross sections integrated over certain kinematical variables. The procedure of global comparisons leads to establishing regularities in disagreements between the experimental data and the theoretically predicted values of the cross sections. They indicate deficiencies still present in the assumed models of the 3N system dynamics.

  7. Geometrical effect on the measurement of stopping power: Angle-dependent energy loss of 5 MeV protons in Au

    NASA Astrophysics Data System (ADS)

    Ishiwari, R.; Shiomi-Tsuda, N.; Sakamoto, N.; Ogawa, H.

    1990-03-01

    The geometrical effect on the measurement of stopping power - the angle-dependent energy loss of 5 MeV protons in Au - has been measured using a very homogeneous Au target. The inhomogeneity of the target thickness has been investigated by electron microscopy and by comparing the observed straggling of the energy loss with the predictions of the straggling theories. The inhomogeneity of the target thickness was estimated to be at most 3.27% of the average thickness. The effect of the target inhomogeneity on the angular dependence of the energy loss has been investigated by calculating the average target thickness as a function of the emergence angle. After subtracting the effect of the target inhomogeneity, the energy loss increases about 1.55% as the emergence angle increases from 0.64° to 3.82°. We conclude that this increase of the energy loss as a function of the emergence angle is a manifestation of an impact parameter dependence of electronic stopping.

  8. The Relationship Between CME Properties in the CDAW, CACTUS and SEEDS Catalogs and ?25 MeV Solar Proton Event Intensities

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2013-12-01

    overcome some of these problems. In particular, a spacecraft in quadrature with the solar source of an SEP event should observe the 'true' width and speed of the associated CME. However, STEREO CME parameters are derived using the CACTUS method, and cannot be directly compared with the LASCO CDAW catalog values that have been so widely used for many years. In this study, we will examine the relationship between the properties of CMEs in various catalogs and the intensities of a large sample of particle events that include ˜25 MeV protons in cycles 23 and 24. In particular, we will compare the proton intensity-speed relationships obtained using the CDAW, CACTUS and SEEDS LASCO catalogs, and also using the CACTUS values from whichever spacecraft (STEREO A, B or SOHO) is best in quadrature with the solar event. We will also examine whether there is any correlation between the width of the CMEs in the automated catalogs and proton intensity, and whether a combination of CME speed and width might improve the correlation with proton intensity.

  9. Spatial measure of reaction size in proton scattering

    NASA Astrophysics Data System (ADS)

    Ito, Makoto; Iwasaki, Masataka; Otani, Reiji; Tomita, Masashi

    2016-06-01

    The microscopic coupled-channel (MCC) calculations for proton + 12C inelastic scattering are performed in the energy range of Ep = 29.95 MeV to 65 MeV. The nuclear interactions for the proton -12C system are constructed from the folding model, which employs the internal wave function of 12C, obtained from the 3α resonating group method (3α RGM), and an effective nucleon-nucleon interaction of the density-dependent Michigan three-range Yukawa (DDM3Y). The MCC calculation with the 3α RGM + DDM3Y nicely reproduces all of the differential cross sections for elastic and inelastic scattering in the angular range of θc.m. = 30° to 120°. We introduce a scattering radius, which characterizes a spatial size of the scattering area, from partial wave decompositions of an angle-integrated cross section. The scattering radii for the elastic scattering and the various inelastic channels, which involve the rotational or vibrational excitations and the 3α excitations in 12C, are derived. We found that the scattering radii for the inelastic channels with a well developed 3α structure are strongly enhanced in comparison to the scattering radii for the elastic and collective channels. This enhancement of the scattering radius for the 3α channel strongly suggests that the scattering radius is sensitive to a size of the intrinsic structure of the finally excited state in the scattering process.

  10. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    SciTech Connect

    Rossomme, S; Renaud, J; Sarfehnia, A; Seuntjens, J; Lee, N; Thomas, R; Kacperek, A; Bertrand, D; Vynckier, S; Palmans, H

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor kQ,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates kQ,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficient is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental kQ,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. kQ,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine kQ,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher

  11. Involvement of the Artemis Protein in the Relative Biological Efficiency Observed With the 76-MeV Proton Beam Used at the Institut Curie Proton Therapy Center in Orsay

    SciTech Connect

    Calugaru, Valentin; Nauraye, Catherine; Cordelières, Fabrice P.; Biard, Denis; De Marzi, Ludovic; Hall, Janet; Favaudon, Vincent; Mégnin-Chanet, Frédérique

    2014-09-01

    Purpose: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). Methods and Materials: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. Results: We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. Conclusions: Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.

  12. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  13. 800-MeV magnetic-focused flash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Espinoza, Camilo; Goett, John Jerome; Hogan, Gary; Hollander, Brian; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morley, Deborah; Morris, Chris; Murray, Matthew; Nedrow, Paul; Saunders, Alexander; Schurman, Tamsen; Sisneros, Thomas; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Wilde, Carl

    2016-03-01

    Proton radiography shows great promise as a tool to guide proton beam therapy (PBT) in real time. Here, we demonstrate two ways in which the technology may progress towards that goal. Firstly, with a proton beam that is 800 MeV in energy, target tissue receives a dose of radiation with very tight lateral constraint. This could present a benefit over the traditional treatment energies of ~200 MeV, where up to 1 cm of lateral tissue receives scattered radiation at the target. At 800 MeV, the beam travels completely through the object with minimal deflection, thus constraining lateral dose to a smaller area. The second novelty of this system is the utilization of magnetic quadrupole refocusing lenses that mitigate the blur caused by multiple Coulomb scattering within an object, enabling high resolution imaging of thick objects, such as the human body. This system is demonstrated on ex vivo salamander and zebrafish specimens, as well as on a realistic hand phantom. The resulting images provide contrast sufficient to visualize thin tissue, as well as fine detail within the target volumes, and the ability to measure small changes in density. Such a system, combined with PBT, would enable the delivery of a highly specific dose of radiation that is monitored and guided in real time.

  14. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  15. Ranking and validation of the spallation models for description of intermediate mass fragment emission from p + Ag collisions at 480 MeV incident proton beam energy

    NASA Astrophysics Data System (ADS)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2016-06-01

    Double-differential cross-sections d2σ/dΩ dE for isotopically identified intermediate mass fragments ( 6Li up to 27Mg from nuclear reactions induced by 480 MeV protons impinging on a silver target were analyzed in the frame of a two-step model. The first step of the reaction was described by the intranuclear cascade model INCL4.6 and the second one by four different models (ABLA07,GEM2, GEMINI++, and SMM). The experimental spectra reveal the presence of low-energy, isotropic as well as high-energy, forward-peaked contributions. The INCL4.6 model offers a possibility to describe the latter contribution for light intermediate mass fragments by coalescence of the emitted nucleons. The qualitative agreement of the model predictions with the data was observed but the high-energy tails of the spectra were significantly overestimated. The shape of the isotropic part of the spectra was reproduced by all four models. The GEM2 model strongly underestimated the value of the cross-sections for heavier IMF whereas the SMM and ABLA07 models generally overestimated the data. The best quantitative description of the data was offered by GEMINI++, however, a discrepancy between the data and the model cross-sections still remained for almost all reaction products, especially at forward angles. It indicates that non-equilibrium processes are present which cannot be reproduced by the applied models. The goodness of the data description was judged quantitatively using two statistical deviation factors, the H-factor and the M-factor, as a tool for ranking and validation of the theoretical models.

  16. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  17. Comparisons of LET Distributions for Protons with Energies between50 and 200 MeV Determined Using a Spherical Tissue-EquivalentProportional Counter (TEPC) and a Position-Sensitive Silicon Spectrometer(RRMD-III)

    SciTech Connect

    Borak, Thomas B.; Doke, Tadayoshi; Fuse, T.; Guetersloh, StephenB.; Heilbronn, Lawrence H.; Hara, K.; Moyers, Michael; Suzuki, S.; Taddei, Phillip; Terasawa, K.; Zeitlin, Cary J.

    2004-12-01

    Experiments have been performed to measure the response of a spherical tissue-equivalent proportional counter (TEPC) and a silicon-based LET spectrometer (RRMD-III) to protons with energies ranging from 50 200 MeV. This represents a large portion of the energy distribution for trapped protons encountered by astronauts in low-Earth orbit. The beam energies were obtained using plastic polycarbonate degraders with a monoenergetic beam that was extracted from a proton synchrotron. The LET spectrometer provided excellent agreement with the expected LET distribution emerging from the energy degraders. The TEPC cannot measure the LET distribution directly. However, the frequency mean value of lineal energy, y bar f, provided a good approximation to LET. This is in contrast to previous results for high-energy heavy ions wherey barf underestimated LET, whereas the dose-averaged lineal energy, y barD, provided a good approximation to LET.

  18. Evidence for an anomalous quantum state of protons in nanoconfined water

    SciTech Connect

    Reiter, George F; Kolesnikov, Alexander I; Paddison, Stephen J; Platzman, P. M.; Moravsky, Alexander P.; Adams, Mark A.; Mayers, Dr. Jerry

    2012-01-01

    Deep inelastic neutron scattering provides a means of directly and accurately measuring the momentum distribution of protons in water, which is determined primarily by the proton ground-state wave function.We find that in water confined on scales of 20 A, this wave function responds to the details of the confinement, corresponds to a strongly anharmonic local potential, shows evidence in some cases of coherent delocalization in double wells, and involves changes in zero-point kinetic energy of the protons from 40 to +120 meV difference from that of bulk water at room temperature. This behavior appears to be a generic feature of nanoscale confinement. It is exhibited here in 16 A inner diameter carbon nanotubes, two different hydrated proton exchange membranes (PEMs), Nafion 1120 and Dow 858, and has been seen earlier in xerogel and 14 A diameter carbon nanotubes. The proton conductivity in the PEM samples correlates with the degree of coherent delocalization of the proton.

  19. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  20. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV

    PubMed Central

    Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  1. K-italic-shell ionization cross sections for Al, Ti, V, Cr, Fe, Ni, Cu, and Ag by protons and oxygen ions in the energy range 0. 3--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M.; Benka, O.

    1986-08-01

    Absolute K-italic-shell ionization cross sections have been measured for thin targets of Al, Ti, and Cu for protons in the energy range 0.3--2.0 MeV and for thin targets of Ti, V, Cr, Fe, Ni, Cu, and Ag for oxygen ions in the energy range 1.36--6.4 Mev. The experimental results are compared to the perturbed-stationary-state (PSS) approximation with energy-loss (E), Coulomb (C), and relativistic (R) corrections, i.e., the ECPSSR approximation (Brandt and Lapicki), to the semiclassical approximation (Laegsgaard, Andersen, and Lund), and to a theory for direct Coulomb ionization of the 1s-italicsigma molecular orbital (Montenegro and Sigaud (MS)). The proton results agree within 3% with empirical reference cross sections. Also, the ECPSSR provides best overall agreement for protons. For oxygen ions, ECPSSR and MS predict experimental results satisfactorily for scaled velocities xi> or =0.4. For lower scaled velocities, the experimental cross sections become considerably higher than theoretical predictions for Coulomb ionization. This deviation increases with increasing Z-italic/sub 1//Z/sub 2/; it cannot be explained by electron transfer to the projectile or by ionization due to target recoil atoms.

  2. L-shell x-ray production cross sections of Ni, Cu, Ge, As, Rb, Sr, Y, Zr, and Pd by (0.25-2.5)-MeV protons

    NASA Astrophysics Data System (ADS)

    Duggan, J. L.; Kocur, P. M.; Price, J. L.; McDaniel, F. D.; Mehta, R.; Lapicki, G.

    1985-10-01

    L-shell x-ray production cross sections by 11H+ ions are reported. The data are compared to the first Born approximation (plane-wave Born approximation for direct ionization and Oppenheimer-Brinkman-Kramers approximation for electron capture) and to the ECPSSR (energy-loss and Coulomb-deflection effects, perturbed stationary-state approximation with relativistic correction) theory. The energy of the protons ranged from 0.25 to 2.5 MeV in steps of 0.25 MeV. The targets used in these measurements were 28Ni, 29Cu, 32Ge, 33As, 37Rb, 38Sr, 39Y, 40Zr, and 46Pd. The first Born theory generally agrees with the data found in the literature at high energies and overpredicts them below 1.5 MeV. The ECPSSR predictions are in better agreement with experimental cross sections. At 0.25 MeV our data, however, are underestimated by this theory and tend to agree with the first Born approximation.

  3. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. PMID:25644082

  4. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using {sup 7}Li(p,n) neutrons at proton energy of 2.5 MeV

    SciTech Connect

    Tanaka, Kenichi; Kobayashi, Tooru; Bengua, Gerard; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2006-06-15

    The characteristics of moderator assembly dimension are investigated for the usage of {sup 7}Li(p,n) neutrons by 2.5 MeV protons in boron newtron capture therapy (BNCT) of brain tumors in the present study. The indexes checked are treatable protocol depth (TPD), which is the greatest depth of the region satisfying the dose requirements in BNCT protocol, proton current necessary to complete BNCT by 1 h irradiation, and the heat flux deposited in the Li target which should be removed. Assumed materials are D{sub 2}O for moderator, and mixture of polyethylene and LiF with 50 wt % for collimator. Dose distributions have been computed with MCNP 4B and 4C codes. Consequently, realized TPD does not show a monotonical tendency for the Li target diameter. However, the necessary proton current and heat flux in the Li target decreases as the Li target diameter increases, while this trend reverses at around 10 cm of the Li target diameter for the necessary proton current in the condition of this study. As to the moderator diameter, TPD does not exhibit an apparent dependence. On the other hand, necessary proton current and heat flux decrease as the moderator diameter increases, and this tendency saturates at around 60 cm of the moderator diameter in this study. As to the collimator, increase in inner diameter is suitable from the viewpoint of increasing TPD and decreasing necessary proton current and heat flux, while these indexes do not show apparent difference for collimator inner diameters over 14 cm for the parameters treated here. The practical viewpoint in selecting the parameters of moderator assembly dimension is to increase TPD, within the technically possible condition of accelerated proton current and heat removal from the Li target. In this process, the values for which the resultant characteristics mentioned above saturate or reverse would be important factors.

  5. Schwinger variational approach for a direct excitation of hydrogen-like (Li2+ (1s)) target to the level n=3 by proton impact energies from 9 keV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Khelfaoui, Friha; Lasri, Boumediene; Abbes, Oukacha

    2012-06-01

    The excitation cross sections for hydrogen-like (Li2+(1s)) to the 3s, 3p and 3d states by proton impact have been calculated in a wide energy range from 9 keV to 3 MeV, using the Schwinger's variational principle within the impact parameter formalism. These cross sections are relevant to controlled nuclear fusion studies [1]. The behaviors of the computed cross sections are in excellent agreement with available theoretical results, obtained by close-coupling method which is those of TCAO of Ermolaev et al [1] and SCE of Hall et al [2].

  6. Next-to-leading-order QCD corrections to jet cross sections and jet rates in deeply inelastic electron-proton scattering

    SciTech Connect

    Graudenz, D. )

    1994-04-01

    Jet cross sections in deeply inelastic scattering in the case of transverse photon exchange for the production of (1+1) and (2+1) jets are calculated in next-to-leading-order QCD (here the +1'' stands for the target remnant jet, which is included in the jet definition). The jet definition scheme is based on a modified JADE cluster algorithm. The calculation of the (2+1) jet cross section is described in detail. Results for the virtual corrections as well as for the real initial- and final-state corrections are given explicitly. Numerical results are stated for jet cross sections as well as for the ratio [sigma][sub (2+1) jet]/[sigma][sub tot] that can be expected at E665 and DESY HERA. Furthermore the scale ambiguity of the calculated jet cross sections is studied and different parton density parametrizations are compared.

  7. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    DOE PAGESBeta

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; et al

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased asmore » the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.« less

  8. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 MeV proton-7Li reaction or from fission of 235U

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Endo, Satoru; Hoshi, Masaharu

    2001-10-01

    The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D2O moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.

  9. Proton beam simulation with MCNPX/CINDER'90: Germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes.

    PubMed

    Fassbender, M; Taylor, W; Vieira, D; Nortier, M; Bach, H; John, K

    2012-01-01

    Germanium metal targets encapsulated in Nb shells were irradiated in a proton beam. Proton and secondary neutron beam fluences as well as radionuclide activity formation were modeled using MCNPX in combination with CINDER90. Targets were chemically processed using distillation and anion exchange. Good agreement between the measured radiochemical yields and MCNPX/CINDER90 estimates was observed. A target of pentavalent (73,74)As radioarsenic for neutron activation studies was prepared. PMID:21890369

  10. Time Evolution and Asymmetries of OMEGA Direct-Drive D^3He Capsule Implosions Inferred from 3.0- and 14.7-MeV Protons and 3.6-MeV Alphas

    NASA Astrophysics Data System (ADS)

    Seguin, F. H.; Petrasso, R. D.; Frenje, J. A.; Li, C. K.; Rygg, J. R.; Stoeckl, C.; Radha, P. B.; Delettrez, J. A.; Glebov, V. N.; Meyerhofer, D. D.; Sangster, T. C.; Soures, J. M.

    2002-11-01

    Fusion of D and ^3He in direct-drive, spherical-capsule implosions results in the copious production of several charged fusion products that lose energy as they pass out through the hot fuel plasma and the cool (<=1 keV) shell plasma. Energy losses reflect the areal density (ρ L) of the plasma transited at the instant of burn. In experiments on OMEGA, up to 11 spectrometers were used to simultaneously measure spectra of D^3He protons from different directions for information about the symmetry and time evolution of ρL. There are often significant differences in the individual spectra from one implosion, both in mean energy loss and in maximum energy loss, which largely reflect nonuniformities in the shell. D^3He protons are also produced at first shock coalescence when the capsule is far less compressed, and they escape with energy losses indicating lower areal densities at that time. We examine whether asymmetries are detectable at first shock coalesence, and whether they are then amplified by bang time. This work was supported in part by the U.S. DOE Office of Inertial Confinement Fusion (Grant number DE-FG03-99DP00300 and Cooperative Agreement number DE-FC03-92SF19460), LLE (subcontract P0410025G), LLNL (subcontract B313975). (Petrasso: Visiting Senior Scientist at LLE.)

  11. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    SciTech Connect

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-10-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the {sup 3}He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ({sup 3}He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the {sup 3}He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment.

  12. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  13. Measurement of the transverse beam spin asymmetry in elastic electron-proton scattering and the inelastic contribution to the imaginary part of the two-photon exchange amplitude.

    PubMed

    Maas, F E; Aulenbacher, K; Baunack, S; Capozza, L; Diefenbach, J; Gläser, B; Imai, Y; Hammel, T; von Harrach, D; Kabuss, E-M; Kothe, R; Lee, J H; Sanchez-Lorente, A; Schilling, E; Schwaab, D; Stephan, G; Weber, G; Weinrich, C; Altarev, I; Arvieux, J; Elyakoubi, M; Frascaria, R; Kunne, R; Morlet, M; Ong, S; Vandewiele, J; Kowalski, S; Suleiman, R; Taylor, S

    2005-03-01

    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A( perpendicular), at two Q2 values of 0.106 and 0.230 (GeV/c)(2) and a scattering angle of 30 degrees proton. PMID:15783877

  14. Radiative capture and charge exchange of negative pions on protons at 26.4 and 39.3 MeV

    NASA Astrophysics Data System (ADS)

    Salomon, M.; Measday, D. F.; Poutissou, J.-M.; Robertson, B. C.

    1984-02-01

    The π-p → γn and π-p → π-on reactions were studied at laboratory pion kinetic energies of 27.4 and 39.3 MeV for 9 angles. The differential cross sections of the π-p → γn reaction are compared with previous data and with several calculations. The π-p → π-on differential cross sections were obtained by unfolding the energy spectra of the π o γ-ray decays. Pion-nucleon phase shifts and scattering lengths are deduced and good agreement is obtained with the elastic channels, supporting isospin invariance.

  15. Enhancement of critical current density in a Ca0.85La0.15Fe(As0.92Sb0.08)2 superconductor with T c = 47 K through 3 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Park, Akiyoshi; Mine, Akinori; Yamada, Tatsuhiro; Ohtake, Fumiaki; Akiyama, Hiroki; Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kitahama, Yutaka; Mizukami, Tasuku; Kudo, Kazutaka; Nohara, Minoru; Kitamura, Hisashi

    2016-05-01

    We examine the critical current density (J c) of Ca{}1-xLa x Fe(As{}1-ySb y )2, a 112-type iron-based superconductor (IBS) with {T}{{c}} = 47 K, via magneto-optical imaging and magnetization measurements. We assert that the large self-field J c of 2.2× {10}6 A cm- 2 at 2 K is a strong indication that it is a bulk superconductor with spatially homogeneous superconductivity. A 2.8-fold enhancement in J c to 6.2× {10}6 A cm- 2 was achieved through artificially engineering pinning centers by irradiating 3 MeV protons with a total dosage of 1.0× {10}16 {{cm}}-2. The results not only demonstrate the potential of 112-type IBSs for application but also enrich the current understanding of the role of artificial defects in IBSs.

  16. Proton induced K X-ray production cross sections of the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range

    NASA Astrophysics Data System (ADS)

    Bertol, Ana Paula Lamberti; Hinrichs, Ruth; Vasconcellos, Marcos A. Z.

    2015-12-01

    Proton induced K-shell ionization cross sections were obtained for the elements Al, Si, Ti, Fe, and Ni in the 0.7-2.0 MeV energy range. The accuracy of these fundamental parameters is essential for PIXE analysis and the data in the literature present a considerable spread, mainly for Al and Si. The values obtained for Ti, Fe and Ni are compatible with the current theories and the experimental results reported in the literature. However, Al and Si cross sections present important differences from theoretical and experimental data. We propose values for the fluorescent yields of Al and Si that are compatible with recent results and can be incorporated in the computations of K X-ray production cross sections.

  17. Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Blanco Sancho, J.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2013-06-01

    In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15·1011 so that the total number of protons in the beam is about 1.3·1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 μs. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with σ = 0.1 mm-1.0 mm. In this paper we present results using two values of σ, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius = 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target experiments for the machine protection studies at the HiRadMat (High Radiation Materials) facility at CERN. However this work has shown that large samples of High Energy Density (HED) matter will be generated in such experiments which suggests an additional application of this facility. In the present paper we emphasize the possibility of doing HED physics experiments at the HiRadMat in the future.

  18. Calculated neutron-induced cross sections for /sup 53/Cr from 1 to 20 MeV

    SciTech Connect

    Shibata, K.; Hetrick, D.M.

    1987-05-01

    Neutron-induced cross sections of /sup 53/Cr have been calculated in the energy regions from 1 to 20 MeV. The quantities obtained are the cross sections for the reactions (n,n'..gamma..), (n,2n), (n,np), (n,n..cap alpha..), (n,p..gamma..), (n,pn), (n,..cap alpha gamma..), (n,..cap alpha..n), (n,d), (n,t), (n,/sup 3/He), and (n,..gamma..), as well as the spectra of emitted neutrons, protons, alpha particles, and gamma rays. The precompound process was included above 5 MeV in addition to the compound process. For the inelastic scattering, the contribution of the direct interaction was calculated with DWBA. 36 refs., 23 figs., 11 tabs.

  19. K -shell ionization cross sections for Si, P, K, Ca, Zn, and Ga by protons and carbon ions in the energy range 1--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Benka, O. )

    1990-01-01

    Absolute {ital K}-shell ionization cross sections have been measured for thin targets of Si, P, S, K, Ca, Zn, and Ga using carbon ions between 1.0 and 6.4 MeV and protons of 1 and 2 MeV. The dependence of x-ray production cross sections on target thickness was determined. The experimental results are compared to the semiclassical approximation (Laegsgaard, Andersen, and Lund in 3 Proceedings of the Tenth International Conference on the Physics of Electron and Atomic Collisions, Paris, 1977, edited by G. Watel (North-Holland, Amsterdam 1977)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B. 18, 299 (1985)), to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), and to the modification of the ECPSSR approximation (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Suppl. 12, C9-251 (1987)). The results for carbon ions are also compared to the statistical molecular orbital theory of inner-shell ionization for symmetric or nearly symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)).

  20. Thulium-169 neutron inelastic scattering cross section measurements via the (169)Tm(n,n'gamma) reaction

    NASA Astrophysics Data System (ADS)

    Ko, Young June

    1999-11-01

    A neutron inelastic scattering study for low-lying states of thulium-169 below 1 MeV has been pursued by the detection of gamma rays from the 169Tm(n,n'γ) reaction. The inelastic level cross sections, which are important to obtain nuclear potential parameters and to understand reaction mechanisms, were obtained in this study. Incident neutrons were generated by bombarding a metallic lithium target with protons from the Lowell Van de Graaff accelerator. A germanium detector was used for gamma-ray observation. Excitation functions were measured from 0.2 to 1 MeV in 50 keV intervals at a scattering angle of 125°. Gamma-ray production cross sections were obtained for 37 observed transitions from 16 levels. Gamma-ray angular distributions from 35° to 135°, in 10° steps were measured at a neutron energy of 750 keV. The angular distributions were fitted with Legendre polynomials of even (up to fourth) order. Neutron inelastic level cross sections were inferred from the excitation functions and the angular distributions. Because cross-section data from previous experimental or theoretical work were not available, no direct comparison with previous work was made. A comparison of the magnitude and behavior of the (n,inelastic) cross section for thulium with those of neighboring odd-A nuclei indicated reasonable agreement. A classical model for angular momentum transfer indicates that states with spin >=/(+) may be excited only through the compound nucleus process, but for states with spin <=/(-) compound nucleus and direct interaction processes may both participate in the excitation.

  1. Proton transfer dynamics in the hydrogen bond. Inelastic neutron scattering, infrared and Raman spectra of Na 3H(SO 4) 2, K 3H(SO 4) 2 and Rb 3H(SO 4) 2

    NASA Astrophysics Data System (ADS)

    Fillaux, F.; Lautié, A.; Tomkinson, J.; Kearley, G. J.

    1991-06-01

    Na 3H(SO 4) 2, K 3H(SO 4) 2 and Rb 3H(SO 4) 2 crystals are composed of (SO 4HSO 4) -3 dimers linked by rather strong hydrogen bonds ( RO…O=2.43 Å for Na 3H(SO 4) 2, RO…O=2.48 Å for Rb 3H(SO 4) 2 and RO…O=2.49 Å for K 3H(SO 4) 2). Crystallographic data of the salts at room temperature indicate either asymmetric (Na 3H(SO 4) 2) or symmetric (K 3H(SO 4) 2 and Rb 3H(SO 4) 2) hydrogen bonds. Inelastic neutron scattering (INS), infrared and Raman spectra of crystal powders at 20 K are reported for these three compounds. The OH bending modes, which give large INS intensities, appear only weakly in the infrared. The two bending modes are degenerate in Na 3H(SO 4) 2 which has the shortest hydrogen bond but are well separated in K 3H(SO 4) 2 and Rb 3H(SO 4) 2. The OH stretching band profiles in INS are also quite different from those in the infrared. Strong INS bands at 57 and 44 cm -1 for K 3H(SO 4) 2 and Rb 3H(SO 4) 2, respectively, are assigned to 0→1 transitions in quasi-symmetric double-minimum potentials for the OH stretching coordinates. For K 3H(SO 4) 2 the frequency is unaffected by temperature between 2 and 100 K. Potential functions are calculated and the dynamics of the proton transfer are discussed. Infrared spectra are thus dominated by OH stretching transitions in asymmetric double-minimum potentials with low barriers, with relative intensities indicating a large electrical anharmonicity.

  2. Pion inelastic scattering from sup 20 Ne

    SciTech Connect

    Burlein, M. . Dept. of Physics)

    1989-12-01

    Angular distributions for {sup 20}Ne({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime}) were measured on the Energetic Pion Channel and Spectrometer (EPICS) at the Clinton P. Anderson Meson Physics Facility (LAMPF). Data were taken with both {pi}{sup {plus}} and {pi}{sup {minus}} over an angular range of 12{degree} to 90{degree} for T{sub {pi}}=180 MeV and with {pi}{sup +} from 15{degree} to 90{degree} for T{sub {pi}}=120 MeV. The data were analyzed using both the distorted-wave impulse approximation (DWIA) and the coupled-channels impulse approximation (CCIA) with collective transition densities. In addition, microscopic transition densities were used in the DWIA analysis for states in the lowest rotational bands. The transitions to the 6.73-MeV 0{sup +} and several 1{sup {minus}} states, including the states at 5.79 MeV and 8.71 MeV, were studied using several models for the transition density. Strong evidence for the importance of two-step routes in pion inelastic scattering was seen in several angular distributions, including the 5.79-MeV 1{sup {minus}}, the first three 4{sup +} states, and the 8.78-MeV 6{sup +}. 100 refs., 81 figs., 33 tabs.

  3. Proton-transfer dynamics in the hydrogen bond. Inelastic neutron scattering, infrared and Raman spectra of KH(CF 3COO) 2 and CsH(CF 3COO) 2

    NASA Astrophysics Data System (ADS)

    Fillaux, F.; Tomkinson, J.

    1991-12-01

    Inelastic neutron scattering (INS), infrared and Raman spectra of potassium and cesium hydrogen bistrifluoroacetate (KH(CF 3COO) 2 and CsH(CF 3COO) 2, respectively) at 20 K are reported. In both crystals H(CF 3COO) 2- centrosymmetric dimers are linked by strong hydrogen bonds, whose lengths are 2.435 and 2.38 Å, respectively. The principal OH modes appear at the same frequencies for both compounds. The OH stretching band shapes are similar in infrared and in INS. The submaxima are attributed to interactions with other internal modes. Below 200 cm -1, the cesium salt shows three narrow bands which emerge from the density-of-states. They are assigned to localized modes involving the proton. A sharp band at 87 cm -1 corresponds to the "tunnelling" transition in a quasi-symmetric double-minimum potential with a barrier height of 1340 cm -1. The other two narrow bands, at 36 and 49 cm -1, are assigned to the internal torsions of coupled CF 3COO groups. Potential barriers are estimated. A detailed band-shape analysis of the OH bending modes provides clear indications of different dynamics for the two salts. KH(CF 3COO) 2 is rather stiff and phonon wings involving the whole lattice density-of-states are observed for the δOH mode but not for the γOH mode. For this latter, the observed combinations indicate a dynamical coupling with the internal torsion. CsH(CF 3COO) 2 is rather soft and recoil occurs. The INS intensities of the OH bending modes are decreased by Debye-Waller factors and their frequencies are shifted upwards. The estimated masses of the recoiling particles are consistent with strong dynamical coupling of the γOH with the torsional mode on the one hand, and of the δOH with translational modes on the other. The polarizability of the counter ion appears to play a leading role in proton dynamics.

  4. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  5. Stretched-state excitations with the (neutron,proton) reaction at 278 MeV on carbon-14, magnesium-26 and silicon-30

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Dong

    1997-11-01

    The reactions 12C(n,p)12B,/ 14C(n,p)14B,/ 16O(n,p)16N,/ 26Mg(n,p)26Na and 30Si(n,p)30Al were studied at a neutron energy of 278 MeV using the charge-exchange facility at the TRIUMF accelerator laboratory in Vancouver, Canada. Excitation-energy spectra and differential cross sections for the observed excitations in these reactions were extracted over the momentum-transfer range from 1.2 to 2.5 fm-1 (θlab in 19o,/ 23o,/ 27o,/ 31o and 35o). The primary goal of this work was the study of T = 2 'stretched' particle-hole states, more specifically (/nu d5/2,/ /pi p3/2-1)/ 4/sp- states excited in 14B,/ (/nu f7/2,/pi d5/2-1)/ 6/sp- states excited in 26Na, and (/nu f7/2,/ /pi d5/2-1)/ 6/sp- states excited in 30Al. The identification of these states was based on: (1) comparison of the experimental cross section angular distribution with theoretical differential cross sections calculated with the distorted-wave-impulse approximation (DWIA); (2) comparison of the measured excitation energies with excitation energies of analog stretched states; and (3) comparison of the spectroscopic strength for these (n,p) reactions to (p,n) and (e,e') spectroscopic strengths. The T = 1 (/nu d5/2,/ /pi p3/2-1)/ 4/sp- 'stretched' states excited in 12B and 16N were also studied. For the 12C(n,p)12B reaction (on targets of CH2 and graphite), 4/sp- T = 1 strength at Ex = 4.25 MeV was observed and found to be consistent with previous measurements; this state was used for calibrating excitation-energy scales for the other targets and as a consistency check among the different experimental runs for this project.

  6. Analysis of the radiation shielding of the bunker of a 230MeV proton cyclotron therapy facility; comparison of analytical and Monte Carlo techniques.

    PubMed

    Sunil, C

    2016-04-01

    The neutron ambient dose equivalent outside the radiation shield of a proton therapy cyclotron vault is estimated using the unshielded dose equivalent rates and the attenuation lengths obtained from the literature and by simulations carried out with the FLUKA Monte Carlo radiation transport code. The source terms derived from the literature and that obtained from the FLUKA calculations differ by a factor of 2-3, while the attenuation lengths obtained from the literature differ by 20-40%. The instantaneous dose equivalent rates outside the shield differ by a few orders of magnitude, not only in comparison with the Monte Carlo simulation results, but also with the results obtained by line of sight attenuation calculations with the different parameters obtained from the literature. The attenuation of neutrons caused by the presence of bulk iron, such as magnet yokes is expected to reduce the dose equivalent by as much as a couple of orders of magnitude outside the shield walls. PMID:26844542

  7. Measurements and coupled reaction channels analysis of one- and two-proton transfer reactions for the 28Si + 90,94Zr systems

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Mandal, S.; Jhingan, A.; Gehlot, J.; Sugathan, P.; Golda, K. S.; Madhavan, N.; Garg, Ritika; Goyal, Savi; Mohanto, Gayatri; Sandal, Rohit; Chakraborty, Santosh; Verma, Shashi; Behera, Bivash; Eleonora, G.; Wollersheim, H. J.; Singh, R.

    2012-03-01

    Measurements of angular distributions for one- and two-proton stripping reactions for 28Si + 90,94Zr systems were performed at 120 MeV. The experiment was carried out with the 28Si beam at Inter University Accelerator Center, New Delhi. The theoretical calculations were performed using the quantum mechanical coupled reaction channels code fresco. The distorted wave Born approximation calculations reproduced the experimental angular distributions for the one-proton transfer channel for both the systems reasonably well but failed for the two-proton transfer channel. Coupled channels calculations including various intermediate states (involving target and projectile inelastic excitations before and/or after transfer) along with the sequential transfer were able to reproduce the two-proton transfer angular distributions for both the systems reasonably well. It seems that at an energy above the Coulomb barrier, there is significant contribution of the indirect multistep and sequential transfer to the two-proton stripping reaction.

  8. Decay of ^10C excited states above the 2p + 2α threshold and the contribution from ``democratic'' two-proton emission

    NASA Astrophysics Data System (ADS)

    Mercurio, K. M.; Charity, R. J.; Shane, R.; Sobotka, L. G.; Elson, J.; Famiano, M.; Wuosmaa, A.; Banu, A.; Fu, C.; Trache, L.; Tribble, R. E.

    2008-04-01

    The decay of ^10C excited states to the 2p +2α exit channel has been studied using an E/A = 10.7 MeV ^10C beam inelastically scattered from a ^9Be target. Levels associated with the two-proton decay to the ground state of ^8Be have been observed. These include states at 5.18 and 6.54 MeV which decay by sequential two-proton emission through the long-lived intermediate state of ^9B. In addition, these two states have branches, or there exist other states at almost the same energies, for which there is no long-lived intermediate state between the two proton emissions. For the 6.57 MeV state, the two protons are preferably emitted on the same side of the decaying ^10C fragment. Evidence is found for a state at E^*= 8.4 MeV in ^10C which decays through the 2.35 MeV second excited state of ^9B. A large data set of kinematically complete ^6Be->2p + α events was also collected.

  9. Inelastic electron scattering from a moving nucleon

    SciTech Connect

    Kuhn, S.E.; Griffioen, K.

    1994-04-01

    The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).

  10. Determination of integral cross sections of 3H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    NASA Astrophysics Data System (ADS)

    Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.

    2016-05-01

    The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.

  11. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  12. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  13. Filtered back-projection reconstruction for attenuation proton CT along most likely paths.

    PubMed

    Quiñones, C T; Létang, J M; Rit, S

    2016-05-01

    This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West-Sherwood effect. PMID:27032330

  14. Filtered back-projection reconstruction for attenuation proton CT along most likely paths

    NASA Astrophysics Data System (ADS)

    Quiñones, C. T.; Létang, J. M.; Rit, S.

    2016-05-01

    This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West–Sherwood effect.

  15. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  16. Determination of the radial gradient in the region 0.81-1.0 AU using both high- and low-energy /more than 10-GeV and more than 52-MeV/ detectors for the 1-AU monitor. [solar quiet measurements of alpha particles and protons

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Bukata, R. P.; Rao, U. R.

    1974-01-01

    A determination of the radial gradient for alpha particles (31-46 MeV/nuc) and protons with energies above 7.5 MeV and 44-77 MeV in the region 1.0-0.81 AU is presented for the solar-quiet year 1966. The determinations are based on data from the Pioneer 6 space probe. Two different detectors are used: the Deep River neutron monitor and measurements of low energy protons made on the IMP-C satellite. The average energy response of the Deep River monitor is 16 GeV, whereas the IMP-C data is for protons with energies above 50 MeV. The resulting radial gradient is found to be nearly zero for the alpha particles and slightly negative for the protons. The same qualitative results were found using the IMP-C data and the Deep River neutron monitor to measure the temporal variation in the cosmic ray intensity. The present analysis indicates that detectors over a wide range of energies are suitable for measuring the radial gradient, providing sufficient statistical precision is obtained to evaluate short-term modulation and the azimuthal separation of the detectors is not great.

  17. Semi-empirical and empirical L X-ray production cross sections for elements with 50 ⩽ Z ⩽ 92 for protons of 0.5 3.0 MeV

    NASA Astrophysics Data System (ADS)

    Nekab, M.; Kahoul, A.

    2006-04-01

    We present in this contribution, semi-empirical production cross sections of the main X-ray lines Lα, Lβ and Lγ for elements from Sn to U and for protons with energies varying from 0.5 to 3.0 MeV. The theoretical X-ray production cross sections are firstly calculated from the theoretical ionization cross sections of the L i ( i = 1, 2, 3) subshell within the ECPSSR theory. The semi-empirical Lα, Lβ and Lγ cross sections are then deduced by fitting the available experimental data normalized to their corresponding theoretical values and give the better representation of the experimental data in some cases. On the other hand, the experimental data are directly fitted to deduce the empirical L X-ray production cross sections. A comparison is made between the semi-empirical cross sections, the empirical cross sections reported in this work and the empirical ones reported by Reis and Jesus [M.A. Reis, A.P. Jesus, Atom. Data Nucl. Data Tables 63 (1996) 1] and those of Strivay and Weber [Strivay, G. Weber, Nucl. Instr. and Meth. B 190 (2002) 112].

  18. An annealing study of charge collection efficiency on Float-Zone p-on-n ministrip sensors irradiated with 24 GeV/c protons and 20 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Pacifico, N.; Dolenc-Kittelmann, I.; Gabrysch, M.; Lucas, C.; Moll, M.

    2015-08-01

    Float-Zone n-bulk p-readout silicon sensors are currently operated in the tracking layers of many High Energy Physics experiments, where they are exposed to moderate to high fluences of hadrons. Though n-readout sensors, either with p or n bulk, are available and are offering an improved radiation hardness, p-on-n sensors are still widely used and are e.g. installed in the present ATLAS and CMS experiments at CERN. Their radiation hardness and long-term performance are therefore of high interest to the detector community. We present here a study performed on these sensors after irradiation with 24 GeV/c protons and 20 MeV neutrons to fluences ranging from 1ṡ1014 to 1ṡ1015 neq/cm2. The sensors were then investigated for charge collection efficiency after different isothermal annealing steps in order to understand the performance evolution of the sensor with annealing time. Additional measurements were performed for the highest neutron fluence by means of the Edge-TCT technique, to assess the electric field configuration within the sensor. The irradiation and the annealing scenarios were chosen to represent the radiation damage scenario over the expected lifetime of the LHC detectors (and even further) and to assess the effect of unplanned annealing due to potentially longer warm shutdowns or cooling problems.

  19. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  20. Investigation of structure in Al23 via resonant proton scattering of Mg22+p and the 22Mg(p,γ) Al23 astrophysical reaction rate

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Baba, H.; Nishimura, S.; Moon, J. Y.; Nishimura, M.; Iwasaki, H.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Lee, J. H.; Kato, S.; Gono, Y.; Lee, C. S.

    2007-11-01

    Proton resonant states in Al23 have been investigated for the first time by the resonant elastic and inelastic scattering of Mg22+p with a Mg22 beam at 4.38 MeV/nucleon bombarding a thick (CH2)n target. The low-energy Mg22 beam was separated by the CNS radioactive ion beam separator (CRIB). The energy spectra of recoiled protons were measured at average scattering angles of θlab≈4°,17° and 23°. A new state has been observed at Ex=3.00 MeV with a spin-parity assignment of (3/2+). In addition, resonant inelastic scattering has populated three more states at excitation energies of 3.14, 3.26, and 3.95 MeV, with proton decay to the first excited state in Mg22 being observed. The new state at 3.95 MeV has been assigned a spin-parity of Jπ=(7/2+). The resonant parameters were determined by an R-matrix analysis of the excitation functions with a SAMMY-M6-BETA code. The core-excited structure of Al23 is discussed within a shell-model picture. The stellar reaction rate of the Mg22(p,γ)Al23 reaction has been reevaluated, and the revised total reaction rate is about 40% greater than the previous result for temperatures beyond T9=0.3.

  1. Calculation of inelastic electron-nucleus scattering form factors of 29Si

    NASA Astrophysics Data System (ADS)

    Salman, A. D.; Al-Dahan, N.; Sharrad, F. I.; Hossain, I.

    2014-08-01

    Inelastic electron scattering form factors for 29Si nucleus with total angular momentum and positive parity (Jπ) and excited energy (3/2+, 1.273 MeV; 5/2+, 2.028 MeV; 3/2+, 2.425 MeV and 7/2+, 4.079 MeV) have been calculated using higher energy configurations outside the sd-shell. The calculations of inelastic form factors up to the first- and second-order with and without core-polarization (CP) effects were compared with the available experimental data. The calculations of inelastic electron scattering form factors up to the first-order with CP effects are in agreement with the experimental data, excepted for states 3/2+(1.273 MeV) and 5/2+(2.028 MeV) and without this effect are failed for all states. Furthermore, the calculations of inelastic electron scattering form factors up to the second-order with CP effects are in agreement with the experimental data for 3/2+(1.273 MeV) and 5/2+(2.028 MeV).

  2. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  3. Weak-coupling structure of proton resonant states in 23Al studied with RI beam at CNS

    NASA Astrophysics Data System (ADS)

    He, J. J.; Kubono, S.; Teranishi, T.; Notani, M.; Michimasa, S.; Baba, H.; Nishimura, S.; Nishimura, M.; Yanagisawa, Y.; Hokoiwa, N.; Kibe, M.; Gono, Y.; Moon, J. Y.; Lee, J. H.; Lee, C. S.; Iwasaki, H.; Kato, S.

    2006-07-01

    Proton resonances in 23Al have been investigated for the first time by the resonant elastic and inelastic scattering of 22Mg+p by using a 4.38 MeV/nucleon 22Mg beam bombarding a thick Hydrogen target. The low-energy 22Mg beam was separated by the CNS radioactive ion beam separator (CRIB). A new resonant state due to elastic scattering was observed at Ex = 3.00 MeV with a Jπ = (3/2+) assignment. Other three excited states due to resonant inelastic scattering at 3.14, 3.26 and 3.95 MeV were identified and all mainly decay to the first excited state in 22Mg by the proton emissions. The newly observed 3.95-MeV state probably has a spin-parity of Jπ = (7/2+). The resonant properties were determined from an R-matrix analysis of the excitation functions. The weak-coupling structure in 23Al is discussed in conjunction with a shell-model calculation.

  4. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  5. Inelastic Scattering of Alphas on 24Mg as a Surrogate for Stellar Carbon Burning

    NASA Astrophysics Data System (ADS)

    Munson, Justin; Norman, Eric; Burke, Jason; Casperson, Robert; McCleskey, Ellen; McCleskey, Matt; Hughes, Richard; Ota, Shuya; Czeszumska, Agnieszka; Saastamoinen, Antti; Spiridon, Alex

    2015-04-01

    Inelastic excitation of 24Mg is used as a surrogate for the 12C+12C reaction at stellar energies. The branching ratio for 12C+12C-->20Ne + α and 12C+12C-->23Na + p is determined by the ratio of decays via the alpha and proton decay channels of the excited 24Mg . An experiment was conducted at the Texas A&M Cyclotron Institute in November of 2014 using the STARLiTeR detector array and the K150 (88'') Cyclotron. The experiment used a 40 MeV alpha beam and a thin 24Mg target. The scattered alpha and the ejected alpha or proton were detected using silicon detectors while gammas from the often excited daughters were detected using an array of germanium ``clover'' detectors. This work was supported in part by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; Texas A&M under DOE Office of Nuclear Physics grant DE-FG02-93ER40773 and NNSA grants DE-FG52-09NA29467 and DE-NA0000979.

  6. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  7. Deep inelastic phenomena

    SciTech Connect

    Prescott, C.Y.

    1980-10-01

    Nucleon structure as seen in the context of deep inelastic scattering is discussed. The lectures begin with consideration of the quark-parton model. The model forms the basis of understanding lepton-nucleon inelastic scattering. As improved data in lepton-nucleon scattering at high energies became available, the quark-parton model failed to explain some crucial features of these data. At approximately the same time a candidate theory of strong interactions based on a SU(3) gauge theory of color was being discussed in the literature, and new ideas on the explanation of inelastic scattering data became popular. A new theory of strong interactions, now called quantum chromodynamics provides a new framework for understanding the data, with a much stronger theoretical foundation, and seems to explain well the features of the data. The lectures conclude with a look at some recent experiments which provide new data at very high energies. These lectures are concerned primarily with charged lepton inelastic scattering and to a lesser extent with neutrino results. Furthermore, due to time and space limitations, topics such as final state hadron studies, and multi-muon production are omitted here. The lectures concentrate on the more central issues: the quark-parton model and concepts of scaling, scale breaking and the ideas of quantum chromodynamics, the Q/sup 2/ dependence of structure function, moments, and the important parameter R.

  8. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  9. Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA

    SciTech Connect

    Polifka, Richard

    2015-04-10

    The QCD factorization theorem in diffraction is tested by comparing diffractive jet production data to QCD predictions based on fits to inclusive diffractive cross section data. H1 measured dijet production with a leading proton detected in the Very Forward Proton Spectrometer (VFPS), both in deep-inelastic scattering and in photoproduction. The DIS measurements are complemented by measurements of dijet production with an associated rapidity gap and in a data sample selected with a leading proton in the Forward Proton Spectrometer (FPS)

  10. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  11. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    NASA Astrophysics Data System (ADS)

    Chechenin, N. G.; Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-01

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  12. Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons

    SciTech Connect

    Chechenin, N. G. Chuvilskaya, T. V.; Shirokova, A. A.; Kadmenskii, A. G.

    2015-01-15

    Tungsten fragmentation arising in nuclear reactions induced by cosmic-ray protons in space-vehicle electronics is considered. In modern technologies of integrated circuits featuring a three-dimensional layered architecture, tungsten is frequently used as a material for interlayer conducting connections. Within the preequilibrium model, tungsten-fragmentation features, including the cross sections for the elastic and inelastic scattering of protons of energy between 30 and 240 MeV; the yields of isotopes and isobars; their energy, charge, and mass distributions; and recoil energy spectra, are calculated on the basis of the TALYS and EMPIRE-II-19 codes. It is shown that tungsten fragmentation affects substantially forecasts of failures of space-vehicle electronics.

  13. Production of excitons in grazing collisions of protons with LiF surfaces: An onion model

    SciTech Connect

    Miraglia, J. E.; Gravielle, M. S.

    2011-12-15

    In this work we evaluate the production of excitons of a lithium fluoride crystal induced by proton impact in the intermediate and high energy regime (from 100 keV to 1 MeV). A simple model is proposed to account for the influence of the Coulomb grid of the target by dressing crystal ions to transform them in what we call onions. The excited states of these onions can be interpreted as excitons. Within this model, total cross section and stopping power are calculated by using the first Born and the continuum distorted-wave (CDW) eikonal initial-state (EIS) approximations. We found that between 7 and 30 excitons per incident proton are produced in grazing collisions with LiF surfaces, becoming a relevant mechanism of inelastic transitions.

  14. Deep Inelastic Scattering and Related Phenomena

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Nigro, A.

    1997-03-01

    The Table of Contents for the book is as follows: * Organization * Foreword * Welcome Address * PLENARY SESSION: "From Paris to Rome" * Deep Inelastic Physics with H1 * Recent Results from ZEUS * Overview of the Status of Polarised Structure Functions * Quarks and Gluons at Hadron Colliders * Deep Inelastic Scattering - Theory and Phenomenology * WORKING GROUP 1: Structure Functions * Inclusive Jet Cross Section Measurement at CDF * Measurement of Direct Photons by the DØ Experiment * MRS Parton Distributions * Global QCD Analysis, the Gluon Distribution, and High Et Inclusive Jet Data * F2 Measurement and QCD Analysis on 94 H1 Data * The ZEUS 1994 F2 Measurement * Measurement of the Total γ*p Cross Section at very Low x and Q2 at HERA * New Results on F2 Structure Functions * Proton Structure Function and Gluon Distribution Functions from Fermilab Experiment E665 * The Transition from the Photoproduction to the DIS Region * The BFKL Pomeron: Can It Be Detected? * BFKL/CCFM Phenomenology * Physics and Mathematics of Dynamical Partons * k⊥-Factorization and Perturbative Invariants at Small x * Double Scaling Violations * On the Asymptotic Behaviour of F2(x, Q2) * Double Logarithmic Scaling of F2 * Differential Charged Current Cross-Sections at HERA * Neutral Current ep Deep Inelastic Scattering at High Q2 and Limits on New Physics * Charm Production in Charged-Current DIS and Extraction of the Strange Sea Density * Extraction of the Gluon Density * On Problems in Extracting the Gluon Density from the Nucleon Structure Function Measurements * Inclusive Measurement of the Strong Coupling at HERA * A Measurement of R = σL/σT in Deep Inelastic Neutrino-Nucleon Scattering at the Tevatron * A Measurement of R = σL/σT in Deep Inelastic μ - p and μ - d Scattering * A Determination of the Longitudinal Proton Structure Function FL(x, Q2) at Low x at HERA * Prospects for Measuring R = σL/σT at HERA in 1966 Low-Energy Running * A Leading Order, in ln(1/x) as well as

  15. Inelastic electron tunneling spectroscopy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.

    1983-01-01

    Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10 to the 10th molecules (a fraction of a monolayer) on a 1 sq mm junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.

  16. NUBOW-2D Inelastic

    Energy Science and Technology Software Center (ESTSC)

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  17. Elastic and inelastic scattering of /sup 16/O by /sup 26/Mg

    SciTech Connect

    Rotberg, V.H.; Mittig, W.

    1980-10-01

    Angular distributions and excitation functions for the elastic and inelastic (2/sup +/,1.81 MeV) scattering of /sup 16/O ions by /sup 26/Mg have been measured in the energy range from 22 up to 50 MeV. The data were analyzed in the coupled channel scheme with different potentials. The inelastic scattering data are found to be important to distinguish between optical model parameter sets. The deformation parameter delta/sub n/=..beta../sub n/R is extracted and found to be potential dependent. It is compared to the Coulomb deformation delta/sub C/.

  18. Proton radiography to improve proton therapy treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; van der Graaf, E. R.; Van Goethem, M.-J.; van Beuzekom, M.; Klaver, T.; Visser, J.; Brandenburg, S.; Biegun, A. K.

    2016-01-01

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT) images. This causes systematic uncertainties in the calculated proton range in a patient of typically 3-4%, but can become even 10% in bone regions [1,2,3,4,5,6,7,8]. This may lead to no dose in parts of the tumor and too high dose in healthy tissues [1]. A direct measurement of proton stopping powers with high-energy protons will allow reducing these uncertainties and will improve the quality of the treatment. Several studies have shown that a sufficiently accurate radiograph can be obtained by tracking individual protons traversing a phantom (patient) [4,6,10]. Our studies benefit from the gas-filled time projection chambers based on GridPix technology [2], developed at Nikhef, capable of tracking a single proton. A BaF2 crystal measuring the residual energy of protons was used. Proton radiographs of phantom consisting of different tissue-like materials were measured with a 30×30 mm2 150 MeV proton beam. Measurements were simulated with the Geant4 toolkit.First experimental and simulated energy radiographs are in very good agreement [3]. In this paper we focus on simulation studies of the proton scattering angle as it affects the position resolution of the proton energy loss radiograph. By selecting protons with a small scattering angle, the image quality can be improved significantly.

  19. Study of proton radioactivities

    SciTech Connect

    Davids, C.N.; Back, B.B.; Henderson, D.J.

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  20. Coupled-channel analysis of neutron scattering from /sup 12/C between 9 and 15 MeV

    SciTech Connect

    Hansen, L.F.; Meigooni, A.S.

    1986-07-01

    A deformed and energy dependent phenomenological optical model potential and coupled-channel formalism for deformed nuclei have been used in the analysis of elastic and inelastic (Q = 4.439 MeV) scattering, and analyzing power for neutrons scattered from /sup 12/C in the energy range of 9 to 15 MeV. 6 refs., 1 fig., 1 tab.

  1. Exploring universality of transversity in proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Ricci, Alessandro M.; Bacchetta, Alessandro; Mukherjee, Asmita

    2016-08-01

    We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR Collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions, and it allows us to test its universality.

  2. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  3. Spin-flip (p,n) reactions on /sup 26/Mg, /sup 54/Fe, and /sup 56/Fe at selected proton bombarding energies in the range of 17 to 25 MeV

    SciTech Connect

    Aron, D.L.

    1985-06-01

    New data are presented for the /sup 26/Mg(p,n)/sup 26/Al reaction at E/sub p/ = 19.12 and 24.97 MeV, for the /sup 54/Fe(p,n)/sup 54/Co reaction at E/sub p/ = 17.20, 18.60, and 24.60 MeV, and for the /sup 56/Fe(p,n)/sup 56/Co reaction at E/sub p/ = 19.12 and 24.59 MeV. Data were taken with the LLNL Cyclograaff at 16 angles from 3.5/sup 0/ to 159.0/sup 0/. A large detector at 23.8/sup 0/ with a long neutron flight path collected high resolution spectra. This large detector also collected separate 0/sup 0/ high resolution data on the /sup 26/Mg and /sup 56/Fe(p,n) reactions at E/sub p/ = 19 MeV. Absolute differential (p,n) cross sections were extracted for 1/sup +/ states in /sup 26/Al, /sup 54/Co, and /sup 56/Co, for the 0/sup +/ isobaric analong state (IAS) in /sup 54/Co and /sup 56/Co, for a 2/sup +/ state in each residual nucleus, and for the 0.199 MeV 7/sup +/ state of /sup 54/Co. No new experimental states were identified. Only relative cross sections were extracted at 0/sup 0/. Experimental angle-integrated cross sections were obtained for all but one state. DWBA79 was used, with the G-matrix effective nucleon-nucleon interaction of Bertsch et al. (with the central triplet-odd component V/sub to/ = O) and the Livermore shell model wave functions to calculate differential (p,n) cross sections to 1/sup +/ states and to the /sup 54/Co and /sup 56/Co IAS. Normalization of the DWBA angle-integrated cross sections to measurements for the /sup 54/Co and /sup 56/Co IAS (at E/sub p/ = 24.6 MeV) yielded the renormalized V/sub tau/ = 21.4 +- 2.1 MeV. Normalization of the DWBA angle-integrated cross sections to measurements for the 24.6 MeV /sup 54/Co and /sup 56/Co 1/sup +/ states, coupled with the normalization of the wave functions to previously experimentally determined GT strength, yield the renormalized V/sub sigmatau/ = 12.3 +- 1.2 MeV. The experimental Gamow-Teller strength B(GT)/sub exp./ of the T = 1 /sup 26/Al state at 9.44 MeV was found to be 0.69; B

  4. Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasielastic Electron-Deuteron Scattering

    NASA Astrophysics Data System (ADS)

    Androić, D.; Armstrong, D. S.; Arvieux, J.; Bailey, S. L.; Beck, D. H.; Beise, E. J.; Benesch, J.; Benmokhtar, F.; Bimbot, L.; Birchall, J.; Bosted, P.; Breuer, H.; Capuano, C. L.; Chao, Y.-C.; Coppens, A.; Davis, C. A.; Ellis, C.; Flores, G.; Franklin, G.; Furget, C.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Guillard, G.; Hansknecht, J.; Horn, T.; Jones, M. K.; King, P. M.; Korsch, W.; Kox, S.; Lee, L.; Liu, J.; Lung, A.; Mammei, J.; Martin, J. W.; McKeown, R. D.; Micherdzinska, A.; Mihovilovic, M.; Mkrtchyan, H.; Muether, M.; Page, S. A.; Papavassiliou, V.; Pate, S. F.; Phillips, S. K.; Pillot, P.; Pitt, M. L.; Poelker, M.; Quinn, B.; Ramsay, W. D.; Real, J.-S.; Roche, J.; Roos, P.; Schaub, J.; Seva, T.; Simicevic, N.; Smith, G. R.; Spayde, D. T.; Stutzman, M.; Suleiman, R.; Tadevosyan, V.; van Oers, W. T. H.; Versteegen, M.; Voutier, E.; Vulcan, W.; Wells, S. P.; Williamson, S. E.; Wood, S. A.; Pasquini, B.; Vanderhaeghen, M.

    2011-07-01

    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasielastic scattering on the deuteron, at backward angles (lab scattering angle of 108°) for Q2=0.22GeV2/c2 and 0.63GeV2/c2 at beam energies of 362 and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single-photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (πN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasistatic deuterium approximation, and is also in agreement with theory.

  5. Transverse beam spin asymmetries at backward angles in elastic electron-proton and quasielastic electron-deuteron scattering.

    PubMed

    Androić, D; Armstrong, D S; Arvieux, J; Bailey, S L; Beck, D H; Beise, E J; Benesch, J; Benmokhtar, F; Bimbot, L; Birchall, J; Bosted, P; Breuer, H; Capuano, C L; Chao, Y-C; Coppens, A; Davis, C A; Ellis, C; Flores, G; Franklin, G; Furget, C; Gaskell, D; Gericke, M T W; Grames, J; Guillard, G; Hansknecht, J; Horn, T; Jones, M K; King, P M; Korsch, W; Kox, S; Lee, L; Liu, J; Lung, A; Mammei, J; Martin, J W; McKeown, R D; Micherdzinska, A; Mihovilovic, M; Mkrtchyan, H; Muether, M; Page, S A; Papavassiliou, V; Pate, S F; Phillips, S K; Pillot, P; Pitt, M L; Poelker, M; Quinn, B; Ramsay, W D; Real, J-S; Roche, J; Roos, P; Schaub, J; Seva, T; Simicevic, N; Smith, G R; Spayde, D T; Stutzman, M; Suleiman, R; Tadevosyan, V; van Oers, W T H; Versteegen, M; Voutier, E; Vulcan, W; Wells, S P; Williamson, S E; Wood, S A; Pasquini, B; Vanderhaeghen, M

    2011-07-01

    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasielastic scattering on the deuteron, at backward angles (lab scattering angle of 108°) for Q² = 0.22 GeV²/c² and 0.63 GeV²/c² at beam energies of 362 and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single-photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (πN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasistatic deuterium approximation, and is also in agreement with theory. PMID:21797598

  6. Model for alpha particle induced nuclear reactions: /sup 93/Nb(. cap alpha. ,x. cap alpha. ypzn) from 40--140 MeV

    SciTech Connect

    Gadioli, E.; Gadioli-Erba, E.; Hogan, J.J.; Jacak, B.V.

    1984-01-01

    A comprehensive model is introduced for alpha particle induced nuclear reactions. Five different mechanisms are examined and discussed. These include inelastic scattering of the incident alpha particle, nucleon pickup, binary fragmentation, dissolution of the alpha in the nuclear field, and preequilibrium processes initiated by alpha-nucleon collisions. A series of experiments was performed to measure the excitation functions of many nuclides produced from the irradiation of /sup 93/Nb by 40--140 MeV alpha particles. Together with alpha particle and proton spectra measured by other authors, these data form the basis of a test of the model introduced. A detailed analysis of the comparison between the calculated and experimental results, with particular emphasis on the interpretation of breakup processes, leads to the conclusion that breakup to four nucleons is preferred to the more commonly assumed binary fragmentation in that a much broader range of experimental data may be reproduced.

  7. Measurement of azimuthal asymmetries in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M. C. K.; Abbiendi, G.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Coppola, N.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Paul, E.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Barret, O.; Brook, N. H.; Foster, B.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Burgard, C.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hasell, D.; Hebbel, K.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Lindemann, L.; Löhr, B.; Martínez, M.; Milite, M.; Monteiro, T.; Moritz, M.; Notz, D.; Pelucchi, F.; Petrucci, M. C.; Rohde, M.; Saull, P. R. B.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Tassi, E.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P. B.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Benen, A.; Eisenhardt, S.; Markun, P.; Raach, H.; Wölfle, S.; Bussey, P. J.; Doyle, A. T.; Lee, S. W.; Macdonald, N.; McCance, G. J.; Saxon, D. H.; Sinclair, L. E.; Skillicorn, I. O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Garfagnini, A.; Gialas, I.; Gladilin, L. K.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Zetsche, F.; Goncalo, R.; Long, K. R.; Miller, D. B.; Tapper, A. D.; Walker, R.; Mallik, U.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Park, I. H.; Son, D.; Barreiro, F.; García, G.; Glasman, C.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Barbi, M.; Corriveau, F.; Hanna, D. S.; Ochs, A.; Padhi, S.; Riveline, M.; Stairs, D. G.; Wing, M.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Y. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Y.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Große-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M. R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dosselli, U.; Dusini, S.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Okrasiński, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Pavel, N.; Abramowicz, H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Butterworth, J. M.; Catterall, C. D.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Z˙arnecki, A. F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Catterall, C.; Cole, J. E.; Frisken, W. R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2000-05-01

    The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.

  8. Polarization transfer in inelastic scattering and pionic models of the EMC effect

    SciTech Connect

    Moss, J.M.

    1985-01-01

    At the 1982 Telluride Conference Magda Ericson spoke about the interest in a measurement of the sigma vector . q vector or spin-longitudinal nuclear response function. It inspired our collaboration to propose a LAMPF experiment, which was subsequently approved, and run in September 1983. In the intervening time the interest has increased dramatically in connection with the European Muon Collaboration (EMC) effect, and the exciting possibility that this ultra high-energy physics result may have to do with nuclear pions - and, hence, the isovector sigma vector . q vector nuclear response function. In this talk I will give a brief introduction to the EMC effect and its interpretation in terms of excess nuclear pions. This model establishes a connection between the vastly different scales of the EMC experiment (approx. 200 GeV deep-inelastic muon scattering) and the Los Alamos experiment (500 MeV polarized-proton quasifree scattering). Following this I will describe the Los Alamos experiment and its interpretation in terms of excess nuclear pions. Finally I will indulge in some speculation about quark effects in nuclei based on the EMC and Los Alamos experimental results. 29 refs.

  9. Polarization transfer in inelastic scattering and pionic models of the EMC effect

    SciTech Connect

    Carey, T.A.; Jones, K.W.; McClelland, J.B.; Moss, J.M.; Rees, L.B.; Tanaka, N.; Bacher, A.D.

    1985-01-01

    The aim of the experiment reported was to make a precise test of the enhanced pion field model in a medium-energy scattering experiment. The quantity probed is the spin-longitudinal response function, a measure of the nuclear pion density which is used explicitly in the pion-excess models of the EMC effect. The point of reference used is deuterium. The spin-dependent response functions for heavy targets and /sup 2/H are compared using identical experimental techniques. The technique of complete polarization transfer is used to separate the spin-longitudinal and spin-transverse response in the continuum. The experiment consisted of precise determinations of the polarization transfer coefficients for 500 MeV protons inelastically scattered from Pb, Ca, and /sup 2/H. The experiment utilized longitudinal, sideways, and normal polarized beams in conjunction with final polarization analysis from the focal-plane polarimeter of the high-resolution spectrometer. Quantities constructed from these data are the longitudinal and transverse spin-flip probabilities. Calculations were performed of the ratio of longitudinal to transverse response functions and of the EMC effect with the same model. No evidence was found for collectivity in the isovector spin-longitudinal response function. 10 refs. (LEW)

  10. The Indian Proton Driver Project

    NASA Astrophysics Data System (ADS)

    Krishnagopal, Srinivas

    2005-06-01

    There are two new proton accelerator projects being considered in India. One is a 20 MeV, 30 mA, front end of a proton linac driver for nuclear transmutation applications. The second is a 1 GeV, 100 kW rapid cycling synchrotron for a spallation neutron source. We present the current design status of both these projects.

  11. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  12. 26Al+p elastic and inelastic scattering reactions and galactic abundances of 26Al

    NASA Astrophysics Data System (ADS)

    Pittman, S. T.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Jones, K. L.; Kozub, R. L.; Matei, C.; Matos, M.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Parker, P. D.; Peters, W. A.; Shriner, J. F., Jr.; Smith, M. S.

    2012-06-01

    Galactic 26Al is the first radioactive nucleus to be positively identified by γ-ray astronomy with detection of the 1.809 MeV γ ray associated with its decay. This nucleus is destroyed in astrophysical environments in the 26Al(p,γ)27Si and inelastic 26Al+p scattering reactions where properties of 27Si levels determine reaction rates. To investigate these properties, elastic and inelastic 26Al+p scattering reactions were measured between Ec.m. = 0.5-1.5 MeV at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). A candidate for a new resonance in the 26Al(p,γ)27Si reaction was identified. Upper limits were also set on the strengths of postulated resonances and on the cross section of the inelastic reaction, but there is little effect on current reaction rate calculations.

  13. Proton radiation damage in optical filter glass

    NASA Technical Reports Server (NTRS)

    Grillot, Patrick N.; Rosenberg, William J.

    1989-01-01

    Samples of Schott BG-39 and Hoya CM-500 blue-green filter glass were subjected to proton radiation to determine their acceptability for spaceflight. Initial testing done with 2.7 MeV protons showed negligible change in optical transmittance with doses as high as 5.2 x 10 to the 14th protons per sq cm. Irradiation with protons of energy up to 63 MeV caused a significant reduction in transmittance in the Schott samples at doses of 5.3 x 10 to the 12th protons per sq cm, while negligible change occurred in the Hoya samples.

  14. INELASTIC DIFFRACTION AT HEAVY ION COLLIDERS.

    SciTech Connect

    WHITE, S.

    2005-01-01

    The heavy ion physics approach to global event characterization has led us to instrument the forward region in the PHENIX experiment at RHIC. In heavy ion collisions this coverage yields a measurement of the ''spectator'' energy and its distribution about the beam direction. This energy flow is the basis of event-by-event determination of the centrality and reaction plane which are key to analyzing particle production in heavy ion collisions. These same tools have also enabled a unique set of measurements on inelastic diffraction with proton, deuteron and gold ion beams in the PHENIX experiment. We present first new results on this topic and discuss briefly the opportunity for diffractive physics with Heavy Ion beams at the LHC.

  15. Discovering inelastic thermal relic dark matter at colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Krnjaic, Gordan; Shuve, Brian

    2016-03-01

    Dark Matter particles with inelastic interactions are ubiquitous in extensions of the Standard Model, yet remain challenging to fully probe with existing strategies. We propose a series of powerful searches at hadron and lepton colliders that are sensitive to inelastic dark matter dynamics. In representative models featuring either a massive dark photon or a magnetic dipole interaction, we find that the LHC and BABAR could offer strong sensitivity to the thermal relic dark matter parameter space for dark matter masses between ˜100 MeV and 100 GeV and fractional mass-splittings above the percent level; future searches at Belle II with a dedicated monophoton trigger could also offer sensitivity to thermal relic scenarios with masses below a few GeV. Thermal scenarios with either larger masses or splittings are largely ruled out; lower masses remain viable yet may be accessible with other search strategies.

  16. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    NASA Astrophysics Data System (ADS)

    Davis, Paul F.

    In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

  17. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  18. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    SciTech Connect

    Sekimoto, S.; Okumura, S.; Yashima, H.; Matsushi, Y.; Matsuzaki, H.; Matsumura, H.; Toyoda, A.; Oishi, K.; Matsuda, N.; Kasugai, Y.; Sakamoto, Y.; Nakashima, H.; Boehnlein, D.; Coleman, R.; Lauten, G.; Leveling, A.; Mokhov, N.; Ramberg, E.; Soha, A.; Vaziri, K.; Ninomiya, K.; Omoto, T.; Shima, T.; Takahashi, N.; Shinohara, A.; Caffee, M. W.; Welten, K. C.; Nishiizumi, K.; Shibata, S.; Ohtsuki, T.

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies Ep of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using Ep = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Be decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.

  19. Proton-air and proton-proton cross sections from air shower data

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Data on the fluctuations in depth of maximum development of cosmic ray air showers, corrected for the effects of mixed primary composition and shower development fluctuations, yield values of the inelastic proton-air cross section for laboratory energies in the range 10 to the 8th power to 10 to the 10th power GeV. From these values of proton-air cross section, corresponding values of the proton-proton total cross section are derived by means of Glauber theory and geometrical scaling. The resulting values of proton-proton cross section are inconsistent with a well known 1n(2)s extrapolation of ISR data which is consistent with SPS data; they indicate a less rapid rate of increase in the interval 540 sq root of s 100000 GeV.

  20. Atomic collisions, inelastic indeed

    NASA Astrophysics Data System (ADS)

    Bercegol, Herve; Ferrando, Gwenael; Lehoucq, Roland

    At the turn of the twentieth century, a hot controversy raged about the ability of Boltzmann's framework to take care of irreversibility. The so-called Loschmidt's paradox progressively faded with time during the last hundred years, due to the predictive efficiency of statistical mechanics. However, one detail at the origin of the controversy - the elasticity of atomic collisions - was not completely challenged. A semi-classical treatment of two atoms interacting with the vacuum zero-point field permits to predict a friction force acting against the rotation of the pair of atoms. By its form and its level, the calculated torque is a candidate as a physical cause for diffusion of energy and angular momentum, and consequently for entropy growth. It opens the way to a revision of the standard vision of irreversibility. This presentation will focus on two points. First we will discuss the recent result in a broader context of electromagnetic interactions during microscopic collisions. The predicted friction phenomenon can be compared to and distinguished from Collision-Induced Emission and other types of inelastic collisions. Second we will investigate the consequences of the friction torque on calculated trajectories of colliding atoms, quantifying the generation of dimers linked by dispersion forces.

  1. Neutron and Light Charged Particle Production in Neutron or Proton-induced Reaction on Iron, Lead and Uranium at Intermediate Energy (20 to 200 MeV) - The HINDAS Collaboration

    SciTech Connect

    Lecolley, F.-R.; Ban, G.; Blideanu, V.; Lecolley, J.-F.; Lefort, T.; Marie, N.; Eudes, P.; Foucher, Y.; Guertin, A.; Hadad, F.; Lebrun, C.

    2005-05-24

    The process of particle emission in the pre-equilibrium stage has a very important contribution in this energy region and several approaches have been proposed to explain it. Their prediction power must be tested using comparison with the data for a variety of configurations. Calculations have been done using the exciton model and two main approaches proposed to improve its predictive power for complex particle emission. Data reported in this work allow the extension to higher energies of databases that are now limited to energies around 60 MeV. Together with other experimental results available in the literature they allow a more global view on the capabilities of each approach.

  2. Structure in the Proton and the Neutron

    DOE R&D Accomplishments Database

    Hofstadter, R.

    1958-06-01

    A survey of the recent work on the structures of the proton and the neutron carried out by high-energy electron-scattering methods is presented. Early work established finite size effects in the proton and led to information about the charge and magnetic density distributions in the proton. The rms size was established to be close to (0.77 plus or minus 0.10) x 10{sup -13} cm, and the density distributions of charge and anomalous magnetic moment were shown to be approximately of the same shape. The form factors could be described in terms of several alternative models given, for example, by an exponential, gaussian, hollow exponential, hollow gaussian, etc., distribution of densities. Many other shapes were excluded by the experimental data. Recent work by Bumiller and Hofstadter now fixes one among these models that is appropriate to the proton and provides an extremely good fit at all angles between energies of 200 and 650 Mev. The new evidence clearly favors the exponential model with rms radius (0.80 plus or minus 0.04) 10{sup -13} cm. Recent studies of the proton have attempted to answer the question: how closely similar are the charge and magnetic form factors? This work now shows that the distributions have the same sizes and shapes to within 10 per cent, and each distribution is given very closely by the exponential model described above with radius (0.80 plus or minus 0.04) x 10{sup -13}. Certain other similar models will be discussed. Early work on the inelastic continuum in the deuteron established that the neutron's magnetic structure was extended and not a point. It was further shown that the neutron's size was approximately the same as that of the proton. This work has recently been extended by Yearian and Hofstadter to a determination of the variation of the neutron's magnetic form factor over the range where the proton's form factor is known. The new results show: (1) the neutron is not a point, (2) the neutron's magnetic structure has a size lying

  3. Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description

    NASA Astrophysics Data System (ADS)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2015-06-01

    We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV-5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1-1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the

  4. SU-E-J-142: Prompt Gamma Emission Measurements From a Passively Scattered Proton Beam On Targets Containing 16O, 12C and 14N

    SciTech Connect

    Jeyasugiththan, J; Peterson, S

    2015-06-15

    Purpose: To measure the prompt gamma emission from the important elements found in tissue ({sup 16}O,{sup 12}C and {sup 14}N) in a clinical passive-scatter treatment environment. Methods: The targets (composed of water, Perspex, graphite and liquid nitrogen) were irradiated with a 200 MeV passive-scatter proton beam and the discrete prompt gamma energy spectra was detected by a high resolution 2′ × 2′ LaBr. detector. In order to reduce the high level of radiation produced by the beam line elements, the detector was surrounded by 10 cm of lead to attenuate the scattered gamma-rays entering the detector with an extra 5 cm thick layer of lead added along the beam direction. A 10 cm thick collimator with a 5 cm × 10 cm rectangular opening was also used. Results: The prompt gamma peaks at 6.13 MeV and 4.44 MeV were clearly identified as a Result of the inelastic nuclear reaction between the protons and the 16O atoms found in the water target. The 6.13 MeV peak was 5% higher than the peak at 4.44 MeV for the water target. The 4.44 MeV peak was the only identified emission in the prompt gamma energy spectra from the graphite target ({sup 12}C). The expected 2.313 MeV peak form the{sup 14}N (liquid nitrogen target) was identified, but the other expected {sup 14}N peaks could not be resolved. Conclusion: Prompt gamma measurements with a passive-scatter proton beam are possible, but the presence of a high amount of background radiation from the patient final collimator presents a challenge at the treatment isocenter. The prominent prompt gamma peaks at 6.13 MeV and 4.44 MeV were identified from the water, Perspex and graphite targets. The prompt gammas from the liquid nitrogen target were difficult to see, but may not be significant in the in-vivo verification process.

  5. A dose calculation algorithm with correction for proton-nucleus interactions in non-water materials for proton radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Sato, S.; Kohno, R.

    2016-01-01

    In treatment planning for proton radiotherapy, the dose measured in water is applied to the patient dose calculation with density scaling by stopping power ratio {ρ\\text{S}} . Since the body tissues are chemically different from water, this approximation may cause dose calculation errors, especially due to differences in nuclear interactions. We proposed and validated an algorithm for correcting these errors. The dose in water is decomposed into three constituents according to the physical interactions of protons in water: the dose from primary protons continuously slowing down by electromagnetic interactions, the dose from protons scattered by elastic and/or inelastic interactions, and the dose resulting from nonelastic interactions. The proportions of the three dose constituents differ between body tissues and water. We determine correction factors for the proportion of dose constituents with Monte Carlo simulations in various standard body tissues, and formulated them as functions of their {ρ\\text{S}} for patient dose calculation. The influence of nuclear interactions on dose was assessed by comparing the Monte Carlo simulated dose and the uncorrected dose in common phantom materials. The influence around the Bragg peak amounted to  -6% for polytetrafluoroethylene and 0.3% for polyethylene. The validity of the correction method was confirmed by comparing the simulated and corrected doses in the materials. The deviation was below 0.8% for all materials. The accuracy of the correction factors derived with Monte Carlo simulations was separately verified through irradiation experiments with a 235 MeV proton beam using common phantom materials. The corrected doses agreed with the measurements within 0.4% for all materials except graphite. The influence on tumor dose was assessed in a prostate case. The dose reduction in the tumor was below 0.5%. Our results verify that this algorithm is practical and accurate for proton radiotherapy treatment planning, and

  6. A dose calculation algorithm with correction for proton-nucleus interactions in non-water materials for proton radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N; Sato, S; Kohno, R

    2016-01-01

    In treatment planning for proton radiotherapy, the dose measured in water is applied to the patient dose calculation with density scaling by stopping power ratio [Formula: see text]. Since the body tissues are chemically different from water, this approximation may cause dose calculation errors, especially due to differences in nuclear interactions. We proposed and validated an algorithm for correcting these errors. The dose in water is decomposed into three constituents according to the physical interactions of protons in water: the dose from primary protons continuously slowing down by electromagnetic interactions, the dose from protons scattered by elastic and/or inelastic interactions, and the dose resulting from nonelastic interactions. The proportions of the three dose constituents differ between body tissues and water. We determine correction factors for the proportion of dose constituents with Monte Carlo simulations in various standard body tissues, and formulated them as functions of their [Formula: see text] for patient dose calculation. The influence of nuclear interactions on dose was assessed by comparing the Monte Carlo simulated dose and the uncorrected dose in common phantom materials. The influence around the Bragg peak amounted to  -6% for polytetrafluoroethylene and 0.3% for polyethylene. The validity of the correction method was confirmed by comparing the simulated and corrected doses in the materials. The deviation was below 0.8% for all materials. The accuracy of the correction factors derived with Monte Carlo simulations was separately verified through irradiation experiments with a 235 MeV proton beam using common phantom materials. The corrected doses agreed with the measurements within 0.4% for all materials except graphite. The influence on tumor dose was assessed in a prostate case. The dose reduction in the tumor was below 0.5%. Our results verify that this algorithm is practical and accurate for proton radiotherapy treatment

  7. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    SciTech Connect

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  8. Thin-target excitation functions, cross-sections and optimised thick-target yields for natMo(p,xn)(94g ,95m,95g,96(m + g))Tc nuclear reactions induced by protons from threshold up to 44 MeV. No Carrier Added radiochemical separation and quality control.

    PubMed

    Bonardi, Mauro; Birattari, Claudio; Groppi, Flavia; Sabbioni, Enrico

    2002-11-01

    This work describes the method adopted in our laboratories, to produce 94gTc, 95gTc, 95mTc and 96gTc radionuclides via proton-cyclotron irradiation on molybdenum targets of natural isotopic composition. A new set of experimental thin-target excitation functions and "effective" cross-sections for direct natMo(p,xn)(A)Tc [with A = 94, 95, 95, 96] nuclear reactions, with incident proton energy in the range from threshold up to 44 MeV is presented. Some definitions of the equations used and nuclear data traceability are reported. Thick-target yield values were calculated and optimised, by numerical fitting and integration of the measured excitation functions. These values allow optimisation of production yield of one radionuclide, minimising at the same time the yield of the others. Radiochemical separation on NCA technetium radionuclides from both molybdenum target and niobium, zirconium and yttrium radioactive by-products is reported. Quality control tests of the radiotracers were developed for the applications envisaged in environmental metallo-biochemical toxicology. PMID:12433035

  9. Design of a proton microbeam of the PEFP

    SciTech Connect

    Kim, Kye Ryung; Kim, Yong Hwan; Chang, Ji Ho; Kim, Kui Young

    2008-02-15

    The PEFP has been developing a 100 MeV proton linear accelerator and user facilities for 20 and 100 MeV proton beams. At one end of the five 20 MeV proton beam lines, a proton microbeam construction was considered for an application in the fields of material, biological, and medical sciences. To develop the proton microbeam, realization of a few MeV proton beam with a few tens of microamperes in diameter of a beam spot was essentially required. In this report, the basic descriptions of the proton microbeam which is composed of an energy degrader, slits, magnetic lens, a target chamber, and detectors are presented including a consideration of unfavorable aspects concerning some specific characteristics of a linear accelerator, such as pulse mode operation and fixed energy. Some calculation results from a Monte Carlo simulation by using the SRIM2006 and the TURTLE codes are also included.

  10. Design of a proton microbeam of the PEFP.

    PubMed

    Kim, Kye Ryung; Kim, Yong Hwan; Chang, Ji Ho; Kim, Kui Young

    2008-02-01

    The PEFP has been developing a 100 MeV proton linear accelerator and user facilities for 20 and 100 MeV proton beams. At one end of the five 20 MeV proton beam lines, a proton microbeam construction was considered for an application in the fields of material, biological, and medical sciences. To develop the proton microbeam, realization of a few MeV proton beam with a few tens of microamperes in diameter of a beam spot was essentially required. In this report, the basic descriptions of the proton microbeam which is composed of an energy degrader, slits, magnetic lens, a target chamber, and detectors are presented including a consideration of unfavorable aspects concerning some specific characteristics of a linear accelerator, such as pulse mode operation and fixed energy. Some calculation results from a Monte Carlo simulation by using the SRIM2006 and the TURTLE codes are also included. PMID:18315273

  11. Titanium spallation cross sections between 30 and 584 MeV and Ar-39 activities on the moon

    NASA Technical Reports Server (NTRS)

    Steinbrunn, F.; Fireman, E. L.

    1974-01-01

    The production cross sections of Ar-39 for Ti spallation at 45-, 319-, 433-, and 584-MeV proton energies were measured to be 0.37 + or - 09, 12.4 + or - 3.7, 9.1 + or - 2.7, and 17.8 + or - 6.2 mb, respectively. Normalized Ar-39 production rates and activities are also derived for protons above 40 Mev and for three differential proton spectra. It is concluded that even for samples of high-Ti content, Ti spallation by solar protons below 200-MeV energy does not contribute significantly to their Ar-39 radioactivity.

  12. Deep inelastic scattering at energies near the Coulomb barrier

    SciTech Connect

    Gehring, J.; Rehm, K.E.; Schiffer, J.P.

    1993-10-01

    A large yield for a process that appears to have many of the features of deep inelastic scattering has been observed at energies, near the Coulomb barrier in the systems {sup 112,124}Sn + {sup 58}Ni by Wolfs et al. In order to better understand the mechanisms by which energy dissipation takes place close to the barrier, we have extended the measurements of Wolfs to the system {sup 136}Xe + {sup 64}Ni. The use of inverse kinematics in the present measurements resulted in better mass and energy resolution due to reduced target effects and in more complete angular coverage. We have obtained angular distributions, mass distributions, and total cross sections for deep inelastic scattering at two energies near the barrier. The results on the closed neutron shell nucleus {sup 136}Xe complement those from the closed proton shell Sn nuclei.

  13. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  14. Inelastic Neutron Scattering Study of Ce3Sn and Ce3In

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Lawrence, J. M.; Christianson, A. D.; Goremychkin, E. A.; Bauer, E. D.; de Souza, N. R.; Kolesnikov, A. I.

    2009-03-01

    In Ce3Sn and Ce3In, the linear coefficients of specific heat γ are 260 mJ/mol Ce-K^2 and 700 mJ/mol Ce-K^2, respectively. The Wilson ratio is 7.0 for Ce3Sn and 11.5 for Ce3In. Such large values suggest the presence of ferromagnetic correlations in the ground state. Hence, this system is a potential candidate for studying the magnetic instability at a quantum critical point (QCP). As an initial measurement, we have measured the magnetic inelastic neutron scattering line shape of polycrystalline samples to determine the crystal field (CF) excitations. The low temperature spectrum of both Ce3Sn and Ce3In consist of a quasi- elastic line and two obvious inelastic lines resulting from the two excited crystal field doublets of Ce^3+ in the tetragonal symmetry. The quasi-elastic linewidth,which is related to the Kondo scale, is 3.2meV for Ce3Sn and 1.5meV for Ce3In, consistent with the linear coefficients of specific heat. For Ce3Sn the two CF excitations are at 20meV and 35meV while for Ce3In, the splitting is much larger giving the two excitations at 15meV and 47meV.

  15. History of the ZGS 500 MeV booster.

    SciTech Connect

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  16. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  17. {gamma}-ray production by proton and {alpha}-particle induced reactions on {sup 12}C, {sup 16}O, {sup 24}Mg, and Fe

    SciTech Connect

    Belhout, A.; Kiener, J.; Coc, A.; Duprat, J.; Engrand, C.; Fitoussi, C.; Gounelle, M.; Lefebvre-Schuhl, A.; Sereville, N. de; Tatischeff, V.; Thibaud, J.-P.; Chabot, M.; Hammache, F.; Benhabiles-Mezhoud, H.

    2007-09-15

    {gamma}-ray production cross sections for proton and {alpha}-particle interactions with {sup 12}C, {sup 16}O, {sup 24}Mg, and Fe have been measured in the energy range 5-25 MeV with proton beams and 5-40 MeV with {alpha}-particle beams. Isotopically pure foils of {sup 24}Mg and foils of natural isotopical composition of C, MgO, and Fe have been used. {gamma}-ray angular distributions were obtained with five high-purity Ge detectors with bismuth germanate Compton shields placed at angles of 45 deg. to 157.5 deg. Cross sections for more than 50 different {gamma}-ray transitions were extracted, and for many of them no data have been published before. Comparison of present data with data available in the literature shows mostly good to excellent agreement. In addition to the production cross sections, high-statistics, low-background line shapes of the 4.438 MeV {sup 12}C {gamma} ray from inelastic scattering off {sup 12}C and spallation of {sup 16}O were obtained. Comparison with nuclear reaction calculations shows that these data place interesting constraints on nuclear reaction models.

  18. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  19. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  20. Measurements of 67Ga production cross section induced by protons on natZn in the low energy range from 1.678 to 2.444 MeV

    NASA Astrophysics Data System (ADS)

    Wachter, J. A.; Miranda, P. A.; Morales, J. R.; Cancino, S. A.; Correa, R.

    2015-02-01

    The experimental production cross section for the reaction natZn(p,x)67Ga has been measured in the energy range from 1.678 to 2.444 MeV. The methodology used in this work is based on characteristic X-ray emitted after irradiation by the daughter nuclei that decays by electron capture (EC) and the use of a complementary PIXE experiment. By doing so, expressions needed to determine cross section values are simplified since experimental factors such as geometric setup and an detector efficiency are avoided. 67Ga is a radionuclide particularly suited for this method since it decays by electron capture in 100% and the subsequent characteristic X-ray emission is easily detected. Natural zinc targets were fabricated by PVD technique and afterwards their thicknesses were determined by Rutherford Backscattering Spectrometry. Cross sections measurements were carried out by using the Van de Graaff accelerator located at Faculty of Sciences, University of Chile. It was found that our data for the natZn(p,x)67Ga reaction are, in general, in good agreement when compared to existing experimental data and to those calculated ALICE/ASH nuclear code. On the other hand, values predicted by Talys-1.6 are showing systematically lower magnitudes than our measured data.

  1. Thermalization of pair plasma with proton loading

    SciTech Connect

    Aksenov, A. G.

    2009-05-03

    We study kinetic evolution of nonequilibrium optically thick electron-positron plasma towards thermal equilibrium solving numerically relativistic Boltzmann equations with energy per particle ranging from 0.1 to 10 MeV. We generalize our results presented in [1], considering proton loading of the pair plasma. Proton loading introduces new characteristic timescales essentially due to proton-proton and proton-electron Coulomb collisions. Taking into account not only binary but also triple direct and inverse interactions between electrons, positrons, photons and protons we show that thermal equilibrium is reached on a timescale t{sub th}{approx_equal}10{sup -11} sec.

  2. Transition from quasi-elastic to deep-inelastic reactions

    SciTech Connect

    Rehm, K.E.

    1986-01-01

    Heavy ion induced transfer reactions are usually considered to fall into two categories. Quasi-elastic processes, on one hand, are characterized by small energy transfers, with one-nucleon transfer reactions being a typical example. These processes are dominant for grazing collisions, and are generally described within simple one-step DWBA calculations. Deep inelastic reactions, on the other hand, occur for more central collisions where the interaction time is longer and subsequently more energy and particles can be exchanged. Quasi-elastic collisions dominate transfer reactions induced by light heavy ions (e.g., /sup 16/O) at energies not too high above the barrier, while deep inelastic collisions are observed mainly in reactions induced by heavier projectiles (Kr, Xe). In this contribution, we discuss the transition between these two processes for the system /sup 48/Ti + /sup 208/Pb. /sup 48/Ti is located between light (/sup 16/O) and heavy (Kr) projectiles and should be well suited for a study of the interrelation between quasi- and deep-inelastic reactions. The experiments were performed with a 300 MeV /sup 48/Ti beam obtained from the Argonne National Laboratory superconducting linac. The outgoing particles were momentum analyzed in a split pole magnetic spectrograph and detected in the focal plane by a position sensitive ionization chamber. The specific energy loss, the magnetic rigidity and the total energy of the outgoing particles were measured enabling mass and Z-identification. The energy resolution was about 3 MeV, determined by the thickness of the /sup 208/Pb target, and thus excluded study of transfer reactions to discrete final states. Angular distributions were measured in the range theta/sub lab/ = 20/sup 0/ to 80/sup 0/ in steps of 5/sup 0/. 8 refs.

  3. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    SciTech Connect

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  4. Experimental constraints on non-linearities induced by two-photon effects in elastic and inelastic Rosenbluth separations

    SciTech Connect

    Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini

    2006-01-26

    The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.

  5. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  6. Deep inelastic events containing two forward jets at DESY HERA

    SciTech Connect

    Kwiecinski, J.; Lewis, C.A.; Martin, A.D.

    1998-01-01

    We use the Balitskij-Fadin-Kuraev-Lipatov (BFKL) equation to calculate the rate of deep inelastic scattering events containing two forward jets (adjacent to the proton remnants) at DESY HERA. We compare the production of two forward jets with that of only one forward jet (the {open_quotes}Mueller{close_quotes} process). We obtain a stable prediction for this two to one jet ratio, which may serve as a measure of the BFKL vertex function. {copyright} {ital 1997} {ital The American Physical Society}

  7. NLO QCD corrections to graviton induced deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Stirling, W. J.; Vryonidou, E.

    2011-06-01

    We consider Next-to-Leading-Order QCD corrections to ADD graviton exchange relevant for Deep Inelastic Scattering experiments. We calculate the relevant NLO structure functions by calculating the virtual and real corrections for a set of graviton interaction diagrams, demonstrating the expected cancellation of the UV and IR divergences. We compare the NLO and LO results at the centre-of-mass energy relevant to HERA experiments as well as for the proposed higher energy lepton-proton collider, LHeC, which has a higher fundamental scale reach.

  8. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  9. Time-dependent 2.2 MeV and 0.5 MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2 MeV and 0.51 MeV gamma ray lines from solar flares are calculated and the results are compared with observations of the 1972, August 4 and 7 flares. Time lag between the nuclear reactions and the formation of these two lines are caused, respectively, by capture of the neutrons, and by deceleration of the positrons and decay of the radioactive nuclei. Results show that the calculation is consistent with the observed rise of the 2.2 MeV line on August 4, and it does not require different time dependences for the accelerated protons and electrons in the flare region. The above lags can explain the delayed gamma ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  10. Phase interference and sub-femtosecond time dynamics of resonant inelastic X-ray scattering from Mott insulators

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; Huang, Shih-Wen; Xia, Yuqi; Hasan, M. Zahid; Mathy, Charles; Eisaki, Hiroshi; Hussain, Zahid; Chuang, Yi-De

    2014-03-01

    Resonant inelastic X-ray scattering (RIXS) is a powerful technique for observing the energy states of many-body quantum materials. The core hole resonance states that make RIXS possible are strongly correlated, and undergo complex time evolution that shapes scattering spectra. However, current inelastic scattering measurements cannot be converted to a time resolved picture, because techniques that determine relative phase information from elastic scattering have not been adapted to the greater complexity of inelastic spectra. We will show that inelastic scattering phases can be identified from quantum interference in sharply resolved (dE < 35meV) M-edge RIXS spectra of Mott insulators (e.g. SrCuO2 and NiO), and provide new information for identifying excitation symmetries and many-body time dynamics.

  11. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  12. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  13. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  14. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  15. Measurement of the pp. -->. pi. d spin correlation parameters A/sub SL/ and A/sub LL/ at energies between 500 and 800 MeV

    SciTech Connect

    Barlow, D.B.

    1984-11-01

    Angular distributions of the spin correlation parameters A/sub SL/ and A/sub LL/ for the inelastic reaction pp..--> pi..d have been measured at pion center-of-mass angles between 40 and 130/sup 0/, at energies of 500, 650, and 800 MeV. Additional measurements of A/sub LL/(THETA) were made at 600, 700, and 750 MeV. The reaction was studied using an incident beam of either longitudinally polarized protons. Both the final state pion and deuteron were detected in a two-armed detector system. The momenta of particles detected in the deuteron arm were analyzed with a magnetic spectrometer which allowed the deuterons to be distinguished from particles produced by quasi-free, three-body, or other background reactions. A/sub SL/ was found to be negative (approx. = -0.5) at 500 MeV. It became increasingly more negative as energy increased, going down to as low as -0.88 at forward angles at 800 MeV. A/sub SL/ showed only a slight angular dependence in the entire energy range. The angular distribution of A/sub LL/ was found to be almost flat at 500 (approx. = -0.5) and 600 MeV (approx. = -0.4). As energy increased A/sub LL/ became less negative and began to peak at theta/sub cm/ = 90/sup 0/. At 800 MeV A/sub LL/ was positive at almost all measured angles and had a well defined peak at theta/sub cm/ = 90/sup 0/ which reached a maximum of about +0.4. The data were compared to several partial wave analyses and to theoretical calculations based on unified theories of NN..-->..NN, ..pi..d..--> pi..d, and NN..--> pi..d reactions. In general these later calculations were found to be unsuccessful in fitting our data. Partial wave analyses, which included the present data, fitted the data reasonably well and did not indicate the need for any unusual (dibaryon like) structures in any of the partial waves. 52 references.

  16. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  17. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    DOE PAGESBeta

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  18. Measurement of muon plus proton final states in νμ interactions on hydrocarbon at < Eν > = 4.2 GeV

    SciTech Connect

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling for inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.

  19. Compact proton spectrometers for measurements of shock

    SciTech Connect

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  20. Data analysis for Skylab proton spectrometer

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1976-01-01

    The data from a proton spectrometer flown aboard Skylab is examined. The instrument is sensitive to protons in the energy range 18 to 400 MeV. A partial failure of the spectrometer restricted spectral analysis to two energy bands, 18 to 27 MeV and 27 to 400 MeV. The directional data showed that a Gaussian angular distribution parameter of at least 70 degrees is required for the low energy band and at least 40 degrees for the high energy band. The data, integrated over angle, indicate that the AP3 model extrapolated down to 18-27 MeV is high by factors of 2 to 5 over most of the B-L space mapped. In the 27 to 400 MeV range, the AP3 model is 20 to 100 percent low at low and high values of L, and is high at medium L values in the B-L space mapped.

  1. Neutron scattering differential cross sections for 23Na from 1.5 to 4.5 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B. M.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; Liu, S. H.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L. C.; Sigillito, A. J.; Watts, D. W.; Yates, S. W.

    2015-07-01

    Measurements of neutron elastic and inelastic scattering cross sections from 23Na have been performed for sixteen incident neutron energies between 1.5 and 4.5 MeV. These measurements were complemented by γ-ray excitation functions using the (n ,n‧ γ) reaction to include excited levels not resolved in the neutron detection measurements. The time-of-flight (TOF) technique was employed for background reduction in both neutron and γ-ray measurements and for energy determination in neutron detection measurements. Previous reaction model evaluations relied primarily on neutron total cross sections and four (n, n0) and (n, n1) angular distributions in the 5 to 9 MeV range. The inclusion of more inelastic channels and measurements at lower incident neutron energies provide additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining collective direct-coupling and compound absorption components were performed.

  2. Improved constraints on inelastic dark matter

    SciTech Connect

    Schmidt-Hoberg, Kai; Winkler, Martin Wolfgang E-mail: mwinkler@ph.tum.de

    2009-09-01

    We perform an extensive study of the DAMA annual modulation data in the context of inelastic dark matter. We find that inelastic dark matter with mass m{sub χ}∼>15 GeV is excluded at the 95% confidence level by the combination of DAMA spectral information and results from other direct detection experiments. However, at smaller m{sub χ}, inelastic dark matter constitutes a possible solution to the DAMA puzzle.

  3. Ring imaging Cherenkov counter of HERMES for pion, kaon, proton and anti-proton identification

    NASA Astrophysics Data System (ADS)

    Shibata, Toshi-Aki

    2014-12-01

    RICH of HERMES was built for identification of pion, kaon, proton and anti-proton in the momentum range of 2-15 GeV/c. It was a dual-radiator RICH. The radiators were aerogel and C4F10 gas. Produced hadrons in electron-nucleon deep inelastic scattering were identified by the RICH and spin structure of the nucleon was studied by correlation between the directions of the target spin, scattered electron and produced hadrons.

  4. Production of and in proton-proton collisions at 7 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.

    2015-01-01

    The production of the strange and double-strange baryon resonances (, ) has been measured at mid-rapidity ( ) in proton-proton collisions at 7 TeV with the ALICE detector at the LHC. Transverse momentum spectra for inelastic collisions are compared to QCD-inspired models, which in general underpredict the data. A search for the pentaquark, decaying in the channel, has been carried out but no evidence is seen.

  5. Deuteron scattering on {sup 6}Li at an energy of 25 MeV

    SciTech Connect

    Burtebayev, N.; Artemov, S. V.; Duisebayev, B. A.; Kerimkulov, Zh. K.; Kuranov, S. B.; Sakuta, S. B.

    2010-05-15

    At an energy of 25 MeV and in the angular range 7{sup o}-175{sup o} in the laboratory frame, angular distributions were measured for elastic deuteron scattering on {sup 6}Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the {sup 6}Li nucleus and to its excited state at E{sub x} = 2.186 MeV (J{sup {pi}} = 3{sup +}). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.

  6. Experimental tests of proton spin models

    SciTech Connect

    Ramsey, G.P. . Dept. of Physics Argonne National Lab., IL . High Energy Physics Div.)

    1989-11-03

    We have developed models for the spin-weighted quark and gluon distribution in a longitudinally polarized proton. The model parameters are determined from current algebra sum rules and polarized deep-inelastic scattering data. A number of different scenarios are presented for the fraction of spin carried the constituent parton distributions. A possible long-range experimental program is suggested for measuring various hard scattering processes using polarized lepton and proton beams. With the knowledge gained from these experiments, we can begin to understand the parton contributions to the proton spin. 28 refs., 5 figs.

  7. AXAF Detector Backgrounds Produced By Cosmic Ray Protons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, K. L.; Dietz, K. L.; O'Dell, S. L.; Weisskopf, M. C.

    1997-01-01

    One of the science instruments on the Advanced X-ray Astrophysics Facility (AXAF), planned for launch in 1998 into a highly elliptical (10,000 km x 140,000 km) orbit, is a microchannel plate High Resolution Camera (HRC). This detector is designed to provide imaging and spectroscopic observations of x-rays emitted by stellar sources in the 0.1 to 10 keV energy range. Described here are analyses made to determine the expected time-dependent detector background from prompt and delayed (activation) radiation initiated by galactic cosmic-ray (GCR) proton interactions in the spacecraft and payload. Numerical simulations were made using the coupled set of Monte Carlo radiation transport codes, analysis software, and data bases shown. The major codes are HETC for nucleon-meson transport, EGS for simulating electromagnetic cascades, and MORSE for low-energy (less than 15 MeV) neutron transport. The simulation follows the transport history of photons in the energy range from - 100 GeV down to approx. 0.1 keV due to gamma-ray sources from neutral pion decay, high-energy (spallation) collisions, and low-energy neutron inelastic scattering and capture reactions. Also included is radioisotope production and the tracking of gamma-rays, electrons, and positrons from induced radioactivity.

  8. Inelastic neutron scattering studies of novel quantum magnets

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp W.

    Inelastic neutron scattering was used to study the magnetic excitation spectrum of three quantum magnets: (i) the double perovskite Ba2FeReO 6; (ii) the two-dimensional square lattice Heisenberg antiferromagnet Sr2CuO2Cl2; and (iii) the quasi-two-dimensional frustrated two-leg ladder BiCu2PO6. We have conducted inelastic neutron scattering measurements on powder samples of the double perovskite compound Ba2FeReO6. The measurements revealed two well defined dispersing spin wave modes. No excitation gap was observable and the spectrum can be explained with a local moment model incorporating the interactions of Fe spins with spin-orbital locked degrees of freedom on the Re site. The results reveal that both significant electronic correlations and spin-orbit coupling on the Re site play a significant role in the spin dynamics of Ba2FeReO6. High resolution neutron scattering measurements of magnetic excitations in the parent cuprate Sr2CuO2Cl2 reveal a significant dispersion and momentum dependent damping of the zone boundary magnons. We directly compare our measurements with previous resonant inelastic x-ray scattering measurements and find a ~25 meV discrepancy between the two techniques for the measured zone boundary energy at (1/2, 0). The deviations are greatest precisely in the region of phase space where the magnon damping is strongest. This comparison shows that the inelastic x-ray spectrum must contain significant contributions from higher energy excitations not previously considered. Our measurements demonstrate that the high energy continuum of magnetic fluctuations is a ubiquitous feature of the magnetic spectrum among insulating monolayer cuprates, and that these excitations couple to both inelastic neutron and light scattering. A comprehensive series of inelastic neutron scattering measurements was used to investigate spin excitations in the frustrated two-leg ladder compound BiCu2PO6. The measurements revealed six branches of steeply dispersing triplon

  9. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.

    1996-02-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron fluence outside a thinner moderator as the neutron fluence from a 2.5 MeV proton beam with a thicker moderator.

  10. Time-dependent 2.2-MeV and 0.5-MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2- and 0.51-MeV gamma-ray lines from solar flares are calculated, and the results are compared with observations of the 1972 August 4 and 7 flares. The time lag between the nuclear reactions and the formation of these two lines is caused by capture of the neutrons and subsequent deceleration of the positrons and decay of the radioactive nuclei. Our main results are that the calculation is consistent with the observed rise of the 2.2-MeV line on August 4, and it does not require different time dependences for the accelerated protons and high-energy electrons in the flare region. The above lags can explain the delayed gamma-ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  11. Nonstatistical fluctuations for deep inelastic processes in {sup 27}Al+{sup 27}Al collisions

    SciTech Connect

    Berceanu, I.; Duma, M.; Moisa, D.; Petrovici, M.; Pop, A.; Simion, V.; Zoppo, A. Del; D'Erasmo, G.; Imme, G.; Lanzano, G.; Pagano, A.; Pantaleo, A.; Raciti, G.

    2006-08-15

    The excitation functions (EFs) for different fragments produced in the {sup 27}Al+{sup 27}Al dissipative collisions have been measured in steps of 250 keV in the incident energy range 122-132 MeV. Deep inelastic processes have been selected by integrating events on a total kinetic energy loss window of 12 MeV between 20 and 32 MeV. Large fluctuations are observed in all the studied EFs. Large-channel cross-correlation coefficients confirm the nonstatistical origin of these fluctuations. The energy autocorrelation function (EAF) shows damped oscillation structure as expected when a dinuclear system with a lifetime [{tau}=(5.1{+-}2.1){center_dot}10{sup -21}s], similar with its revolution period (T=4.9{center_dot}10{sup -21}sec), is formed. From the periodicity of the EAF oscillations, information on the deformation of the {sup 27}Al+{sup 27}Al dinucleus is inferred.

  12. Inelastic neutron scatter iron concentrations of the moon from orbital gamma ray data

    NASA Technical Reports Server (NTRS)

    Davis, P. A., Jr.; Bielefeld, M. J.

    1981-01-01

    The considered investigation is concerned with the relation between KREEP and thermal neutron flux depression. The Fe(n, n-prime gamma) concentrations of selected lunar regions were calculated by energy-band analysis of the 0.803-0.872 MeV band. The result of the investigation will be used to evaluate the reliability of the previously determined Fe(n, gamma) values. A 0.803-0.872 MeV band was isolated from the Apollo 15 and 16 orbital gamma ray spectra. Preliminary regression analysis of regional ground truth count rates and Fe concentrations showed this energy interval to be optimum for the 0.8467 MeV inelastic scatter (n, n-prime gamma)Fe peak.

  13. Simulations of proton beam characteristics for ELIMED Beamline

    NASA Astrophysics Data System (ADS)

    Psikal, Jan; Limpouch, Jiri; Klimo, Ondrej; Vyskocil, Jiri; Margarone, Daniele; Korn, Georg

    2016-03-01

    ELIMED Beamline should demonstrate the capability of laser-based particle accelerators for medical applications, mainly for proton radiotherapy of tumours which requires a sufficient number of accelerated protons with energy about 60 MeV at least. In this contribution, we study the acceleration of protons by laser pulse with parameters accessible for ELIMED Beamline (intensity ∼ 1022 W/cm2, pulse length ∼ 30 fs). In our two-dimensional particle-incell simulations, we observed higher energies of protons for linear than for circular polarization. Oblique incidence of the laser pulse on target does not seem to be favourable for proton acceleration at such high intensities as the accelerated protons are deflected from target normal axis and their energy and numbers are slightly decreased. The expected numbers of accelerated protons in the energy interval 60 MeV ± 5% are calculated between 109 and 1010 per laser shot with estimated proton beam divergence about 20° (FWHM).

  14. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    DOE PAGESBeta

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; Hyde, C.; Kuhn, S.; Nadel-Turonski, P.; Park, K.; Sargsian, M.; Strikman, M.; Weiss, C.

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleusmore » rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.« less

  15. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    SciTech Connect

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; Hyde, C.; Kuhn, S.; Nadel-Turonski, P.; Park, K.; Sargsian, M.; Strikman, M.; Weiss, C.

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  16. Theoretical methods for the calculation of Bragg curves and 3D distributions of proton beams

    NASA Astrophysics Data System (ADS)

    Ulmer, W.; Matsinos, E.

    2010-12-01

    The well-known Bragg-Kleeman rule RCSDA = A ṡ E has become a pioneer work in radiation physics of charged particles and is still a useful tool to estimate the range RCSDA of approximately monoenergetic protons with initial energy E0 in a homogeneous medium. The rule is based on the continuous-slowing-down-approximation (CSDA). It results from a generalized (nonrelativistic) Langevin equation and a modification of the phenomenological friction term. The complete integration of this equation provides information about the residual energy E(z) and dE(z)/dz at each position z(0 ≦ z ≦ RCSDA). A relativistic extension of the generalized Langevin equation yields the formula RCSDA = A ṡ (E0 + E/2M ṡ c2)p. The initial energy of therapeutic protons satisfies E0 ≪ 2M ṡ c2(M ṡ c2 = 938.276 MeV), which enables us to consider the relativistic contributions as correction terms. Besides this phenomenological starting-point, a complete integration of the Bethe-Bloch equation (BBE) is developed, which also provides the determination of RCSDA, E(z) and dE(z)/dz and uses only those parameters given by the BBE itself (i.e., without further empirical parameters like modification of friction). The results obtained in the context of the aforementioned methods are compared with Monte-Carlo calculations (GEANT4); this Monte-Carlo code is also used with regard to further topics such as lateral scatter, nuclear interactions, and buildup effects. In the framework of the CSDA, the energy transfer from protons to environmental atomic electrons does not account for local fluctuations. Based on statistical quantum mechanics, an analysis of the Gaussian convolution and the Landau-Vavilov distribution function is carried out to describe these fluctuations. The Landau tail is derived as Hermite polynomial corrections of a Gaussian convolution. It is experimentally confirmed that proton Bragg curves with E0 ≧ 120 MeV show a buildup, which increases with the proton energy. This

  17. Observation of rotationally mediated focused inelastic resonances in D{sub 2} scattering from Cu(001)

    SciTech Connect

    Bertino, M.F.; Miret-Artes, S.; Toennies, J.P.; Benedek, G.

    1997-10-01

    Rotationally mediated focused inelastic resonances (RMFIR{close_quote}s) in the angular distributions of D{sub 2} scattered from Cu(001) are observed. The FIR effect involves a phonon-assisted focusing of an incident beam of arbitrary energy and direction into a final channel of one single well-defined energy and direction. Surprisingly for an incident energy E{sub i}=27meV the RMFIR conditions for the scattered beam coincide with the kinematic conditions required for a further elastic selective adsorption mechanism called the rotationally mediated critical kinematic (RMCK) effect. By taking advantage of the RMFIR and elastic RMCK effects, three effective bound states of energy {epsilon}{sub n,J}={minus}21.5meV, {minus}12.4meV, and {minus}10.3meV are determined. They are attributed to the lowest bound states {epsilon}{sub 0}={minus}28.9meV and {epsilon}{sub 1}={minus}19.8meV combined with the rotational excitation energy for J=1 to be B{sub rot}J(J+1)=7.41meV, respectively, and {epsilon}{sub 3}={minus}10.3meV combined with the rotational ground state (J=0). While the {epsilon}{sub 1} and {epsilon}{sub 3} states appear as maxima in the angular distribution at RMFIR conditions, the {epsilon}{sub 0} yields a striking minimum which represents the first evidence of what we call an anti-FIR feature. Theoretical arguments to explain the different FIR signatures observed are provided. A fit of a phenomenological interaction potential to the experimental bound-state values yields a value for the well depth D=32.5meV which is somewhat deeper than that found previously. {copyright} {ital 1997} {ital The American Physical Society}

  18. Measurements of the u valence quark distribution function in the proton and u quark fragmentation functions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1989-07-01

    A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.

  19. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect

    K.A. Griffioen

    2012-12-01

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  20. The effect of Jupiter's satellites on the diffusion of protons

    NASA Technical Reports Server (NTRS)

    Mead, G. D.

    1972-01-01

    Proton diffusion data are calculated for the Jovian satellites Amalthea, Io, Europa, Ganymede, and Callisto, assuming an equatorial magnetic field at Jupiter's surface of 10 gauss. The cyclotron radius, bounce period, and drift period are calculated for 1 MeV protons. These characteristics and the proton energy at the satellite, mean life near the satellite before impact, and diffusion time are also calculated for 100 MeV protons which conserve their first adiabatic invariant. The longitudinal distance between successive bounces is of the order of a few satellite radii.