Science.gov

Sample records for mg espinhaco range

  1. Co/Mg/X Multilayer Mirrors For the EUV Range

    SciTech Connect

    Hu, M.-H.; Le Guen, K.; Andre, J.-M.; Jonnard, P.; Zhou, S. K.; Li, H. Ch.; Zhu, J. T.; Wang, Z. S.

    2010-04-06

    A new material combination namely Co/Mg multilayer designed for optics applications in the EUV range, is reported. Simulations show that reflectivity value of the Co/Mg multilayer can reach a reflectivity of 55% at 25.2 nm (49.2 eV), when the grazing incidence angle is set to 45 deg. and s polarization is considered. The introduction of additional materials, e.g., Y and Zr can improve the reflectivity to 61%. Co/Mg and Co/Mg/B{sub 4}C multilayers have been deposited following the parameters deduced from the simulations. The introduction of a B{sub 4}C barrier layer would in principle increase the multilayer reflectivity to 61%. In fact the reflectivity measurements at 0.154 nm show that the introduction of B{sub 4}C does not improve the structural quality of the multilayers.

  2. Divacancies and the hydrogenation of Mg-Ti films with short range chemical order

    SciTech Connect

    Leegwater, H.; Schut, H.; Eijt, S. W. H.; Egger, W.; Baldi, A.; Dam, B.

    2010-03-22

    We obtained evidence for the partial chemical segregation of as-deposited and hydrogenated Mg{sub 1-y}Ti{sub y} films (0<=y<=0.30) into nanoscale Ti and Mg domains using positron Doppler-broadening. We exclusively monitor the hydrogenation of Mg domains, owing to the large difference in positron affinity for Mg and Ti. The electron momentum distribution broadens significantly upon transformation to the MgH{sub 2} phase over the whole compositional range. This reveals the similarity of the metal-insulator transition for rutile and fluorite MgH{sub 2}. Positron lifetime studies show the presence of divacancies in the as-deposited and hydrogenated Mg-Ti metal films. In conjunction with the relatively large local lattice relaxations we deduce to be present in fluorite MgH{sub 2}, these may be responsible for the fast hydrogen sorption kinetics in this MgH{sub 2} phase.

  3. Mg-based multilayers and their thermal stabilities for EUV range

    NASA Astrophysics Data System (ADS)

    Zhu, Jingtao; Zhou, Sika; Li, Haochuan; Huang, Qiushi; Jiang, Li; Wang, Fengli; Zhang, Zhong; Wang, Zhanshan; Zhou, Hongjun; Huo, Tonglin

    2011-09-01

    We have investigated the optical properties and thermal stabilities of a serial of Mg-based multilayers including Mg/SiC, Mg/Co and Mg/Zr in extreme ultraviolet (EUV) range. Mg/X multilayer mirrors were deposited by magnetron sputtering technique onto polished silicon wafers. In order to study their stabilities under heat resistance, annealing experiments were carried out in vacuum environment keeping 1hour at different temperatures from 200°C to 550°C. Their EUV reflectivities were measured by using synchrotron radiation. Grazing incident X-ray and EUV reflection measurements were used to estimate the thermal stability of these multilayer systems. Mg/SiC and Mg/Co are stable up to 200°C and the reflectivity decreases drastically with the increase of temperature, while the reflectivity of Mg/Zr keeps constant during annealing at 300°C and falls slowly as the temperature increases. Up to 550°C, Bragg peaks of Mg/Zr multilayer are still sharp in X-ray reflectivity curve, and EUV reflectivity is 25% at 26.2nm at 30 degree incidence. These measurement results indicate that Mg/Co and Mg/SiC should be used in application requiring no heating above 200°C, while the new material combination Mg/Zr is a promising multilayer for practical application requiring stronger heat resistance in EUV range.

  4. Reinvestigation of long-range magnetic ordering in icosahedral Tb-Mg-Zn

    NASA Astrophysics Data System (ADS)

    Islam, Z.; Fisher, I. R.; Zarestky, J.; Canfield, P. C.; Stassis, C.; Goldman, A. I.

    1998-05-01

    We present results of a study of possible magnetic ordering in the icosahedral phase of Tb-Mg-Zn probed by bulk magnetization measurements and neutron diffraction. Measurements on both crushed single grains and cast polycrystalline samples of Tb-Mg-Zn were performed. Magnetization measurements on both samples reveal only a spin-glass-like transition at approximately 5.8 K. Neutron diffraction from the crushed single grains reveals only short-range magnetic ordering at low temperatures, with no evidence of the long-range magnetic ordering reported previously [Charrier, Ouladdiaf, and Schmitt, Phys. Rev. Lett. 78, 4637 (1997)]. Likewise, the cast polycrystalline samples exhibit primarily diffuse magnetic scattering at low temperature, but at least one relatively sharp diffraction peak was observed. Our results indicate that for single grain samples there is no long-range magnetic ordering and that, at best, the magnetic ordering in these quasicrystalline alloys is not very robust.

  5. Reinvestigation of long-range magnetic ordering in icosahedral Tb-Mg-Zn

    SciTech Connect

    Islam, Z.; Fisher, I.R.; Zarestky, J.; Canfield, P.C.; Stassis, C.; Goldman, A.I.

    1998-05-01

    We present results of a study of possible magnetic ordering in the icosahedral phase of Tb-Mg-Zn probed by bulk magnetization measurements and neutron diffraction. Measurements on both crushed single grains and cast polycrystalline samples of Tb-Mg-Zn were performed. Magnetization measurements on both samples reveal only a spin-glass-like transition at approximately 5.8K. Neutron diffraction from the crushed single grains reveals only short-range magnetic ordering at low temperatures, with no evidence of the long-range magnetic ordering reported previously [Charrier, Ouladdiaf, and Schmitt, Phys. Rev. Lett. {bold 78}, 4637 (1997)]. Likewise, the cast polycrystalline samples exhibit primarily diffuse magnetic scattering at low temperature, but at least one relatively sharp diffraction peak was observed. Our results indicate that for single grain samples there is no long-range magnetic ordering and that, at best, the magnetic ordering in these quasicrystalline alloys is not very robust. {copyright} {ital 1998} {ital The American Physical Society}

  6. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; Wang, Xuelong; He, Junyong; Sun, Bai; Jia, Yong; Luo, Tao; Meng, Fanli; Jin, Zhen; Lin, Dongyue; Shen, Wei; Kong, Lingtao; Liu, Jinhuai

    2015-05-15

    A novel environment friendly adsorbent, micro-nano hierarchical structured flower-like MgO/MgCO3 (MHS-MgO/MgCO3), was developed for fluoride removal from water. The adsorbent was characterized and its defluoridation properties were investigated. Adsorption kinetics fitted well the pseudo-second-order model. Kinetic data revealed that the fluoride adsorption was rapid, more than 83-90% of fluoride could be removed within 30 min, and the adsorption equilibrium was achieved in the following 4 h. The fluoride adsorption isotherm was well described by Freundlich model. The maximum adsorption capacity was about 300 mg/g at pH=7. Moreover, this adsorbent possessed a very wide available pH range of 5-11, and the fluoride removal efficiencies even reached up to 86.2%, 83.2% and 76.5% at pH=11 for initial fluoride concentrations of 10, 20 and 30 mg/L, respectively. The effects of co-existing anions indicated that the anions had less effect on adsorption of fluoride except phosphate. In addition, the adsorption mechanism analysis revealed that the wide available pH range toward fluoride was mainly resulted from the exchange of the carbonate and hydroxyl groups on the surface of the MHS-MgO/MgCO3 with fluoride anions. PMID:25668780

  7. In-vivo noninvasive glucose monitoring with optical heterodyne polarimetry in a range of 50 mg/dl to 100 mg/dl

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shing; Han, Chien-Yuan; Tu, Pei-Chin; Chou, Chien

    2000-07-01

    An amplitude sensitive optical heterodyne polarimeter was setup in order to monitor noninvasively the aqueous glucose concentration in rabbit's eye. A range of the blood glucose from 35 mg/dl to 135 mg/dl was measured in vivo by biological glucose assay (BGA), while the optional rotation of the aqueous glucose was measured by a polarimeter simultaneously. The experimental results showed the consistence between these two independent measurements. There was no time delay between the blood glucose and the aqueous glucose when the blood glucose was descending after the insulin was injected. It was in contract to a 10 minutes time delay when the blood glucose was ascending. The detection sensitivity of the polarimeter was 4 mg/dl in the measurement.

  8. A Mg(2+)-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate.

    PubMed

    Fonseca-de-Souza, André L; Dick, Claudia Fernanda; Dos Santos, André Luiz Araújo; Meyer-Fernandes, José Roberto

    2008-08-01

    In this work, we characterized a Mg(2+)-dependent ecto-phosphatase activity present in live Trypanosoma rangeli epimastigotes. This enzyme showed capacity to hydrolyze the artificial substrate for phosphatases, p-nitrophenylphosphate (p-NPP). At saturating concentration of p-NPP, half-maximal p-NPP hydrolysis was obtained with 0.23mM Mg(2+). Ca(2+) had no effect on the basal phosphatase activity, could not substitute Mg(2+) as an activator and in contrast inhibited the p-NPP hydrolysis stimulated by Mg(2+). The dependence on p-NPP concentration showed a normal Michaelis-Menten kinetics for this phosphatase activity with values of V(max) of 8.94+/-0.36 nmol p-NP x h(-1) x 10(-7) cells and apparent K(m) of 1.04+/-0.16 mM p-NPP. Mg(2+)-dependent ecto-phosphatase activity was stimulated by the alkaline pH range. Experiments using inhibitors, such as, sodium fluoride, sodium orthovanadate and ammonium molybdate, inhibited the Mg(2+)-dependent ecto-phosphatase activity. Inorganic phosphate (Pi), a product of phosphatases, inhibited reversibly in 50% this activity. Okadaic acid and microcystin-LR, specific phosphoserine/threonine phosphatase inhibitors, inhibited significantly the Mg(2+)-dependent ecto-phosphatase activity. In addition, this phosphatase activity was able to recognize as substrates only o-phosphoserine and o-phosphothreonine, while o-phosphotyrosine was not a good substrate for this phosphatase. Epimastigote forms of T. rangeli exhibit a typical growth curve, achieving the stationary phase around fifth or sixth day and the Mg(2+)-dependent ecto-phosphatase activity decreased around 10-fold with the cell growth progression. Cells maintained at Pi-deprived medium (2 mM Pi) present Mg(2+)-dependent ecto-phosphatase activity approximately threefold higher than that maintained at Pi-supplemented medium (50 mM Pi). PMID:18599005

  9. Critical current densities and n-values of MgB2 strands over a wide range of temperatures and fields

    NASA Astrophysics Data System (ADS)

    Li, G. Z.; Yang, Y.; Susner, M. A.; Sumption, M. D.; Collings, E. W.

    2012-02-01

    Transport measurements of critical current density, Jct, in monocore powder-in-tube MgB2 strands have been carried out at temperatures, T, of from 4.2 to 40 K, and in transverse fields, B, of up to 14 T. Processing methods used were conventional continuous tube forming/filling (CTFF) and internal magnesium diffusion (IMD). Strands with several powder compositions were measured, including binary (undoped) MgB2, 2% carbon doped MgB2, and 3% carbon doped MgB2. Magnetization loops (M-B) were also measured, and magnetic critical current density, Jcm, values extracted from them. The transport, Jct(B) and magnetic, Jcm(B), critical current densities were compared. Also studied was the influence of doping on the resistively measured irreversibility field, Birr, and upper critical field, Bc2. Critical current densities, Jct, and n-values were extracted from transport measurements and were found to be universally related (for all B and T) according to n\\propto {J}_{{ct}}^{m} in which m = 0.52 ± 0.11. Likewise n was found to be related to B according to n ∝ B-p with a T-dependent p in the range of about 0.08-0.21. Further analysis of the field (B) and temperature (T) dependences of n-value resulted in an expression that enabled n(B,T), for all B and T, to be estimated for a given strand based on the results of transport Jct(B) measurements made at one arbitrarily chosen temperature.

  10. Short-range correlations and persistent spin fluctuations in the undistorted kagome lattice Ising antiferromagnet Co3Mg(OH)6Cl2

    NASA Astrophysics Data System (ADS)

    Fujihala, M.; Zheng, X. G.; Oohara, Y.; Morodomi, H.; Kawae, T.; Matsuo, Akira; Kindo, Koichi

    2012-01-01

    Spin fluctuations and spin-liquid behaviors of frustrated kagome antiferromagnets have received intense recent attention. Although most severe frustration was predicted for an Ising kagome antiferromagnet, a real material system of undistorted kagome lattice has not been found so far. Here we report the frustrated magnetism of a new Ising kagome antiferromagnet, MgCo3(OH)6Cl2, which can be viewed as a Co version of the intensively researched quantum kagome antiferromagnet of Herbertsmithite ZnCu3(OH)6Cl2. Experiments of magnetization, heat capacity, μSR, and neutron scattering demonstrated a partially frozen state with persistent spin fluctuations below around T = 2.7 K. The present study has provided a real material system to study the Ising spin behaviors on undistorted kagome lattice.

  11. Cosmic-ray isotopic composition of C, N, O, Ne, Mg, Si nuclei in the energy range 50-200 MeV per nucleon measured by the Voyager spacecraft during the solar minimum period

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.

  12. Constitutive modelling of CK45N, AlZnMgCu1.5 and Ti-6Al-4V in a wide range of strain rate and temperature

    NASA Astrophysics Data System (ADS)

    El-Magd, E.; Treppmann, C.; Korthäuer, M.

    2003-09-01

    Continuous constitutive equations for wide ranges of strain rates and temperatures are gaining increasing importance for adequate simulation of dynamic deformation processes. The flow behaviour of the carbon steel CK45N, the Aluminium Alloy AIZnMgCul.5 and the Titanium Alloy Ti6A14V is studied at different strain rates between 0.001 s^{-1} and 10000 s^{-1} with temperatures varying between 23^{circ}C and 1000^{circ}C at CK45N and Ti6A14V. AIZnMgCul.5 was investigated in a temperature range from 23^{circ}C up to 500^{circ}C. The mechanical behaviour of the three materials over this wide range needs the consideration of different physical deformation mechanisms. In the range of high temperatures and low strain rates stress relaxation due to creep deformation processes are superimposed to the plastic deformation process with a relatively low strain rate sensitivity and temperature dependence. In the range of high strain rates, the damping controlled deformation mechanism is additionally active leading to a high increase of the strain rate sensitivity. In case of steel, a dynamic age hardening mechanism is superimposed causing a stress increase between 300^{circ}C and 600^{circ}C according to strain rate. The correlation between the material parameters and the instability, localisation and damage is studied on the bases of simple models.

  13. Merging multireference perturbation and density-functional theories by means of range separation: Potential curves for Be{sub 2}, Mg{sub 2}, and Ca{sub 2}

    SciTech Connect

    Fromager, Emmanuel; Jensen, Hans Joergen Aa.

    2010-02-15

    A rigorous combination of multireference perturbation theory and density functional theory (DFT) is proposed. Based on a range separation of the regular two-electron Coulomb interaction, it combines a short-range density functional with second-order strongly contracted n-electron valence state perturbation theory (sc-NEVPT2). The huge advantage of the sc-NEVPT2 approach is that the density is unchanged through first order due to a generalized-Brillouin-type theorem so that the computationally cumbersome self-consistency contribution of short-range DFT to the second-order energy correction equals zero. The method yields very promising results for the van der Waals systems Be{sub 2}, Mg{sub 2}, and Ca{sub 2}; including the multireference system Be{sub 2}.

  14. Relaxor-like ferroelectric behaviour favoured by short-range B-site ordering in 10% Ba{sup 2+} substituted MgFe{sub 2}O{sub 4}

    SciTech Connect

    Chithra Lekha, P.; Ramesh, G.; Revathi, V.; Subramanian, V.

    2014-05-01

    Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin of polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.

  15. Microstructure and Thermal Conductivity of the As-Cast and Annealed Al-Cu-Mg-Si Alloys in the Temperature Range from 25°C to 400° C

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Du, Yong; Liu, Shuhong; Liu, Shaojun; Jie, Wanqi; Sundman, Bosse

    2015-11-01

    Four Al-based Al-Cu-Mg-Si alloy ingots were prepared by electrical resistance furnace. Microstructures and phase identification of the alloys were investigated by using electron probe microanalysis and X-ray diffraction techniques, respectively. The temperature dependences of thermal diffusivity and thermal conductivity of the as-cast and annealed alloys were investigated within the temperature range from 25°C to 400° C, and the estimated thermal conductivity was correlated with the microstructure and (Al) matrix phase compositions of the alloys. According to the results, the thermal conductivity of Al-Cu-Mg-Si alloys increased with temperature. The formation of precipitates, which consumes solute elements in the (Al) phase, contributes to the improvement in thermal diffusivity and thermal conductivity of annealed Al-Cu-Mg-Si alloys. The complex interconnection precipitates with a lower thermal conductivity than (Al) phase may affect the continuity of the matrix phase in microstructure and decreasing the thermal conductivity of the alloys significantly.

  16. Measurements of the 24Mg(d,p0,1,2,3,4) and natMg(d,d0) reactions cross sections in the energy range of 1.2-2 MeV for NRA and EBS applications

    NASA Astrophysics Data System (ADS)

    Rafi-kheiri, H.; Kakuee, O.; Lamehi-Rachti, M.

    2016-04-01

    Differential cross sections of the 24Mg(d,p0,1,2,3,4) reactions were obtained in the range Ed,lab = 1.2-2 MeV and at the scattering angles of 90°, 135°, 150° and 165° using a thin Mg target having thickness of 76.7 ± 3.1 μg/cm2. The cross section values were determined with an average energy step of ∼25 keV while the detailed measurements were carried out with an energy step of ∼5 keV around the resonance peaks. Elastic scattering data for three steep backward angles (135°, 150° and 165°) were also studied for the same incident deuteron energy range and steps. The results were compared with those of the previous studies. Moreover, the validity of the measured data has been benchmarked using a thick Mg target at two deuteron beam energies of 1.7 and 2 MeV.

  17. Microwave losses in MgO, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 dielectrics at low power and in the millikelvin temperature range

    NASA Astrophysics Data System (ADS)

    Arzeo, M.; Lombardi, F.; Bauch, T.

    2014-05-01

    We have investigated both the temperature and the power dependence of microwave losses for various dielectrics commonly used as substrates for the growth of high critical temperature superconductor thin films. We present measurement of niobium superconducting λ/2 coplanar waveguide resonators, fabricated on MgO, LaAlO3, and (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT), at the millikelvin temperature range and at low input power. By comparing our results with the two-level system model, we have discriminated among different dominant loss mechanisms. LSAT has shown the best results as regards the dielectric losses in the investigated regimes.

  18. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect

    Nunn, A. A.; Davis, S. D.; Micka, J. A.; DeWerd, L. A.

    2008-05-15

    The response of LiF:Mg,Ti thermoluminescent dosimeters (TLDs) as a function of photon energy was determined using irradiations with moderately filtered x-ray beams in the energy range of 20-250 kVp relative to the response to irradiations with {sup 60}Co photons. To determine if the relative light output from LiF:Mg,Ti TLDs per unit air kerma as a function of photon energy can be predicted using calculations such as Monte Carlo (MC) simulations, measurements from the x-ray beam irradiations were compared with MC calculated results, similar to the methodology used by Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. TLDs were irradiated in photon beams with well-known air kerma rates using the National Institute of Standards and Technology traceable M-series x-ray beams in the range of 20-250 kVp. For each x-ray beam, several sets of TLDs were irradiated for times corresponding to different air kerma levels to take into account any dose nonlinearity. TLD light output was then compared to that from several sets of TLDs irradiated at similar corresponding air kerma levels using a {sup 60}Co irradiator. The MC code MCNP5 was used to account for photon scatter and attenuation in the holder and TLDs and was used to calculate the predicted relative TLD light output per unit air kerma for irradiations with each of the experimentally used photon beams. The measured relative TLD response as a function of photon energy differed by up to 13% from the MC calculations. We conclude that MC calculations do not accurately predict the relative response of TLDs as a function of photon energy, consistent with the conclusions of Davis et al. [Radiat. Prot. Dosim. 106, 33-43 (2003)]. This is likely due to complications in the solid state physics of the thermoluminescence process that are not incorporated into the simulation.

  19. Differential cross section measurements of 27Al(p,p/γ)27Al and 27Al(p,αγ)24Mg reactions in the energy range of 1.6-3.0 MeV

    NASA Astrophysics Data System (ADS)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.; Sharifzadeh, N.; Fathollahi, V.

    2015-11-01

    In this work measurement of differential cross sections of 27Al(p,p/γ)27Al (Eγ = 844, 1014 keV) and 27Al(p,αγ)24Mg (Eγ = 1369 keV) nuclear reactions in the proton energy range of 1.6-3.0 MeV are described and the measured values are presented. Thin Al target was prepared by evaporating a 26 μg/cm2 Al onto a 129 μg/cm2 self-supporting Ag film. The gamma-rays and backscattered protons were detected simultaneously. The gamma-rays and protons were collected by an HPGe detector placed at an angle of 90° with respect to beam direction and an ion implanted Si detector placed at a scattering angle of 165°, respectively. In this experimental setup the great advantage is that differential cross sections could be independent on absolute values of the collected beam charge. The overall systematic uncertainty of cross sections was estimated to be ±9% while statistical errors were less than ±5%.

  20. Pulsed Laser Deposition and Reflection High-Energy Electron Diffraction studies of epitaxial long range order, nano- and microstructured Ag thin films grown on MgO, Al2 O3 , STO and Si

    NASA Astrophysics Data System (ADS)

    Velazquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2015-03-01

    Pulsed Laser Deposition is a state-of-the-art technique that allows for the fine tunability of the deposition rate, highly uniform and epitaxial sample growth, the ability to introduce partial pressures of gases into the experimental chamber for growth of complex materials without interfering with the energy source (laser). An auxiliary in situ technique for growth monitoring, Reflection High-Energy Electron Diffraction, is a powerful characterization tool for predictability of the surface physical structure both, qualitatively and quantitatively. RHEED patterns during and post deposition of Ag thin films on MgO, Al2O3, Si and STO substrtates are presented and their interpretations are compared with surface imaging techniques (SEM, STM) to evidence the usefulness of the technique.

  1. Spin-flip (p,n) reactions on /sup 26/Mg, /sup 54/Fe, and /sup 56/Fe at selected proton bombarding energies in the range of 17 to 25 MeV

    SciTech Connect

    Aron, D.L.

    1985-06-01

    New data are presented for the /sup 26/Mg(p,n)/sup 26/Al reaction at E/sub p/ = 19.12 and 24.97 MeV, for the /sup 54/Fe(p,n)/sup 54/Co reaction at E/sub p/ = 17.20, 18.60, and 24.60 MeV, and for the /sup 56/Fe(p,n)/sup 56/Co reaction at E/sub p/ = 19.12 and 24.59 MeV. Data were taken with the LLNL Cyclograaff at 16 angles from 3.5/sup 0/ to 159.0/sup 0/. A large detector at 23.8/sup 0/ with a long neutron flight path collected high resolution spectra. This large detector also collected separate 0/sup 0/ high resolution data on the /sup 26/Mg and /sup 56/Fe(p,n) reactions at E/sub p/ = 19 MeV. Absolute differential (p,n) cross sections were extracted for 1/sup +/ states in /sup 26/Al, /sup 54/Co, and /sup 56/Co, for the 0/sup +/ isobaric analong state (IAS) in /sup 54/Co and /sup 56/Co, for a 2/sup +/ state in each residual nucleus, and for the 0.199 MeV 7/sup +/ state of /sup 54/Co. No new experimental states were identified. Only relative cross sections were extracted at 0/sup 0/. Experimental angle-integrated cross sections were obtained for all but one state. DWBA79 was used, with the G-matrix effective nucleon-nucleon interaction of Bertsch et al. (with the central triplet-odd component V/sub to/ = O) and the Livermore shell model wave functions to calculate differential (p,n) cross sections to 1/sup +/ states and to the /sup 54/Co and /sup 56/Co IAS. Normalization of the DWBA angle-integrated cross sections to measurements for the /sup 54/Co and /sup 56/Co IAS (at E/sub p/ = 24.6 MeV) yielded the renormalized V/sub tau/ = 21.4 +- 2.1 MeV. Normalization of the DWBA angle-integrated cross sections to measurements for the 24.6 MeV /sup 54/Co and /sup 56/Co 1/sup +/ states, coupled with the normalization of the wave functions to previously experimentally determined GT strength, yield the renormalized V/sub sigmatau/ = 12.3 +- 1.2 MeV. The experimental Gamow-Teller strength B(GT)/sub exp./ of the T = 1 /sup 26/Al state at 9.44 MeV was found to be 0.69; B

  2. The Arabidopsis Mg Transporter, MRS2-4, is Essential for Mg Homeostasis Under Both Low and High Mg Conditions.

    PubMed

    Oda, Koshiro; Kamiya, Takehiro; Shikanai, Yusuke; Shigenobu, Shuji; Yamaguchi, Katsushi; Fujiwara, Toru

    2016-04-01

    Magnesium (Mg) is an essential macronutrient, functioning as both a cofactor of many enzymes and as a component of Chl. Mg is abundant in plants; however, further investigation of the Mg transporters involved in Mg uptake and distribution is needed. Here, we isolated an Arabidopsis thaliana mutant sensitive to high calcium (Ca) conditions without Mg supplementation. The causal gene of the mutant encodes MRS2-4, an Mg transporter.MRS2-4 single mutants exhibited growth defects under low Mg conditions, whereas an MRS2-4 and MRS2-7 double mutant exhibited growth defects even under normal Mg concentrations. Under normal Mg conditions, the Mg concentration of the MRS2-4 mutant was lower than that of the wild type. The transcriptome profiles of mrs2-4-1 mutants under normal conditions were similar to those of wild-type plants grown under low Mg conditions. In addition, both mrs2-4 and mrs2-7 mutants were sensitive to high levels of Mg. These results indicate that both MRS2-4 and MRS2-7 are essential for Mg homeostasis, even under normal and high Mg conditions. MRS2-4-green fluorescent protein (GFP) was mainly detected in the endoplasmic reticulum. These results indicate that these two MRS2 transporter genes are essential for the ability to adapt to a wide range of environmental Mg concentrations. PMID:26748081

  3. X-ray photoelectron spectroscopy studies of MgB 2 for valence state of Mg

    NASA Astrophysics Data System (ADS)

    A. Talapatra; Bandyopadhyay, S. K.; Sen, Pintu; Barat, P.; Mukherjee, S.; Mukherjee, M.

    2005-03-01

    Core level X-ray photoelectron spectroscopy (XPS) studies have been carried out on polycrystalline MgB 2 pellets over the whole binding energy range with a view to having an idea of the charge state of magnesium (Mg). We observe three distinct peaks in Mg 2p spectra at 49.3 eV (trace), 51.3 eV (major) and 54.0 eV (trace), corresponding to metallic Mg, MgB 2 and MgCO 3 or, divalent Mg species, respectively. Similar trend has been noticed in Mg 2s spectra. The binding energy of Mg in MgB 2 is lower than that corresponding to Mg(2+), indicative of the fact that the charge state of Mg in MgB 2 is less than (2+). Lowering of the formal charge of Mg promotes the σ → π electron transfer in boron (B) giving rise to holes on the top of the σ-band which are involved in coupling with B E 2g phonons for superconductivity. Through this charge transfer, Mg plays a positive role in hole superconductivity. B 1s spectra consist of three peaks corresponding to MgB 2, boron and B 2O 3. There is also evidence of MgO due to surface oxidation as seen from O 1s spectra.

  4. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.

    2004-11-01

    The Mg/Ca ratio of seawater has changed significantly over the Phanerozoic, primarily as a function of the rate of ocean-crust production. Echinoids, crabs, shrimps, and calcareous serpulid worms grown in artificial seawaters encompassing the range of Mg/Ca ratios that existed throughout the Phanerozoic exhibit a direct nonlinear relationship between skeletal and ambient Mg/Ca. Specimens grown in seawater with the lowest Mg/Ca (˜1) changed their mineralogy to low-Mg calcite (<4 mol% MgCO3), suggesting that these high-Mg calcareous organisms would have produced low-Mg calcite in the Cretaceous, when oceanic Mg/Ca was lowest (˜1). These results support the empirical evidence that the skeletal chemistry of calcareous organisms has varied significantly over the Phanerozoic as a function of the Mg/Ca of seawater, and that the Mg/Ca of unaltered fossils of such organisms may be a record of oceanic Mg/Ca throughout the Phanerozoic. Mg fractionation algorithms, which relate skeletal Mg/Ca, seawater Mg/Ca, and temperature, were derived from these and other experiments. They can be used to estimate paleoceanic Mg/ Ca ratios and temperatures from fossil skeletal Mg/Ca of the organisms evaluated. Pale oceanic Mg/Ca ratios, recalculated by using the echinoderm Mg fractionation algorithm from published fossil echinoid Mg/Ca, crinoid Mg/Ca, and paleotemperature data, are consistent with other estimates and models of oceanic Mg/Ca over the Phanerozoic.

  5. Role of Mg interlayers in Fe/Mg/MgO/Fe and Fe/Mg/MgO/Mg/Fe magnetic tunnel junctions

    SciTech Connect

    Wang, Y.; Zhang, J.; Zhang, Xiaoguang; Cheng, Hai-Ping; Han, Prof. X. F.

    2010-01-01

    -Fe(001)/Mg/MgO/Fe- and -Fe(001)/Mg/MgO/Mg/Fe- magnetic tunnel junctions (MTJs) with Mg interlayers are studied by first-principles calculation. An important role of the Mg interlayer is identified to be preserving the preferential transmission of the majority-spin states with \\Delta_1 symmetry, which dominate the spin-dependent electron transport of MTJs with MgO barrier. One layer of Mg at the electrode/barrier interface does not decrease the tunneling magnetoresistance (TMR) ratio nearly as much as one layer of oxide. At certain Mg thickness case the TMR could be strongly influenced by the resonance tunneling states in minority-spin channel, these states are mainly raised from the quantum-well states formed in the Mg interlayer and coupled with interfacial resonance states which are very sensitive to the interface structures.

  6. Microwave losses in MgO, LaAlO{sub 3}, and (La{sub 0.3}Sr{sub 0.7})(Al{sub 0.65}Ta{sub 0.35})O{sub 3} dielectrics at low power and in the millikelvin temperature range

    SciTech Connect

    Arzeo, M.; Lombardi, F.; Bauch, T.

    2014-05-26

    We have investigated both the temperature and the power dependence of microwave losses for various dielectrics commonly used as substrates for the growth of high critical temperature superconductor thin films. We present measurement of niobium superconducting λ∕2 coplanar waveguide resonators, fabricated on MgO, LaAlO{sub 3}, and (La{sub 0.3}Sr{sub 0.7})(Al{sub 0.65}Ta{sub 0.35})O{sub 3} (LSAT), at the millikelvin temperature range and at low input power. By comparing our results with the two-level system model, we have discriminated among different dominant loss mechanisms. LSAT has shown the best results as regards the dielectric losses in the investigated regimes.

  7. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  8. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  9. Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip

    NASA Astrophysics Data System (ADS)

    Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.

    2016-09-01

    The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.

  10. Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip

    NASA Astrophysics Data System (ADS)

    Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.

    2016-07-01

    The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.

  11. Long range B-site cation ordering and Briet–Wigner–Fano line shape of A{sub 1g}-like Raman mode in Nd{sub 1−x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} microwave dielectric ceramics

    SciTech Connect

    Kiran, S. Roopas; Babu, G. Santosh; Narayana, Chandrabhas; Murthy, V.R.K.; Subramanian, V.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Q × f of Nd{sub 1–x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} are correlated with B-site cation ordering (LRO). ► Correlation between LRO and Γ of A{sub 1g}-like mode in Raman spectrum is observed. ► Reason for asymmetry in A{sub 1g}-like Raman mode in these materials is revealed. ► Briet–Wigner–Fano resonance is confirmed with temperature variation in Raman spectra. -- Abstract: Nd{sub 1−x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} (x = 0.0–1.0) samples were prepared by solid-state reaction method. Rietveld refinement of X-ray diffraction data was done using P2{sub 1}/n space group with monoclinic symmetry, which supports 1:1 B-site cation ordering. Long range ordering (LRO) parameter decreased up to x = 0.5 and then found to increase with further increase in Sm concentration. The A{sub 1g}-like mode in Raman spectra was observed to possess Briet–Wigner–Fano line shape. The variation in obtained line width of the A{sub 1g}-like mode supported LRO. Microwave dielectric characteristics such as dielectric constant (ε{sub r}), quality factor (Q) and temperature coefficient of resonant frequency (τ{sub f}) were measured in the range of 7–9 GHz. ε{sub r} decreased from 26.5 to 24.9 and τ{sub f} become less negative from −58 ppm/°C to −36 ppm/°C with increase in Sm concentration. Q × f decreased from 47,500 GHz (for x = 0) to 39,800 GHz (for x = 0.5) and then increased to 44,600 GHz (for x = 1).

  12. Range and range rate system

    NASA Technical Reports Server (NTRS)

    Graham, Olin L. (Inventor); Russell, Jim K. (Inventor); Epperly, Walter L. (Inventor)

    1988-01-01

    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera.

  13. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  14. Porous Mg thin films for Mg-air batteries.

    PubMed

    Xin, Gongbiao; Wang, Xiaojuan; Wang, Chongyun; Zheng, Jie; Li, Xingguo

    2013-12-28

    An alkaline primary Mg-air battery made from a porous Mg thin film displayed superior discharge performances, including a flat discharge plateau, a high open-circuit voltage of 1.41 V and a large discharge capacity of 821 mAh g(-1), suggesting that the electrochemical performances of Mg-air batteries can be improved by controlling the Mg anode morphology. PMID:24158667

  15. Observations of Local Interstellar Mg I and Mg II

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Oegerle, W.; Weiler, E.; Stencel, R. E.; Kondo, Y.

    1984-01-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.

  16. Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Ab initio calculations are used to optimize the structures and determine the binding energies of Mg(+) to a series of ligands. Mg(+) bonds electrostatically with benzene, acetone, H2, CO, and NH3 and a self-consistent-field treatment gives a good description of the bonding. The bonding in MgCN(+) and MgCH3(+) is largely covalent and a correlated treatment is required.

  17. The dependence of Raman scattering on Mg concentration in Mg-doped GaN grown by MBE

    NASA Astrophysics Data System (ADS)

    Flynn, Chris; Lee, William

    2014-04-01

    Magnesium-doped GaN (GaN:Mg) films having Mg concentrations in the range 5 × 1018-5 × 1020 cm-3 were fabricated by molecular beam epitaxy. Raman spectroscopy was employed to study the effects of Mg incorporation on the positions of the E2 and A1(LO) lines identifiable in the Raman spectra. For Mg concentrations in excess of 2 × 1019 cm-3, increases in the Mg concentration shift both lines to higher wave numbers. The shifts of the Raman lines reveal a trend towards compressive stress induced by incorporation of Mg into the GaN films. The observed correlation between the Mg concentration and the Raman line positions establish Raman spectroscopy as a useful tool for optimizing growth of Mg-doped GaN.

  18. Shape and size of crystalline MgO particles formed by the decomposition of Mg(OH)/sub 2/

    SciTech Connect

    Dahmen,; Kim, M.G.; Searcy, A.W.

    1988-08-01

    Decomposition of Mg(OH)/sub 2/ at 300/sup 0/ to 400/sup 0/C yields MgO crystals with often unequal edge lengths which, from counting of crystal planes in high-resolution transmission electron micrographs, range from 0.8 to 2.4 nm, in agreement with conclusions of Moodie and Warble. Optical diffractograms and electron diffraction patterns yield concordant results. An origin for discordant X-ray diffraction estimates of particle size for MgO produced from Mg(OH)/sub 2/ in the same temperature range is suggested.

  19. Mg Isotopes of the Late Permian Evaporites, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Feng, C.; Gao, C. H.; Chang, S. C.

    2015-12-01

    Mg isotope holds promise to decipher the evaporative environment of evaporites. High-precision Mg isotope compositions of the late Permian langbeinites have been measured by using MC-ICPMS. The equilibrium Mg isotope fractionation factor between langbeinite and aqueous Mg2+ solutions has been determined using quantum chemistry calculations. All computations are employed at B3LYP/6-311++G(2d,2p) level and solvation effects are treated by solvent model ("water-droplet" approach), mineral structures are constructed using volume variable cluster models (VVCM). The Mg isotope compositions of the langbeinite samples, whose total formation thickness ranges up to 100 meters, are extremely isotopically lighter than that of modern seawater and relatively homogeneous (δ26MgDSM3 is from -4.12±0.03‰ to -3.81±0.07‰ v.s. -0.83‰ of modern seawater). The computed equilibrium Mg isotope fractionation factors between langbeinite and aqueous Mg2+ solutions are -2.73‰, -2.66‰ and -2.53‰ at 25, 30 and 40 ℃, respectively. These significant equilibrium fractionation factors indicate that a huge equilibrium Mg isotope fractionation between langbeinite and its parent brine can happen during langbeinite depositions, and langbeinites are enriched in isotopically light 24Mg comparing to the brine. Using the computed fractionation factors to simulate a Rayleigh fractionation process of langbeinite Mg precipitation, we find that a significant Mg isotope difference between langbeinite and its growing brine (seawater) is indeed present but the Mg isotope composition of langbeinite merely increase monotonically in a closed system. Because of that, the homogenous Mg isotope compositions of such a thick evaporite sequence suggest a disequlibrium effect rather than an equilibrium Mg isotope fractionation behavior during its formation. Combined with its prevailing Mg-bearing character, the homogenous Mg isotope compositions reveal that this the late Permian langbeinite sequence has

  20. Energy band bowing parameter in MgZnO alloys

    SciTech Connect

    Wang, Xu; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Nagaoka, Takashi; Arita, Makoto

    2015-07-13

    We report on bandgap bowing parameters for wurtzite and cubic MgZnO alloys from a study of high quality and single phase films in all Mg content range. The Mg contents in the MgZnO films were accurately determined using the energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra from XPS is proved to be valid for determining the bandgap of MgZnO films. The dependence of the energy bandgap on Mg content is found to deviate downwards from linearity. Fitting of the bandgap data resulted in two bowing parameters of 2.01 ± 0.04 eV and 1.48 ± 0.11 eV corresponding to wurtzite and cubic MgZnO films, respectively.

  1. Substitution of Mn for Mg in MgB_2*

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Michael D.; Johnston, David C.; Miller, Lance L.; Hill, Julienne M.

    2002-03-01

    The study of solid solutions in which the Mg in MgB2 is partially replaced by magnetic 3d or 4f atoms can potentially reveal important information on the superconducting state of MgB_2. As an end-member of the hypothetical Mg_1-xMn_xB2 system, MnB2 is isostructural with MgB2 and is an antiferromagnet below TN = 760 K which becomes canted at 157 K. A previous study by Moritomo et al.[1] examined the structure and properties of multi-phase samples with 0.01<= x<= 0.15. We attempted to obtain single-phase samples with x<= 0.25 by reacting the constituent elements in sealed Ta tubes and/or using prereacted MnBx synthesized using an arc furnace. The results of x-ray diffraction and magnetization measurements on those samples will be presented. * Supported by the USDOE under contract no. W-7405-Eng-82. [1] "Mn-substitution effects on MgB2 superconductor", Y.Moritomo et al. J. Phys. Soc. Japan b70, 1889 (2001).; “Effects of transition metal doping in MgB2 superconductor", Y. Moritomo at al. arXiv:cond-mat/0104568.

  2. Projectile deformation effects in the breakup of 37Mg

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2016-05-01

    We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  3. Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel

    NASA Astrophysics Data System (ADS)

    Ren, Ying; Zhang, Lifeng; Yang, Wen; Duan, Haojian

    2014-12-01

    The formation of Mg-Al-Ti-O complex inclusions in steel was investigated by laboratory experiments and thermodynamic calculation. The composition evolutions of Mg-Al-Ti-O inclusions in steel with different contents of [Al], [Mg], and [Ti] were discussed. Mg-Al-Ti-O complex inclusion with high TiOx content was liquid at 1873 K (1600 °C), indicating MgAl2O4 spinel inclusions can be modified to low melting temperature ones by combining TiOx component. The stability diagram of Al-Mg-Ti-O system inclusions in the molten steel at 1873 K (1600 °C) was calculated, considering many kinds of oxide inclusions such as MgO, Al2O3, TiOx, MgTi2O4, MgAl2O4, Al2TiO5, and liquid inclusion. The thermodynamic calculations are in good agreement with experimental results, which can predict the formation of Al-Mg-Ti-O complex inclusions in molten steel with a large concentration range of [Al], [Mg], and [Ti].

  4. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    NASA Astrophysics Data System (ADS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-07-01

    A series of Mg/TiO2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO2 did not lead to any surface lattice distortion to TiO2. HRTEM data indicated the presence of MgO and Mg(OH)2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH)2.

  5. Electron microscopy of Mg/TiO{sub 2} photocatalyst morphology for deep desulfurization of diesel

    SciTech Connect

    Yin, Yee Cia; Kait, Chong Fai Fatimah, Hayyiratul Wilfred, Cecilia

    2015-07-22

    A series of Mg/TiO{sub 2} photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO{sub 2} did not lead to any surface lattice distortion to TiO{sub 2}. HRTEM data indicated the presence of MgO and Mg(OH){sub 2} mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH){sub 2}.

  6. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  7. Interstitial Fe in MgO

    SciTech Connect

    Mølholt, T. E. Gislason, H. P.; Ólafsson, S.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Weyer, G.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Johnston, K.; Sielemann, R.

    2014-01-14

    Isolated {sup 57}Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of {sup 57}Mn decaying to {sup 57}Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe{sup 2+} and Fe{sup 3+}, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  8. Subdivision of the Mg-suite noritic rocks into Mg-gabbronorites and Mg-norites

    NASA Technical Reports Server (NTRS)

    James, O. B.; Flohr, M. K.

    1983-01-01

    Mg-suite noritic rocks can be divided into two groups, the Mg-gabbronorites and the Mg-norites. The rocks of these groups differ in ratios of high-Ca pyroxene to total pyroxene, compositions of pyroxene and plagioclase, assemblages of Ti-, Nb-, and Zr-bearing minerals, compositions of chrome spinel, bulk-rock Ti/Sm and Sc/Sm, and measured ages. The two groups probably crystallized from different types of parent magmas. Two hypotheses are offered for the differences in composition of the parent magmas. One hypothesis ascribes the differences to compositional heterogeneity of the mantle source areas. The other hypothesis ascribes the differences to variations in extent of partial melting of the mantle source regions and variations in extent of assimilation of the anorthosite and the highly differentiated residual liquid that were produced during the primordial lunar differentiation.

  9. Spin assignments of 22Mg states through a 24Mg(p,t)22Mg measurement

    SciTech Connect

    Chae, K. Y.; Jones, K. L.; Moazen, Brian; Pittman, S. T.; Bardayan, Daniel W; Blackmon, Jeff C; Liang, J Felix; Smith, Michael Scott; Chipps, K.; Hatarik, Robert; O'Malley, Patrick; Pain, Steven D; Kozub, R. L.; Matei, Catalin; Nesaraja, Caroline D

    2009-01-01

    The {sup 18}Ne({alpha},p){sup 21}Na reaction plays a crucial role in the ({alpha},p) process, which leads to the rapid proton capture process in X-ray bursts. The reaction rate depends upon properties of {sup 22}Mg levels above the {alpha} threshold at 8.14 MeV. Despite recent studies of these levels, only the excitation energies are known for most with no constraints on the spins. We have studied the {sup 24}Mg(p,t){sup 22}Mg reaction at the Oak Ridge National Laboratory (ORNL) Holifield Radioactive Ion Beam Facility (HRIBF), and by measuring the angular distributions of outgoing tritons, we provide the first experimental constraints on the spins of astrophysically-important {sup 18}Ne({alpha},p){sup 21}Na resonances.

  10. Experimental Mg IX photorecombination rate coefficient

    NASA Astrophysics Data System (ADS)

    Schippers, S.; Schnell, M.; Brandau, C.; Kieslich, S.; Müller, A.; Wolf, A.

    2004-07-01

    The rate coefficient for radiative and dielectronic recombination of beryllium-like magnesium ions was measured with high resolution at the Heidelberg heavy-ion storage ring TSR. In the electron-ion collision energy range 0-207 eV resonances due to 2s -> 2p (Δ N = 0) and 2s -> 3l (Δ N=1) core excitations were detected. At low energies below 0.15 eV the recombination rate coefficient is dominated by strong 1s2 (2s 2p 3P) 7l resonances with the strongest one occuring at an energy of only 21 meV. These resonances decisively influence the Mg IX recombination rate coefficient in a low temperature plasma. The experimentally derived Mg IX dielectronic recombination rate coefficient (±15% systematical uncertainty) is compared with the recommendation by Mazzotta et al. (1998, A&AS, 133, 403) and the recent calculations by Gu (2003, ApJ, 590, 1131) and by Colgan et al. (2003, A&A, 412, 597). These results deviate from the experimental rate coefficient by 130%, 82% and 25%, respectively, at the temperature where the fractional abundance of Mg IX is expected to peak in a photoionized plasma. At this temperature a theoretical uncertainty in the 1s2 (2s 2p 3P) 7l resonance positions of only 100 meV would translate into an uncertainty of the plasma rate coefficient of almost a factor 3. This finding emphasizes that an accurate theoretical calculation of the Mg IX recombination rate coefficient from first principles is challenging.

  11. Growth of high Mg content wurtzite MgZnO epitaxial films via pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Ledyaev, Oleg; Miller, Ross; Beletsky, Valeria; Osinsky, Andrei; Schoenfeld, Winston V.

    2016-02-01

    We report on the growth of high Mg content, high quality, wurtzite MgxZn1-xO (MgZnO) epitaxial films using a pulsed metal organic chemical vapor deposition (PMOCVD) method. Series of MgZnO films with variable Mg concentration were deposited on bare and AlN coated sapphire substrates. The band gap of the films estimated using UV-visible transmission spectra ranges from 3.24 eV to 4.49 eV, corresponding to fraction of Mg between x=0.0 and x=0.51, as determined by Rutherford backscattering spectroscopy. The cathodoluminescence (CL) measurement has shown a blue-shift in the peak position of MgZnO with an increasing Mg content. No multi-absorption edges and CL band splitting were observed, suggesting the absence of phase segregation in the as grown films. The crystal structure and phase purity of the films were also confirmed by XRD analysis. Hall effect measurement in van der Pauw configuration was employed to evaluate the electrical properties of the films. With a rise in Mg incorporation into the ZnO lattice, the films became very resistive, consistent with the widening of the band gap. The AFM measurement on the films has shown a decreasing surface roughness with an Mg content. To the best of our knowledge, the current result shows the highest Mg content (x=0.51), high quality, wurtzite MgZnO epitaxial film ever grown by MOCVD. The high Mg incorporation without phase separation is believed to be due to the non-equilibrium behavior of the PMOCVD in which the kinetic processes dominate the thermodynamic one.

  12. Phase stability in the Cd-Mg system

    SciTech Connect

    Asta, M.; McCormack, R.; de Fontaine, D.

    1993-12-31

    This paper reports on results of a theoretical study of solid-state phase equilibria and short-range order in Cd-Mg alloys. Results of first-principles linear muffin-tin orbital method total-energy calculations for seven hcp-based superstructures have been combined with cluster-variation-method calculations of thermodynamic properties in order to compute the Cd-Mg phase diagram. Effect on the calculated phase diagram of contributions to the alloy free energy arising from atomic vibrations and structural relaxations are assessed using available experimental information for ordered and disordered alloys in the Cd-Mg system.

  13. Mg2+ coordinating dynamics in Mg:ATP fueled motor proteins

    NASA Astrophysics Data System (ADS)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2014-03-01

    The coordination of Mg2+ with the triphosphate group of adenosine triphosphate (ATP) in motor proteins is investigated using data mining and molecular dynamics. The possible coordination structures available from crystal data for actin, myosin, RNA polymerase, DNA polymerase, DNA helicase, and F1-ATPase are verified and investigated further by molecular dynamics. Coordination states are evaluated using structural analysis and quantified by radial distribution functions, coordination numbers, and pair interaction energy calculations. The results reveal a diverse range of both transitory and stable coordination arrangements between Mg2+ and ATP. The two most stable coordinating states occur when Mg2+ coordinates two or three oxygens from the triphosphate group of ATP. Evidence for five-site coordination is also reported involving water in addition to the triphosphate group. The stable states correspond to a pair interaction energy of either ˜-2750 kJ/mol or -3500 kJ/mol. The role of water molecules in the hydration shell surrounding Mg2+ is also reported.

  14. Size effects in MgO cube dissolution.

    PubMed

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution. PMID:25668706

  15. Precise calibration of Mg concentration in Mg{sub x}Zn{sub 1-x}O thin films grown on ZnO substrates

    SciTech Connect

    Kozuka, Y.; Falson, J.; Tsukazaki, A.; Segawa, Y.; Makino, T.; Kawasaki, M.

    2012-08-15

    The growth techniques for Mg{sub x}Zn{sub 1-x}O thin films have advanced at a rapid pace in recent years, enabling the application of this material to a wide range of optical and electrical applications. In designing structures and optimizing device performances, it is crucial that the Mg content of the alloy be controllable and precisely determined. In this study, we have established laboratory-based methods to determine the Mg content of Mg{sub x}Zn{sub 1-x}O thin films grown on ZnO substrates, ranging from the solubility limit of x {approx} 0.4 to the dilute limit of x < 0.01. For the absolute determination of Mg content, Rutherford backscattering spectroscopy is used for the high Mg region above x = 0.14, while secondary ion mass spectroscopy is employed to quantify low Mg content. As a lab-based method to determine the Mg content, c-axis length is measured by x-ray diffraction and is well associated with Mg content. The interpolation enables the determination of Mg content to x = 0.023, where the peak from the ZnO substrate overlaps the Mg{sub x}Zn{sub 1-x}O peak in standard laboratory equipment, and thus limits quantitative determination. At dilute Mg contents below x = 0.023, the localized exciton peak energy of the Mg{sub x}Zn{sub 1-x}O films as measured by photoluminescence is found to show a linear Mg content dependence, which is well resolved from the free exciton peak of ZnO substrate down to x = 0.0043. Our results demonstrate that x-ray diffraction and photoluminescence in combination are appropriate methods to determine Mg content in a wide Mg range from x = 0.004 to 0.40 in a laboratory environment.

  16. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2.

    PubMed

    Pan, Hongge; Shi, Songbo; Liu, Yongfeng; Li, Bo; Yang, Yanjing; Gao, Mingxia

    2013-03-21

    A Mg(BH(4))(2)-added Mg(NH(2))(2)-2LiH system was prepared by ball milling the corresponding chemicals. The hydrogen storage properties of the Mg(NH(2))(2)-2LiH-xMg(BH(4))(2) (x = 0, 0.1, 0.2, 0.3) samples and the role played by Mg(BH(4))(2) were systematically investigated. The results show that the onset and peak temperatures for hydrogen desorption from the Mg(BH(4))(2)-added Mg(NH(2))(2)-2LiH sample shifted to lower temperatures. In particular, the Mg(NH(2))(2)-2LiH-0.1Mg(BH(4))(2) sample could reversibly absorb ~4.5 wt% of hydrogen in the temperature range of 120-150 °C, which is superior to the pristine sample. During ball milling, a metathesis reaction between Mg(BH(4))(2) and LiH readily occurred to form LiBH(4) and MgH(2) and subsequently, the newly formed MgH(2) reacted with Mg(NH(2))(2) to generate MgNH. Upon heating, the presence of LiBH(4) not only decreased the recrystallization temperature of Mg(NH(2))(2) but also reacted with LiNH(2) to form the Li(4)(BH(4))(NH(2))(3) intermediate, which weakens the N-H bonding and enhances the ion conductivity. Meanwhile, MgNH may act as the nucleation center for the dehydrogenation product of Li(2)MgN(2)H(2) due to the structural similarity. Thus, the in situ formed LiBH(4) and MgNH provide a synergetic effect to improve the hydrogen storage performances of the Mg(NH(2))(2)-2LiH system. PMID:23178338

  17. LOW Mg/Si PLANETARY HOST STARS AND THEIR Mg-DEPLETED TERRESTRIAL PLANETS

    SciTech Connect

    Carter-Bond, Jade C.; O'Brien, David P.; Delgado Mena, Elisa; Israelian, Garik; Gonzalez Hernandez, Jonay I.; Santos, Nuno C.

    2012-03-15

    Simulations have shown that a diverse range of extrasolar terrestrial planet bulk compositions are likely to exist based on the observed variations in host star elemental abundances. Based on recent studies, it is expected that a significant proportion of host stars may have Mg/Si ratios below 1. Here we examine this previously neglected group of systems. Planets simulated as forming within these systems are found to be Mg-depleted (compared to Earth), consisting of silicate species such as pyroxene and various feldspars. Planetary carbon abundances also vary in accordance with the host star C/O ratio. The predicted abundances are in keeping with observations of polluted white dwarfs, lending validity to this approach. Further studies are required to determine the full planetary impacts of the bulk compositions predicted here.

  18. Room-temperature perpendicular magnetic anisotropy of MgO/Fe/MgO ultrathin films

    SciTech Connect

    Kozioł-Rachwał, A.; Ślęzak, T.; Przewoźnik, J.; Skowroński, W.; Stobiecki, T.; Wilgocka-Ślęzak, D.; Qin, Q. H.; Dijken, S. van; Korecki, J.

    2013-12-14

    We used the anomalous Hall effect to study the magnetic properties of MgO/Fe(t)/MgO(001) structures in which the Fe thickness t ranged from 4 Å to 14 Å. For the iron deposited at 140 K, we obtained perpendicular magnetization at room temperature below the critical thickness of t{sub c} = (9 ± 1) Å. In the vicinity of t{sub c}, the easy magnetization axis switched from an out-of-plane orientation to an in-plane orientation, and the observed spin-reorientation transition was considered in terms of the competition among different anisotropies. The perpendicular magnetization direction was attributed to magnetoelastic anisotropy. Finally, the temperature-dependent spin-reorientation transition was analyzed for Fe thicknesses close to t{sub c}.

  19. High-precision Mg isotopic systematics of bulk chondrites

    NASA Astrophysics Data System (ADS)

    Schiller, Martin; Handler, Monica R.; Baker, Joel A.

    2010-08-01

    chondrite parent bodies had precisely the same initial levels of 26Al, although planetesimals and planets appear to have accreted from material with a mean initial ( 26Al/ 27Al) 0 in the range of 2.1 to 6.7 × 10 - 5 . The average stable Mg isotope composition of all analysed chondrites, with the exception of a chondrule from the CBa chondrite Gujba ( δ25Mg DSM-3 = -0.032 ± 0.035‰), is δ25Mg DSM-3 = -0.152 ± 0.079‰ (2 sd) and is indistinguishable from that of the Earth's mantle.

  20. ZnCdMgSe-Based Semiconductors for Intersubband Devices

    SciTech Connect

    Tamargo, Maria C.

    2008-11-13

    This paper presents a review of recent results on the application of ZnCdMgSe-based wide bandgap II-VI compounds to intersubband devices such as quantum cascade lasers and quantum well infrared photodetectors operating in the mid-infrared region. The conduction band offset of ZnCdSe/ZnCdMgSe quantum well structures was determined from contactless electroreflectance measurements to be as high as 1.12 eV. FT-IR was used to measure intersubband absorption in multi-quantum well structures in the mid-IR range. Electroluminescence at 4.8 {mu}m was observed from a quantum cascade emitter structure made from these materials. Preliminary results are also presented on self assembled quantum dots of CdSe on ZnCdMgSe, and novel quantum well structures with metastable binary MgSe barriers.

  1. Telemetry Ranging: Concepts

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2015-11-01

    Telemetry ranging is a proposed alternative to conventional two-way ranging for determining the two-way time delay between a Deep Space Station (DSS) and a spacecraft. The advantage of telemetry ranging is that the ranging signal on the uplink is not echoed to the downlink, so that telemetry alone modulates the downlink carrier. The timing information needed on the downlink, in order to determine the two-way time delay, is obtained from telemetry frames. This article describes the phase and timing estimates required for telemetry ranging, and how two-way range is calculated from these estimates. It explains why the telemetry ranging architecture does not require the spacecraft transponder to have a high-frequency or high-quality oscillator, and it describes how a telemetry ranging system can be infused in the Deep Space Network.

  2. Limited range of motion

    MedlinePlus

    Limited range of motion is a term meaning that a joint or body part cannot move through its normal range of motion. ... Motion may be limited because of a problem within the joint, swelling of tissue around the joint, ...

  3. Mass spectrometric determination of the dissociation energy of the AuMg diatomic molecule

    NASA Astrophysics Data System (ADS)

    Balducci, G.; Ciccioli, A.; Gigli, G.; Kudin, L. S.

    2003-02-01

    The dissociation energy of the intermetallic molecule AuMg was for the first time determined by the Knudsen-effusion mass spectrometry technique. Partial pressures of Au(g), Mg(g), AuMg(g) and Au 2(g) species produced under equilibrium vaporization of an appropriate alloy were monitored in the temperature range 1870-2333 K. The collected data were analyzed by the second- and third-law methods for the gaseous equilibria AuMg(g)=Au(g) + Mg(g) and AuMg(g) + Au(g)=Au 2(g) + Mg(g). The selected value for the dissociation energy of AuMg at 0 K is D0∘(AuMg)= 175.4±2.7 kJ/mol.

  4. Phase stability, mechanical property, and electronic structure of an Mg-Ca system.

    PubMed

    Zhou, Peng; Gong, H R

    2012-04-01

    First principle calculations reveal that Mg-Ca phases are energetically favorable with negative heats of formation within the entire composition range, and that a strong chemical bonding is formed between Mg and Ca atoms. Calculations also show that the composition has an important effect on mechanical properties of Mg-Ca, and that the Mg-Ca phases with an Mg composition of less than 50 at.% would be good candidates as degradable bone materials in terms of Young's modulus and ductility. In addition, it is found out that Mg(3)Ca, MgCa and MgCa(3) have phase sequences of BCC→HCP, BCC→HCP and FCC→HCP under high pressure, respectively, and that Ca plays a dominant role in determining the electronic structures and stable crystal structures of various Mg-Ca phases. PMID:22402162

  5. SAR ambiguous range suppression.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  6. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  7. Long Range Technology Planning.

    ERIC Educational Resources Information Center

    Ambron, Sueann, Ed.

    1986-01-01

    This summary of a meeting of the Apple Education Advisory Council, on long range technology plans at the state, county, district, and school levels, includes highlights from group discussions on future planning, staff development, and curriculum. Three long range technology plans at the state level are provided: Long Range Educational Technology…

  8. Simultaneous desorption behavior of M borohydrides and Mg2FeH6 reactive hydride composites (M = Mg, then Li, Na, K, Ca)

    NASA Astrophysics Data System (ADS)

    Chaudhary, Anna-Lisa; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Deledda, Stefano; Sørby, Magnus H.; Hauback, Bjørn C.; Pistidda, Claudio; Klassen, Thomas; Dornheim, Martin

    2015-08-01

    Combinations of complex metal borohydrides ball milled with the transition metal complex hydride, Mg2FeH6, are analysed and compared. Initially, the Reactive Hydride Composite (RHC) of Mg2+ cation mixtures of Mg2FeH6 and γ-Mg(BH4)2 is combined in a range of molar ratios and heated to a maximum of 450 °C. For the molar ratio of 6 Mg2FeH6 + Mg(BH4)2, simultaneous desorption of the two hydrides occurred, which resulted in a single event of hydrogen release. This single step desorption occurred at temperatures between those of Mg2FeH6 and γ-Mg(BH4)2. Keeping this anionic ratio constant, the desorption behavior of four other borohydrides, Li-, Na-, K-, and Ca-borohydrides was studied by using materials ball milled with Mg2FeH6 applying the same milling parameters. The mixtures containing Mg-, Li-, and Ca-borohydrides also released hydrogen in a single event. The Mass Spectrometry (MS) results show a double step reaction within a narrow temperature range for both the Na- and K-borohydride mixtures. This phenomenon, observed for the RHC systems at the same anionic ratio with all five light metal borohydride mixtures, can be described as simultaneous hydrogen desorption within a narrow temperature range centered around 300 °C.

  9. First-principles study of Mg(0001)/MgO(1-11) interfaces

    NASA Astrophysics Data System (ADS)

    Song, Hong-Quan; Zhao, Ming; Li, Jian-Guo

    2016-06-01

    By means of first-principles density-functional calculations, we studied the surface energy of a nonstoichiometric MgO(1-11) slab, the interfacial energy and interfacial bonding characteristics of Mg-terminated and O-terminated Mg/MgO(1-11) interfaces with three stacking-site (TOP, HCP and FCC sites) models, and the effect of the thickness of Mg films on the O-terminated MgO(1-11) surface. The results indicate that the surface energies of the nonstoichiometric MgO(1-11) slab and interfacial energies of Mg/Mg(1-11) interface depend on Mg chemical potential. We found that the Mg-terminated MgO(1-11) surface is more stable than the O-terminated MgO(1-11) surface at high Mg chemical potential, and Mg/MgO(1-11) with FCC stacking-site model is the most stable configuration in the Mg/MgO(1-11) interfaces. The results of the electronic structure reveals that the interfacial bonding of Mg-terminated interface with FCC site model mainly consists of metallic bond and of the O-terminated interface with FCC site model is mainly ionic with a small degree of σ-type covalent bond. Although the interfacial energy of Mg-terminated Mg/MgO interface with FCC stacking-site model is slightly higher than that of O-terminated Mg/MgO interface, the molten Mg would epitaxially grow on the FCC sites of the Mg-terminated MgO(1-11) surface because of the high evaporation pressure of Mg at high temperature.

  10. Telemetry Ranging: Signal Processing

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.

    2016-02-01

    This article describes the details of the signal processing used in a telemetry ranging system in which timing information is extracted from the downlink telemetry signal in order to compute spacecraft range. A previous article describes telemetry ranging concepts and architecture, which are a slight variation of a scheme published earlier. As in that earlier work, the telemetry ranging concept eliminates the need for a dedicated downlink ranging signal to communicate the necessary timing information. The present article describes the operation and performance of the major receiver functions on the spacecraft and the ground --- many of which are standard tracking loops already in use in JPL's flight and ground radios --- and how they can be used to provide the relevant information for making a range measurement. It also describes the implementation of these functions in software, and performance of an end-to-end software simulation of the telemetry ranging system.

  11. Telemetry-Based Ranging

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  12. Highly (100) oriented MgO growth on thin Mg layer in MTJ structure

    NASA Astrophysics Data System (ADS)

    Jimbo, K.; Nakagawa, S.

    2011-01-01

    In order to apply Stress Assisted Magnetization Reversal (SAMR) method to perpendicular magnetoresistive random access memory (p-MRAM) with magnetic tunnel junction (MTJ) using MgO (001) oriented barrier layer, multilayer of Ta/ Terfenol-D/ Mg/ MgO and Ta/ Terfenol-D/ MgO were prepared. While the MgO layer, deposited directly on the Terfenol-D layer, did not show (100) orientatin, very thin metallic Mg layer, deposited prior to the MgO deposition, was effective to attain MgO (100) orientation. The crystalline orientation was very weak without Mg, however, the multilayer with Mg showed very strong MgO(100) peak and the MgO orientation was shifted depending on the Mg thickness.

  13. Improved ranging systems

    NASA Technical Reports Server (NTRS)

    Young, Larry E.

    1989-01-01

    Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.

  14. Bacterial Mg2+ Homeostasis, Transport, and Virulence

    PubMed Central

    Hollands, Kerry; Kriner, Michelle A.; Lee, Eun-Jin; Park, Sun-Yang; Pontes, Mauricio H.

    2014-01-01

    Organisms must maintain physiological levels of Mg2+ because this divalent cation is critical for the stabilization of membranes and ribosomes, the neutralization of nucleic acids, and as a cofactor in a variety of enzymatic reactions. In this review, we describe the mechanisms that bacteria utilize to sense the levels of Mg2+ both outside and inside the cytoplasm. We examine how bacteria achieve Mg2+ homeostasis by adjusting the expression and activity of Mg2+ transporters, and by changing the composition of their cell envelope. We discuss the connections that exist between Mg2+ sensing, Mg2+ transport and bacterial virulence. Additionally, we explore the logic behind the fact that bacterial genomes encode multiple Mg2+ transporters and distinct sensing systems for cytoplasmic and extracytoplasmic Mg2+. These analyses may be applicable to the homeostatic control of other cations. PMID:24079267

  15. Automatic range selector

    DOEpatents

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  16. Soil Moisture Mapping at a Watershed of the Mantiqueira Range, MG, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is an important hydrological variable that characterizes the soil water dynamics influencing surface runoff generation and consequently sediment transport. This work aimed to analyze the spatial patterns of surface soil moisture, to identify the elements that exert the most influence i...

  17. Bioactivity of Mg-ion-implanted zirconia and titanium

    NASA Astrophysics Data System (ADS)

    Liang, H.; Wan, Y. Z.; He, F.; Huang, Y.; Xu, J. D.; Li, J. M.; Wang, Y. L.; Zhao, Z. G.

    2007-01-01

    Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 × 10 17 to 3 × 10 17 ions/cm 2 at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium.

  18. Mg rechargeable batteries: an on-going challenge

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Gershinsky, G; Pour, N; Aurbach, D

    2013-08-01

    The first working Mg rechargeable battery prototypes were ready for presentation about 13 years ago after two breakthroughs. The first was the development of non-Grignard Mg complex electrolyte solutions with reasonably wide electrochemical windows in which Mg electrodes are fully reversible. The second breakthrough was attained by demonstrating high-rate Mg cathodes based on Chevrel phases. These prototypes could compete with lead-acid or Ni-Cd batteries in terms of energy density, very low self-discharge, a wide temperature range of operation, and an impressive prolonged cycle life. However, the energy density and rate capability of these Mg battery prototypes were not attractive enough to commercialize them. Since then we have seen gradual progress in the development of better electrolyte solutions, as well as suggestions of new cathodes. In this article we review the recent accumulated experience, understandings, new strategies and materials, in the continuous R&D process of nonaqueous Mg batteries. This paper provides a road-map of this field during the last decade.

  19. Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Sell; Tran, C. V.; Nguyen, T. T.

    2011-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and nonmonotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2 multivalent counterions. As Mg+2 concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA-DNA short range attraction energies, mediated by Mg+2, is found to be -0.004 kBT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in agreement qualitatively with values for tri- and tetravalent counterions.

  20. Secondary Ionization Coefficient of MgO and Accumulated Charge

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Sekizawa, Takashi; Kashiwagi, Yasuhide; Itoh, Haruo

    2011-10-01

    An experimental study on Townsend's secondary ionization coefficient γ of MgO is carried out in accordance with a previously reported sequential procedure. A sinusoidal voltage is applied between the MgO film electrode and a stainless-steel electrode in the frequency range of 0.1 Hz-2 kHz. The breakdown voltage is determined from the observed waveforms of applied voltage and accumulated charge on the MgO film electrode. The influence on the breakdown voltage of the voltage induced by the accumulated charge is investigated. We found that the accumulated charge does not affect the breakdown voltage at low frequency or the DC voltage, but it affects the breakdown voltage at high frequency. Using the breakdown voltage, we determine Townsend's secondary ionization coefficient γ of MgO. The obtained γ for MgO in the study is compared with other reported values. It is found that γ for MgO is larger than those of metallic electrodes.

  1. Range Scheduling Aid (RSA)

    NASA Technical Reports Server (NTRS)

    Logan, J. R.; Pulvermacher, M. K.

    1991-01-01

    Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.

  2. Laser ranging data analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Near real-time Lageos laser ranging data are analyzed in terms of range bias, time bias, and internal precision, and estimates for earth orientation parameters X(sub p), Y(sub p), and UT1 are obtained. The results of these analyses are reported in a variety of formats. Copies of monthly summaries from November, 1986 through November, 1987 are included.

  3. Atomistically informed solute drag in Al Mg

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Curtin, W. A.

    2008-07-01

    Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al-Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls-Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls-Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress-velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al-Mg alloys over a range of concentrations and temperatures.

  4. Home range and travels

    USGS Publications Warehouse

    Stickel, L.F.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  5. The role of Mg in the crystallization of monohydrocalcite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Bots, Pieter; Roncal-Herrero, Teresa; Benning, Liane G.

    2014-02-01

    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg2+aq/Ca2+aq≥0.17<65. Although found in modern sedimentary deposits and as a product of biomineralization, there is a lack of information about its formation mechanisms and about the role of Mg during its crystallization. In this work we have quantitatively assessed the mechanism of crystallization of monohydrocalcite through in situ synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) and off-line spectroscopic, microscopic and wet chemical analyses. Monohydrocalcite crystallizes via a 4-stage process beginning with highly supersaturated solutions from which a Mg-bearing, amorphous calcium carbonate (ACC) precursor precipitates. This precursor crystallizes to monohydrocalcite via a nucleation-controlled reaction in stage two, while in stage three it is further aged through Ostwald-ripening at a rate of 1.8 ± 0.1 nm/h1/2. In stage four, a secondary Ostwald ripening process (66.3 ± 4.3 nm/h1/2) coincides with the release of Mg from the monohydrocalcite structure and the concomitant formation of minor hydromagnesite. Our data reveal that monohydrocalcite can accommodate significant amounts of Mg in its structure (χMgCO3 = 0.26) and that its Mg content and dehydration temperature are directly proportional to the saturation index for monohydrocalcite (SIMHC) immediately after mixing the stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SIMHC = 3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SIMHC = 2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be

  6. A Facile Approach Using MgCl2 to Formulate High Performance Mg2+ Electrolytes for Rechargeable Mg Batteries

    SciTech Connect

    Liu, Tianbiao L.; Shao, Yuyan; Li, Guosheng; Gu, Meng; Hu, Jian Z.; Xu, Suochang; Nie, Zimin; Chen, Xilin; Wang, Chong M.; Liu, Jun

    2014-01-01

    Rechargeable Mg batteries have been regarded as a viable battery technology for grid scale energy storage and transportation applications. However, the limited performance of Mg2+ electrolytes has been a primary technical hurdle to develop high energy density rechargeable Mg batteries. In this study, MgCl2 is demonstrated as a non-nucleophilic and cheap Mg2+ source in combining with Al Lewis acids (AlCl3, AlPh3 and AlEtCl2) to formulate a series of Mg2+ electrolytes characteristic of high oxidation stability (up to 3.4 V vs Mg), sulfur compatibility and electrochemical reversibility (up to 100% coulombic efficiency). Three electrolyte systems (MgCl2-AlCl3, MgCl2-AlPh3, and MgCl2-AlEtCl2) were prepared free of purification and fully characterized by multinuclear NMR (27Al{1H} and 25Mg{1H}) spectroscopies, single crystal X-ray diffraction, and electrochemical analysis. The reaction mechanism of MgCl2 and the Al Lewis acids in THF is discussed to highlight the formation of the electrochemically active [(µ-Cl)3Mg2(THF)6]+ monocation in these electrolytes. We are grateful for the financial support from the Pacific Northwest National Laboratory (PNNL)-Laboratory Directed Research and Development (LDRD) program for developing magnesium battery technology. The XRD and SEM data were collected at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC05-76RL01830.

  7. Interstellar fossil Mg-26 and its possible relationship to excess meteoritic Mg-26

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1986-01-01

    A plausible scenario is advanced for explainig a linear correlation found in some solar system solids between their Mg-26/Mg-24 isotopic ratios and their Al/Mg elemental abundance ratios. This scenario involves three stages: (1) the mechanical aggregation of an average ensemble of Al-bearing dust particles that is postulated to be modestly enriched in the Al/Mg abundance ratio because the aggregated particles themselves are; (2) the extraction, perhaps but not necessarily by hot distillation, of almost all Mg, leaving an aggregate with a large Al/Mg ratio and a large Mg-26 excess; and (3) the uptake of normal ambient Mg by the resulting hot Al-rich solid as it cools in Mg-rich vapor. A linear correlation in solids between their Mg-26/Mg-24 isotopic ratio and their aluminum enrichment may be a fossil correlation inherited from interstellar dust.

  8. A SIMS Calibration of Benthic Foraminiferal Mg/Ca

    NASA Astrophysics Data System (ADS)

    Curry, W. B.; Marchitto, T. M.

    2005-12-01

    Using a suite of multi-core tops, we have produced a calibration of C. pachyderma Mg/Ca versus temperature spanning the temperature range of 5 to 18 °C. The core tops are located along the Florida margin south of Dry Tortugas (KNR166), along the Bahamas west of Andros Island and Great Bahama Bank (KNR166), and along the southeastern margin of Brazil (KNR159). Water depths range from about 200 to 800 m for the Florida Straits multi-cores and 400 to 800 m for the Brazil margin multi-cores. Five of the KNR166 core tops contain post-1950 bomb radiocarbon with Fmodern> 1; several others have bomb radiocarbon mixed in with pre-bomb sediments to give ages less than 0 BP. Core top ages are generally older for the KNR159 multi-cores, but each is from a location with a well documented Holocene section. Sedimentation rates for KNR166 multi-cores vary from 10 to 100 cm kyr-1; for KNR159 multi-cores, sedimentation rates vary from 5 to 10 cm kyr-1. Elemental ratios were determined by Secondary Ionization Mass Spectrometry (SIMS) using a Cameca IMS 3f ion probe calibrated for Mg/Ca and Sr/Ca using two standards which were independently measured using ICP-MS. Using SIMS, the external precision of the calibration standards averages ±3.5% (1σ RSD) for Mg/Ca and ± 1.7% (1σ RSD) for Sr/Ca. SIMS elemental measurements were performed on one to three individual C. pachyderma tests in each core top; more than 30 tests have been measured from 18 multi-core tops. Mg/Ca variability within C. pachyderma tests averages ± 20% (1σ RSD) with a small but significant trend toward higher variability at higher Mg/Ca. Higher Mg/Ca is observed in warmer waters, but the Mg/Ca values are generally lower (at comparable warm temperatures) than observed in previous calibration studies. At temperatures below 8 °C, C. pachyderma Mg/Ca values are less than 2 mmole/mole. At temperatures warmer than 15 °C, C. pachyderma Mg/Ca values exceed 3 mmole/mole. The slope of Mg/Ca versus temperature (~0.14 mmole

  9. Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Finger, M. H.

    1990-01-01

    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit.

  10. Snowy Range Wilderness, Wyoming

    SciTech Connect

    Houston, R.S.; Bigsby, P.R.

    1984-01-01

    A mineral survey of the Snowy Range Wilderness was undertaken by the USGS and USBM in 1976-1978 and was followed up with more detailed geologic and geochemical surveys, culminating in diamond drilling of one hole in the Snowy Range Wilderness. No mineral deposits were identified in the Snowy Range Wilderness, but inasmuch as low-grade uranium and associated gold resources were identified in rocks similar to those of the northern Snowy Range Wilderness in an area about 5 mi northeast of the wilderness boundary, we conclude that the northern half of the wilderness has a probable-resource potential for uranium and gold. Closely spaced drilling would be required to completely evaluate this mineral potential. The geologic terrane precludes the occurrence of fossil fuels.

  11. Full range resistive thermometers

    NASA Astrophysics Data System (ADS)

    Olivieri, E.; Rotter, M.; De Combarieu, M.; Forget, P.; Marrache-Kikuchi, C.; Pari, P.

    2015-12-01

    Resistive thermometers are widely used in low temperature physics, thanks to portability, simplicity of operation and reduced size. The possibility to precisely follow the temperature from room temperature down to the mK region is of major interest for numerous applications, although no single thermometer can nowadays cover this entire temperature range. In this article we report on a method to realize a full range thermometer, capable to measure, by itself, temperatures in the whole above-cited temperature range, with constant sensitivity and sufficient precision for the typical cryogenic applications. We present here the first results for three different full range thermometer prototypes. A detailed description of the set-up used for measurements and characterization is also reported.

  12. Mu-2 ranging

    NASA Technical Reports Server (NTRS)

    Martin, W. L.; Zygielbaum, A. I.

    1977-01-01

    The Mu-II Dual-Channel Sequential Ranging System designed as a model for future Deep Space Network ranging equipment is described. A list of design objectives is followed by a theoretical explanation of the digital demodulation techniques first employed in this machine. Hardware and software implementation are discussed, together with the details relating to the construction of the device. Two appendixes are included relating to the programming and operation of this equipment to yield the maximum scientific data.

  13. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained "solubility product" of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  14. Analysis of the Deformation Behavior of Mg-RE and Mg-Li Alloys using In-situ Energy-dispersive Synchrotron X-ray Diffraction

    SciTech Connect

    Lentz, Martin; Clausen, Bjorn; Reimers, Walter

    2012-08-06

    EPSC-Model is able to predict the complex deformation behavior of Mg-RE and Mg-Li alloys within a wide range of strains. Modification of the texture by RE-elements and the addition of Li increases the activity of slip systems at low strains - Reorientation due to twinning is stretch over a larger range of plastic deformation. Deformation at high strains is realized mainly by the basal and the -pyramidal slip systems.

  15. EBSD analysis of MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Inoue, K.; Muralidhar, M.; Berger, K.; Noudem, J.

    2016-04-01

    The grain orientation, the texture and the grain boundary misorientations are important parameters for the understanding of the magnetic properties of the bulk MgB2 samples intended for super-magnet applications. Such data can be provided by electron backscatter diffraction (EBSD) analysis. However, as the grain size (GS) of the MgB2 bulks is preferably in the 100-200 nm range, the common EBSD technique working in reflection operates properly only on highly dense samples. In order to achieve a reasonably good Kikuchi pattern quality on all samples, we apply here the newly developed transmission EBSD (t-EBSD) technique to several bulk MgB2 samples. This method requires the preparation of TEM slices by means of focused ion-beam milling, which are then analyzed within the SEM, operating with a specific sample holder. We present several EBSD mappings of samples prepared with different techniques and at various reaction temperatures.

  16. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates

    NASA Astrophysics Data System (ADS)

    Huang, Kang-Jun; Shen, Bing; Lang, Xian-Guo; Tang, Wen-Bo; Peng, Yang; Ke, Shan; Kaufman, Alan J.; Ma, Hao-Ran; Li, Fang-Bing

    2015-09-01

    Available Mg isotope data indicate that dolostones of different ages have overlapping range of Mg isotopic composition (δ26Mg) and there is no systematic difference among different types of dolomites. To further explore the Mg isotopic systematics of dolomite formation, we measured Mg isotopic compositions of Mesoproterozoic dolostones from the Wumishan Formation in North China Block, because dolomite formation in Mesoproterozoic might have been fundamentally different from the younger counterparts. Based on petrographic observations, three texturally-different dolomite phases (dolomicrite, subhedral dolomite and anhedral dolomite) are recognized in the Wumishan dolostones. Nevertheless, these three types of dolomites have similar δ26Mg values, ranging from -1.35‰ to -1.72‰, which are indistinguishable from Neoproterozoic and Phanerozoic dolostones. To explain δ26Mg values of dolostones, we simulate the Mg isotopic system during dolomite formation by applying the one-dimensional Diffusion-Advection-Reaction (1D-DAR) model, assuming that the contemporaneous seawater is the Mg source of dolostone. The 1D-DAR modeling results indicate that the degree of dolomitization is controlled by sedimentation rate, seawater Mg concentration, temperature, and reaction rate of dolomite formation, whereas Mg isotopic composition of dolostone is not only dependent on these factors, but also affected by δ26Mg of seawater and isotope fractionation during dolomite formation. Moreover, the 1D-DAR model predicts that dolomite formation within sediments has limited range of variation in δ26Mg with respect to limestones. Furthermore, the modeling results demonstrate that dolostone is always isotopically heavier than Ca-carbonate precipitated from seawater, explaining the systematic isotopic difference between dolostones and limestones. Finally, we can infer from the 1D-DAR model that early-formed dolostone at shallower depth of sediments is always isotopically lighter than that

  17. Effect of organic ligands on Mg partitioning and Mg isotope fractionation during low-temperature precipitation of calcite

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Immenhauser, Adrian; Buhl, Dieter; Purgstaller, Bettina; Baldermann, Andre; Dietzel, Martin

    2016-04-01

    Calcite growth experiments have been performed at 25 oC and 1 bar pCO2 in the presence of aqueous Mg and six organic ligands in the concentration range from 10‑5 to 10‑3 M. These experiments were performed in order to quantify the effect of distinct organic ligands on the Mg partitioning and Mg stable isotope fractionation during its incorporation in calcite at similar growth rates normalized to total surface area. The organic ligands used in this study comprise of (i) acetate acid, (ii) citrate, (iii) glutamate, (iv) salicylate, (v) glycine and (vi) ethylenediaminetetraacetic acid (EDTA), containing carboxyl- and amino-groups. These fuctional groups are required for bacterial activity and growth as well as related to biotic and abiotic mineralization processes occurring in sedimentary and earliest diagenetic aquatic environments (e.g. soil, cave, lacustrine, marine). The results obtained in this study indicate that the presence of organic ligands promotes an increase in the partition coefficient of Mg in calcite (DMg = (Mg/Ca)calcite (Mg/Ca)fluid). This behaviour can be explained by the temporal formation of aqueous Mg-ligand complexes that are subsequently adsorbed on the calcite surfaces and thereby reducing the active growth sites of calcite. The increase of DMg values as a function of the supersaturation degree of calcite in the fluid phase can be described by the linear equation LogDMg =0.3694 (±0.0329)×SIcalcite - 1.9066 (±0.0147); R2=0.92 In contrast, the presence of organic ligands, with exception of citrate, does not significantly affect the Mg isotope fractionation factor between calcite and reactive fluid (Δ26Mgcalcite‑fluid = -2.5 ±0.1). Citrate likely exhibits larger fractionation between the Mg-ligand complexes and free aqueous Mg2+, compared to the other organic ligands studied in this work, as evidenced by the smaller Δ26Mgcalcite‑fluid values. These results indicate that in Earth's surface calcite precipitating environments that are

  18. The potential energy curves of HeBe, HeMg and BeMg

    NASA Astrophysics Data System (ADS)

    Chiles, Richard A.; Dykstra, Clifford E.

    1982-01-01

    Correlated calculations have been performed on the potential curves of mixed dimers of He, Be and Mg He interacts weakly with all partners. BeMg appears to be intermediate in well-depth to Be 2 and Mg 2 and has electronic structure features similar to Be 2 but different from Mg 2.

  19. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  20. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  1. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  2. Mg2+ dependence of guanine nucleotide binding to tubulin.

    PubMed

    Correia, J J; Baty, L T; Williams, R C

    1987-12-25

    The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1. PMID:2826416

  3. Nanoscale order in ZnSe:(Mg, O)

    SciTech Connect

    Elyukhin, Vyacheslav A.

    2014-02-21

    Self-assembling of 1O4Mg identical tetrahedral clusters resulting in the nanoscale order in ZnSe:(Mg, O) is presented. Co-doping transforms ZnSe into Mg{sub x}Zn{sub 1−x}O{sub y}Se{sub 1−y} alloy of MgO, MgSe, ZnO and ZnSe. The decrease of a sum of the enthalpies of the constituent compounds and diminution of the strain energy are the causes of this phenomenon. The self-assembling conditions are obtained from the free energy minimum when magnesium and oxygen are in the dilute and ultra dilute limits, correspondingly. The occurrence of 1O4Mg clusters and completion of self-assembling when all oxygen atoms are in clusters are results of the continuous phase transitions. The self-assembling occurrence temperature does not depend on the oxygen content and it is a function of magnesium concentration. Mg{sub x}Zn{sub 1−x}O{sub y}Se{sub 1−y} with all oxygen atoms in clusters can be obtained in temperature ranges from T = 206 °C (x = 0.001, y = 1×10{sup −4}) to T = 456 °C (x = 0.01, y = 1×10{sup −4}) and from T = 237 °C (x = 0.001, y = 1×10{sup −6}) to T = 462 °C (x = 0.01, y = 1×10{sup −6})

  4. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  5. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  6. Hot Tearing Susceptibility of Mg-Ca Binary Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jiangfeng; Wang, Zhi; Huang, Yuanding; Srinivasan, Amirthalingam; Beckmann, Felix; Kainer, Karl Ulrich; Hort, Norbert

    2015-12-01

    Hot tearing is known as one of the most critical solidification defects commonly encountered during casting practice. As most Mg alloys are initially prepared by casting, ingots must have superior quality with no casting defects for the further processing. Due to the extensive potential biodegradable applications of binary Mg-Ca alloys, it is of great importance to investigate their hot tearing behavior. In the present study, the influence of Ca content (0.1, 0.2, 0.5, 1.0, and 2.0 wt pct) on hot tearing susceptibility (HTS) of Mg-Ca binary alloys was investigated using a constrained rod casting apparatus equipped with a load cell and data acquisition system. Tear volumes were quantified with 3D X-ray tomography. Results showed that the influence of Ca content on HTS followed a "Λ" shape: the HTS increased with increase in Ca content, reached a maximum at 0.5 to 1 wt pct Ca, and then decreased with further increasing the Ca content to 2.0 wt pct. The wide solidification range and reasonably high volume of intermetallic in the Mg-0.5 wt pct Ca and Mg-1 wt pct Ca alloys resulted in high HTS. Microstructure analysis suggested that the hot tear initiated at grain boundaries and propagated along them through thin film rupture or across the eutectic.

  7. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials. PMID:23771512

  8. Hydrogen storage systems from waste Mg alloys

    NASA Astrophysics Data System (ADS)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  9. On the Incidence and Kinematics of Strong Mg II Absorbers

    NASA Astrophysics Data System (ADS)

    Prochter, Gabriel E.; Prochaska, Jason X.; Burles, Scott M.

    2006-03-01

    We present the results of two complementary investigations into the nature of strong (rest equivalent width, Wr>1.0 Å) Mg II absorption systems at high redshift. The first line of questioning examines the complete Sloan Digital Sky Survey Data Release 3 set of quasar spectra to determine the evolution of the incidence of strong Mg II absorption. This search resulted in 7421 confirmed Mg II systems of Wr>1.0 Å, yielding a >95% complete statistical sample of 4835 absorbers (systems detected in S/N>7 spectral regions) spanning a redshift range 0.35Mg(X), is characterized by a roughly constant value at z>0.8, indicating that the product of the number density and gas cross section of halos hosting strong Mg II is unevolving at these redshifts. In contrast, one observes a decline in lMg(X) at z<0.8, which we interpret as a decrease in the gas cross section to strong Mg II absorption and therefore a decline in the physical processes relevant to strong Mg II absorption. Perhaps uncoincidentally, this evolution roughly tracks the global evolution of the star formation rate density. Dividing the systems in Wr subsamples, the lMg(X) curves show similar shape with lower normalization at higher Wr values and a more pronounced decrease in lMg(X) at z<0.8 for larger Wr systems. We also present the results of a search for strong Mg II absorption in a set of 91 high-resolution quasar spectra collected on the ESI and HIRES spectrographs. These data allow us to investigate the kinematics of such systems at 0.81.0 Å were discovered. These systems are characterized by the presence of numerous components spread over an average velocity width of Δv~200 km s-1. Also, absorption due to more highly ionized species (e.g., Al III, C IV, Si IV) tends to display kinematic profiles similar to the corresponding Mg II and Fe II absorption. We consider all of these

  10. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  11. STDN ranging equipment

    NASA Technical Reports Server (NTRS)

    Jones, C. E.

    1975-01-01

    Final results of the Spaceflight Tracking and Data Network (STDN) Ranging Equipment program are summarized. Basic design concepts and final design approaches are described. Theoretical analyses which define requirements and support the design approaches are presented. Design verification criteria are delineated and verification test results are specified.

  12. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  13. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  14. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  15. Fact Sheet: Range Complex

    NASA Technical Reports Server (NTRS)

    Cornelson, C.; Fretter, E.

    2004-01-01

    NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.

  16. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  17. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  18. Coherent interface structures and intergrain Josephson coupling in dense MgO/Mg2Si/MgB2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ueno, Katsuya; Nagashima, Yukihito; Seto, Yusuke; Matsumoto, Megumi; Sakurai, Takahiro; Ohta, Hitoshi; Takahashi, Kazuyuki; Uchino, Takashi

    2016-07-01

    Many efforts are under way to control the structure of heterointerfaces in nanostructured composite materials for designing functionality and engineering application. However, the fabrication of high-quality heterointerfaces is challenging because the crystal/crystal interface is usually the most defective part of the nanocomposite materials. In this work, we show that fully dense insulator (MgO)/semiconductor(Mg2Si)/superconductor(MgB2) nanocomposites with atomically smooth and continuous interfaces, including epitaxial-like MgO/Mg2Si interfaces, are obtained by solid phase reaction between metallic magnesium and a borosilicate glass. The resulting nanocomposites exhibit a semiconductor-superconducting transition at 36 K owing to the MgB2 nanograins surrounded by the MgO/Mg2Si matrix. This transition is followed by the intergrain phase-lock transition at ˜24 K due to the construction of Josephson-coupled network, eventually leading to a near-zero resistance state at 17 K. The method not only provides a simple process to fabricate dense nanocomposites with high-quality interfaces, but also enables to investigate the electric and magnetic properties of embedded superconducting nanograins with good intergrain coupling.

  19. Space-Based Range

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  20. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  1. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  2. Front Range Report, Abstracts

    NASA Astrophysics Data System (ADS)

    Spence, William

    The second regional conference of the Front Range Branch, AGU, was attended by more than 80 professionals and some 20 outstanding high school students. The conference included 2 days of interdisciplinary talks, and lots of discussion, that primarily were keyed to geophysical studies of Colorado, Wyoming, and New Mexico. Other talks reported on nonregional, and sometimes global, studies being done by geophypsicists of the Front Range region.Topics included tectonics of the Front Range and the Colorado Plateau, pollution of the Arkansas and Mississippi rivers, and a supreme polluting event that caused the late-Cretaceous extinctions. Other notable talks were on toxic cleanup, microburst (wind shear) detection at U.S. airports, and other meteorological studies. Several talks treated the audience to the excitement of new work and surprise discoveries. The meeting was multimedia, including the playing of two videos through a projection TV and the playing of a fascinating tape between an airport control tower and incoming pilots during a severe microburst event.

  3. Organic sonobuoy ranging

    NASA Astrophysics Data System (ADS)

    Felgate, Nick

    2002-11-01

    It is important that military vessels periodically check their passive signatures for vunerabilities. Traditionally, this is undertaken on a fixed range (e.g., AUTEC, BUTEC) with low noise conditions. However, for operational and cost reasons it is desirable to be able to undertake such measurements while the asset is operating in other areas using expendable buoys deployed by the vessel itself. As well as the wet-end hardware for such organic sonobuoy ranging systems (e.g., calibrated sonobuoys, calibrated data uplink channels), careful consideration is needed of the signal-processing required in the harsher environmental conditions of the open ocean. In particular, it is noted that the open ocean is usually much noisier, and the propagation conditions more variable. To overcome signal-to-noise problems, techniques such as Doppler-correction, zero-padding/peak-picking, and noise estimation/correction techniques have been developed to provide accurate and unbiased estimates of received levels. To estimate propagation loss for source level estimation, a model of multipath effects has been included with the ability for analysts to compare predicted and observed received levels against time/range and adjust modeling parameters (e.g., surface loss, bottom loss, source depth) to improve the fit.

  4. The puzzle of {sup 32}Mg

    SciTech Connect

    Fortune, H. T.

    2011-08-15

    An analysis of results of the {sup 30}Mg(t,p) {sup 32}Mg reaction demonstrates that the ground state is the normal state and the excited 0{sup +} state is the intruder, contrary to popular belief. Additional experiments are suggested.

  5. The role of Mg in the crystallization of monohydrocalcite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Bots, Pieter; Roncal-Herrero, Teresa; Benning, Liane G.

    2014-02-01

    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg2+aq/Ca2+aq≥0.17<65. Although found in modern sedimentary deposits and as a product of biomineralization, there is a lack of information about its formation mechanisms and about the role of Mg during its crystallization. In this work we have quantitatively assessed the mechanism of crystallization of monohydrocalcite through in situ synchrotron-based small and wide angle X-ray scattering (SAXS/WAXS) and off-line spectroscopic, microscopic and wet chemical analyses. Monohydrocalcite crystallizes via a 4-stage process beginning with highly supersaturated solutions from which a Mg-bearing, amorphous calcium carbonate (ACC) precursor precipitates. This precursor crystallizes to monohydrocalcite via a nucleation-controlled reaction in stage two, while in stage three it is further aged through Ostwald-ripening at a rate of 1.8 ± 0.1 nm/h1/2. In stage four, a secondary Ostwald ripening process (66.3 ± 4.3 nm/h1/2) coincides with the release of Mg from the monohydrocalcite structure and the concomitant formation of minor hydromagnesite. Our data reveal that monohydrocalcite can accommodate significant amounts of Mg in its structure (χMgCO3 = 0.26) and that its Mg content and dehydration temperature are directly proportional to the saturation index for monohydrocalcite (SIMHC) immediately after mixing the stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SIMHC = 3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SIMHC = 2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be

  6. "Quasi-Antiferromagnetic" Ordering in the R-Mg-Zn Icosahedral Alloys? The Case of Tb-Mg-Zn

    NASA Astrophysics Data System (ADS)

    Goldman, A. I.; Islam, Z.; Fisher, I. R.; Panchula, A. F.; Cheon, K. O.; Canfield, P. C.; Stassis, C.; Zarestky, J.

    1998-03-01

    Recently, it was reported that long-range magnetic ordering was observed in several of the new rare earth containing icosahedral alloys, R-Mg-Zn (R=Tb, Dy, Ho, Er) (B. Charrier et al., Phys. Rev. Lett. 78, 4637, 1997.). At low temperatures, the antiferromagnetic Bragg peaks, while weak, could be indexed to the icosahedral parent phase with good accuracy. In addition, significant magnetic diffuse scattering, indicating only short-range magnetic order, was also observed. However, bulk magnetization measurements have evidenced only a spin-glass transition at low temperatures, and no antiferromagnetic transition. We will report on new neutron scattering measurements of the magnetic order in Tb-Mg-Zn powder samples produced from crushed single-crystals, used to improve sample purity. Our results for these samples show only the diffuse component of the magnetic scattering at low temperature, and no antiferromagnetic Bragg peaks. We will discuss several possibilities for the discrepencies between the two experiments.

  7. Twinning-mediated formability in Mg alloys

    PubMed Central

    Suh, Byeong-Chan; Kim, Jae H.; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2016-01-01

    Mg alloys are promising candidates for automotive applications due to their low density and high specific strength. However, their widespread applications have not been realized mainly because of poor formability at room temperature, arising from limited number of active deformation systems and strong basal texture. It has been recently shown that Mg-Zn-Ca alloys have excellent stretch formability, which has been ascribed to their weak basal texture. However, the distribution of basal poles is orthotropic, which might result in anisotropy during deformation and have adverse effect on formability. Here, we show that tension twinning is mainly responsible for enhanced formability of Mg-Zn-Ca alloys. We found that tension twinning is quite active during both uniaxial deformation and biaxial deformation of Mg-Zn-Ca alloy even under the stress conditions unfavourable for the formation of tensile twins. Our results provide new insights into the development of Mg alloys having high formability. PMID:26926655

  8. Twinning-mediated formability in Mg alloys

    NASA Astrophysics Data System (ADS)

    Suh, Byeong-Chan; Kim, Jae H.; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2016-03-01

    Mg alloys are promising candidates for automotive applications due to their low density and high specific strength. However, their widespread applications have not been realized mainly because of poor formability at room temperature, arising from limited number of active deformation systems and strong basal texture. It has been recently shown that Mg-Zn-Ca alloys have excellent stretch formability, which has been ascribed to their weak basal texture. However, the distribution of basal poles is orthotropic, which might result in anisotropy during deformation and have adverse effect on formability. Here, we show that tension twinning is mainly responsible for enhanced formability of Mg-Zn-Ca alloys. We found that tension twinning is quite active during both uniaxial deformation and biaxial deformation of Mg-Zn-Ca alloy even under the stress conditions unfavourable for the formation of tensile twins. Our results provide new insights into the development of Mg alloys having high formability.

  9. Narrowband filters for the FUV range

    NASA Astrophysics Data System (ADS)

    Rodríguez-de Marcos, Luis; Larruquert, Juan I.; Méndez, José A.; Aznárez, José A.; Fu, Liping

    2015-05-01

    We address the design, fabrication, and characterization of transmittance filters for the Ionosphere Photometer instrument (IP), developed by the Center for Space Science and Applied Research (CSSAR). IP, a payload of Feng-Yun 3D meteorological satellite, to be launched on 2016, is aimed to perform photometry measurements of Earth's ionosphere by the analysis of the OI (135.6 nm) spectral line and N2 Lyman-Birge-Hopfield (LBH, 140-180 nm) band, both of them in the far ultraviolet (FUV) range. The most convenient procedure to isolate a spectral band is the use of tunable transmittance filters. In many applications the intensity of the ultraviolet, visible and infrared background is higher than the intensity of the target FUV lines; therefore one of the most important requirements for transmittance filters is to reject (by reflecting and/or by absorbing) as efficiently as possible the visible and close ranges. In the FUV range, (Al/MgF2)n transmittance filters are the most common, and they are suitable to reject the visible and adjacent ranges. These materials present unique properties in this range: MgF2 is transparent down to ˜115 nm and Al has a very low refractive index in the FUV that contrasts well with MgF2. Narrowband tunable filters with very low transmittance at long wavelengths are achievable. The main data on the preparation and characterization of IP filters by Grupo de Óptica de Láminas Delgadas (GOLD) is detailed. In this proceeding we present (Al/MgF2)3 filters peaked at either 135.6 nm or at the center of the LBH band (˜160 nm). Filters were characterized in the 125-800 nm range (143-800 nm range for the LBH filter). After some storage in a desiccator, both coatings kept a transmittance of ~0.14 at their target wavelengths, with visible-to-peak transmittance ratios of 1.2·10-4 (OI filter) and 1.3·10-4 (LBH filter). One filter tuned at each target wavelength was exposed to ~300 Gy 60Co gamma dose, with no significant transmittance change.

  10. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  11. Role of MgO impurity on the superconducting properties of MgB2

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra Kumar; Tiwari, Brajesh; Jha, Rajveer; Kishan, H.; Awana, V. P. S.

    2014-10-01

    We address the effect of MgO impurity on the superconducting properties of MgB2. The synthesis of MgB2 is very crucial because of sensitivity of Mg to oxidation which may lead to MgO as a secondary phase. Rietveld refinement was performed to determine the quantitative volume fraction of MgO in the samples synthesized by two different techniques. Both the samples were subjected to magnetization measurements under dc and a.c. applied magnetic fields and the observed results were compared as a function of temperature. Paramagnetic Meissner effect has been observed in a sample of MgB2 having more amount of MgO (with Tc = 37.1 K) whereas the pure sample MgB2 having minor quantity of MgO shows diamagnetic Meissner effect with Tc = 38.8 K. M-H measurements at 10 K reveal a slight difference in irreversibility field which is due to MgO impurity along with wide transition observed from ac magnetic susceptibility measurements. The magnetotransport measurements ρ(T) using ρN = 90%, 50% and 10% criterion on pure sample of MgB2 has been used to determine the upper critical field whereas the sample having large quantity of MgO does not allow these measurements due to its high resistance.

  12. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  13. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  14. Investigating the behaviour of Mg isotopes during the formation of clay minerals

    NASA Astrophysics Data System (ADS)

    Wimpenny, Joshua; Colla, Christopher A.; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2014-03-01

    We present elemental and isotopic data detailing how the Mg isotope system behaves in natural and experimentally synthesized clay minerals. We show that the bulk Mg isotopic composition (δ26Mg) of a set of natural illite, montmorillonite and kaolinite spans a 2‰ range, and that their isotopic composition depends strongly on a balance between the relative proportions of structural and exchangeable Mg. After acid leaching, these natural clays become relatively enriched in isotopically heavy Mg by between 0.2‰ and 1.6‰. Results of exchange experiments indicate that the Mg that has adsorbed to interlayer spaces and surface charged sites is relatively enriched in isotopically light Mg compared to the residual clay. The isotopic composition of this exchangeable Mg (-1.49‰ to -2.03‰) is characteristic of the isotopic composition of Mg found in many natural waters. Further experiments with an isotopically characterized MgCl2 solution shows that the clay minerals adsorb this exchangeable Mg with little or no isotopic fractionation, although we cannot discount the possibility that the uptake of exchangeable Mg does so with a slight preference for 24Mg. To characterize the behaviour of Mg isotopes during clay mineral formation we synthesized brucite (Mg(OH)2), which we consider to be a good analogue for the incorporation of Mg into the octahedral sheet of Mg-rich clay minerals or into the brucitic layer of clays such as chlorite. In our experiment the brucite mineral becomes enriched in the heavy isotopes of Mg while the corresponding solution is always relatively enriched in isotopically light Mg. The system reaches a steady state after 10 days with a final fractionation factor (αsolid-solution) of 1.0005 at near-neutral pH. This result is consistent with the general consensus that secondary clay minerals preferentially take up isotopically heavy Mg during their formation. However our results also show that exchangeable Mg is an important component within bulk

  15. Monocular visual ranging

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  16. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  17. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  18. MiniAERCam Ranging

    NASA Technical Reports Server (NTRS)

    Talley, Tom

    2003-01-01

    Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.

  19. Synthesis and characterization of excess magnesium MgB 2 superconductor under inert carbon environment

    NASA Astrophysics Data System (ADS)

    Sinha, B. B.; Kadam, M. B.; Mudgel, M.; Awana, V. P. S.; Kishan, Hari; Pawar, S. H.

    2010-01-01

    The structural, transport and magnetic properties of MgB 2 superconductor heavily blended with Mg is studied. The samples are synthesized with a new approach in both, pressed carbon environment and in flowing argon. The excess magnesium used is observed to play dual role: one being the prevention of Mg losses during the synthesis process and hence maintaining the stoichiometry of MgB 2 phase, and second being the formation of Mg milieu probably all around the MgB 2 grains to give a dense structure. Excess Mg also improves the grain connectivity by going into the pores and there by minimizing the insulating junctions. The residual resistivity of the sample is observed to decrease from 57.02 μΩ cm to 10.042 μΩ cm as it is progressively filled with superconductor-normal-superconductor (SNS) type junctions amongst the grains by the virtue of increased magnesium content. The synthesized samples devoid of porosity show the superconducting transition, T c in the range of 39-34 K as of clean MgB 2 samples, though overloaded with Mg. The excess Mg resulted in enhanced critical current density, J c from 6.8 × 10 3 A cm -2 to 5.9 × 10 4 A cm -2 at 20 K and 10 kOe, with reasonable decrease in the superconducting transition. Thus our samples being overloaded with Mg impart mechanical strength and competitive superconducting properties, which forms a part of interest.

  20. Reactive wetting of amorphous silica by molten Al-Mg alloys and their interfacial structures

    NASA Astrophysics Data System (ADS)

    Shi, Laixin; Shen, Ping; Zhang, Dan; Jiang, Qichuan

    2016-07-01

    The reactive wetting of amorphous silica substrates by molten Al-Mg alloys over a wide composition range was studied using a dispensed sessile drop method in a flowing Ar atmosphere. The effects of the nominal Mg concentration and temperature on the wetting and interfacial microstructures were discussed. The initial contact angle for pure Al on the SiO2 surface was 115° while that for pure Mg was 35° at 1073 K. For the Al-Mg alloy drop, it decreased with increasing nominal Mg concentration. The reaction zone was characterized by layered structures, whose formation was primarily controlled by the variation in the alloy concentration due to the evaporation of Mg and the interfacial reaction from the viewpoint of thermodynamics as well as by the penetration or diffusion of Mg, Al and Si from the viewpoint of kinetics. In addition, the effects of the reaction and the evaporation of Mg on the movement of the triple line were examined. The spreading of the Al-Mg alloy on the SiO2 surface was mainly attributed to the formation of Mg2Si at the interface and the recession of the triple line to the diminishing Mg concentration in the alloy.

  1. Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process of bivalves

    NASA Astrophysics Data System (ADS)

    Planchon, Frédéric; Poulain, Céline; Langlet, Denis; Paulet, Yves-Marie; André, Luc

    2013-11-01

    We estimate the magnesium stable isotopic composition (δ26Mg) of the major compartments involved in the biomineralisation process of euryhaline bivalve, the manila clam Ruditapes philippinarum. Our aim is to identify the fractionation processes associated with Mg uptake and its cycling/transport in the bivalve organism, in order to better assess the controlling factors of the Mg isotopic records in bivalve shells. δ26Mg were determined in seawater, in hemolymph, extrapallial fluid (EPF), soft tissues and aragonitic shell of adult clams collected along the Auray River estuary (Gulf of Morbihan, France) at two sites showing contrasted salinity regimes. The large overall δ26Mg variations (4.16‰) demonstrate that significant mass-dependent Mg isotopic fractionations occur during Mg transfer from seawater to the aragonitic shell. Soft tissues span a range of fractionation factors relative to seawater (Δ26Mgsoft tissue-seawater) of 0.42 ± 0.12‰ to 0.76 ± 0.12‰, and show evidence for biological isotopic fractionation of Mg. Hemolymph and EPF are on average isotopically close to seawater (Δ26Mghemolymph-seawater = -0.20 ± 0.27‰; 2 sd; n = 5 and Δ26MgEPF-seawater = -0.23 ± 0.25‰; 2 sd; n = 5) indicating (1) a predominant seawater origin for Mg in the intercellular medium and (2) a relatively passive transfer route through the bivalve organism into the calcifying fluid. The lightest isotopic composition is found in shell, with δ26Mg ranging from -1.89 ± 0.07‰ to -4.22 ± 0.06‰. This range is the largest in the dataset and is proposed to result from a combination of abiotic and biologically-driven fractionation processes. Abiotic control includes fractionation during precipitation of aragonite and accounts for Δ26Mgaragonite-seawater ≈ 1000 ln αaragonite-seawater = -1.13 ± 0.28‰ at 20 °C based on literature data. Deviations from inorganic precipitate (expressed as Δ26MgPhysiol) appear particularly variable in the clam shell, ranging from 0

  2. Comparative studies on radioluminescent and thermoluminescent spectra of LiF:Mg,Cu,P and LiF:Mg,Cu,Si.

    PubMed

    Tang, K; Fan, H; Cui, H; Zhu, H; Liu, Z

    2016-03-01

    The influence of various annealing treatments on radioluminescent (RL) and thermoluminescent (TL) spectra of LiF:Mg,Cu,Si and LiF:Mg,Cu,P was investigated. The TL and RL emission bands for LiF:Mg,Cu,P are not the same; however, the emission band peaking at ∼383 nm is predominant in the TL and RL emission for LiF:Mg,Cu,Si. With the increase in annealing temperatures in the range of 240-300°C, for LiF:Mg,Cu,P, the intensity of TL decreases much more rapidly than that of RL. For LiF:Mg,Cu,Si, the area ratios of the two bands of RL and TL remain constant within experimental errors. It suggests that there is a significant decrease in the concentration of recombination centres in LiF:Mg,Cu,P after the annealing, in addition to the decrease in trapping centres, the recombination centres for main TL emission and RL emission in LiF:Mg,Cu,Si are the same, and the recombination centres for TL emission and RL emission in LiF:Mg,Cu,P are not the same. P is a more effective dopant than Si. PMID:26264711

  3. Valsartan 160 mg/Amlodipine 5 mg Combination Therapy versus Amlodipine 10 mg in Hypertensive Patients with Inadequate Response to Amlodipine 5 mg Monotherapy

    PubMed Central

    Sung, Jidong; Jeong, Jin-Ok; Kwon, Sung Uk; Won, Kyung Heon; Kim, Byung Jin; Cho, Byung Ryul; Kim, Myeong-Kon; Lee, Sahng; Kim, Hak Jin; Lim, Seong-Hoon; Park, Seung Woo

    2016-01-01

    Background and Objectives When monotherapy is inadequate for blood pressure control, the next step is either to continue monotherapy in increased doses or to add another antihypertensive agent. However, direct comparison of double-dose monotherapy versus combination therapy has rarely been done. The objective of this study is to compare 10 mg of amlodipine with an amlodipine/valsartan 5/160 mg combination in patients whose blood pressure control is inadequate with amlodipine 5 mg. Subjects and Methods This study was conducted as a multicenter, open-label, randomized controlled trial. Men and women aged 20-80 who were diagnosed as having hypertension, who had been on amlodipine 5 mg monotherapy for at least 4 weeks, and whose daytime mean systolic blood pressure (SBP) ≥135 mmHg or diastolic blood pressure (DBP) ≥85 mmHg on 24-hour ambulatory blood pressure monitoring (ABPM) were randomized to amlodipine (A) 10 mg or amlodipine/valsartan (AV) 5/160 mg group. Follow-up 24-hour ABPM was done at 8 weeks after randomization. Results Baseline clinical characteristics did not differ between the 2 groups. Ambulatory blood pressure reduction was significantly greater in the AV group compared with the A group (daytime mean SBP change: -14±11 vs. -9±9 mmHg, p<0.001, 24-hour mean SBP change: -13±10 vs. -8±8 mmHg, p<0.0001). Drug-related adverse events also did not differ significantly (A:AV, 6.5 vs. 4.5 %, p=0.56). Conclusion Amlodipine/valsartan 5/160 mg combination was more efficacious than amlodipine 10 mg in hypertensive patients in whom monotherapy of amlodipine 5 mg had failed. PMID:27014353

  4. Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure

    PubMed Central

    Leipply, Desirae; Draper, David E.

    2012-01-01

    A folding strategy adopted by some RNAs is to chelate cations in pockets or cavities, where the ions neutralize charge from solvent-inaccessible phosphate. Although such buried Mg2+-RNA chelates could be responsible for a significant fraction of the Mg2+-dependent stabilization free energy of some RNA tertiary structures, direct measurements have not been feasible because of the difficulty of finding conditions under which the free energy of Mg2+ chelation is uncoupled from RNA folding and from unfavorable interactions with Mg2+ ions in other environments. In a 58mer rRNA fragment, we have used a high-affinity thermophilic ribosomal protein to trap the RNA in a structure nearly identical to native; Mg2+- and protein-stabilized structures differ in the solvent exposure of a single nucleotide located at the chelation site. Under these conditions, titration of a high affinity chelation site takes place in a micromolar range of Mg2+ concentration, and is partially resolved from the accumulation of Mg2+ in the ion atmosphere. From these experiments, we estimate the total and site-specific Mg2+ - RNA interaction free energies over the range of accessed Mg2+ concentrations. At 0.1 mM Mg2+ and 60 mM K+, specific site binding contributes ~ −3 kcal/mol of the total Mg2+ interaction free energy of ~−13 kcal/mol from all sources; at higher Mg2+ concentrations the site-binding contribution becomes a smaller proportion of the total (−4.5 vs. −33 kcal/mol). Under approximately physiological ionic conditions, the specific binding site will be saturated but provide only a fraction of the total free energy of Mg2+ - RNA interactions. PMID:21776997

  5. Formation of Mg{sub 2}Ni with enhanced kinetics: Using MgH{sub 2} instead of Mg as a starting material

    SciTech Connect

    Zhao Bin; Fang Fang; Sun Dalin; Zhang Qingan; Wei Shiqiang; Cao Fenglei; Sun Huai; Ouyang Liuzhang; Zhu Min

    2012-08-15

    At a temperature over the decomposition point (375 Degree-Sign C) of MgH{sub 2}, the formation of Mg{sub 2}Ni is greatly enhanced from the 2MgH{sub 2}+Ni system, as compared to the 2Mg+Ni system. In support of this finding, in-situ observation of X-ray absorption fine structure of the two systems indicates that Mg---Ni bonds form faster in the 2MgH{sub 2}+Ni system than in the 2Mg+Ni system. Furthermore, theoretical modeling also shows that Mg atoms are readily released from MgH{sub 2} using much less energy and thus are more available to react with Ni once the dehydrogenation of MgH{sub 2} occurs, as compared to normal Mg. - Graphical Abstract: The formation of Mg{sub 2}Ni is greatly enhanced by using MgH{sub 2} instead of Mg at a temperature higher than the MgH{sub 2} decomposition point. Highlights: Black-Right-Pointing-Pointer A new and efficient synthesis of Mg-based compounds at a reduced temperature. Black-Right-Pointing-Pointer Mg{sub 2}Ni formation is enhanced by using MgH{sub 2} instead of Mg as a starting material. Black-Right-Pointing-Pointer XAFS results show that Mg---Ni bonds are formed faster in 4MgH{sub 2}+Ni than in 4Mg+Ni. Black-Right-Pointing-Pointer DFT calculations show that Mg atoms are released from MgH{sub 2} more readily than from Mg. Black-Right-Pointing-Pointer Mg formed by MgH{sub 2} dehydrogenation is more available to react with Ni than normal Mg.

  6. In vitro and in vivo comparison of binary Mg alloys and pure Mg.

    PubMed

    Myrissa, Anastasia; Agha, Nezha Ahmad; Lu, Yiyi; Martinelli, Elisabeth; Eichler, Johannes; Szakács, Gábor; Kleinhans, Claudia; Willumeit-Römer, Regine; Schäfer, Ute; Weinberg, Annelie-Martina

    2016-04-01

    Biodegradable materials are under investigation due to their promising properties for biomedical applications as implant material. In the present study, two binary magnesium (Mg) alloys (Mg2Ag and Mg10Gd) and pure Mg (99.99%) were used in order to compare the degradation performance of the materials in in vitro to in vivo conditions. In vitro analysis of cell distribution and viability was performed on discs of pure Mg, Mg2Ag and Mg10Gd. The results verified viable pre-osteoblast cells on all three alloys and no obvious toxic effect within the first two weeks. The degradation rates in in vitro and in vivo conditions (Sprague-Dawley® rats) showed that the degradation rates differ especially in the 1st week of the experiments. While in vitro Mg2Ag displayed the fastest degradation rate, in vivo, Mg10Gd revealed the highest degradation rate. After four weeks of in vitro immersion tests, the degradation rate of Mg2Ag was significantly reduced and approached the values of pure Mg and Mg10Gd. Interestingly, after 4 weeks the estimated in vitro degradation rates approximate in vivo values. Our systematic experiment indicates that a correlation between in vitro and in vivo observations still has some limitations that have to be considered in order to perform representative in vitro experiments that display the in vivo situation. PMID:26838918

  7. Bioequivalence of ondansetron oral soluble film 8 mg (ZUPLENZ) and ondansetron orally disintegrating tablets 8 mg (ZOFRAN) in healthy adults.

    PubMed

    Dadey, Eric

    2015-01-01

    Oral formulations of ondansetron are used to prevent nausea and vomiting associated with chemotherapy, radiotherapy, and surgery. An oral soluble film formulation of ondansetron (OND OSF) was developed using MonoSol Rx's proprietary PharmFilm technology and was formulated to dissolve rapidly on the tongue, without the need for water. This product provides an oral antiemetic treatment option for patients who experience difficulty swallowing. The purpose of this study was to compare the bioequivalence of OND OSF 8 mg (ZUPLENZ, Monosol Rx, Warren, NJ) with ondansetron orally disintegrating tablets (OND ODT) 8 mg (ZOFRAN, GlaxoSmithKline, Research Triangle Park). In 3 individual open-label, randomized studies, healthy adult subjects received a single dose of OND OSF 8 mg and a single dose of OND ODT 8 mg, under fasted conditions (study 1, n = 48), fed conditions (study 2, n = 48), and fasted with and without water (study 3, n = 18). Each dosing period was followed by a 3- or 7-day washout period. Ondansetron pharmacokinetics were assessed predose to 24 hours postdose for the single 8-mg doses of OND OSF and OND ODT. All analyses were conducted on natural log-transformed pharmacokinetic parameters for OND OSF and OND ODT. Under both fasted and fed conditions, the 90% confidence interval for the comparisons of OND OSF and OND ODT plasma ondansetron area under the curve from time 0 to the last measured concentration (AUC0-t), area under the concentration vs. time curve from time 0 to infinity (AUC0-∞), and maximum plasma concentration (Cmax) were within the 80%-125% range, indicating bioequivalence between the formulations. With features designed to make it portable and easy to take, OND OSF 8 mg provides an alternative treatment option, particularly for patients with dysphagia and others who find it difficult to take oral tablets. PMID:25581856

  8. Effect of secular variation in oceanic Mg/Ca on calcareous biomineralization

    NASA Astrophysics Data System (ADS)

    Ries, J. B.; Stanley, S. M.

    2006-12-01

    The polymorph mineralogy of simple, hypercalcifying marine organisms has generally varied in synchroneity with the polymorph mineralogy of abiotic CaCO3 precipitates (ooids, marine cements) throughout the Phanerozoic Eon. This synchroneity is caused by secular variation in the Mg/Ca ratio of seawater (SW; mMg/Ca > 2 = aragonite + high-Mg calcite; mMg/Ca < 2 = calcite), determined primarily by the mixing rate of mid-ocean-ridge/large-igneous-province hydrothermal brines and river water, driven by the global rate of ocean crust production. Here, we present experiments evaluating the effect of seawater Mg/Ca on the biomineralization and growth of extant representatives of hypercalcifying taxa that have been subjected to fluctuations in oceanic Mg/Ca in the past. Codiacean algae (arag), scleractinian corals (arag), coccolithophores (low-high Mg-calc), coralline algae (high Mg-calc), various reef-dwelling animals (echinoids, crabs, shrimp, calcareous serpulid worms; high Mg- calc), and calcifying microbial mats (arag + high-Mg calc) were grown in artificial SW formulated over the range of mMg/Ca (1.0 to 5.2) that occurred throughout each taxon's history. Codiacean algae and scleractinian corals exhibited higher rates of calcification and growth in artificial SW favoring their aragonite mineralogy and, significantly, produced a portion of their CaCO3 as calcite in the artificial calcite SW. Coccolithophores (low-high Mg calc.) showed higher calcification and growth rates and produced low-Mg calcite in the calcite SW. Likewise, coralline algae and the reef-dwelling animals (high-Mg calc) varied skeletal Mg/Ca with seawater Mg/Ca. The calcifying microbial mats grew equally well in the calcite and aragonite SW and varied their mineral polymorph commensurate with the SW (mMg/Ca<2 = low- Mg calc; mMg/Ca>2 = arag + high-Mg calc), suggesting a nearly abiotic mode of calcification. The precipitation of low-Mg calcite + aragonite by codiacean algae and scleractinian corals (arag

  9. Range imaging laser radar

    DOEpatents

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  10. Range imaging laser radar

    DOEpatents

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  11. Flux Pinning and Connectivity in MgB2

    NASA Astrophysics Data System (ADS)

    Sumption, M. D.; Susner, M.; Bhatia, M.; Collings, E. W.

    2008-03-01

    The transport and pinning properties of in-situ MgB2 bulks and strands are discussed. The influence of SiC, excess Mg, B4C, TiC, and their combination on Birr and Bc2 as distinct from connectivity and flux pinning is the focus of the work. SiC dopants increase Bc2 and Birr predominantly, with little influence on connectivity or flux pinning. Excess Mg improves the transport current, changes the grain microstructure, and also leads local maxima in Bc2 and Birr at excess Mg levels of 15% mol fraction. Fp curves are consistent with grain boundary pinning for the binary materials over the whole temperature range. This is also true for SiC and TiC doped materials at lower fields and temperatures, while higher temperatures show a deviation from surface pinning. These higher temperature deviations are consistent with the size and distribution of these nanoparticulate additions. Normal state resistivity measurements and models are used to extract residual resistivity values, percent connectivity, and Debye temperatures. Debye temperatures are seen to be depressed by SiC doping, an effect which is confirmed by heat capacity measurements. Residual resistivity values are seen to correlate with Bc2 and Birr enhancements, consistent with B site substitution with C as evidenced by XRD extracted lattice parameter shifts.

  12. The Mg impurity in nitride alloys

    SciTech Connect

    Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R.; Koleske, D. D.; Allerman, A. A.; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2014-02-21

    Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

  13. MgO Solubility in Steelmaking Slags

    NASA Astrophysics Data System (ADS)

    Tayeb, Mohammed A.; Assis, Andre N.; Sridhar, Seetharaman; Fruehan, Richard J.

    2015-04-01

    A predominantly liquid and MgO-saturated slag is preferred in EAF and BOF steelmaking. Fully liquid slag provides a better environment for faster mass transfer due to lower bulk viscosities and larger liquid slag volume and these help dephosphorization and desulfurization. Also, an MgO-saturated slag would be preferable in order to increase the lifetime of furnace refractory lining by reducing the extent of dissolution. This article will demonstrate the factors that would influence MgO saturation, which includes FeO, CaO, P2O5, and Al2O3 contents and temperature. In addition, this paper comments on the applicability and accuracy of FactSage prediction, which are compared to laboratory experiments. The results indicate that FactSage may underestimate MgO solubility by up to 2.5 wt pct at higher basicities while there is reasonable agreement with current measurements at lower basicities.

  14. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry

    NASA Astrophysics Data System (ADS)

    Greaves, Mervyn; Barker, Stephen; Daunt, Caroline; Elderfield, Henry

    2005-02-01

    The use of liquid and solid standards for foraminiferal Mg/Ca and Sr/Ca determinations and interlaboratory calibration has been investigated. Preparation of single element standard solutions from primary solid standard material enables the preparation of mixed standard solutions with Mg/Ca and Sr/Ca ratios of known accuracy to better than 0.1%. We also investigated commercial reference materials to determine whether existing carbonate standards could be used as reference material for Mg/Ca determinations in foraminiferal calcite. We propose that, in the absence of a pure calcium carbonate standard certified for Mg/Ca, ECRM 752-1, a limestone CRM containing Mg/Ca within the range of typical foraminifera, is a suitable solid standard for interlaboratory calibration. Replicate Mg/Ca determinations showed that, provided silicate phases are removed by centrifugation, this material is homogenous within the precision of daily instrumental Mg/Ca determinations over a range of sample weights from 10 to 1000 mg, taken from two separate bottles of ECRM 752-1. Results gave an average value of Mg/Ca = 3.75 mmol/mol (0.015 s.d., 0.41% r.s.d.) on 118 determinations from the two bottles.

  15. Chemical Interaction of Mg-CARBONATE and the Earth's Lower Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Litvin, Yuriy; Dubrovinsky, Leonid

    2013-04-01

    Diamonds of lower mantle origin are rare but important guests at Earth surface currying crucial information about deep interiors. Apart minerals expected to be similar in Earth lower mantle (particularly Mg-Fe-Al silicates and MgO-FeO oxides) ultra-deep diamonds contain primary inclusions of carbonates indicating that they are presented in the Earth lower mantle. Carbonates of magnesium, calcium, iron and sodium are stable at wide pressure-temperature conditions close to the geotherm. We studied interaction of Mg-carbonates with ferropericlase, perovskite employing laser-heated diamond anvil cell (DAC) at pressures up to 60 GPa and temperatures over 3000 K. Melting of Mg-carbonate is determined as congruent under PT-conditions of the lower mantle. The MgCO3 melts are stable in an expanded high-pressure high-temperature field. We observed formation of diamond at 18 and 40 GPa as a result of decomposition of MgCO3 melt at temperatures above 3500 K on the high-temperature boundary of the field. Melting reactions of the MgCO3-(Mg,Fe)O system were studied in the 30-63 GPa range at high temperatures up to 3600 K. It was found that decomposition boundary of MgCO3-(Mg,Fe)O melt is close to the pure MgCO3 decomposition one within ± 150 K (accuracy of DAC experiment). Preliminary data shows that perovskite -(Mg,Fe)(Si,Al)O3reacts with MgCO3 at PT-conditions of 24GPa/2000K and 60GPa/2500K, that is close to the boundary of congruent MgCO3 melting. The reaction is accompanied with formation of diamond and MgO. The experimental data on melting phase relations MgCO3, MgCO3 - (Mg,Fe)O and MgCO3-(Mg,Fe)(Si,Al)O3 systems combined with diamond crystallization are applied to the problem of ultra-deep diamond formation in carbonate-bearing parental media of the Earth's lower mantle. This work was funded by the Ministry of education and science of Russian Federation, project 8317, 16.740.11.0621, grants RFBR 12-05-33044 and 11-05-000401.

  16. AB Initio Characterization of MgCCH, MgCCH(+), and MgC2, and Pathways to their Formation in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    1996-01-01

    A study of Mg-bearing compounds has been performed in order to determine molecular properties which are critical for planning new astronomical searches and laboratory studies. The primary focus of the work is on MgCCH, MgCCH(+), and the isomers of MgC2. Only MgCCH has been identified in laboratory studies. Additional calculations have been carried out on MgH, MgNC, MgCN, and their cations in an effort to evaluate pathways to the formation of MgCCH and MgCCH(+) in the InterStellar Medium (ISM) or in circumstellar envelopes. Correlated ab initio methods and correlation-consistent basis sets have been employed. Properties including structures, rotational constants, dipole moments, and harmonic frequencies are reported. A transition state between linear MgCC and cyclic MgC2 has been characterized and was found to yield a minimal barrier (approx. 0.5 kcal/mole), indicating easy interconversion to the cyclic form. Direct reactions in the ISM between Mg or Mg(+) and HCCH are precluded by energetic considerations, but a number of ion- molecule or neutral-neutral exchange reactions between CCH and various Mg-containing species offer plausible pathways to MgCCH or MgCCH(+). Weakly bound MgH may react with CCH to form MgCCH, but MgH has not been detected. Both MgNC and MgCN have been observed, but reactions with CCH are slightly endothermic by 1-3 kcal/mole. Although MgH(+), MgNC(+), and MgCN(+) have not been detected, their reactions with CCH to form MgCCH(+) are all exothermic. With only a small barrier separating linear MgCC and cyclic MgC2, the dissociative recombination of MgCCH(+) with an electron is expected to yield cyclic MgC2, and regenerate Mg and CCH. New astronomical searches for MgCCH, MgCCH(+), cyclic MgC2, MgNC(+), and MgCN(+) will provide further insight into organo-magnesium astrochemistry.

  17. Mifepristone 5 mg versus 10 mg for emergency contraception: double-blind randomized clinical trial

    PubMed Central

    Carbonell, Josep Lluis; Garcia, Ramon; Gonzalez, Adriana; Breto, Andres; Sanchez, Carlos

    2015-01-01

    Purpose To estimate the efficacy and safety of 5 mg and 10 mg mifepristone for emergency contraception up to 144 hours after unprotected coitus. Methods This double-blind randomized clinical trial was carried out at Eusebio Hernandez Hospital (Havana, Cuba). A total of 2,418 women who requested emergency contraception after unprotected coitus received either 5 mg or 10 mg mifepristone. The variables for assessing efficacy were the pregnancies that occurred and the fraction of pregnancies that were prevented. Other variables assessed were the side effects of mifepristone, vaginal bleeding, and changes in the date of the following menstruation. Results There were 15/1,206 (1.2%) and 9/1,212 (0.7%) pregnancies in the 5 mg and 10 mg group, respectively (P=0.107). There were 88% and 93% prevented pregnancies in the 5 mg and un ≥7 days was experienced by 4.9% and 11.0% of subjects in the 5 mg and 10 mg group, respectively (P=0.001). There was a significant high failure rate for women weighing >75 kg in the 5 mg group. Conclusion It would be advisable to use the 10 mg dose of mifepristone for emergency contraception as there was a trend suggesting that the failure rate of the larger dose was lower. PMID:25624773

  18. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  19. The study of MgB2/BN/MgB2 trilayer films

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Feng, Qingrong; Wang, Yue; Zhang, Yan

    2015-12-01

    MgB2/BN/MgB2 trilayer films have been fabricated by using hybrid physical-chemical vapor deposition (HPCVD) method for the MgB2 layers and chemical vapor deposition (CVD) method for the BN layers in the same reactor. The films are studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and magnetization measurements. These test outcomes indicate the trilayer films are grown without deteriorating the superconductivity of MgB2 films. Our results show that it is feasible to grow MgB2/BN/MgB2 trilayer films in the same reactor sequentially, which has the advantage of reducing contamination during the growth. This therefore opens the door for fabricating all-MgB2 Josephson junctions by using the BN film as the insulating layer.

  20. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  1. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    NASA Astrophysics Data System (ADS)

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-01

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayer coating in the 25-80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. The barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  2. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus.

    PubMed

    Billard, Vincent; Maillard, Anne; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain; Etienne, Philippe

    2016-10-01

    In order to cope with variable mineral nutrient availability, higher plants have developed numerous strategies including the remobilization of nutrients from source to sink tissues. However, such processes remain relatively unknown for magnesium (Mg), which is the third most important cation in plant tissues. Using Mg depletion of Brassica napus, we have demonstrated that Mg is remobilized from old leaves to young shoot tissues. Moreover, this study showed that Mg depletion induces modification of nutrient uptake, especially Zn and Mn. Finally, comparative proteomic analysis of old leaves (source of Mg) revealed amongst other results that some proteins requiring Mg for their functionality (isocitrate dehydrogenase for example) were up-regulated. Moreover, down-regulation of proteases suggested that mobilization of Mg from old leaves was not associated with senescence. PMID:27362297

  3. Temperature dependence of resistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions

    SciTech Connect

    Ma, Q. L.; Wang, Shouguo; Wang, Y.; Zhang, J.; Ward, R. C. C.; Kohn, A.; Zhang, Xiaoguang; Han, Prof. X. F.

    2009-01-01

    The temperature dependence of resistance in parallel P and antiparallel AP configurations RP,AP has been investigated in epitaxial Fe/MgO/Fe junctions with varying MgO barrier thicknesses tMgO. RAP exhibits a substantial decrease with increasing temperature for samples with tMgO ranging from 3.0 to 1.5 nm. In contrast, RP is approximately temperature independent when tMgO =3.0 nm and increases with temperature when tMgO=2.1 and 1.5 nm. Possible origins of this temperature dependence of resistance, which include taking into account a spin independent term and consideration of spin-flip scattering, are discussed. We attribute the temperature dependence of RP,AP to the misalignment of magnetic moments in the electrodes due to thermal excitations and its effect on the spin dependent tunneling.

  4. Fourier transform infrared emission spectra of MgH and MgD

    NASA Astrophysics Data System (ADS)

    Shayesteh, A.; Appadoo, D. R. T.; Gordon, I.; Le Roy, R. J.; Bernath, P. F.

    2004-06-01

    High resolution Fourier transform infrared emission spectra of MgH and MgD have been recorded. The molecules were generated in an emission source that combines an electrical discharge with a high temperature furnace. Several vibration-rotation bands were observed for all six isotopomers in the X 2Σ+ ground electronic state: v=1→0 to 4→3 for 24MgH, v=1→0 to 3→2 for 25MgH and 26MgH, v=1→0 to 5→4 for 24MgD, v=1→0 to 4→3 for 25MgD and 26MgD. The new data were combined with the previous ground state data, obtained from diode laser vibration-rotation measurements and pure rotation spectra, and spectroscopic constants were determined for the v=0 to 4 levels of 24MgH and the v=0 to 5 levels of 24MgD. In addition, Dunham constants and Born-Oppenheimer breakdown correction parameters were obtained in a combined fit of the six isotopomers. The equilibrium vibrational constants (ωe) for 24MgH and 24MgD were found to be 1492.776(7) cm-1 and 1077.298(5) cm-1, respectively, while the equilibrium rotational constants (Be) are 5.825 523(8) cm-1 and 3.034 344(4) cm-1. The associated equilibrium bond distances (re) were determined to be 1.729 721(1) Å for 24MgH and 1.729 157(1) Å for 24MgD.

  5. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry

    NASA Astrophysics Data System (ADS)

    Greaves, M.; Caillon, N.; Rebaubier, H.; Bartoli, G.; Bohaty, S.; Cacho, I.; Clarke, L.; Cooper, M.; Daunt, C.; Delaney, M.; Demenocal, P.; Dutton, A.; Eggins, S.; Elderfield, H.; Garbe-Schoenberg, D.; Goddard, E.; Green, D.; Groeneveld, J.; Hastings, D.; Hathorne, E.; Kimoto, K.; Klinkhammer, G.; Labeyrie, L.; Lea, D. W.; Marchitto, T.; MartíNez-Botí, M. A.; Mortyn, P. G.; Ni, Y.; Nuernberg, D.; Paradis, G.; Pena, L.; Quinn, T.; Rosenthal, Y.; Russell, A.; Sagawa, T.; Sosdian, S.; Stott, L.; Tachikawa, K.; Tappa, E.; Thunell, R.; Wilson, P. A.

    2008-08-01

    An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.

  6. Deformation effects on isoscalar giant resonances in 24Mg

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Garg, U.; Hoffman, J.; Matta, J.; Rao, P. V. Madhusudhana; Patel, D.; Peach, T.; Yoshida, K.; Itoh, M.; Fujiwara, M.; Hara, K.; Hashimoto, H.; Nakanishi, K.; Yosoi, M.; Sakaguchi, H.; Terashima, S.; Kishi, S.; Murakami, T.; Uchida, M.; Yasuda, Y.; Akimune, H.; Kawabata, T.; Harakeh, M. N.

    2016-04-01

    Strength distributions for isoscalar giant resonances with multipolarity L ≤2 have been determined in 24Mg from "instrumental background-free" inelastic scattering of 386-MeV α particles at extreme forward angles, including 0∘. The isoscalar E 0 , E 1 , and E 2 strengths are observed to be 57 ±7 % , 111 .1-7.2+10.9% , and 148.6 ±7.3 % , respectively, of their energy-weighted sum rules in the excitation energy range of 6 to 35 MeV. The isoscalar giant monopole (ISGMR) and quadrupole (ISGQR) resonances exhibit a prominent K splitting which is consistent with microscopic theory for a prolate-deformed ground state of 24Mg. For the ISGQR it is due to splitting of the three K components, whereas for the ISGMR it is due to its coupling to the K =0 component of the ISGQR. Deformation effects on the isoscalar giant dipole resonance are less pronounced, however.

  7. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  8. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts

    NASA Astrophysics Data System (ADS)

    Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun

    2015-04-01

    The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.

  9. Effect of Mg diffusion on photoluminescence spectra of MgZnO/ZnO bi-layers annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Das, Amit K.; Misra, P.; Ajimsha, R. S.; Bose, A.; Joshi, S. C.; Porwal, S.; Sharma, T. K.; Oak, S. M.; Kukreja, L. M.

    2013-11-01

    MgZnO/ZnO bilayers (Mg concentration of ˜30%) have been grown and subsequently annealed at different temperatures in the range of 600-900 °C with the specific interest of studying the effect of inter-diffusion of Mg on the photoluminescence (PL) properties of the bilayers. The influence of Mg diffusion and material homogenization is evaluated through absorption, PL, and secondary ion mass spectrometry (SIMS) measurements. No appreciable change in the spectral positions is seen either in PL or absorption up to an annealing temperature of 700 °C, which is also supported by SIMS. However at higher annealing temperatures, diffusion of Mg into the ZnO layer is clearly evident in SIMS profile, which results in the red-shift (blue-shift) of spectral positions of MgZnO (ZnO) layer, respectively. Finally, for the sample annealed at 900 °C, the two layers are completely merged providing a single peak at ˜3.60 eV in PL/absorption corresponding to a completely homogenized MgZnO layer. Spectroscopic results are corroborated by the numerical simulations based on a simple theoretical model, which correlates the observed PL spectra of the heterostructures with the experimental Mg diffusion profiles across the heterointerface, as measured by SIMS.

  10. MgCO3·3H2O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties.

    PubMed

    Wu, Xiaoming; Cao, Huaqiang; Yin, Gui; Yin, Jiefu; Lu, Yuexiang; Li, Baojun

    2011-03-21

    In this paper, we report a method of biomimetic synthesis of MgCO(3)·3H(2)O and MgO Viburnum opulus-like complex nanostructures with superhydrophobicity and adsorption properties. The MgCO(3)·3H(2)O complex nanostructures can be obtained by changing experimental parameters, including concentrations of reactants (dextran and MgCl(2)), molar ratios of reactants, and reaction time. The phase structure of as-synthesized samples was characterized by X-ray diffraction (XRD). The morphology and structure are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The MgCO(3)·3H(2)O complex nanostructures exhibited superhydrophobicity, due to their unique superstructures, and was proved by the contact angle (CA) measurement. We also show that a simple calcination of these unusually shaped MgCO(3)·3H(2)O results in spontaneous formation of MgO complex nanostructures while the unique shape can be maintained, and the as-synthesized MgO nanostructures show excellent adsorption property. These unique structures and properties will open up a wide range of potential applications in material and environmental protection. PMID:21170433

  11. Mg2(Si,Sn)-based thermoelectric materials and devices

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Thermoelectric effects are phenomena found in materials that can achieve direct conversion between heat flow and electricity. One important application of thermoelectric effects is thermoelectric generators, which can generate electricity when a temperature gradient is applied. Thermoelectric generators make use of various sources of heat and it is considered a promising solution for waste heat recovery. The conversion efficiency of thermoelectric generators depends on the materials used in the devices. Significant improvement in the performance of thermoelectric materials has been made in the past few decades. However, most of the good thermoelectric materials being investigated have limitations, such as the high materials cost, high materials density and toxicity of the constituent elements. The Mg2(Si,Sn)-based materials studied in this work are promising candidates for thermoelectric generators in the mid-temperature range and have drawn increasing research interest in recent years because these materials are high performance thermoelectrics that are low cost, low-density and non-toxic. In this work, systematic studies were performed on the Mg2(Si,Sn) thermoelectric materials. Thermal phase stability was studied for different compositions of Mg2Si1-xSnx and Mg2Si0.4Sn 0.6 was used as base material for further optimization. Both n-type and p-type samples were obtained by doping the materials with different elements. Peak ZT ˜ 1.5 for the n-type and ZT ˜ 0.7 for the p-type materials were obtained, both of which are among the best reported results so far. Experimental work was also done to study the techniques to develop the Mg2Si 0.4Sn0.6 materials into working devices. Different electrode materials were tested in bonding experiment for this compound, and copper was found to be the best electrode material for Mg2Si 0.4Sn0.6. Preliminary work was done to demonstrate the possibility of fabricating a Mg2Si0.4Sn0.6-based thermoelectric generator and the result is

  12. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization

    PubMed Central

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-01-01

    Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652

  13. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    PubMed

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652

  14. Microstructure-property relationships in low-density Al-Li-Mg alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, T. E.; Wert, J. A.

    1993-04-01

    The present article describes an investigation of the microstructure and tensile properties of cast Al-Li-Mg alloys with very low densities, in the range 2.3 to 2.4 Mg/m3. Low density is achieved by adding Li and Mg in excess of the solubility limit, which prevents subsequent dissolution of the Al2LiMg particles that form during solidification. A simple model developed during the course of this research allows prediction of the volume fraction of Al2LiMg and alloy density from alloy composition. The model was used to select two alloy compositions for detailed investigation: A112Li6Mg and A116Li8Mg. The microstructures of the cast alloys consist of coarse Al2LiMg particles embedded in an Al matrix containing Al3Li particles. Both alloys exhibit low tensile elongation in the as-cast condition. Additional processing steps were used to modify the microstructural characteristics thought to be responsible for the low tensile elongation of the ascast alloys. The A116Li8Mg alloy, with an Al2LiMg volume fraction of 0.25, does not exhibit increased tensile elongation as a result of processing, and the brittle nature of this material is attributed to the high volume fraction of the Al2LiMg phase. The A112Li6Mg alloy, with an Al2LiMg volume fraction of 0.13, exhibits a remarkable increase in tensile elongation after extrusion, an effect attributed to fragmentation and dispersal of a three-dimensional (3-D) network of the intermetallic phase in the as-cast alloy.

  15. Microstructure-property relationships in low-density Al-Li-Mg alloys

    SciTech Connect

    Buchheit, T.E.; Wert, J.A. )

    1993-04-01

    The present article describes an investigation of the microstructure and tensile properties of cast Al-Li-Mg alloys with very low densities, in the range 2.3 to 2.4 Mg/m[sup 3]. Low density is achieved by adding Li and Mg in excess of the solubility limit, which prevents subsequent dissolution of the Al[sub 2]LiMg particles that form during solidification. A simple model developed during the course of this research allows prediction of the volume fraction of Al[sub 2]LiMg and alloy density from alloy composition. The model was used to select two alloy compositions for detailed investigation: Al12Li6Mg and Al16Li8Mg. The microstructures of the cast alloys consist of coarse Al[sub 2]LiMg particles embedded in an Al matrix containing Al[sub 3]Li particles. Both alloys exhibit low tensile elongation in the as-cast condition. Additional processing steps were used to modify the microstructural characteristics thought to be responsible for the low tensile elongation of the as-cast alloys. The Al16Li8Mg alloy, with an Al[sub 2]LiMg volume fraction of 0.25, does not exhibit increased tensile elongation as a result of processing, and the brittle nature of this material is attributed to the high volume fraction of the Al[sub 2]LiMg phase. The Al12Li6Mg alloy, with an Al[sub 2]LiMg volume fraction of 0.13, exhibits a remarkable increase in tensile elongation after extrusion, an effect attributed to fragmentation and dispersal of a three-dimensional (3-D) network of the intermetallic phase in the as-cast alloy.

  16. Electronic states of MgO: Spectroscopy, predissociation, and cold atomic Mg and O production

    SciTech Connect

    Maatouk, A.; Ben Houria, A.; Yazidi, O.; Jaidane, N.; Hochlaf, M.

    2010-10-14

    We used multiconfigurational methods and a large basis set to compute the potential energy curves of the valence and valence-Rydberg electronic states of MgO molecule. New bound electronic states are found. Using these highly correlated wave functions, we evaluated their mutual spin-orbit couplings and transition moment integrals. For the bound electronic states of MgO, we deduced an accurate set of spectroscopic constants that agree remarkably well with experimental results. Moreover, our potentials, transition moments, and spin-orbit coupling evolutions are incorporated into Fermi golden rule calculations to deduce the radiative lifetimes of MgO(B {sup 1}{Sigma}{sup +}) rovibrational levels and the natural lifetimes of MgO(A {sup 1}{Pi}) vibrational levels, where a good agreement is found with experimental values. Finally, we suggest new routes for the production of cold Mg and O atoms and cold MgO molecules.

  17. The millimeter-wave spectrum of the MgH and MgD radicals

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Barclay, W. L., Jr.; Anderson, M. A.

    1993-01-01

    The pure rotational spectrum of MgH radical (X 2 Sigma (+)) in its ground state v = 0 and v = 1 vibrational modes has been observed in the laboratory using millimeter/submillimeter direct absorption spectroscopy. The rotational spectra of two isotopically substituted species, MgD and (Mg-26)H, have been detected as well. All six hyperfine components of the N = 0 -1 transition of MgH in its v = 0 and v = 1 states have been directly measured to an accuracy of +/-50 kHz, and the five components have been observed for (Mg-26)H. The N = 0 +/-1 and N = 1 -2 transitions of MgD have also been detected. Rotational, fine structure, and hyperfine constants were determined for all species from a nonlinear least-squared fit to the data using a 2 Sigma Hamiltonian.

  18. Superconductivity in MgPtSi: An orthorhombic variant of MgB2

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutaka; Fujimura, Kazunori; Onari, Seiichiro; Ota, Hiromi; Nohara, Minoru

    2015-05-01

    A ternary compound, MgPtSi, was synthesized by solid-state reaction. An examination of the compound by powder x-ray diffraction revealed that it crystallizes in the orthorhombic TiNiSi-type structure with the P n m a space group. The structure comprises alternately stacked layers of Mg and PtSi honeycomb network, which is reminiscent of MgB2, and the buckling of the honeycomb network causes orthorhombic distortion. Electrical and magnetic studies revealed that MgPtSi exhibited superconductivity with a transition temperature of 2.5 K. However, its isostructural compounds, namely, MgRhSi and MgIrSi, were not found to exhibit superconductivity.

  19. Spontaneous polarization driven Mg concentration profile reconstruction in MgZnO/ZnO heterostructures

    SciTech Connect

    Imasaka, K.; Falson, J.; Kozuka, Y. Kawasaki, M.; Tsukazaki, A.

    2014-06-16

    Atomic reconstruction at the interface of MgZnO and ZnO in molecular beam epitaxy grown heterostructures is investigated. Using secondary ion mass spectroscopy, we experimentally find that Mg atomic reconstruction depends on the polarity of the interface; it is not observed in n-type interfaces (MgZnO on Zn-polar ZnO) owing to electron accumulation, while in p-type interfaces (ZnO on Zn-polar MgZnO), Mg drastically redistributes into the ZnO layer. Combined with self-consistent calculation of band profiles and carrier distributions, we reveal that the observed Mg reconstruction is not due to thermal diffusion but consequences in order to avoid hole accumulation. This tendency implies inherent significant asymmetry of energy scales of atomic and electronic reconstructions between n-type and p-type interfaces.

  20. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures.

    PubMed

    Cheng, Fangyi; Tao, Zhanliang; Liang, Jing; Chen, Jun

    2012-07-28

    Efficient hydrogen storage plays a key role in realizing the incoming hydrogen economy. However, it still remains a great challenge to develop hydrogen storage media with high capacity, favourable thermodynamics, fast kinetics, controllable reversibility, long cycle life, low cost and high safety. To achieve this goal, the combination of lightweight materials and nanostructures should offer great opportunities. In this article, we review recent advances in the field of chemical hydrogen storage that couples lightweight materials and nanostructures, focusing on Mg/MgH(2)-based systems. Selective theoretical and experimental studies on Mg/MgH(2) nanostructures are overviewed, with the emphasis on illustrating the influences of nanostructures on the hydrogenation/dehydrogenation mechanisms and hydrogen storage properties such as capacity, thermodynamics and kinetics. In particular, theoretical studies have shown that the thermodynamics of Mg/MgH(2) clusters below 2 nm change more prominently as particle size decreases. PMID:22715459

  1. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  2. Unraveling the role of Mg(++) in osteoarthritis.

    PubMed

    Li, Yaqiang; Yue, Jiaji; Yang, Chunxi

    2016-02-15

    Mg(++) is widely involved in human physiological processes that may play key roles in the generation and progression of diseases. Osteoarthritis (OA) is a complex joint disorder characterized by articular cartilage degradation, abnormal mineralization and inflammation. Magnesium deficiency is considered to be a major risk factor for OA development and progression. Magnesium deficiency is active in several pathways that have been implicated in OA, including increased inflammatory mediators, cartilage damage, defective chondrocyte biosynthesis, aberrant calcification and a weakened effect of analgesics. Abundant in vitro and in vivo evidence in animal models now suggests that the nutritional supplementation or local infiltration of Mg(++) represent effective therapies for OA. The goal of this review is to summarize the current understanding of the role of Mg(++) in OA with particular emphasis on the related molecular mechanisms involved in OA progression. PMID:26800786

  3. Influence of RCS on Al-3Mg and Al-3Mg-0.25Sc alloys

    NASA Astrophysics Data System (ADS)

    Bhovi, Prabhakar M.; Venkateswarlu, K.

    2016-02-01

    An influence of repetitive corrugation and straightening (RCS) was studied on Al-3Mg and Al-3Mg-0.25Sc alloys up to eight passes. Each pass consist of a corrugation and followed by straightening. This has resulted in introducing large plastic strain in sample, and thus led to formation of sub-micron grain sizes with high angle grain boundaries. These sub grain formation was eventually resulted in improved mechanical properties. The average grain size of Al-3Mg-0.25Sc alloy after 8 passes yielded to ∼0.6pm. Microhardness, strength properties were evaluated and it suggests that RCS was responsible for high hardness values as compared to the as cast samples. The microhardness values after RCS were 105 HV and 130 HV for Al-3Mg and Al-3Mg-0.25Sc alloys, respectively. Similarly, ∼ 40% improvement in tensile strength from 240 MPa to 370 MPa was observed for Al- 3Mg-0.25Sc alloy after RCS process.Al-3Mg and Al-3Mg-0.25Scalloys exhibited maximum strength of 220 MPa and 370 MPa, respectively. It is concluded that RCS process has a strong influence on Al- 3Mg and Al-3Mg-0.25Sc alloys for obtaining improved mechanical properties and grain refinement. In addition to RCS process and presence of AESc precipitates in Al-3Mg-0.25Sc alloy had a significant role in grain refinement and improved mechanical properties as compared to Al-3Mg alloy.

  4. Impact of a Revised 25Mg(p, γ)26Al Reaction Rate on the Operation of the Mg-Al Cycle

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Imbriani, G.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Cristallo, S.; DiLeva, A.; Formicola, A.; Elekes, Z.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Limata, B.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Piersanti, L.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Terrasi, F.; Trautvetter, H.-P.

    2013-02-01

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the 25Mg(p, γ)26Al reaction affect the production of radioactive 26Algs as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the 25Mg(p, γ)26Algs and the 25Mg(p, γ)26Al m reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of 26Al m production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger 25Mg(p, γ)26Al m rate, the estimated production of 26Algs in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic 26Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of 26Al/27Al, i.e., >10-2, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  5. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    PubMed

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition. PMID:26636472

  6. Excited states in ^22Mg and the ^21Na(p,γ)^22Mg reaction

    NASA Astrophysics Data System (ADS)

    Jewett, C.; Chipps, K.; Greife, U.; Bishop, S.; D'Auria, J.; Lamey, M.; Trinczek, M.; Hutcheon, D.; Ottewell, D.; Olin, A.; Buchmann, L.; Rogers, J.; Pearson, J.; Engel, S.; Gigliotti, D.; Ruiz, C.; Ruprecht, G.; Vockenhuber, C.; Gross, C.; Radford, D.; Yu, C.-H.; Blackmon, J.; Bardayan, D.; Smith, M. S.; Kozub, R.

    2004-10-01

    In explosive astrophysical scenarios like novae or x-ray bursts, the ^21Na(p,γ)^22Mg reaction is believed to play an important role. The proton capture proceeds predominantly via isolated excited states in the ^22Mg nucleus. This talk will present results from a search for excited states in ^22Mg via the ^12C + ^12C reaction measured at HRIBF (ORNL) and from a direct measurement of ^21Na(p,γ)^22Mg with a radioactive ion beam at ISAC (TRIUMF).

  7. Reference Ranges & What They Mean

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Reference Ranges and What They Mean Share this page: Was this page helpful? Overview | Reference range defined | Where are the reference ranges? | Limits ...

  8. Excited intruder states in {sup 32}Mg

    SciTech Connect

    Tripathi, Vandana; Tabor, S. L.; Bender, P.; Hoffman, C. R.; Lee, Sangjin; Pepper, K.; Perry, M.; Utsuno, Y.; Otsuka, T.; Mantica, P. F.; Pinter, J. S.; Stoker, J. B.; Cook, J. M.; Pereira, J.; Weisshaar, D.

    2008-03-15

    The low energy level structure of N=20 {sup 32}Mg obtained via {beta}-delayed {gamma} spectroscopy is reported. The level structure of {sup 32}Mg is found to be completely dominated by intruders. An inversion between the 1p-1h and 3p-3h states is observed for the negative parity states, similar to the 0p-0h and 2p-2h inversion for the positive parity states in these N{approx}20 nuclei. The intruder excited states, both positive and negative parity, are reasonably explained by Monte Carlo shell model calculations, which suggest a shrinking N=20 shell gap with decreasing Z.

  9. Studies on ZnS-MgS Nano Composites

    NASA Astrophysics Data System (ADS)

    Rajkumar, M.; Raj, S. Alfred Cecil

    2011-10-01

    ZnS-MgS nanocomposites was successfully prepared by the microwave assisted solvothermal method using a domestic microwave oven. The prepared sample was annealed at 100 °C for 1 hr to improve the ordering. Grain sizes and lattice parameters were determined by carrying out X-ray powder diffraction measurements. Scanning electron microscopy (SEM) shows the morphology. AC electrical measurements were carried out on pelletised samples at various temperatures ranging from 40-150 °C. Results of the present study reveal that the space charge contribution plays a significant role in the charge transport process and polarizability.

  10. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.

    PubMed

    Bornapour, M; Muja, N; Shum-Tim, D; Cerruti, M; Pekguleryuz, M

    2013-02-01

    Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)₂ as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time. PMID:22871640

  11. In situ XPS investigation of Pt(Sn)/Mg(Al)O catalysts during ethane dehydrogenation experiments

    NASA Astrophysics Data System (ADS)

    Virnovskaia, Anastasia; Jørgensen, Sissel; Hafizovic, Jasmina; Prytz, Øystein; Kleimenov, Evgueni; Hävecker, Michael; Bluhm, Hendrik; Knop-Gericke, Axel; Schlögl, Robert; Olsbye, Unni

    2007-01-01

    Calcined hydrotalcite with or without added metal (Mg(Al)O, Pt/Mg(Al)O and Pt,Sn/Mg(Al)O) have been investigated with in situ X-ray photoelectron spectroscopy (XPS) during ethane dehydrogenation experiments. The temperature in the analysis chamber was 450 °C and the gas pressure was in the range 0.3-1 mbar. Depth profiling of calcined hydrotalcite and platinum catalysts under reaction, oxidation and in hydrogen-water mixture was performed by varying the photon energy, covering an analysis depth of 10-21 Å. It was observed that the Mg/Al ratio in the Mg(Al)O crystallites does not vary significantly in the analysis depth range studied. This result indicates that Mg and Al are homogeneously distributed in the Mg(Al)O crystallites. Catalytic tests have shown that the initial activity of a Pt,Sn/Mg(Al)O catalyst increases during an activation period consisting of several cycles of reduction-dehydrogenation-oxidation. The Sn/Mg ratio in a Pt,Sn/Mg(Al)O catalyst was followed during several such cycles, and was found to increase during the activation period, probably due to a process where tin spreads over the carrier material and covers an increasing fraction of the Mg(Al)O surface. The results further indicate that spreading of tin occurs under reduction conditions. A PtSn 2 alloy was studied separately. The surface of the alloy was enriched in Sn during reduction and reaction conditions at 450 °C. Binding energies were determined and indicated that Sn on the particle surface is predominantly in an oxidised state under reaction conditions, while Pt and a fraction of Sn is present as a reduced Pt-Sn alloy.

  12. What is the Right Temperature Sensitivity for Foraminiferal Mg/ca Paleothermometry in Ancient Oceans?

    NASA Astrophysics Data System (ADS)

    Eggins, S.; Holland, K.; Hoenisch, B.; Spero, H. J.; Allen, K. A.

    2013-12-01

    Mg/Ca seawater thermometry has become a cornerstone of modern paleoceanography. Laboratory experiments, seafloor core-top samples, plankton trap and tow collected materials all indicate consistent temperature sensitivity (9-10% increase in Mg/Ca per °C) for a full range of modern planktic foraminifer species. While these results demonstrate the overall robustness of Mg/Ca paleothermometry for the modern ocean, it is an empirical tool for which there is limited understanding of its bio-physio-chemical basis and its applicability to ancient oceans. We have undertaken experimental cultures of Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber (pink) across a range of seawater compositions (temperature, carbonate chemistry and Mg/Casw) that encompass modern and ancient Paleogene and Cretaceous ocean compositions (Mg/Casw 0.25x to 2x modern and pCO2 = 200 to 1500 ppmv). Our results reveal that the sensitivity of the Mg/Ca-thermometer for planktic foraminifers reduces significantly with Mg/Casw, rather than remaining constant as has been widely assumed or, increasing at lower Mg/Casw as proposed recently by Evans and Müller (2012). These results indicate that the modern sensitivity of 9-10% increase in Mg/Ca per °C cannot yet be applied to obtain reliable relative temperature change estimates to ancient oceans. These results further suggest that variations in foraminiferal Mg/Ca compositions in ancient oceans with lower Mg/Casw may correspond to larger temperature variations than in the modern ocean. Evans D. and Müller W., Paleoceanography, vol. 27, PA4205, doi:10.1029/2012PA002315, 2012

  13. Crystal Structure Refinement of Mg 5Nb 4O 15and Mg 5Ta 4O 15by Rietveld Analysis of Neutron Powder Diffraction Data

    NASA Astrophysics Data System (ADS)

    Pagola, S.; Carbonio, R. E.; Fernández-Díaz, M. T.; Alonso, J. A.

    1998-05-01

    The crystal structure of the isomorphous phases Mg5Nb4O15and Mg5Ta4O15was refined from neutron powder diffraction data. These compounds are isostructural with pseudobrookite, Fe2TiO5. The two kinds of metal sites of this structure are randomly occupied by Mg(II) and Nb(V) or Ta(V). The structure consists of double chains of (Mg,M)O6units (whereM=Nb or Ta), sharing edges on thebcplane, interconnected through common oxygens along theaaxis to give a three-dimensional array. The (Mg,M)O6polyhedra at both metal positions can be described as very distorted octahedra, with (Mg,M)-O distances ranging from 1.93 to 2.22 Å. The crystallographic formulas can be written as (Mg0.73(2)Nb0.27(2))4c(Mg0.94(2)Nb1.06(2))8fO5and (Mg0.66(2)Ta0.34(2))4c(Mg1.01(2)Ta0.99(2))8fO5respectively, where 4c and 8f are the Wyckoff sites of the two metal positions of the structure. The space group is Cmcm (orthorhombic) andZ=4. Unit cell parameters, cell volume,RwpandRIvalues obtained werea=3.8068(1) Å,b=10.0561(1) Å,c=10.2566(1) Å,V=392.64(2) Å3, and 6.72% and 2.94% for the niobium compound; anda=3.81884(6) Å,b=10.0574(2) Å,c=10.2343(2) Å,V=393.07(2) Å3, and 4.46%, and 2.36% for the tantalum compound.

  14. Zinc Binding to MG53 Protein Facilitates Repair of Injury to Cell Membranes*

    PubMed Central

    Cai, Chuanxi; Lin, Peihui; Zhu, Hua; Ko, Jae-Kyun; Hwang, Moonsun; Tan, Tao; Pan, Zui; Korichneva, Irina; Ma, Jianjie

    2015-01-01

    Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn2+ deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn2+-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery. Domain homology analysis revealed that MG53 contains two Zn2+-binding motifs. Here, we show that Zn2+ binding to MG53 is indispensable to assembly of the cell membrane repair machinery. Live cell imaging illustrated that Zn2+ entry from extracellular space is essential for translocation of MG53-containing vesicles to the acute membrane injury sites for formation of a repair patch. The effect of Zn2+ on membrane repair is abolished in mg53−/− muscle fibers, suggesting that MG53 functions as a potential target for Zn2+ during membrane repair. Mutagenesis studies suggested that both RING and B-box motifs of MG53 constitute Zn2+-binding domains that contribute to MG53-mediated membrane repair. Overall, this study establishes a base for Zn2+ interaction with MG53 in protection against injury to the cell membrane. PMID:25869134

  15. Zinc Binding to MG53 Protein Facilitates Repair of Injury to Cell Membranes.

    PubMed

    Cai, Chuanxi; Lin, Peihui; Zhu, Hua; Ko, Jae-Kyun; Hwang, Moonsun; Tan, Tao; Pan, Zui; Korichneva, Irina; Ma, Jianjie

    2015-05-29

    Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn(2+) deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn(2+)-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery. Domain homology analysis revealed that MG53 contains two Zn(2+)-binding motifs. Here, we show that Zn(2+) binding to MG53 is indispensable to assembly of the cell membrane repair machinery. Live cell imaging illustrated that Zn(2+) entry from extracellular space is essential for translocation of MG53-containing vesicles to the acute membrane injury sites for formation of a repair patch. The effect of Zn(2+) on membrane repair is abolished in mg53(-/-) muscle fibers, suggesting that MG53 functions as a potential target for Zn(2+) during membrane repair. Mutagenesis studies suggested that both RING and B-box motifs of MG53 constitute Zn(2+)-binding domains that contribute to MG53-mediated membrane repair. Overall, this study establishes a base for Zn(2+) interaction with MG53 in protection against injury to the cell membrane. PMID:25869134

  16. Inhomogeneities and Effective Mass in Doped Mg2Si

    NASA Astrophysics Data System (ADS)

    Stefanaki, E. C.; Polymeris, G. S.; Ioannou, M.; Pavlidou, E.; Hatzikraniotis, E.; Kyratsi, Th.; Paraskevopoulos, K. M.

    2016-03-01

    Magnesium silicide (Mg2Si)-based materials are promising candidates as thermoelectric components for mid-temperature range (500-900 K) energy conversion. Many different approaches for determining the parabolicity of the conduction band have been suggested in the literature, while the values of the effective mass m* dL reported, lie between 0.46 and 1.1 m0. The aim of this work is to contribute in elucidating the discrepancy observed in the effective mass values of the lower conduction band of highly doped Mg2Si and examine whether this discrepancy could be attributed to the method of determination or to the sample's characteristics. We present the results of effective mass calculations at room temperature (RT) by applying different experimental methods and models (parabolic and non-parabolic) in two different groups of samples; one yielding profound inhomogeneities (Sb-doped) and one yielding homogeneous (Bi-doped) samples. Concluding this analysis, it seems that the lower conduction band of Mg2Si is more likely described as non-parabolic. Comparing the two groups of samples, our analysis indicated that the effective mass may be significantly underestimated for samples with dopant and content-modulated composition.

  17. Mg II line profiles of the Mira S Carinae

    SciTech Connect

    Bookbinder, J.A.; Brown, A.; Brugel, E.W.; Colorado Univ., Boulder )

    1989-07-01

    A series of high-dispersion IUE observations obtained to investigate the evolution of the shock structure of the Mira variable S Carinae have produced (despite limited phase coverage) a set of five exceptionally interesting spectra of the Mg II h and k lines. The two primary findings of these observations are (1) there is significant emission from both the h and k lines at positions corresponding to velocities of -150 km/s relative to the stellar photosphere and (2) the k/h flux ratio of the Mg II doublet remains below the theoretically predicted values which lie in the range 2:1 to 1:1 and shows a smooth dependence on the optical phase. Archival studies of other Miras (e.g., R Car) indicate that S Car is not unique in possessing unusual and highly variable Mg II h and k line profiles. Several possible physical processes that may explain these results, including radiative transfer effects in a shocked atmosphere, circumstellar scattering, and circumstellar absorption, are discussed. 10 refs.

  18. Mg II line profiles of the Mira S Carinae

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay A.; Brown, Alexander; Brugel, Edward W.

    1989-01-01

    A series of high-dispersion IUE observations obtained to investigate the evolution of the shock structure of the Mira variable S Carinae have produced (despite limited phase coverage) a set of five exceptionally interesting spectra of the Mg II h and k lines. The two primary findings of these observations are (1) there is significant emission from both the h and k lines at positions corresponding to velocities of -150 km/s relative to the stellar photosphere and (2) the k/h flux ratio of the Mg II doublet remains below the theoretically predicted values which lie in the range 2:1 to 1:1 and shows a smooth dependence on the optical phase. Archival studies of other Miras (e.g., R Car) indicate that S Car is not unique in possessing unusual and highly variable Mg II h and k line profiles. Several possible physical processes that may explain these results, including radiative transfer effects in a shocked atmosphere, circumstellar scattering, and circumstellar absorption, are discussed.

  19. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil.

    PubMed

    Rezende, Patrícia Sueli; Costa, Letícia Malta; Windmöller, Cláudia Carvalhinho

    2015-04-01

    Paracatu River Basin, Minas Gerais, Brazil, houses long areas of irrigated agriculture and gold-, lead-, and zinc-mining activities. This region has a prevalence of sulfide minerals and a natural occurrence of high levels of arsenopyrite. In this work, surface water, groundwater, sediments and local vegetable samples were collected in October 2010 and November 2011 and were analyzed to evaluate arsenic (As) distribution, mobility, and transport in these environmental compartments. All sediment samples (738-2,750 mg kg(-1)) and 37 % of the water samples [less than the limit of detection (LOD) to 110 µg L(-1)] from the rivers and streams of Paracatu had As concentrations greater than the quality standards established by national and international environmental organizations (5.9 mg kg(-1) for sediments and 10 µg L(-1) for water). Most vegetable samples had As concentrations within the normal range for plants (lower than the LOD to 120 mg kg(-1)). A correlation among As concentrations in water, sediment, and vegetable samples was verified. PMID:25672271

  20. Influence of ion beam assisted deposition parameters on the growth of MgO and CoFeB

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; Petrova, Rumyana; McVitie, Stephen

    2012-04-01

    The effect of the kinetic parameters of an assistance ion beam on the crystallization of ion beam deposited MgO was investigated. It is shown that the crystallization of MgO in the as-deposited state is strongly dependent on the assistance beam parameters. Furthermore, two deposition regimes corresponding to different ranges of the assistance beam energy are found. XRD and TEM studies of CoFeB/MgO/CoFeB with MgO deposited in the two regimes show that CoFeB crystallization is favored when low energy assist beams are used, despite no differences being found in the MgO.

  1. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    NASA Astrophysics Data System (ADS)

    Yan, F.; McKay, B. J.; Fan, Z.; Chen, M. F.

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg2Si particles evenly distributed throughout an α-Al matrix with a β-Al3Mg2 fully divorced eutectic phase observed in interdendritic regions. The Mg2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al3Mg2 eutectic phase with no evidence of any effect on the primary Mg2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  2. Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study

    PubMed Central

    Ishitani, Ryuichiro; Sugita, Yuji; Dohmae, Naoshi; Furuya, Noritaka; Hattori, Motoyuki; Nureki, Osamu

    2008-01-01

    Proper regulation of the intracellular ion concentration is essential to maintain life and is achieved by ion transporters that transport their substrates across the membrane in a strictly regulated manner. MgtE is a Mg2+ transporter that may function in the homeostasis of the intracellular Mg2+ concentration. A recent crystallographic study revealed that its cytosolic domain undergoes a Mg2+-dependent structural change, which is proposed to gate the ion-conducting pore passing through the transmembrane domain. However, the dynamics of Mg2+ sensing, i.e., how MgtE responds to the change in the intracellular Mg2+ concentration, remained elusive. Here we performed molecular dynamics simulations of the MgtE cytosolic domain. The simulations successfully reproduced the structural changes of the cytosolic domain upon binding or releasing Mg2+, as well as the ion selectivity. These results suggested the roles of the N and CBS domains in the cytosolic domain and their respective Mg2+ binding sites. Combined with the current crystal structures, we propose an atomically detailed model of Mg2+ sensing by MgtE. PMID:18832160

  3. New FCC Mg-Zr and Mg-Zr-ti deuterides obtained by reactive milling

    NASA Astrophysics Data System (ADS)

    Guzik, Matylda N.; Deledda, Stefano; Sørby, Magnus H.; Yartys, Volodymyr A.; Hauback, Bjørn C.

    2015-03-01

    Results for binary Mg-Zr and ternary Mg-Zr-Ti mixtures ball milled at room temperature under reactive deuterium atmosphere (5.6-6.7 MPa) are reported. X-ray and neutron powder diffraction combined with Rietveld refinements show that two new cubic phases were formed during milling. Mg0.40Zr0.60D1.78 and Mg0.40Zr0.26Ti0.34D1.98 crystallize with disordered face centered cubic metal atom arrangements. Results of differential scanning calorimetry and termogravimetric measurements demonstrate that both deuterides desorb deuterium at lower temperatures than MgD2, ZrD2 or TiD2; 528 and 575 K in the Mg-Zr-D and Mg-Zr-Ti-D system, respectively. Interestingly, Mg0.40Zr0.26Ti0.34D1.98 stores deuterium reversibly at 673 K and 10 MPa of D2.

  4. Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Lear, Caroline H.; Coxall, Helen K.; Foster, Gavin L.; Lunt, Daniel J.; Mawbey, Elaine M.; Rosenthal, Yair; Sosdian, Sindia M.; Thomas, Ellen; Wilson, Paul A.

    2015-11-01

    Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw-0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.

  5. Thermodynamic studies and the phase diagram of the Li-Mg system

    NASA Astrophysics Data System (ADS)

    Gasior, W.; Moser, Z.; Zakulski, W.; Schwitzgebel, G.

    1996-09-01

    By means of the electromotive force (emf) method of concentration cells of the following scheme: Li (1) / LiCl-LiF (eut) or LiCi-KCl (eut) / Li-Mg (1) or Li (1) / LiCl-LiF (eut) / Li-Mg (s) Li activities for liquid and solid alloys at the (Mg), (Li), and (Mg) + (Li) two-phase region of the Li-Mg system were determined. Liquid alloys were examined at temperatures from 638 to 889 K at various Li concentrations. The (Mg) solid solutions were investigated in two series: at constant temperatures between 773 and 876 K, with varying Li content, and at fixed Li concentrations, equal to 0.125 and 0.160 molar fractions, at different temperatures between 772 and 849 K. At the two-phase region, (Mg) + (Li), emf measurements were performed in the temperature range 773 to 838 K, with fixed Li concentrations equal to 0.20, 0.25, and 0.275 molar fractions. For (Li) solid alloys, experiments were done at temperatures 773 to 849 K for several constant Li concentrations, between 0.30 to 0.45 molar fractions, respectively. Studies on solid alloys enabled us also to determine the boundaries (Li)/[(Mg) + (Li)] and (Mg)/[(Mg) + (Li)] at temperatures 773 to 831 K. The resulting thermodynamic and phase boundary data of this study were used with other selected references for a critical assessment of the Li-Mg system. The Lukas BINGSS optimization program and BINFKT for the calculation of the thermodynamic functions and of the phase diagram were used. The calculated equilibrium phase diagram at temperatures below 750 K indicates a slightly lower solid solubility of Mg in (Li) in comparison with results from thermal analysis and the recently published Saunders evaluation.

  6. Thermodynamic studies and the phase diagram of the Li-Mg system

    SciTech Connect

    Gasior, W.; Moser, Z.; Zakulski, W.; Schwitzgebel, G.

    1996-09-01

    By means of the electromotive force (emf) method of concentration cells of the following scheme: Li (1)/LiCl-LiF (eut) or LiCi-KCl (eut)/Li-Mg (1) or Li (1)/LiCl-LiF (eut)/Li-Mg (s). Li activities for liquid and solid alloys at the (Mg), (Li), and (Mg) + (Li) two-phase region of the Li-Mg system were determined. Liquid alloys were examined at temperatures from 638 to 889 K at various Li concentrations. The (Mg) solid solutions were investigated in two series: at constant temperatures between 773 and 876 K, with varying Li content, and at fixed Li concentrations, equal to 0.125 and 0.160 molar fractions, at different temperatures between 772 and 849 K. At the two-phase region, (Mg) + (Li), emf measurements were performed in the temperature range 773 to 838 K, with fixed Li concentrations equal to 0.20, 0.25, and 0.275 molar fractions. For (Li) solid alloys, experiments were done at temperatures 773 to 849 K for several constant Li concentrations, between 0.30 and 0.45 molar fractions, respectively. Studies on solid alloys enabled the authors also to determine the boundaries (Li)/[(Mg) + (Li)] and (Mg)/[(Mg) + (Li)] at temperatures 773 to 831 K. The resulting thermodynamic and phase boundary data of this study were used with other selected references for a critical assessment of the Li-Mg system. The Lukas BINGSS optimization program and BINFKT for the calculation of the thermodynamic functions and of the phase diagram were used. The calculated equilibrium phase diagram at temperatures below 750 K indicates a slightly lower solid solubility of Mg in (Li) in comparison with results from thermal analysis and the recently published Saunders evaluation.

  7. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  8. Space-Based Range Safety and Future Space Range Applications

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.

  9. Single crystal growth of MgB 2 by evaporating Mg-flux method

    NASA Astrophysics Data System (ADS)

    Du, Wei; Xu, Huizhong; Zhang, Hongbin; Xu, Dong; Wang, Xinqiang; Hou, Xianqin; Wu, Yongzhong; Jiang, Fuyi; Qin, Lianjie

    2006-04-01

    Well hexagonal plate-shaped single crystal of magnesium diboride (MgB 2) with the size of 100 μm has been grown at ambient pressure by evaporating Mg-flux method which is a new practice to grow MgB 2 single crystal. The superconducting transition of as-prepared crystals was measured to be at about 33.7 K by superconducting quantum interference device (dc-SQUID) magnetometer. The X-ray powder diffraction (XRD) confirmed the MgB 2 phase, and the electron diffraction patterns measured by using high-resolution transmission electron microscope (HRTEM) confirmed the structure of MgB 2 single crystal. The single crystal images were observed by scanning electron microscope (SEM) and metallographic microscope (MM). The micromechanism of crystal growth is also proposed through the investigations of SEM and MM.

  10. Growth of MgO on multi-layered graphene and Mg in PVA matrix

    NASA Astrophysics Data System (ADS)

    Marka, Sandeep K.; Mohiddon, Md. Ahamad; Prasad, Muvva D.; Srikanth, Vadali V. S. S.

    2015-07-01

    An easy and low temperature in-situ growth of MgO micro-rods on multi-layered graphene (MLG) in poly vinyl alcohol (PVA) matrix is elucidated. MLG decked with nanosized fragments of MgO and PVA are used as the starting materials to form MgO micro-rods (width = ∼1 μm and length = ∼4 μm) and MLG filled PVA composite film. Simple solution mixing, spin coating and simple drying processes are used to obtain the PVA composite. The growth mechanism of MgO micro-rods and the role of PVA in the growth of MgO micro-rods are explained on the basis of the observed morphological, structural and phase characteristics and a further controlled synthesis experiment, respectively.

  11. Role of MgCo compound on the sorption properties of the Mg-Co milled mixtures

    NASA Astrophysics Data System (ADS)

    Verón, M. G.; Gennari, F. C.; Meyer, G. O.

    The influence of MgCo on the reaction paths during hydriding and dehydriding processes of Mg-Co mixtures was studied using a combined HP-DSC and XRD approach. Mg-Co mixtures with different compositions were mechanically milled under argon to prepare Mg-Co nanocomposites and then submitted to thermal treatment at 300 °C for 5 days to induce MgCo formation. The local Mg-Co composition in the milled and milled-heated samples determines the nature of the phases obtained after hydriding/dehydriding cycling. The formation of Mg 6Co 2H 11, Mg 2CoH 5 and MgH 2 hydrides occurs after the first hydriding stage of the 2Mg-Co and Mg-Co milled mixtures due to kinetic restrictions. On the contrary, Mg-Co milled-heated mixture exhibits the selective formation of Mg 2CoH 5 during first hydriding via two-step reaction. In the first one, MgCo disproportion to MgH 2 and Co takes place simultaneously with Mg hydriding (<200 °C). The second step involves MgCo hydriding to Mg 2CoH 5 through MgH 2 as intermediate phase (>200 °C). Dehydriding reaction is enhanced by dispersion of Co into Mg-matrix, which reduces more than 100 °C the hydrogen desorption temperature when compared with the Mg-Co milled sample without previous heating.

  12. Secondary Coincidence Site Lattice Model for Truncated Triangular β-Mg2Sn Precipitates in a Mg-Sn-Based Alloy

    NASA Astrophysics Data System (ADS)

    Shi, Z.-Z.; Dai, F.-Z.; Zhang, M.; Gu, X.-F.; Zhang, W.-Z.

    2013-06-01

    This article presents a model of a secondary coincidence site lattice (CSLΙΙ). It is applied to interpret a truncated triangular morphology of β-Mg2Sn precipitates in an Mg-Sn-based alloy. With a slight long-range strain being accommodated elastically, the distribution of good matching sites (GMS) on interfaces between the β-Mg2Sn precipitates and α-Mg matrix exhibits double periodicity. One is within GMS clusters, and the other is carried by the constrained-CSLΙΙ (CCSLΙΙ) points at the centers of the GMS clusters. The calculated results fully agree with the experimental results, including the irrational orientation relationship, the habit plane, and the irrational side facets. The preferred state of the interfaces, the preferred ledge height, and the preferred Burgers vectors of secondary dislocations have been discussed.

  13. Thermodynamic calculations of Fe–Mg interdiffusion in (Mg,Fe){sub 2}SiO{sub 4} polymorphs and perovskite

    SciTech Connect

    Zhang, Baohua Shan, Shuangming

    2015-02-07

    In this study, we show that the temperature and pressure dependence of Fe–Mg interdiffusion in (Fe,Mg){sub 2}SiO{sub 4} polymorphs (olivine, wadsleyite, and ringwoodite) and perovskite can be successfully reproduced in terms of bulk elastic and expansivity data through a thermodynamic model (so-called cBΩ model) that interconnects point defect parameters with bulk properties. Under dry and wet conditions, our calculated Fe–Mg interdiffusion coefficients D{sub calc}{sup Fe-Mg} (particularly for anisotropic diffusivity in olivine), activation enthalpy h{sup act}, and activation volume υ{sup act} over a wide range of geologically relevant temperatures (1000–2400 K) and pressures (0–100 GPa) are consistent with the experimental ones when the uncertainties are considered.

  14. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    SciTech Connect

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  15. Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    Hu, Shuanglin; Li, S.-Y.; Ahuja, R.; Granqvist, C. G.; Hermansson, K.; Niklasson, G. A.; Scheicher, R. H.

    2012-11-01

    Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < ħω < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  16. Optical properties of Mg-doped VO{sub 2}: Absorption measurements and hybrid functional calculations

    SciTech Connect

    Hu Shuanglin; Li, S.-Y.; Granqvist, C. G.; Niklasson, G. A.; Ahuja, R.; Scheicher, R. H.; Hermansson, K.

    2012-11-12

    Mg-doped VO{sub 2} thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < h{omega} < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  17. Study of the microwave electrodynamic response of MgB 2 thin films

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Cassinese, A.; Cantoni, C.; Di Gennaro, E.; Lamura, G.; Maglione, M. G.; Paranthaman, M.; Salluzzo, M.; Vaglio, R.

    2002-08-01

    We present a study on the power dependence of the microwave surface impedance in thin films of the novel superconductor MgB 2. 500 nm thick samples exhibiting critical temperatures ranging between 26 and 38 K are synthesized by an ex situ post-anneal of e-beam evaporated boron in the presence of an Mg vapor at 900 °C. Preliminary results on films grown in situ by a high rate magnetron sputtering technique from stoichiometric MgB 2 and Mg targets are also reported. Microwave measurements have been carried out employing a dielectrically loaded niobium superconducting cavity operating at 19.8 GHz and 4 K. The study shows that the electrodynamic response of MgB 2 films is presently dominated by extrinsic sources of dissipation, appearing already at low microwave power, likely to be ascribed to the presence of grain boundaries and normal inclusions in the samples.

  18. Pulsed laser micromachining of Mg-Cu-Gd bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Kai; Lee, Ching-Jen; Hu, Ting-Ting; Li, Chun-Han; Huang, J. C.

    2012-06-01

    Micromachining of Mg-based bulk metallic glasses (BMGs) is performed using two kinds of pulsed nanosecond lasers: a 355 nm ultraviolet (UV) laser and a 1064 nm infrared (IR) laser. Precision machining on the micrometer scale and the preservation of amorphous or short-range order characteristics are important for the application of BMGs in micro-electro-mechanical systems. A higher micromachining rate is achieved using the UV laser than using the IR laser due to a better absorption rate of the former by Mg-based BMGs and a higher photon energy. The cutting depth of Mg-based BMGs ranges from 1 to 80 μm depending on the laser parameters. By appropriate adjustment of the laser power and scan speed, successful machining of the Mg-based BMG with preservation of the amorphous phase is achieved after the laser irradiation process. Short-pulse laser cutting represents a suitable alternative for machining of micro components.

  19. High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Xu, Jian; Ma, Evan

    2007-12-01

    We report bulk metallic glasses with critical diameter (Dc) in the 20-27mm range over a relatively wide composition range in the Mg-Cu-Ag-Gd quaternary system. Such an extraordinary glass-forming ability is correlated with the relatively strong liquid behavior of these alloys in terms of Angell's [Science 267, 1924 (1995)] fragility concept. The relaxation time of the ternary Mg61Cu28Gd11 and quaternary Mg59.5Cu22.9Ag6.6Gd11 alloys was measured. In terms of the fragility parameter D*, the Mg59.5Cu22.9Ag6.6Gd11 alloy with a critical diameter of 27mm under copper mold casting has a D* of 25, higher than all the bulk metallic glass-forming alloys reported so far. The implications of these findings are discussed.

  20. Multilayer MgB2 superconducting quantum interference filter magnetometers

    NASA Astrophysics Data System (ADS)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.; Xi, X. X.; Chen, Ke

    2016-04-01

    We report two types of all-MgB2 superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB2 superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm2. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ˜16 V/T at 3 K and a field noise of ˜110 pT/Hz1/2 above 100 Hz at 10 K. In a second configuration, the SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm2 to 25 μm2 and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ˜70 pT/Hz1/2 above 100 Hz at 20 K.

  1. Impact of Mg content on native point defects in Mg{sub x}Zn{sub 1−x}O (0 ≤ x ≤ 0.56)

    SciTech Connect

    Perkins, J.; Foster, G. M.; Myer, M.; Mehra, S.; Chauveau, J. M.; Hierro, A.; Windl, W.; Brillson, L. J.

    2015-06-01

    We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the densities, energy levels, and spatial distributions of zinc/magnesium cation and oxygen vacancies in isostructural, single-phase, non-polar Mg{sub x}Zn{sub 1−x}O alloys over a wide (0 ≤ x ≤ 0.56) range. Within this wide range, both defect types exhibit strong Mg content-dependent surface segregation and pronounced bulk density minima corresponding to unit cell volume minima, which can inhibit defect formation due to electrostatic repulsion. Mg in ZnO significantly reduces native defect densities and their non-polar surface segregation, both major factors in carrier transport and doping of these oxide semiconductors.

  2. A first-principles study of the thermodynamic and electronic properties of Mg and MgH2 nanowires.

    PubMed

    Wu, Xinxing; Zhang, Ruiqi; Yang, Jinlong

    2016-07-28

    In this article, we studied the thermodynamic and electronic properties of Mg and MgH2 nanowires with different diameters, and elucidated why MgH2 nanowires are good hydrogen storage materials through first-principles calculations. Previous experiments have shown that the orientation relationship between Mg and MgH2 nanowires is the Mg[0001] direction parallel to the MgH2[110] direction. In our calculations, Mg nanowires oriented along the [0001] direction and MgH2 nanowires oriented along the [110] direction were built from bulk Mg and MgH2 crystals, respectively. We found that as the diameters of Mg and MgH2 nanowires decrease, Mg and MgH2 nanowires become more unstable, and the hydrogen desorption energies and temperatures of MgH2 nanowires decrease. That is, the thinner the MgH2 nanowires get, the more dramatically hydrogen desorption temperatures (Td) will decrease. Meanwhile, we also found that when the diameters of MgH2 nanowires are larger than 1.94 nm, the Td almost maintain the same value at about 440 K, only about 40 K lower than that of bulk MgH2 crystal; if the diameters are less than 1.94 nm, the Td reduce very quickly. In particular, compared with bulk MgH2 crystal, the Td of the thinnest MgH2 nanowire with a diameter of 0.63 nm can be reduced by 164 K. In addition, the electronic structure calculations showed that Mg nanowires are metals, while MgH2 nanowires are semiconductors. In particular, our results showed that the electronic structures of MgH2 nanowires are influenced by the surface effect and quantum size effect. That is to say, the band gaps of MgH2 nanowires are controlled by surface electronic states and the size of MgH2 nanowires. PMID:27376680

  3. Pulse spreading and range correction analysis for satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Schwartz, Jon A.

    1990-01-01

    The pulse spreading resulting from light detection and ranging measurements of the range to earth-orbiting satellites is described. An analysis quantifying this pulse spreading and the calculation of corrections to be applied to the lidar range determination of satellites is detailed.

  4. Pulse spreading and range correction analysis for satellite laser ranging.

    PubMed

    Schwartz, J A

    1990-09-01

    The pulse spreading resulting from light detection and ranging measurements of the range to earth-orbiting satellites is described. An analysis quantifying this pulse spreading and the calculation of corrections to be applied to the lidar range determination of satellites is detailed. PMID:20567459

  5. Experimental investigation of T =1 analog states of 26Al and 26Mg

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Bhattacharya, C.; Rana, T. K.; Manna, S.; Kundu, S.; Bhattacharya, S.; Banerjee, K.; Roy, P.; Pandey, R.; Mukherjee, G.; Ghosh, T. K.; Meena, J. K.; Roy, T.; Chaudhuri, A.; Sinha, M.; Saha, A. K.; Asgar, Md. A.; Dey, A.; Roy, Subinit; Shaikh, Md. M.

    2016-04-01

    The even-even nucleus 26Mg has been studied through the reaction 27Al(d ,3He) at 25 MeV beam energy. The spectroscopic factors of the lowest (T =1 ) states of 26Mg have been extracted using the zero-range distorted wave Born approximation. These spectroscopic factors are compared with those of T =1 analog states in 26Al and found to be in good agreement.

  6. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries

    SciTech Connect

    Shao, Yuyan; Gu, Meng; Li, Xiaolin; Nie, Zimin; Zuo, Pengjian; Li, Guosheng; Liu, Tianbiao L.; Xiao, Jie; Cheng, Yingwen; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2014-01-08

    Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes.1,2 Here we report the synthesis and application of Bi nanotubes as a high performance anode material for rechargeable Mg ion batteries. The nanostructured Bi anode delivers a high reversible specific capacity (350 mAh/gBi, or 3430 mAh/cm3 Bi), excellent stability, and high columbic efficiency (95 % initial and very close to 100% afterwards). The good performance is attributed to the unique properties of in-situ formed, interconnected nanoporous bismuth. Such nanostructures can effectively accommodate the large volume change without losing electric contact and significantly reduce diffusion length for Mg2+. Significantly, the nanostructured Bi anode can be used with conventional electrolytes which will open new opportunities to study Mg ion battery chemistry and further improve the properties. The performance and the stability of a full cell Mg ion battery have been demonstrated with conventional electrolytes. This work suggests that other high energy density alloy compounds may also be considered for Mg-ion chemistry for high capacity electrode materials.

  7. A preliminary study for novel use of two Mg alloys (WE43 and Mg3Gd).

    PubMed

    Guo, Yu; Liu, Weiwei; Ma, Shanshan; Wang, Jia; Zou, Jingting; Liu, Zhenzhen; Zhao, Jinghui; Zhou, Yanmin

    2016-05-01

    In this study, two types of magnesium alloys (WE43 and Mg3Gd) were compared with Heal-All membrane (a biodegradable membrane used in guided bone regeneration) in vitro to determine whether the alloys could be used as biodegradable membranes. Degradation behavior was assessed using immersion testing with simulated body fluid (SBF). Microstructural characteristics before and after immersion were evaluated through scanning electron microscopy, and degradation products were analyzed with energy dispersive spectrometry (EDS). To evaluate the biocompatibility of the three types of materials, we performed cytotoxicity, adhesion, and mineralization tests using human osteoblast-like MG63 cells. Immersion testing results showed no significant difference in degradation rate between WE43 and Mg3Gd alloys. However, both Mg alloys corroded faster than the Heal-All membrane, with pitting corrosion as the main corrosion mode for the alloys. Degradation products mainly included P- and Ca-containing apatites on the surface of WE43 and Mg3Gd, whereas these apatites were rarely detected on the surface of the Heal-All membrane. All three type of materials exhibited good biocompatibility. In the mineralization experiment, the alkaline phosphatase (ALP) activity of 10 % Mg3Gd extract was significantly higher than the extracts of the two other materials and the negative control. This study highlighted the potential of these Mg-REE alloys for uses in bone regeneration and further studies and refinements are obviously required. PMID:26968757

  8. Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells.

    PubMed

    Zannotti, Marco; Wood, Christopher J; Summers, Gareth H; Stevens, Lee A; Hall, Matthew R; Snape, Colin E; Giovannetti, Rita; Giovanetti, Rita; Gibson, Elizabeth A

    2015-11-11

    Mg Ni mixed metal oxide photocathodes have been prepared by a mixed NiCl2/MgCl2 sol-gel process. The MgO/NiO electrodes have been extensively characterized using physical and electrochemical methods. Dye-sensitized solar cells have been prepared from these films, and the higher concentrations of MgO improved the photovoltage of these devices; however, there was a notable drop in photocurrent with increasing Mg(2+). Charge extraction and XPS experiments revealed that the cause of this was a positive shift in the energy of the valence band, which decreased the driving force for electron transfer from the NiO film to the dye and, therefore, the photocurrent. In addition, increasing concentrations of MgO increases the volume of pores between 0.500 and 0.050 μm, while reducing pore volumes in the mesopore range (less than 0.050 μm) and lowering BET surface area from approximately 41 down to 30 m(2) g(-1). A MgO concentration of 5% was found to strike a balance between the increased photovoltage and decreased photocurrent, possessing a BET surface area of 35 m(2) g(-1) and a large pore volume in both the meso- and macropore range, which lead to a higher overall power conversion efficiency than NiO alone. PMID:26468918

  9. Hydroxyl Motion in Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka; Isobe, Masahiko

    2015-11-01

    We report on pulsed 1H NMR studies of the hydroxyl OH groups in magnesium hydroxide Mg(OH)2 at 77-355 K at 42.5772 MHz. The Fourier-transformed NMR spectra show the superposition of broad and narrow components. The broad NMR spectrum is assigned to dipole-coupled protons on a rigid lattice in the bulk Mg(OH)2, while the narrow NMR spectrum is assigned to extrinsic protons, e.g., conduction protons facilitated by lattice defects. We found a monotonically decreasing linewidth of the broad NMR spectrum on heating. The monotonic decrease in the linewidth is associated with hopping protons around a threefold axis (rotational hydroxyl protons).

  10. Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2014-01-01

    Interdiffusion and impurity diffusion in Mg binary solid solutions, Mg(Al) and Mg(Zn) were investigated at temperatures ranging from 623 to 723 K. Interdiffusion coef cients were determined via the Boltzmann Matano Method using solid-to-solid diffusion couples assembled with polycrystalline Mg and Mg(Al) or Mg(Zn) solid solutions. In addition, the Hall method was employed to extrapolate the impurity diffusion coef cients of Al and Zn in pure polycrystalline Mg. For all diffusion couples, electron micro-probe analysis was utilized for the measurement of concentration pro les. The interdiffusion coef cient in Mg(Zn) was higher than that of Mg(Al) by an order of magnitude. Additionally, the interdiffusion coef cient increased signi cantly as a function of Al content in Mg(Al) solid solution, but very little with Zn content in Mg(Zn) solid solution. The activation energy and pre-exponential factor for the average effective interdiffusion coef cient in Mg(Al) solid solution were determined to be 186.8 ( 0.9) kJ/mol and 7.69 x 10-1 ( 1.80 x 10-1) m2/s, respectively, while those determined for Mg(Zn) solid solution were 139.5 ( 4.0) kJ/mol and 1.48 x 10-3 ( 1.13 x 10-3) m2/s. In Mg, the Zn impurity diffusion coef cient was an order of magnitude higher than the Al impurity diffusion coef cient. The activation energy and pre-exponential factor for diffusion of Al impurity in Mg were determined to be 139.3 ( 14.8) kJ/mol and 6.25 x 10-5 ( 5.37 x 10-4) m2/s, respectively, while those for diffusion of Zn impurity in Mg were determined to be 118.6 ( 6.3) kJ/mol and 2.90 x 10-5 ( 4.41 x 10-5) m2/s.

  11. The significance of Mg in prebiotic geochemistry

    PubMed Central

    Holm, N G

    2012-01-01

    Magnesium plays a special role in biochemistry because of its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg2+ can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the folding of molecules like RNA. This property of Mg2+ also helps the stabilization of diphosphate and triphosphate groups of nucleotides, as well as promoting the condensation of orthophosphate to oligophosphates, like pyrophosphate and trimetaphosphate. Borates, on the other hand, are known to promote the formation of nucleobases and carbohydrates, ribose in particular, which is yet another constituent of nucleotides. The oldest borate minerals that we find on Earth today are magnesium borates. Dissolved borate stabilizes pentose sugars by forming complexes with cis-hydroxyl groups. In the furanose form of ribose, the preferential binding occurs to the 2 and 3 carbon, leaving the 5 carbon free for phosphorylation. The central role of Mg2+ in the function of ribozymes and its ‘archaic’ position in ribosomes, and the fact that magnesium generally has coordination properties different from other cations, suggests that the inorganic chemistry of magnesium had a key position in the first chemical processes leading to the origin and early evolution of life. PMID:22429303

  12. Mg acceptor doping of In{sub 2}O{sub 3} and overcompensation by oxygen vacancies

    SciTech Connect

    Bierwagen, Oliver; Speck, James S.

    2012-09-03

    Mg-doped indium oxide (In{sub 2}O{sub 3}) thin films were grown by plasma-assisted molecular beam epitaxy with Mg-concentrations ranging from 10{sup 17} to 6 Multiplication-Sign 10{sup 20} cm{sup -3}. In this concentration range Mg was incorporated into In{sub 2}O{sub 3} without discernable impediment nor formation of secondary phases. Despite the role of Mg as acceptor, the films were n-type conductive in the as-grown state or after annealing in vacuum. For Mg-concentrations well in excess of the unintentional donor concentration annealing in oxygen resulted in semi-insulating films without detectable p-type conductivity. These results strongly suggest oxygen vacancies to act as shallow donors in In{sub 2}O{sub 3} that can overcompensate the Mg acceptors.

  13. Roaming dynamics in the MgH + H→Mg + H 2 reaction: Quantum dynamics calculations

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Tanaka, Tomokazu

    2011-03-01

    Reaction mechanisms of the MgH + H→Mg + H 2 reaction have been investigated using quantum reactive scattering methods on a global ab initio potential energy surface. There exist two microscopic mechanisms in the dynamics of this reaction. One is a direct hydrogen abstraction reaction and the other proceeds via initial formation of a HMgH complex in the deep potential well. The result of the present quantum dynamics calculations suggests that the HMgH complex formed in the reaction mainly decays into the Mg + H 2 channel via a 'roaming mechanism' without going through the saddle point region.

  14. NEXAFS Study of Air Oxidation for Mg Nanoparticle Thin Film

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S.

    2013-03-01

    The air oxidation reaction of Mg nanoparticle thin film has been investigated by Mg K-edge NEXAFS technique. It is revealed that MgO is formed on the Mg nanoparticle surfaces at the early stage of the air oxidation for Mg nanoparticle thin film. The simulation of NEXAFS spectrum using standard spectra indicates the existence of complex magnesium carbonates (x(MgCO3).yMg(OH2).z(H2O)) in addition to MgO at the early stage of the air oxidation.

  15. MagFRET: The First Genetically Encoded Fluorescent Mg2+ Sensor

    PubMed Central

    Oortwijn, Jorn; Aper, Stijn J. A.; Merkx, Maarten

    2013-01-01

    Magnesium has important structural, catalytic and signaling roles in cells, yet few tools exist to image this metal ion in real time and at subcellular resolution. Here we report the first genetically encoded sensor for Mg2+, MagFRET-1. This sensor is based on the high-affinity Mg2+ binding domain of human centrin 3 (HsCen3), which undergoes a transition from a molten-globular apo form to a compactly-folded Mg2+-bound state. Fusion of Cerulean and Citrine fluorescent domains to the ends of HsCen3, yielded MagFRET-1, which combines a physiologically relevant Mg2+ affinity (Kd = 148 µM) with a 50% increase in emission ratio upon Mg2+ binding due to a change in FRET efficiency between Cerulean and Citrine. Mutations in the metal binding sites yielded MagFRET variants whose Mg2+ affinities were attenuated 2- to 100-fold relative to MagFRET-1, thus covering a broad range of Mg2+ concentrations. In situ experiments in HEK293 cells showed that MagFRET-1 can be targeted to the cytosol and the nucleus. Clear responses to changes in extracellular Mg2+ concentration were observed for MagFRET-1-expressing HEK293 cells when they were permeabilized with digitonin, whereas similar changes were not observed for intact cells. Although MagFRET-1 is also sensitive to Ca2+, this affinity is sufficiently attenuated (Kd of 10 µM) to make the sensor insensitive to known Ca2+ stimuli in HEK293 cells. While the potential and limitations of the MagFRET sensors for intracellular Mg2+ imaging need to be further established, we expect that these genetically encoded and ratiometric fluorescent Mg2+ sensors could prove very useful in understanding intracellular Mg2+ homeostasis and signaling. PMID:24312622

  16. Validation of the MG-DIS: a disability assessment for myasthenia gravis.

    PubMed

    Raggi, Alberto; Leonardi, Matilde; Schiavolin, Silvia; Antozzi, Carlo; Brenna, Greta; Maggi, Lorenzo; Mantegazza, Renato

    2016-05-01

    This paper is aimed to present the validation of the myasthenia gravis disability assessment (MG-DIS), a MG-specific patient-reported disability outcome measure. Consecutive MG patients were enrolled, followed-up for 12 months and administered the SF-36, the WHO disability assessment schedule (WHODAS 2.0) and the preliminary 31-item MG-DIS addressing impairments and activity limitations. Factor structure and metric properties were assessed. In total, 109 patients were enrolled: 76 were females, mean age 50, mean MG duration 10.4 years, 86 were AChR-positive. The MG-DIS was reduced to 20 items, explaining 70.6 % of the original questionnaire variance, four subscales (generalized impairment-related problems; bulbar function-related problems; mental health and fatigue-related problems; vision-related problems) and an overall disability index. The MG-DIS has good metric properties (Cronbach's alpha ranging between .808 and .930), is stable, showed to be more sensitive than the WHODAS 2.0 and SF-36 to detect group differences and longitudinal changes and was well correlated with the MG-composite (.642). The MG-DIS includes items representing ocular, generalized, bulbar and respiratory symptoms, and is therefore well-built around MG-specific features. MG-DIS can be used in clinical trials as well as in observational or epidemiological studies to characterize patients' disability level and address the amount of improvement in disability. Further studies are needed to explore the possibility of a shorter disability scale. PMID:26931109

  17. Incorporation of Mg in Free-Standing HVPE GaN Substrates

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K.

    2016-06-01

    Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm-3 and 1019 cm-3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor-shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm-3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.

  18. Sr, Mg cosubstituted HA porous macro-granules: potentialities as resorbable bone filler with antiosteoporotic functions.

    PubMed

    Landi, Elena; Uggeri, Jacopo; Medri, Valentina; Guizzardi, Stefano

    2013-09-01

    Porous macro-granules of nanostructured apatite with Ca ions partially cosubstituted with Mg and Sr ions in different ratios (SrMgHAs), were synthesized at 37°C and compared with Mg and/or Sr free apatites (MgHAs and HA). Strontium improved the Mg substitution extent in the apatite and the chemical-physical and thermal stability of the resulting cosubstituted apatite. Porous macro-granules of 400-600 micron with selected composition were tested for the ionic release in synthetic body fluid and the data were related with the results of preliminary cell investigation in vitro. As compared to the corresponding Sr-free granulate, the SrMgHA could be exploited to prolong the beneficial Mg release during the bone regeneration process. In addition the contemporary in situ supply of Sr, an antiosteoporotic and anticarie ion, could influence the quality of new hard tissues. The ionic multirelease created a more favorable environment for human osteoblasts, demonstrated by a proliferative effect for each dose tested in the range 0.1-10 mg/mL. PMID:23348958

  19. Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable 26Mg.

    PubMed

    Schwartz, R; Spencer, H; Welsh, J J

    1984-04-01

    Collards, turnip greens, leaf lettuce, and spinach, grown in nutrient solution so that their Mg content was 80 to 90% 26Mg, were tested in ambulant male volunteers stabilized on a constant metabolic diet. The freeze-dried vegetables were incorporated in bran muffins in which the vegetables replaced part of the bran. Bran muffins without vegetables were consumed for breakfast each day. They were also used as a standard test meal to which the vegetable muffins were compared. All subjects participated in three consecutive isotope absorption tests: one of the standard test meal and two of the vegetables. The standard test was carried out after at least 30 days on the controlled diet. Subsequent tests of vegetables followed at 4-wk intervals. Each test meal contained 30 microCi 28MgCl2 and 50 mg stable 26Mg, the latter either as the intrinsic label of a test vegetable or as 26MgCl2 in solution taken with the standard bran muffins. Net absorption of both isotopes was measured to establish exchangeability and to determine relative Mg absorption from the vegetables. Exchangeability was 90% or higher from all meals tested. Relative Mg absorption was highest from collards and least from the standard test meal. Net absorption values ranged from 40 to 60%. PMID:6711467

  20. Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable /sup 26/Mg

    SciTech Connect

    Schwartz, R.; Spencer, H.; Welsh, J.J.

    1984-04-01

    Collards, turnip greens, leaf lettuce, and spinach, grown in nutrient solution so that their Mg content was 80 to 90% /sup 26/Mg, were tested in ambulant male volunteers stabilized on a constant metabolic diet. The freeze-dried vegetables were incorporated in bran muffins in which the vegetables replaced part of the bran. Bran muffins without vegetables were consumed for breakfast each day. They were also used as a standard test meal to which the vegetable muffins were compared. All subjects participated in three consecutive isotope absorption tests: one of the standard test meal and two of the vegetables. The standard test was carried out after at least 30 days on the controlled diet. Subsequent tests of vegetables followed at 4-wk intervals. Each test meal contained 30 microCi /sup 28/MgCl2 and 50 mg stable /sup 26/Mg, the latter either as the intrinsic label of a test vegetable or as /sup 26/MgCl/sub 2/ in solution taken with the standard bran muffins. Net absorption of both isotopes was measured to establish exchangeability and to determine relative Mg absorption from the vegetables. Exchangeability was 90% or higher from all meals tested. Relative Mg absorption was highest from collards and least from the standard test meal. Net absorption values ranged from 40 to 60%.

  1. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  2. A fundamental study on the [(μ-Cl)3Mg2(THF)6]+ dimer electrolytes for rechargeable Mg batteries†

    PubMed Central

    Cox, Jonathan T.; Hu, Dehong; Deng, Xuchu; Hu, Jianzhi; Hu, Mary Y.; Xiao, Jie; Shao, Yuyan; Tang, Keqi; Liu, Jun

    2016-01-01

    The long sought solvated [MgCl]+ species in the Mg-dimer electrolytes was characterized by soft mass spectrometry. The presented study provides an insightful understanding on the electrolyte chemistry of rechargeable Mg batteries. PMID:25562393

  3. A Master Switch Couples Mg2+-Assisted Catalysis to Domain Motion in B. stearothermophilus Tryptophanyl-tRNA Synthetase

    PubMed Central

    Weinreb, Violetta; Li, Li; Carter, Charles W.

    2011-01-01

    Summary We demonstrate how Tryptophanyl-tRNA synthetase (TrpRS) uses conformation-dependent Mg2+ activation to couple catalysis of tryptophan activation to specific, functional domain movements. Rate acceleration by Mg2+ requires ~ -6.0 kcal/mole in protein•Mg2+ interaction energy, none of which arises from the active site. A highly cooperative interaction between Mg2+ and four residues from a remote, conserved motif that mediates the shear of domain movement: (i) destabilizes the pre-transition state conformation, thereby (ii) inducing the Mg2+ to stabilize the transition state for kcat by ~ -5.0 kcal/mole. Cooperative, long-range conformational effects on the metal therefore convert an inactive Mg2+ coordination into one that can stabilize the transition state if, and only if, domain motion occurs. Transient, conformation-dependent Mg2+ activation, analogous to the escapement in mechanical clocks, explains vectorial coupling. PMID:22244762

  4. Mg intercalation in layered and spinel host crystal structures for Mg batteries.

    PubMed

    Emly, Alexandra; Van der Ven, Anton

    2015-05-01

    We investigate electrochemical properties of Mg in layered and spinel intercalation compounds from first-principles using TiS2 as a model system. Our calculations predict that Mg(x)TiS2 in both the layered and spinel crystal structures exhibits sloping voltage profiles with steps at stoichiometric compositions due to Mg-vacancy ordering. Mg ions are predicted to occupy the octahedral sites in both layered and spinel TiS2 with diffusion mediated by hops between octahedral sites that pass through adjacent tetrahedral sites. Predicted migration barriers are substantially higher than typical Li-migration barriers in intercalation compounds. The migration barriers are shown to be very sensitive to lattice parameters of the host crystal structure. We also discuss the possible role of rehybridization between the transition metal and the anion in affecting migration barriers. PMID:25905428

  5. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Teng, Fang-Zhen; He, Yongsheng; Ke, Shan; Li, Shuguang

    2010-09-01

    High-precision Mg isotopic analysis was performed on a suite of well-characterized I-type granitoids and associated hornblende and biotite minerals from the Dabie Orogen in central China, to address the behavior of Mg isotopes during granite differentiation. Although these granitoids formed through different degrees of partial melting and fractional crystallization, with large variations in elemental and mineral compositions, their δ26Mg values vary from -0.26 to -0.14 and are indistinguishable within our analytical precision (± 0.07‰; 2 SD). Coexisting hornblendes and biotites in these granitoids display similar Mg isotopic composition, with δ26Mg ranging from -0.31 to -0.14 in hornblendes and -0.23 to -0.12 in biotites. The inter-mineral fractionation factors (Δ 26Mg Hbl-Bt = δ26Mg Hbl - δ26Mg Bt) vary from -0.10 to -0.02, with an average = -0.06 ± 0.08 (2 SD). The limited inter-mineral fractionation agrees with the theoretic prediction that Mg cations in both hornblende and biotite are octahedrally coordinated with oxygen, which restricts the magnitude of equilibrium isotope fractionation. Overall, data from both bulk granitoids and associated mineral separates suggest that Mg isotope fractionation during I-type granite differentiation is limited. Collectively, granitoids studied here have Mg isotopic composition similar to that of terrestrial basalts and peridotites ( δ26Mg = -0.21 ± 0.07 vs. -0.25 ± 0.07; 2 SD), confirming that magmatic processes do not significantly fractionate Mg isotopes. The continental crust in the Dabie Orogen, as sampled by these I-type granitoids, has a mantle-like Mg isotopic composition. Given that significant Mg isotope fractionation occurs during chemical weathering processes, Mg isotopes may potentially be used for tracing granite genesis, in particular, if sedimentary materials are involved in granite sources.

  6. Inter-species and Seasonal Variability in Mg / Ca in Larger Benthic Foraminifera: Implications for Paleo-proxy

    NASA Astrophysics Data System (ADS)

    Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.

    2015-12-01

    The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.

  7. Solidification and Microstructural Evolution of Hypereutectic Al-15Si-4Cu-Mg Alloys with High Magnesium Contents

    NASA Astrophysics Data System (ADS)

    Tebib, M.; Ajersch, F.; Samuel, A. M.; Chen, X.-G.

    2013-09-01

    The low coefficient of thermal expansion and good wear resistance of hypereutectic Al-Si-Mg alloys with high Mg contents, together with the increasing demand for lightweight materials in engine applications have generated an increasing interest in these materials in the automotive industry. In the interests of pursuing the development of new wear-resistant alloys, the current study was undertaken to investigate the effects of Mg additions ranging from 6 to 15 pct on the solidification behavior of hypereutectic Al-15Si-4Cu-Mg alloy using thermodynamic calculations, thermal analysis, and extensive microstructural examination. The Mg level strongly influenced the microstructural evolution of the primary Mg2Si phase as well as the solidification behavior. Thermodynamic predictions using ThermoCalc software reported the occurrence of six reactions, comprising the formation of primary Mg2Si; two pre-eutectic binary reactions, forming either Mg2Si + Si or Mg2Si + α-Al phases; the main ternary eutectic reaction forming Mg2Si + Si + α-Al; and two post-eutectic reactions resulting in the precipitation of the Q-Al5Mg8Cu2Si6 and θ-Al2Cu phases, respectively. Microstructures of the four alloys studied confirmed the presence of these phases, in addition to that of the π-Al8Mg3FeSi6 (π-Fe) phase. The presence of the π-Fe phase was also confirmed by thermal analysis. The morphology of the primary Mg2Si phase changed from an octahedral to a dendrite form at 12.52 pct Mg. Any further Mg addition only coarsened the dendrites. Image analysis measurements revealed a close correlation between the measured and calculated phase fractions of the primary Mg2Si and Si phases. ThermoCalc and Scheil calculations show good agreement with the experimental results obtained from microstructural and thermal analyses.

  8. Sequential ranging: How it works

    NASA Technical Reports Server (NTRS)

    Baugh, Harold W.

    1993-01-01

    This publication is directed to the users of data from the Sequential Ranging Assembly (SRA), and to others who have a general interest in range measurements. It covers the hardware, the software, and the processes used in acquiring range data; it does not cover analytical aspects such as the theory of modulation, detection, noise spectral density, and other highly technical subjects. In other words, it covers how ranging is done, but not the details of why it works. The publication also includes an appendix that gives a brief discussion of PN ranging, a capability now under development.

  9. Theoretical Investigation of the Electronic Structure and Spectra of Mg(2+)He and Mg(+)He.

    PubMed

    Bejaoui, M; Dhiflaoui, J; Mabrouk, N; El Ouelhazi, R; Berriche, H

    2016-02-11

    The ground and many excited states of the Mg(+)He van der Waals molecular system have been explored using a one-electron pseudopotential approach. In this approach, effective potentials are used to consider the Mg(2+) core and the electron-He effects. Furthermore, a core-core interaction is included. This has reduced the number of active electrons of the Mg(+)He, to be considered in the calculation, to a single valence electron. This has permitted to use extended Gaussian basis sets for Mg and He. Therefore, the potentianl energy and dipole moments calculations are carried out at the Hartree-Fock level of theory, and the spin-orbit effect is included using a semiclassical approach. The core-core interaction for the Mg(2+)He ground state is included using accurate CCSD(T) calculations. The spectroscopic constants of the Mg(+)He electronic states are extracted and compared with the existing theoretical works, where very good agreement is observed. Moreover, the transition dipole function has been determined for a large and dense grid of internuclear distances including the spin-orbit effect. PMID:26783874

  10. A thermokinetic model for Mg-Si couple formation in Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Svoboda, J.; Shan, Y. V.; Kozeschnik, E.; Fischer, F. D.

    2016-03-01

    Mg-Si couples formed from atomic Mg and Si represent the first step in Mg-Si cluster formation in a dilute Al-Mg-Si system. Based on the thermodynamic extremal principle, a kinetic model for Mg-Si couple formation is developed. The model utilizes the trapping concept for the calculation of Gibbs energy of the non-equilibrium system and provides a generalized (multiplicative) form of the Oriani equation for description of the equilibrium state. The dissipation in the system accounts for diffusion of both Mg and Si atoms in the lattice. The model is compared with the classical Lidiard and Howard equilibrium theory. Some demonstrative examples are presented. Finally the model is applied to an experimentally studied system. Good quantitative agreement with quenching experiments is obtained, if, simultaneously, the impact of excess quenched-in vacancies and their gradual annihilation in the system, which has been already treated in a previous paper, are accounted for. The model is generally applicable for any couple (and pair) formation.

  11. Laser cooling of MgCl and MgBr in theoretical approach

    SciTech Connect

    Wan, Mingjie; Shao, Juxiang; Huang, Duohui; Yang, Junsheng; Cao, Qilong; Jin, Chengguo; Wang, Fanhou; Gao, Yufeng

    2015-07-14

    Ab initio calculations for three low-lying electronic states (X{sup 2}Σ{sup +}, A{sup 2}Π, and 2{sup 2}Π) of MgCl and MgBr molecules, including spin-orbit coupling, are performed using multi-reference configuration interaction plus Davidson correction method. The calculations involve all-electronic basis sets and Douglas–Kroll scalar relativistic correction. Spectroscopic parameters well agree with available theoretical and experimental data. Highly diagonally distributed Franck-Condon factors f{sub 00} for A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) are determined for both MgCl and MgBr molecules. Suitable radiative lifetimes τ of A{sup 2}Π{sub 3/2,1/2} (υ′ = 0) states for rapid laser cooling are also obtained. The proposed laser drives A{sup 2}Π{sub 3/2} (υ′ = 0) → X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transition by using three wavelengths (main pump laser λ{sub 00}; two repumping lasers λ{sub 10} and λ{sub 21}). These results indicate the probability of laser cooling MgCl and MgBr molecules.

  12. Kwajalein missile range, Kwajalein, Marshall Islands range reference atmosphere 0-70 km altitude

    SciTech Connect

    Not Available

    1982-01-01

    Atmospheric parameters are essential to the research and development of missiles and aerospace vehicles. The need for realistic atmospheric models derived in a consistent manner for each of the several major test ranges was recognized in the early 1960's. An atmospheric model which is derived from statistical data for a particular geographical location is referred to as a reference atmosphere. This committee, Task MG-1, establishes RRAs Range Reference Atmospheres for the several ranges as provided by the RCC Range Commander's Council. An RRA is a model of the Earth's atmosphere over a geographical location of interest for use by DOD and other U.S. Government range users. The RRA is used to provide planning data for evaluating environmental constraints for the particular configurations of environment-sensitive systems and components being developed or undergoing tests. Using the best available upper atmosphere data base to include rawinsonde, rocketsonde and possibly other high-altitude data sources for the range location, the task is to establish a model of certain statistics for wind and thermodynamic quantities derived in a uniform manner and published in a standardized format.

  13. Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 km and 150 km altitude and WACCM-Mg model results

    NASA Astrophysics Data System (ADS)

    Langowski, M.; von Savigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, D.; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82°. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm-3 and 2000 cm-3. Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40° and densities at the peak altitude range from 500 cm-3 to 6000 cm-3. The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following

  14. Global Investigation of the Mg Atom and ion Layers using SCIAMACHY/Envisat Observations between 70 km and 150 km Altitude and WACCM-MG Model Results

    NASA Technical Reports Server (NTRS)

    Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However

  15. Thermoluminescence studies of γ-irradiated ZnO:Mg2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Kokila, M. K.; Nagabhushana, K. R.

    2016-07-01

    Pure and Mg2+ doped ZnO nanoparticles are synthesized by solution combustion method. X-ray diffraction studies of the samples confirm hexagonal phase. Crystallite size is calculated using Scherer formula and found to be ∼30 nm for undoped ZnO and 34-38 nm for Mg2+ doped ZnO. A broad PL emission in the range 400-600 nm with peaks at 400, 450, 468, 483, 492, 517, 553 nm are observed in both pure and Mg2+ doped nanoparticles. Near band edge emission of ZnO is observed at 400 nm. The broad band emissions are due to surface defects. PL emission intensity is found to increase with Mg2+ concentration up to 1.5 mol% and then decreases due to concentration quenching. Samples are irradiated with γ-rays in a dose range 0.05-8 kGy. Gamma irradiation doesn't affect PL properties. Undoped samples exhibit unstructured low intense TL glow with peak at 720 K. Whereas Mg2+ doped samples exhibit well structured TL glow curves with peak at ∼618 K. TL glow peak intensity of Mg2+ doped samples increases with Mg2+ concentration up to 2 mol%, thereafter decreases. TL curves of Mg2+ (2 mol%) doped ZnO exhibit two glows, a high intense peak at 618 K and a weak one with peak at ∼485 K. TL intensity of Mg2+ (2 mol%) doped ZnO samples increases with gamma dose up to 1 kGy and then decreases. Kinetic parameters of TL glows are calculated by deconvolution technique. Activation energy and frequency factor are found to be 1.5 eV and 3.38 × 1011 s-1 respectively.

  16. Structure and photoluminescence of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides

    SciTech Connect

    Chen Yufeng; Li Fei; Zhou Songhua; Wei Junchao; Dai Yanfeng; Chen Yiwang

    2010-09-15

    A series of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides (LDHs), with Eu/Al atomic ratios of {approx}0.06 and Mg/(Al+Eu) atomic ratios ranging from 1.3 to 4.0, were synthesized by a coprecipitation method. The Mg-Al-Eu ternary LDHs were investigated by various techniques. X-ray diffraction (XRD) results indicated that the crystallinity of the ternary LDHs was gradually improved with the increase of Mg{sup 2+}/(Al{sup 3+}+Eu{sup 3+}) molar ratio from 1.3/1 to 4/1, and all the samples were a single phase corresponding to LDH. The photoluminescent (PL) spectra of the ternary Mg-Al-Eu LDHs were described by the well-known {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2, 3, 4) of Eu{sup 3+} ions with the strongest emission for J=2, suggesting that the host LDH was favorable to the emissions of Eu{sup 3+} ions. The asymmetry parameter (R) relevant to {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2) dependant of the atomic ratios of Mg{sup 2+}/(Al{sup 3+}+Eu{sup 3+}) was discussed, and was consistent with the result of XRD. - Graphical abstract: A series of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides (LDHs), with Mg/(Al+Eu) atomic ratios ranging from 1.3/1, 2/1 3/1 to 4/1, were synthesized by a coprecipitation method. The photoluminescent spectra of the Mg-Al-Eu ternary LDHs are described by the well-known {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2, 3, 4) of Eu{sup 3+} ions with the strongest emission for J=2.

  17. Multistage growth of Fe-Mg-carpholite and Fe-Mg-chloritoid, from field evidence to thermodynamic modelling

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Bousquet, Romain; Vidal, Olivier; Plunder, Alexis; Duesterhoeft, Erik; Candan, Osman; Oberhänsli, Roland

    2015-04-01

    We provide new insights into the prograde evolution of HP/LT meta-sedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe-Mg-carpholite- and chloritoid-bearing rocks from the Afyon zone (Anatolia). Study samples, stemming from three different areas of the metamorphic belt, include typical quartz-carpholite veins as well as quartz-free and quartz-bearing phyllites. All samples exhibit multiple stages of carpholite, whereas zoning was until now rarely documented in this type of rocks. We document continuous, and discontinuous compositional (ferro-magnesian substitution) zoning of carpholite (overall XMg = 0.27-0.73) and chloritoid (overall XMg = 0.07-0.30), as well as clear equilibrium, and disequilibrium (i.e. reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2-20.0). Among this range, only values of 7-11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for (NaK)FMASH rock compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe-carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature, and calls for a future evaluation of possible use as a thermometer, valid for blueschist-facies conditions, which has so far been missing. In addition, calculations show significant effective bulk composition

  18. Dipole transition strengths in Mg26

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Wagner, A.; Fujita, Y.; Rusev, G.; Erhard, M.; de Frenne, D.; Grosse, E.; Junghans, A. R.; Kosev, K.; Schilling, K. D.

    2009-03-01

    Excited states with Jπ=1+ and 1- in Mg26 were studied in a photon-scattering experiment using bremsstrahlung produced by an electron beam of 13.0 MeV kinetic energy provided by the superconducting electron linear accelerator ELBE. We determined the transition strengths from the 1+ and 1- states to the ground state as well as to low-lying excited states. In addition, we observed a J=1 state at 11.154 MeV, above the neutron-separation energy of 11.093 MeV, and determined its partial γ decay width for the first time.

  19. On the dissociation energy of Mg2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Mclean, A. D.; Liu, Bowen

    1990-01-01

    The bonding in the X 1Sigma(+)g state of Mg2 is investigated using near-complete valence one-particle Slater and Gaussian basis sets containing up to h functions. It is shown that the four-electron complete CI limit can be approached using a sequence of either second-order CI (SOCI) or interacting correlated fragment (ICF) calculations. At the valence level, the best estimate of the dissociation energy D(e) was 464/cm. This is a lower limit and is probably within 5/cm of the complete basis value.

  20. The Atomization Energy of Mg4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    The atomization energy of Mg4 is determined using the MP2 and CCSD(T) levels of theory. Basis set incompleteness, basis set extrapolation, and core-valence effects are discussed. Our best atomization energy, including the zero-point energy and scalar relativistic effects, is 24.6+/-1.6 kcal per mol. Our computed and extrapolated values are compared with previous results, where it is observed that our extrapolated MP2 value is good agreement with the MP2-R12 value. The CCSD(T) and MP2 core effects are found to have the opposite signs.

  1. The magnesium isotope (δ26Mg) signature of dolomites

    NASA Astrophysics Data System (ADS)

    Geske, A.; Goldstein, R. H.; Mavromatis, V.; Richter, D. K.; Buhl, D.; Kluge, T.; John, C. M.; Immenhauser, A.

    2015-01-01

    Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (δ18O, δ13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipitation environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evaporative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine ("mixing zone") dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic investigation of dolomite magnesium isotope ratios (δ26Mgdol). Dolomite δ26Mg ratios documented here range, from -2.49‰ to -0.45‰ (δ26Mgmean = -1.75 ± 1.08‰, n = 42). The isotopically most depleted end member is represented by earliest diagenetic marine evaporative sabkha dolomites (-2.11 ± 0.54‰ 2σ, n = 14). In comparing ancient compositions to modern ones, some of the variation is probably due to alteration. Altered marine (-1.41 ± 0.64‰ 2σ, n = 4), and earliest diagenetic lacustrine and palustrine dolomites (-1.25 ± 0.86‰ 2σ, n = 14) are less negative than sabkha dolomites but not distinct in composition. Various hydrothermal dolomites are characterized by a comparatively wide range of δ26Mg ratios, with values of -1.44 ± 1.33‰ (2σ, n = 10). By using fluid inclusion data and clumped isotope thermometry (Δ47) to represent temperature of precipitation for hydrothermal dolomites, there is no correlation between fluid temperature (∼100 to 180 °C) and dolomite Mg isotope signature (R2 = 0.14); nor is there a correlation between δ26Mgdol and δ18Odol. Magnesium-isotope values of different dolomite types are affected by a complex array of different Mg sources and sinks, dissolution/precipitation and non

  2. Nucleation kinetics of nesquehonite (MgCO 3·3H 2O) in the MgCl 2-Na 2CO 3 system

    NASA Astrophysics Data System (ADS)

    Cheng, Wenting; Li, Zhibao

    2010-04-01

    The nucleation of nesquehonite (MgCO 3·3H 2O) in MgCl 2-Na 2CO 3 system with and without the addition of NaCl was studied within a supersaturation range of 1.06-1.48 at 288.15-308.15 K. The supersaturation ( S) of MgCO 3·3H 2O was exactly calculated by aqueous (H + ion) model through OLI platform. The conductivity method was applied in this experiment to determine the induction period of MgCO 3·3H 2O. The effects of temperature, supersaturation, and presence of additive (NaCl) on the induction period of MgCO 3·3H 2O were studied experimentally. As expected from theory, it was found that the induction period decreases when either temperature or supersaturation increases. The induction period was prolonged by adding NaCl in solutions at a constant supersaturation. From the dependence of the induction period on temperature and supersaturation, it was possible to distinguish between the homogeneous and heterogeneous nucleation mechanisms. At last, the activation energy ( Eact) for MgCO 3·3H 2O crystallization and the interfacial tension between MgCO 3·3H 2O and aqueous solutions of homogeneous ( γS,hom) and heterogeneous ( γS,het) nucleation were calculated from measurements of the induction period for the MgCO 3·3H 2O nucleation with and without the addition of NaCl.

  3. Ranging Behaviour of Commercial Free-Range Laying Hens.

    PubMed

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  4. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O. S.; Bénézeth, P.; Pearce, C.; Gérard, E.; Balor, S.; Oelkers, E. H.

    2011-07-01

    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (Δ26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from -1.4 to -0.7 ‰. This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonates.

  5. Variable Stars from the MG-1 Catalog

    NASA Astrophysics Data System (ADS)

    Flurchick, K. M.; Griego, Ben; Culver, Roger B.

    2014-06-01

    This work describes the recent efforts at North Carolina A&T(NCAT) mining the MG catalogs for variable stars. NCAT is a node in both the GNAT network and the SKYNET collaboration which forms the basis of the collaboration including access to instruments. The initial data analysis to obtain the light curves (LC) for MG-1 has been performed and a number of candidate variable stars have been identified including brown dwarf stars, eclipsing binaries and long period variable stars.Many of the identified candidate variable stars are now the subject of coordinated multi-site follow-on observations to elucidate the details of the variability. The coordinated observing includes researchers in Australia, Arizona, Colorado and North Carolina. As a node in both the GNAT network and the SKYNET collaboration NCAT has access to a number of instruments. Much of the observational work is performed using the SKYNET node in Chile.For the North Carolina work reported here, the observational work and initial LC generation is performed using telescopes and applications from the SKYNET program. In this work the instrumentation, the LC analysis and status of the coordinated follow-on observations arepresented.

  6. Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong; Chen, Mohan; Carter, Emily A.

    2016-06-01

    Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric Mg-Al compounds including Mg17Al12 , Mg13Al14 , and Mg23Al30 , and MgAl2 with orbital-free density-functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and independent elastic constants of these six materials and compare the results to those computed via Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent with available experimental data. We next compute their phonon spectra using the force constants extracted from the very fast OFDFT calculations, because such calculations are computationally challenging using KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 ×3 ×3 supercell consists of 1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other engineering alloys.

  7. The lunar laser ranging experiment.

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Currie, D. G.; Poultney, S. K.; Dicke, R. H.; Eckhardt, D. H.; Kaula, W. M.; Mulholland, J. D.; Plotkin, H. H.; Silverberg, E. C.; Faller, J. E.

    1973-01-01

    The scientific objectives achievable through high-accuracy range measurements to lunar retroreflectors are considered. A specific study of design questions related to the operation of retroreflectors on the lunar surface indicated that a reflector panel containing a number of solid fused silica corner reflectors would be capable of maintaining essentially diffraction limited performance under direct solar illumination. Initial Apollo 11 observations are discussed together with the installation of additional lunar retroreflectors in connection with the Luna 17, Apollo 14, Apollo 15, and Luna 21 missions. Range measurements at the McDonald Observatory are considered along with new results from lunar range data, and prospects regarding future lunar ranging stations.

  8. MgB2 superconducting joints for persistent current operation

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Xu, Xun; Barua, Shaon; Ma, Zongqing; Choi, Seyong; Tomsic, Mike; Kim, Jung Ho

    2015-06-01

    High-performance superconducting joints are essential for realizing persistent-mode magnets. Herein, we propose a concept and fabrication of such superconducting joints, which yielded reliable performance in the operating temperature range of 4.2-25 K. MgB2-MgB2 joints in magnets are known to result in deterioration of localized electrical, thermal, and mechanical properties. To overcome these problems, the ends of the two wires are inserted into a pellet press, which is then filled with a mixture of unreacted magnesium and boron powders, followed by heat treatment. The critical current capacity and joint resistance were precisely evaluated by the standard four-probe method in open-circuit and by field-decay measurements in a closed-loop, respectively. These joints demonstrated up to 66% of the current-carrying capacity of unjoined wire at 20 K, 2 T and joint resistance of 1.4 × 10-12 Ω at 4.2 K in self-field.

  9. Novel Co:MgF2 lidar for aerosol profiler

    NASA Technical Reports Server (NTRS)

    Acharekar, M. A.

    1993-01-01

    Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.

  10. Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al-Mg and Fe-Mg layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Caporale, A. G.; Pigna, M.; Dynes, J. J.; Cozzolino, V.; Zhu, J.; Violante, A.

    2012-04-01

    ligand concentration and was greater on Al-Mg-LDH than on Fe-Mg-LDH, evidently because arsenate anions have a stronger affinity for Fe than Al and for the presence in Fe-Mg-LDH of short-range-ordered materials on which arsenate forms very strong inner-sphere complexes not easily desorbable by competing ligands. The longer the arsenate residence time on the LDH surfaces the less effective the competing ligands were in desorbing arsenate from sorbents. The effect of increasing residence time on desorbing arsenate was similar for all ligands. However, for Al-Mg-LDH systems with phosphate, tartrate and oxalate, more arsenate was desorbed compared to Fe-Mg-LDH systems, at the same residence time. The amounts of arsenate desorbed by phosphate from LDHs increased with time, being characterized by an initially very fast desorption reaction followed by a much slower desorption reaction until a plateau was reached. A greater percentage of arsenate was removed by phosphate from Al-Mg-LDH than from Fe-Mg-LDH, suggesting that the main difference between two LDHs was in the amount of more easily desorbable arsenate. The implementation of decontamination systems of As-contaminated sources by providing for LDHs use would be able to combine the lower costs of remediation and effective removal of As from them.

  11. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  12. Substrate kinetics of the tonoplast h-translocating inorganic pyrophosphatase and its activation by free mg.

    PubMed

    White, P J; Marshall, J; Smith, J A

    1990-07-01

    To clarify the kinetic characteristics and ionic requirements of the tonoplast H(+)-translocating inorganic pyrophosphatase (H(+)-PPiase), PPi hydrolysis and PPi-dependent H(+) transport were studied in tonoplast vesicles isolated from leaf mesophyll tissue of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. The tonoplast H(+)-PPiase showed an absolute requirement for a monovalent cation and exhibited hyperbolic kinetics with respect to cation concentration. H(+)-PPiase activity was maximal in the presence of K(+) (K(50) approximately 3 millimolar), with PPi-dependent H(+) transport being more selective for K(+) than PPi hydrolysis. When assayed in the presence of 50 millimolar KCl at fixed PPi concentrations, H(+)-PPiase activity showed sigmoidal kinetics with respect to total Mg concentration, reflecting a requirement for a Mg/PPi complex as substrate and free Mg(2+) for activation. At saturating concentrations of free Mg(2+), H(+)-PPiase activity exhibited Michaelis-Menten kinetics towards MgPPi(2-) but not Mg(2)PPi, demonstrating that MgPPi(2-) was the true substrate of the enzyme. The apparent K(m) (MgPPi(2-)) for PPi hydrolysis (17 micromolar) was significantly higher than that for PPi-dependent H(+) transport (7 micromolar). Free Mg(2+) was shown to be an allosteric activator of the H(+)-PPiase, with Hill coefficients of 2.5 for PPi hydrolysis and 2.7 for PPi-dependent H(+) transport. Half-maximal H(+)-PPiase activity occurred at a free Mg(2+) concentration of 1.1 millimolar, which lies within the range of accepted values for cytosolic Mg(2+). In contrast, cytosolic concentrations of K(+) and MgPPi(2-) appear to be saturating for H(+)-PPiase activity. We propose that one function of the H(+)-PPiase may be to act as an ancillary enzyme that maintains the proton-motive force across the vacuolar membrane when the activity of the tonoplast H(+)-ATPase is restricted by substrate availability. As ATP levels decline in the cytosol, free Mg(2+) would be

  13. First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4)

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Seagle, C. T.; Zhou, H.; Heinz, D. L.

    2008-12-01

    11033768 First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4) Materials with the spinel crystal structure, AB2O4 are believed to be an important component of Earth's mantle and may be related to density and seismic wave velocity discontinuities at the transition zone from 400km to 660km depth. Using Ab-initio calculations, five phases are predicted to have a stability range at zero temperature: magnesium-aluminum spinel (MgAl2O4), two of its polymorphs, which are of Pbnm and Cmcm space groups, periclase (MgO) and corundum (Al2O3). Pbnm-MgAl2O4 has the calcium-ferrite structure and Cmcm-MgAl2O4 takes the calcium-titanate structure. Calculations are preformed using the PWSCF (Plane-Wave Self-Consistent Field) codes. The free energy of the compressed volume was calculated directly for each of the phases above. Based on the energy-volume results from the calculations, dissolution of MgAl2O4 into MgO + Al2O3 occurs at 12GPa and the mixture (MgO + Al2O3) is expected to recombine to form the calcium-ferrite type phase at about 27GPa. The two phase transition pressures are consistent with experimental results. Cell parameters of the five phases simulated and their bulk modulus derived from the energy-volume curve are also in good agreement with experimental work. But unlike the conclusions drawn from some previous experimental work, the calcium-ferrite type structure (Pbnm-MgAl2O4) did not transform to the calcium-titanate type structure (Cmcm-MgAl2O4) at around 40GPa, which provides the possibility that calcium-ferrite type phase may be stable to even higher pressures (up to100GPa). Derived parameters, bulk modulus and density of each phase are in good agreement with experimental results. The differences are within 4%. Compared to seismic velocity profiles of the earth, these phase transitions pressures match the discontinuity pressures at transition zone 400km (Fd3m- MgAl2O4 -> MgO + Al2O3) and 660km (MgO + Al2O3 -> Pbnm-MgAl2O4) respectively, suggesting

  14. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  15. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries.

    PubMed

    Shao, Yuyan; Gu, Meng; Li, Xiaolin; Nie, Zimin; Zuo, Pengjian; Li, Guosheng; Liu, Tianbiao; Xiao, Jie; Cheng, Yingwen; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun

    2014-01-01

    Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes. This paper reports the synthesis and application of Bi nanotubes as a high-performance anode material for rechargeable Mg ion batteries. The nanostructured Bi anode delivers a high reversible specific capacity (350 mAh/gBi or 3430 mAh/cm(3)Bi), excellent stability, and high Coulombic efficiency (95% initial and very close to 100% afterward). The good performance is attributed to the unique properties of in situ formed, interconnected nanoporous bismuth. Such nanostructures can effectively accommodate the large volume change without losing electric contact and significantly reduce diffusion length for Mg(2+). Significantly, the nanostructured Bi anode can be used with conventional electrolytes which will open new opportunities to study Mg ion battery chemistry and further improve its properties. PMID:24279987

  16. Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions

    NASA Astrophysics Data System (ADS)

    Kula, Anna; Jia, Xiaohui; Mishra, Raj K.; Niewczas, Marek

    2015-12-01

    The mechanical properties of Mg-Gd and Mg-Y solid solutions have been studied under uniaxial tension and compression between 4 K and 298 K (-269 °C and 25 °C). The results reveal that Mg-Gd alloys exhibit higher strength and ductility under tension and compression attributed to the more effective solid solution strengthening and grain-boundary strengthening effects. Profuse twinning has been observed under compression, resulting in a material texture with strong dominance of basal component parallel to compression axis. Under tension, twining is less active and the texture evolution is controlled mostly by slip. The alloys exhibit pronounced yield stress asymmetry and significantly different work-hardening behavior under tension and compression. Increasing of Gd and/or Y concentration leads to the reduction of the tension-compression asymmetry due to the weakening of the recrystallization texture and more balanced twinning and slip activity during plastic deformation. The results suggest that under compression of Mg-Y alloys slip is more active than twinning in comparison to Mg-Gd alloys.

  17. Toward Understanding the Roaming Mechanism in H + MgH → Mg + HH Reaction.

    PubMed

    Mauguière, Frédéric A L; Collins, Peter; Stamatiadis, Stamatis; Li, Anyang; Ezra, Gregory S; Farantos, Stavros C; Kramer, Zeb C; Carpenter, Barry K; Wiggins, Stephen; Guo, Hua

    2016-07-14

    The roaming mechanism in the reaction H + MgH →Mg + HH is investigated by classical and quantum dynamics employing an accurate ab initio three-dimensional ground electronic state potential energy surface. The reaction dynamics are explored by running trajectories initialized on a four-dimensional dividing surface anchored on three-dimensional normally hyperbolic invariant manifold associated with a family of unstable orbiting periodic orbits in the entrance channel of the reaction (H + MgH). By locating periodic orbits localized in the HMgH well or involving H orbiting around the MgH diatom, and following their continuation with the total energy, regions in phase space where reactive or nonreactive trajectories may be trapped are found. In this way roaming reaction pathways are deduced in phase space. Patterns similar to periodic orbits projected into configuration space are found for the quantum bound and resonance eigenstates. Roaming is attributed to the capture of the trajectories in the neighborhood of certain periodic orbits. The complex forming trajectories in the HMgH well can either return to the radical channel or "roam" to the MgHH minimum from where the molecule may react. PMID:26918375

  18. Apollo 15 Mg- and Fe-norites - A redefinition of the Mg-suite differentiation trend

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Marvin, U. B.; Mittlefehldt, D. W.

    1989-01-01

    The Apollo 15 highland rocks from the Apennine Front include clasts of mafic plutonic rocks from deep in the lunar crust that were brought to the surface by the Imbrium and Serenitatis impacts. The Apollo 15 norites exhibit wide variations in mineral and bulk compositions and include Fe-norites that plot between the three major pristine rock fields on a diagram of Mg' in mafic minerals vs An in paglioclase. Based on assemblages and compositions of minerals, and on ratios of elemental abundances, it is concluded that these Apollo 15 Fe-norites are differentiated members of the Mg-norite suite. The Apollo 15 and 17 norites and troctolites form a closely related suite of rocks, whose variations in mineral compositions represent the main differentiation trend of the Mg-suite. This trend in mineral compositions has a steeper slope than the previous Mg-suite field. The parent magmas for these Mg-suite rocks formed by partial melting deep in the lunar mantle. Differentiation by fractional crystallization may also have included assimilation of crustal components as the magmas rose from the mantle and crystallized plutons in the lower crust.

  19. Phase transition and optoelectronic properties of MgH2

    NASA Astrophysics Data System (ADS)

    Nayak, Vikas; Verma, U. P.

    2016-05-01

    In this article, structural and electronic properties of MgH2 have been studied. The aim behind this study was to find out the ground state crystal structure of MgH2. For the purpose, density functional theory (DFT)-based full-potential linearized augmented plane wave (FP-LAPW) calculations have been performed in three different space groups: P42/mnm (α-MgH2), Pa3 (β-MgH2) and Pbcn (γ-MgH2). It has been found that the ground state structure of MgH2 is α-MgH2. The present study shows that α-MgH2 transforms into γ-MgH2 at a pressure of 0.41 GPa. After further increase in pressure, γ-MgH2 transforms into β-MgH2 at a pressure of 3.67 GPa. The obtained results are in good agreement with previously reported experimental data. In all the studied phases, the behavior of MgH2 is insulating and its optical conductivity is around 6.0 eV. The α-MgH2 and γ-MgH2 are anisotropic materials while β-MgH2 is isotropic in nature.

  20. Internal reduction of (Mg,Ni)O: Morphology and kinetics

    SciTech Connect

    Rogers, K.A.; Trumble, K.P.

    1996-12-31

    Internal reduction microstructures in the (Mg{sub 1{minus}x}Ni{sub x})O system were studied as a function of temperature from 800 to 1350 {degrees}C and composition from 0.10 {le} x {le} 0.75. The microstructural variety extends from very fine Ni particles to a large scale interpenetrating vermiculite structures. Reduction microstructures are discussed in terms of composition and reduction temperature as a function of homologous temperature. The reduction kinetics in same composition range were studied, resulting in reduction rates an order of magnitude faster that observed previously with single crystals. The reduction rate was found to decrease with increasing composition, counter to most of the experimental evidence to date.

  1. Comparison between Mg II k and Ca II H images recorded by SUNRISE/SuFI

    SciTech Connect

    Danilovic, S.; Hirzberger, J.; Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Berkefeld, T.; Schmidt, W.; Knölker, M.; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro

    2014-03-20

    We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider. Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences cannot be explained only with instrumental effects or the evolution of the solar scene. The differences at least partially arise because of different line-formation heights, the stronger response of Mg k emission peaks to the higher temperatures, and the larger height range sampled by the broad Mg filter used here. This is evidently manifested during the flare when a surge in Mg evolves differently than in Ca.

  2. Comparison between Mg II k and Ca II H Images Recorded by SUNRISE/SuFI

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Hirzberger, J.; Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Gizon, L.; Knölker, M.; Schmidt, W.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.

    2014-03-01

    We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider. Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences cannot be explained only with instrumental effects or the evolution of the solar scene. The differences at least partially arise because of different line-formation heights, the stronger response of Mg k emission peaks to the higher temperatures, and the larger height range sampled by the broad Mg filter used here. This is evidently manifested during the flare when a surge in Mg evolves differently than in Ca.

  3. AC conductivity and structural properties of Mg-doped ZnO ceramic

    NASA Astrophysics Data System (ADS)

    Othman, Zayani Jaafar; Hafef, Olfa; Matoussi, Adel; Rossi, Francesca; Salviati, Giancarlo

    2015-11-01

    Undoped ZnO and Zn1- x Mg x O ceramic pellets were synthesized by the standard sintering method at the temperature of 1200 °C. The influence of Mg doping on the morphological, structural and electrical properties was studied. The scanning electron microscopy images revealed rough surface textured by grain boundaries and compacted grains having different shapes and sizes. Indeed, the X-ray diffraction reveals the alloying of hexagonal ZnMgO phase and the segregation of cubic MgO phase. The crystallite size, strain and stress were studied using Williamson-Hall (W-H) method. The results of mean particle size of Zn1- x Mg x O composites showed an inter-correlation with W-H analysis and Sherrer method. The electrical conductivity of the films was measured from 173 to 373 K in the frequency range of 0.1 Hz-1 MHz to identify the dominant conductivity mechanism. The DC conductivity is thermally activated by electron traps having activation energy of about 0.09 to 0.8 eV. The mechanisms of AC conductivity are controlled by the correlated barrier hopping model for the ZnO sample and the small polaron tunneling (SPT) model for Zn0.64Mg0.36O and Zn0.60Mg0.40O composites.

  4. Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Vida, Talita A.; Freitas, Emmanuelle S.; Brito, Crystopher; Cheung, Noé; Arenas, Maria A.; Conde, Ana; De Damborenea, Juan; Garcia, Amauri

    2016-06-01

    Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn11Mg2 and Zn-Zn2Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular-dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.

  5. Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Vida, Talita A.; Freitas, Emmanuelle S.; Brito, Crystopher; Cheung, Noé; Arenas, Maria A.; Conde, Ana; De Damborenea, Juan; Garcia, Amauri

    2016-04-01

    Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn11Mg2 and Zn-Zn2Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular-dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.

  6. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    SciTech Connect

    Mohammadi, Kh. Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-06-15

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps.

  7. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    SciTech Connect

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy; Nagaraju, G.; Lingaraju, K.; Naika, H. Raja; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  8. Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy

    SciTech Connect

    Kaiser, M.S.; Datta, S.; Roychowdhury, A. Banerjee, M.K.

    2008-11-15

    Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageing at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.

  9. Fabrication and Spark Plasma Sintering of Magnetic alpha-Fe/MgO Nanocomposite by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2016-02-01

    Solid-state reduction has occurred during mechanical alloying of a mixture of Fe2O3 and Mg powders at room temperature. It is found that magnetic nanocomposite in which MgO is dispersed in alpha-Fe matrix with nano-sized grains is obtained by mechanical alloying of Fe2O3 with Mg for 30 min. Consolidation of the ball-milled powders was performed in a spark plasma sintering (SPS) machine up to 800-1000 degrees C. X-ray diffraction result shows that the average grain size of alpha-Fe in a-Fe/MgO nanocomposite sintered at 800 degrees C is in the range of 110 nm. It can be also seen that the coercivity of SPS sample sintered at 800 degrees C is still high value of 88 Oe, suggesting that the grain growth of magnetic alpha-Fe phase during SPS process tends to be suppressed. PMID:27433621

  10. Direct determination of the band alignment at the (Zn,Mg)O/CISSe interface

    SciTech Connect

    Erfurth, F.; Reinert, F.; Weinhardt, L.; Grimm, A.; Palm, J.; Niesen, T. P.; Umbach, E.

    2011-04-04

    The electronic and chemical properties of the (Zn{sub 1-x},Mg{sub x})O/CuIn(S,Se){sub 2} interface, prepared by sputtering of thin (Zn,Mg)O layers, were investigated with direct and inverse photoelectron spectroscopy on in situ prepared samples. With the combination of both techniques we have determined the band alignment at this interface as a function of Mg-content in the range 0{<=}x{<=}0.30. We find that the band alignment at the interface can be tailored between a ''cliff'' (downward step) in the conduction band for pure ZnO and a 'spike' (upward step) for high Mg-contents. A direct influence of the band alignment modifications on the solar cell parameters is found.

  11. Thermoelectric properties of Zintl compound Ca1-xNaxMg2Bi1.98

    NASA Astrophysics Data System (ADS)

    Shuai, Jing; Kim, Hee Seok; Liu, Zihang; He, Ran; Sui, Jiehe; Ren, Zhifeng

    2016-05-01

    Motivated by good thermoelectric performance of Bi-based Zintl compounds Ca1-xYbxMg2Biy, we further studied the thermoelectric properties of Zintl compound CaMg2Bi1.98 by doping Na into Ca as Ca1-xNaxMg2Bi1.98 via mechanical alloying and hot pressing. We found that the electrical conductivity, Seebeck coefficient, power factor, and carrier concentration can be effectively adjusted by tuning the Na concentration. Transport measurement and calculations revealed that an optimal doping of 0.5 at. % Na achieved better average ZT and efficiency. The enhancement in thermoelectric performance is attributed to the increased carrier concentration and power factor. The low cost and nontoxicity of Ca1-xNaxMg2Bi1.98 makes it a potentially promising thermoelectric material for power generation in the mid-temperature range.

  12. Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal

    NASA Astrophysics Data System (ADS)

    Li, Xin; Li, Shuang-ming; Feng, Song-ke; Zhong, Hong; Fu, Heng-zhi

    2016-06-01

    Single-phase Mg2Sn crystal has been successfully directionally solidified from the melt with a high temperature gradient of 185 K cm-1. The solidified distance for the growth of single-phase Mg2Sn crystal was predicted theoretically and agreed well with the experimental result. The grown Mg2Sn crystals exhibit better thermoelectric performance and high thermoelectric figure of merit along the growth direction. In the temperature range from 300 K to 700 K, the maximum Seebeck coefficient S and electrical conductivity σ reached -261 μV K-1 and 525 Ω-1 m-1, respectively. The minimum thermal conductivity κ was measured to be 4.3 W m-1 K-1, and the lattice thermal conductivity approximated 90% of the bulk thermal conductivity of the crystal. The method developed in this work provides a methodological reference for preparation of Mg2BIV and its doped and solid-solution compounds.

  13. Mg doped InN and confirmation of free holes in InN

    SciTech Connect

    Wang, K.; Yamaguchi, T.; Miller, N.; Mayer, M. A.; Haller, E. E.; Iwamoto, R.; Araki, T.; Nanishi, Y.; Yu, K. M.; Walukiewicz, W.; Ager, J. W. III

    2011-01-24

    We report a systematic investigation on Mg doped InN epilayers grown by radio-frequency plasma-assisted molecular beam epitaxy. Electrolyte capacitance voltage (ECV) combined with thermopower measurements find p-type conduction over an Mg concentration range. For InN:Mg in this p-type 'window' the Seebeck coefficients dramatically change their signs from negative to positive when the thickness of undoped InN interlayer decreases to zero. This notable sign change of Seebeck coefficient explains the previous inconsistency between ECV and thermopower results and confirms the existence of mobile holes in the InN:Mg. Taking into account the undoped InN interlayer, the hole density and mobility are extracted.

  14. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  15. Range Restriction and Attenuation Corrections.

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Mendoza, Jorge L.

    The present paper reviews the techniques commonly used to correct an observed correlation coefficient for the simultaneous influence of attenuation and range restriction effects. It is noted that the procedure which is currently in use may be somewhat biased because it treats range restriction and attenuation as independent restrictive influences.…

  16. Institutional Long-Range Planning.

    ERIC Educational Resources Information Center

    Bolin, John G.

    This booklet presents a general outline for conducting a long-range planning study that can be adapted for use by any institution of higher education. The basic components of an effective long-range plan should include: (1) purposes of the plan, which define the scope of the study and provide the setting in which it will be initiated; (2) a set of…

  17. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  18. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  19. Autocatalytic Surface Hydroxylation of MgO(100) Terrace Sites Observed Under Ambient Conditions

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak E.R.; Porsgaard, S.; Salmeron, M.B.; Brown, Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-06-01

    We have investigated the reaction of water vapor with the MgO(100) surface using ambient pressure X-ray photoelectron spectroscopy (AP-XPS), which permits the study of the chemical composition of the MgO/water vapor interface at p(H{sub 2}O) in the Torr range. Water dissociation on thin MgO(100) films of 4-5.5 monolayers (ML) grown on Ag(100) was studied under isobaric conditions at p(H{sub 2}O) ranging from 0.005 to 0.5 Torr and temperatures from 380 to -10 C, up to a maximum relative humidity (RH) of 20%. At RH < 0.01% dissociative adsorption occurs only at defect sites (0.08 ML), while terrace sites remain unreactive toward water dissociation. In the range 0.01 < RH < 0.1% there is an abrupt onset of dissociative adsorption at terrace sites which saturates at 1 ML at 0.1% RH, and is accompanied by an increase in molecular water adsorption. At 20% RH there is 1 ML of molecularly adsorbed water interacting with a fully hydroxylated interface on MgO(100). The observed onset of hydroxylation near 0.01% RH is suggested to be due to water molecules aggregating at the surface, leading to an autocatalytic dissociation of water at MgO(100) terrace sites.

  20. Neural depolarization triggers Mg2+ influx in rat hippocampal neurons.

    PubMed

    Yamanaka, R; Shindo, Y; Karube, T; Hotta, K; Suzuki, K; Oka, K

    2015-12-01

    Homeostasis of magnesium ion (Mg(2+)) plays key roles in healthy neuronal functions, and deficiency of Mg(2+) is involved in various neuronal diseases. In neurons, we have reported that excitotoxicity induced by excitatory neurotransmitter glutamate increases intracellular Mg(2+) concentration ([Mg(2+)]i). However, it has not been revealed whether neuronal activity under physiological condition modulates [Mg(2+)]i. The aim of this study is to explore the direct relationship between neural activity and [Mg(2+)]i dynamics. In rat primary-dissociated hippocampal neurons, the [Mg(2+)]i and [Ca(2+)]i dynamics were simultaneously visualized with a highly selective fluorescent Mg(2+) probe, KMG-104, and a fluorescent Ca(2+) probe, Fura Red, respectively. [Mg(2+)]i increase concomitant with neural activity by direct current stimulation was observed in neurons plated on an indium-tin oxide (ITO) glass electrode, which enables fluorescent imaging during neural stimulation. The neural activity-dependent [Mg(2+)]i increase was also detected in neurons whose excitability was enhanced by the treatment of a voltage-gated K(+) channel blocker, tetraethylammonium (TEA) at the timings of spontaneous Ca(2+) increase. Furthermore, the [Mg(2+)]i increase was abolished in Mg(2+)-free extracellular medium, indicating [Mg(2+)]i increase is due to Mg(2+) influx induced by neural activity. The direct neuronal depolarization by veratridine, a Na(+) channel opener, induced [Mg(2+)]i increase, and this [Mg(2+)]i increase was suppressed by the pretreatment of a non-specific Mg(2+) channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB). Overall, activity-dependent [Mg(2+)]i increase results from Mg(2+) influx through 2-APB-sensitive channels in rat hippocampal neurons. PMID:26455951

  1. The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys

    PubMed Central

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-01-01

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys. PMID:24972140

  2. Ranging Behaviour of Commercial Free-Range Laying Hens

    PubMed Central

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-01-01

    Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer

  3. [Close-range retinoscopy using integrated optic range finding].

    PubMed

    Kulnig, W

    1983-12-01

    A new type of retinoscope is described which permits all the theoretical advantages of close-range retinoscopy to be exploited in practice thanks to an integrated rangefinder which employs the coincident-image principle. PMID:6668884

  4. PLD growth of multilayered MgO/Ag(001)/MgO photocathode

    NASA Astrophysics Data System (ADS)

    Velazquez, Daniel; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff

    2014-03-01

    Films of of Ag, MgO and multilayers of these were grown via pulsed laser deposition on clean Si(111) 7x7 substrates. The films were studied using reflection high-energy electron diffraction, Kelvin probe and ellipsometry. Information about crystalline and atomic structure as well as surface condition, work function and film thickness was obtained using these techniques. Deposition at various substrate temperatures and partial oxygen pressures was performed in order to understand the parameter settings that lead to higher quality crystalline films. Epitaxial films of Ag(111) were found to grow at an optimal substrate temperature of 256 °C (fig 1.). The superstructure Ag(111) √3 x √3 occurs when deposition takes place at a substrate temperature of 620 °C. In addition, MgO films were found to grow with small grain size on both, Si(111) 7x7 and Ag(111)/Si(111) at room temperature with a partial oxygen pressure of 5x10-5 Torr (fig. 2). Highly-oriented, polycrystalline growth of MgO films is evidenced by their RHEED pattern. In addition, the obliquely-shaped diffraction spots indicate the growth of secondary phase precipitates, most likely due to oxygen deficit. Measurements of the work function of these multilayers indicate that the Ag(111) work function (4.75 eV) is sharply suppressed with the first few MgO shots and has a quasi-linear increase for the first few monolayers (fig. 3). As the thickness of MgO increases (a few nanometers) the work function drops again and stabilizes at the level of MgO (~ 4.2 eV).

  5. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W., Jr.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  6. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  7. On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion

    NASA Astrophysics Data System (ADS)

    Altman, Igor S.; Agranovski, Igor E.; Choi, Mansoo

    2004-06-01

    It is demonstrated that formation of MgO nanoparticles during a Mg particle combustion occurs in the vapor adsorption regime and the particle coagulation and coalescence do not play any significant role in the process in question. Analysis of the particle size distributions shows that the rate of the nanoparticle condensation growth strongly depends on the actual particle size. The revealed dependence of the growth rate upon the size is consistent with the exponential law recently predicted. This finding can shed light on the long-standing general problem of gas-phase nanotechnology—the origin of lognormal size distribution behavior of generated nanoparticles.

  8. Porous composite materials ZrO2(MgO)-MgO for osteoimplantology

    NASA Astrophysics Data System (ADS)

    Buyakov, Ales; Litvinova, Larisa; Shupletsova, Valeria; Kulbakin, Denis; Kulkov, Sergey

    2016-08-01

    The pore structure and phase composition of ceramic composite material ZrO2(Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  9. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit ® S 100 covering

    NASA Astrophysics Data System (ADS)

    del Arco, M.; Fernández, A.; Martín, C.; Rives, V.

    2010-12-01

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg 2+ and Al 3+ or Mg 2+, Al 3+ and Fe 3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 Å. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit ® S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7.

  10. Home range analysis using a mechanistic home range model

    SciTech Connect

    Moorcroft, P.R. . Dept. of Ecology and Evolutionary Biology); Lewis, M.A. . Dept. of Mathematics) Crabtree, R.L. . Dept. of Fish and Wildlife Resources)

    1999-07-01

    The traditional models used to characterize animal home ranges have no mechanistic basis underlying their descriptions of space use, and as a result, the analysis of animal home ranges has primarily been a descriptive endeavor. In this paper, the authors characterize coyote (Canis latrans) home range patterns using partial differential equations for expected space use that are formally derived from underlying descriptions of individual movement behavior. To the authors' knowledge, this is the first time that mechanistic models have been used to characterize animal home ranges. The results provide empirical support for a model formulation of movement response to scent marks, and suggest that having relocation data for individuals in adjacent groups is necessary to capture the spatial arrangement of home range boundaries. The authors then show how the model fits can be used to obtain predictions for individual movement and scent marking behavior and to predict changes in home range patterns. More generally, the findings illustrate how mechanistic models permit the development of a predictive theory for the relationship between movement behavior and animal spatial distribution.

  11. Thermoelectric properties of Mg2Si-based compounds synthesized partially using magnesium alloy

    NASA Astrophysics Data System (ADS)

    Itoh, Takashi; Hagio, Kento

    2012-06-01

    Mg2Si compounds are promising eco-friendly thermoelectric materials because both constituent elements of Mg and Si have no toxicity and exist richly in earth crust. We have a plan to use the compounds in the applications that convert waste heat in the temperature range (600-900 K) into electric power. However, the thermoelectric performance of the compounds has not yet reached to the practical use level. In addition, the compounds don't have durability in the thermoelectric performance under atmospheric circumstances in the temperature range of 750-900 K. These issues have to be solved for the practical use. In our previous work, we obtained knowledge that Al doping in Mg2Si lower the electrical resistivity and improved the thermoelectric performance. We newly attempted to use a magnesium alloy (AZ61) that includes the main three elements of aluminum (5.8-7.2 wt%), zinc (0.4-1.5 wt%) and manganese (0.15-0.35 wt%) in order to synthesize the Mg2Si-based compounds. The Mg2Si-based compound powders were synthesized from the mixture of silicon powder, AZ61 chips and Mg powder by the liquid-solid phase reaction method. The compound powders were sintered by the pulse discharge sintering method. The influence of mixing ratio of two metals of AZ61 and pure Mg on the thermoelectric properties was investigated. Addition of AZ61 greatly decreased the electrical resistivity as well as Al-doped Mg2Si and the thermoelectric performance had improved most in the 50wt%AZ61 sample.

  12. Mg/Ca composition of benthic foraminifera Miliolacea as a new tool of paleoceanography

    NASA Astrophysics Data System (ADS)

    Sadekov, Aleksey Yu.; Bush, Flora; Kerr, Joanna; Ganeshram, Raja; Elderfield, Henry

    2014-10-01

    The Mg/Ca compositions of benthic foraminifera from the superfamily Miliolacea have been studied to explore the use of these high-Mg foraminifera as a proxy for deep ocean conditions. Taxonomic analyses, relative abundance, and depth distributions of different Miliolacea species were carried out on a collection of core top samples, covering a depth range of 131 m to 2530 m, along the Australian coast of the Timor Sea. Pyrgo sp., composed of Pyrgo sarsi and Pyrgo murrhina, was found to be the most suitable for proxy studies. Mg/Ca values of this group of foraminifera show a strong correlation with bottom water temperatures and carbonate ion saturation described by the linear relationship: Mg/Ca = 2.53(±0.22) × BWT + 0.129(±0.023) × Δ[CO32-] + 4.63(±0.53), within the -1°C to 8°C temperature range. Absolute Mg/Ca values of Pyrgo sp. calcite and their temperature sensitivity are similar to those observed for inorganic calcite, suggesting that Mg composition of Pyrgo sp. calcite is mainly controlled by inorganic processes. The Mg/Ca composition of Pyrgo sp. calcite provides a new tool for reconstructing both water temperature and carbonate ion saturation when combined with other proxies for one of these parameters. A down core record from the Eastern Equatorial Pacific has been generated to illustrate how Mg/Ca values can be used for paleoclimate studies. This down core record shows large changes in Pacific bottom waters [CO32-] across glacial-interglacial transition, implying an increase in [CO32-] during the glacial period.

  13. Microstructural formation in a hypereutectic Mg-Si alloy

    SciTech Connect

    Pan Yichuan . E-mail: riverpan@mail.sdu.edu.cn; Liu Xiangfa; Yang Hua

    2005-09-15

    In the present work, the microstructure of an ingot metallurgy hypereutectic Mg-8 wt.% Si alloy was studied using electron probe microanalysis (EPMA) and the solidification process was discussed. The components of the alloy are Mg{sub 2}Si and Mg. The solidified microstructure of the alloy contains three constituents: Mg{sub 2}Si primary dendrites that are surrounded by Mg sub-primary particles and the Mg-Mg{sub 2}Si eutectic. The primary Mg{sub 2}Si dendrites have a secondary dendrite arm spacing d {sub 2} of approximately 17 {mu}m or show polygonal morphologies with a mean size of 30 {mu}m. An Mg phase appearing as halos surround the Mg{sub 2}Si constituents. The Mg-Mg{sub 2}Si eutectic has a regular morphology of rod-like Mg{sub 2}Si distributed in a continuous matrix of Mg having an interphase spacing r of approximately 0.8 {mu}m.

  14. Phase relations and formation of chromium-rich phases in the system Mg4Si4O12-Mg3Cr2Si3O12 at 10-24 GPa and 1,600 °C

    NASA Astrophysics Data System (ADS)

    Sirotkina, E. A.; Bobrov, A. V.; Bindi, L.; Irifune, T.

    2015-01-01

    Phase relations in the system Mg4Si4O12-Mg3Cr2Si3O12 were studied at 10-24 GPa and 1,600 °C using a high-pressure Kawai-type multi-anvil apparatus. We investigated the full range of starting compositions for the knorringite-majorite system to derive a P- X phase diagram and synthesize garnets of a wide compositional range. Samples synthesized in the pressure range 10-14 GPa contain knorringite-majorite garnet and Cr-bearing pyroxene. With increasing Cr content in the starting materials, an association of knorringite-majorite garnet and eskolaite is formed. Garnets contain a significant portion of majorite (>10 mol%) even for a pure Mg3Cr2Si3O12 starting composition. Knorringite-majorite garnets were obtained in the pressure range from 10 to 20 GPa. With increasing pressure, the phase assemblages include Cr-bearing MgSiO3 akimotoite and MgSiO3 bridgmanite, as well as MgCr2O4 with calcium titanate structure, and stishovite. Single-crystal X-ray diffraction shows that the incorporation of Cr into the structure of garnet, as well as MgSiO3 akimotoite, and bridgmanite results in an increase in their unit cell parameters. Results of the experimental high-pressure investigation of the pseudo-binary system Mg4Si4O12-Mg3Cr2Si3O12 (SiO2-MgO-Cr2O3) may be applied to the origin of high chromium phases (mostly garnet) found as inclusions in peridotitic diamonds and formed in bulk rock compositions with high Cr/Al ratios in relation to the primitive mantle.

  15. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  16. The eclipse of species ranges.

    PubMed

    Hemerik, Lia; Hengeveld, Rob; Lippe, Ernst

    2006-01-01

    This paper distinguishes four recognisably different geographical processes in principle causing species to die out. One of these processes, the one we dub "range eclipse", holds that one range expands at the expense of another one, thereby usurping it. Channell and Lomolino (2000a, Journal of Biogeography 27: 169-179; 2000b, Nature 403: 84-87; see also Lomolino and Channell, 1995, Journal of Mammalogy 76: 335-347) measured the course of this process in terms of the proportion of the total range remaining in its original centre, thereby essentially assuming a homogeneous distribution of animals over the range. However, part of their measure seems mistaken. By giving a general, analytical formulation of eclipsing ranges, we estimate the exact course of this process. Also, our formulation does not partition a range into two spatially equal parts, its core and its edge, but it assumes continuity. For applying this model to data on the time evolution of species, individual time series should be available for each of them. For practical purposes we give an alternative way of plotting and interpreting such time series. Our approach, being more sensitive than Channell and Lomolino's, gives a less optimistic indication of range eclipses than theirs once these have started. PMID:17318329

  17. Development of a new thermoluminescent phosphor based on LiF:Mg,Ti

    NASA Astrophysics Data System (ADS)

    Azorín, J.; González, P. R.; Lozano, I. B.; Rivera, T.; Azorin, C.

    2015-11-01

    By a slight modification in the dopants incorporation method, a new LiF:Mg,Ti TLD material has been developed with improved properties mainly in stabilization of thermoluminescent (TL) response and linearity. The TL response as well as linearity function of LiF:Mg,Ti under 60Co gamma irradiation were studied in the dose range from 10-3 to 103 Gy. The TL response as a function of gamma dose was linear from 2.5 mGy up to 50 Gy. Experimental results indicated that LiF:Mg,Ti synthesized in Mexico shows high stability and a wide range of linearity. Improvement in linearity could be attributed to Ti concentration. Kinetic parameters were determined by deconvolution of glow curves. Experimental results suggest that this new TLD material shows promising potential for gamma radiation dosimetry.

  18. Anisotropy of Superconducting MgB2 as Seen in Electron Spin Resonance and Magnetization Data

    NASA Astrophysics Data System (ADS)

    Simon, F.; Jánossy, A.; Fehér, T.; Murányi, F.; Garaj, S.; Forró, L.; Petrovic, C.; Bud'Ko, S. L.; Lapertot, G.; Kogan, V. G.; Canfield, P. C.

    2001-07-01

    We observed the conduction electron spin resonance (CESR) in fine powders of MgB2 both in the superconducting and normal states. The Pauli susceptibility is χs = 2.0×10-5 emu/mole in the temperature range of 450 to 600 K. The spin relaxation rate has an anomalous temperature dependence. The CESR measured below Tc at several frequencies suggests that MgB2 is a strongly anisotropic superconductor with the upper critical field, Hc2, ranging between 2 and 16 T. The high-field reversible magnetization data of a randomly oriented powder sample are well described assuming that MgB2 is an anisotropic superconductor with Habc2/Hcc2~6-9.

  19. Alternative wavelengths for laser ranging

    NASA Technical Reports Server (NTRS)

    Hamal, Karel

    1993-01-01

    The following are considered to be necessary to accomplish multicolor laser ranging: the nature of the atmospheric dispersion and absorption, the satellite/lunar/ground retro-array characteristics, and ground/satellite ranging machine performance. The energy balance and jitter budget have to be considered as well. It is concluded that the existing satellite/laser retroreflectors seem inadequate for future experiments. The Raman Stokes/Anti-Stokes (0.68/0.43 micron) plus solid state detector appear to be promising instrumentation that satisfy the ground/satellite and satellite/ground ranging machine requirements on the precision, compactness, and data processing.

  20. GPS test range mission planning

    NASA Astrophysics Data System (ADS)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  1. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Shu-Guang; Xiao, Yilin; Ke, Shan; Li, Wang-Ye; Tian, Ye

    2015-09-01

    Origin of low δ26Mg basalts is a controversial subject and has been attributed to interaction of isotopically light carbonatitic melts derived from a subducted oceanic slab with the mantle (Yang et al., 2012), or alternatively, to accumulation of isotopically light ilmenite (FeTiO3) in their mantle source (Sedaghatpour et al., 2013). To study the origin of low δ26Mg basalts and evaluate whether Mg isotope ratios of basalts can be used to trace deeply recycled carbon, high-precision major and trace element and Mg isotopic analyses on the Cenozoic alkaline and tholeiitic basalts from the South China Block (SCB), eastern China have been carried out in this study. The basalts show light Mg isotopic compositions, with δ26Mg ranging from -0.60 to -0.35. The relatively low TiO2 contents (<2.7 wt.%) of our basalts, roughly positive correlations between δ26Mg and Ti/Ti∗ and their constant Nb/Ta ratios (16.4-20) irrespective of variable TiO2 contents indicate no significant amounts of isotopically light ilmenite accumulation in their mantle source. Notably, the basalts display negative correlations between δ26Mg and the amounts of total alkalis (i.e., Na2O + K2O) and incompatible trace elements (e.g., Ti, La, Nd, Nb, Th) and trace element abundance ratios (e.g., Sm/Yb, Nb/Y). Generally, with decrease of δ26Mg values, their Hf/Hf∗ and Ti/Ti∗ ratios decrease, whereas Ca/Al and Zr/Hf ratios increase. These features are consistent with incongruent partial melting of an isotopically light carbonated mantle, suggesting that large variations in Mg isotope ratios occurred during partial melting of such carbonated mantle under high temperatures. The isotopically light carbonated mantle were probably formed by interaction of the mantle with low δ26Mg carbonatitic melts derived from the deeply subducted low δ26Mg carbonated eclogite transformed from carbonate-bearing oceanic crust during plate subduction. As only the Pacific slab has an influence on both the North China

  2. Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Connie, Ashfiqua Tahseen; Zhao, Songrui; Sadaf, Sharif Md.; Shih, Ishiang; Mi, Zetian; Du, Xiaozhang; Lin, Jingyu; Jiang, Hongxing

    2015-05-25

    In this paper, the optical and electrical properties of Mg-doped AlN nanowires are discussed. At room temperature, with the increase of Mg-doping concentration, the Mg-acceptor energy level related optical transition can be clearly measured, which is separated about 0.6 eV from the band-edge transition, consistent with the Mg activation energy in AlN. The electrical conduction measurements indicate an activation energy of 23 meV at 300 K–450 K temperature range, which is significantly smaller than the Mg-ionization energy in AlN, suggesting the p-type conduction being mostly related to hopping conduction. The free hole concentration of AlN:Mg nanowires is estimated to be on the order of 10{sup 16 }cm{sup −3}, or higher.

  3. Estimating the Mg II Index from 1961 Through 1981 Using Ca II K Images from the MtWilson Observatory

    NASA Astrophysics Data System (ADS)

    McMullin, D.; Morrill, J. S.; Floyd, L. E.; Weaver, S. J.; Ulrich, R. K.

    2011-12-01

    An empirical model of solar UV spectral irradiance has been developed that is based on observed spectral radiance measurements and full disk Ca II K images. The Mg II index is then calculated from the estimated spectra in a narrow wavelength range (180 Å) near theMg II doublet at 2800 Å. Our long term goal is to expand this wavelength range from 10 to 4000 Å in continuing studies based on spectral data covering this wavelength range (e.g. Skylab, UARS/SUSIM, TIMED/SEE, etc.). Our previous modeling effort produced spectra in this 180 Å range and the resulting Mg II index values for the period from 1991 through 1995 and we have used observations during this time period to validate the model results. The current paper presents results from this model based on a 21-year portion of the recently digitized Ca II K images from the Mt Wilson Observatory (MWO) film archive. Here we present details of the model, the required model modifications, and the resulting Mg II index from 1961 through 1981. Since the NOAA Mg II index did not begin until 1978, the present model results are compared to a Mg II index estimated from the F10.7 radio flux over this 21-year period. The NOAA Mg II index, which is derived from measured UV spectra, is also included for comparison from late 1978 through 1981.

  4. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Ivanov, Ilia N.; Manzo, Michele; Kholkin, Andrei L.; Gallo, Katia; Rodriguez, Brian J.

    2015-12-01

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  5. The role of starch doping on the superconducting properties of MgB2

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Moharana, S. S.; Dey, T. K.

    2014-09-01

    The effect of different amount of starch addition on structural and superconducting properties of superconducting MgB2 has been discussed. The samples are synthesized by conventional solid reaction method. XRD analysis confirms that carbon, which is produced during synthesis due to decomposition of starch, is substituted in the B sites. High resolution transmission electron microscope (HRTEM) picture infers the presence of large number of nanosized precipitates (size ∼10-20 nm) in starch doped MgB2 pellets. Superconducting transition temperature (Tc0) of MgB2 (∼38 K) decreases due to the addition of starch. The critical current density (Jc) of starch added MgB2 samples, however, shows significant improvement in whole field range, especially at high magnetic fields. MgB2 added with 2 wt.% of starch gives the best performance amongst the investigated samples and at 20 K displays ∼42 times enhancement in Jc under 4 T field compared to that for pure MgB2. The field dependence of the critical current density (Jc) of starch added MgB2 is explained fairly well in terms of collective pinning theory. An excellent scaling of the reduced critical current density, Jn(=Jc/Jc(0)) and the reduced field hn (=H/H0) is observed for both pure and starch added MgB2 polycrystalline pellets at different temperatures, where Jc(0) and H0 are the fitting parameters obtained from collective pinning model. However, the normalized pinning force density (FP/Fp(max)) of starch added samples does not display any scaling, but shows an excellent correspondence with modified Dew-Hughes expression. The presence of anisotropy and grain orientation is thought to be responsible for the absence of scaling of normalized pinning force density in starch added MgB2 pellets.

  6. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Rodriguez, Brian J. E-mail: brian.rodriguez@ucd.ie; Ivanov, Ilia N.; Manzo, Michele; Gallo, Katia E-mail: brian.rodriguez@ucd.ie; Kholkin, Andrei L.

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.

  7. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration

    NASA Astrophysics Data System (ADS)

    Lear, Caroline H.; Rosenthal, Yair; Slowey, Niall

    2002-10-01

    Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 × BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol mol -1 (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.

  8. Mg intercalation into Ti2C building block

    NASA Astrophysics Data System (ADS)

    Yu, Xue-fang; Cheng, Jianbo; Liu, Zhenbo; Li, Qingzhong; Li, Wenzuo; Yang, Xin; Xiao, Bo

    2015-06-01

    Generally, intercalation occurs when foreign atoms intercalate into multi-layer structures, while adsorption occurs when foreign atoms interact with monolayer structures or surfaces. We performed an investigation on the Mg intercalation into Ti2C building block (MXene) from first-principles simulation. We found that Mg can favorably intercalate into MXene, forming the stable compound Ti2MgC, which corresponds to the stage I in the Li intercalation into graphite. Based on the evaluation of the average cell potential and the energy barrier of Mg diffusion for the most energetically stable structure, our results suggest that Ti2MgC is a potential anode for Mg ion batteries.

  9. ZnO/(ZnMg)O single quantum wells with high Mg content graded barriers

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Wassner, Thomas A.; Stutzmann, Martin; Rohnke, Marcus; Schoermann, Joerg; Eickhoff, Martin

    2012-06-01

    ZnO/Zn{sub 1-x}Mg{sub x}O single quantum wells (SQWs) were grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. Compositional grading allows the application of optimized growth conditions for the fabrication of Zn{sub 1-x}Mg{sub x}O barriers with high crystalline quality and a maximum Mg content of x = 0.23. High resolution x-ray diffraction reveals partial relaxation of the graded barriers. Due to exciton localization, the SQW emission is found to consist of contributions from donor-bound and free excitons. While for narrow SQWs with well width d{sub W}{<=}2.5nm, the observed increase of the exciton binding energy is caused by quantum confinement, the drop of the photoluminescence emission below the ZnO bulk value found for wide SQWs is attributed to the quantum-confined Stark effect. For a Mg content of x = 0.23, a built-in electric field of 630 kV/cm is extracted, giving rise to a decrease of the exciton binding energy and rapid thermal quenching of the SQW emission characterized by an activation energy of (24 {+-} 4) meV for d{sub W} = 8.3 nm.

  10. Rupatadine 20 mg and 40 mg are Effective in Reducing the Symptoms of Chronic Cold Urticaria.

    PubMed

    Abajian, Marina; Curto-Barredo, Laia; Krause, Karoline; Santamaria, Eva; Izquierdo, Iñaki; Church, Martin K; Maurer, Marcus; Giménez-Arnau, Ana

    2016-01-01

    Chronic cold urticaria (ColdU) is a rare disease characterized by mast cell-mediated wheals and angioedema following cold exposure. Second-generation H1-antihistamines, such as rupatadine, are the recommended first-line therapy. As of yet, the effects of rupatadine up-dosing on development of ColdU symptom have only been partially characterized. Two-centre, randomized, double-blind, 3-way crossover, placebo-controlled study in patients with a confirmed ColdU was designed to assess the effects of up-dosing of rupatadine. A total of 23 patients were randomized to receive placebo, rupatadine 20 mg/day, and rupatadine 40 mg/day for 1 week. The primary outcome was change in critical temperature thresholds and critical stimulation time thresholds after treatment. Secondary endpoints included assessment of safety and tolerability of rupatadine. Both 20 and 40 mg rupatadine were highly effective in reducing critical temperature thresholds (p < 0.001) and critical stimulation time thresholds (p < 0.001). In conclusion, rupatadine 20 and 40 mg significantly reduced the development of chronic cold urticaria symptom without an increase in adverse effects. PMID:26038847

  11. Superplasticity in a thermomechanically processed High-Mg, Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    McNelley, T. R.; Lee, E. W.; Mills, M. E.

    1986-06-01

    Superplastic elongations in excess of 400 pct have been observed in tension testing at 573 K (300 °C) and strain rate έ = 2 × 10-3 s-1 for a thermomechanically processed Al-10.2 pct Mg-0.52 pct Mn alloy. The thermomechanical processing consists of solution treatment and hot working, followed by extensive warm rolling at 573 K (300 °C), a temperature below the solvus for Mg in the alloy. This processing results in a fine subgrain structure in conjunction with refined and homogeneously distributed β(Al8Mg5) and MnAl6 precipitates. This structure does not statically recrystallize when annealed at 573 K (300 °C) but appears to recrystallize continuously during deformation at such a temperature and the resulting fine grain structure deforms with minimal cavitation. At temperatures above the Mg-solvus, e.g., 673 K (400 °C), recrystallization and growth occur readily resulting in rela tively coarser structures which deform superplastically but with extensive grain boundary sliding and cavitation.

  12. Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics

    NASA Astrophysics Data System (ADS)

    Liou, Yi-Cheng; Yang, Song-Ling; Chu, Sheng-Yuan

    2015-04-01

    This study investigates the effects of MgO and Mg(OH)2 on the phase formation and properties of MgTiO3 ceramics prepared via a reaction-sintering process. A mixture of raw materials was sintered into MgTiO3 ceramics by bypassing calcination and subsequent pulverization stages. The second phase MgTi2O5 forms in pellets with added MgO (MT) and disappears in pellets with added Mg(OH)2 (MHT). Abnormal grain growth is observed in MHT due to different reactions during the heating process. Microwave dielectric properties ɛ r = 18.5-19.2, Q × f = 53,300-76,300 GHz and τ f = -58.7 to -53.2 ppm/°C are measured for MT. ɛ r = 15.3-15.9, Q × f = 118,800-144,400 GHz and τ f = -52.8 to -49.8 ppm/°C are measured for MHT. The lower ɛ r for MHT is caused by a lower density. Q × f increases and τ f shifts to less negative values when Mg(OH)2 is used instead of MgO. The reaction-sintering process is then a simple and effective method to produce MgTiO3 ceramics for applications in microwave dielectric resonators.

  13. The dynamic range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, J.

    2016-02-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in multi-tonne time-projection chambers, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined to accommodate the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines.

  14. Study of hMSC proliferation and differentiation on Mg and Mg-Sr containing biphasic β-tricalcium phosphate and amorphous calcium phosphate ceramics.

    PubMed

    Singh, Satish S; Roy, Abhijit; Lee, Boeun; Kumta, Prashant N

    2016-07-01

    Biphasic mixtures of either Mg(2+) or combined Mg(2+) and Sr(2+) cation substituted β-tricalcium phosphate (β-TCP) and amorphous calcium phosphate (ACP) were prepared using a low temperature chemical phosphatizing and hydrolysis reaction approach. Scaffolds prepared using the cation substituted calcium phosphates were capable of supporting similar levels of human mesenchymal stem cell proliferation in comparison to commercially available β-TCP. The concentrations of Mg(2+), Sr(2+), and PO4(3-) released from these scaffolds were also within the ranges desired from previous reports to support both hMSC proliferation and osteogenic differentiation. Interestingly, hMSCs cultured directly on scaffolds prepared with only Mg(2+) substituted β-TCP were capable of supporting statistically significantly increased alkaline phosphatase activity, osteopontin, and osteoprotegerin expression in comparison to all compositions containing both Mg(2+) and Sr(2+), and commercially available β-TCP. hMSCs cultured in the presence of scaffold extracts also exhibited similar trends in the expression of osteogenic markers as was observed during direct culture. Therefore, it was concluded that the enhanced differentiation observed was due to the release of bioactive ions rather than the surface microstructure. The role of these ions on transforming growth factor-β and bone morphogenic protein signaling was also evaluated using a PCR array. It was concluded that the release of these ions may support enhanced differentiation through SMAD dependent TGF-β and BMP signaling. PMID:27127047

  15. Intentionally Short Range Communications (ISRC)

    NASA Astrophysics Data System (ADS)

    Yen, J.; Poirier, P.; Obrien, M. E.; Gibeson, L.

    1993-05-01

    This document details the feasibility studies conducted for the Intentionally Short Range Communications (ISRC) project. The short-range limitation arises from the need for low probability of intercept (LPI), low probability of detection (LPD) communication links. The detection of an undecipherable transmission would still provide an enemy with information regarding transmitter location. The technologies being studied are ultraviolet (UV) lamps, UV lasers, infrared (IR) lasers, millimeter waves (MMW), and direct sequence spread spectrum.

  16. Report on the sintering and properties of MgO and MgO-5% TiC

    SciTech Connect

    Bengisu, M.; Inal, O.T.

    1992-07-01

    Sintering of technical grade MgO yields higher fractional densities compared to pure MgO. TiC reacts with MgO under sintering of MgO-TiC composites in air, yielding Mg{sub 2}TiO{sub 4} and CO or CO{sub 2}. This can be suppressed in vacuum by plasma sintering. Plasma sintering of MgO at 1300 C and short times does not produce satisfactory results. 5 vol% TiC increases the sinterability of MgO during conventional air sintering; larger additions (50 vol%) decrease sinterability due to macropores formed by gaseous reaction product. Microwave sintering of MgO is possible. Mechanical properties of MgO are improved by additions of small amounts of TiC to starting powders.

  17. A fundamental study on the [(μ-Cl)3 Mg2 (THF)6 ]+ dimer electrolytes for rechargeable Mg batteries

    DOE PAGESBeta

    Liu, Tianbiao; Cox, Jonathan T.; Hu, Dehong; Deng, Xuchu; Hu, Jianzhi; Hu, Mary Y.; Xiao, Jie; Shao, Yuyan; Tang, Keqi; Liu, Jun

    2015-01-05

    We present a fundamental study on [(μ-Cl)3 Mg2 (THF)6 ]+ dimer electrolytes using various physical methods including Subambient Pressure Ionization with Nanoelectrospray Mass spectrometry (SPIN-MS), Raman spectroscopy, 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis. For the first time, long time sought THF solvated [MgCl]+ species was experimentally characterized by SPIN mass spectrometry in the solution of the Mgdimer containing electrolyte, confirming the mono-Cl- abstraction reaction between MgCl2 and an Al Lewis acid. Solvated MgCl2 in the electrolyte was confirmed by Raman spectroscopy. The experimental results establish the previously proposed dimerization equilibrium of solvated [MgCl]+ and MgCl2 with [(μ-Cl)3Mg2(THF)6]+.more » 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis on chloration reaction of [(μ-Cl)3Mg2(THF)6]AlPh3Cl with external Cl- led to further insights on the coordination chemistry of the dimer electrolyte. Finally, a comprehensive mechanism is proposed for the reversible electrochemical Mg deposition and stripping and Mg2+ and Cl- ion transports of the Mg dimer electrolytes in rechargeable Mg batteries.« less

  18. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    PubMed Central

    Combes, Gary B.; Ozkaya, Don; Enache, Dan I.; Ellis, Peter R.; Kelly, Gordon; Rosseinsky, Matthew J.

    2016-01-01

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3−xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3−xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3−xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  19. The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer-Tropsch catalysts.

    PubMed

    Gallagher, James R; Boldrin, Paul; Combes, Gary B; Ozkaya, Don; Enache, Dan I; Ellis, Peter R; Kelly, Gordon; Claridge, John B; Rosseinsky, Matthew J

    2016-02-28

    The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature. PMID:26755760

  20. A Fundamental Study on the [(μ-Cl)3Mg2(THF)6]+ Dimer Electrolytes for Rechargeable Mg Batteries

    SciTech Connect

    Liu, Tianbiao L.; Cox, Jonathan T.; Hu, Dehong; Deng, Xuchu; Hu, Jian Z.; Hu, Mary Y.; Xiao, Jie; Shao, Yuyan; Tang, Keqi; Liu, Jun

    2015-01-01

    We present a fundamental study on [(μ-Cl)3Mg2(THF)6]+dimer electrolytes using various physical methods including Subambient Pressure Ionization with Nanoelectrospray Mass spectrometry (SPIN-MS), Raman spectroscopy, 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis. For the first time, long time sought THF solvated [MgCl]+ species was experimentally characterized by SPIN mass spectrometry in the solution of the Mgdimer containing electrolyte, confirming the mono-Cl- abstraction reaction between MgCl2 and an Al Lewis acid. Solvated MgCl2 in the electrolyte was confirmed by Raman spectroscopy. The experimental results establish the previously proposed dimerization equilibrium of solvated [MgCl]+ and MgCl2 with [(μ-Cl)3Mg2(THF)6]+. 25Mg{1H} NMR, 27Al{1H} NMR and electrochemical analysis on chloration reaction of [(μ-Cl)3Mg2(THF)6]AlPh3Cl with external Cl- led to further insights on the coordination chemistry of the dimer electrolyte. Finally, a comprehensive mechanism is proposed for the reversible electrochemical Mg deposition and stripping and Mg2+ and Cl- ion transports of the Mg dimer electrolytes in rechargeable Mg batteries.

  1. Texture and microstructure in co-sputtered Mg-M-O (M = Mg, Al, Cr, Ti, Zr, and Y) films

    NASA Astrophysics Data System (ADS)

    Saraiva, M.; Depla, D.

    2012-05-01

    Mg-M-O solid solution films (M = Mg, Al, Cr, Ti, Zr, and Y) with various M contents are grown employing reactive co-sputtering by varying the target-to-substrate distance. It is shown that all films are biaxially aligned. When the two cathodes are equipped with the same target material (Mg), the in-plane alignment is determined by the cathode closest to the substrate, i.e., by the largest material flux. In the case of nearly equal material fluxes from the two cathodes, double in-plane orientation is observed. This is also the case for the Mg-Al-O and Mg-Cr-O films, while the Mg-Ti-O, Mg-Zr-O and Mg-Y-O films exhibit single in-plane orientation. Pole figures indicate that the grains in Mg-M-O (M different than Mg) are titled; in the Mg-Al-O, Mg-Cr-O, and Mg-Ti-O films, the grains tilt towards the Al, Cr, and Ti metal flux, respectively, while the grain tilt of the Mg-Zr-O and Mg-Y-O films is found to be towards the Mg metal flux. Furthermore, SEM cross-sectional images of the Mg-M-O films reveal columnar microstructure with columns tilted to the same direction as the grains. A mechanism which is based on the cation radius change upon the incorporation of an M atom in the MgO lattice is proposed to explain the tilting.

  2. [sup 26]Mg([sup 6]L[rvec i],[sup 7]Li)[sup 25]Mg reaction at 60 MeV

    SciTech Connect

    Ward, R.P.; Clarke, N.M. School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B15 2TT ); Pearce, K.I.; Pinder, C.N. ); Blyth, C.O.; Choi, H.D.; Dee, P.R.; Roman, S.; Tungate, G. ); Davis, N.J. )

    1995-03-01

    Angular distributions of differential cross section and vector analyzing power have been measured for the [sup 26]Mg([sup 6]L[rvec i],[sup 7]Li)[sup 25]Mg reaction at 60 MeV bombarding energy. Finite-range distorted-wave Born approximation calculations were found to reproduce much of the structure of the data, although the predictions were approximately 3[degree] out of phase with the data. Finite-range coupled-channels Born approximation calculations including inelastic excitations in [sup 6]Li and [sup 7]Li, using coupling schemes derived from elastic scattering analyses, modified the predictions only slightly and did not remove the phase discrepancy.

  3. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  4. The possibility of forming a sacrificial anode coating for Mg

    SciTech Connect

    Dudney, Nancy J; Li, Juchuan; Sacci, Robert L; Thomson, Jeffery K

    2014-01-01

    Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

  5. Rotational Band Structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL E11029 Collaboration Team

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.

  6. Rotational band structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.

  7. Fabrication of decorated MgO crystalline fibers

    SciTech Connect

    Chen, Y.J.; Li, J.B.; Han, Y.S.; Yang, X.Z.; Dai, J.H

    2003-02-20

    By depositing Mg vapor generated via carbothermal reduction on boron powder in the presence of different additives, dumbbell-like MgO nanofibers, NaCl particle-decorated MgO nanofibers and camphor tree stalk-like MgO fibers were produced. SEM, TEM and EDS analysis showed that the additives of Si and NaCl deposited in the sites of stacking faults in fiber, which resulted in the growth of different morphologies of decorated fibers.

  8. Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom

    NASA Astrophysics Data System (ADS)

    Luo, Yizhong; Sun, Yang; Lv, Jinlong; Wang, Xianhong; Li, Ji; Wang, Fosong

    2015-02-01

    The feasibility of polyaniline emeraldine base (EB) for enhancing long-term corrosion resistance of magnesium alloy (AZ91D Mg alloy) was confirmed, since the complex impedance of Mg alloy protected by EB/epoxy resin (ER) composite coating with 10 wt% EB loading maintained around 2 GΩ cm2 even after 80 day exposure in 0.5 M NaCl solution, while that of pure ER coated analogue decreased to 0.17 MΩ cm2 only after 31 days. The improvement in corrosion resistance was attributed to the transition of interface layer from porous Mg(OH)2 dominated one underneath pure ER coating to dense MgO dominated one underneath EB/ER coating, induced by the redox interaction of EB with Mg alloy. When the EB loading in EB/ER coating increased from 0 to 10 wt%, the relative XPS peak area ratio of MgO to Mg(OH)2 increased from 0.78 to 1.18, indicating that EB behaved as effective corrosion inhibitor causing the transformation of oxide layer from porous Mg(OH)2 to dense MgO.

  9. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Miller, Nathaniel R.; Higgins, John A.

    2015-06-01

    Authigenic carbonates in marine sediments frequently have carbon isotope ratios that reflect local organic carbon processing rather than the δ13C of the global DIC (dissolved inorganic carbon) reservoir, but their contributions to ancient sedimentary sections are difficult to assess. In this study of authigenic dolomite from the Miocene-age Monterey Formation of offshore California, Mg and Ca isotopes are shown to vary with stratigraphic depth as a result of early diagenetic processes. The dolomite is a pre-compaction authigenic phase that occurs as beds and nodules with δ13C ranging from -16 to + 9 ‰. Light δ13C values were likely acquired from the sedimentary zone of microbial sulfate reduction, while heavy δ13C values were acquired from the zone of methanogenesis. Mg and Ca isotopes are roughly anti-correlated, with intervals of negative δ13C associated with low δ26Mg and higher δ 44/40Ca values. The variability is observed over a wide range of length-scales, from 10-2 meters within individual authigenic beds/nodules, to 102 meters over the entire stratigraphic column, and can be understood as the consequence of dolomite precipitation in pore fluids where Mg supply is limited by diffusive transport. The relationship of δ26Mg and δ 44/40Ca to the more common stable isotope measurements of δ13C and δ18O represents a new, diagenetically robust, geochemical fingerprint for identifying synsedimentary authigenic carbonates in the geological record.

  10. A new wide band gap thermoelectric quaternary selenide Cu2MgSnSe4

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, V.; Guilmeau, Emmanuel; Raveau, Bernard; Caignaert, Vincent; Varadaraju, U. V.

    2015-10-01

    Cu2MgSnSe4 based compounds composed of high earth abundant elements have been identified to exhibit good thermoelectric performance in the mid-temperature range. The pristine phase shows a band gap of 1.7 eV, which is slightly higher than similar ternary and quaternary copper based stannite compounds. Cu2MgSnSe4 crystallizes in the tetragonal I 4 ¯ 2m space group. Substitution of In at Sn site tends to decrease the tetragonal distortion toward the cubic symmetry. The electrical and thermal transport properties of Cu and In-doped Cu2MgSnSe4 in the temperature range of 300 K-700 K are studied. The substitution of In3+ for Sn4+ and Cu2+ for Mg2+ induces charge carriers as holes, which in turn lead to improvement in thermoelectric efficiency. The role of mass fluctuations and structural disorder in the evolution of the thermal conductivity of the doped selenides is discussed. A maximum ZT of 0.42 is attained for Cu2MgSn0.925In0.075Se4 around 700 K, and this value is comparable to that of Cu2ZnSnSe4.

  11. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  12. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  13. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  14. APOLLO: millimeter lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Murphy, T. W., Jr.; Adelberger, E. G.; Battat, J. B. R.; Hoyle, C. D.; Johnson, N. H.; McMillan, R. J.; Stubbs, C. W.; Swanson, H. E.

    2012-09-01

    Lunar laser ranging (LLR) has for decades stood at the forefront of tests of gravitational physics, including tests of the equivalence principle (EP). Current LLR results on the EP achieve a sensitivity of Δa/a ≈ 10-13 based on few-centimeter data/model fidelity. A recent push in LLR, called APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) produces millimeter-quality data. This paper demonstrates the few-millimeter range precision achieved by APOLLO, leading to an expectation that LLR will be able to extend EP sensitivity by an order-of-magnitude to Δa/a ˜ 10-14, once modeling efforts improve to this level.

  15. Laser system of extended range

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1972-01-01

    A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.

  16. Wide range magnetic electron spectrograph

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Wang, L.-J.; Moore, J. H.; Hoffman, R. A.

    1989-01-01

    An electron spectrogrpah is described that covers electron energies from 400 eV to 200 keV with an energy resolution of 10 percent. This overlaps the range of electrostatic deflection devices at low energy and solid state detectors at high energy. The spectrograph uses magnetic deflection of the electrons to achieve energy separation and images the full range of energies on a single plane. The magnetic circuit uses the fringing field of two axially located magnets to attain the large energy range. Six separate electron beams can be dispersed in the field, each entering the circuit from a different angle. This is a particular advantage when measuring plasma electron three-dimensional velocity distributions. The angular response of the instrument is particularly favorable and the stray magnetic field is sufficiently low to meet spacecraft requirements.

  17. The Dynamic Range of LZ

    NASA Astrophysics Data System (ADS)

    Yin, Jun; LZ Collaboration

    2015-10-01

    The electronics of the LZ experiment, the 7-ton dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being developed to recover the information lost due to saturation. This work was supported by the Department of Energy, Grant DE-SC0006605.

  18. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    NASA Astrophysics Data System (ADS)

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-10-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time.

  19. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    PubMed Central

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-01-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964

  20. Phase evolution and microstructure of high Jc SiC doped MgB2 fabricated by hot pressing

    NASA Astrophysics Data System (ADS)

    Qu, B.; Sun, X. D.; Li, J.-G.; Xiu, Z. M.; Xue, C. P.

    2009-07-01

    We report the phase evolution, microstructure, and critical current density (Jc) of the SiC doped MgB2 superconductors. In our study, all samples were fabricated by hot pressing with a heating rate of 200 °C min-1. The results show that the reaction of 2Mg+SiC = Mg2Si+C can occur at about 500 °C, about 50 °C lower than the formation temperature of MgB2. On the other hand, according to the experimental results and thermodynamic calculations, boron (B) does not react with SiC to form B4C and Si, neither does MgB2 react with SiC to form Mg2Si and B4C. The MgB2 phase was formed via both a solid-solid reaction (during the heating process between about 500 and 650 °C) and a liquid-solid reaction (>650 °C) after the melting of Mg, and the two reactions resulted in differences in the grain size of the MgB2. From scanning electron microscopy, the Mg2Si particles are homogeneously distributed within the MgB2 matrix, with particle sizes ranging from 35 to 230 nm. From the perspective of superconductivity, the C substitution results in strong electron scattering centers in the MgB2 structure. It reduces the electron mean free path and thus may significantly enhance the magnetic Jc. The peak Jc of the 5 wt% SiC doped MgB2 reaches above 106 A cm-2 at 5 K, and decreases slowly with increasing field, remaining high, above 105 A cm-2, at 7 T.

  1. Osteopenic effects of MgSO4 in multiple pregnancies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To describe the effects of prolonged maternal treatment with MgSO4 in infants who were products of multiple pregnancies. Case series of infants presenting with osteopenia secondary to MgSO4 administration for preterm labor. Ten premature infants with hypermagnesemia (4.5+/-0.2 mg/dl), hypocalcemia (...

  2. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  3. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.,; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons (L. glaciale & P. calcareum) and thallus areas (P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  4. Thermoelectric Properties of Sb-Doped Mg2Si Prepared Using Different Silicon Sources

    NASA Astrophysics Data System (ADS)

    Isoda, Yukihiro; Tada, Satoki; Kitagawa, Hiroyuki; Shinohara, Yoshikazu

    2016-03-01

    Magnesium silicide (Mg2Si) compounds doped with 8000 ppm Sb were prepared using different Si sources via liquid-solid reaction synthesis and hot pressing. The Si sources were solar-grade Si, metal-grade Si, and sludge Si. The Si sludge generated during the cutting of Si wafers was recycled as a Si source. The x-ray diffraction (XRD) patterns of the Si sludge corresponded to Si, silicon dioxide (SiO2), and C, whereas the solar-grade Si and metal-grade Si were indexed as a single Si phase. For the sintered compact samples, the Mg2Si phase was predominant in all the samples. However, small amounts of impurity phases, MgO and SiC, were identified in the sintered Mg2Si that used sludge Si. The thermoelectric properties of the Mg2Si produced using solar-grade Si or metal-grade Si were almost the same at the measured temperature. The efficacy of the low-purity metal-grade Si was demonstrated. However, the power factor and thermal conductivity of the Mg2Si produced using sludge Si were smaller than those of the other samples over the entire measured temperature range. However, the maximum value of ZT was almost the same.

  5. Intergrain connectivity of MgB{sub 2} ceramics studied by impedance analysis

    SciTech Connect

    Wang, C. C.; Wang, C.; Zeng, R.; Dou, S. X.

    2010-07-15

    First, by using of the conventional Rowell analysis, we demonstrated that the addition of nano BN particles can effectively eliminate MgO and pores in MgB{sub 2} resulting in a very high density and good connectivity of BN-doped MgB{sub 2}. Then, another method--low-frequency dielectric impedance analysis--was introduced to characterize the properties of the grain boundaries of MgB{sub 2}. A comparative impedance study was performed in the frequency range from 100 Hz to 100 MHz on pure and nano BN-doped MgB{sub 2}. The study revealed some following interesting results: (1) a dielectric resonance around frequency of 10{sup 8} in both samples was observed, which was argued to be related to an inductance-capacitance and (2) the pure sample has two dielectric relaxations originating from intergrains, while the doped sample has only one intergranular contribution. This convinces that the electric connectivity of the doped sample is really improved by the addition of nano BN particles. Our results indicate that dielectric technique may be a useful tool to characterize the grain boundary properties and grain boundary-related properties of MgB{sub 2}.

  6. Evolution of nanostructure and specific surface area during thermally driven dehydration of Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Pimminger, H.; Habler, G.; Freiberger, N.; Abart, R.

    2016-01-01

    The thermally induced dehydration of micrometer-sized particles of Mg(OH)2 was investigated experimentally at ambient pressure and temperatures ranging from 350 to 1300 °C. Reaction progress is correlated with the evolution of the specific surface area and of the particle internal nanostructure. The maximum specific surface area of about 320 m2/g corresponding to a 70-fold increase relative to the starting material is obtained after heat treatment at 350 °C for about 2 h. This is due to the formation of a highly porous, particle-internal nanostructure comprised of newly crystallized strictly aligned, cube-shaped and nanometer-sized crystals of MgO and about 50 vol% porosity. Associated with the dehydration, intensive fracturing and defoliation occurs parallel to the (0001) plane of the original Mg(OH)2 or (111) of the topotaxially grown MgO. After heat treatment at increasingly higher temperatures, enhanced coarsening and sintering of the MgO crystals and healing of cracks leads to a successive decrease of the specific surface area. After heat treatment at 1300 °C for 2.5 h, the specific surface area has decreased to 5 m2/g close to the value typical for the original Mg(OH)2.

  7. Correlation of texture and intergranular corrosion in Al-Mg 5xxx series alloys

    NASA Astrophysics Data System (ADS)

    Engler, O.; Hentschel, T.; Brinkman, H.-J.

    2015-04-01

    Aluminium-alloys of the AA 5xxx series with Mg contents in excess of 3% may suffer from intergranular corrosion (IGC) when exposed to temperatures in the range 60 to 200°C. At these temperatures Al-Mg alloys are rendered susceptible to IGC by precipitation of β-Al8Mg5 phases along the grain boundaries. Accordingly, susceptibility to IGC will depend on grain size as well as type and orientation of the grain boundaries present in the material, that is, on the crystallographic texture of the material at final gauge. Therefore, it is of great interest to study the correlation of texture and precipitation of β-AlMg phases and, therewith, susceptibility to IGC. For this purpose, different AA 5182 samples were processed so as to produce different crystallographic textures and characterized with respect to microstructure and resistance against IGC. EBSD local texture analysis was applied to provide information about the grain boundary character distribution. Eventually, this may enable Al industry to reduce the susceptibility of Al-Mg alloys to IGC by proper control of the final gauge texture, such that higher Mg-contents may be used in IGC-critical applications.

  8. Efficient removal of fluoride by hierarchical MgO microspheres: Performance and mechanism study

    NASA Astrophysics Data System (ADS)

    Jin, Zhen; Jia, Yong; Luo, Tao; Kong, Ling-Tao; Sun, Bai; Shen, Wei; Meng, Fan-Li; Liu, Jin-Huai

    2015-12-01

    Hierarchical MgO microspheres assembled by numerous porous nanoplates were successfully obtained by annealing the precursors of magnesium carbonate hydroxide hydrate synthesized through a facile and cost-effective hydrothermal process at low temperature. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The fluoride removal performance of the hierarchical MgO microspheres was investigated. The adsorption isotherm could be well fitted in Freundlich model, and the adsorption capacity was over 115.5 mg/g at pH 7. The absorbent also showed high fluoride removal ability in a wide pH range of 2-10, which is favorable for practical application. The effect of co-existing anions on fluoride removal was also investigated. The result indicated that the fluoride adsorption capacity was influenced when carbonate, bicarbonate and phosphate existed above the concentration of 50 mg/g. In addition, the adsorption mechanism was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A novel hydroxyl and carbonate co-exchange mechanism has been proposed for the first time. It can be found that fluoride ions could replace the surface carbonates which formed by the reaction of MgO and the adsorbed CO2 molecules, and then anchored on the MgO surface.

  9. Sol-Gel Derived Hydroxyapatite Coating on Mg-3Zn Alloy for Orthopedic Application

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Manoj Kumar, R.; Kuntal, Kishor Kumar; Gupta, Pallavi; Das, Snehashish; Jayaganthan, R.; Roy, Partha; Lahiri, Debrupa

    2015-04-01

    In recent years, magnesium and its alloys have gained a lot of interest as orthopedic implant constituents because their biodegradability and mechanical properties are closer to that of human bone. However, one major concern with Mg in orthopedics is its high corrosion rate that results in the reduction of mechanical integrity before healing the bone tissue. The current study evaluates the sol-gel-derived hydroxyapatite (HA) coating on a selected Mg alloy (Mg-3Zn) for decreasing the corrosion rate and increasing the bioactivity of the Mg surface. The mechanical integrity of the coating is established as a function of the surface roughness of the substrate and the sintering temperature of the coating. Coating on a substrate roughness of 15-20 nm and sintering at 400°C shows the mechanical properties in similar range of bone, thus making it suitable to avoid the stress-shielding effect. The hydroxyapatite coating on the Mg alloy surface also increases corrosion resistance very significantly by 40 times. Bone cells are also found proliferating better in the HA-coated surface. All these benefits together establish the candidature of sol-gel HA-coated Mg-3Zn alloy in orthopedic application.

  10. Nanostructured Mg-Al hydrotalcite as catalyst for fine chemical synthesis.

    PubMed

    Basahel, Sulaiman N; Al-Thabaiti, Shaeel A; Narasimharao, Katabathini; Ahmed, Nesreen S; Mokhtar, Mohamed

    2014-02-01

    This paper reviews the recent research of nanostructured Mg-Al hydrotalcite (Mg-Al HT) and its application as an efficient solid base catalyst for the synthesis of fine chemicals. Mg-Al HT has many beneficial features, such as low cost, selectivity, catalytic properties, and wide range of preparation and modification methods. They hold promise for providing sought-after, environmentally friendly technologies for the 21st century. Replacement of currently used homogeneous alkaline bases for the synthesis of fine chemicals by a solid catalyst can result in catalyst re-use and waste stream reduction. We introduce briefly the structure, properties and characterization of the nanostructured Mg-Al HT. The efficacy and benign applications of Mg-Al HT as an alternative solid base to homogenous catalysts in the synthesis of fine chemicals are then reviewed. The challenges for the future applications of Mg-Al HT in the synthesis of fine chemicals in terms of green protocol processes are discussed. PMID:24749466

  11. A Statistical Study of Mg II Absorption Selected Galaxies in the SDSS at 0.4

    NASA Astrophysics Data System (ADS)

    Curtis, Brittney; Lundgren, B.

    2014-01-01

    The spectra of distant quasars frequently exhibit absorption features from singly-ionized magnesium (Mg II), which are understood to trace gas outflow and accretion processes in foreground galaxies. Host galaxies of the Mg II absorbing gas are difficult to detect because they are often faint and have small angular separation from the bright background quasar. We have undertaken a statistical study of low redshift ( 0.4) galaxies identified as potential Mg II absorption hosts which are visible in the Sloan Digital Sky Survey (SDSS). Using data from the SDSS DR7, we compiled a census of ~3200 photometrically-identified galaxies within a projected 150 kpc of an Mg II absorbing system. These potential Mg II absorption hosts were then compared to a control sample of galaxies in the foreground of quasars without absorption systems in the same redshift range. We report a positive detection of excess galaxies around the lines of sight to quasars with Mg II absorption systems, extending to ~90 kpc. We present the luminosity distribution of these excess galaxies and compare to previous, smaller studies from the literature. This work was partially supported by the National Science Foundation's REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  12. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.

    PubMed

    Wang, Q; Li, J H; Liu, B X

    2015-06-14

    With the aid of ab initio calculations, a realistic interatomic potential was constructed for the Mg-Cu-Y ternary system under the proposed formalism of smoothed and long-range second-moment approximation of tight-binding. Taking the potential as the starting base, an atomistic computation/simulation route was developed for designing favored and optimized compositions for Mg-Cu-Y metallic glass formation. Simulations revealed that the physical origin of metallic glass formation is the collapse of crystalline lattice when solute concentration exceeds a critical value, thus leading to predict a hexagonal region in the Mg-Cu-Y composition triangle, within which metallic glass formation is energetically favored. It is proposed that the hexagonal region can be defined as the intrinsic glass formation region, or quantitative glass formation ability of the system. Inside the hexagonal region, the driving force for formation of each specific glassy alloy was further calculated and correlated with its forming ability in practice. Calculations pinpointed the optimized stoichiometry in the Mg-Cu-Y system to be Mg64Cu16Y20, at which the formation driving force reaches its maximum, suggesting that metallic glasses designed to have compositions around Mg64Cu16Y20 are most stable or easiest to obtain. The predictions derived directly from the atomistic simulations are supported by experimental observations reported so far in the literature. Furthermore, Honeycutt-Anderson analysis indicated that pentagonal bipyramids (although not aggregating to form icosahedra) dominate in the local structure of the Mg-Cu-Y metallic glasses. A microscopic picture of the medium-range packing can then be described as an extended network of the pentagonal bipyramids, entangled with the fourfold and sixfold disclination lines, jointly fulfilling the space of the metallic glasses. PMID:25981154

  13. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  14. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    PubMed

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  15. Grain Boundary Diffusion of Sulfur in MgO

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Watson, E. B.

    2013-12-01

    From being a candidate light element in the Earth's core to recording biosignatures on the surface, sulfur is a minor, but critical, element throughout the Earth. A deeper understanding the behaviour of sulfur under a wide scope of Earth relevant conditions will provide insight into geochemical cycles and reservoirs from the crust to the core. Sulfur isotope ratios in particular may be used to record specific geochemical processes such as ongoing core/mantle interaction, as well as shallower processes including cycling between the atmosphere/hydrosphere and lithosphere. The mobility of sulfur under these conditions will affect the reliability of using observed signatures to distinguish past processes and events. Grain boundary diffusion has often been shown to be orders of magnitude more rapid than diffusion through the crystal lattice of many materials. This effect is particularly important in cases where the diffusant is incompatible in the crystal lattice, and thus resides predominantly on grain boundaries. This is the case for sulfur and many of the minerals that comprise the interior of the Earth. If S diffusion is fast enough, the retention of some pristine signatures could be compromised. In other cases fast diffusion may allow for detection of signatures at large distances from their original source, as suggested by [1]. Experiments have been conducted in a piston-cylinder device at 1GPa and temperatures ranging from 1100°C to 1500°C to determine the rate of S grain boundary diffusion in an MgO matrix. A source-sink method similar to that used by [1] was employed using either FeS or FeS2 as a source and Mo foil as a sink separated by up to 3mm of pure MgO polycrystalline matrix. The foil sink was analyzed by electron microprobe and laser ablation ICP-MS for S content. Preliminary results show substantial diffusion of S through the MgO matrix. The results from these experiments, potential applications, and relevant numerical simulations will be presented

  16. Solid Solution Effects on the MgAl2O4-MgGa2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between two spinel compounds (MgAl2O4 and MgGa2O4) were studied. Stoichiometric MgAl2O4 was formed in the laboratory through a coprecipitation method. Complete solid solution formation int eh MgAl2O4-MgGa2O4 systems was confirmed through X-ray diffraction analysis. Solid solution between MgAl2O4-MgGa2O4 decreases thermal conductivity at all temperatures up to 900oC. At 200oC with 10 mol% additoin of MgGa2O4 thermal conductivity decreases approximately 25%, and at 900oC there was still an 8% decrease. Additionally, preliminary studies show that porosity between 5% and 10% does not have an appreciable effect on the thermal conductivity in this study.

  17. Impact of Mg Content on (Mg,Zn)O Native Point Defects

    NASA Astrophysics Data System (ADS)

    Ball, Molly; Restrepo, Oscar; Brillson, Leonard; Windl, Wolfgang; Department of Material Science; Engineering Collaboration; Department of Physics Collaboration

    2015-03-01

    The two most thermodynamically stable defects in ZnO are oxygen vacancies (VO) and zinc vacancies (VZn) . These native point defects are electrically charged and can contribute to free carrier densities. Experiment shows that Mg addition to ZnO significantly changes native defect densities. To better understand this dramatic decrease in VZn and VO-related defects with increasing Mg content up to x =0.44 and the subsequent increase, we performed density functional theory (DFT) calculations using PAW potentials within PBE using VASP. The results showed to be very sensitive to DFT method used and chemical-potential calculation. For the latter, the literature shows that one can assume that the oxygen chemical potential equals that of the atoms in the oxygen molecules at a given surrounding partial oxygen pressure. However, one can also postulate that the total defect concentrations conserve the stoichiometry, or limiting potentials from elemental equilibrium phases can be used. The experimentally observed dependence helped identify the correct way to reproduce the experimental dependence of formation energy on Mg concentration, which will be discussed in detail in this presentation.

  18. Back Home on the Range.

    ERIC Educational Resources Information Center

    Breining, Greg

    1992-01-01

    Presents the history of the buffalo's demise and reemergence in the United States and Canada. Discusses the problems facing herds today caused by a small genetic pool, disease, range concerns, lack of predation, and culling. Points out the benefits of buffalo raising as compared to cattle raising, including the marketing advantages. (MCO)

  19. Anatomy of a Mountain Range.

    ERIC Educational Resources Information Center

    Chew, Berkeley

    1993-01-01

    Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…

  20. Long range fast tool servo

    NASA Astrophysics Data System (ADS)

    Moorefield, G. M., II; Dow, Thomas A.; Falter, Karl J.; Ro, Paul I.

    1993-05-01

    The PEC's MAC 100 Fast Tool Servo (FTS) System has demonstrated the efficacy of fabricating off-axis parabolic segments on axis by utilizing a fast tool motion to machine non-rotationally symmetric surfaces. The key to this technique was a servo for the tool motion that had a high-bandwidth coupled with a small range of motion. The Keck telescope, with its thirty-six (36) 1-meter diameter segments, would have been an excellent application for this technology. Since this technology was not available at the time of construction, each mirror segment was fabricated to its desired shape by loading it to a specified deformed shape and polishing it to a spherical contour, then removing the bending loads to allow the segment to relax to the desired asymmetric shape. If the segments of this optic had been constructed on axis with an FTS, the fabrication of the most extreme segment would have required only about 200 micrometers of non-rotational symmetry. However, the demand for larger displacement actuators is being driven by new applications with nonrotationally symmetric components in the millimeter range. This report describes the search for a suitable actuator for a long range fast tool servo system that would allow the fabrication of non-rotationally symmetric optical surfaces with a 1 mm range of servo motion. To allow cost-effective machining of these surfaces, the actuator must also possess a 50 Hz bandwidth (minimum) and 25 nanometer resolution.

  1. About White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.

  2. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  3. Mobile Lunar Laser Ranging Station

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  4. The effect of substrate temperature and source flux on cubic ZnMgO UV sensors grown by plasma-enhanced molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Boutwell, R. Casey; Wei, Ming; Schoenfeld, Winston V.

    2013-11-01

    Cubic ZnMgO films were grown by plasma-enhanced molecular beam epitaxy on MgO substrates. Interdigitatal metal-semiconductor-metal contacts were fabricated with Ni/Mg/Au to investigate the effect of growth temperature and source flux ratio on UV sensor properties. Device spectral responsivity was found to decrease with increasing Mg content, while UV-visible rejection ratio correspondingly increased. Peak responsivities ranged from 236 nm to 260 nm, spanning from 10 mA/W in the single crystal, high Mg case to ∼500 A/W for phase segregated films. UV-visible rejection ratios increased with increasing Mg content to three orders of magnitude. Solar blind detectors were realized with single-crystal ZnMgO, while effective visible blind detectors were made with phase-segregated ZnMgO films.

  5. The calcite → aragonite transformation in low-Mg marble: Equilibrium relations, transformations mechanisms, and rates

    USGS Publications Warehouse

    Hacker, Bradley R.; Rubie, David C.; Kirby, Stephen H.; Bohlen, Steven R.

    2005-01-01

    Experimental transformation of a rather pure natural calcite marble to aragonite marble did not proceed via the expected straightforward polymorphic replacement. Instead, the small amount of Mg in the starting material (0.36 wt %) was excluded from the growing aragonite and diffused preferentially into the remaining calcite grains, producing Mg-rich calcite rods that persisted as relicts. Nucleation of aragonite occurred exclusively on grain boundaries, with aragonite [001] oriented subparallel to calcite [0001]. The aragonite crystals preferentially consumed the calcite crystal on which they nucleated, and the reaction fronts developed preferentially along the {010} and {110} planes of aragonite. Each aragonite neoblast that grew was nearly free of Mg (typically <0.1 wt %). The excess Mg was taken up by the calcite grains in between, stabilizing them and causing a few volume percent rodlike relicts of Mg-enriched calcite (up to 10 wt % MgO) to be left behind by the advancing reaction front. The aragonite growth rates are approximately linear and range from ∼3 × 10−11 m s−1 at 600°C to ∼9 × 10−9 m s−1 at 850°C, with an apparent activation enthalpy of 166 ± 91 kJ mol−1. This reaction mechanism and the resultant texture are akin to cellular precipitation reactions in metals. Similar transformation textures have been reported from high-Mg marbles in Japan and China that disproportionated to low-Mg calcite and dolomite.

  6. Effect of MgO Additive on Volumetric Expansion of Self-Degradable Cements

    SciTech Connect

    Sugama T.; Warren, J.; Butcher, T.

    2011-09-30

    We identified hard-burned magnesium oxide (MgO) as a suitable expansive additive for improving the plugging performance of self-degradable, temporary sodium silicate-activated slag/Class C fly ash (SSASC) blend cement sealers into rock fractures in Enhanced Geothermal Systems (EGSs). MgO extended the volumetric expansion of sealers during their exposure to a hydrothermal environment at 200 C under pressures, ranging from 300 to 1500 psi. A great expansion ratc of 19.3% was observed by adding 3.0 wt% MgO under 300 psi pressure, thus promising to plug thoroughly inner fracture. When the pressure was increased from 300 psi to 1500 psi, the expansion rate of cement markedly reduced, corresponding to the formaLion of crack-free specimens and the improvement of compressive strength. However, with 3.0 wt% MgO, the specimens still engendered the generation of numerous visual cracks, although they were prepared under a high pressure of 1500 psi. The effective content of MgO in minimizing and eliminating the generation of cracks was 2.0 wt%, which provided a moderate expansion of {ge} 0.5%. The compressive strength of 2.0 wt% MgO specimens made under a pressure of 300 psi rose {approx} 1.7-fold to 4816 psi with an increasing pressure to 1500 psi. The in-situ growth of brucite crystal formed by the hydrothermal hydration of MgO was responsive for such an expansion of the SSASC cement; meanwhile. two crystalline hydrothermal reaction products, 1.1 nm tobermorite and calcium silicate hydrated, contributed to the development of the sealer's compressive strength. Thus, the increasing pressure seems to suppress and control a growth rate of brucite crystal in response to a lower extension of expansion. Furthermore, all MgO-conlaining SSASC sealers possessed the water-catalyzed self-degradable properties.

  7. Mg2+ as an indicator of nutritional status in marine bacteria.

    PubMed

    Heldal, Mikal; Norland, Svein; Erichsen, Egil Severin; Sandaa, Ruth-Anne; Larsen, Aud; Thingstad, Frede; Bratbak, Gunnar

    2012-03-01

    Cells maintain an osmotic pressure essential for growth and division, using organic compatible solutes and inorganic ions. Mg(2+), which is the most abundant divalent cation in living cells, has not been considered an osmotically important solute. Here we show that under carbon limitation or dormancy native marine bacterial communities have a high cellular concentration of Mg(2+) (370-940 mM) and a low cellular concentration of Na(+) (50-170 mM). With input of organic carbon, the average cellular concentration of Mg(2+) decreased 6-12-fold, whereas that of Na(+) increased ca 3-4-fold. The concentration of chlorine, which was in the range of 330-1200 mM, and was the only inorganic counterion of quantitative significance, balanced and followed changes in the concentration of Mg(2+)+Na(+). In an osmotically stable environment, like seawater, any major shift in bacterial osmolyte composition should be related to shifts in growth conditions, and replacing organic compatible solutes with inorganic solutes is presumably a favorable strategy when growing in carbon-limited condition. A high concentration of Mg(2+) in cells may also serve to protect and stabilize macromolecules during periods of non-growth and dormancy. Our results suggest that Mg(2+) has a major role as osmolyte in marine bacteria, and that the [Mg(2+)]/[Na(+)] ratio is related to its physiological condition and nutritional status. Bacterial degradation is a main sink for dissolved organic carbon in the ocean, and understanding the mechanisms limiting bacterial activity is therefore essential for understanding the oceanic C-cycle. The [Mg(2+)]/[Na(+)]-ratio in cells may provide a physiological proxy for the transitions between C-limited and mineral nutrient-limited bacterial growth in the ocean's surface layer. PMID:21938023

  8. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  9. Formation and stability of hollow MgO nanoshells.

    PubMed

    Krishnan, Gopi; Palasantzas, G; Kooi, B J

    2010-07-01

    High temperature annealing of gas phase synthesized Mg nanoparticles surrounded by an MgO shell leads to formation of hollow MgO nanoshells due to the evaporation assisted Kirkendall effect. Under electron beam exposure in TEM, the (220) MgO facets reduce their high surface energy by forming cube facets, which is followed by nanoshell size reduction and collapse within a few minutes. However, in ambient conditions the nanoshells remain stable for significant periods of time and further degrade by becoming filled with carbon while lossing any MgO identity. Finally, in moderate low vacuum they remained stable for months indicating promise for applications. PMID:21128428

  10. Lattice dynamical study of Raman and infrared modes in Mg2SiO4

    NASA Astrophysics Data System (ADS)

    Kaur, Harleen; Jindal, Ruby; Sinha, M. M.

    2016-05-01

    Vibrational studies on Raman and infrared active phonons in orthorhombic phase for Mg2SiO4 have been made by applying a short range force constant model. The lattice dynamical calculations were carried out by Wilson's GF matrix method by normal coordinate analysis of Mg2SiO4 having space group Pbnm in orthorhombic phase. The calculations have been made with fifteen stretching and eleven bending force constants. The calculated values of Raman and infrared phonons are in good agreement with the experimental results. The contribution of each force constant towards the zone centre phonons has been determined in terms of potential energy distribution.

  11. Optically stimulated luminescence in NaMgF{sub 3}:Eu{sup 2+}

    SciTech Connect

    Dotzler, C.; Williams, G. V. M.; Rieser, U.; Edgar, A.

    2007-09-17

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) measurements were performed on polycrystalline NaMgF{sub 3}:Eu{sup 2+} as well as sintered and quenched NaMgF{sub 3}:Eu{sup 2+} after exposure to ionizing radiation. The authors find a range of TL traps and the sintering and quenching process reduces the concentration of shallow traps. The resultant time integrated OSL intensity is linear from microgray dose levels to approximately 100 Gy, and hence this material is suitable for a personal and environmental dosimetry, where low dose levels are encountered and high sensitivity is required.

  12. The preliminary study of the quench protection of an MgB2

    NASA Astrophysics Data System (ADS)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  13. Deformation mechanisms at Different grain sizes in a cryogenically ball-milled Al-Mg alloy.

    SciTech Connect

    Liao, Xiaozhou; Huang, J.; Zhu, Y. T.; Zhou, F.; Lavernia, Enrique J.

    2001-01-01

    An Al-7.5 wt. % Mg alloy was ball-milled in liquid N2 for eight hours and its microstructures were investigated using transmission electron microscopy. Electron diffraction confirmed that the resulting powder is a supersaturated Al-Mg solid solution with a face-centered cubic structure. Three nanostructures with different grain size ranges and shapes were observed and the deformation mechanisms in these structures were found to be different. The reasons for the different deformation mechanisms were discussed. Keywords: Aluminum alloy; Cryogenic ball milling; Transmission electron microscopy; Microstructure.

  14. Electron-Impact Ionization of Mg

    NASA Technical Reports Server (NTRS)

    Boivin, R. F.; Srivastava, S. K.

    1997-01-01

    A pulsed crossed beam technique is used to measure inonization cross-sections of metallic atoms. Relative values of cross-sections of single, double and triple inonization of magnesium have been successfully measured with good accuracy over the o-700 eV range. Absolute values of cross sections have been obtained by normalization to a theoretical value at high electron energy. Results are compared to previously published values and, for single inonization in particular, a comparison with theoretical cross-extions is perfomed.

  15. A Computational Investigation of Precipitates in Mg-RE Alloys With Applications To Mg-X Systems

    NASA Astrophysics Data System (ADS)

    Issa, Ahmed

    Increasing fuel efficiency in transportation vehicles is a major policy goal for both government and auto and aerospace manufacturers. Lightweight structural materials, such as magnesium alloys, hold great promise in enabling such fuel efficiency gains. Understanding the controlling factors in Mg alloy strengthening is crucial for the rational design of structurally strong and inexpensive Mg alloys. In this work, we seek to understand the energetic underpinnings giving rise to a class of remarkably strong Mg alloys: Mg-RE systems. We use first-principles methods to efficiently explore seventeen Mg-RE systems, drawing out broad patterns and distilling our knowledge into simple design rules for Mg alloys. We begin by investigating the controlling factors for the Mg-strengthening prismatic plate precipitates in Mg-RE systems, discovering the critical role of strain in such systems. We then proceed to investigate the surprising role of interfacial energies in determining the course of the Mg-RE precipitation reactions. Using strain and interfacial energies, we construct a phase-field model which accurately depicts the precipitate morphology as a function of time and size in a Mg-Nd system. Finally, we combine our gained insights to implement a computational alloy design scheme on a large portion of the periodic table where we seek Mg-strengthening solutes. Our work advances the understanding of strengthening in Mg alloys and lays the groundwork for full scale computational alloy design.

  16. Deep traps and photo-electric properties of p-Si/MgO/n-Zn{sub 1−x}Mg{sub x}O heterojunction

    SciTech Connect

    Placzek-Popko, E. Paradowska, K. M.; Gumienny, Z.; Biegański, P.; Pietrzyk, M. A.; Kozanecki, A.

    2015-08-21

    In the paper, the photoluminescence (PL) measurements, current–voltage–temperature (I-V-T) measurements, space charge techniques (C-V and deep level transient spectroscopy (DLTS)), and photocurrent spectral characteristics have been applied to investigate defects in p-Si/MgO/ n-Zn{sub 1−x}Mg{sub x}O heterojunction (HJ). The HJ structure was grown on p-type Si (111) substrate with resistivity equal to 0.1 Ω cm by the plasma-assisted molecular beam epitaxy technique. A radio-frequency cell was used for the generation of oxygen plasma. PL spectrum let us determine the Mg content ∼10%. Besides the excitonic Zn{sub 0.9}Mg{sub 0.1}O line, the PL spectrum also contains green and yellow emission bands indicating the presence of defect states in the investigated structures. I-V measurements reveal the rectifying properties of the HJ and the current thermally activated with a trap with the activation energy equal to 0.42 eV. DLTS studies yield the majority trap of the activation energy 0.42 eV, confirming the result obtained from the I-V measurements. It was found that the defects related to this trap have a point like behaviour. A spectral characteristic of the photocurrent shows that the p-Si/MgO/n-Zn{sub 1−x}Mg{sub x}O HJ may be applied as a photodiode operating within the wavelength range of 300 nm-1100 nm. The dark current transport and photocurrent spectrum were explained using the Anderson model of a HJ.

  17. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  18. The Strength of the Spatially Interconnected Eutectic Network in HPDC Mg-La, Mg-Nd, and Mg-La-Nd Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Gavras, Serge; Nagasekhar, Anumalasetty V.; Cáceres, Carlos Horacio; Easton, Mark A.

    2014-09-01

    3D numerical images of the intergranular percolating eutectic of two binary alloys, Mg-0.62 at. pctLa and Mg-0.60 at. pctNd, created using dual beam FIB tomography, were incorporated into an FEM code to model their tensile behavior. Due to its high volume fraction (29.9 pct), the behavior of the Mg-La network was akin to that of a stretch-dominated micro-truss structure, whereas the Mg-Nd's, with a relatively low volume fraction (7.5 pct), mimicked that of a bending-dominated structure. The 3D network contributed some 37 MPa to the strength of the Mg-La alloy casting, whereas it only added about 1.4 MPa to the Mg-Nd's. The model predictions based on the binary alloys were verified using cast-to-shape specimens of the Mg-La and two ternary Mg-La-Nd alloys, subjected to a flash-annealing aiming at breaking up the continuity of the 3D network, while preserving the rest of the microstructure unchanged. The flash-annealed specimens exhibited a decrease in strength that matched closely the computed values. Implications regarding alloy design involving the eutectic network and solid solution hardening of more complex alloys are discussed.

  19. Mg segregation in Mg-rich Mg-Ni switchable mirror studied by Rutherford backscattering, elastic recoil detection analysis, and nuclear reaction analysis

    SciTech Connect

    Sekiba, D.; Horikoshi, M.; Abe, S.; Ishii, S.

    2009-12-01

    Pd/Mg{sub 3.3}Ni films were prepared by dc sputtering deposition on three different substrates of glass, diamondlike carbon/Si, and Si. Hydrogenation and dehydrogenation cycles were performed on these samples simultaneously. The optical switching property due to the hydrogenation and dehydrogenation was monitored by the transmission of laser light via the glass substrate. The switching ability was totally lost after 120 cycles. We made comparative study of the composition change between the new (as-deposited) and old (after 120 switching cycles) samples by Rutherford backscattering (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). From the RBS results we found out the segregation of a Mg layer between the Pd cap layer and the rest of the Mg-Ni layer. At the Pd/Mg interface in the old sample, thin MgO layer formed probably during the dehydrogenation process with O{sub 2}. ERDA showed that there is much hydrogen in the old sample. NRA displayed the depth profiles of hydrogen distribution in the old sample. It is revealed that much hydrogen is accumulated at the interface between the Pd cap layer and the segregated Mg layer. It can be concluded that the formations of oxide and hydride of the segregated Mg layer are the main reasons for the degradation of the Mg{sub 3.3}Ni switchable mirror.

  20. The Mg isotopic composition of Cenozoic seawater - evidence for a link between Mg-clays, seawater Mg/Ca, and climate

    NASA Astrophysics Data System (ADS)

    Higgins, John A.; Schrag, Daniel P.

    2015-04-01

    Cooling of Earth's climate over the Cenozoic has been accompanied by large changes in the magnesium and calcium content of seawater whose origins remain enigmatic. The processes that control these changes affect the magnesium isotopic composition of seawater, rendering it a useful tool for elucidating the processes that control seawater chemistry on geologic timescales. Here we present a Cenozoic magnesium isotope record of carbonate sediments and use a numerical model of seawater chemistry and the carbon cycle to test hypotheses for the covariation between Cenozoic seawater chemistry and climate. Records are consistent with a 2-3× increase in seawater Mg/Ca and little change in the Mg isotopic composition of seawater. These observations are best explained by a change in the cycling of Mg-silicates. We propose that Mg/Ca changes were caused by a reduction in removal of Mg from seawater in low-temperature marine clays, though an increase in the weathering of Mg-silicates cannot be excluded. We attribute the reduction in the Mg sink in marine clays to changes in ocean temperature, directly linking the major element chemistry of seawater to global climate and providing a novel explanation for the covariation of seawater Mg/Ca and climate over the Cenozoic.

  1. Diffusion Couple Investigation of the Mg-Zn System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Phase layer growth and interdiffusion in the binary Mg-Zn system was investigated utilizing solid-to-solid diffusion couples annealed at 295 , 315 and 325 C for 21, 7 and 5 days, respectively. The diffusion microstructure was examined by scanning electron microscopy and concentration profiles were determined using X-ray energy dispersive spectroscopy and electron microprobe analysis. The Mg solid solution, Mg2Zn11, MgZn2 and Mg2Zn3 in all three couples were observed in addition to the high temperature, Mg51Zn20 phase at 325 C. The MgZn2 phase was observed to grow the thickest layer, followed by the Mg2Zn3 and the Mg2Zn11 phases. Activation energies for the parabolic growth were calculated to be 105 kJ/mol and 207 kJ/mol for the Mg2Zn3 and MgZn2, respectively. Relevant interdiffusion coefficients were calculated for the phases present by analyses of concentration profiles. This study was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program (DE-AC05-00OR22725).

  2. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  3. Mg isotopes in biocarbonates: new insight into vital effects associated to echinoderms and bivalves calcification

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Hermans, J.; Borremans, C.; Dubois, P.; Poulain, C.; Paulet, Y.; Andre, L.

    2007-12-01

    specific control of isotopic exchange by ACC. For bivalves, we considered one clam species (Ruditapes Philippinarum) from two different sampling sites in the gulf of Morbihan (Brittany, France). One site (Locmariaquer, Loc) is coastal and marine while the other (Le bono, BO) located upstream in the Auray river. For each site and specimen, we considered all reservoirs involved in the shell build-up: seawater, internal fluids with hemolymph (H) and extrapaleal fluid (EPF), soft tissues with mantle, muscle and remaining part (R) and finally aragonitic shells. Water d26Mg are -0.82 at Loc and -0.79 at BO and appear to be highly similar to internal fluids values (EPF and H), -0.6 for Loc and -0.8 for BO. The soft tissues with mean values of -2.7 (Mantle), -2.1 (Muscle), -2.8 (R) at both sites, show pronounced enrichments in the light isotopic fraction of Mg. The shells display the widest range of Mg isotopic signatures with -1.9 at Loc and -4.2 at BO suggesting that different routes of fractionation are acting. The shell signature at Loc similar to aragonitic coral (-1.9) suggests that moderate biological effects have influenced the shell composition at this site. In contrast, at BO, the very light signature of the shell suggests that a significant fraction of Mg has been internally recycled by the clam and used for the building of the shell.

  4. Submicron Measurements of Mg Isotopes in Biogenic Carbonates Using Laser Ablation-MC-ICPMS: New Window into Biomineralisation

    NASA Astrophysics Data System (ADS)

    Sadekov, A.; Lloyd, N. S.; Misra, S.; Funcke, A.; Shuttleworth, S.; Langer, G.; Bijma, J.; Elderfield, H.

    2014-12-01

    Magnesium is one of the most abundant elements in the earth's crust and in seawater. Fractionation of its stable isotopes has been shown to be useful indicators of many geological, chemical and biological processes. For example, biogenic carbonates display ~5‰ range of d26Mg values, which is attributed to variable degree of biological control on Mg ions during biomineralisation. Understanding this biological control is essential for developing proxies based on biogenic carbonates. Current methods of magnesium isotope measurements in carbonates are often time consuming and require relatively large volumes of samples. In this work, we present a new approach of measuring Mg isotopes in biogenic carbonates using Laser Ablation MC-ICP-MS. We will show that this microanalytical approach provides accurate and relatively fast measurements of Mg isotopes in biological carbonate with precision down to 0.2‰ (1sd). We will also present examples on how this new method can provide additional information about foraminiferal biomineralisation. For example, we will demonstrate submicron variation in Mg isotopes across shells of Orbulina universa, which are linked to high and low Mg/Ca layers in this species. We will also report changes in Mg isotope composition of benthic foraminifera Amphistegina sp. cultured in seawater with different Mg/Ca values. Both examples will be used to draw attention to the complexity and possibilities of multiple mechanisms of Mg incorporation into biogenic carbonates during biomineralisation.

  5. White-light luminescence properties of Mg and Sn doped ZnO prepared by thermal oxidation

    SciTech Connect

    Zeng, Jun; Fan, Huiqing; Xue, Jun; Wang, Yangli

    2014-02-01

    Graphical abstract: The PL spectrum of MgSnZnO was measured at room temperature through multi-peak Gaussian fitting, it is found that the broad emission is composed of six peaks. - Highlights: • Mg and Sn doped ZnO are synthesized by thermal oxidation of MgSnZn alloys. • The structure is characterized by XRD and micro-Raman scattering technology. • The optical properties are characterized by photoluminescence spectrum. • The resulting Mg and Sn doped ZnO shows white photoluminescence. - Abstract: This work reports that Mg and Sn doped ZnO (MgSnZnO) are synthesized by thermal oxidation of MgSnZn alloys. The structure and optical properties are characterized by X-ray diffraction (XRD), micro-Raman scattering technology and photoluminescence spectrum. Interestingly, the resulting MgSnZnO shows white photoluminescence. Additionally, the photoluminescence spectrum of MgSnZnO shows two broad emission bands ranging from 360 to 420 nm and 420 to 630 nm, respectively. Through multi-peak Gaussian fitting, it is found that the broad emission is composed of six Gaussian peaks. The six Gaussian peaks are centrered at 383 nm, 397 nm, 455 nm, 516 nm, 560 nm and 614 nm.

  6. Structural organization, micro-phase separation and polyamorphism of liquid MgSiO3 under compression

    NASA Astrophysics Data System (ADS)

    San, Luyen Thi; Van Hong, Nguyen; Iitaka, Toshiaki; Hung, Pham Khac

    2016-03-01

    The structure, structural change and micro-phase separation in liquid MgSiO3 under pressure are studied by molecular dynamics simulation with pair-wise potentials. Models consisting of 5000 atoms are constructed at 3500 K in the 0-30 GPa pressure range. The structural organization and structural phase transition under compression as well as network topology of liquid MgSiO3 are clarified through analysis and visualization of molecular dynamics simulation data. The short-range structure, intermediate-range structure and the degree of polymerization as well as structural, compositional and dynamical heterogeneities are also discussed in detail.

  7. Transformation of echinoid Mg calcite skeletons by heating

    NASA Astrophysics Data System (ADS)

    Dickson, J. A. D.

    2001-02-01

    Interambularcral plates of echinoid Heterocentrotus trigonarius, composed of Mg calcite 1 (≈14 mol% MgCO 3), were heated in three timed series of experiments at 300°C. Dried plate fragments and fragments with added water were heated separately in pressurized bombs. X-ray powder diffractometry, unit cell dimensions, and phase compositions are used to monitor reaction progress. After 10 h heating in the bombs dolomite (43.5 mol% MgCO 3) and Mg calcite appear (4-7 mol% MgCO 3); by 20 h all Mg calcite 1 is consumed, and at 120 h dolomite composition has evolved to ≈47 mol% MgCO 3 and calcite to ≈2 mol% MgCO 3. Whole plates heated at 300°C in an open muffle furnace develop dolomite (≈42 mol% MgCO 3) and Mg calcite 2 (≈6 mol% MgCO 3) after 10 h and remain compositionally invariant throughout subsequent heating to 620 h. Limited skeletal water catalyzes the early reaction but escapes from the open furnace and consequently reaction ceases after ≈10 h. The experimentally produced dolomite has relative Mg-Ca ordering of 75% to 79%. The stabilization of echinoid Mg calcite by heating at 300°C to a mixture of dolomite and calcite occurs through a dissolution/precipitation reaction. The alteration fabric produced within the stereom consists of irregularly shaped, branched dolomite crystals > 5 μm homoaxially set in a calcite 2 (bomb) or Mg calcite 2 (furnace) matrix. Round and tubular pores 1 to 5 μm are randomly distributed throughout this fabric. The stereom pore system remains intact during furnace heating but is destroyed during heating in bombs. The texture of experimentally stabilized echinoid skeletons is different from that of fossil echinoderms that are composed of microrhomic dolomite homoaxially set in a single calcite crystal.

  8. P-type InGaN across the entire alloy composition range

    SciTech Connect

    Wang, K.; Araki, T.; Katsuki, T.; Yu, K. M.; Mayer, M. A.; Ager, J. W. III; Walukiewicz, W.; Alarcon-Llado, E.; Nanishi, Y.

    2013-03-11

    A systematic investigation on Mg doped and undoped InGaN epilayers grown by plasma-assisted molecular beam epitaxy has been conducted. Single phase InGaN alloys across the entire composition range were synthesized and Mg was doped into In{sub x}Ga{sub 1-x}N (0.1 {<=} x {<=} 0.88) epilayers up to {approx}10{sup 20}/cm{sup 3}. Hall effect, thermopower, and electrochemical capacitance voltage experimental results demonstrate the realization of p-type InGaN across the entire alloy composition range for properly Mg doped InGaN. Hole densities have been measured or estimated to be in the lower {approx}10{sup 18}/cm{sup 3} range when the net acceptor concentrations are in the lower {approx}10{sup 19}/cm{sup 3} range across the composition range.

  9. Incidence of strong Mg II absorbers towards different types of quasars

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Chand, Hum; Gopal-Krishna

    2013-10-01

    We report the first comparative study of strong Mg II absorbers (Wr ≥ 1.0 Å) seen towards radio-loud quasars of core-dominated (CDQ) and lobe-dominated (LDQ) types and normal quasars (QSOs). The CDQ and LDQ samples were derived from the Sloan Digital Sky Survey Data Release 7 after excluding known `broad-absorption-line' quasars and blazars. The Mg II associated absorption systems having a velocity offset v < 5000 km s-1 from the systemic velocity of the background quasar were also excluded. Existing spectroscopic data for redshift-matched sightlines of 3975 CDQs and 1583 LDQs, covering an emission redshift range 0.39-4.87, were analysed and 864 strong Mg II absorbers were found, covering the redshift range 0.45-2.17. The conclusions reached using this well-defined large data set of strong Mg II absorbers are (i) the number density, dN/dz, towards CDQs shows a small, marginally significant excess (˜9 per cent at 1.5σ significance) over the estimate available for QSOs; (ii) in the redshift space, this difference is reflected in terms of a 1.6σ excess of dN/dz over the QSOs, within the narrow redshift interval 1.2-1.8; (iii) the dN/dβ distribution (with β = v/c) for CDQs shows a significant excess (at 3.75σ level) over the distribution found for a redshift- and luminosity-matched sample of QSOs, at β in the range 0.05-0.1. This leads us to infer that a significant fraction of strong Mg II absorption systems seen in this offset velocity range are probably associated with the CDQs and might be accelerated into the line of sight by their powerful jets and/or due to the accretion-disc outflows close to our direction. Support to this scenario comes from a consistency check in which we consider only the spectral range corresponding to β > 0.2. The computed redshift distribution for strong Mg II absorbers towards CDQs now shows excellent agreement with that known for QSOs, as indeed is expected for purely intervening absorption systems. Thus, it appears that for

  10. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-01

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period. PMID:12167846

  11. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  12. Short-range communication system

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  13. Propagator for finite range potentials

    SciTech Connect

    Cacciari, Ilaria; Moretti, Paolo

    2006-12-15

    The Schroedinger equation in integral form is applied to the one-dimensional scattering problem in the case of a general finite range, nonsingular potential. A simple expression for the Laplace transform of the transmission propagator is obtained in terms of the associated Fredholm determinant, by means of matrix methods; the particular form of the kernel and the peculiar aspects of the transmission problem play an important role. The application to an array of delta potentials is shown.

  14. Range Expansion of Heterogeneous Populations

    NASA Astrophysics Data System (ADS)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-01

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  15. Range determination for scannerless imaging

    DOEpatents

    Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  16. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  17. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  18. Mg/Ca-temperature and seawater-test chemistry relationships in the shallow-dwelling large benthic foraminifera Operculina ammonoides

    NASA Astrophysics Data System (ADS)

    Evans, David; Erez, Jonathan; Oron, Shai; Müller, Wolfgang

    2015-01-01

    The foraminifera Mg/Ca palaeothermometer contributes significantly to our understanding of palaeoceanic temperature variation. However, since seawater Mg/Ca has undergone large secular variation and the relationship between seawater and test Mg/Ca has not been calibrated in detail for any species with a substantial fossil record, it is only possible to assess relative temperature changes in pre-Pleistocene fossil samples. In order to establish the basis of accurate quantitative Mg/Ca-derived deep-time temperature reconstructions, we have calibrated the relationship between test Mg/Ca, seawater chemistry and temperature in laboratory cultures of the shallow-dwelling large benthic species Operculina ammonoides. Operculina has a fossil range extending back to the early Paleogene and is the nearest living relative of the abundant genus Nummulites. We find a temperature sensitivity of 1.7% °C-1 and a linear relationship between the Mg distribution coefficient and seawater Mg/Ca (Mg /Casw) with m = -1.9 × 10-3 , within error of the equivalent slope for inorganic calcite. The higher test Mg/Ca of O. ammonoides compared to inorganic calcite may be explained by an elevated pH of the calcifying fluid, implying that these foraminifera do not modify the Mg/Ca ratio of the seawater from which they calcify, differentiating them in this respect from most other perforate foraminifera. Applying these calibrations to previously published fossil data results in palaeo-Mg /Casw reconstruction consistent with independent proxy evidence. Furthermore, our data enable accurate absolute palaeotemperature reconstructions if Mg /Casw is constrained by another technique (e.g. ridge flank vein carbonate; fluid inclusions). Finally, we examine Li, Na, Sr and Ba incorporation into the test of O. ammonoides and discuss the control exerted by temperature, seawater chemistry, saturation state and growth rate on these emerging proxies.

  19. Medium Range Forecasts Representation (and Long Range Forecasts?)

    NASA Astrophysics Data System (ADS)

    Vincendon, J.-C.

    2009-09-01

    The progress of the numerical forecasts urges us to interest us in more and more distant ranges. We thus supply more and more forecasts with term of some days. Nevertheless, precautions of use are necessary to give the most reliable and the most relevant possible information. Available in a TV bulletin or on quite other support (Internet, mobile phone), the interpretation and the representation of a medium range forecast (5 - 15 days) must be different from those of a short range forecast. Indeed, the "foresee-ability” of a meteorological phenomenon decreases gradually in the course of the ranges, it decreases all the more quickly that the phenomenon is of small scale. So, at the end of some days, the probability character of a forecast becomes very widely dominating. That is why in Meteo-France the forecasts of D+4 to D+7 are accompanied with a confidence index since around ten years. It is a figure between 1 and 5: the more we approach 5, the more the confidence in the supplied forecast is good. In the practice, an indication is supplied for period D+4 / D+5, the other one for period D+6 / D+7, every day being able to benefit from a different forecast, that is be represented in a independent way. We thus supply a global tendency over 24 hours with less and less precise symbols as the range goes away. Concrete examples will be presented. From now on two years, we also publish forecasts to D+8 / J+9, accompanied with a sign of confidence (" good reliability " or " to confirm "). These two days are grouped together on a single map because for us, the described tendency to this term is relevant on a duration about 48 hours with a spatial scale slightly superior to the synoptic scale. So, we avoid producing more than two zones of types of weather over France and we content with giving an evolution for the temperatures (still, in increase or in decline). Newspapers began to publish this information, it should soon be the case of televisions. It is particularly

  20. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires

    SciTech Connect

    Pan, C.-J.; Hsu, H.-C.; Cheng, H.-M.; Wu, C.-Y.; Hsieh, W.-F.

    2007-04-15

    ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn{sub 1} {sub -x} Mg {sub x} O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn{sup 2+} ions are successfully substituted by Mg{sup 2+} ions in the ZnO lattice. In Raman-scattering studies, the change of E {sub 2}(high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm{sup -1} are presumably attributed to the Mg-related vibrational modes. - Graphical abstract: We reported the synthesis of the ZnMgO nanostructures prepared by a simple vapor transport method. Magnesium-related anomalous modes are observed by Raman spectra for the first time in ZnMgO system.

  1. Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction

    NASA Astrophysics Data System (ADS)

    Xie, X. H.; Zhang, Z. Z.; Shan, C. X.; Chen, H. Y.; Shen, D. Z.

    2012-08-01

    We report a dual-color ultraviolet (UV) photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction. The device exhibits distinct dominant responses at solar blind (250 nm) and visible blind (around 330 nm) UV regions under different reverse biases. By using the energy band diagram of the structure, it is found that the bias-tunable two-color detection is originated from different valence band offset between cubic MgZnO/MgO and hexagonal MgZnO/MgO. Meanwhile, due to the large conduction band offset at the Si/MgO interface, the visible-light photoresponse from Si substrate is suppressed.

  2. MgO platelets and high critical field in MgB2 thin films doped with carbon from methane

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Hunte, F.; Zhuang, C. G.; Feng, Q. R.; Gan, Z. Z.; Xi, X. X.; Larbalestier, D. C.; Voyles, P. M.

    2009-12-01

    We report that C-doped MgB2 thin films deposited by hybrid physical-chemical vapor deposition (HPCVD) using CH4 as the carbon source have Hc2(0 K)~60 T, similar to that of HPCVD films obtained using (MeCp)2Mg for the carbon. Using transmission electron microscopy, we show that in the films doped using CH4 there is a MgB2C2 layer on top of the MgB2 film, which does not degrade the MgB2 connectivity or Jc. We also find a high density of coherent MgO nanoplatelets in the MgB2 which create strain fields which may give rise to strong π-band scattering and the very high Hc2.

  3. Influence of Zn substitution for Mg on microwave dielectric properties of spinel-structured (Mg1-xZnx)Ga2O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Kan, Akinori; Takahashi, Susumu; Moriyama, Tohru; Ogawa, Hirotaka

    2014-09-01

    The microwave dielectric properties and crystal structure of spinel-structured (1 - x)MgGa2O4-xZnGa2O4 ceramics were characterized in this study. From the linear variation in the lattice parameters, the formation of solid solution was obtained over the whole composition range. On the basis of the refined atomic coordinates, the variations in the volume of tetrahedron and octahedron were estimated and the expansion of the MO4 (M = Mg, Zn, and Ga) tetrahedron was recognized. The covalency of the cation-oxygen bond in the 8a site decreased with increasing composition x, suggesting the preferential Zn substitution for Mg in 8a site. The ɛr values of Zn-substituted ceramics were higher than that of MgGa2O4 ceramic. The Q · f values higher than 1.8 × 105 GHz were obtained when the ceramics were sintered at temperatures higher than 1475 °C.

  4. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  5. Formation of ternary complexes with MgATP: effects on the detection of Mg2+ in biological samples by bidentate fluorescent sensors.

    PubMed

    Schwartz, Sarina C; Pinto-Pacheco, Brismar; Pitteloud, Jean-Philippe; Buccella, Daniela

    2014-03-17

    Fluorescent indicators based on β-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg(2+) and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg(2+) and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg(2+) and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples. PMID:24593871

  6. Formation of Ternary Complexes with MgATP: Effects on the Detection of Mg2+ in Biological Samples by Bidentate Fluorescent Sensors

    PubMed Central

    2015-01-01

    Fluorescent indicators based on β-keto-acid bidentate coordination motifs display superior metal selectivity profiles compared to current o-aminophenol-N,N,O-triacetic acid (APTRA) based chelators for the study of biological magnesium. These low denticity chelators, however, may allow for the formation of ternary complexes with Mg2+ and common ligands present in the cellular milieu. In this work, absorption, fluorescence, and NMR spectroscopy were employed to study the interaction of turn-on and ratiometric fluorescent indicators based on 4-oxo-4H-quinolizine-3-carboxylic acid with Mg2+ and ATP, the most abundant chelator of biological magnesium, thus revealing the formation of ternary complexes under conditions relevant to fluorescence imaging. The formation of ternary species elicits comparable or greater optical changes than those attributed to the formation of binary complexes alone. Dissociation of the fluorescent indicators from both ternary and binary species have apparent equilibrium constants in the low millimolar range at pH 7 and 25 °C. These results suggest that these bidentate sensors are incapable of distinguishing between free Mg2+ and MgATP based on ratio or intensity-based steady-state fluorescence measurements, thus posing challenges in the interpretation of results from fluorescence imaging of magnesium in nucleotide-rich biological samples. PMID:24593871

  7. The millimeter and submillimeter rotational spectrum of the MgCN radical (X (sup 2) Sigma(+))

    NASA Technical Reports Server (NTRS)

    Anderson, M. A.; Steimle, T. C.; Ziurys, L. M.

    1994-01-01

    The pure rotational spectrum of the MgCN radical has been recorded in the laboratory using millimeter/submillimeter direct absorption spectroscopy. Twenty-seven rotational transitions of the species were observed in the range 101-376 GHz and indicate that the molecule is linear with a (sup 2)Sigma(+) ground electronic state, as predicted by theory. Spin rotation interactions were resolved in the spectra, but no hyperfine splittings were observed, which would originate with the nitrogen nuclear spin. The rotational and fine-structure constants were determined for this radical from a nonlinear least-squares fit to the data using a (sup 2)Sigma Hamiltonian. MgCN is of astrophysical interest because it is the metastable isomer of MgNC, which recently has been detected toward IRC +10216

  8. First principle investigation of the electronic and thermoelectric properties of Mg2C

    NASA Astrophysics Data System (ADS)

    Kulwinder, Kaur; Ranjan, Kumar

    2016-02-01

    In this paper, electronic and thermoelectric properties of Mg2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters, bulk modulus, band gap and thermoelectric properties (Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor (PF) increases with temperature. The thermoelectric properties of Mg2C have been calculated in a temperature range of 100 K-1200 K. Kulwinder Kaur thanks Council of Scientific & Industrial Research (CSIR), India for providing fellowship.

  9. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  10. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  11. The roles of Zr and Mn in processing and superplasticity of Al-Mg alloys

    NASA Technical Reports Server (NTRS)

    Mcnelley, Terry R.; Hales, S. J.

    1990-01-01

    Processing studies have been conducted on two alloys, of nominal compositions Al-10Mg-0.1Zr or Al-10Mg-0.5Mn, in order to clarify the role of the dispersoid forming Zr or Mn additions. Mechanical property data reveal that the Mn-containing alloy has a lower maximum elongation but exhibits superplastic response over a broader range of temperature. Microstructural investigations and texture analyses were utilized to assess the effect of the presence of Al8Mg5 precipitates in combination with either Al3Zr or Al6Mn dispersoid particles during isothermal rolling at 300 C and subsequent tensile deformation at temperatures from 200-425 C.

  12. 24Mg( p, α)21Na reaction study for spectroscopy of 21Na

    NASA Astrophysics Data System (ADS)

    Cha, S. M.; Chae, K. Y.; Kim, A.; Lee, E. J.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Cizewski, J. A.; Howard, M. E.; Manning, B.; O'Malley, P. D.; Ratkiewicz, A.; Strauss, S.; Kozub, R. L.; Matos, M.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Peters, W. A.

    2015-10-01

    The 24Mg( p, α)21Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in 21Na for the astrophysically important 17F( α, p)20Ne reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched 24Mg solid targets were used. Recoiling 4He particles from the 24Mg( p, α)21Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4He particles over a range of angles simultaneously. A new level at 6661 ± 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21Na and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.

  13. An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.

    1991-02-01

    A model is developed for the thermodynamic properties of Fe2+-Mg2+-aluminate-titanate-ferrite spinels of space group Fd3m. The model incorporates an expression for the configurational entropy of mixing which accounts for long-range order over tetrahedral and octahedral sites. Short-range order or departures from cubic symmetry are not considered. The non-configurational Gibbs energy is formulated as a second degree Taylor expansion in six linearly independent composition and ordering variables. The model parameters are calibrated to reproduce miscibility gap constraints, order-disorder phenomena in MgAl2O4 and MgFe2O4, and Fe2+-Mg2+ partitioning data between olivine and: (1) aluminate spinels; (2) ferrite spinels; (3) titanate spinels; (4) mixed aluminate-ferrite spinels. This calibration is achieved without invoking non-configurational excess entropies of mixing. The model predicts that the ordering state of FeAl2O4 is more normal than that of MgAl2O4. It also successfully accounts for heat of solution measurements and activity-composition relations in the constituent binaries. Phase equilibrium constraints require that the structure of Fe3O4 is more inverse than random at all temperatures and that Mg2+ has a strong tetrahedral site preference with respect to that of Fe2+. The analysis suggests that in the titanates short range order on octahedral sites may be significant at temperatures as high as 1300° C. Constraints developed from calibrating the thermodynamic properties of Fe2+-Mg2+-aluminatetitanate-ferrite spinel solid solutions permit extension of the database of Berman (1988) to include estimates of the end-member properties of hercynite (FeAl2O4), ulvöspinel (Fe2TiO4), MgFe2O4 and cubic Mg2TiO4. In constructing these estimates, provision is made for low-temperature magnetic entropy contributions and the energetic consequences of disordering the aluminates and the ferrites. These estimates are consistent with all of the available low

  14. Submicron area NbN/MgO/NbN tunnel junctions for SIS mixer applications

    NASA Technical Reports Server (NTRS)

    Leduc, H. G.; Judas, A.; Cypher, S. R.; Bumble, B.; Hunt, B. D.

    1991-01-01

    The development of submicron area mixer elements for operation in the submillimeter wave range is discussed. High-current-density NbN/MgO/NbN tunnel junctions with areas down to 0.1 sq microns have been fabricated in both planar and edge geometries. The planar junctions were fabricated from in situ deposited trilayers using electron-beam lithography to pattern submicron area mesas. Modifications of fabrication techniques used in larger-area NbN tunnel junctions are required and are discussed. The NbN/MgO/NbN edge junction process using sapphire substrates has been transferred to technologically important quartz substrates using MgO buffer layers to minimize substrate interactions. The two junction geometries are compared and contrasted in the context of submillimeter wave mixer applications.

  15. Synthesis, crystal structure and optical properties of BiMgVO 5

    NASA Astrophysics Data System (ADS)

    Benmokhtar, S.; El Jazouli, A.; Chaminade, J. P.; Gravereau, P.; Guillen, F.; de Waal, D.

    2004-11-01

    The new vanadate BiMgVO 5 has been prepared and its structure has been determined by single crystal X-ray diffraction: space group P21/n, a=7.542(6) Å, b=11.615(5) Å, c=5.305(3) Å, β=107.38(5)°, wR2=0.0447, R=0.0255. The structure consists of [Mg 2O 10] and [Bi 2O 10] dimers sharing their corners with [VO 4] tetrahedra. The ranges of bond lengths are 2.129-2.814 Å for Bi-O; 2.035-2.167 Å for Mg-O and 1.684-1.745 Å for V-O. V-O bond lengths determined from Raman band wavenumbers are between 1.679 and 1.747 Å. An emission band overlapping the entire visible region with a maximum around 650 nm is observed.

  16. Phase Transfer-Catalyzed Fast CO2 Absorption by MgO-Based Absorbents with High Cycling Capacity

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Li, Weizhen; Rohatgi, Aashish; Duan, Yuhua; Singh, Prabhakar; Li, Liyu; King, David L.

    2014-06-01

    CO2 capture from pre-combustion syngas in the temperature range of 250-400°C is highly desirable from an energy efficiency perspective. Thermodynamically, MgO is a promising material for CO2 capture, but the gas-solid reaction to produce MgCO3 is kinetically slow due to high lattice energy. We report here fast CO2 absorption over a solid MgO-molten nitrate/nitrite aggregate through phase transfer catalysis, in which the molten phase serves as both a catalyst and reaction medium. Reaction with CO2 at the gas-solid-liquid triple phase boundary results in formation of MgCO3 with significant reaction rate and a high conversion of MgO. This methodology is also applicable to other alkaline earth oxides, inspiring the design of absorbents which require activation of the bulk material.

  17. Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron

    NASA Technical Reports Server (NTRS)

    Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.

    1989-01-01

    The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).

  18. Magnesium and cadmium containing Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd

    NASA Astrophysics Data System (ADS)

    Johnscher, Michael; Stein, Sebastian; Niehaus, Oliver; Benndorf, Christopher; Heletta, Lukas; Kersting, Marcel; Höting, Christoph; Eckert, Hellmut; Pöttgen, Rainer

    2016-02-01

    Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10-5 emu mol-1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.

  19. Thermoelectric and magnetic properties of Yb2MgSi2 prepared by spark plasma sintering method

    NASA Astrophysics Data System (ADS)

    Kubouchi, M.; Hayashi, K.; Miyazaki, Y.

    2016-08-01

    An intermediate-valence compound, Yb2MgSi2, has been prepared using a spark plasma sintering method. The magnetic susceptibility and thermoelectric properties of Yb2MgSi2 are measured in the temperature range from 5 to 300 K. From the magnetic susceptibility results, Yb valence of the Yb2MgSi2 is evaluated. As compared with YbAl3, which is one of the promising thermoelectric materials that can be used at low temperatures, Yb2MgSi2 exhibits a lower absolute value of Seebeck coefficient, higher electrical resistivity, and lower thermal conductivity over the measured temperature range. A maximum dimensionless figure of merit, ZT, of 0.0018 is achieved at around 200 K.

  20. Ca and Mg Incorporation in Siderite at Low Temperatures (< 50° C): Results from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, M.; Romanek, C. S.; Xu, H.; Coleman, M.

    2008-12-01

    Siderite (FeCO3) is a common mineral found in modern environments and in ancient rocks produce usually by microbia mediation [1,2]. It usually forms concretions with strongly varying chemical compositions which are governed by both pore-water origin and by microbial influence. In addition, siderite has also been identified in extraterrestrial material such as meteorites and dust particles [3,4]. The geochemical information stored in siderite provides valuable insights into the environmental conditions of mineral formation and the processes by which it is modified over time [5]. To unerstand the inorganic constraints on precipitation relative to natural compositions we undertook free drift experiments under anaerobic conditions at 25, 35 and 45°C with variable concentrations of Fe, Ca and Mg in solution. Samples of solution and solid were withdrawn at different time intervals (15, 21 and 30 days) during time course experiments to determine the composition of the solution and mineral precipitates, and the morphology and mineralogy of the precipitates. After 15 days of incubation a metastable phase was formed, whereas after 21 and 30 days of incubation siderite, Ca-siderite, Mg-siderite Ca-Mg siderite and/or Fe-pokrovskite (a hydrated magnesium hydroxy carbonate) were formed depending on the aqueous Fe, Ca and Mg concentrations in the solution. The Mg and Ca contents in the siderite increased with increasing Mg and Ca concentrations in the medium and with increasing temperature. Siderite precipitates ranged from 1.5 to 50.81 mol percent CaCO3 and from 0.54 to 41.38 mol percent MgCO3. Pokrovskite precipitates ranged from 48.8 to 57.7 mol percent MgCO3 and from 42.34 to 51.17 mol percent FeCO3. The Fe content in the pokrovskite increased with increasing temperature. These inorganic experiments will help to understand the mechanism of Ca-Mg-Fe carbonate formation in natural systems and they are of fundamental importance not only for understanding modern and

  1. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  2. Short Range Correlations in Nuclei

    SciTech Connect

    L. B. Weinstein

    2006-11-01

    Short range correlations (SRC) are an extremely important part of nuclear structure. They are responsible for the high momentum part of the nuclear wavefunction. Instantaneous densities can significantly exceed the average neutron star density. Recent (e,e[prime]) measurements at Jefferson Lab have shown that SRC are universal in nuclei from deuterium to gold, that the probability of two-nucleon SRC is 5-25%, and that the probability of three-nucleon SRC is less than 1%. Recent (e,e[prime]pn) measurements have measured the SRC probabilities as a function of proton momentum and have measured the joint NN momentum distributions.

  3. Extended-range tiltable micromirror

    DOEpatents

    Allen, James J.; Wiens, Gloria J.; Bronson, Jessica R.

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  4. BENTON RANGE ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Rains, Richard L.

    1984-01-01

    On the basis of a mineral survey, two parts of the Benton Range Roadless Area, California are considered to have mineral-resource potential. The central and southern part of the roadless area, near several nonoperating mines, has a probable potential for tungsten and gold-silver mineralization in tactite zones. The central part of the area has a substantiated resource potential for gold and silver in quartz veins. Detailed mapping and geochemical sampling for tungsten, gold, and silver in the central and southern part of the roadless area might indicate targets for shallow drilling exploration.

  5. Long-range atmospheric predictability

    NASA Astrophysics Data System (ADS)

    Reichler, Thomas Josef

    This study investigated the prospects and limits of global atmospheric predictability on the long range (beyond 2 weeks). Forecasting the atmosphere at this range is very challenging since elements of both weather and climate prediction enter the problem. The basic questions were: (1) how large is long-range predictability with perfect model and data; (2) how sensitive is such predictability to uncertainties in model and data; (3) which atmospheric processes are related to this predictability? These questions were answered through numerical experiments with an atmospheric general circulation model which is forced with different combinations of initial and boundary conditions. In particular, four tasks were accomplished: First, temporal variations of predictability and its relationship to initial and boundary conditions were examined. On average, initial conditions dominated predictability for the first 4 weeks, improved predictability for 6 weeks, and influenced predictability for 8 weeks. These time scales varied with season, region, and strength of the external forcing. Second, the global 3-dimensional structure of predictability was examined. Boundary forcing dominated over the tropics, and over the two main teleconnection regions in the North and South Pacific. Initial conditions influenced predictability almost everywhere, in particular when the external forcing was weak. This was mostly related to atmospheric persistence, which in turn was linked to low-frequency variability of major atmospheric modes. Third, predictability in the tropics was investigated for monthly means. Boundary forcing is generally dominating for this time scale, and its quality is crucial. The atmospheric response was strongly asymmetric to SST forcing, which suggests that tropical convection has a positive self-amplifying feedback. Initial conditions were also important, in particular over the Eastern Hemisphere. This was related to strong persistence of the divergent circulation and

  6. Long-range electron transfer

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2005-01-01

    Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor–bridge–acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein–protein complexes. PMID:15738403

  7. Ab-initio modelling of defects in MgO

    NASA Astrophysics Data System (ADS)

    Gilbert, C. A.; Smith, R.; Kenny, S. D.

    2007-02-01

    The energetics of the key defects that are observed to occur during simulations of radiation damage in MgO are analysed using density functional theory. The results are compared with those from the empirical potentials used to carry out the radiation damage studies. The formation energies of vacancies, interstitials, Frenkel pairs, di-vacancies and di-interstitials are calculated as a function of the increasing supercell size in order to ensure good convergence. The supercell geometries were chosen to maximise the separation distance between periodic images. Their sizes ranged from cells containing 32 atoms up to cells containing 180 atoms. Results are presented for the formation energies of the first, second and third nearest neighbour defects. Results show that the di-vacancy formation energy is in the region of 4-6 eV and that formation energies for di-interstitials are more than double this, lying in the range 12-16 eV. Comparison of the results show that empirical potentials overestimate the formation energy of di-vacancies by 1-3 eV and underestimate the formation energies of di-interstitials by about 1-2 eV. The relative stability of the defects is, however, correctly predicted by the empirical potentials. The direction and the magnitude of the displacements of the atoms surrounding the defects are in good agreement for all the systems containing interstitials. For the systems containing vacancies the direction of the displacements are in agreement but the empirical potentials predict larger displacements in all cases.

  8. Mg Isotope Fractionation During Hydrothermal Ultramafic Rock Alteration

    NASA Astrophysics Data System (ADS)

    Beinlich, A.; Mavromatis, V.; Austrheim, H.; Oelkers, E. H.

    2013-12-01

    Both riverine and ocean waters are enriched in 24Mg compared to the homogenous chondritic Mg isotopic composition of the Earth's mantle requiring a fractionation step that is generally attributed to low temperature continental crust weathering [1,2,3]. Here we present new observations on the Mg isotope fractionation during hydrothermal alteration of ultramafic rocks from three different localities in Norway, the Linnajavri Ultramafic Complex (LUC), the Feragen Ultramafic Body (FUB), and the Solund Sedimentary Basin (SSB). Mineral separates of coexisting olivine and serpentine from serpentinized peridotite samples from the FUB and SSB exhibit invariant Mg isotope ratios suggesting that serpentinization does not fractionate Mg isotopes. In contrast, antigorite carbonation at the LUC resulted in significant inter-mineral Mg isotope fractionation among the antigorite, magnesite, and talc. The carbonation of the natural samples is constrained by O isotope thermometry at ~275 °C [4] and hence closes the temperature gap between previous investigations of the natural distribution of Mg isotopes during surface weathering and magmatic processes. Textures, mass-balance, and reaction path considerations indicate that antigorite carbonation conserved Mg and Si. The precursor antigorite has an isotopic composition of δ26Mg (DSM3)=-0.11×0.05 ‰, whereas the talc is enriched in 26Mg with mean δ26Mg=0.17×0.08 ‰ and the magnesite is depleted in 26Mg with mean δ26Mg=-0.95×0.15 ‰. This hydrothermal fractionation has significant implications for the Mg isotopic compositions of natural surface waters. Our results suggest that carbonation reactions beneath off-axis low temperature hydrothermal vent sites may exert an important control on the Mg isotope ratio in ocean water. As carbonate minerals dissolve significantly faster than silicate minerals [5,6], the chemical weathering of carbonated ultramafic and by analogy mafic rocks on the continents will yield isotopically

  9. Narrowband filters for the FUV range

    NASA Astrophysics Data System (ADS)

    Rodríguez-De Marcos, Luis; Larruquert, Juan I.; Méndez, José A.; Aznárez, José A.; Vidal-Dasilva, Manuela; Fu, Liping

    2014-07-01

    based on the Al/LiF/SiC/LiF system, which resulted in a good performance and a limited evolution after months of storage in a desiccator. Five samples based on the Al/LiF/SiC/LiF system were prepared and measured in the 50-190 nm spectral range. These samples resulted in high reflective and narrowband coatings peaked at 100-101 nm, with a promising reflectance ratio Lyman β/Lyman α when fresh. Some efficiency degradation was observed after the sample storage in a desiccators; however all samples retained a narrowband performance over time and a high Lyman β/Lyman α ratio. The same system can be designed to be an efficient narrowband coating peaked in the target spectral range and not constrained to a specific performance at Lyman α. Hence an 8-month aged sample exhibited a reflectance as high as 61% at the peak wavelength of 100.9 nm, at near-normal incidence, the highest experimental reflectance reported in this range for a narrowband coating. We have also prepared narrowband transmission coatings tuned either at 135.6 nm or at the center of the LBH band (~160 nm), with the requirement to strongly reject the out-of-band, particularly the visible and close ranges. The coatings were based on (Al/MgF2)n multilayers, with n ranging between 3 and 4. The coatings were successful at rejecting the visible, with a transmittance lower than 10-5. The transmittance at the peak was 0.087 for coatings stored in a desiccators for 13 days.

  10. Clustering effects in 48Cr composite nuclei produced via the 24Mg+24Mg reaction

    NASA Astrophysics Data System (ADS)

    Di Nitto, A.; Vardaci, E.; Brondi, A.; La Rana, G.; Cinausero, M.; Gelli, N.; Moro, R.; Nadtochy, P. N.; Prete, G.; Vanzanella, A.

    2016-04-01

    The nuclear properties of 48Cr composite α -like nuclei produced at 60 MeV of excitation energy via the 24Mg+24Mg reaction were investigated. This excitation energy corresponds to a resonance with a narrow width (170 keV) observed in the elastic and inelastic channels, which was interpreted as a highly deformed state. To gain insight on the deformation of this state exclusive measurements of light charged particles were carried out with 8 π LP apparatus at Laboratori Nazionali di Legnaro and compared to statistical model predictions. The measured of α -particle energy spectra, α -evaporation residues, α -α , and α -α -α correlations indicate the limitation of the rotating liquid drop model in describing the nuclear shape of the compound nucleus along the decay cascade. To reproduce the full set of experimental data very elongated nuclear shapes had to be considered, with an axis ratio 3 :1 at the resonance angular momentum. This large deformation is consistent with previous findings for α -like nuclei and with the predictions of the cranked cluster model.

  11. Dihydroxyprogesterone acetophenide 150 mg + estradiol enantate 10 mg as monthly injectable contraceptives.

    PubMed

    Jarquín González, J D; Elda de Aguirre, L; Rodríguez, C; Abrego de Aguilar, M; Carrillo, F; León, D A; Lima, M; Trigueros, S; Acosta, R

    1996-09-01

    A survey among users and health personnel participating in the Salvadorian Social Security Institute (ISSS) Family Planning Program revealed interest in including a monthly preparation for injection as a contraceptive method offered by this Institution. The formulation containing dihydroxyprogesterone acetophenide (DHPA) 150 mg + estradiol enantate (E2EN) 10 mg was chosen for conducting an open and prospective study of efficacy and tolerability. Between January 1992 and March 1994, 7054 women were treated with this product for a total of 60010 months. A sample composed of 4505 women treated at this Institution confirmed that average users are young, have one or two children, do not show a particular geographical distribution and choose the monthly injection instead of oral contraceptives as the first contraceptive method or for the puerperium. The study formulation showed a high efficacy (Pearl Index: 0.018) and tolerability (general withdrawal rate throughout the study: 27.09%). The most frequent adverse events included bleeding disorders, headache and mastalgia; their incidence decreased spontaneously from the sixth month (3.9%), reaching 0% after two years. Treatment was discontinued due to adverse events in 3.47% of women. No significant bodyweight or systolic and diastolic blood pressure alterations were observed. Based on these results, the monthly injectable contraceptive was included in the basic product list at ISSS. PMID:8910663

  12. Live Fire Range Environmental Assessment

    SciTech Connect

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  14. Range-Measuring Video Sensors

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  15. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Nuttall, W. J.

    2008-02-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb3Sn strands for ITER fusion magnet with newly developed high field composite MgB2 PIT conductors has shown that at 14 Tesla MgB2 possesses better properties than any of the Nb3Sn conductors produced. In this paper the potential of MgB2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB2 conductors for Fusion Island are also considered.

  16. Mg-Doped Hydroxyapatite/Chitosan Composite Coated 316L Stainless Steel Implants for Biomedical Applications.

    PubMed

    Sutha, S; Dhineshbabu, N R; Prabhu, M; Rajendran, V

    2015-06-01

    In this investigation, ultrasonication process was used for the synthesis of magnesium doped nano-hydroxyapatite (MH) (0, 1, 2, and 3 mol% of Mg concentration) particles with controlled size and surface morphology. The size of the prepared MH particles was in the range of 20-100 nm with narrow distribution. Increase in the concentration of Mg reduced the particle size distribution from 60 to 40 nm. On incorporation of Mg in HAp lattice, an increase of 20-66 nm in specific surface area was observed in microporous HAp particles. XRF and XRD patterns reveal that the particles possess stoichiometric composition with reduced crystallinity with respect to the Mg concentration. Surface morphology of MH/chitosan (CTS) coated implant was found to be uniform without any defects. The corrosion rate of the implant decreased with increase in Mg concentration. The in vitro formation of bonelike apatite layer on the surface of the MH/CTS coated implant was observed from simulated body fluid studies. The antimicrobial activity of the MH/CTS composites against gram-positive and gram-negative bacterial strains indicated that increasing Mg concentration enhanced antimicrobial properties. Nanoindentation analysis of apatite coated implant surface reveals that the mechanical property depends on the concentration of magnesium in HAp. From the cytotoxicity analysis against NIH 3T3 fibroblast, it was observed that the Mg incorporated HAp/CTS composite was less toxic than the MHO/CTS composite. From this result, it was concluded that the MH/CTS nanocomposites coated implant is the excellent material for implants. PMID:26369027

  17. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation

    NASA Astrophysics Data System (ADS)

    Dekens, Petra S.; Lea, David W.; Pak, Dorothy K.; Spero, Howard J.

    2002-04-01

    Optimal use of Mg/Ca as a paleotemperature proxy requires establishing calibrations for different species of foraminifera and quantifying the influence of dissolution. To achieve this goal, we have measured Mg/Ca and δ18O in a series of tropical and subtropical core tops, including four depth transects: the Ceara Rise, the Sierra Leone Rise, and the Rio Grande Plateau in the Atlantic, and the Ontong Java Plateau in the Pacific, focusing on spinose mixed layer dwelling species Globigerinoides ruber and Globigerinoides sacculifer, and nonspinose thermocline dwelling Neogloboquadrina dutertrei. Shell Mg/Ca in G. sacculifer is 5-15% lower than in G. ruber, while N. dutertrei Mg/Ca is 49-55% lower than in G. ruber. This statistically significant offset has allowed us to establish different calibrations for each species. Multilinear regression analysis was used to develop calibration equations that include a correction term for the dissolution effect on Mg/Ca in foraminiferal calcite. Presented in this paper are two sets of calibrations; one set using core depth as a dissolution correction and another using ΔCO32- as a dissolution parameter. The calibrations suggest that G. ruber is the most accurate recorder of surface temperature, while G. sacculifer records temperatures below the surface at 20-30 m. The depth habitat of N. dutertrei is more uncertain, owing to the wide range in habitat depths depending on hydrographic conditions, but on average, Mg/Ca and δ18O data suggest it is at ~50 m. Of the three species, N. dutertrei is the most sensitive to dissolution (up to 23% decrease in shell Mg/Ca per km), while G. sacculifer is the most resistant.

  18. Range Imaging without Moving Parts

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected

  19. Experimental Plan of the 25Mg(p, γ)26Al Resonance Capture Reaction at Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Su, J.; Li, Y. J.; Guo, B.; Yan, S. Q.; Wang, Y. B.; Lian, G.; Zeng, S.; Zhang, Q. W.; He, G. Z.; Gan, L.; Zhou, C.; Liu, W. P.; Li, K. A.; Yu, X. Q.; Tang, X. D.; He, J. J.; Qian, Y. Z.

    The observation of 26Al is an useful tool for γ-ray astronomy and in studies of galactic chemical evolution. The most likely mechanism for 26A1 nucleosynthesis is in the hydrogen burning MgAl cycle, and the 26A1 production from the 25Mg(p, γ)26Al reaction at the important temperature range below T = 0.2 is still not well known. We present a proposal to measure the resonance strength of 58 keV resonance level of the 25Mg(p, γ)26Al reaction, and the effective counting rate is estimated for the direct measurement at Jinping underground laboratory.

  20. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    USGS Publications Warehouse

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  1. [VUV spectral properties of CaMgSi2O6 : Eu].

    PubMed

    Zhou, Dan; He, Da-wei; Hou, Tao

    2007-05-01

    CaMgSiOs6 : Eu samples were synthesized by a normal solid state reaction using CaCO3, MgO, SiO2 and Eu2O3 as starting materials. The properties of structure, VUV excitation and luminescence under VUV excitation were studied. CaMgSi2O6 : Eu belongs to the monoclinic space group, and the crystal structure does not change as the crystal lattice is doped with Eu ions. The emission spectra of CaMgSi2O6 : Eu3+ have revealed an intense and sharp (611 nm) red color emission from Eu3+ ((5)D0-->(7)F2) transition under 147 nm VUV excitation. The correlative data shows that the concentration quenching occurs when the Eu3+ mole concentration ranges from 0.02 to 0.10 mol. The emission spectra of CaMgSi2O6 : Eu2+ have revealed an intense and sharp (452 nm) blue color emission from Eu2+ (5d-->4f) transition under 172 nm VUV excitation. It can be seen that the intensity of the emission peak increases with increasing H3BO3 concentration. PMID:17655118

  2. Low-grade MgO used to stabilize heavy metals in highly contaminated soils.

    PubMed

    García, M A; Chimenos, J M; Fernández, A I; Miralles, L; Segarra, M; Espiell, F

    2004-08-01

    Low-grade MgO may be an economically feasible alternative in the stabilization of heavy metals from heavily contaminated soils. The use of MgO is described acting as a buffering agent within the pH 9-11 range, minimizing heavy metals solubility and avoiding the redissolution that occurs when lime is used. The effectiveness of LG-MgO has been studied as stabilizer agent of heavily polluted soils mainly contaminated by the flue-dust of the pyrite roasting. The use of LG-MgO as a reactive medium ensures that significant rates of metal fixation, greater than 80%, are achieved. The heavy metals leachate from the stabilized soil samples show a concentration lower than the limit set to classify the waste as non-special residue. Regardless of the quantity of stabilizer employed (greater than 10%), LG-MgO provides an alkali reservoir that allows guaranteeing long-term stabilization without varying the pH conditions. PMID:15212914

  3. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  4. Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2- x Li x Si

    NASA Astrophysics Data System (ADS)

    Nieroda, P.; Kolezynski, A.; Oszajca, M.; Milczarek, J.; Wojciechowski, K. T.

    2016-07-01

    The aim of this study was to determine the location of Li atoms in Mg2Si structure, and verify the influence of Li dopant on the transport properties of obtained thermoelectric materials. The results of theoretical studies of the electronic band structure (full potential linearized augmented plane wave method) in Li-doped Mg2Si are presented. Theoretical calculations indicate that only in the case when Li is located in the Mg position, the samples will have p-type conduction. To confirm the theoretical predictions, a series of samples with nominal composition Mg2- x Li x Si ( x = 0-0.5) were prepared using the spark plasma sintering (SPS) method. Structural and phase composition analyses were carried out by x-ray and neutron powder diffraction, as well as scanning electron microscopy. Neutron diffraction studies confirmed that the lithium atoms substitute magnesium in the Mg2Si structure. The investigations of the influence of Li dopant on the transport properties, i.e. electrical conductivity, the Seebeck coefficient and the thermal conductivity, were carried out in a temperature range from 340 K to 720 K. Carrier concentration was measured with Hall method. The positive values of the Seebeck coefficient and Hall coefficient indicate that all examined samples show p-type conductivity. On the basis of the experimental data, the temperature dependencies of the thermoelectric figure of merit ZT were calculated.

  5. Spin crossover in liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.

    2016-05-01

    We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O.

  6. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGESBeta

    Huso, Jesse; Morrison, John L.; Che, Hui; Sundararajan, Jency P.; Yeh, Wei Jiang; McIlroy, David; Williams, Thomas J.; Bergman, Leah

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  7. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOEpatents

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  8. Influence of Mg on Solidification of Hypereutectic Cast Iron: X-ray Radiography Study

    NASA Astrophysics Data System (ADS)

    Yamane, K.; Yasuda, Hideyuki; Sugiyama, A.; Nagira, T.; Yoshiya, M.; Morishita, K.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.

    2015-11-01

    Radiography using a synchrotron radiation X-ray source was performed to examine solidification and melting behaviors in hypereutectic cast iron specimens containing 0.002 and 0.05mass pctMg. The solidification sequence in the alloy containing 0.002mass pctMg was (1) nucleation and growth of graphite particles of which transformed to a flake-like shape, (2) growth of γ-Fe dendrites, (3) nucleation of graphite particles ahead of the interface just prior to the eutectic solidification, and (4) the eutectic solidification. In contrast, (1) and (2) occurred nearly at the same time in the specimen containing 0.05 mass pct Mg. The addition of 0.05mass pctMg significantly reduced the temperature range in which the graphite particles grew as the primary phase. Image-based analysis of melting behavior showed that even 0.05 mass pct addition was sufficient to modify the phase equilibrium of the liquid, γ-Fe, and graphite phases. Thus, the observed influence of Mg on the solidification sequence was attributed to the modification of the phase equilibrium. The influence was consistently explained by considering the shift of the eutectic composition to the carbon side in the pseudo-ternary system. It was also suggested that supersaturation of carbon in the melt increased as the temperature decreased even though the primary graphite particles existed. The supersaturation may cause the nucleation of the graphite particles just before the eutectic solidification.

  9. Effect of Solute Impurity of Mg on the Microstructure of Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.; Evans, B. J.; Renner, J.

    2006-12-01

    We produced synthetic marbles by hot isostatic pressing (HIPing) mixtures of calcite and dolomite powders for different intervals (2 to 30 hrs) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in macroscopically homogeneous calcite aggregates with Mg content ranging from 0.5 to 17 mol%. We performed creep tests on samples after HIP at differential stresses from ~ 20 to 170 MPa using constant strain rate and stress-stepping method. Microstructure of both HIPed and deformed samples were studied using both scanning electron microscope (SEM) and transmitted electron microscope (TEM). Both back- scattered electron images and chemical analysis using ion probe suggested that the dolomite phase is completely dissolved, and that the Mg distribution is homogeneous throughout the samples at a scale of a few microns. Grain sizes increase with HIP time and decrease with increasing Mg content (> 3.0 mol%). The growth exponent varies from 2.7 to 3.5 for samples containing 0.3 to 17.0 mol% Mg. Some HIPed samples have intragranular spherical pores, but the shape of the grain boundaries indicates pore drag. At stresses above 80 MPa, the stress sensitivity of strain, n, is greater than 3, indicating an increasing contribution of dislocation creep. The strength of calcite increases with the Mg content in the dislocation creep regime, but not when the rocks deform by diffusion creep. In some deformed samples (ɛ ~ 0.25), a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted..

  10. Magnetoresistance and electronic structure of granular films with MgO or MgF2 matrices

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Matsuda, H.; Sato, K.; Jimbo, M.; Kobayashi, T.

    2011-01-01

    The magneto-transport properties and electronic structures of FeCo-MgO, FeCoB-MgO, FeCo-MgF2 and FeCoB-MgF2 granular films were investigated. From the X-ray photoelectron spectroscopy (XPS) measurements, it was recognized that the oxide layer formed on the surface of granules in FeCo-MgO. Especially Fe oxides were preferentially formed. By using (Fe50Co50)80B20, the formation of Fe oxides on the granule surface was suppressed since B was oxidized instead of Fe. The MR ratio of FeCoB-MgO was approximately 2%. By using MgF2 matrix, the surface states of granules were drastically improved. XPS measurements indicated that an amount of metallic Fe in FeCoB-MgF2 increased compared with FeCoB-MgO. Reflecting the improvement of surface states of granules, a large MR ratio of approximately 6 % was obtained in FeCoB-MgF2.

  11. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  12. A high resolution atlas of Mg II profiles

    NASA Technical Reports Server (NTRS)

    Ewald, R.; Nichols-Bohlin, Joy Y.; Kondo, Yoji

    1990-01-01

    An atlas of high dispersion Mg II profiles for standard stars of spectral types B0 through G9 is presented. The atlas contains plots of the Mg II profiles for approximately 65 stars and associated equivalent width measurements for both absorption and emission components, and the subordinate lines. The atlas is used to investigate systematic behavior of the Mg II profiles and correlation of the behavior with spectral classification.

  13. Proximity Effect in Nb/Mg/CoFe Trilayers.

    NASA Astrophysics Data System (ADS)

    Choi, Seong Kook; Kwon, Jun Hyung; Char, Kookrin

    2007-03-01

    We have fabricated the Nb/Mg bilayer and Nb/Mg/CoFe trilayer samples by varying Mg layer thickness and measured their superconducting transition temperature Tc electrically using the 4-prove method. Mg normal layer was used to investigate the effect of its small atomic number, since we have observed previously the largely different behavior when Au, Cu and Al were used. When the Al layer was used, a very unusual behavior was found. Because of chemical interaction between Nb and Mg, the Tc transition curves did not show sharp Tc transition. In order to prevent this interaction, we inserted 2 nm thick Al layer between Nb and Mg. In the case of Nb/Al(2nm)/Mg, we observed Tc behavior consistent with a conventional SN theory. In the case of Nb/Al(2nm)/Mg/CoFe with fixed thicknesses of Nb and CoFe layer, the Tc values exhibited two distinct behavior as the thickness of Mg increased. The Tc value of S/N/F trialyer increased rapidly until the Mg thickness reached a few nm. As Mg thickness increased further to 200 nm, the Tc value of S/N/F decreased again, following closely those of the S/N data. Overall, the Mg data basically followed those of Al data, suggesting that the low atomic number of the normal layer is important in observing the unusual proximity effect in SNF trilayers. Our analysis of the interface effect using an Usadel picture will be presented.

  14. The JHU-SDSS Metal Absorption Line Catalog: Redshift Evolution and Properties of Mg II Absorbers

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun; Ménard, Brice

    2013-06-01

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of ~105 quasar spectra from the Sloan Digital Sky Survey and compile a sample of ~40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z ~ 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  15. The Mg 2 lines as diagnostic of PMS nature in Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main objective of this program was to observe some newly discovered and previously unobserved Herbig Ae/Be (HAeBe) stars with IUE. A previous archival study suggested that there was a full range of profiles in the Mg II lines for these objects; ranging from the double peak emission to the narrow absorption lines. It has been found that by studying the IUE data of main sequence B and classical Be stars that the P Cygni profiles in the Mg II lines in HAeBe stars are truly unique and are the signature of accelerating winds in their extended circumstellar material. The arguement, for the purposes of this proposal, that the structure of the Mg II lines was a superior diagnostic of the dynamical activity and ultimately the PMS nature of these objects. This program was a follow up study of several interesting intermediate-mass stars with the goal of classifying these objects based on the shape of their MG II lines. A list of publications resulting from this research is included.

  16. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  17. Influence of peculiarities of electronic excitation relaxation on luminescent properties of MgWO4

    NASA Astrophysics Data System (ADS)

    Krutyak, N. R.; Spassky, D. A.; Tupitsyna, I. A.; Dubovik, A. M.

    2016-07-01

    Luminescent properties of magnesium tungstate monocrystals grown by two different methods are studied. Only the exciton luminescence of these crystals themselves is observed. Temperature dependence of the low-energy range in the luminescence excitation spectra is described by the Urbach rule. Slope coefficient σ0 = 0.74 obtained from this dependence implies autolocalization of the excitons in MgWO4. The processes of electronic excitations relaxation are considered depending on the structure of valence band in MgWO4 and in other wolframites, ZnWO4 and CdWO4. In contrast to ZnWO4 and CdWO4, the d-states of the cation do not participate in formation of the MgWO4 valence band. Using the excitation spectra measured in the range of the fundamental absorption (4-20 eV), it is shown that this difference manifests itself in relaxation of electronic excitations and may be the cause of the relatively low light yield of MgWO4.

  18. Conducting mechanism in the epitaxial p -type transparent conducting oxide C r2O3:Mg

    NASA Astrophysics Data System (ADS)

    Farrell, L.; Fleischer, K.; Caffrey, D.; Mullarkey, D.; Norton, E.; Shvets, I. V.

    2015-03-01

    Epitaxial p -type transparent conducting oxide (TCO) C r2O3:Mg was grown by electron-beam evaporation in a molecular beam epitaxy system on c -plane sapphire. The influence of Mg dopants and the oxygen partial pressure were investigated by thermoelectric and electrical measurements. The conduction mechanism is analyzed using the small-polaron hopping model, and hopping activation energies have been determined, which vary with doping concentration in the range of 210-300 ± 5 meV. Films with better conductivity were obtained by postannealing. The effect of postannealing is discussed in terms of a crystallographic reordering of the Mg dopant. The highest Seebeck mobilities obtained from thermoelectric measurements are of the order of 10-4cm2V-1s-1 . We investigate the fundamental properties of a Mg dopant in a high crystalline quality epitaxial film of a binary oxide, helping us understand the role of short range crystallographic order in a p -type TCO in detail.

  19. Li/Mg systematics in scleractinian corals: Calibration of the thermometer

    NASA Astrophysics Data System (ADS)

    Montagna, Paolo; McCulloch, Malcolm; Douville, Eric; López Correa, Matthias; Trotter, Julie; Rodolfo-Metalpa, Riccardo; Dissard, Delphine; Ferrier-Pagès, Christine; Frank, Norbert; Freiwald, André; Goldstein, Steve; Mazzoli, Claudio; Reynaud, Stephanie; Rüggeberg, Andres; Russo, Simone; Taviani, Marco

    2014-05-01

    We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (-0.049 * T) (r2 = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios.

  20. Defect structure of ultrafine MgB{sub 2} nanoparticles

    SciTech Connect

    Bateni, Ali; Somer, Mehmet E-mail: msomer@ku.edu.tr; Repp, Sergej; Erdem, Emre E-mail: msomer@ku.edu.tr; Thomann, Ralf; Acar, Selçuk

    2014-11-17

    Defect structure of MgB{sub 2} bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB{sub 2}, namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB{sub 2}, respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB{sub 2} in comparison with bulk MgB{sub 2}. Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB{sub 2} can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB{sub 2} material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.

  1. A determination of Mg(+)-ligand binding energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1991-01-01

    Theoretical calculations employing large basis sets and including correlation are carried out for Mg(+) with methanol, water, and formaldehyde. For Mg(+) with ethanol and acetaldehyde, the trends in the binding energies are studied at the self-consistent-field level. The predictions for the binding energy of Mg(+) to methanol and water of 41 + or - 5 and 36 + or - 5 kcal/mol, respectively, are much less than the experimental upper bounds, of 61 + or - 5 and 60 + or - 5 kcal mol, determined by using photodissociation techniques. The theoretical results are inconsistent with the onset of Mg(+) production observed in the photodissociation experiments, as the smallest absorptions are calculated at about 80 kcal/mol for both Mg(+)-CH3OH and Mg(+)-H2O, and these transitions are to bound excited states. The binding energy for Mg(+) with formaldehyde is predicted to be similar to Mg(+)-H2O. The relative binding energies are in reasonable agreement with experiment. The binding energy of a second water molecule to Mg(+) is predicted to be similar to the first. This suggests that the reduced reaction rate observed for the second ligand is not a consequence of a significantly smaller binding energy, at least for the smaller ligards such as those considered in this work.

  2. Superconducting gap parameters of MgB 2 obtained on MgB 2/Ag and MgB 2/In junctions

    NASA Astrophysics Data System (ADS)

    Plecenik, A.; Beňačka, Š.; Kúš, P.; Grajcar, M.

    2002-03-01

    MgB 2 superconducting wires with the critical temperature Tc approaching 40 K were used for the preparation of MgB 2/Ag and MgB 2/In junctions. The differential conductance vs. voltage characteristics of N-S junctions exhibit a clear contribution of the Andreev reflection. Using a modified BTK theory for s-wave superconductors two order parameters Δdirty≈4 meV and Δ3D≈2.6 meV were determined from the temperature dependencies. Surprisingly, the larger order parameter Δdirty vanishes at a lower temperature T c dirty≈20 K compared with the smaller one Δ3D with Tc≈38 K. Both the magnitudes of the order parameters and their critical temperatures are in good agreement with theoretical calculations of electron-phonon coupling in MgB 2 carried out by Liu et al. [cond-mat/0103570 (2001)].

  3. Structure evolution in the La{sub 2}MgTiO{sub 6}-Ba{sub 2}MgWO{sub 6} system

    SciTech Connect

    Khalyavin, D.D.

    2006-01-05

    The crystal structure of dielectric ceramics in the (1-x)La{sub 2}MgTiO{sub 6} (LMT)-xBa{sub 2}MgWO{sub 6} (BMW) system has been studied by X-ray powder diffraction and transmission electron microscopy. LMT and BMW were found to form solid solutions in the whole compositional range. Increase of BMW content results in two structural transformations: continuous P2{sub 1}/n->I2/m at x between 0.2 and 0.25 and discontinuous I2/m->Fm3-bar m at x between 0.4 and 0.5. This sequence of the phase transitions is compared with structural transformations in other solid solutions between dielectric complex perovskites. It is supposed that the discontinuity of the I2/m->Fm3-bar m phase transition might contribute to some peculiarities in the compositional dependence of dielectric characteristics of this system.

  4. Wind dynamic range video camera

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor.

  5. Wide Range SET Pulse Measurement

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  6. Space - The long range future

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1985-01-01

    Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.

  7. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  8. Understanding synthesis imaging dynamic range

    NASA Astrophysics Data System (ADS)

    Braun, R.

    2013-03-01

    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution to the visibility data is associated with a relevant correlation timescale and frequency bandwidth so that the net impact on a complete observation can be assessed when a particular effect is not captured in the instrumental calibration. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain the magnitude of the calibration challenges that they must overcome to achieve thermal noise limited performance. We conclude that calibration challenges are increased in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15 m class dishes rather than the 25 m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more with the choice of an (alt,az,pol) mount, although a larger dish diameter offers the best prospects for risk mitigation. Many improvements to imaging performance can be anticipated at the expense of greater complexity in calibration algorithms. However, a fundamental limitation is ultimately imposed by an insufficient number of data constraints relative to calibration variables. The upcoming aperture array systems will be operating in a regime that has never previously been addressed, where a wide range of effects are expected to exceed the thermal noise by two to three orders of magnitude. Achieving routine thermal noise limited imaging performance with these systems presents an extreme challenge. The magnitude of that challenge is inversely related to the aperture array station diameter.

  9. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  10. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  11. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation

    PubMed Central

    Shen, Bing; Jacobsen, Benjamin; Lee, Cin-Ty A.; Yin, Qing-Zhu; Morton, Douglas M.

    2009-01-01

    Continental crust is too Si-rich and Mg-poor to derive directly from mantle melting, which generates basaltic rather than felsic magmas. Converting basalt to more felsic compositions requires a second step involving Mg loss, which is thought to be dominated by internal igneous differentiation. However, igneous differentiation alone may not be able to generate granites, the most silicic endmember making up the upper continental crust. Here, we show that granites from the eastern Peninsular Ranges Batholith (PRB) in southern California are isotopically heavy in Mg compared with PRB granodiorites and canonical mantle. Specifically, Mg isotopes correlate positively with Si content and O, Sr, and Pb isotopes and negatively with Mg content. The elevated Sr and Pb isotopes require that a component in the source of the granitic magmas to be ancient preexisting crust making up the prebatholithic crustal basement, but the accompanying O and Mg isotope fractionations suggest that this prebatholithic crust preserved a signature of low-temperature alteration. The protolith of this basement rock may have been the residue of chemical weathering, which progressively leached Mg from the residue, leaving the remaining Mg highly fractionated in terms of its isotopic signature. Our observations indicate that ancient continental crust preserves the isotopic signature of compositional modification by chemical weathering. PMID:19920171

  12. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    SciTech Connect

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  13. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    SciTech Connect

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q; Hiraoka, Nozomu; Eng, Peter J; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2008-06-13

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO{sub 3}-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO{sub 3} glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; {sup [3]}O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO{sub 3} melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO{sub 3} melt toward deeper part of the Earth's lower mantle.

  14. Ca-Mg-Sr-Nd Isotopes in Granitic Rocks of the Lhasa Terrane, Southern Tibet

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; Simon, J. I.; Depaolo, D. J.; Christensen, J. N.; Harrison, T. M.

    2010-12-01

    values cluster between -0.2 and -0.3; we have few Mg data for these rocks so far, but they appear to be in a similar range. Hence the mantle-derived granitoids have relatively homogeneous Ca and Mg that is slightly enriched in light isotopes relative to mantle rocks. For samples with strong crustal Nd and Sr isotope signatures, there is a wide range of both Ca and Mg isotope ratios, from heavier to lighter than BSE. The δ44Ca values suggest that Ca from ancient marine limestones is a major component of the magma source regions, whereas the δ26Mg values require that pelites provide a substantial amount of the Mg. Considering that both Ca and Mg are minor components of granitic magmas, this result can be understood in terms of the involvement of carbonate-bearing pelitic rock as a major component of the crustal granitic source regions.

  15. Primitive, high-Mg basaltic andesites: direct melts of the shallow, hot, wet mantle

    NASA Astrophysics Data System (ADS)

    Andrews, A.; Grove, T. L.

    2013-12-01

    Direct mantle melts are rare in subduction zone settings. Such melts are identified by Mg #s (Mg # = Mg / (Mg+Fe)) greater than ~0.73, indicating chemical equilibrium with Fo90 mantle olivine. Most of these primitive arc melts are basaltic, characterized by SiO2 contents of ~48-50 wt % and MgO contents ranging from 8-10 wt %. However, primitive basaltic andesites with mantle-equilibrated Mg #s have also been found at subduction zones worldwide. These basaltic andesites have higher SiO2 contents (53-58 wt %) than typical primitive basalts as well as high MgO (8-10 wt %). Because these rocks have high SiO2 contents and yet retain evidence for chemical equilibrium with the mantle (Mg #s), their petrogenesis has sparked intense debate as researchers have tried to discern how these samples fit into the paradigm of mantle melting at subduction zones. Through an understanding of the conditions and processes that produce the SiO2 enrichment in these rocks, we also aim to understand the role of these melts in producing the observed andesitic compositional characteristics of the continental crust. To understand the petrogenesis of primitive, high-Mg basaltic andesites, this study investigates the experimental melts of undepleted mantle peridotite plus a slab component (Na-2O + K2O) from 1,205-1,470°C at 1.0-2.0 GPa under water-undersaturated conditions (0-5 wt % H2O). At 1.0 and 1.2 GPa, the experimental melts reproduce the compositions of natural primitive, high-Mg basaltic andesites in all major elements (SiO2, TiO2, Al2O3, FeO, MnO, MgO, and Na2O+K2O) except CaO. CaO contents are higher than the range of the natural samples by ~2 wt % at the highest silica contents of the experiments (54-56 wt% SiO2). This suggests that at 1.0-1.2 GPa, a higher percent of melting (30-35 %) with 3-5 wt % H2O is required to drive the chemical compositions of the experiments toward the representative compositions of the natural rocks. The experimental melts also show that mantle-wall rock

  16. Melting and decomposition of MgCO3 at pressures up to 84 GPa

    NASA Astrophysics Data System (ADS)

    Solopova, N. A.; Dubrovinsky, L.; Spivak, A. V.; Litvin, Yu. A.; Dubrovinskaia, N.

    2015-01-01

    Magnesium carbonate MgCO3 (magnesite) was experimentally studied at pressures of 12-84 GPa and temperatures between 1,600 and 3,300 K. We applied the high-pressure technique using a multianvil press and a diamond anvil cell with laser heating. The phase relations and melting of magnesite were investigated by means of Raman and time-resolved multi-wavelength spectroscopy. Magnesite is found to melt congruently within the entire studied pressure range at temperatures of 2,100-2,650 K. At temperatures above 2,700 K, we observed decomposition of magnesite with formation of MgO and a carbon phase (diamond). Our results demonstrate that at high pressures, the magnesium carbonate melt can exist at a wide range of thermodynamic conditions.

  17. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

    NASA Astrophysics Data System (ADS)

    Buchibabu, V.; Reddy, G. M.; Kulkarni, D.; De, A.

    2016-03-01

    Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

  18. Paramagnetism in the kagome compounds (Zn ,Mg ,Cd ) Cu3(OH) 6Cl2

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Jeschke, Harald O.; Reuther, Johannes; Valentí, Roser; Mazin, I. I.; Greiter, Martin; Thomale, Ronny

    2015-12-01

    Frustrated magnetism on the kagome lattice has been a fertile ground for rich and fascinating physics, ranging from experimental evidence of a spin liquid to theoretical predictions of exotic superconductivity. Among experimentally realized spin-1/2 kagome magnets, herbertsmithite, kapellasite, and haydeeite [(Zn ,Mg ) Cu3(OH) 6Cl2] are all well described by a three-parameter Heisenberg model, but they exhibit distinctly different physics. We address the problem using a pseudofermion functional renormalization-group approach and analyze the low-energy physics in the experimentally accessible parameter range. Our analysis places kapellasite and haydeeite near the boundaries between magnetically ordered and disordered phases, implying that slight modifications could dramatically affect their magnetic properties. Inspired by this, we perform ab initio density functional theory calculations of (Zn,Mg,Cd ) Cu3 (OH) 6Cl2 at various pressures. Our results suggest that by varying pressure and composition one can traverse a paramagnetic regime between different magnetically ordered phases.

  19. Electrical properties and conduction mechanism of the NaMg4(PO4)3 compound

    NASA Astrophysics Data System (ADS)

    Karray, M.; Louati, B.; Guidara, K.; Gargouri, M.

    2016-07-01

    The NaMg4(PO4)3 phosphor was prepared by the conventional high-temperature solid-state reaction. The phase formation of the compound was confirmed by the powder X-ray diffraction. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 209 Hz-1 MHz and temperature range 648-712 K. The AC conductivity for grain contribution was interpreted using the universal Jonscher's power law. The temperature dependence of frequency exponent s was investigated to understand the conduction mechanism in NaMg4(PO4)3 compound. The non-overlapping small polaron tunneling model can explain the temperature dependence of the frequency exponent, and it was a closely good model to describe the dominant conduction mechanism.

  20. Solidification Pathways of Alloys in the Mg-Rich Corner of the Mg-Al-Ba Ternary System

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary L.; Hooper, Ryan J.; Henderson, Hunter B.; Manuel, Michele V.

    2015-04-01

    An experimental investigation of the solidification reactions and microstructures of alloys in the Mg-rich corner of the Mg-Al-Ba ternary system has been conducted. Four distinct exothermic reactions involving the formation of α-Mg, Mg17Ba2, Mg17Al12, and a fourth phase designated as τ were observed and their onset temperatures were recorded as functions of composition. Using compositional and microstructural analysis, the Mg17Ba2 intermetallic was found to have significant solubility of Al, up to 20 at. pct. The solidification pathways of the investigated alloys involved both a Class I and Class II equilibrium reaction. A flow block diagram that outlines the observed solidification reactions is presented and discussed in reference to cast microstructures.