Science.gov

Sample records for mg-al based alloys

  1. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  2. Characteristics of laser welded wrought Mg-Al-Mn alloy

    SciTech Connect

    Quan Yajie Chen Zhenhua; Yu Zhaohui; Gong Xiaosan; Li Mei

    2008-12-15

    Magnesium alloys have gained increased attention in recent years as a structural metal because of their property merits, which necessitates the development of welding techniques qualified for applications in the aeronautic and automotive industries. Laser welding is known to be an excellent method for joining metals. In this paper, a 3 kW CO{sub 2} laser beam was used to weld the wrought Mg-Al-Mn alloy. The characteristics of the microstructure and the mechanical properties of the joints were analyzed by optical microscopy (OM), energy dispersive spectrometry (EDS), scanning electron microscopy (SEM), tensile testing and hardness testing. The experimental results show that the wrought Mg-Al-Mn alloy can be joined successfully using optimized welding conditions. The results of tensile testing show that the highest ultimate tensile strength (UTS) of the joints is up to 94% of that of the base metal. The base metal consists of a typical rolled structure, the narrow heat affected zone (HAZ) has no obvious grain coarsening, and the fusion zone consists of fine grains with a high density of {gamma}-Mg{sub 17}Al{sub 12} precipitates. The hardness test results indicate that the microhardness in the fusion zone is higher than that of the base metal. The elemental analysis reveals that the Mg content in the weld is lower than that of the base metal, but the Al content is slightly higher.

  3. Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys

    SciTech Connect

    Beldjoudi, T.; Fiaud, C.; Robbiola, L. . Lab. d'Etudes de la Corrosion)

    1993-09-01

    The influence of heat treatment on corrosion behavior of magnesium-aluminum (Mg-9Al) alloys was investigated by studying the electrochemical properties of Mg-9Al in the solution-treated (T4) and artificially aged (T6) conditions. The alloys' properties were compared to those of pure Mg, the intermetallic Mg[sub 17]Al[sub 12] phase, and different Mg-Al-based alloys (Mg-3Al, AZ91). The Mg-9Al alloy exhibited better corrosion resistance in the T6 condition than in the T4 condition because of the intermetallic Mg[sub 17]Al[sub 12] precipitates present n the T6 alloy. The mechanism responsible for this behavior was attributed to a more protective porous film on the T6 matrix alloy than on the T4 alloy. Addition of zinc did not modify these results. Localized corrosion testing showed the Mg-Al alloys were attacked preferentially in relation to magnesium silicide (Mg[sub 2]Si) precipitates which were characterized clearly using metallurgical examinations.

  4. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  5. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  6. The Evolution of As-cast Microstructure of Ternary Mg-Al-Zn Alloys: An Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Paliwal, Manas; Kang, Dae Hoon; Essadiqi, Elhachmi; Jung, In-Ho

    2014-07-01

    A numerical formulation of solidification model which can predict the microsegregation and microstructural features for multicomponent alloys is presented. The model incorporates the kinetic features during solidification such as solute back diffusion, dendrite tip undercooling, and secondary arm coarsening. The model is dynamically linked to thermodynamic library for accurate input of thermodynamic data. The modeling results are tested against the directional solidification experiments for Mg-Al-Zn alloys. The experiments were conducted in the cooling rate range of 0.13 to 2.33 K/s and microstructural features such as secondary arm spacing, primary dendrite arm spacing, second phase fraction, and microsegregation were compared with the modeling results. Based on the model and the experimental data, a solidification map was built in order to provide guidelines for as-cast microstructural features of Mg-Al-Zn alloys in a wide range of solidification conditions.

  7. Microstructure characterization in upward directional solidification of Al-Cu and Mg-Al alloys under transient conditions

    NASA Astrophysics Data System (ADS)

    Amoorezaei, Morteza; Gurevich, Sebastian; Provatas, Nikolas

    Predicting and controlling the microstructure of cast alloys has been a driving force behind various studies on solidification of materials. Dendritic spacing and morphology established during casting often sets the final microstructure during manufacturing of alloys. This is par-ticularly true in emerging technologies such as twin belt casting, where a reduced amount of thermomechanical processing reduced the possibility of modifying microstructure from that de-termined at the time of solidification. Mg-based alloys are gaining importance due to the high demand for weight reduction in the transportation industry which accordingly reduces the gas consumption. While the solidified microstructure and its effect on the material properties have been the subject of intensive studies, little is known about the fundamental mechanisms that determine the microstructure and its evolution under directional growth conditions. We study the relationship between the microstructure and cooling conditions in unsteady state upward directional solidification of Al-Cu and Mg-Al alloys. The four-fold symmetry of Al-Cu alloys allows studying the dynamical spacing selection between dendrites, as the growth conditions vary dynamically, whereas, Mg-Al system with a six-fold symmetry introduces a competition between neighbouring, misoriented grains and remarkably influences the resulting microstruc-ture. We also present new phase field simulations wherein we dynamically vary the cooling conditions. Analysis of the phase field simulations is used to shed some light on the morpho-logical development of dendrite arms during solidification under transient conditions. We find that the final microstructure under transient conditions is strongly dependent on the history of the growth conditions changes as well as the initial morphology of the system, consistent with the results previously obtained by Warren and Langer and Losert et. al. Our phase field results are validated qualitatively by the

  8. Influence of Static Precipitation on Microstructure and Texture of Annealed Cold-Rolled Mg-Al-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Sanjari, Mehdi; Su, Jing; Jung, In-Ho; Yue, Stephen

    2015-08-01

    The final mechanical properties of wrought magnesium alloys are mostly controlled by its microstructure and crystallographic orientation or texture. In the sheet form of common magnesium alloys, grain coarsening occurs during annealing, which only serves to strengthen the undesirable basal texture. One method to alleviate this problem is by stopping grain coarsening. Hence the aim of this work is to investigate the effect of static precipitation on microstructure and texture evolution during annealing at various temperatures after cold rolling. Mg-Al-Sn alloys were designed using thermodynamic modeling software, FactSageTM. It was found that static precipitates can only form extensively, after static recrystallization, at the recrystallized grain boundaries, and these retard grain growth during annealing. Presence of precipitates at the recrystallized grain boundaries also retard the strengthening of basal texture during annealing, related to grain coarsening.

  9. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Huang, Xinsheng; Suzuki, Kazutaka; Mabuchi, Mamoru; Chino, Yasumasa

    2015-11-01

    The discharge behaviors of rolled Mg-6 mass%Al-0.3 mass%Mn-2 mass%Ca (AMX602) and Mg-6 mass%Al-0.3 mass%Mn (AM60) alloys used as anodes for Magnesium-air batteries were investigated. The AMX602 alloy exhibited superior discharge properties compared to the AM60 alloy, especially at low current density. The discharge products of the AMX602 alloy were dense and thin, and many cracks were observed at all current densities. In addition, the discharge products were detached at some sites. These sites often corresponded to the positions of Al2Ca particles. The comparison of the discharge and corrosion tests indicated that the dense and thin discharge products of AMX602 were easily cracked by dissolution of the Mg matrix around Al2Ca particles, and the cracks promoted the penetration of the electrolyte into the discharge products, retaining the discharge activity. In contrast, concerning the AM60 alloy, thick discharge products were formed on the surface during discharge, and cracking of the discharge products hardly occurred, degrading the discharge properties. Localized and deeply corroded pits that could result from the detachment of metal pieces from the anode during discharge were partly observed in the AM60 alloy. It is suggested that these detached metal pieces are another reason for the low discharge properties of the AM60 alloy.

  10. Solidification Pathways of Alloys in the Mg-Rich Corner of the Mg-Al-Ba Ternary System

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary L.; Hooper, Ryan J.; Henderson, Hunter B.; Manuel, Michele V.

    2015-04-01

    An experimental investigation of the solidification reactions and microstructures of alloys in the Mg-rich corner of the Mg-Al-Ba ternary system has been conducted. Four distinct exothermic reactions involving the formation of α-Mg, Mg17Ba2, Mg17Al12, and a fourth phase designated as τ were observed and their onset temperatures were recorded as functions of composition. Using compositional and microstructural analysis, the Mg17Ba2 intermetallic was found to have significant solubility of Al, up to 20 at. pct. The solidification pathways of the investigated alloys involved both a Class I and Class II equilibrium reaction. A flow block diagram that outlines the observed solidification reactions is presented and discussed in reference to cast microstructures.

  11. Texture Evaluation of a Bi-Modal Structure During Static Recrystallization of Hot-Deformed Mg-Al-Sn Alloy

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Su, Jing; Yue, Stephen

    2016-02-01

    In this study, Mg-Al-Sn alloy was hot compressed at 523 K (250 °C) and annealed at 623 K (350 °C) for various times. The initial as-deformed microstructure was partially dynamic recrystallized with strain-induced precipitates on the recrystallized grain boundaries. After annealing at 623 K (350 °C), static recrystallization (SRX) of the bimodal microstructure took place where, at this temperature, no static precipitates formed. The goal of this work was to study the effect of dynamic precipitation on the texture evolution during the SRX process. Progressive texture evolution was studied during annealing by electron backscattered diffraction technique through a microstructure-tracking process. It was found that the grain-coarsening mechanism during the early stage of annealing is not totally controlled by the basal-oriented grains. Also, it was found that the dynamic precipitates may have significant influence in the early texture weakening during annealing of a bimodal structure.

  12. Superplasticity in a thermomechanically processed High-Mg, Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    McNelley, T. R.; Lee, E. W.; Mills, M. E.

    1986-06-01

    Superplastic elongations in excess of 400 pct have been observed in tension testing at 573 K (300 °C) and strain rate έ = 2 × 10-3 s-1 for a thermomechanically processed Al-10.2 pct Mg-0.52 pct Mn alloy. The thermomechanical processing consists of solution treatment and hot working, followed by extensive warm rolling at 573 K (300 °C), a temperature below the solvus for Mg in the alloy. This processing results in a fine subgrain structure in conjunction with refined and homogeneously distributed β(Al8Mg5) and MnAl6 precipitates. This structure does not statically recrystallize when annealed at 573 K (300 °C) but appears to recrystallize continuously during deformation at such a temperature and the resulting fine grain structure deforms with minimal cavitation. At temperatures above the Mg-solvus, e.g., 673 K (400 °C), recrystallization and growth occur readily resulting in rela tively coarser structures which deform superplastically but with extensive grain boundary sliding and cavitation.

  13. A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Luong, Dung D.; Rohatgi, Pradeep K.

    2011-05-01

    Obtaining meaningful information from the test results is a challenge in the split-Hopkinson pressure bar (SHPB) test method if the specimen does not fail during the test. Although SHPB method is now widely used for high strain rate testing, this limitation has made it difficult to use it for characterization of materials in the intermediate strain rate range (typically 10-1000 s-1). In the present work, a method is developed to characterize materials in the intermediate strain rate range using SHPB setup. In this method, the specimen is repeatedly tested under compression at a given strain rate until failure is achieved. The stress-strain graphs obtained from each test cycle are used to plot the master stress-strain graph for that strain rate. This method is used to study the strain rate dependence of compressive response of a Mg-Al-Zn alloy in the intermediate strain rate range. A remarkable difference is observed in the failure mechanism of the alloy under quasi-static and intermediate strain rate compression. Matrix cracking is the main failure mechanism under quasi-static compression, whereas shattering of intermetallic precipitates, along with plastic deformation of the matrix, is discovered to become prominent as the strain rate is increased.

  14. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys

    NASA Astrophysics Data System (ADS)

    Król, M.; Tański, T.; Sitek, W.

    2015-11-01

    The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point

  15. Lattice-matched magnetic tunnel junctions using a Heusler alloy Co2FeAl and a cation-disorder spinel Mg-Al-O barrier

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Furubayashi, Takao; Wen, Zhenchao; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2014-12-01

    Perfectly lattice-matched magnetic tunnel junctions (MTJs) consisting of a Heusler alloy B2-Co2FeAl (CFA) electrode and a cation-disorder spinel (Mg-Al-O) barrier were fabricated by sputtering and plasma oxidation. We achieved a large tunnel magnetoresistance (TMR) ratio of 228% at room temperature (RT) (398% at 5 K) for the epitaxial CFA/MgAl-O/CoFe(001) MTJ, in which the effect of lattice defects on TMR ratios is excluded. With inserting a ultrathin (≤1.5 nm) CoFe layer between the CFA and Mg-Al-O, the TMR ratio further increased up to 280% at RT (453% at 5 K), which reflected the importance of controlling barrier-electrode interface states other than the lattice matching.

  16. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts

    NASA Astrophysics Data System (ADS)

    Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun

    2015-04-01

    The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.

  17. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  18. Influence of anisotropic pressure on viscosity and electrorheology of diethylene glycol-based MgAl2O4 nanofluids.

    PubMed

    Zyła, Gaweł; Grzywa, Joanna; Witek, Adam; Cholewa, Marian

    2014-01-01

    The paper presents results of rheological experiments on viscosity under anisotropic pressure and in electric field of diethylene glycol-based MgAl2O4 nanofluids. Nanofluids have been prepared in a two-step method. The dynamic viscosity of nanofluids with various mass concentrations of nanoparticles was measured in the range of shear rates from 10 s -1 to 1,000 s -1 in constant temperature under the pressure of 7.5 MPa. In the second type of experiments, different values of the electric field up to 2,000 V/mm was used. Thixotropy structure of MgAl2O4-DG nanofluids has been studied in electrical field. PMID:24712490

  19. Influence of anisotropic pressure on viscosity and electrorheology of diethylene glycol-based MgAl2O4 nanofluids

    PubMed Central

    2014-01-01

    The paper presents results of rheological experiments on viscosity under anisotropic pressure and in electric field of diethylene glycol-based MgAl2O4 nanofluids. Nanofluids have been prepared in a two-step method. The dynamic viscosity of nanofluids with various mass concentrations of nanoparticles was measured in the range of shear rates from 10 s −1 to 1,000 s −1 in constant temperature under the pressure of 7.5 MPa. In the second type of experiments, different values of the electric field up to 2,000 V/mm was used. Thixotropy structure of MgAl2O4-DG nanofluids has been studied in electrical field. PMID:24712490

  20. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C.; Zavoianu, R.; Pavel, O. D.; Dinescu, M.

    2012-09-01

    Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO3)2 aqueous solutions with Ni concentrations of 10-3% (w/w) (1 g/L) and 10-4% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  1. Tensile properties, residual stress distribution and grain arrangement as a function of sheet thickness of Mg-Al-Mn alloy subjected to two-sided and simultaneous LSP impacts

    NASA Astrophysics Data System (ADS)

    Luo, K. Y.; Liu, B.; Wu, L. J.; Yan, Z.; Lu, J. Z.

    2016-04-01

    Two-sided and simultaneous laser shock peening impacts is considered as a novel surface treatment technology for the turbine blade and thin-walled component. In this paper, tensile properties of Mg-Al-Mn alloy specimens with different sheet thickness under two kinds of laser shock peening strategies were investigated, and an overlapping three-dimension axisymmetric numerical model was developed to analyze the effects of sheet thickness on residual stress distributions. Meanwhile, special attentions were paid to the in-depth microstructural evolution as a function of sheet thickness. Results showed that sheet thickness had an important influence on the tensile properties of Mg-Al-Mn alloy, and the generated residual stress distribution and grain arrangement were two important factors. The corresponding influence mechanism of sheet thickness on the tensile properties of Mg-Al-Mn alloy was also presented, and the optimal thickness of Mg-Al-Mn alloy sheet may be 4 mm or more.

  2. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed. PMID:24411344

  3. MgAl2O4(001) based magnetic tunnel junctions made by direct sputtering of a sintered spinel target

    NASA Astrophysics Data System (ADS)

    Belmoubarik, Mohamed; Sukegawa, Hiroaki; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro

    2016-03-01

    We developed a fabrication process of an epitaxial MgAl2O4 barrier for magnetic tunnel junctions (MTJs) using a direct sputtering method from an MgAl2O4 spinel sintered target. Annealing the sputter-deposited MgAl2O4 layer sandwiched between Fe electrodes led to the formation of a (001)-oriented cation-disorder spinel with atomically sharp interfaces and lattice-matching with the Fe electrodes. A large tunnel magnetoresistance ratio up to 245% at 297 K (436% at 3 K) was achieved in the Fe/MgAl2O4/Fe(001) MTJ as well as an excellent bias voltage dependence. These results indicate that the direct sputtering is an alternative method for the realization of high performance MTJs with a spinel-based tunnel barrier.

  4. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids.

    PubMed

    Bruna, Felipe; Pereira, Marita G; Polizeli, Maria de Lourdes T M; Valim, João B

    2015-08-26

    The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst. PMID:26259168

  5. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    SciTech Connect

    Song, H. Y.; An, M. R.; Li, Y. L. Deng, Q.

    2014-12-07

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  6. Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite.

    PubMed

    Djebbi, Mohamed Amine; Bouaziz, Zaineb; Elabed, Alae; Sadiki, Moulay; Elabed, Soumya; Namour, Philippe; Jaffrezic-Renault, Nicole; Amara, Abdesslem Ben Haj

    2016-06-15

    Hydrotalcite (HT), also known as a layered double hydroxide (LDH) compound, has been widely used in past years in the formulation of drugs due to its specific properties including good biocompatibility, null toxicity, high chemical stability and pH-dependent solubility which aid in drug controlled release. In this work, berberine chloride (BBC) class antibacterial agent was immobilized into magnesium-aluminum LDH in order to improve the drug efficiency as well as to achieve the controlled release property. BBC molecules were immobilized into MgAl LDH through a conventional ion exchange reaction and co-precipitation method. The ion-exchange experiments of BBC on MgAl LDH were investigated with particular attention paid to the influence of the layer charge, the nature of the intercalated anion and the morphology. The immobilization efficiency was dependent upon the LDH properties and the immobilization process. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle measurements revealed that the interaction of BBC with MgAl LDH occurs by adsorption rather than intercalation of BBC within LDH layers. In vitro anti-bacterial tests were carried out using disc diffusion assay to prove the effectiveness of these novel biohybrid beads as a controlled drug delivery method. Consequently, the BBC-LDH co-precipitated formulation revealed an enhanced anti-bacterial activity compared to the ion-exchanged formulation not only due to an improvement of chemical stability and retained amount of BBC molecules but also due to the release property. PMID:27109050

  7. Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4

    SciTech Connect

    Evans, Owen R.; Bell, Alexis T.; Tilley, T. Don

    2004-06-01

    The oxidative dehydrogenation of propane to propene was investigated over a series of novel vanadia-based catalysts supported on high-surface-area magnesium spinel. A mesoporous MgAl2O4 support was synthesized via a low-temperature sol gel process involving the heterobimetallic alkoxide precursor, Mg[Al(O iPr)4]2. A high-purity catalyst support was obtained after calcination at 1173 K under O2 atmosphere and active vanadia catalysts were prepared from the thermolysis of OV(O tBu)3 after grafting onto the spinel support. MgAl2O4-supported catalysts prepared in this manner have BET surface areas of 234 245 m2/g. All of the catalysts were characterized by X-ray powder diffraction, and Raman, solid-state NMR, and diffuse-reflectance UV vis spectroscopy. At all vanadium loadings the vanadia supported on MgAl2O4 exist as a combination of isolated monovanadate and tetrahedral polyvanadate species. As the vanadium surface density increases for these catalysts the ratio of polyvanadate species to isolated monovanadate species increases. In addition, as the vanadium surface density increases for these catalysts, the initial rate of propane ODH per V atom increases and reaches a maximum value at 6 VOx/nm2. Increasing the vanadium surface density past this point results in a decrease in the rate of propane ODH owing to the formation of multilayer species in which subsurface vanadium atoms are essentially rendered catalytically inactive. The initial propene selectivity increases with increasing vanadium surface density and reaches a plateau of {approx}95 percent for the V/MgAl catalysts. Rate coefficients for propane ODH (k1), propane combustion (k2), and propene combustion (k3) were calculated for these catalysts. The value of k1 increases with increasing VOx surface density, reaching a maximum at about 5.5 VOx/nm2. On the other hand, the ratio (k2/k1) for V/MgAl decreases with increasing VOx surface density. The ratio (k3/k1) for both sets of catalysts shows no dependence on

  8. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the

  9. Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide

    PubMed Central

    Saifullah, Bullo; Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB. PMID:25336952

  10. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  11. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte.

    PubMed

    Jung, Kyung-Won; Jeong, Tae-Un; Hwang, Min-Jin; Kim, Kipal; Ahn, Kyu-Hong

    2015-12-01

    In this work, the textural properties and phosphate adsorption capability of modified-biochar containing Mg-Al assembled nanocomposites prepared by an effective electro-assisted modification method with MgCl2 as an electrolyte have been determined. Structure and chemical analyses of the modified-biochar showed that nano-sized stonelike or flowerlike Mg-Al assembled composites, MgO, spinel MgAl2O4, AlOOH, and Al2O3, were densely grown and uniformly dispersed on the biochar surface. The adsorption isotherm and kinetics data suggested that the biochar/Mg-Al assembled nanocomposites have an energetically heterogeneous surface and that phosphate adsorption could be controlled by multiple processes. The maximum phosphate adsorption capacity was as high as 887 mg g(-1), as fitted by the Langmuir-Freundlich model, and is the highest value ever reported. It was concluded that this novel electro-assisted modification is a very attractive method and the biochar/Mg-Al assembled nanocomposites provide an excellent adsorbent that can effectively remove phosphate from aqueous solutions. PMID:26433157

  12. In situ XPS investigation of Pt(Sn)/Mg(Al)O catalysts during ethane dehydrogenation experiments

    NASA Astrophysics Data System (ADS)

    Virnovskaia, Anastasia; Jørgensen, Sissel; Hafizovic, Jasmina; Prytz, Øystein; Kleimenov, Evgueni; Hävecker, Michael; Bluhm, Hendrik; Knop-Gericke, Axel; Schlögl, Robert; Olsbye, Unni

    2007-01-01

    Calcined hydrotalcite with or without added metal (Mg(Al)O, Pt/Mg(Al)O and Pt,Sn/Mg(Al)O) have been investigated with in situ X-ray photoelectron spectroscopy (XPS) during ethane dehydrogenation experiments. The temperature in the analysis chamber was 450 °C and the gas pressure was in the range 0.3-1 mbar. Depth profiling of calcined hydrotalcite and platinum catalysts under reaction, oxidation and in hydrogen-water mixture was performed by varying the photon energy, covering an analysis depth of 10-21 Å. It was observed that the Mg/Al ratio in the Mg(Al)O crystallites does not vary significantly in the analysis depth range studied. This result indicates that Mg and Al are homogeneously distributed in the Mg(Al)O crystallites. Catalytic tests have shown that the initial activity of a Pt,Sn/Mg(Al)O catalyst increases during an activation period consisting of several cycles of reduction-dehydrogenation-oxidation. The Sn/Mg ratio in a Pt,Sn/Mg(Al)O catalyst was followed during several such cycles, and was found to increase during the activation period, probably due to a process where tin spreads over the carrier material and covers an increasing fraction of the Mg(Al)O surface. The results further indicate that spreading of tin occurs under reduction conditions. A PtSn 2 alloy was studied separately. The surface of the alloy was enriched in Sn during reduction and reaction conditions at 450 °C. Binding energies were determined and indicated that Sn on the particle surface is predominantly in an oxidised state under reaction conditions, while Pt and a fraction of Sn is present as a reduced Pt-Sn alloy.

  13. Evidence for an equilibrium epitaxial complexion at the Au-MgAl2O4 interface

    NASA Astrophysics Data System (ADS)

    Majdi, Tahereh; Zhu, Guo-zhen; Carvalho, Jessica; Jarvis, Victoria; Meinander, Kristoffer; Britten, James F.; Botton, Gianluigi; Preston, John S.

    2015-12-01

    Evidence for the existence of an equilibrium epitaxial complexion at the Au-MgAl2O4 interface has been observed. The growth of crystalline MgAl2O4 nanostructures, from a previously stable substrate in the presence of an Au overlayer and heat, is associated with this complexion. Prior to the nanostructures' self-assembly, Au nanoparticles crystalize, then reorient to align with the MgAl2O4 substrate. The presented results contradict earlier conclusions based solely on SEM studies of the final assembled nanostructures. Those results suggested that the MgAl2O4 grown pedestal and associated Au nanoparticle atop were both gold.

  14. Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe₃O₄/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2014-10-01

    A novel magnetic solid phase extraction method was developed for the speciation of As(III)/As(V) in aqueous solutions utilizing Fe3O4-doped Mg-Al layered double hydroxide (LDH) as a nano-sorbent. The method is based on the separation and pre-concentration of As(V) by Fe3O4/Mg-Al LDH nano-hybrid prior to determination by a chemiluminescence (CL) technique. The CL route involves the oxidation of luminol by vanadomolybdoarsenate heteropoly acid in a basic media. Since the existing cations cannot be adsorbed by positively charged layers of the LDH and other potentially interferent anions had no considerable effect on the CL reaction, it provides a very selective and sensitive determination approach for As(V). The determination of total arsenic and hence indirectly As(III) involve the pre-oxidation of As(III) to As(V) by a mixture of hydrogen peroxide and potassium hydroxide. Several factors affecting the extraction and determination of the analyte were investigated and optimized. Under optimum conditions, the calibration graph was linear in the range of 5.0-5000 ng L(-1). The limit of detection and enrichment factor was 2.0 ng L(-1) and 80, respectively. The method was validated by the analysis of a standard reference material (NIST SRM 1643e), and successfully applied to the speciation of arsenic in several water samples with recoveries in the range of 93.3-106.7% for the spiked samples. PMID:25059142

  15. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  16. Magnetization behavior of L10-ordered FePt alloy thin films prepared on MgO(100), MgAl2O4(100), and KTaO3(100) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Iwama, Hiroki; Doi, Masaaki; Shima, Toshiyuki

    2016-07-01

    In order to investigate the effects of lattice mismatch between FePt thin films and single-crystal substrates on the tetragonality and magnetization process, FePt thin films were fabricated on several single-crystal substrates such as KTaO3 (KTO) (100), MgAl2O4 (MAO) (100), and MgO(100) at a substrate temperature of 700 °C. The Fe content of the FePt films was varied from 45.0 to 50.8 at. %. In addition to the fundamental (002) peak, the (001) and (003) superlattice peaks were clearly observed in the X-ray diffraction patterns of all the samples, indicating the formation of the L10-ordered structure. The magnetization measurements show that all the samples were perpendicularly magnetized. Coercivities (H c) of 57.8, 52.5, and 3.3 kOe were obtained for the films with Fe49.3Pt50.7 (at. %) deposited on the MgO, MAO, and KTO substrates. The marked reduction in H c is considered to arise from the morphology of FePt thin films.

  17. Effect of alloying elements on electrochemical properties of magnesium-based sacrificial anodes

    SciTech Connect

    Kim, J.G.; Koo, S.J.

    2000-04-01

    Effects of alloying elements on electrochemical properties of magnesium-based sacrificial anodes were evaluated. Potentiodynamic, galvanostatic, scanning electron microscopy (SEM), and x-ray diffraction (XRD) analyses were used to investigate the corrosion rate, efficiency, and surface characteristics of anodes. Polarization data indicated that alloying with manganese, aluminum, and zinc reduced the corrosion rates of magnesium anodes. All anodes did not undergo passivation but demonstrated only active behavior. Corrosion morphology was changed from localized to uniform attach by the alloying. Addition of manganese to magnesium anodes yielded increased driving potential and efficiency. The efficiency of Mg-Al anodes was improved up to {approximately}6% Al addition. The addition of zinc increased the efficiency of Mg-Al-Zn anodes compared to the efficiency of Mg-Al anodes, but the reversal of this behavior happened as the zinc content exceeded {approximately}3%. The increase in the efficiency of Mg-Al and Mg-Al-Zn anodes was accompanied by a decrease in the driving potential. The decrease of driving potential might have resulted form a somewhat resistive film on the surface, which hindered the transport of ions. The increased corrosion resistance generally improved anode efficiency.

  18. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  20. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  1. Thermodynamics and Kinetics of the Formation of Al2O3/ MgAl2O4/MgO in Al-Silica Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Sreekumar, V. M.; Ravi, K. R.; Pillai, R. M.; Pai, B. C.; Chakraborty, M.

    2008-04-01

    The formation of Al2O3, MgAl2O4, and MgO has been widely studied in different Al base metal matrix composites, but the studies on thermodynamic aspects of the Al2O3/ MgAl2O4/MgO phase equilibria have been limited to few systems such as Al/Al2O3 and Al/SiC. The present study analyzes the Al2O3/MgAl2O4 and MgAl2O4/MgO equilibria with respect to the temperature and the Mg content in Al/SiO2 system using an extended Miedema model. There is a linear and parabolic variation in Mg with respect to the temperature for MgAl2O4/MgO and Al2O3/MgAl2O4 equilibria, respectively, and the influence of Si and Cu in the two equilibria is not appreciable. The experimental verification has been limited to MgAl2O4/MgO equilibria due to the high Mg content (≥0.5 wt pct) required for composite processing. The study has been carried out on two varieties of Al/SiO2 composites, i.e., Al/Silica gel and Al/Micro silica processed by liquid metallurgy route (stir casting route). MgO is found to be more stable compared to MgAl2O4 at Mg levels ≥5 and 1 wt pct in Al/Silica gel and Al/Micro silica composites, respectively, at 1073 K. MgO is also found to be more stable at lower Mg content (3 wt pct) in Al/Silica gel composite with decreasing particle size of silica gel from 180 micron to submicron and nanolevels. The MgO to MgAl2O4 transformation has taken place through a series of transition phases influenced by the different thermodynamic and kinetic parameters such as holding temperature, Mg concentration in the alloy, holding time, and silica particle size.

  2. Thermodynamically destabilized hydride formation in "bulk" Mg-AlTi multilayers for hydrogen storage.

    PubMed

    Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin; Zahiri, Beniamin; Tan, XueHai; Danaie, Mohsen; Botton, Gianluigi; Mitlin, David

    2013-10-21

    Thermodynamic destabilization of MgH2 formation through interfacial interactions in free-standing Mg-AlTi multilayers of overall "bulk" (0.5 μm) dimensions with a hydrogen capacity of up to 5.5 wt% is demonstrated. The interfacial energies of Mg-AlTi and Mg-Ti (examined as a baseline) are calculated to be 0.81 and 0.44 J m(-2). The enhanced interfacial energy of AlTi opens the possibility of creating ultrathin alloy interlayers that provide further thermodynamic improvements in metal hydrides. PMID:23955681

  3. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  4. Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong; Chen, Mohan; Carter, Emily A.

    2016-06-01

    Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric Mg-Al compounds including Mg17Al12 , Mg13Al14 , and Mg23Al30 , and MgAl2 with orbital-free density-functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and independent elastic constants of these six materials and compare the results to those computed via Kohn-Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent with available experimental data. We next compute their phonon spectra using the force constants extracted from the very fast OFDFT calculations, because such calculations are computationally challenging using KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 ×3 ×3 supercell consists of 1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable, consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other engineering alloys.

  5. Nanostructured Mg-Al hydrotalcite as catalyst for fine chemical synthesis.

    PubMed

    Basahel, Sulaiman N; Al-Thabaiti, Shaeel A; Narasimharao, Katabathini; Ahmed, Nesreen S; Mokhtar, Mohamed

    2014-02-01

    This paper reviews the recent research of nanostructured Mg-Al hydrotalcite (Mg-Al HT) and its application as an efficient solid base catalyst for the synthesis of fine chemicals. Mg-Al HT has many beneficial features, such as low cost, selectivity, catalytic properties, and wide range of preparation and modification methods. They hold promise for providing sought-after, environmentally friendly technologies for the 21st century. Replacement of currently used homogeneous alkaline bases for the synthesis of fine chemicals by a solid catalyst can result in catalyst re-use and waste stream reduction. We introduce briefly the structure, properties and characterization of the nanostructured Mg-Al HT. The efficacy and benign applications of Mg-Al HT as an alternative solid base to homogenous catalysts in the synthesis of fine chemicals are then reviewed. The challenges for the future applications of Mg-Al HT in the synthesis of fine chemicals in terms of green protocol processes are discussed. PMID:24749466

  6. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    SciTech Connect

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-11-15

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  7. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  8. Mechanical Responses of Superlight β-Based Mg-Li-Al-Zn Wrought Alloys under Resonance

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Lin, Yi-Hua; Su, Chien-Wei; Wang, Jian-Yih

    2009-05-01

    To extend the application of lightweight Mg alloys in the automotive industry, this study suggests a β-based Mg-Li alloy (LAZ1110) with superior vibration fracture resistance by means of material design. In the cold-rolled state, a strengthened β matrix by the additions of Al and Zn, as well as intergranular platelike α precipitates, which are able to stunt the crack growth, contributes to a comparable vibration life with commercial Mg-Al-Zn alloys under a similar strain condition.

  9. Laser-Ultrasonic Inspection of MG/AL Castings

    SciTech Connect

    Blouin, Alain; Levesque, Daniel; Monchalin, Jean-Pierre; Baril, Eric; Fischersworring-Bunk, Andreas

    2005-04-09

    Laser-ultrasonics is used to assess the metallurgical bond between Mg/Al materials in die-cast Magnesium/Aluminum composite. The acoustic impedances of Mg, Al and air are such that the amplitude of ultrasonic echoes reflected back from a void is many times larger than the amplitude of those reflected back from a well-bonded interface. In addition, the polarity of echoes from a void is inverted compared to that from a well-bonded interface. Laser-ultrasonic F-SAFT is also used for imaging tilted Mg/Al interfaces. Experimental setup, signal processing and results for detecting voids in the Mg/Al interface of cast parts are presented.

  10. Investigation of fluorine adsorption on nitrogen doped MgAl2O4 surface by first-principles

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The nature of fluorine adsorption on pure and N doped MgAl2O4 surface has been investigated by first-principles calculations based on the density functional theory. Calculated results indicate that MgAl2O4 surface is fluorine-loving, not hydrophilic. Nitrogen doped MgAl2O4 (100) surface shows the highest fluorine adsorption performance and fluorine atom preferentially adsorbs on the Mg-Al bridge site. The fluorine adsorption intensity follow this order: Nitrogen doped MgAl2O4 (100) > Al2O3 (0001) > MgAl2O4 (100) > MgO (100). In-depth PDOS analysis suggested that 2p orbitals of F atom strongly hybridized with 3s- and 3p-orbitals of Al atom contribute to its high adsorption intensity. According to the analysis of Hirshfeld charge, the excellent fluorine adsorption performance of nitrogen doped MgAl2O4 attributes to the electron compensation effect of nitrogen atom and strong electrostatic interactions. All these evidences demonstrate a fact nitrogen doped MgAl2O4 is a promising candidate for fluorine removal.

  11. Solid Solution Effects on the MgAl2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between the binaries MgAl2O4-ZnAl2O4 and MgAl2O4-MgGa2O4 were studied. Stoichiometric MgAl2O4 spinel can be formed in the laboratory through a coprecipitation method. Complete solid solution formation in the MgAl2O4-MgGa2O4 system was confirmed through X-ray diffraction (XRD) analysis. XRD analysis of the MgAl2O4-ZnAl2O4 system did not confirm solid solution due to the similar lattice parameters of the two end points, however, previous studies have shown that complete solid solution does form. Thermal conductivity data is pending and will be included in the presentation. Based on previous experimentation and open literature, it is suspected that thermal conductivity will be decreased with the addition of solid solution. With increased amounts of disruption to the lattice from solid solution it is also theorized that the temperature at which the mean free path still impacts thermal conductivity could be increased.

  12. First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4)

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Seagle, C. T.; Zhou, H.; Heinz, D. L.

    2008-12-01

    11033768 First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4) Materials with the spinel crystal structure, AB2O4 are believed to be an important component of Earth's mantle and may be related to density and seismic wave velocity discontinuities at the transition zone from 400km to 660km depth. Using Ab-initio calculations, five phases are predicted to have a stability range at zero temperature: magnesium-aluminum spinel (MgAl2O4), two of its polymorphs, which are of Pbnm and Cmcm space groups, periclase (MgO) and corundum (Al2O3). Pbnm-MgAl2O4 has the calcium-ferrite structure and Cmcm-MgAl2O4 takes the calcium-titanate structure. Calculations are preformed using the PWSCF (Plane-Wave Self-Consistent Field) codes. The free energy of the compressed volume was calculated directly for each of the phases above. Based on the energy-volume results from the calculations, dissolution of MgAl2O4 into MgO + Al2O3 occurs at 12GPa and the mixture (MgO + Al2O3) is expected to recombine to form the calcium-ferrite type phase at about 27GPa. The two phase transition pressures are consistent with experimental results. Cell parameters of the five phases simulated and their bulk modulus derived from the energy-volume curve are also in good agreement with experimental work. But unlike the conclusions drawn from some previous experimental work, the calcium-ferrite type structure (Pbnm-MgAl2O4) did not transform to the calcium-titanate type structure (Cmcm-MgAl2O4) at around 40GPa, which provides the possibility that calcium-ferrite type phase may be stable to even higher pressures (up to100GPa). Derived parameters, bulk modulus and density of each phase are in good agreement with experimental results. The differences are within 4%. Compared to seismic velocity profiles of the earth, these phase transitions pressures match the discontinuity pressures at transition zone 400km (Fd3m- MgAl2O4 -> MgO + Al2O3) and 660km (MgO + Al2O3 -> Pbnm-MgAl2O4) respectively, suggesting

  13. Hydrogen generation by means of catalyzed Mg-Al hydrolysis

    NASA Astrophysics Data System (ADS)

    Hoehne, K.; Jaeger, P.

    Based on considerations of reactivity, costs, and the volume of hydrogen which can be expected per mass fraction of metal, Al and Mg offer good possibilities in metal hydrolysis. Since these metals hardly react with water, however, a catalyst is used to accelerate the Mg-Al hydrolysis process. Experiments show that a mixture of Mg and Al reacts strongly with water in the presence of CO3O4, MoO3, and Cl-ions; with an optimum combination of all the participants in the reaction, the H2 yield can amount to 100%. Various methods are discussed for constructing a hydrogen generator using this new method of metal hydrolysis. A hydrogen generator plant is described, in which pressed powder pellets are used. An aluminum-magnesium-cobalt oxide powder mixture is introduced into the reactor in the form of cylindrical pellets, which are pulverized in the reactor chamber. The powder falls into the salt water in the reactor and is converted. The hydrogen produced has a purity potentially greater than 99.9%.

  14. Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis

    SciTech Connect

    Rao, M. Mohan . E-mail: mandapati@iict.res.in; Reddy, B. Ramachandra; Jayalakshmi, M.; Jaya, V. Swarna; Sridhar, B.

    2005-02-15

    We report a simple method to prepare hydrotalcites involving both urea hydrolysis and hydrothermal synthetic conditions. Out of a series of Mg/Al ratios tried, pure hydrotalcite like phase was obtained for Mg/Al ratios of 1:1 and 2:1. Unlike in conventional co-precipitation method we succeeded in preparing Mg/Al ratio of 1:1 by this route. The high temperature (180 deg. C) applied and pressure developed in the autoclave during the synthesis might have altered the topochemical transformation. The materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, thermo gravimetric and differential thermal analysis and transmission electron microscopy.

  15. Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel

    NASA Astrophysics Data System (ADS)

    Ren, Ying; Zhang, Lifeng; Yang, Wen; Duan, Haojian

    2014-12-01

    The formation of Mg-Al-Ti-O complex inclusions in steel was investigated by laboratory experiments and thermodynamic calculation. The composition evolutions of Mg-Al-Ti-O inclusions in steel with different contents of [Al], [Mg], and [Ti] were discussed. Mg-Al-Ti-O complex inclusion with high TiOx content was liquid at 1873 K (1600 °C), indicating MgAl2O4 spinel inclusions can be modified to low melting temperature ones by combining TiOx component. The stability diagram of Al-Mg-Ti-O system inclusions in the molten steel at 1873 K (1600 °C) was calculated, considering many kinds of oxide inclusions such as MgO, Al2O3, TiOx, MgTi2O4, MgAl2O4, Al2TiO5, and liquid inclusion. The thermodynamic calculations are in good agreement with experimental results, which can predict the formation of Al-Mg-Ti-O complex inclusions in molten steel with a large concentration range of [Al], [Mg], and [Ti].

  16. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    SciTech Connect

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos; Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassium loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.

  17. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  18. Discovering low-permittivity materials: Evolutionary search for MgAl2O4 polymorphs

    NASA Astrophysics Data System (ADS)

    Xie, Congwei; Zeng, Qingfeng; Oganov, Artem R.; Dong, Dong

    2014-07-01

    Low-permittivity ceramics for use as microwave band window materials must have good mechanical and optical characteristics. Unfortunately, most known ceramics are opaque to microwaves because of their high dielectric permittivity. Here, we present an effective theoretical method that may be helpful in the development of innovative low-permittivity materials. Using the material's permittivity as a global optimization function, we performed a crystal structure search for MgAl2O4 using an ab initio evolutionary algorithm implemented in the USPEX code. We identified four predicted MgAl2O4 polymorphs ( P 4 ¯ m 2 , P 4 ¯ 2 m, Cc, and Pc) that had lower permittivities than MgAl2O4 spinel ( F d 3 ¯ m ). Our results indicate that the density is not the only factor that affects permittivity. Further analysis of permittivity from the viewpoint of the underlying structures shows that reduced permittivity can be effectively achieved by reducing the cation coordination number. This insight will help in the discovery of materials with minimum permittivity values based on simple crystal-chemical analysis.

  19. Magnetization study of the ultra-hard material MgAlB 14

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; Johnston, D. C.; Cook, B. A.; Harringa, J. L.; Russell, A. M.

    2003-09-01

    Magnetic susceptibility χ versus temperature T, magnetization M versus T, and isothermal M versus magnetic field H studies of the ultra-hard material MgAlB 14 were carried out in search of superconductivity or ferromagnetism in this compound. Two types of samples were synthesized: (1) powder and (2) chemically substituted and unsubstituted hot pressed pellets prepared from mechanically alloyed powders. χ( T) measurements on a powder sample revealed temperature-independent diamagnetism with a Curie-Weiss impurity concentration equivalent to ˜1 mol% of spin- {1}/{2} ions. In contrast, M( T) and M( H) data on the hot pressed samples, both substituted and unsubstituted, showed evidence of ferromagnetic transitions above ˜330 K. Scanning electron microscopy and Auger microprobe analysis of the hot pressed samples indicated that both substituted and unsubstituted samples contained significant concentrations of Fe impurities. We conclude that pure MgAlB 14 is neither a superconductor nor a ferromagnet above 1.8 K and exhibits temperature-independent diamagnetism from 1.8 K up to room temperature. The ferromagnetism observed in the hot pressed samples is likely due to Fe impurities abraded from the stainless steel mills used to mix the starting materials prior to hot pressing the samples.

  20. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability

    SciTech Connect

    Zhao, Dong; Bai, Zhimin; Zhao, Fuyan

    2012-11-15

    Graphical abstract: Comparable studies of nano Mg/Al-LDHs powder on the anti-wear properties of lubricating oil were carried out on four-ball and gear testing machine. Mg/Al-NO{sub 3}{sup −}-LDHs and Mg/Al-DA-LDHs powder in base oil possess an excellent friction-reducing property, with a friction coefficient at 23.9% and 22.2% which are lower than that of the base oil Highlights: ► We synthesized nano Mg/Al-NO{sub 3}{sup −}(DA)-LDHs via coprecipitation and anion exchange. ► The optimal exchanging condition is as follows: water dispersion and pH value of 5. ► The tribological properties of LDHs were studied on four-ball and gear machine. ► We reported nano LHDs as anti-wear materials in lubricates for the first time. ► The greatest decline in friction coefficient of lubricates with LDHs is up to 23.9%. -- Abstract: Layered double hydroxides (LDHs) intercalated with dodecanoic acid have been prepared by anion exchange with Mg/Al-NO{sub 3}{sup −}-LDHs as the precursor under acid condition with water and ethanol as the dispersion medium. The obtained materials were characterized by X-ray diffraction (XRD), thermogravimetric and differential thermal analyser (TG–DTA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and BET. Patterns of XRD and FTIR show that interlayer nitrate ions have substituted with dodecanoic acid and the gallery height has increased from 0.88 nm to 1.99 nm. The interlayer distance of the intercalated materials increases with the increase of pH value due to the different arrangement of interlayer anions. The tribological performance of LDHs precursor and intercalated LDHs in base oil were studied for the first time by using four-ball wear machine and gear testing machine. Experimental results show that the LDHs precursor and intercalated LDHs powder are excellent in friction-reducing, with decreases in friction coefficient by 23.9% and 22.2% respectively comparing with base oil.

  1. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  2. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  3. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  4. Treatment of waste H₂SO₄ with Mg-Al oxide obtained by calcination of NO₃⁻-intercalated Mg-Al layered double hydroxide: Kinetics and equilibrium.

    PubMed

    Kameda, Tomohito; Fubasami, Yuki; Yoshioka, Toshiaki

    2012-01-01

    Mg-Al oxide obtained by calcination of NO(3)(-)-intercalated Mg-Al layered double hydroxide (NO(3)•Mg-Al LDH) was used to treat H(2)SO(4), acting as both a neutralizer of the acid and a fixative for SO(4)(2-). The fraction of SO(4)(2-) removed increased with time and with increasing Mg-Al oxide quantity and temperature. The rate of SO(4)(2-) removal followed first-order kinetics with apparent rate constants of 2.0 × 10(-3), 4.4 × 10(-3), and 5.3 × 10(-2) min(-1) at 10, 30, and 60°C, respectively. The apparent activation energy was 52.1 kJ mol(-1), confirming that the SO(4)(2-) removal by Mg-Al oxide proceeded under chemical reaction control. Furthermore, the adsorption isotherm of SO(4)(2-) by Mg-Al oxide obeyed the Langmuir equation. The maximum adsorption amount was 2.0 mmol g(-1), or 4.0 meq g(-1), indicating that Mg-Al oxide has a large capacity for uptake of SO(4)(2-) from H(2)SO(4). PMID:22416865

  5. New antimony substituted Mg-Al layered double hydroxides.

    PubMed

    Kim, Jin A; Hwang, Seong-Ju; Choy, Jin-Ho

    2008-10-01

    No antimony hydroxide has been previously reported not only in solid state but also in aqueous solution, surely due to the fact that the formation of antimony oxide, Sb2O3, is thermodynamically more favorable than that of the hydroxide phase, Sb(OH)3. According to the pH dependent solubility diagram of Sb2O3, antimony (III) hydroxide may not exist as a definite compound but be proposed as a hydrated monomeric molecular species, Sb(OH)3(aq), which is in equilibrium with Sb2O3, under a condition of very small ionic strength. This is probably the reason why no Sb(3+)-containing layered double hydroxide, LDH, has been reported as yet. In the present study, an attempt has been made to prepare new Sb(3+)-LDH by substituting the Al3+ in octahedral site partially with Sb3+ up to approximately 10%. From the X-ray diffraction analysis, we found that the lattice constants (a = 3.075 angstroms, c = 23.788 angstroms) of the pristine, Mg-Al LDH, increased gradually upto those (a = 3.087 angstroms, c = 24.167 angstroms) of Sb-LDH (8%-substituted). Beyond 10%, the Sb substitution does not lead to any further increases of lattice constants but the impurity Sb2O3 phase is formed. It is, therefore, concluded that the solubility limit of Sb3+ in LDH would be around 10%. In addition, we were able to determine the chemical formula of Sb-substituted LDHs as follows, Mg4Al(1-x)Sb(x)OH10(CO3)(1/2) x H2O (x = 0 approximately 0.08) on the basis of energy dispersive X-ray spectroscopy. PMID:19198414

  6. Combustion Synthesized Cr3+-doped-BaMgAl10O17 Phosphor: An Electron Paramagnetic Resonance and Optical Study

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Srivastava, Anoop K.; Ravikumar, R. V. S. S. N.; Dhoble, S. J.; Singh, P. K.; Mohapatra, Manoj

    2016-01-01

    BaMgAl10O17 phosphors doped with Cr3+ ions were prepared by a combustion route at a furnace temperature of 773 K. The X-ray diffraction pattern revealed that the BaMgAl10O17 phosphor was in a hexagonal phase. Energy-dispersive X-ray mapping images demonstrated the presence of the dopant ion in the BaMgAl10O17 matrix. The bands observed in the optical absorption spectrum were characteristic of Cr3+ ions in octahedral geometry. Upon 555-nm excitation, an intense narrow red emission line centred at 690 nm due to the 2Eg → 4A2g transition of Cr3+ ions was observed. The electron paramagnetic resonance (EPR) spectrum of Cr3+ ions in BaMgAl10O17 phosphor showed multiple absorption bands having at least 6 g values. Based on the EPR data, various parameters such as the absolute number of spins, Gibbs potential, magnetic susceptibility and magnetic moments, Curie constant, etc., for the system were evaluated.

  7. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal. PMID:26223022

  8. Enhanced high temperature performance of MgAl2O4-supported Pt-BaO lean NOx trap catalysts

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Cho, Sung June; Peden, Charles HF

    2012-03-05

    The structural and chemical characteristics of Pt/BaO lean-NO{sub x} trap (LNT) catalysts supported on {gamma}-Al{sub 2}O{sub 3} and MgAl{sub 2}O{sub 4} are compared in this study. The Pt-BaO/MgAl{sub 2}O{sub 4} sample shows relatively low NO{sub x} uptake at temperatures below 300 C, and the temperature of maximum NO{sub x} uptake (T{sub max}) is shifted to 350 C in comparison to that of Pt-BaO/Al{sub 2}O{sub 3} (T{sub max} {approx}250 C). More importantly, the NO{sub x} uptake over the MgAl{sub 2}O{sub 4}-supported catalyst at 350 C is twice that of the alumina-based one. The shift toward the higher temperature NO{sub x} uptake is explained by the larger interfacial area between Pt and BaO, due to smaller Pt clusters as evidenced by TEM and Pt L3 EXAFS. In situ TR-XRD results demonstrate that the formation of a BaAl{sub 2}O{sub 4} phase in the BaO/MgAl{sub 2}O{sub 4} LNT catalyst occurs at a temperature about 100 C higher than on BaO/Al{sub 2}O{sub 3}, which may also represent a beneficial attribute of the BaO/MgAl{sub 2}O{sub 4} LNT with respect to catalyst stability.

  9. High-pressure stability, structure and compressibility of Cmcm -MgAl2O4: an ab initio study

    NASA Astrophysics Data System (ADS)

    Catti, M.

    Quantum-mechanical solid-state calculations have been performed on the highest-pressure polymorph of magnesium aluminate (CaTi2O4-type structure, Cmcm space group), as well as on the low-pressure (Fd3m) spinel phase and on MgO and Al2O3. An ab initio all-electron periodic scheme with localized basis functions (Gaussian-type atomic orbitals) has been used, employing density-functional-theory Hamiltonians based on LDA and B3LYP functionals. Least-enthalpy structure optimizations in the pressure range 0 to 60 GPa have allowed us to predict: (1) the full crystal structure, the pV equation of state and the compressibility of Cmcm-MgAl2O4 as a function of pressure; (2) the phase diagram of the MgO-Al2O3-MgAl2O4 system (with exclusion of CaFe2O4-type Pmcn-MgAl2O4), and the equilibrium pressures for the reactions of formation/decomposition of the Fd3m and Cmcm polymorphs of MgAl2O4 from the MgO + Al2O3 assemblage. Cmcm-MgAl2O4 is predicted to form at 39 and 57 GPa by LDA and B3LYP calculations, with K0=248 (K'=3.3) and 222 GPa (K'=3.8), respectively. Results are compared to experimental data, where available, and the performance of different DFT functionals is discussed.

  10. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  11. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  12. High spatial resolution Mg/Al maps of the western Crisium and Sulpicius Gallus regions

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.

    1982-01-01

    High spatial resolution Mg/Al ratio maps of the western Crisium and Sulpicius Gallus regions of the moon are presented. The data is from the X-ray fluorescence experiment and the image enhancement technique in the Laplacian subtraction method using a special least-squares version of the Laplacian to reduce noise amplification. In the highlands region west of Mare Crisium several relatively small patches of smooth material have high local Mg/Al ratio similar to values found in mare sites, suggesting volcanism in the highlands. In the same highland region there were other smooth areas with no high Mg/Al local values and they are probably Cayley Formation material produced by impact mass wasting. The Sulpicius Gallus region has variable Mg/Al ratios. In this region there are several high Mg/Al ratio spots, two of which occur at the highland-mare interface. Another high Mg/Al ratio area corresponds to the Sulpicius Gallus Rima I region. The high Mg/Al ratio material in the Sulpicius Gallus region is probably pyroclastic.

  13. [Preparation and optical properties of MgAl2O4/Ce:YAG transparent ceramics].

    PubMed

    He, Long-Fei; Fan, Guang-Han; Lei, Mu-Yun; Lou, Zai-Liang; Chen, Zhi-Wu; Xiao, Yao; Zheng, Shu-Wen; Zhang, Tao

    2013-05-01

    High-purity ultrafine MgAl2O4 powder was synthesized by metal-alkoxide method and calcining for 2-4 h. And then MgAl2O4/Ce:YAG transparent ceramics were fabricated by hot-pressed sintering and hot isostatic pressed sintering technique with YAG:Ce powder and MgAl2O4 powder. The transparent ceramics were characterized by XRD, SEM, EDS and fluorescence spectrometer, respectively. The results show that the crystal phase of the transparent ceramic was composed of MgAl2O4 and YAG,and the YAG phase dispersed well in the matrix of MgAl2O4. The excitation spectra had a weak band at 345 nm and a strong band at 475 nm. The broad emission peaks at about 533 nm were attributed to 5d-->4f transition of Ce3+ ions. Decay curves for the fluorescence of MgAl2O4/Ce:YAG transparent ceramic test show that the lifetime of the Ce:YAG glass ceramic was 59.74 ns. All results show that MgAl2O4/Ce:YAG transparent ceramic may be a promising fluorescent material for white LED applications. PMID:23905313

  14. Stable cation inversion at the MgAl2O4(100) surface.

    PubMed

    Rasmussen, Morten K; Foster, Adam S; Hinnemann, Berit; Canova, Filippo F; Helveg, Stig; Meinander, Kristoffer; Martin, Natalia M; Knudsen, Jan; Vlad, Alina; Lundgren, Edvin; Stierle, Andreas; Besenbacher, Flemming; Lauritsen, Jeppe V

    2011-07-15

    From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface. PMID:21838378

  15. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    NASA Astrophysics Data System (ADS)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  16. Luminescence studies on SrMgAl 10O 17:Eu, Dy phosphor crystals

    NASA Astrophysics Data System (ADS)

    Wanjun, Tang; Donghua, Chen; Ming, Wu

    2009-02-01

    Using urea as fuel, SrMgAl 10O 17:Eu, Dy phosphor was prepared by a combustion method. Its luminescence properties under ultraviolet (UV) excitation were investigated. Pure SrMgAl 10O 17 phase was formed by urea-nitrate solution combustion synthesis at 550 °C. The results indicated that the emission spectra of SrMgAl 10O 17:Eu, Dy has one main peak at 460 nm and one shoulder peak near 516 nm, which are ascribed to two different types of luminescent Eu 2+ centers existing in the SrMgAl 10O 17 matrix crystal. The blue luminescence emission of SrMgAl 10O 17:Eu phosphors was improved under UV excitation by codoping Dy 3+ ions. The SrMgAl 10O 17:Eu phosphors showed green afterglow ( λ=516 nm) when Dy 3+ ions were doped. Dy 3+ ions not only successfully play the role of sensitizer for energy transfer in the system, but also act as trap levels and capture the free holes in the spinel blocks.

  17. Thermal measurements and computational simulations of three-phase (CeO2-MgAl2O4-CeMgAl11O19) and four-phase (3Y-TZP-Al2O3-MgAl2O4-LaPO4) composites as surrogate inert matrix nuclear fuel

    NASA Astrophysics Data System (ADS)

    Angle, Jesse P.; Nelson, Andrew T.; Men, Danju; Mecartney, Martha L.

    2014-11-01

    This study investigates the temperature dependent thermal conductivity of multiphase ceramic composites for simulated inert matrix nuclear fuel. Fine grained composites were made of CeO2-MgAl2O4-CeMgAl11O19 or 3Y-TZP-Al2O3-MgAl2O4-LaPO4. CeO2 and 3Y-TZP are used as UO2 surrogates due to their similar structures and low thermal conductivities. Laser flash analysis from room temperature to 1273 K (1000 °C) was used to determine the temperature dependent thermal conductivity. A computational approach using Object Oriented Finite Element Analysis Version 2 (OOF2) was employed to simulate the composite thermal conductivity based on the microstructure. Observed discrepancies between experimental and simulated thermal conductivities at low temperature may be due to Kapitza resistance; however, there is less than 3% deviation between models and experiments above 673 K (400 °C) for both compositions. When the surrogate phase was replaced with UO2 in the computational model for the four-phase composite, a 12-16% increase in thermal conductivity resulted compared to single phase UO2, in the range of 673-1273 K (400-1000 °C). This computational approach may be potentially viable for the high-throughput evaluation of composite systems and the strategic selection of inert phases without extensive sample fabrication during the initial development stages of composite nuclear fuel design.

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  20. Structure and photoluminescence of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides

    SciTech Connect

    Chen Yufeng; Li Fei; Zhou Songhua; Wei Junchao; Dai Yanfeng; Chen Yiwang

    2010-09-15

    A series of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides (LDHs), with Eu/Al atomic ratios of {approx}0.06 and Mg/(Al+Eu) atomic ratios ranging from 1.3 to 4.0, were synthesized by a coprecipitation method. The Mg-Al-Eu ternary LDHs were investigated by various techniques. X-ray diffraction (XRD) results indicated that the crystallinity of the ternary LDHs was gradually improved with the increase of Mg{sup 2+}/(Al{sup 3+}+Eu{sup 3+}) molar ratio from 1.3/1 to 4/1, and all the samples were a single phase corresponding to LDH. The photoluminescent (PL) spectra of the ternary Mg-Al-Eu LDHs were described by the well-known {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2, 3, 4) of Eu{sup 3+} ions with the strongest emission for J=2, suggesting that the host LDH was favorable to the emissions of Eu{sup 3+} ions. The asymmetry parameter (R) relevant to {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2) dependant of the atomic ratios of Mg{sup 2+}/(Al{sup 3+}+Eu{sup 3+}) was discussed, and was consistent with the result of XRD. - Graphical abstract: A series of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides (LDHs), with Mg/(Al+Eu) atomic ratios ranging from 1.3/1, 2/1 3/1 to 4/1, were synthesized by a coprecipitation method. The photoluminescent spectra of the Mg-Al-Eu ternary LDHs are described by the well-known {sup 5}D{sub 0}-{sup 7}F{sub J} transition (J=1, 2, 3, 4) of Eu{sup 3+} ions with the strongest emission for J=2.

  1. Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobo; Bai, Zhimin; Zhao, Dong; Zhao, Fuyan

    2013-07-01

    In this paper, Mg-Al-CO3 LDH was prepared by magnesite under chemical precipitation and hydrothermal methods. In order to improve the dispersion of LDH in base oil, the as-prepared sample was modified with sodium laurate. The obtained material (GMAC-LDH) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and thermo gravimetric analyzer (DSC-TGA) and scanning electron microscope (SEM). The results show that the modified LDH has platelet morphology with a near hexagon shape. In addition, the tribological properties of GMAC-LDH were evaluated by four-ball friction tester and gear tester. As a lubricant, GMAC-LDH possesses an excellent property on reducing friction and wear of friction pair. The results of friction tests indicated that the friction coefficient, diameter of wear scar and power consumption of the oil with GMAC-LDH was reduced by 11.0%, 8.5% and 2.1% as compared with that of base oil.

  2. Optimized immobilization of transketolase from E. coli in MgAl-layered double hydroxides.

    PubMed

    Touisni, Nadia; Charmantray, Franck; Helaine, Virgil; Forano, Claude; Hecquet, Laurence; Mousty, Christine

    2013-12-01

    Immobilization of TK from Escherichia coli (TKec) on MgAl-NO3 layered double hydroxides (LDH) was carried out by two processes: adsorption and coprecipitation. As a comparison, the adsorption method was realized either at pH 7.5 in buffered solutions (MOPS and Gly-Gly) or in pure water. For the coprecipitation method, the formation of the inorganic LDH support was realized directly in the presence of TKec solubilized in Gly-Gly. The prepared biohybrids, called respectively TKec@LDHads and TKec@LDHcop, were characterized by powder X-ray diffraction, FTIR spectroscopy in comparison with TKec free reference products, i.e. MgAl-NO3, MgAl-Gly-Gly. The enzymatic activities of the various TKec@LDH biohybrids as well as their stabilities over time were investigated by UV-vis assay. A maximum of activity (12 U/mg of solid) was reached for TKec@MgAl-Gly-Gly biohybrid prepared by coprecipitation. Finally, thin films were prepared through a one-step deposition on a polished support. The enzymatic activity of the resulting TKec@MgAl-Gly-Glycop film was tested over four recycling processes with a reproducible activity of 2.7 U/mg cm(2). PMID:24055860

  3. Mechanical and thermal properties of LaMgAl{sub 11}O{sub 19}

    SciTech Connect

    Jiang, B.; Fang, M.H.; Huang, Z.H.; Liu, Y.G.; Peng, P.; Zhang, J.

    2010-10-15

    Lanthanum magnesium hexaaluminate (LaMgAl{sub 11}O{sub 19}) powders were synthesized successfully at 1300 {sup o}C for 4 h by solid-state reaction, and LaMgAl{sub 11}O{sub 19} ceramic was prepared at 1700 {sup o}C for 6 h by pressureless sintering. Phase composition, microstructure, mechanical and thermophysical properties of LaMgAl{sub 11}O{sub 19} ceramic were investigated. Results show that the flexural strength and fracture toughness of LaMgAl{sub 11}O{sub 19} ceramic are 353.3 {+-} 12.5 MPa and 4.60 {+-} 0.46 MPa m{sup 1/2}. Young's Modulus and Poisson ratio is 295 GPa and 0.23, respectively. The linear thermal expansion coefficient of LaMgAl{sub 11}O{sub 19} ceramic from 473 K to 1473 K is 9.17 x 10{sup -6}/K, and thermal conductivity at 1273 K is 2.55 W/m K.

  4. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE PAGESBeta

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  5. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    SciTech Connect

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  6. Structure and lattice vibrations of Mg-Al spinel solid solution

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Hiraishi, J.; Yamanaka, T.

    1982-05-01

    X-ray structure refinements have been made for nonstoichiometric (MgO · 3Al2O3) and stoichiometric Mg-Al spinels. Several structure variations with chemical composition have been observed and are discussed in relation to Al substitution in tetrahedral sites. Infrared reflection and Raman spectra of the single crystal of the nonstoichiometric spinel (MgO · 3Al2O3) have been measured and analyzed. The results obtained are compared with those reported for the stoichiometric sample. From the infrared and Raman frequencies reported for the stoichiometric Mg-Al spinel, which are partly complemented with our results, the effective ionic charges of the ions in MgAl2O4 have been estimated on the basis of the rigid ion model.

  7. Sonochemical preparation of high surface area MgAl2O4 spinel.

    PubMed

    Troia, A; Pavese, M; Geobaldo, F

    2009-01-01

    High surface area MgAl(2)O(4) has been synthesised by a sonochemical method. Two kinds of precursors were used, alkoxides and nitrates/acetates and in both cases nanostructured MgAl(2)O(4) was obtained. The effect of the addition of a surfactant during the sonication, cetyl trimethyl ammonium bromide, was also investigated. In the case of alkoxides precursors the as-made product is a mixture of hydroxides of aluminium and magnesium, while with nitrates/acetates a gel is obtained after sonication, containing the metal hydroxides and ammonium nitrate. Heating at 500 degrees C transforms the as-made products into MgAl(2)O(4) spinel phase. The surface area is up to 267 m(2)/g after treatment at 500 degrees C and 138 m(2)/g at 800 degrees C. PMID:18658004

  8. Native defects as sources of optical transitions in MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Cott, J.; Pinto, F. G.; Tronto, J.; Scolfaro, L.

    2016-07-01

    The outstanding physical and chemical properties of the magnesium aluminate (MgAl2O4) spinel makes it an important material for novel technological applications. Considering that a presence of native defects can promote important changes in those properties, in this work we present a study of the structural, electronic and thermodynamic properties of the MgAl2O4 spinel. The calculated formation energy for isolated defects, such as the vacancies of magnesium (V Mg), aluminum (V Al) and oxygen (V O), oxygen interstitial (Oi), magnesium and aluminum antisites (MgAl, AlMg), as well as some complex defects (V O + Oi, V O + AlMg, V O + MgAl, MgAl + AlMg) in the most stable charge states are shown. Through experimental data, we obtained that complex defects centers, such as V O , V O + Oi, V O + AlMg and VO + MgAl at different charge states are good candidates for the observed optical transitions at 4.75, 5.3, and 6.4 eV. Our findings were obtained from ab initio electronic structure calculations performed by using density functional theory. The Perdew–Burke–Ernzerhof generalized gradient approximation was used for the exchange-correlation potential. Furthermore, a modified Becke-Johnson exchange potential (GGA-mBJ) correction to the exchange potential were used to obtain a suitable value for the band gap energy, 7.40 eV, in accordance with the experimental one of 7.8 eV.

  9. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal. PMID:26454072

  10. Testing LaMgAl11O19 crystal for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, H.; Beiersdorfer, P.; Baronova, E. O.; Kalashnikova, I. I.; Stepanenko, M. M.

    2004-10-01

    We investigated the properties of the rare earth crystal LaMgAl11O19 and its application to soft x-ray spectroscopy. Its relative reflectivity and half-width rocking curve were measured to up to the reflection order of 28. In addition, a comparative measurement of the iron L-shell soft x-ray line emission was made on the EBIT-I Livermore electron beam ion trap by fielding the LaMgAl11O19 crystal side by side with a rubidium hydrogen phthalate crystal in a flat crystal spectrometer. From these measurements, reflectivity and spectral resolving power were determined.

  11. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  12. Texture and microstructure in co-sputtered Mg-M-O (M = Mg, Al, Cr, Ti, Zr, and Y) films

    NASA Astrophysics Data System (ADS)

    Saraiva, M.; Depla, D.

    2012-05-01

    Mg-M-O solid solution films (M = Mg, Al, Cr, Ti, Zr, and Y) with various M contents are grown employing reactive co-sputtering by varying the target-to-substrate distance. It is shown that all films are biaxially aligned. When the two cathodes are equipped with the same target material (Mg), the in-plane alignment is determined by the cathode closest to the substrate, i.e., by the largest material flux. In the case of nearly equal material fluxes from the two cathodes, double in-plane orientation is observed. This is also the case for the Mg-Al-O and Mg-Cr-O films, while the Mg-Ti-O, Mg-Zr-O and Mg-Y-O films exhibit single in-plane orientation. Pole figures indicate that the grains in Mg-M-O (M different than Mg) are titled; in the Mg-Al-O, Mg-Cr-O, and Mg-Ti-O films, the grains tilt towards the Al, Cr, and Ti metal flux, respectively, while the grain tilt of the Mg-Zr-O and Mg-Y-O films is found to be towards the Mg metal flux. Furthermore, SEM cross-sectional images of the Mg-M-O films reveal columnar microstructure with columns tilted to the same direction as the grains. A mechanism which is based on the cation radius change upon the incorporation of an M atom in the MgO lattice is proposed to explain the tilting.

  13. Reactivity of Mg-Al hydrotalcites in solid and delaminated forms in ammonium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Stoica, Georgiana; Santiago, Marta; Abelló, Sònia; Pérez-Ramírez, Javier

    2010-10-01

    Treatment of Mg-Al hydrotalcites (LDHs, layered double hydroxides) in aqueous (NH 4) 2CO 3 at 298 K leads to composites of dawsonite, hydrotalcite, and magnesium ammonium carbonate. The mechanism and kinetics of this transformation, ultimately determining the relative amounts of these components in the composite, depend on the treatment time (from 1 h to 9 days), the Mg/Al ratio in the hydrotalcite (2-4), and on the starting layered double hydroxide (solid or delaminated form). The materials at various stages of the treatment were characterized by inductive coupled plasma-optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetry, and nitrogen adsorption at 77 K. The progressive transformation of hydrotalcite towards crystalline dawsonite and magnesium ammonium carbonate phases follows a dissolution-precipitation mechanism. A gradual decrease of the Mg/Al ratio in the resulting solids was observed in time due to magnesium leaching in the reacting medium. Dawsonite-hydrotalcite composite formation is favored at high aluminum contents in the starting hydrotalcite, while the formation of magnesium ammonium carbonate is favored at high Mg/Al ratios. The synthetic strategy comprising hydrotalcite delamination in formamide prior to aqueous (NH 4) 2CO 3 treatment is more reactive towards composite formation than starting from the bulk solid hydrotalcite.

  14. Neutron-induced changes in optical properties of MgAl 2O 4 spinel

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Garner, F. A.; Hollenberg, G. L.

    1995-03-01

    High purity MgAl 2O 4 spinel specimens irradiated in FFTF-MOTA to very high neutron exposures have been examined by three techniques to determine changes in their optical properties. Significant changes were observed in optical absorption, photoluminescence and radioluminescence, indicating that a variety of radiation-induced defects are present in these specimens.

  15. Synthesis and afterglow properties of MgAl2O4:Eu2+, Dy3+ nanopowders.

    PubMed

    Xu, Xuhui; Wang, Yuhua; Gong, Yu; Li, Yanqin

    2011-11-01

    The MgAl2O4:Eu2+, Dy3+ nanophosphors with different particle sizes have been synthesized through a simple and inexpensive precipitate approach followed by a post-annealing process. The structure and morphology of the phosphor are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to XRD and TEM results, the particle size of MgAl2O4:Eu2+, Dy3+ could be controlled via changing the ratio of MgSO4/Al2O3, and the obtained samples possess regular morphology. The afterglow properties of MgAl2O4:Eu2+, Dy3+ nanophosphors as a function of particle sizes are investigated by afterglow decay curves. Compared with the bulk phosphor, the nanophosphors exhibit longer afterglow time and higher initial afterglow intensity. In nanophosphors, there exist numerous defects on their surfaces due to the large surface to volume ratio, which generally act as luminescent killers, while some of which, however, can probably act as traps beneficial for the generation of afterglow. In the nanosized MgAl2O4:Eu2+, Dy3+ phosphor, the thermoluminescence results indeed indicate the existence of more traps which are introduced due to the large surface to volume ratio of nanoparticles and that the high temperature sintering process contributes to the longer afterglow in the nanophosphors. PMID:22413308

  16. Strain relaxation and order-disorder phase transition in irradiated MgAl2O4.

    PubMed

    Kossoy, Anna

    2014-01-01

    MgAl2O4 spinel is widely studied in many fields of material science because of its variety of interesting properties and potential applications. The influence of cation disorder on the physical properties of MgAl2O4 makes understanding of the effects related to this disorder particularly important. It is known that, upon ion irradiation at low temperature, MgAl2O4 undergoes an order-disorder phase transition followed by amorphization. This paper reports a combined high resolution X-ray diffraction and transmission electron microscopy study elucidating the linkage between this phase transition and irradiation-induced elastic strain. Irradiations were carried out on [110] and [111]-oriented single crystals of MgAl2O4 at T = 77 K with 600 keV Xe ions over a wide range of doses. The data suggests that the beginning of the order-disorder phase transition coincides with the beginning of strain relaxation. This result indicates that the volume of the new phase is slightly smaller than that of the unirradiated spinel. The dose at which the phase transformation occurs is found to be dependent on the crystal orientation, which can be attributed to both elastic and crystallographic properties. PMID:24247735

  17. Defects and metastable structures of MgAl{sub 2}O{sub 4}

    SciTech Connect

    Chen, S.P.; Yan, M.; Grimes, R.W.; Vyas, S.; Gale, J.D.

    1995-07-01

    This paper presents calculated properties of normal and inverse spinel structures of MgAl{sub 2}O{sub 4} and of point defects in the spinel structure. These results provide information for further study of possible metastable states. Calculated properties of ``amorphous`` structure are also presented. Atomistic simulations show that in MgAl{sub 2}O{sub 4} spinel structure, the exchange of an Mg{sup 2+} ion with an Al{sup 3+} ion has the lowest energy increase, 0. 92eV/atom. The Schottky defect increases the energy by 3.71 eV/atom. Frenkel defects are difficult to form, increasing the energy at least 4.59eV/atom for the Mg{sup 2+} Frenkel defect. Proposed rock salt structure of MgAl{sub 2}O{sub 4} has smaller volume and larger Young modulus, and the amorphosu state has larger volume and smaller Young modulus than the MgAl{sub 2}O{sub 4} spinel.

  18. Dynamical simulations of radiation damage in magnesium aluminate spinel, MgAl2O4

    NASA Astrophysics Data System (ADS)

    Smith, R.; Bacorisen, D.; Uberuaga, B. P.; Sickafus, K. E.; Ball, J. A.; Grimes, R. W.

    2005-02-01

    Collision cascades in MgAl2O4 are investigated using molecular dynamics simulations in order to determine the threshold displacement energies, Ed, and the damage imparted to the lattice at energies of up to 5 keV. The value of Ed is determined for MgAl2O4 on each of the Mg, Al and O sublattices for different orientations of the primary knock-on atom (PKA). The lowest Ed required to create permanent defects was for an O PKA along the \\langle 100\\rangle direction with a value of 27.5 eV, while the highest was 277.5 eV along \\langle 131\\rangle for an Mg PKA. Higher energy cascades show that a much wider variety of defects remain after the collisional phase than for similar cascades in MgO but the number of Frenkel pairs produced is smaller. The predominant defects that form are antisite defects on the cation sublattice only and O and Mg split interstitials orientated along the \\langle 110\\rangle direction. Some Mg-Al split interstitials centred on an Mg site were also observed. However, some more extended defect complexes can also arise which have no well defined structure.

  19. Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Ebert, S.; Mauer, G.; Vaßen, R.

    2015-01-01

    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated.

  20. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  1. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit S 100 covering

    SciTech Connect

    Arco, M. del; Fernandez, A.; Martin, C.; Rives, V.

    2010-12-15

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg{sup 2+} and Al{sup 3+} or Mg{sup 2+}, Al{sup 3+} and Fe{sup 3+} in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 A. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7. - Graphical abstract: LDHs containing Mg, Al, Fe increase fenbufen solubility, release takes place through ionic exchange with phosphate anions from the medium. Spherical solids with homogeneous, smooth surface are formed when using Eudragit S 100, efficiently covering the LDH surface. Display Omitted

  2. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  3. [Superplastic forming of titanium alloy denture base].

    PubMed

    Okuno, O; Nakano, T; Hamanaka, H; Miura, I; Ito, M; Ai, M; Okada, M

    1989-03-01

    Ti-6Al-4V alloy has both excellent biocompatibility and superior mechanical properties. This Ti-6Al-4V can be deformed greatly and easily at the superplastic temperature of 800 degrees C to 900 degrees C. The superplastic forming of Ti-6Al-4V was made to apply to fabrication of denture base. Almost the same procedure as for dental casting mold was employed in producing the superplastic forming die by the improved phosphate bonded investment. In the pressure vessel of heat resistant alloy, Ti-6Al-4V plate was formed superplastically on the die by argon gas pressure at 850 degrees C. The fit of superplactic forming Ti-6Al-4V denture base was better than that of casting Co-Cr alloy denture bases. The Ti-6Al-4V alloy might react a little with the die. Because micro Vikers hardness of the cross-section did not go up too much near the surfaces. Even just after being formed, the surfaces were much smoother than that of Co-Cr alloy casting. The tensile strength and yield strength of superplastic forming Ti-6Al-4V were higher than those of Co-Cr castings. The elongation was about 10%. These results show that superplastic forming of Ti-6Al-4V would be suitable for a denture base. PMID:2603084

  4. A La-doped Mg-Al mixed metal oxide supported copper catalyst with enhanced catalytic performance in transfer dehydrogenation of 1-decanol.

    PubMed

    Zhang, Ming; Zhao, Yajie; Liu, Qian; Yang, Lan; Fan, Guoli; Li, Feng

    2016-01-21

    In the present work, a La-doped Mg-Al mixed metal oxide supported copper catalyst (Cu/La-MgAlO) was synthesized through a layered double hydroxide precursor route. The materials were characterized by powder X-ray diffraction, transmission electron microscopy, CO2-temperature programmed desorption, Fourier transform infrared spectra of CO2 absorption, and X-ray photoelectron spectroscopy. The results revealed that the introduction of a trace amount of La could significantly improve the surface basicity of the Cu/La-MgAlO catalyst, especially strong Lewis basicity. Compared with the undoped supported Cu catalyst, Cu/La-MgAlO exhibited much higher activity and selectivity in the liquid-phase transfer dehydrogenation of 1-decanol with a 1-decanal yield up to 89%. The excellent catalytic efficiency was mainly ascribed to the surface cooperation between the Lewis basic sites and the adjacent Cu(0)/Cu(+) species. That is, basic sites, especially strong-strength basic sites, held the key to the abstraction of protons from the hydroxyl group in 1-decanol, while the adjacent Cu(0) and Cu(+) species were responsible for the hydrogen transfer and the adsorption of styrene in the transfer dehydrogenation and hydrogenation reactions, respectively. This study provides a new method for designing cost-effective supported copper-based catalysts highly efficient for the transfer dehydrogenation of primary aliphatic alcohols by modifying the surface basicity of metal oxide supports. PMID:26659760

  5. Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface

    PubMed Central

    Rasmussen, Morten K; Meinander, Kristoffer; Besenbacher, Flemming

    2012-01-01

    Summary Based on high-resolution noncontact atomic force microscopy (NC-AFM) experiments we reveal a detailed structural model of the polar (111) surface of the insulating ternary metal oxide, MgAl2O4 (spinel). NC-AFM images reveal a 6√3×6√3R30° superstructure on the surface consisting of patches with the original oxygen-terminated MgAl2O4(111) surface interrupted by oxygen-deficient areas. These observations are in accordance with previous theoretical studies, which predict that the polarity of the surface can be compensated by removal of a certain fraction of oxygen atoms. However, instead of isolated O vacancies, it is observed that O is removed in a distinct pattern of line vacancies reflected by the underlying lattice structure. Consequently, by the creation of triangular patches in a 6√3×6√3R30° superstructure, the polar-stabilization requirements are met. PMID:22496991

  6. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal. PMID:25827268

  7. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  8. Solubility and release of fenbufen intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit ® S 100 covering

    NASA Astrophysics Data System (ADS)

    del Arco, M.; Fernández, A.; Martín, C.; Rives, V.

    2010-12-01

    Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg 2+ and Al 3+ or Mg 2+, Al 3+ and Fe 3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 Å. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit ® S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7.

  9. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  11. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  12. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  13. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  14. Preparation and mechanical properties of the MgAl2O4 transparent phosphor ceramics

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Li, Zhen; Lei, Muyun; Pang, Zhenli

    2014-09-01

    MgAl2O4 transparent phosphor ceramics were fabricated by hot-pressing and hot isostatic pressing using high-purity ultrafine MgAl2O4 powder mixed with phosphor. The microstructures of transparent phosphor ceramics were characterized by SEM and EDS. Moreover, the hardness and bending strength of transparent ceramics were measured. Effect of phosphor concentration (0~20%) on microstructure, hardness and bending flexture of transparent ceramics was analyzed. It was found that phosphor doping plays an important role in improving the mechanical property of transparent ceramics. So applying this kind of transparent phosphor ceramic to LED components as packaging material can significantly improve the lifetime and reliability of LED products.

  15. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  16. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  17. Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Pei; Zhao, Kongcao; Li, Lei

    2015-11-01

    Two azoic dyes 4-aminoazobenzene-4-sulfonic (AS) and ethyl orange (EO) were adsorbed on or intercalated into Mg-Al-CO3 layered double hydroxide (LDH) for photostability enhancement. Fluorescence analysis results showed that the photostability of two dyes could be greatly improved after being adsorbed on the surface of Mg-Al-CO3-LDH matrix. Furthermore, photostability of adsorbed dyes was superior to that of intercalated dyes. It was suggested that AS or EO was adsorbed on LDHs surface through a strong chemisorption interaction, resulting in the enhancement of photostability. After the UV irradiation under N2 atmosphere, the absorbed dyes not only show great increase of fluorescence intensity but also exhibited high stability against UV irradiation. This work provides a feasible approach to enhance the photostability of azoic dye confined in an inorganic two-dimensional (2D) matrix via changing the microenvironment, which may be considered to be a promising method of improving photostability of solid fluorescent materials.

  18. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  19. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  20. Vibrational structure of luminiscence spectrum of Cr3+ in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Czaja, M.; Mazurak, Z.

    1993-07-01

    The optical absorption and luminescence spectra of MgAl2O4:Cr3+ natural spinel (from Ural) have been measured at 77 K and 293 K. The luminescent emission from 4 T 2 g , 2 E g covers wide region of 600 750 nm. The emission spectrum at 77 K shows a very rich vibrational structure which can be mainly explained through the vibrational modes of the oxygen octahedron.

  1. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al Molar Ratio.

    PubMed

    Kim, Suji; Jeon, Sang Goo; Lee, Ki Bong

    2016-03-01

    Hydrotalcites having a Mg/Al molar ratio between 3 and 30 have been synthesized as promising high-temperature CO2 sorbents. The existence of NaNO3 in the hydrotalcite structure, which originates from excess magnesium nitrate in the precursor, markedly increases CO2 sorption uptake by hydrotalcite up to the record high value of 9.27 mol kg(-1) at 240 °C and 1 atm CO2. PMID:26927529

  2. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Wei, Nian; Qi, Jianqi

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young's modulus, as derived from the load-displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  3. MgAl2O4 spinel: Synthesis, carbon incorporation and defect-induced luminescence

    NASA Astrophysics Data System (ADS)

    Raj, Sanu S.; Gupta, Santosh K.; Grover, V.; Muthe, K. P.; Natarajan, V.; Tyagi, A. K.

    2015-06-01

    The present work explores the synthesis of carbon-doped MgAl2O4 and investigates the effect of doping on the photophysical properties of MgAl2O4. Pure MgAl2O4 spinel was synthesized by gel combustion followed by annealing at 1100 °C. The carbon doping was performed by two methods. The first method involved heating the sample with electron beam (from electron gun) in graphite crucible (A) and second method involved heating the sample up to 2100 °C in graphite furnace (B). The photoluminescence spectroscopy exhibited defect-induced emissions with enhanced intensity in the case of sample B. A significant blue shift in the emission band was also observed in the case of sample B. The photoluminescence decay studies indicated that multiple trapping and detrapping events are experienced before the radiative recombination process, which eventually occurs. Average lifetime was observed to be 4.83 μs which is typical of defect-related emission. The results were complimented by electron paramagnetic resonance (EPR) technique. The CIE co-ordinates for sample B were found to be x = 0.231 and y = 0.227 which establish it as a blue-emitter.

  4. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl 2O 4 phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Kim, Dong-Kuk

    2007-07-01

    MgAl 2O 4:Mn phosphors have been prepared at 500 °C by combustion route. Powder X-ray diffraction (XRD) indicated the presence of mono-MgAl 2O 4 phase. Scanning electron microscopy showed that the powder particle crystallites are mostly angular. Fourier transform infrared spectroscopy confirmed the presence of AlO 6 group which makes up the MgAl 2O 4 spinel. Photoluminescence studies showed green/red emission indicating that two independent luminescence channels in this phosphor. The green emission at 518 nm is due to 4T1 → 6A1 transition of Mn 2+ ions. The emission at 650 nm is due to the charge-transfer deexcitation associated with the Mn ion. EPR spectrum exhibits allowed and forbidden hyperfine structure at g=2.003. The g≈2.00 is due to Mn 2+ ion in an environment close to tetrahedral symmetry. It is observed that N and χ increase with decrease of temperature obeying the Boltzmann law. The variation of zero-field splitting parameter ( D) with temperature is evaluated and discussed.

  5. Synthesis and utilization of Mg/Al hydrotalcite for removing dissolved humic acid

    NASA Astrophysics Data System (ADS)

    Santosa, Sri Juari; Kunarti, Eko Sri; Karmanto

    2008-09-01

    It has been synthesized Mg/Al layered double hydroxide anionic clay (Mg/Al hydrotalcite) through direct precipitation by adding 0.5 M NaOH solution into a mixed solution containing Mg(NO 3) 2 and Al(NO 3) 3 with molar ratio of 0.1:0.05 until the medium acidity reached pH 10.1. The synthesized Mg/Al hydrotalcite was then utilized to remove dissolved humic acid in aqueous medium. The humic acid was isolated from peat soil taken in Gambut District, South Kalimantan, Indonesia using the recommended procedure of IHSS (International Humic Substances Society). The removal of humic acid was mostly occurred through simple sorption process without accompanied by significant intercalation. The sorption was optimum at pH 9.0, with the first order rate constant, capacity and energy of sorption were 5.50 × 10 -3 min -1, 0.12 mmol g -1 (69 mg g -1), and 28.32 kJ mol -1, respectively.

  6. From spent Mg/Al layered double hydroxide to porous carbon materials.

    PubMed

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH. PMID:26257095

  7. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics

    PubMed Central

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young’s modulus, as derived from the load–displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  8. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2016-02-01

    Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  9. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    DOEpatents

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  10. Structural and spectroscopic properties of Li+ co-doped MgAl2O4: Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd.; Ahmad, Shabbir

    2016-05-01

    The red light emitting highly-luminescent Li+ co-doped magnesium aluminates (MgAl2O4: Eu3+) nanophosphors were synthesized by combustion synthesis method. The phosphors were characterized by XRD, FTIR, UV-visible and photoluminescence (PL) spectroscopy. The crystal structure and phase of the phosphors were investigated using XRD. The band gap of pure, Eu3+ doped and Li+ codoped MgAl2O4 phosphor were obtained from the DR spectra using the K-M function F(R∞). The photoluminescence spectra of MgAl2O4:Eu3+ and Li+ codoped MgAl2O4:Eu3+ phosphors were described by well known 5D0-7Fj transitions (J=0, 1, 2, 3, 4). The emission intensity of MgAl2O4:Eu3+ phosphor is enhanced with Li+ codoping.

  11. Vanadium-base alloys for fusion reactor applications

    SciTech Connect

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  12. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  13. Luminescence of Ce doped MgAl2O4 prepared by the combustion method

    NASA Astrophysics Data System (ADS)

    Tabaza, W. A. I.; Swart, H. C.; Kroon, R. E.

    2014-04-01

    Magnesium aluminate (MgAl2O4) has received special attention as a technologically important material because of its attractive properties, such as mechanical strength, chemical inertness, a wideband gap, relatively low density, high melting point, high thermal shock resistance, low thermal expansion coefficient, resistance to neutron irradiation and low dielectric loss. It has also been used as a phosphor host activated by a variety of transition metal and lanthanide ions. A simple combustion method was employed for the preparation of Ce doped MgAl2O4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 520 °C. The as-prepared samples were annealed in a hydrogen atmosphere to improve their optical properties. The samples thus obtained were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and photoluminescence spectroscopy (PL). The XRD data showed that all the samples had the spinel structure and the average particle size of the as-prepared samples was about 25 nm. PL spectra of Ce doped MgAl2O4 using an excitation wavelength of 350 nm produced broad green emission bands centred at 500 nm. Maximum green emission was obtained for the sample doped with 0.75 mol% Ce. UV-vis diffuse reflectance spectra and XPS were used to obtain more information on the conversion of Ce ions from the non-luminescent Ce4+ to the luminescent Ce3+ charge state.

  14. The growth of an epitaxial Mg Al spinel layer on sapphire by solid-state reactions

    NASA Astrophysics Data System (ADS)

    Liu, Che-Ming; Chen, Jyh-Chen; Chen, Chun-Jen

    2005-11-01

    In this work an epitaxial Mg-Al spinel layer was successfully grown on a sapphire single crystal surface by solid-state reactions. An Mg film (15 μm) was sputtered onto the sapphire crystal using RF magnetron sputtering. An epitaxial Mg-Al spinel layer was formed on the sapphire surface; an MgO layer was formed on top of the spinel layer by solid-state reactions that occurred around 1300-1600 °C, in an air atmosphere. When the reaction time was lengthened to over 30 h at 1600 °C, these layers were almost completely transformed into an epitaxial Mg-Al spinel layer. The thickness of the epitaxial layer could be controlled by the length of the reaction time and the temperature. The results of X-ray diffraction analysis indicate that the orientation of the MgO and the spinel growth was dependent on the plane of the sapphire, that is (0 0 0 1) sapphire||(1 1 1) spinel||(1 1 1) MgO and (1 1 2¯ 0) sapphire||(1 1 1) spinel||(1 1 1) MgO. It was confirmed that the in-plane orientation of the spinel with respect to the C- and A-sapphire surface was [1 1¯ 0 0] sapphire||[1¯ 1 0] spinel, [1 1 2¯ 0] sapphire||[1¯ 1¯ 2] spinel and [1 0 1¯ 0] sapphire||[1¯ 1 0] spinel, [0 0 0 1] sapphire||[1¯ 1¯ 2] spinel, and there would be (1¯ 1 0)-oriented spinel growth on the M-plane sapphire substrate.

  15. Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds.

    PubMed

    Yang, Yiqiong; Gao, Naiyun; Chu, Wenhai; Zhang, Yongji; Ma, Yan

    2012-03-30

    The calcination products containing Mg(II), Al(III), and Fe(III) in the brucite-like layers with varying Mg/Al/Fe molar ratios at 550°C were used as the adsorbent to remove perchlorate from aqueous solution, while the Mg/(Al-Fe) hydrotalcite compounds were synthesized by co-precipitation method at a constant pH value. The Mg/(Al-Fe) hydrotalcite compounds (HMAF) were characterized by XRD, FT-IR and TG-DTA. The characteristics showed that the layered double hydroxides structures in the HMAF were lost during calcination at 550°C, but were reconstructed subsequent to adsorption of perchlorate, indicating that the 'memory effect' appeared to play an important role in perchlorate adsorption. Batch adsorption studies were conducted under various equilibration conditions, such as molar ratios of Mg/Al/Fe, calcined temperature, different initial solution pH, adsorbent dose, initial perchlorate concentration, and co-existing anions. It was found that the existence of ferric iron in calcined Mg/(Al-Fe) hydrotalcite compound (CHMAF) was favorable to removal of perchlorate from water, and the best ratio of Mg/Al/Fe is 3:0.8:0.2 (CHMAF5%). This study demonstrated that the calcination product of Mg/(Al-Fe) hydrotalcite-like compound was a promising adsorbent for control of the perchlorate pollution in water. PMID:22325635

  16. Dose dependence of neutron irradiation effects on MgAl 2O 4 spinels

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Bravo, D.; Garcia, M. A.; Llopis, J.; Lopez, F. J.; Garner, F. A.

    1998-10-01

    The characteristics of the photoluminescence and electron paramagnetic resonance (EPR) spectra of stoichiometric MgAl 2O 4 spinel specimens irradiated in FFTF-MOTA at temperatures between 385°C and 750°C to fluences ranging from 5.3 to 24.9 × 10 26 nm -2 are measured. Photoluminescence spectra show a complex behaviour associated with the presence of an active defect with different surroundings. The EPR spectra show two different bands that are associated with different defects.

  17. Stability Diagram of Mg-Al-O System Inclusions in Molten Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Ren, Ying; Duan, Haojian; Yang, Wen; Sun, Liyuan

    2015-08-01

    In the current study, the stability diagrams of Mg-Al-O system in molten steel are calculated using two methods. After comparing the result of connecting iso-oxygen contours of different phases (iso-oxygen contours method) and calculating the border lines of different phases (border lines method), the former method is more accurate and popular. Particularly, the detailed calculation procedures and connection line principles of stability diagram are exhibited. The effects of interaction coefficient, temperature, and activity of oxides on the stability diagram are also discussed. With the currently reported method, stability diagrams of various inclusions in molten steel can be calculated to predict the formation of inclusions.

  18. The morphology of an epitaxial Mg Al spinel layer on a sapphire surface

    NASA Astrophysics Data System (ADS)

    Liu, Che-Ming; Chen, Jyh-Chen; Chen, Chun-Jen

    2006-07-01

    In this work an epitaxial Mg-Al spinel layer was successfully grown on a C- and A-plane sapphire single crystal surface by solid-state reactions. When observed by a scanning electron microscope, it can be seen that the morphology of an epitaxial spinel layer surface has a three-fold symmetrical structure. The results of X-ray diffraction analysis indicate that the surface morphology of the epitaxial spinel layer has particular crystallographic directions and the crystallographic directions will be influenced by the orientation of the sapphire substrates.

  19. Kinetic Research on Catalytic Degradation of Rhodamine B with Cobalt Phthalocyanine Supported Mg-Al Hydrotalcite.

    PubMed

    Xu, Minhong; Cao, Yongyong; Ma, Xinyue

    2016-01-01

    Rhodamine B dye wastewater was degraded using cobalt phthalocyanine supported Mg-Al hydrotal- cite and H₂O₂. The effects of H₂O₂, temperature and concentration of Rhodamine B on the reaction kinetics were studied. The results indicate that the degradation process conforms to the equation of first order kinetics. The fastest rate constant k observed was 66.2 x 10⁻⁴/min⁻¹ at 62.5 °C, and the correlation coefficient R2 was 0.99733. PMID:27398527

  20. Removal of borate by coprecipitation with Mg/Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Kurashina, Masashi; Inoue, Tatsuki; Tajima, Chihiro; Kanezaki, Eiji

    2015-03-01

    Borate has been used for various industrial products and excessive dose of boron is harmful to humans. We investigated the removal of borate by direct coprecipitation with Mg/Al layered double hydroxide. In this study, the maximum removal of boron was 90% when Mg 30 mmol and Al 15 mmol at pH = 10 were used for 498 mg/l as B. The boron adsorption isotherms could be fitted to Langmuir model. The calculated constant Ws, saturation limit of boron adsorption, is 25 ± 2 mg/g and it is larger than that of ion exchange reaction (Ws = 15±1 mg/g).

  1. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  2. Nanoscale analysis of surface oxides on ZnMgAl hot-dip-coated steel sheets.

    PubMed

    Arndt, M; Duchoslav, J; Itani, H; Hesser, G; Riener, C K; Angeli, G; Preis, K; Stifter, D; Hingerl, K

    2012-05-01

    In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed. PMID:22086398

  3. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGESBeta

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  4. Direct Synthesis of Unilamellar MgAl-LDH Nanosheets and Stacking in Aqueous Solution.

    PubMed

    Liang, Dujuan; Yue, Wenbo; Sun, Genban; Zheng, Dong; Ooi, Kenta; Yang, Xiaojing

    2015-11-17

    Two-dimensional (2D) materials, such as graphene, inorganic oxides, and hydroxides, are one of the most extensively studied classes of materials due to their unilamellar crystallites or nanosheet structures. In this study, instead of using the universal exfoliation method of the bulky crystal precursor, 2D crystals/nanosheets of MgAl-layered double hydroxides (LDHs) were synthesized in formamide. We propose that the obtained crystals are unilamellar according to the XRD, TEM, and AFM observations. The HRTEM and fast Fourier transform images confirm that the crystal structures are the same as those of the exfoliated MgAl-LDH nanosheets. The directly synthesized sheets can stack into a 3D crystal structure, which is the same as that of typical LDHs except for the disordered orientation of the a-/b- crystal axis of each sheet. This result provides not only a novel approach to the preparation of 2D crystals but also insight into the formation mechanism of LDHs. PMID:26505991

  5. Mg-Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy.

    PubMed

    Chakraborty, Jui; Roychowdhury, Susanta; Sengupta, Somoshree; Ghosh, Swapankumar

    2013-05-01

    Mg-Al layered double hydroxide nanoparticles were synthesized by one-pot co-precipitation method and anticancerous drug methotrexate was incorporated into it by in-situ ion exchange. The LDH-MTX nanohybrid produced moderately stable suspension in water, as predicted by zeta potential measurement. X-ray diffraction revealed that the basal spacing increased to nearly twice the same for pristine LDH on MTX intercalation. Thermogravimetric analyses confirmed an increase in thermal stability of the intercalated drug in the LDH framework. A striking enhancement in efficacy/sensitivity of MTX on the HCT-116 cells was obtained when intercalated within the LDH layers, as revealed by the attainment of half maximal inhibitory concentration of LDH-MTX nanohybrid by 48 h, whereas, bare MTX required 72 h for the same. The MTX release from MgAl-LDH-MTX hybrids in phosphate buffer saline at pH7.4 followed a relatively slow, first order kinetics and was complete within 8 days following diffusion and crystal dissolution mechanism. PMID:23498245

  6. Structural relaxation around substitutional Cr3+ in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Calas, Georges; Cabaret, Delphine; Galoisy, Laurence; Hazemann, Jean-Louis

    2007-08-01

    The structural environment of a substitutional Cr3+ ion in a MgAl2O4 spinel has been investigated by Cr K -edge extended x-ray absorption fine structure and x-ray absorption near edge structure (XANES) spectroscopies. First-principles computations of the structural relaxation and of the XANES spectrum have been performed, with a good agreement with the experiment. The Cr-O distance is close to that in MgCr2O4 , indicating a full relaxation of the first neighbors, and the second shell of Al atoms relaxes partially. These observations demonstrate that Vegard’s law is not obeyed in the MgAl2O4-MgCr2O4 solid solution. Despite some angular site distortion, the local D3d symmetry of the B site of the spinel structure is retained during the substitution of Cr for Al. Here, we show that the relaxation is accommodated by strain-induced bond buckling, with angular tilts of the Mg-centered tetrahedra around the Cr-centered octahedron. By contrast, there is no significant alteration of the angles between the edge-sharing octahedra, which build chains aligned along the three fourfold axes of the cubic structure.

  7. Mechanically alloyed Ni-base alloys for heat-resistant applications

    SciTech Connect

    Wilson, R.K.; Fischer, J.J.

    1995-12-31

    INCONEL alloys MA 754 and MA 758 are nickel-base oxide dispersion-strengthened (ODS) alloys made by mechanical alloying (MA). Commercial use of Ma Ni-base alloys to date has been predominantly in aerospace applications of alloy MA 754 as turbine engine vanes. Both alloys are suitable for industrial heat treating components and other heat resistant alloy applications. Field trials and commercial experience in such applications of MA alloys are being gained while high temperature property characterization and new product form development continue. Hot isostatic pressing (HIP) is the standard consolidation method for billets from which large bar and plate are produced for industrial applications of MA. This paper describes production of standard mill shapes from HIP billets, and it presents information on current and potential uses of MA alloys in applications such as: skid rails for use in high temperature walking beam furnaces, heat treating furnace components, components for handling molten glass, and furnace tubes. The paper includes comparison of the properties obtained in alloy MA 754 (20% Cr) and alloy MA 758 (30% Cr).

  8. The first-principle studies of the crystal phase transitions: Fd3m-MgAl 2O 4→F4-3m-MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Ji, Guang-Fu; Zhao, Feng; Meng, Chuan-Min; Wei, Dong-Qing

    2011-02-01

    Magnesium aluminum spinel (MgAl 2O 4) is a major constituent of the shallow upper mantle. It is of great geophysical importance to explore its physical properties under high pressure and temperature. The first-principle density functional theory (DFT) with the plane wave along with pseudopotential was employed to obtain the total energy for both Fd3m-MgAl 2O 4 and F4-3m-MgAl 2O 4, which was used to generate the Gibbs free energy as a function of temperature and pressure with the quasi-harmonic Debye model. It is found that the phase transition temperature from Fd3m-MgAl 2O 4 to F4-3m-MgAl 2O 4 is beyond 452.6 K in the pressure regime studied, which is consistent with the experiment. The phase transition temperature is related to pressure by a linear function, i.e. T=8.05 P+452.6, which is the first equation of this kind to describe the phase transition Fd3m→F4-3m. The elastic constants, equation of states and thermodynamic properties of Fd3m-MgAl 2O 4 are also reported in this paper to make a complete study.

  9. Impact of a Revised 25Mg(p, γ)26Al Reaction Rate on the Operation of the Mg-Al Cycle

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Imbriani, G.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Cristallo, S.; DiLeva, A.; Formicola, A.; Elekes, Z.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Limata, B.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Piersanti, L.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Terrasi, F.; Trautvetter, H.-P.

    2013-02-01

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the 25Mg(p, γ)26Al reaction affect the production of radioactive 26Algs as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the 25Mg(p, γ)26Algs and the 25Mg(p, γ)26Al m reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of 26Al m production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger 25Mg(p, γ)26Al m rate, the estimated production of 26Algs in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic 26Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of 26Al/27Al, i.e., >10-2, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  10. Solid Solution Effects on the MgAl2O4-MgGa2O4 System

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Hemrick, James Gordon

    2009-01-01

    Phase relations between two spinel compounds (MgAl2O4 and MgGa2O4) were studied. Stoichiometric MgAl2O4 was formed in the laboratory through a coprecipitation method. Complete solid solution formation int eh MgAl2O4-MgGa2O4 systems was confirmed through X-ray diffraction analysis. Solid solution between MgAl2O4-MgGa2O4 decreases thermal conductivity at all temperatures up to 900oC. At 200oC with 10 mol% additoin of MgGa2O4 thermal conductivity decreases approximately 25%, and at 900oC there was still an 8% decrease. Additionally, preliminary studies show that porosity between 5% and 10% does not have an appreciable effect on the thermal conductivity in this study.

  11. Correlation of dark mantle deposits with high Mg/Al ratios. [from orbital X-ray fluorescence experiment on moon

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.; Bielefeld, M. J.

    1978-01-01

    The Mg/Al concentration ratios from the orbital fluorescence X-ray experiment were used to characterize dark mantle deposits on the moon. The areas studied included the regions of Sulpicius Gallus, Taurus-Littrow, Hadley Rille, Mare Crisium (craters Picard and Pierce), and NE Mare Fecunditatis. In all these cases these deposits exhibit high Mg/Al ratios which suggest the presence of orange, black, and green pyroclastic glasses. The highest concentration of glasses was inferred in the Sulpicius Gallus Formation at about 35%. The depth of the initial pyroclastic deposits was estimated at 3 to 4 meters. Central Mare Serenitatis exhibits high Mg/Al values but does not possess dark mantle deposits. Orbital Al and Mg/Al data for this region is similar to the very low titanium mare basalts.

  12. Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications.

    PubMed

    Saha, Subhajit; Das, Swati; Ghorai, Uttam Kumar; Mazumder, Nilesh; Gupta, Bipin Kumar; Chattopadhyay, Kalyan Kumar

    2013-09-28

    Highly-luminescent nanophosphors have a decisive role in solid-state lighting (SSL) as well as in field emission display (FED) applications due to their potential use in fabrication of nanophosphor based FED and solid state display devices. Herein, the red emitting highly-luminescent Eu(3+)-Li(+) co-doped magnesium aluminate (MgAl2O4) nanophosphors were synthesized by a customized sol-gel route with an average particle size of 18 nm, which can be easily scaled up in a large quantity. The resulting nanophosphor exhibits hypersensitive red emission, peaking at 615 nm upon 394 nm excitation. Furthermore, comparative photoluminescence (PL) studies have been carried out for Eu(3+) doped and Eu(3+) doped-Li(+) co-doped magnesium aluminate (Li(+) co-doped MgAl2O4:Eu(3+)) nanophosphors, which indicated that Li(+) co-doping significantly improves luminescence intensity along with good crystallinity. Moreover, the charge compensation by addition of Li(+) co-activator in MgAl2O4:Eu(3+) lattice led to the two fold enhancement of PL intensity. The obtained results suggest that this nanophosphor could be an ultimate choice for next generation advanced luminescent nanomaterials for solid state lighting and portable FED devices. PMID:23868069

  13. Growth of Mg-Al spinel microcrystals on a sapphire surface using a solution-precipitation method

    NASA Astrophysics Data System (ADS)

    Liu, Che-Ming; Chen, Jyh-Chen

    2006-07-01

    A solution-precipitation process was used to grow Mg-Al spinel microcrystals at etched pits in a c-axial sapphire single crystal surface. In the proposed innovative growth process, the etched pits function as heterogeneous nucleation points. The quenching and aging treatment causes Mg ions to diffuse into the sapphire crystal, precipitating as microcrystals at the etched pits. We found the precipitated crystals to be (111) Mg-Al spinels with a triangular pyramidal shape.

  14. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    SciTech Connect

    Wang Lijing; Xu Xiangyu; Evans, David G.; Duan Xue; Li Dianqing

    2010-05-15

    An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filled with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.

  15. Optical and dielectric properties of neutron irradiated MgAl 2O 4 spinels

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Vila, R.; Garner, F. A.

    1996-10-01

    The radiation effects on the optical and electrical properties of stoichiometric MgAl 2O 4 spinel specimens irradiated in FFTF—MOTA at temperatures between 385 and 750°C to fluence ranging from 5.3 to 24.9 × 10 26 n m -2 ( E ≫ 0.1 McV) are measured. In the optical properties a strong absorption in the ultraviolet range is observed together with a small band around 20 000 cm -1 (510 nm). Two strong luminescence emissions are also observed around 700 nm, with excitation spectra in the ultraviolet region. In the electrical properties a strong decrease of conductivity is observed in the temperature range from 0 to 500°C. Other techniques (like dielectric spectroscopy and EPR) have been used.

  16. Compositional variation of photoluminescence from Mn doped MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Sakuma, Takashi; Minowa, Shunsuke; Katsumata, Toru; Komuro, Shuji; Aizawa, Hiroaki

    2014-11-01

    Spinel (MgAl2O4) crystals doped with 1.0% Mn have been grown by floating zone (FZ) technique with various Mg compositions, x = MgO/Al2O3, from 0.2 to 1.0. Compositional variations of photoluminescence are evaluated for a fluorescence thermometer application using crystals grown. Strong photoluminescence (PL) peak is observed at λ from 512 to 520 nm from the crystals grown from compositions, x, from 0.3 to 1.0. Peak wavelength of PL increases linearly from 512 to 520 nm with x. Weak PL peaking at λ = 750 nm is also observed from the specimens. Compositional variations of PL are considered to be due to the variation of crystal field surrounding the Mn2+ ions. The variation of crystal field strength agrees with the compositional variation of lattice constant.

  17. Thermal Properties in the MgAl2O4-Al2O3 System

    SciTech Connect

    Wilkerson, Dr. Kelley R.; Smith, Jeffrey D; Hemrick, James Gordon

    2013-01-01

    Compositional effects on the thermal diffusivity in the MgAl2O4-Al2O3 system were studied. The lowest thermal diffusivity, 0.0258 +/-5% cm/s, was measured between 79.8 and 83.9 wt% Al2O3 quenched from various temperatures between 1500 and 1700C. All of the chemistries in this range extend past the solvus, but still form a singe super-saturated spinel solid solution, regardless of quenching tempeature. A super-saturated metastable solid solution region was observed at 1500, 1600, and 1700C extending to 83.9, 85.2, and 87.1 wt% Al2O3, respectively. Beyond 83.9% Al2O3 a significant increase in thermal diffusivity, 11.7%, was observed and its attributed to precipiation of Al2O3 through spinodal decomposition.

  18. Magnetic, luminescent Eu-doped Mg-Al layered double hydroxide and its intercalation for ibuprofen.

    PubMed

    Wang, Jun; Zhou, Jideng; Li, Zhanshuang; Song, Yanchao; Liu, Qi; Jiang, Zhaohua; Zhang, Milin

    2010-12-27

    A magnetic, luminescent Eu-doped Mg-Al layered double hydroxide with ibuprofen (IBU) intercalated in the gallery has been successfully prepared by a simple coprecipitation method. The physicochemical properties of the samples were well characterized by powder XRD, TEM, FTIR, TGA, inductively coupled plasma MS (ICP-MS), vibrating sample magnetometry (VSM), and fluorospectrophotometry. The results revealed that Fe(3)O(4) nanoparticles are coated on the surface of layered double hydroxides and the obtained (Mg(2)Al(0.95)Eu(0.05))(Fe)-(IBU) sample exhibits both superparamagnetic and luminescent properties, with a saturation magnetization value of 1.86 emu  g(-1) and a strong emission band at 610 nm, respectively. Additionally, it was found that the ibuprofen loading amount is about 31 % (w/w), and the intercalated ibuprofen possesses sustained release behavior when the magnetic, luminescent composite is immersed in simulated body fluid (SBF). PMID:21038324

  19. Luminescence of photoactivated pristine and Cr-doped MgAl2O4 spinel

    NASA Astrophysics Data System (ADS)

    Artemyeva, E. S.; Barinov, D. S.; Atitar, F. M.; Murashkina, A. A.; Emeline, A. V.; Serpone, N.

    2015-04-01

    This Letter reports a comparative study of the luminescence from pristine and Cr-doped MgAl2O4 spinel induced by different excitation mechanisms: photoluminescence (PhL), thermoluminescence (ThL) and Photo-Induced Chemisorption Luminescence (the PhICL phenomenon) to understand the mechanism of PhICL emission. Cr-doping alters the major pathway of physical relaxation through a luminescence pathway: quenching of the luminescence associated with intrinsic defects and appearance of the luminescence from Cr3+-states. The similarity between ThL and PhICL spectra suggest the mechanism of the PhICL phenomenon is due to electron transfer from the surface to the emission centers of luminescence; an energy transfer pathway is not precluded.

  20. Up-conversion and Photoluminescence in Er3+ Single Crystal MgAl-spinel

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Sarakovskis, A.; Skvortsova, V.

    Traditional and up-conversion luminescence of MgAl2O4 single crystal doped with erbium ions obtained by the Verneuil method has been investigated. The time resolved spectral measurements of the green and red up-conversion luminescence bands show that a build-up part is present in the up-conversion luminescence kinetics. This means that energy transfer process is involved in the creation of the luminescence. Considering rather small concentration of Er3+ in the material (0.12 mass %), the expected up-conversion mechanism should be excited state absorption since the average distance between erbium ions is high. The above-mentioned considerations suggest that clustering of the activator ions is present in the material, which is supported by SEM analysis.

  1. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  2. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  3. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres.

    PubMed

    Li, Wei-Zhen; Kovarik, Libor; Mei, Donghai; Liu, Jun; Wang, Yong; Peden, Charles H F

    2013-01-01

    The development of thermally stable, nanometer-sized precious metal-based catalysts remains a daunting challenge. Such materials, especially those based on the use of costly platinum metal, are essential and, to date, non-replaceable for a large number of industrially important catalytic processes. Here we report a well-defined cuboctahedral MgAl2O4 spinel support material that is capable of stabilizing platinum particles in the range of 1-3 nm on its relatively abundant {111} facets during extremely severe aging at 800 °C in air for 1 week. The aged catalysts retain platinum dispersions of 15.9% with catalytic activities for methanol oxidation being ~80% of that of fresh ones, whereas a conventional Pt/γ-Al2O3 catalyst is severely sintered and nearly inactive. We reveal the origin of the markedly superior ability of spinel {111} facets, resulting from strong interactions between spinel surface oxygens and epitaxial platinum {111} facets, inspiring the rational design of anti-sintering supported platinum group catalysts. PMID:24064958

  4. X-ray linear dichroism in cubic compounds: The case of Cr3+ in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Brouder, Christian; Arrio, Marie-Anne; Cabaret, Delphine; Sainctavit, Philippe; Balan, Etienne; Bordage, Amélie; Seitsonen, Ari P.; Calas, Georges; Eeckhout, Sigrid G.; Glatzel, Pieter

    2008-11-01

    The angular dependence (x-ray linear dichroism) of the CrK pre-edge in MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near-edge structure spectroscopy and compared to calculations based on density functional theory (DFT) and ligand field multiplet (LFM) theory. We also present an efficient method, based on symmetry considerations, to compute the dichroism of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that the electric dipole transitions do not contribute to the features visible in the pre-edge and provides a clear vision of the assignment of the 1s→3d transitions. However, DFT is unable to reproduce quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced by LFM calculations. The most relevant factors determining the dichroism of CrK pre-edge are identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach is concluded that when the pre-edge features are more intense than 4% of the edge jump, pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the substitutional site. This suggests the possibility to obtain quantitative information on site distortion from the x-ray linear dichroism by performing angular dependent measurements on single crystals.

  5. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management. PMID:24038987

  6. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; Xu, Xiangyu; Evans, David G.; Duan, Xue; Li, Dianqing

    2010-05-01

    An MgAl-NO 3-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filled with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO 3-LDH in the 7-25 μm range, particularly in the key 9-11 μm range required for application in agricultural plastic films.

  7. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  8. Cr diffusion in MgAl2O4 synthetic spinels: preliminary results

    NASA Astrophysics Data System (ADS)

    Freda, C.; Celata, B.; Andreozzi, G.; Perinelli, C.; Misiti, V.

    2012-04-01

    Chromian spinel is an accessory phase common in crustal and mantle rocks, including peridotites, gabbros and basalts. Spinel, it has been identified as one of the most effective, sensible, and versatile petrogenetic indicator in mafic and ultramafic rock systems due to the strict interdependence between its physico-chemical properties (chemical composition, cation configuration etc.) and genetic conditions (temperature, pressure, and chemical characteristics of the system). In particular, studies on intra- and inter-crystalline Mg-Fe2+, Cr-Al exchange demonstrated the close relationship between spinel composition and both degree of partial melting and equilibrium temperature of spinel-peridotites. Moreover, studies focused on the chemical zoning of Mg-Fe2+ and/or Cr-Al components in spinel have been used, combined with a diffusion model, to provide quantitative information on peridotites and gabbros pressure-temperature paths and on deformation mechanisms. Although these potentials, most of the experimental studies have been performed on spinels hosting a limited content of divalent iron (sensu stricto, MgAl2O4), whereas the scarce studies on Cr-Al inter-diffusion coefficient have been performed at 3-7 GPa as pressure boundary condition. In order to contribute to the understanding of processes occurring in the lithospheric mantle, we have initiated an experimental research project aiming at determining the Cr-Al inter-diffusion in spinel at 2 GPa pressure and temperature ranging from 1100 to 1250 °C. The experiments were performed in a end-loaded piston cylinder by using a 19 mm assembly and graphite-Pt double capsules. As starting materials we used synthetic Mg-Al spinel (200-300 μm in size) and Cr2O3 powder. Microanalyses of experimental charge were performed on polished carbon-coated mounts by electronic microprobe. Line elemental analyses were made perpendicular to the contact surface between Cr2O3 powder and spinel, at interval of 2 μm. By processing these

  9. MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.

    PubMed

    Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan

    2016-11-01

    Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the

  10. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  11. Microstructural Characterization of Co-Based ODS Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Qu, Xuanhui; He, Xinbo; Din, Rafi-ud; Liu, Hengsan; Qin, Mingli; Zhu, Hongmin

    2012-11-01

    Co-based ODS alloys, strengthened by nanosized oxide dispersion and γ' precipitates, are potential high-temperature structural materials. The characteristics of the mechanically alloyed powder and the microstructural evolution of the Co-based ODS alloys were investigated. The results revealed that mechanical alloying had induced the formation of supersaturated solid solution in immiscible Co-Al-W-based alloys, originating mainly from extensive grain boundary region, high dislocation density, and ample point defect. Chemical compositions of mechanically alloyed Co-Al-W-based ODS alloys easily deviate from the γ/γ' two-phase region, leading to the existence of Al x Co, Co3W, Co7W6, and W phases in addition to the γ and γ' phases. Nonuniform distribution of alloying elements brings about the differences in morphologies and sizes of γ' precipitates. Microstructural formation process is impelled by spinodal decomposition mode, and spinodal decomposition behavior has been accelerated in the fine-grained alloy because of the presence of short-circuited diffusion paths for atomic movement.

  12. Synthesis and luminescence of hollow spherical Eu3+- or Tb3+ -doped MgAl2O4 phosphors.

    PubMed

    Wang, Jinghui; Ye, Junwei; Lin, Yuan; Chen, Wendan; Ning, Guiling

    2010-01-01

    Eu3+- or Tb3+ -doped MgAl2O4 hollow spheres have been successfully synthesized via facile hydrothermal method by using carbon spheres as template followed by a subsequent heat treatment. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the hollow microspheres possessed diameters in the range of 1-2.5 microm and shell thickness of 60-80 nm. A possible formation mechanism for hollow spheres was proposed. MgAl2O4:Eu3+ show strong red emission at 619 nm corresponding to the forced electric dipole (5)D0-->(7)F2 transition of Eu3+, and MgAl2O4:Tb3+ exhibit strong green emission at 545 nm corresponding to 5D4-->(7)F5 transition of Tb3+. PMID:20352894

  13. First-principles study on the effects of point vacancies on the spectral properties of MgAlO

    NASA Astrophysics Data System (ADS)

    Jiang, Shengli; Lu, Tiecheng; Zhang, Jie; Chen, Jun

    2011-01-01

    The electronic structures and absorption spectra of the perfect MgAl 2O 4 spinel and the MgAl 2O 4 containing various vacancies have been studied by using DFT code in VASP package. The optical transition models induced by oxygen vacancy are predicted. Our results show that the absorption peak at 5.3 eV is due to the neutral oxygen vacancy VO0. Both 3.2 and 4.75 eV peaks are attributed to the 1+ charged oxygen vacancy VO1+. And more, our absorption spectra also indicate that the experiment observed red shift in UV transparent spectra of nano-ceramic MgAl 2O 4 is induced by the various color centers of oxygen vacancies.

  14. Blue emission of Eu2+ doped LaMgAl11O19 phosphor prepared by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Pathak, A. A.; Yadav, P. J.; Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Blue-emitting phosphor LaMgAl11O19:Eu2+ has been synthesized successfully at 500 °C by one step combustion synthesis method. The as-synthesized materials were characterized by powder x-ray diffraction (XRD) and photoluminescence (PL) techniques. Upon 365 nm excitation, emission spectra of the LaMgAl11O19:Eu2+ phosphors show a blue band at 450 nm. The excitation spectra corresponding to 4f7-4f65d transition of Eu2+ cover the spectral range of 280-430 nm. The concentration quenching of Eu2+ in the LaMgAl11O19 host was determined to be 3 mol%. The CIE chromaticity of LAM: Eu2+ phosphors was compared with the commercial BAM.

  15. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  16. Investigation of electronic structure and optical properties of MgAl2O4: DFT approach

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Khan, Saleem Ayaz; Alahmed, Z. A.

    2014-11-01

    The electronic band structure, electronic charge density distribution and optical properties of MgAl2O4 were calculated using the full potential linear augmented plane wave. The exchange correlation potential was solved by recently developed modified Becke Johnson potential in the framework of DFT. The band structure and partial density of states (PDOS) were calculated. The PDOS exhibit the role of orbital in bands formation and nature of the bonds. The calculated effective mass of electrons show high mobility of electrons in the conduction band minimum with respect to heavy and light holes. The calculated electron charge density confirm the existence of mixed ionic and covalent nature of the bonds. Mg-O show more ionicity because of greater electro-negativity difference than Al-O. Imaginary part of dielectric function ε2(ω) exhibit high transparency in the visible and infrared region. For further investigation of optical properties absorption coefficient I(ω), refractive index n(ω), reflectivity R(ω) and energy loss function L(ω) were calculated. We found reasonable agreement with the experimental data.

  17. Growth and optical properties of Co,Nd:LaMgAl11O19

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xia, Changtai; Di, Juqing; Xu, Xiaodong; Sai, Qinglin; Wang, Lulu

    2012-12-01

    Nd,Co:LaMgAl11O19 (abbreviated as Co,Nd:LMA) was grown using the Czochralski method. The structure, polarized absorption spectrum, fluorescence spectrum, and fluorescence decay time were analyzed. The as-grown crystal had very wide absorption bands at 794 nm, which can be pumped by GaAs laser diode without temperature stabilization. Two strong emission bands were present at 1056 nm and 1082 nm with full-width at half-maximum (FWHM) of 6 and 8 nm, respectively. The large FWHM is due to the inhomogeneity of the Nd ion sites. The lifetimes of the 4F3/2 manifold of Co,Nd:LMA at room temperature monitored at 905 nm, 1056 nm, and 1344 nm were 292, 288, and 350 μs, respectively, which was caused by the different contribution of the three different sites with D3h and C2v symmetry. The absorption band of Co is from 1.3 μm to 1.6 μm, and Co,Nd:LMA still has a strong emission around the 1.38 μm, indicating that the Co,Nd:LMA can be applied as a potential self-Q-switched material operating at 1.3 μm.

  18. Pressure-induced Co2+ photoluminescence quenching in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Nataf, Lucie; Rodríguez, Fernando; Valiente, Rafael

    2012-09-01

    This work investigates the electronic structure and photoluminescence (PL) of Co2+-doped MgAl2O4 and their pressure dependence by time-resolved spectroscopy. The variations of the visible absorption band and its associated emission at 663 nm (τ = 130 ns at ambient conditions) with pressure/temperature can be explained on the basis of a configurational energy model. It provides an interpretation for both the electronic structure and the excited-state phenomena yielding photoluminescence emission and the subsequent quenching. We show that there is an excited-state crossover (ESCO) [4T1(P)↔2E(G)] at ambient pressure, which is responsible for the evolution of the emission spectrum from a broadband emission between 300 K and 100 K to a narrow-line emission at lower temperatures. Contrary to expectations from the Tanabe-Sugano diagram, instead of enhancing ESCO phenomena, pressure reduces PL and even suppresses it (PL quenching) above 6 GPa. We explain such variations in terms of pressure-induced nonradiative relaxation to lower excited states: 2E(G)→4T1(F). The variation of PL intensity and its associated lifetime with pressure supports the proposed interpretation.

  19. Mg-Al layered double hydroxides (LDHs) and their derived mixed oxides grown by laser techniques

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Nedelcea, A.; Vlad, A.; Colceag, D.; Ionita, M. D.; Luculescu, C.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2011-04-01

    Layered double hydroxides (LDHs) have been widely studied due to their applications as multifunctional materials, catalysts, host materials, anionic exchangers, adsorbents for environmental contaminants and for the immobilization of biological materials. As thin films, LDHs are good candidates for novel applications as sensors, corrosion resistant coatings or components in electro optical devices. For these applications, lamellar orientation-controlled film has to be fabricated. In this work, the successful deposition of LDH and their derived mixed oxides thin films by laser techniques is reported. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were the methods used for thin films deposition. The ability of Mg-Al LDHs as a carrier for metallic particles (Ag) has been considered. Frozen targets containing 10% powder in water were used for MAPLE, while for PLD the targets consisted in dry-pressed pellets. The structure and the surface morphology of the deposited films were examined by X-ray Diffraction, Atomic Force Microscopy, Scanning Electron Microscopy and Secondary Ion Mass Spectrometry.

  20. Shape and size control of nano dispersed Mg/Al layered double hydroxide.

    PubMed

    Panda, H S; Srivastava, R; Bahadur, D

    2008-08-01

    Controlling the shape and size of the layered inorganic-organic hybrid particles is a challenge with conventional methods of synthesis. The co-precipitation method has been modified to synthesize Mg/Al Layered double hydroxide by controlling the particle growth using ultrasonic wave at the time of nucleation. In this project, magnesium and aluminum ions were considered as model systems with carbonate anion as intercalating agent. The resulting particles are compared with those of LDHs produced by conventional co-precipitation method at constant pH. Powder X-ray diffraction confirmed formation of the layered double hydroxide phases having crystallite size 19-20 nm in both 'a' and 'c' crystallographic directions. Transmission electron microscope and dynamic light scattering revealed nano disperse hexagonal platelets with narrow size distribution and average size was around 48 nm. The modified method reduces the particle size, increases the surface charge, narrows down the size distribution and also reduces the aspect ratio of the particles. Therefore, it is suggested that low amplitude ultrasonic wave prevents the aggregation of the nuclei, thus restricting the particle growth and results in uniform size particles. PMID:19049206

  1. Stabilization of MgAl2O4 spinel surfaces via doping

    DOE PAGESBeta

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalentmore » dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  2. Microstructure of Swift Heavy Ion Irradiated MgAl(Sub 2)O(Sub 4) Spinel

    SciTech Connect

    Matzke, H.; Skuratov, V.A.; Zinkle, S.J.

    1998-11-30

    Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1 x 10{sup 16}/m{sup 2} (single track regime) to 1 x 10{sup 20}/m{sup 2}. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of {approximately}35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1 x 10{sup 19}/m{sup 2}. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.

  3. High dose neutron irradiation of MgAl2O4 spinel: effects of post-irradiation thermal annealing on EPR and optical absorption

    SciTech Connect

    Ibarra, A.; Bravo, D.; Lopez, F J.; Garner, Francis A.

    2005-01-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra were measured during thermal annealing for stoichiometric MgAl2O4 spinel that was previously irradiated in FFTF-MOTA at {approx}405 C to {approx}50 dpa. Both F and F+ centres are to persist up to very high temperatures (over 700C), suggesting the operation of an annealing mechanism based on evaporation from extended defects Using x-ray irradiation following the different annealing steps it was shown that the optical absorption band is related to a sharp EPR band at g=2.0005 and that the defect causing these effects is the F+ centre.

  4. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-01

    Magnetic properties of Co40Fe40B20 (CoFeB) thin films sandwiched between Ta and MgAl2O4 layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4 structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki = 1.22 erg/cm2, which further increases to 1.30 erg/cm2 after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  5. Synthèse et caractérisation d'hydrotalcites Mg-Al. Application à l'éldolisation de l'acétone

    NASA Astrophysics Data System (ADS)

    Naciri Bennani, M.; Tichit, D.; Figueras, F.; Abouarnadasse, S.

    1999-03-01

    Hydrotalcites were prepared with various Mg/Al ratios. The influence of pH and alkaline solution of the precipitation were examined. The compounds are well cristallized when the precipitation is done with NaOH + Na2CO3 alkaline solutions at pH near 10. These samples contain Cl- and (CO3)2- compensating anions in the interlayer space. In all cases well defined hydrotalcites phases are obtained. By exchange reactions of the synthetized samples with Na2CO3 the Cl- anions are totally removed. The production of diacetone alcohol by aldol condensation of acetone is an important industrial reaction using soda or potash as catalysts. The substitution of liquid base catalysts by solid catalysts is desirable to preserve environment. In this goal the basicity of Mg-Al hydrotalcites have been tested in the condensation reaction of acetone. It is also evidenced that for the activation temperature higher 400 °C the catalytic activity of these materials increases with the content of (CO3)2- and the Mg/Al ratio. Des hydrotalcites ont été préparées dans un large domaine de rapports Mg/Al. Les influences du pH et de l'agent alcalin de précipitation ont été examinées. Les solides les mieux cristallisés sont obtenus en effectuant les précipitations par la solution alcaline NaOH + Na2CO3 et à un pH voisin de 10. Dans tous les cas des phases hydrotalcites bien définies sont observées. Ces solides contiennent des anions (CO3)2- et Cl^-. Des échanges effectués par Na2CO3 déplacent totalement les ions Cl^-. La réaction d'auto-condensation de l'acétone, produisant le diacétone alcool, est une réaction industriellement importante. Elle est catalysée par des bases liquides telle que la soude ou la potasse. La substitution de ces dernières par des catalyseurs solides basiques est un objectif d'actualité pour une meilleure protection de l'environnement. Les basicités des hydrotalcites Mg-Al ont été évaluées pour la réaction d'aldolisation de l'acétone. Les activit

  6. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  7. Structure Analysis and Fluorescence of Mg-Al-Tb Ternary Layered Double Hydroxides and Their Calcined Products

    NASA Astrophysics Data System (ADS)

    Chen, Junfei; Lei, Zhigao; Wang, Anqi; Liu, Jie; Wu, Xiuling; Chang, Tianci; Zhang, Yang; Li, Muqing

    2015-02-01

    Layered double hydroxides (LDHs) doped with Tb3+ ions in the brucite-like layers were prepared successfully by the co-precipitation method. The structure and fluorescence properties of Mg-Al-Tb ternary LDHs and their products calcined at different temperatures were studied for the first time. X-ray diffraction patterns indicated that as-synthesized LDH samples maintained a hexagonal crystal structure, and Tb(OH)3 was detected as Tb3+ dopant content increasing to 5 at.%. In the fluorescent spectra, the green emission intensity arising from 5D4 → 7F5 transition became stronger with the increasing ratio of Tb3+ dopant. When the annealing temperature rose above 500°C, the layer structure collapsed and phases of MgO and MgAl2O4 formed. Meanwhile, compared with MgAlTb-LDHs, the Tb-doped calcined LDHs (CLDHs) showed stronger luminescent intensity of 5D4 → 7F5 transition. These results revealed that the calcined Mg-Al-Tb ternary LDHs may become a series of novel materials with potential applications in fluorescent devices.

  8. Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Belghachem, Nabil

    2015-12-01

    The highest ever reported 10 kW peak power in monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip laser was achieved. To show the superiority of monolithic microchip lasers over those with external mirrors the laser generation characteristics of the same samples in both cases were compared.

  9. [Influence of Eu2+ content on the spectral characteristics of BaMgAl10O17 : Eu2+ phosphors].

    PubMed

    Chen, Zhe; Xie, Hong; Yan, You-Wei

    2007-04-01

    Nanocrsytalline Ba(1-x)MgAl10O17 : xEu2+ (0.05 < or = x < or = 0.4) blue-emitting phosphor was successfully prepared by low-temperature combustion synthesis. The influence of different Eu content on the spectral characteristics of Ba(1-x) MgAl10O17 : xEu2+ was mainly investigated. The results of XRD and SEM analysis show that the sample is single phase and its average grain size is about 30 nm. The luminescence property of Ba(1-x)MgAl10O17 : xEu2+ phosphor is considerably influenced by Eu2+ concentration. In an appropriate Eu2+ doping concentration range, the intensity of the fluorescence of Ba(1-x)MgAl10O17 : xEu2+ was increased obviously with increasing the Eu2+ doping concentration, owing to adding the number of luminescent centers and enhancing the energy transfer between Eu2+ ions. The optimum emission intensity was reached at x = 0.2. However, as the Eu2+ doping concentration was higher than 0.2, the intensity of the fluorescence was reduced, due to the concentration quenching occurrence. PMID:17608168

  10. Fabrication of MgAl2O4 tunnel barrier by radio frequency-sputtering method and magnetoresistance effect through it with Fe or Fe4N ferromagnetic electrode

    NASA Astrophysics Data System (ADS)

    Tsunoda, Masakiyo; Chiba, Ryoichi; Kabara, Kazuki

    2015-05-01

    Spinel MgAl2O4 thin films were deposited on MgO single-crystal substrates and epitaxial Fe (or Fe4N) thin films by RF-sputtering from a ceramic target. Epitaxial relationship was confirmed by X-ray diffraction analysis between the crystalline spinel MgAl2O4 films and the respective substrate and underlayers, while no diffraction peak was observed from the films deposited on amorphous substrates. Spin-valve type magnetic tunnel junctions (MTJs) with a stacking structure of Fe [Fe4N]/MgAl2O4/CoFeB/Ru/Fe/MnIr exhibited normal [inverse] tunnel magnetoresistance (TMR) effect, reflecting the sign of spin polarization of Fe [Fe4N]. The maximum magnitude of the TMR ratio obtained for the Fe-based and Fe4N-based MTJs was 67% and 18%, respectively. The resistance area product values of the MTJs were significantly larger than the reported values for the MTJs with a post-oxidized spinel MgAl2O4 barrier.

  11. Fabrication of MgAl{sub 2}O{sub 4} tunnel barrier by radio frequency-sputtering method and magnetoresistance effect through it with Fe or Fe{sub 4}N ferromagnetic electrode

    SciTech Connect

    Tsunoda, Masakiyo; Chiba, Ryoichi; Kabara, Kazuki

    2015-05-07

    Spinel MgAl{sub 2}O{sub 4} thin films were deposited on MgO single-crystal substrates and epitaxial Fe (or Fe{sub 4}N) thin films by RF-sputtering from a ceramic target. Epitaxial relationship was confirmed by X-ray diffraction analysis between the crystalline spinel MgAl{sub 2}O{sub 4} films and the respective substrate and underlayers, while no diffraction peak was observed from the films deposited on amorphous substrates. Spin-valve type magnetic tunnel junctions (MTJs) with a stacking structure of Fe [Fe{sub 4}N]/MgAl{sub 2}O{sub 4}/CoFeB/Ru/Fe/MnIr exhibited normal [inverse] tunnel magnetoresistance (TMR) effect, reflecting the sign of spin polarization of Fe [Fe{sub 4}N]. The maximum magnitude of the TMR ratio obtained for the Fe-based and Fe{sub 4}N-based MTJs was 67% and 18%, respectively. The resistance area product values of the MTJs were significantly larger than the reported values for the MTJs with a post-oxidized spinel MgAl{sub 2}O{sub 4} barrier.

  12. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  13. Influence of the temperature and duration of the annealing on the lattice structure and growth of the Mg-Al spinel layer

    NASA Astrophysics Data System (ADS)

    Zhang, Hailiang; Zhang, Mingfu; Han, Jiecai; Ying, Guobing; Guo, Huaixin; Xu, Chenghai; Shen, Haitao; Song, Ningning

    2011-03-01

    In this paper, MgO film is successfully grown on polycrystalline and monocrystalline alumina substrates using sol-gel method, and polycrystalline and monocrystalline Mg-Al spinels are fabricated by solid state reaction, respectively. The influence of annealing temperature and time on the lattice structure and growth of the formed Mg-Al spinel layer has been investigated. It is indicated that the annealing temperature and time on the as-synthesized polycrystalline Mg-Al spinel has more significant influence than that of single crystal Mg-Al spinel. The thickness of the Mg-Al spinel layer increases with the annealing temperature, both for polycrystalline and for monocrystalline alumina substrates. And the significantly intercrystalline diffusion of Mg 2+ ions and Al 3+ ions results in a quicker growth velocity of the Mg-Al spinel layer than that of intracrystalline diffusion.

  14. Preparation of Mg-Al layered double hydroxides intercalated with 1,3,6-naphthalenetrisulfonate and 3-amino-2,7-naphthalenedisulfonate and assessment of their selective uptake of aromatic compounds from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kameda, Tomohito; Yamazaki, Takashi; Yoshioka, Toshiaki

    2010-05-01

    Mg-Al layered double hydroxides (Mg-Al LDHs) intercalated with 1,3,6-naphthalenetrisulfonate (NTS 3-) and 3-amino-2,7-naphthalenedisulfonate (ANDS 2-) ions were prepared by coprecipitation and were characterized by X-ray diffraction and chemical analyses. Based on X-ray diffraction patterns, the naphthalene rings of NTS 3- and ANDS 2- were most likely oriented parallel to the brucite-like host layers of the Mg-Al LDH, midway between layers. The prepared Mg-Al LDHs were able to selectively take up aromatics from aqueous solutions, and the order of percentage uptake was as follows: 1,3-dinitrobenzene > nitrobenzene > benzaldehyde > N,N-dimethylaniline > anisole > 1,2-dimethoxybenzene. The differences in the extent of π-π stacking interactions occurring between the benzene rings of the aromatics and the naphthalene ring of the intercalated NTS 3- and ANDS 2- probably resulted in these differences among the absorbed quantities of the various aromatics.

  15. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  16. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  17. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G. |; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  18. Permeation characteristics of some iron and nickel based alloys

    SciTech Connect

    Mitchell, D.J.; Edge, E.M.

    1985-06-15

    The permeation characteristics of deuterium in several iron and nickel based alloys were measured by the gas phase breakthrough technique in the temperature range 100 to 500 /sup 0/C with applied pressures ranging from 10 Pa to 100 kPa. The restriction of the gas flux imposed by surface oxides was modeled in order to evaluate the effects of surface oxide retardation of the gas flux on the effective values of the deuterium permeabilities and diffusivities in the alloys. The most permeable alloys were 430 and 431 stainless steels. The next most permeable alloy was Monel K-500, which exceeded the permeability of pure Ni by more than a factor of five at room temperature. The alloys with permeabilities less than pure Ni were, in order of decreasing permeability: the Inconels 625, 718, and 750, the Fe-Ni-Co glass-sealing alloys Kovar and Ceramvar, and the 300-series stainless steels. Deuterium trapping within the alloys appeared to influence the values of bulk diffusivities, which were not correlated with either the permeabilities or the chemical compositions of the alloys.

  19. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.

    PubMed

    Federici Canova, F; Foster, A S; Rasmussen, M K; Meinander, K; Besenbacher, F; Lauritsen, J V

    2012-08-17

    Atom-resolved non-contact atomic force microscopy (NC-AFM) studies of the magnesium aluminate (MgAl(2)O(4)) surface have revealed that, contrary to expectations, the (100) surface is terminated by an aluminum and oxygen layer. Theoretical studies have suggested that hydrogen plays a strong role in stabilizing this surface through the formation of surface hydroxyl groups, but the previous studies did not discuss in depth the possible H configurations, the diffusion behaviour of hydrogen atoms and how the signature of adsorbed H is reflected in atom-resolved NC-AFM images. In this work, we combine first principles calculations with simulated and experimental NC-AFM images to investigate the role of hydrogen on the MgAl(2)O(4)(100) surface. By means of surface energy calculations based on density functional theory, we show that the presence of hydrogen adsorbed on the surface as hydroxyl groups is strongly predicted by surface stability considerations at all relevant partial pressures of H(2) and O(2). We then address the question of how such adsorbed hydrogen atoms are reflected in simulated NC-AFM images for the most stable surface hydroxyl groups, and compare with experimental atom-resolved NC-AFM data. In the appendices we provide details of the methods used to simulate NC-AFM using first principles methods and a virtual AFM. PMID:22827936

  20. On BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor degradation mechanism by vacuum-ultraviolet excitation

    SciTech Connect

    Bizarri, G.; Moine, B.

    2005-12-01

    Additional to a correct color and a high efficiency, phosphors for plasma display panels must maintain their light output for thousands of hours. Often the degradation is the restricting factor in using phosphors. In this article, the mechanism of luminance decrease in blue-emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor during the operation of the PDPs has been studied. It is shown experimentally that the aging process is mainly due to the vacuum-ultraviolet excitation (VUV). It is demonstrated that the degradation mechanism can be accelerated by using a 193 nm laser excitation. Based on excitation, reflectance, thermoluminescence spectra, and aging or annealing processes by laser excitation, the main causes of the degradation are demonstrated. The aging process can be separated in two different processes according to the temperature: a first one, at low temperature, corresponding to the autoionization of luminescent centers (Eu{sup 2+}{yields}Eu{sup 3+}); and a second one, at high temperature, linked to the formation of traps in the phosphor. These traps induce a perturbation of the energy migration in the phosphor. In addition, the relevant parameters of trap formation are highlighted: density of the VUV excitation, temperature, and atmosphere/pressure surrounding the phosphor. A model of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor degradation mechanism is proposed.

  1. Incorporation of transition metals into Mg Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator

    NASA Astrophysics Data System (ADS)

    Tsyganok, Andrey; Sayari, Abdelhamid

    2006-06-01

    A comparative study on two different methods for preparing Mg-Al layered double hydroxides (LDH) containing various divalent transition metals M ( M=Co, Ni, Cu) has been carried out. The first (conventional) method involved coprecipitation of divalent metals M(II) with Mg(II) and Al(III) cations using carbonate under basic conditions. The second approach was based on the ability of transition metals to form stable anionic chelates with edta 4- (edta 4-=ethylenediaminetetraacetate) that were synthesized and further introduced into LDH by coprecipitation with Mg and Al. The synthesized LDHs were characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) methods, thermogravimetry with mass-selective detection of decomposition products (TG-MSD), Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The results obtained were discussed in terms of efficiency of transition metal incorporation into the LDH structure, thermal stability of materials and the ability of metal chelates to intercalate the interlayer space of Mg-Al LDH. Vibrational spectroscopy studies confirmed that the integrity of the metal chelates was preserved upon incorporation into the LDH.

  2. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies.

    PubMed

    Shan, Ran-ran; Yan, Liang-guo; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO3 emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO3 precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe3O4/Mg-Al-CO3-LDH can be quickly and easily separated using a magnet before and after the adsorption process. PMID:26073520

  3. Nitrogen-atomized, nickel-based, corrosion-resistant alloys

    NASA Astrophysics Data System (ADS)

    Rizzo, Frank J.

    1996-04-01

    Nitrogen gas atomization has been used for many years to produce iron-based powder-metal materials such as stainless and tool steels. However, it is more typical to use argon atomization with nickel-based alloys because it avoids the formation of nitrides that, in some cases, can be detrimental to the mechanical properties of these materials. In this article, two nickel-based materials— alloy 625 and alloy 690—normally used for applications where corrosion resistance is of primary importance were evaluated in their nitrogen-atomized powder metal form. Nitrogen atomization uncovered attributes of these nickel alloys that are not present in their conventionally produced counterparts or in argon-atomized versions of the same compositions.

  4. Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Freche, John C.; Waters, William J.

    1959-01-01

    An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.

  5. Surface segregations in platinum-based alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  6. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  7. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect

    Ray, Pratik Kumar

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  8. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGESBeta

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  9. Cladding burst behavior of Fe-based alloys under LOCA

    SciTech Connect

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; Massey, Caleb P.

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. The most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.

  10. Energy transfer from Sm3+ to Eu3+ in red-emitting phosphor LaMgAl11O19:Sm3+, Eu3+ for solar cells and near-ultraviolet white light-emitting diodes.

    PubMed

    Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan-Gai; Tang, Chao; Wu, Xiaowen

    2014-06-16

    The red-emitting phosphor LaMgAl11O19:Sm(3+), Eu(3+) was prepared by solid-state reaction at 1600 °C for 4 h. The phase formation, luminescence properties, and energy transfer from Sm(3+) to Eu(3+) were studied. With the addition of 5 mol % Sm(3+) as the sensitizer, the excitation wavelength of LaMgAl11O19:Eu(3+) phosphor was extended from 464 to 403 nm, and the emission intensity under the excitation at 403 nm was also enhanced. The host material LaMgAl11O19 could contain the high doping content of Eu(3+) (20 mol %) without concentration quenching. This energy transfer from Sm(3+) to Eu(3+) was confirmed by the decay times of energy donor Sm(3+). The mechanism of energy transfer (Sm(3+) → Eu(3+)) was proved to be quadrupole-quadrupole interaction. Under the 403 nm excitation at 150 °C, the emission intensities of the characteristic peaks of Sm(3+) and Eu(3+) in LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor were decreased to 65% and 56% of the initial intensities at room temperature, and the relatively high activation energy proved that this phosphor had a good thermal stability. The CIE coordinate was calculated to be (x = 0.601, y = 0.390). The LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor is a candidate for copper phthalocyanine-based solar cells and white light-emitting diodes. PMID:24884208

  11. METHOD FOR ANNEALING AND ROLLING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Picklesimer, M.L.

    1959-07-14

    A fabrication procedure is presented for alpha-stabilized zirconium-base alloys, and in particular Zircaloy-2. The alloy is initially worked at a temperature outside the alpha-plus-beta range (810 to 970 deg ), held at a temperature above 970 deg C for 30 minutes and cooled rapidly. The alloy is then cold-worked to reduce the size at least 20% and annealed at a temperature from 700 to 810 deg C. This procedure serves both to prevent the formation of stringers and to provide a randomly oriented crystal structure.

  12. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  13. Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation

    SciTech Connect

    Villa, Alberto; Gaiassi, Aureliano; Rossetti, Ilenia; Bianchi, Claudia; van Benthem, Klaus; Veith, Gabriel M; Prati, Laura

    2010-01-01

    Here we investigated the properties of Au nanoparticles, prepared via three different techniques and supported on three different MgAl2O4 spinels. The surface composition and area of the spinel plays an important role in determining the selectivity of the catalyst in the selective oxidation of glycerol. it was found that aluminum rich surfaces enhance the C-C bond cleavage reaction for large gold particles which is opposite of what is normally observed for large clusters which typically show no C-C cleavage. We also report that similarly sized AuNPs on the different MgAl2O4 spinels with the same surface Al/Mg ratio, show a similar selectivity; however activity depends on surface area.

  14. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature

    PubMed Central

    2010-01-01

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material. PMID:20676198

  15. Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Jiang, Shengli; Wei, Nian; Qi, Jianqi

    2010-01-01

    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material. PMID:20676198

  16. Preparation and spectroscopy characterization of Eu:MgAl2O4 nanopowder prepared by modified Pechini method.

    PubMed

    Wiglusz, R J; Grzyb, T; Lis, S; Strek, W

    2009-10-01

    In the present work, a modified Pechini method was employed to prepare nanostructured MgAl2O4 spinel powders doped with Eu3+ ions. The XRD analyses demonstrated that the powders were single-phase spinel nanopowders with high crystallite dispersion. The average spinel particle size was determined to be approximately 15 nm for calcination at 700 degrees C, and approximately 20 at 1000 degrees C. The emission and excitation spectra measured for the samples calcinated at 700 and 1000 degrees C demonstrated characteristic spectra of Eu3+ ions as well as were measured the emission spectra of Eu2+ ions for the samples calcinated at 700 degrees C. The effect of MgAl2O4 grain sizes on luminescence properties was noticed. To explain these differences a detailed analysis of luminescence spectra by the Judd-Ofelt theory has been performed. PMID:19908456

  17. Electron Paramagnetic Resonance and Photoluminescence Studies of LaMgAl11O19:Mn2+ Green Phosphors

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Chakradhar, R. P. S.; Rao, J. L.; Dhoble, S. J.; Kim, S. H.

    2014-09-01

    Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance (N) and the paramagnetic susceptibility (χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.

  18. Effect of calcination temperature on Mg-Al bimetallic oxides as sorbents for the removal of F(-) in aqueous solutions.

    PubMed

    Moriyama, Sayo; Sasaki, Keiko; Hirajima, Tsuyoshi

    2014-01-01

    Bimetallic oxides were synthesized from hydrotalcite using increasing calcination temperatures (873, 1073, 1273 K). These bimetallic oxides were fully characterized and the sorption density of F(-) was investigated. X-ray diffraction patterns for the produced bimetallic oxides showed that MgO was the primary phase within the range of investigated calcination temperatures, but MgO crystallinity increased with calcination temperature and an additional MgAl2O4 phase was formed. In the process of F(-) sorption, the bimetallic oxides were primarily transformed into hydrotalcite with intercalation of F(-). The Higher calcination temperature increased the MgAl2O4 phase, which did not contribute to the immobilization of F(-). These findings show that optimizing the calcination temperature can be used to maximize the sorption density of this material for F(-) removal. PMID:24183624

  19. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  20. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  1. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  2. In Situ Synthesis of 3Y-TZP/MgAl2O4 Nanoparticle Composite Through Co-precipitation

    NASA Astrophysics Data System (ADS)

    Opoku, Michael; Kanakala, Raghunath

    2016-04-01

    3 Mole pct yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and spinel (MgAl2O4) nanocomposite was synthesized by co-precipitation—calcination method. The powders were made to a composition of 70 vol pct 3Y-TZP and 30 vol pct MgAl2O4. The composite made of 70 pct 3Y-TZP and 30 pct MgAl2O4 is well known for its superplastic ability at high temperatures. Reverse drop method was utilized to precipitate metal ions simultaneously, resulting in a homogenous composition on a molecular scale and crystalline after calcination at 1273 K (1000 °C) for 2 hours. The characterization results showed that the powders were phase pure tetragonal zirconia and spinel, fairly not forming a ternary complex between Spinel and 3Y-TZP. From the TEM and DLS analyses, the average particle size was determined to be about 50 to 100 nm with some level of agglomeration. Raman peaks E g (156 cm-1), E g (274 cm-1), B 1g (332 cm-1), E g (474 cm-1), A 1g (605 cm-1), and B 1g (653 cm-1), due to the tetragonal phase of 3Y-TZP and E g (487 cm-1) due to cubic phase of MgAl2O4, are observed in the sample. HRTEM results show interplanar spacing of (311) of the spinel and (101) of the yttria-stabilized zirconia, which indicates the high-level homogeneity in the nanoparticle composite powders.

  3. In Situ Synthesis of 3Y-TZP/MgAl2O4 Nanoparticle Composite Through Co-precipitation

    NASA Astrophysics Data System (ADS)

    Opoku, Michael; Kanakala, Raghunath

    2016-06-01

    3 Mole pct yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and spinel (MgAl2O4) nanocomposite was synthesized by co-precipitation—calcination method. The powders were made to a composition of 70 vol pct 3Y-TZP and 30 vol pct MgAl2O4. The composite made of 70 pct 3Y-TZP and 30 pct MgAl2O4 is well known for its superplastic ability at high temperatures. Reverse drop method was utilized to precipitate metal ions simultaneously, resulting in a homogenous composition on a molecular scale and crystalline after calcination at 1273 K (1000 °C) for 2 hours. The characterization results showed that the powders were phase pure tetragonal zirconia and spinel, fairly not forming a ternary complex between Spinel and 3Y-TZP. From the TEM and DLS analyses, the average particle size was determined to be about 50 to 100 nm with some level of agglomeration. Raman peaks E g (156 cm-1), E g (274 cm-1), B 1g (332 cm-1), E g (474 cm-1), A 1g (605 cm-1), and B 1g (653 cm-1), due to the tetragonal phase of 3Y-TZP and E g (487 cm-1) due to cubic phase of MgAl2O4, are observed in the sample. HRTEM results show interplanar spacing of (311) of the spinel and (101) of the yttria-stabilized zirconia, which indicates the high-level homogeneity in the nanoparticle composite powders.

  4. Upconversion luminescence properties of nanocrystallite MgAl2O4 spinel doped with Ho3+ and Yb3+ ions

    NASA Astrophysics Data System (ADS)

    Watras, A.; Dereń, P. J.; Pązik, R.; Maleszka-Bagińska, K.

    2012-10-01

    The upconversion luminescence spectra of nanocrystallite MgAl2O4 doped with 1% of Ho3+ and 5% of Yb3+ ions after excitation at 980 nm were measured. Influence of excitation regime either continuous or pulse on upconversion mechanisms was shown. For continuous wave (CW) laser excitation upconversion process is due to phonon assisted Excited State Absorption (ESA). For pulse laser excitation upconversion emission is due to Energy Transfer Upconversion (ETU).

  5. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  6. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide.

    PubMed

    Jawad, Ali; Lu, Xiaoyan; Chen, Zhuqi; Yin, Guochuan

    2014-10-30

    Toxic and bioresistant compounds have attracted researchers to develop more efficient and cost-effective technologies for degradation of organic compounds in wastewater. This work demonstrates the degradation of 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and phenol as model compounds using bicarbonate-activated H2O2 oxidation system in the presence of supported catalysts. The catalytic activity of the catalyst was investigated in term of degradation of target compounds, chemical oxygen demand (COD), and total organic carbon (TOC) removals both for batch mode and in fixed bed reactor using CoMgAl-HTs and CoMgAl-SHTs, respectively. The leaching of cobalt ion was efficiently prohibited because of the presence of a weakly basic medium provided by bicarbonate, and the CoMgAl-SHTs catalyst was found to retain its stability and good catalytic activity in fixed bed reactor for over 300 h. Extensive chemical probing, fluorescence, and electron paired resonance (EPR) studies were conducted to identify the actual reactive species in the degradation pathway, which revealed that the reaction proceeds through generation of superoxide, hydroxyl radical along with carbonate radical. PMID:25285582

  7. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  8. The metallography of a nickel base casting alloy.

    PubMed

    Lewis, A J

    1975-10-01

    Three groups of tensile test pieces were produced using a nickel base partial denture casting alloy and employing induction fusion in each case. The first group was produced fro new metal, the second from metal which had been recast four times, and the third from new overheated metal. Samples of alloy were cut from each group, and together with a piece from an original ingot, were mounted, polished, etched, and examined under a metallurgical microscope. PMID:1108851

  9. FIRST-PRINCIPLES CALCULATIONS OF CHARGE STATES AND FORMATION ENERGIES OF Mg, Al, and Be TRANSMUTANTS IN 3C-SiC

    SciTech Connect

    Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

    2014-08-28

    The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.

  10. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst.

    PubMed

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500-575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol-1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  11. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  12. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  13. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  14. Iron and iron-based alloys for temporary cardiovascular applications.

    PubMed

    Francis, A; Yang, Y; Virtanen, S; Boccaccini, A R

    2015-03-01

    In the last decade, biodegradable metals have emerged as a topic of interest for particular biomedical applications which require high strength to bulk ratio, including for cardiovascular stents. The advantages of biodegradable materials are related to the reduction of long term risks associated with the presence of permanent metal implants, e.g. chronic inflammation and in-stent restenosis. From a structural point of view, the analysis of the literature reveals that iron-based alloys used as temporary biodegradable stents have several advantages over Mg-based alloys in terms of ductility and strength. Efforts on the modification and tunability of iron-based alloys design and compositions have been mainly focused on controlling the degradation rate while retaining the mechanical integrity within a reasonable period. The early pre-clinical results of many iron-based alloys seem promising for future implants developments. This review discusses the available literature focusing mainly on: (i) Fe and Fe-based alloys design and fabrication techniques; (ii) in vitro and in vivo performance; (iii) cytotoxicity and cell viability tests. PMID:25716025

  15. e/a determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Sato, H.; Inukai, M.; Zijlstra, E. S.

    2013-08-01

    The present work is devoted to the determination of the effective electrons per atom ratio e/a by means of first-principles full-potential linearized augmented plane wave-Fourier method for elements from Rb to Ag in Period 5 and from Cs to Au in Period 6 of the periodic table and is regarded as a continuation of the preceding work done for elements from K to Cu in Period 4. The value of e/a was determined by reading off the square of the Fermi diameter, ? from the dispersion relation for electrons outside the Muffin-Tin spheres. A straightforward reading of the ordinate at the Fermi level, i.e. local reading method was validated for Rb and Cs in Group 1, Sr in Group 2, Y in Group 3, Pd and Pt in Group 10 and Ag and Au in Group 11. Instead, the nearly free electron (NFE) method was found to be indispensable for TM elements from Zr to Rh in Period 5 and those from Ba to Ir in Period 6. The composition dependence of e/a values for intermetallic compounds in X-TM (X = Mg, Al, Zn, Cd and In) alloy systems was also studied. The new Hume-Rothery electron concentration rule was established by constructing e/uc, the number of electrons per unit cell, vs. square of critical reciprocal lattice vector, ? , diagram for structurally complex metallic alloys having a pseudogap at the Fermi level. A proper use of either the local reading- or the NFE-e/a for the elements as indicated above is found to be essential.

  16. Layer-by-layer assembly of luminescent ultrathin films by Mg-Al-Eu LDHs nanosheets and organic ligand with high transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Li, Yanlin; Fan, Hongxian

    2016-01-01

    We fabricated a kind of luminescent ordered multilayer transparent ultrathin films (OMTFs) based on inorganic rare earth doped layered double hydroxides (Mg-Al-Eu LDHs) nanosheets and the organic ligand 2-thenoyltrifluoroacetone (TTA) via layer-by-layer assembly method. At the same time, Polyvinyl Alcohol (PVA) aqueous solution was used as intermediate linkers. UV-visible absorption spectroscopy, X-ray diffraction, fluorescence spectroscopy and scanning electron microscopy were introduced to investigate the structure and properties of these films. Surprisingly, the uniformity and the fluorescence emission intensity of OMTFs which utilized polyvinyl Alcohol (PVA) as intermediate linkers are significantly enhanced compared with that of OMTFs without PVA. Herein, it was found that the fluorescence emission intensity of this kind of ultrathin film with PVA displays a monotonic increase as the number of deposition cycles increasing, and further the films which are highly transparent, uniform and ultrathin have potential applications in the optical display devices.

  17. The resistance of selected high strength alloys to embrittlement by a hydrogen environment. [iron and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level. High strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  18. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  19. EPR and optical investigations of LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor

    SciTech Connect

    Singh, Vijay; Sivaramaiah, G.; Rao, J.L.; Kim, S.H.

    2014-12-15

    Graphical abstract: The EPR spectrum of as-prepared LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor at 110 K. - Highlights: • Using the combustion synthesis, LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared in a few minutes. • Optical investigation indicates that Cr{sup 3+} ions are present in octahedral symmetry. • The EPR signals indicate that exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs in weakly distorted sites. - Abstract: The LaMgAl{sub 11}O{sub 19}:Cr{sup 3+} phosphor has been prepared by a low-temperature combustion synthesis method. As-prepared combustion synthesized powder was characterized using powder X-ray diffraction (XRD), diffuse reflectance (DRS), electron paramagnetic resonance (EPR) and photoluminescence (PL) studies. The X-ray diffraction pattern reveals crystalline hexagonal phases. The UV–vis diffuse reflectance spectrum exhibits three broad bands characteristic of Cr{sup 3+} ions in octahedral symmetry. The EPR spectrum exhibits several resonance signals. The signals with the effective g values at g = 4.84, 3.64 and 2.26 have been attributed to the isolated Cr{sup 3+} ions. The signal with the effective g value at g = 1.94 has been attributed to exchange coupled Cr{sup 3+}–Cr{sup 3+} ion pairs. The PL studies exhibit several bands characteristic of Cr{sup 3+} ions in octahedral symmetry.

  20. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported. PMID:285671

  1. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite

    NASA Astrophysics Data System (ADS)

    Karina, Wiwiek; Heraldy, Eddy; Pramono, Edi; Heriyanto, Astuti, Shanti

    2016-02-01

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as well as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.

  2. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  3. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  4. Kinetics and equilibrium studies on Mg-Al oxide for removal of fluoride in aqueous solution and its use in recycling.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-06-01

    Mg-Al oxide obtained by the thermal decomposition of Mg-Al layered double hydroxide (LDH) intercalated with CO3(2-) (CO3·Mg-Al LDH) was found to take up fluoride from aqueous solution. Fluoride was removed by rehydration of Mg-Al oxide accompanied by combination with F(-). Using five times the stoichiometric quantity of Mg-Al oxide, the residual concentration of F was decreased from 100 to 6.3 mg/L in 480 min, which was below the effluent standard in Japan (8 mg/L). Removal of F(-) can be represented by pseudo-second-order reaction kinetics. The apparent rate constants at 10 °C, 30 °C, and 60 °C were 2.3 × 10(-3), 2.2 × 10(-2), and 2.5 × 10(-1) g mmol(-1) min(-1), respectively. The apparent activation energy was 73.3 kJ mol(-1). The rate-determining step for F removal by Mg-Al oxide was consistent with chemical adsorption involving intercalation of F(-) into the reconstructed Mg-Al LDH due to electrostatic attraction. The adsorption of F by Mg-Al oxide follows a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.0 mmol g(-1) and 1.1 × 10(3), respectively, for Mg-Al oxide. The F(-) in the F·Mg-Al LDH thus produced was found to be anion-exchanged with CO3(2-) in solution. The Mg-Al oxide after regeneration treatment had excellent properties for removal of F in aqueous solution. In conclusion, the results of this study indicated that Mg-Al oxide has potential for use in recycling to remove F in aqueous solution. PMID:25867103

  5. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys.

    SciTech Connect

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-06-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was {approx}2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid {gamma} + Ni{sub 5}Gd eutectic-type reaction at {approx}1270 C. The solidification temperature ranges of the alloys varied from {approx}100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at {approx}1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques.

  6. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser

    NASA Astrophysics Data System (ADS)

    Chen, Suiyuan; Liang, Jing; Liu, Changsheng; Sun, Kai; Mazumder, Jyoti

    2011-12-01

    A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.

  7. Wear response of a Zn-base alloy in the presence of SiC particle reinforcement: A comparative study with a copper-base alloy

    SciTech Connect

    Prasad, B.K.; Das, S.; Modi, O.P.; Jha, A.K.; Dasgupta, R.; Yegneswaran, A.H.

    1999-12-01

    An attempt has been made in this study to examine the effects produced by the reinforcement of (10 wt%) SiC particles on the sliding wear behavior of a Zn-base alloy. The matrix alloy was also subjected to identical test conditions to assess the influence of the SiC dispersoid phase. The wear characteristics of the (Zn-base alloy) composite and the matrix alloy were also compared with those of a Cu-base alloy (i.e., an aluminum bronze) in order to understand the scope of exploiting the Zn-base alloy matrix/composite as a substitute material for the latter (Cu-base) alloy. It has been observed that low frictional heat generated at the lower sliding speed (0.42 m/s) enabled the Zn-base (matrix) alloy to perform better than the composite material, while the Cu-base alloy showed intermediate wear resistance. On the contrary, the trend changed at a higher sliding speed (4.62 m/s) when high frictional heating caused the wear behavior of the Cu-base alloy to be superior to that of the Zn-base (matrix) alloy. The composite in this case performed better than the matrix alloy. The wear behavior of the specimens has been explained in terms of factors like microcracking tendency and thermal stability introduced by the SiC dispersoid phase and lubricating, load bearing, and low melting characteristics of microconstituents like {alpha} and {eta} in the (Zn-base) alloy system and the thermal stability of the Cu-base alloy. It seems that the predominance of one set of parameters over the other actually controls the overall performance of a material. Once again, it is the test conditions that ultimately allow a particular set of factors to govern the other and influence the response of the specimens accordingly. The observed wear behavior of the samples has been substantiated further with their wear surface characteristics.

  8. Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions.

    PubMed

    Wang, Zhihua; Liu, Fang; Lu, Chao

    2012-01-01

    In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1 μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity. PMID:22770831

  9. Microscopic origin of the different colors displayed by MgAl2O4:Cr3+ and emerald

    NASA Astrophysics Data System (ADS)

    García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M.

    2008-08-01

    The difference in color between emerald ( Be3Si6Al2O18:Cr3+ , green) and the Cr3+ -doped spinel MgAl2O4 (red) is striking, considering that in both systems color is due to CrO69- complexes with a close local symmetry ( D3 and the D3d , respectively) and that the measured Cr3+-O2- distance is practically the same ( 1.98±0.01 and 1.97±0.01Å , respectively). By means of density-functional calculations it is shown that this surprising difference can reasonably be explained once the electric field, ER , which all lattice ions lying outside the CrO69- complex exert on localized electrons, is taken into consideration. The origin of the different shape of ER in the two host lattices is analyzed in detail. It is shown that ER raises (decreases) the 2p(O) levels for Be3Si6Al2O18:Cr3+ (MgAl2O4:Cr3+) along the trigonal axis thus favoring a decrease (increase) of 10Dq . The present work demonstrates the key role played by ER (not considered in the traditional ligand field theory) for understanding the differences exhibited by the same complex embedded in host lattices which do not have the same crystal structure. Some remarks on the color of Cr2O3 pure compound are also reported.

  10. The Effects of Individual Metal Contents on Isochrones for C, N, O, Na, Mg, Al, Si, and Fe

    NASA Astrophysics Data System (ADS)

    Beom, Minje; Na, Chongsam; Ferguson, Jason W.; Kim, Y.-C.

    2016-08-01

    The individual characteristics of C, N, O, Na, Mg, Al, Si, and Fe on isochrones have been investigated in this study. Stellar models have been constructed for various mixtures in which the content of each element is changed up to the extreme value reported in recent studies, and the changes in isochrone shape have been analyzed for the various mixtures. To express the abundance variation of different elements with a single parameter, we have focused on the relative changes in the total number of metal ions. A review of the shape changes revealed that Na, Mg, and Al work the same way in stellar models, similar to the well-known fact that C, N, and O have the same reactions in the stellar interior. In addition, it was found that in high-metallicity conditions the influence of Si and Fe on the red giant branch becomes smaller than that of Na, Mg, and Al closer to the tip. Furthermore, the influence of Fe on the main sequence is larger than that of Na, Mg, Al, and even Si.

  11. The effect of Tb 3+ doping on the structure and spectroscopic properties of MgAl 2O 4 nanopowders

    NASA Astrophysics Data System (ADS)

    Wiglusz, R. J.; Grzyb, T.

    2011-08-01

    In this paper, a modified sol-gel method was employed to prepare nanostructured MgAl 2O 4 spinel powders doped with Tb 3+ ions and thermally treated at 700 and 1000 °C for 3 h. The structural properties of the prepared at 700 and 1000 °C powders where characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to obtained XRD patterns the formation of single-phase spinels after calcination was confirmed. The XRD analyses demonstrated that the powders were single-phase spinel nanopowders with high crystallite dispersion. The Rietveld method was applied to calculate lattice parameters. The averaged spinel particle size was determined to be ˜10 nm for calcination at 700 °C and ˜20 nm at 1000 °C. The emission and excitation spectra measured at room and low temperature (77 K) for the samples calcined at 700 and 1000 °C demonstrated characteristic spectra of Tb 3+ ions. The effect of MgAl 2O 4:Tb 3+ grain sizes on luminescence properties was noticed.

  12. Analytical electron microscopy of precipitates in ion-implanted MgAl{sub 2}O{sub 4} spinel

    SciTech Connect

    Evans, N.D.; Zinkle, S.J.; Bentley, J.

    1994-12-31

    Magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) is being considered as an insulator material within proposed fusion reactors where considerable radiation fields are anticipated. Analytical electron microscopy (AEM) has been used to investigate precipitates within MgAl{sub 2}O{sub 4} spinel following implantation of Al{sup +}, Mg{sup +}, or Fe{sup 2+} ions. Combined diffraction experiments, energy dispersive X-ray spectrometry (EDS), electron energy-loss spectrometry (EELS), and energy-filtered imaging were employed to identify and characterize precipitates observed in the implanted ion region. Diffraction studies suggested these are metallic aluminum colloids, although EELS and energy-filtered images revealed this to be the case only for the Al{sup +} and Mg{sup +} implantations, and not for Fe{sup 2+} ion implantations. Multiple-least-squares (MLS) fitting of EELS spectra was employed to quantify the volume fraction of metallic aluminum when present in the implanted ion region. Energy-filtered images of the implanted ion region clearly show the colloid distribution in the Al{sup +} and Mg{sup +} implanted spinel. Energy-filtered images from the Fe {sup 2+} ion implanted spinel indicate that the features visible in diffraction contrast cannot be associated with either metallic aluminum or iron-rich precipitates.

  13. Tribological performance of Mg/Al/Ce layered double hydroxides nanoparticles and intercalated products as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Qin, Haojing; Zuo, Ranfang; Bai, Zhimin

    2015-10-01

    Mg/Al/Ce ternary layered double hydroxides (LDHs) were synthesized via coprecipitation and intercalated by succinic acid and lauric acid through ion exchange method respectively. The LDHs products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FT-IR). Tribological properties of LDHs as lubricant additives were evaluated by four-ball friction and air compressor test. The results indicated that Mg/Al/Ce LDHs were prepared successfully with Ce/Al molar ratio of 0.05 and crystallization temperature of 140 °C. The interlayer spacing of LDHs precursor was expanded by succinic acid and lauric acid to 8.838 and 17.519 Å respectively. All the three LDHs products can reduce friction and wear of engine lubricating oil in the tests. LDHs intercalated with lauric acid showed best tribological performance among them which was attributed to sliding each other between laminates, good dispersibility in oil medium and a protective tribofilm formed on the worn surface.

  14. Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Ai, Yuejie; Liu, Yunhai; Li, Jiaxing; Ji, Yongfei; Wang, Xiangke

    2016-04-01

    Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment. PMID:26978487

  15. The effects of cation-anion clustering on defect migration in MgAl2O4.

    PubMed

    Zamora, Richard J; Voter, Arthur F; Perez, Danny; Perriot, Romain; Uberuaga, Blas P

    2016-07-20

    Magnesium aluminate spinel (MgAl2O4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures. We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. These findings illuminate important new details regarding defect kinetics relevant to the application of MgAl2O4 in extreme environments. PMID:27380920

  16. The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Nan; Hou, Zeng-Tao; Ye, Xin; Xu, Zhao-Bin; Bai, Xue-Ling; Shang, Peng

    2013-09-01

    This review investigates the current application limitations of Mg and Mg alloys. The key issues hindering the application of biodegradable Mg alloys as implants are their fast degradation rate and biological consideration. We have discussed the effect of some selected alloying element additions on the properties of the Mg-based alloy, especially the nutrient elements in human (Zn, Mn, Ca, Sr). Different grain sizes, phase constituents and distributions consequently influence the mechanical properties of the Mg alloys. Solution strengthening and precipitation strengthening are enhanced by the addition of alloying elements, generally improving the mechanical properties. Besides, the hot working process can also improve the mechanical properties. Combination of different processing steps is suggested to be adopted in the fabrication of Mg-based alloys. Corrosion properties of these Mg-based alloys have been measured in vitro and in vivo. The degradation mechanism is also discussed in terms of corrosion types, rates, byproducts and response of the surrounding tissues. Moreover, the clinical response and requirements of degradable implants are presented, especially for the nutrient elements (Ca, Mn, Zn, Sr). This review provides information related to different Mg alloying elements and presents the promising candidates for an ideal implant.

  17. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  18. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  19. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  20. Hot corrosion of S-57, 1 cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1977-01-01

    A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation.

  1. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  2. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  3. Improved Mg-based alloys for hydrogen storage

    SciTech Connect

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J.

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  4. Crystal Growth and Photoluminescence Properties of Truncated Cubic BaMgAl10O17:Eu2+ Phosphors for Three-Dimensional Plasma Display Panels.

    PubMed

    Liu, Bitao; Chen, Yuan; Peng, Lingling; Han, Tao; Yu, Hong; Tian, Liangliang; Tu, Mingjing

    2016-04-01

    Monodispersed, truncated cube BaMgAl10O17:Eu2+ phosphors were synthesized by the sol-gel process. Scanning electron microscope (SEM), photoluminescence spectrum, powder X-ray diffraction and decay curves were used to evaluate the truncated cubic BaMgAl10O17:Eu2+ phosphors. The crystal growth process and photoluminescence properties were discussed in detail. The results showed that this truncated cubic morphology can be achieved via a simple sinter process. These truncated cubic BaMgAl10O17:Eu2+ phosphors showed acceptable emission intensity and better thermal properties. This result indicates truncated cubic BaMgAl10O17:Eu2+ phosphors would meet the requirements of plasma display panels (PDPs). PMID:27451727

  5. Phonon Dispersion in Equiatomic Li-Based Binary Alloys

    NASA Astrophysics Data System (ADS)

    Aditya, Vora M.

    2008-02-01

    The computations of the phonon dispersion curves (PDC) of four equiatomic Li-based binary alloys, namely Li0.5Na0.5, Li0.5K0.5, Li0.5Rb0.5 and Li0.5Cs0.5, to second order in the local model potential is discussed in terms of the real-space sum of Born von Karman central force constants. Instead of the concentration average of the force constants of metallic Li, Na, K, Rb and Cs, the pseudo-alloy atom (PAA) is adopted to compute directly the force constants of four equiatomic Li-based binary alloys. The exchange and correlation functions due to Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of screening effects. The phonon frequencies of four equiatomic Li-based binary alloys in the longitudinal branch are more sensitive to the exchange and correlation effects in comparison with the transverse branches. However, the frequencies in the longitudinal branch are suppressed due to IU-screening function than the frequencies due to static H-screening function.

  6. Design principle of actuators based on ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang

    2002-09-01

    Recently, attention has been paid to shape memory alloys with ferromagnetic properties, called ferromagnetic shape memory alloys (FSMAs). This is because the alloys show large and recoverable deformation, i.e. superelasticity and shape memory effect, due to the martensitic transformation. Moreover, the transformation is possibly controlled by an applied magnetic field and the response can be fast. Therefore, FSMAs have been considered as a strong candidate for the fast responsive actuator material. In the present study, NiMnGa and Fe-Pd FSMAs are mainly used. NiMnGa alloys exhibit good shape memory effect with ferromagnetic properties. However, both experimental and analytical results show the magnetic field effect (up to 8 x 105A/m) on the phase transformation of NiMnGa is very small. No martensite structure change can be detected by applying a magnetic field, while the force induced by magnetic field gradient can easily be obtained on the alloys. This force easily induces the martensitic transformation (i.e. decrease of Young's modulus) which leads to large deformation. This process is called "hybrid mechanism" in the present study. The main disadvantage NiMnGa is its brittleness, hence, it is not suitable to be used as an actuator material. On the other hand, shape memory effect and superelasticity of polycrystalline Fe-Pd alloys have been confirmed. The martensite plate has been found consisting of very fine structures. The Young's modulus of the Fe-Pd alloys depends on temperature and has a rapid decline around the transformation temperature. Furthermore, a three dimensional (stress-temperature-magnetic field) phase diagram is constructed to clarify the possible driving mechanisms. Although the results of the present study show that the direct magnetic field effect on the phase transformation and martensite variant change is also very small, the "hybrid mechanism" is still very significant due to the large magnetization of the alloys. A model of stress

  7. Theoretical investigations on the layer-anion interaction in Mg-Al layered double hydroxides: Influence of the anion nature and layer composition

    NASA Astrophysics Data System (ADS)

    Cuautli, Cristina; Ireta, Joel

    2015-03-01

    The influence of the anion nature and layer composition on the anion-layer interaction in Mg-Al layered double hydroxides (LDHs) is investigated using density functional theory. Changes in the strength of the anion-layer interaction are assessed calculating the potential energy surface (PES) associated to the interlayer anion (OH-/Cl-) in Mg-Al-OH and Mg-Al-Cl LDHs. The layer composition is varied changing the divalent to trivalent cation proportion (R). Mg-Al-OH is thus investigated with R = 2, 3, 3.5 and Mg-Al-Cl with R = 3. It is found that the PES for OH- in Mg-Al-OH/R = 3 presents wider energy basins and lower energy barriers than any other of the investigated compositions. It is shown that the latter is connected to the number of hydrogen bonds formed by the anions. These results have interesting implications for understanding the enhancement of the physicochemical properties of LDHs upon changing composition.

  8. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    DOEpatents

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  9. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  10. Synthesis and characterization of nanocrystalline MgAl{sub 2}O{sub 4} spinel via sucrose process

    SciTech Connect

    Alinejad, Babak Sarpoolaky, Hosein; Beitollahi, Ali; Saberi, Ali; Afshar, Shahrara

    2008-05-06

    Nanocrystalline MgAl{sub 2}O{sub 4} spinel powder was synthesized using metal nitrates and a polymer matrix precursor composed of sucrose and polyvinyl alcohol (PVA). The precursor and the calcined powders were characterized by simultaneous thermal analysis (STA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to XRD results, the inceptive formation temperature of spinel via this technique was between 600 and 700 deg. C. The calcined powder at 800 deg. C for 2 h has faced shaped morphology and its crystallite size is in the range of 8-12 nm. Further studies also showed that the amount of polymeric matrix to metal ions has significant influence on the crystallite size of synthesized magnesium aluminate spinel powder.

  11. Immobilization and catalytic properties of candida lipolytic lipase on surface of organic intercalated and modified MgAl-LDHs

    NASA Astrophysics Data System (ADS)

    Dong, Lijun; Ge, Chunling; Qin, Peiyong; Chen, Yan; Xu, Qinghong

    2014-05-01

    In this study, MgAl-LDHs (layered double hydroxides) intercalated with sodium dodecyl sulfate and outside surface modified with (3-aminopropyl)triethoxysilane (KH550) were prepared. The existence of organic part in LDHs improved immobilization efficiency and activity recovery of candida lipolytic lipase loaded. Also the positive charge in framework of LDHs was found to be beneficial to the enzyme immobilization. An immobilization efficiency of 56.4% and an activity recovery over 69.2% of the enzyme were obtained after it was loaded on the intercalated and modified LDHs, and catalytic activity of the immobilization can be kept at least five times. Moreover, the immobilized enzyme was found to have higher temperature resistance, wider pH value and better thermostability in reactive activity.

  12. Eu-doped Mg-Al layered double hydroxide as a responsive fluorescent material and its interaction with glutamic acid

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Li, Fei; Yu, Gensheng; Wei, Junchao

    2012-10-01

    The paper describes a study on the fluorescence of a Eu-doped Mg-Al layered double hydroxide (Eu-doped LDH) response to glutamic acid (Glu). Various characterizations (UV-Vis transmittance, TG-DTA and IR-spectrum) indicated that there is an interaction between the Eu-doped LDH and Glu. Fluorescent study was found that the red emissions resulted from 5D0-7FJ transition (J = 1, 2) of Eu3+ markedly decreased, while the blue emission at 440 nm contributed to Glu shifted to low energy after the addition of Glu to the Eu-doped LDH. The fluorescent changes may be relevant to the hydrogen-bond interaction between the Eu-doped LDH and Glu, and the mechanism of the interaction between Eu-doped LDH and Glu was discussed.

  13. Luminescent nanoparticles of MgAl 2O 4:Eu, Dy prepared by citrate sol-gel method

    NASA Astrophysics Data System (ADS)

    Maia, Alessandra S.; Stefani, Roberval; Kodaira, Cláudia A.; Felinto, Maria C. F. C.; Teotonio, Ercules E. S.; Brito, Hermi F.

    2008-10-01

    MgAl 2O 4:Eu, Dy nanoparticles were prepared by citrate sol-gel method and thermally treated at 600, 700, 800 and 900 °C. The trivalent europium ion is partially reduced to the divalent state at 700 and 800 °C. Infrared spectra of the phosphors showed bands around 700 and 520 cm -1 corresponding to the AlO 6 groups. X-ray diffraction patterns present sharp reflections of samples heated from 700 to 900 °C indicating the MgAl 2O 4 spinel phase. Grain size in the range 20-30 nm were observed by measurement of transmission electron microscopy (TEM). The emission spectra of the phosphors show a broadened band at 480 nm assigned to the 4f 65d → 4f 7 ( 8S 7/2) transition of Eu 2+ ion overlapped to the 4F 9/2 → 6H 15/2 transition of the Dy 3+ ion. Besides, the 4F 9/2 → 6H 13/2 transition (579 nm) of Dy 3+ ion is overlapped with the 5D 0 → 7F 0 (578 nm) and 5D 0 → 7F 1 (595 nm) transitions from the Eu 3+ ion. Excitation spectra of the sample heated at 900 °C monitoring the excitation at 615 nm of 5D 0 → 7F 2 transition of Eu 3+ ion exhibit a broad band assigned to the O → Eu 3+ ligand-to-metal charge-transfer states (LMCT) around 280 nm. The samples present green persistent luminescence after exposure to UV radiation. The chromaticity coordinates were obtained from the luminescence emission spectrum.

  14. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  15. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  16. Elevated temperature tribology of cobalt and tantalum-based alloys

    DOE PAGESBeta

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; Michael, J. R.; Robino, C. V.

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volumemore » gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10–4 mm3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.« less

  17. Elevated temperature tribology of cobalt and tantalum-based alloys

    SciTech Connect

    Scharf, T. W.; Prasad, S. V.; Kotula, P. G.; Michael, J. R.; Robino, C. V.

    2014-12-31

    This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430°C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volume gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10–4 mm3/N•m) were observed at 430°C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430°C. Furthermore, the results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.

  18. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  19. Electronic Structure Calculations of delta-Pu Based Alloys

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A

    2003-11-13

    First-principles methods are employed to study the ground-state properties of {delta}-Pu-based alloys. The calculations show that an alloy component larger than {delta}-Pu has a stabilizing effect. Detailed calculations have been performed for the {delta}-Pu{sub 1-c}Am{sub c} system. Calculated density of Pu-Am alloys agrees well with the experimental data. The paramagnetic {yields} antiferromagnetic transition temperature (T{sub c}) of {delta}-Pu{sub 1-c}Am{sub c} alloys is calculated by a Monte-Carlo technique. By introducing Am into the system, one could lower T{sub c} from 548 K (pure Pu) to 372 K (Pu{sub 70}Am{sub 30}). We also found that, contrary to pure Pu where this transition destabilizes {delta}-phase, Pu{sub 3}Am compound remains stable in the antiferromagnetic phase that correlates with the recent discovery of a Curie-Weiss behavior of {delta}-Pu{sub 1-c}Am{sub c} at c {approx} 24 at. %.

  20. Hyperfine magnetic fields in cobalt-based Heusler alloys

    SciTech Connect

    Yehia, M.S.

    1987-01-01

    Measurement of hyperfine interactions at Cd-111 and Sn-119 impurity nuclei in Co-based Heusler alloys Co/sub 2/YZ (Y = Mn, Ti, V, Zr and Z was Al, Ga, Ge, Si, Sn) were made within a temperature range 77 to 746 K using the time differential Perturbed Angular Correlation (TDPAC) and Mossbauer techniques. The hyperfine-field results in these alloys are discussed in terms of two models, the localized moment model and the Volume Overlap model. In the localized moment model a pre-asymptotic phase factor n = ..pi.. at distance r = a/2 was used to fit the experimental results on Co/sub 2/YZ (Y = Ti, V, Zr and Z = Al, Ga, Sn, Ge). In the Volume Overlap model the hyperfine field results in the series Co/sub 2/MnZ (Z = Ge, Si, Sn) was plotted against the lattice parameter of these alloys; a linear relationship was found, suggesting a non overlap term between the magnetic atom and the nonmagnetic impurity. A prediction of hyperfine magnetic filed less than 40 (kOe) on Sn-119 and of about -250(kOe) on Cd-111 in Co/sub 2/TiSi and Co/sub 2/TiGe is made. Temperature variation of the hyperfine magnetic field in the alloy Co/sub 2/MnSn with magnetic moments residing on two sites, has been studied. Results didn't show a dramatic deviation form the Brillouin function.

  1. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  2. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  3. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound. PMID:27433675

  4. Dendritic growth and structure of undercooled nickel base alloys

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Shiohara, Y.

    1988-01-01

    The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions.

  5. Evaluation of Experimental Ni-Base and Fe-Base Alloys Containing Lower Chrome:

    SciTech Connect

    Jablonski, P.D.; Alman, D.E

    2006-10-01

    Metallic interconnects are one of the key cost enabling technologies for SOFC in temperatures below about 800°C. Further cost advantages may be realized by the use of alloys with lower chromium than the more typical ~22 weight percent found in interconnect candidate alloys such as Crofer 22APU. Lower chrome commercial alloys typically contain silicon or aluminum as aids against oxidation. These elements can form electrically insulating layers within the oxide scale and are thus avoided in this effort. Iron and nickel based alloys with 6-22 weight percent chrome with very low levels of “tramp” elements were melted and fabricated into sheet form. To accommodate the low Cr, surface treatments are explored to provide an engineered solution to the interconnect question. Oxidation tests in moist air were conducted at 800oC to evaluate the corrosion resistance of the alloys. The results were compared to the behavior of Crofer 22APU and Haynes 230.

  6. Electrical Resistivity of Liquid Alkali Na-based Binary Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-11-01

    The study of the electrical resistivity rL of alkali Na-based binary alloys Na1-xLix, Na1-xKx, Na1-xRbx and Na1-xCsx have been made by well-recognized model potential of Gajjar et al. The most recent exchange and correlation functions due to Farid et al (F) and Sarkar et al (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results, due to the inclusion of Sarkar et al's local field correction function, are found superior to those obtained due to Farid et al's local field correction function. Electrical resistivity of Na-based binary alloys compare well with the experimental data available in the literature.

  7. Synthesis of metastable aluminum-based intermetallics by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Srinivasan, S.; Desch, P.B.

    1991-01-01

    We have used mechanical alloying (MA) to prepare fine-grained powders of Al 25 at. % X (X = Ti, Zr, Hf) having the metastable cubic L1{sub 2} structure. Hexane (C{sub 6}H{sub 14}) is added to the milling media to avoid the agglomeration of the aluminum powder. Carbon from the decomposition of the hexane incorporates into the powder to form a fine dispersion of carbides. These carbides are beneficial because they limit grain growth during consolidation and add strength to the alloy. We have consolidated the mechanically alloyed powders using conventional hot-pressing and non-conventional dynamic pressing. We used hot pressing to consolidate mechanically alloyed L1{sub 2}-Al{sub 3}Ti powder in the presence of excess of Al. The compact has the DO{sub 22} structure. Its room-temperature compressive strength is 1.2 GPa (exceeding that of cast Al{sub 3}Ti by a factor of 10). At 400{degrees}C, the compressive strength decreases to 1 GPa. The ductility, which is negligible at room temperature, increases to 6% at 400{degrees}C. We used dynamic pressing to consolidate L1{sub 2}-Al{sub 5}CuZr{sub 2} powder. The compact, having the L1{sub 2} structure, has fine grains (44 nm) and a fine dispersion of ZrC precipitates (7 nm). Its hardness is in the range of 1030 kg mm{sup {minus}2}. Current efforts are to investigate ternary alloys based on fine-grained trialuminides which include a ductile second phase. 26 refs., 8 figs.

  8. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  9. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  10. Combined thermodynamic study of nickel-base alloys. Progress report

    SciTech Connect

    Brooks, C. R.; Meschter, P. J.

    1981-02-15

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni/sub 4/Mo, (4) heat capacities of Ni and disordered Ni/sub 3/Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys. (MOW)

  11. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  12. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  13. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  14. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres

    SciTech Connect

    Li, Wei-Zhen; Kovarik, Libor; Mei, Donghai; Liu, Jun; Wang, Yong; Peden, Charles H. F.

    2013-09-25

    The development of thermally stable, nanometer-sized precious metal-based catalysts remains a daunting challenge. Such materials, especially those based on the use of costly platinum metal, are essential and, to date, non-replaceable for a large number of industrially important catalytic processes. Here we report a well-defined cuboctahedral MgAl2O4 spinel support material that is capable of stabilizing platinum particles in the range of 1–3 nm on its relatively abundant {111} facets during extremely severe aging at 800 °C in air for 1 week. The aged catalysts retain platinum dispersions of 15.9% with catalytic activities for methanol oxidation being ~80% of that of fresh ones, whereas a conventional Pt/γ-Al2O3 catalyst is severely sintered and nearly inactive. Finally, we reveal the origin of the markedly superior ability of spinel {111} facets, resulting from strong interactions between spinel surface oxygens and epitaxial platinum {111} facets, inspiring the rational design of anti-sintering supported platinum group catalysts.

  15. Dendritic Growth in Mg-Based Alloys: Phase-Field Simulations and Experimental Verification by X-ray Synchrotron Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Mingyue; Xu, Yanjin; Zheng, Qiwei; Wu, Sujun; Jing, Tao; Chawla, Nikhilesh

    2014-05-01

    Changes in polycrystalline dendritic growth patterns during solidification result in a variety of solidified dendritic structures and morphologies. These microstructural changes are induced by a variety of effects such as the random distribution of nucleation sites and orientations, the interaction of growing individual dendritic grains, and effects of solid-liquid interfacial energy anisotropy. Here, we have studied the formation of the complicated and diverse dendrite morphologies both experimentally, by electron backscatter diffraction and by X-ray tomography; and numerically by three-dimensional phase-field simulations. Three binary magnesium alloys were considered in this study: Mg-Al, Mg-Zn, and Mg-Sn alloys. We show that the solidification microstructure can be attributed to the following factors: The interaction of the growing dendrites, the anisotropy of the growth, and the distribution and initial random orientations of nucleation sites.

  16. Processing, properties, and applications of Ni{sub 3}Al-based alloys

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Liu, C.T.

    1997-06-01

    The Ni{sub 3}Al-based alloys represent a quantum jump in advanced alloys for structural applications at elevated temperatures. These alloys offer benefits of oxidation, carburization, and chlorination resistance, and significantly higher strength than many commercially used alloys. The commercial applications of the Ni{sub 3}Al-based alloys have begun to occur because of their comprehensive development This paper is to provide a review of. (1) alloy development, (2) melting, casting, and processing of alloys, (3) property data, (4) welding process and weldment properties, and (5) case histories of current applications. It is concluded that the cast alloy IC-221M is on its way to commercialization. 22 refs., 8 figs., 2 tabs.

  17. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  18. A single source precursor for low temperature processing of nanocrystalline MgAl2O4 spinel: synthesis and characterization of [MgAl2(μ3-O)(μ2-O(i)Pr)4(O(i)Pr)2]4.

    PubMed

    Mohammadnezhad, Gholamhossein; Amini, Mostafa M; Khavasi, Hamid Reza

    2010-12-01

    A novel polynuclear single-source precursor was prepared and characterized by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. Nano-crystalline MgAl(2)O(4) spinel was synthesized via sol-gel processing of [MgAl(2)(μ(3)-O)(μ(2)-O(i)Pr)(4)(O(i)Pr)(2)](4). XRD, TGA-DSC and HRTEM confirmed the formation of a spinel phase at 475 °C, a temperature lower than any known processing temperature for MgAl(2)O(4). PMID:20953475

  19. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, Krishnamurti

    1992-01-01

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

  20. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOEpatents

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  1. Bifilm Defects in Ni-Based Alloy Castings

    NASA Astrophysics Data System (ADS)

    Campbell, John; Tiryakioğlu, Murat

    2012-08-01

    The Ni-base superalloys, which are normally melted and cast in a vacuum, entrain their surface-oxide film during turbulent pouring of the melt; unfortunately at this time, this process is universally practiced for investment castings of these materials. The entrained film becomes a bifilm crack automatically, so that cast alloys have a large population of cracks that controls their failure behavior. The problems of the growth of single crystals and the welding of polycrystalline alloys are reviewed to illustrate the central role of bifilms in the cracking of turbine blades, the heat-affected zones of welds, and the reliability of properties. It has been demonstrated that improved gravity pouring systems can reduce these problems significantly, but only countergravity filling of molds is expected to result in defect-free castings. Recent cases in which turbine blades failed in service are examined, and the central role of bifilm defects in these failures is discussed.

  2. Successful transfer of plasmid DNA into in vitro cells transfected with an inorganic plasmid-Mg/Al-LDH nanobiocomposite material as a vector for gene expression

    NASA Astrophysics Data System (ADS)

    Jaffri Masarudin, Mas; Yusoff, Khatijah; Rahim, Raha Abdul; Zobir Hussein, Mohd

    2009-01-01

    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO3- layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg2+ to Al3+ molar ratio Ri = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 Å in LDH to 42 Å was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO3 after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.

  3. SOx removal by calcined MgAlFe hydrotalcite-like materials: effect of the chemical composition and the cerium incorporation method.

    PubMed

    Cantú, Manuel; López-Salinas, Esteban; Valente, Jaime S; Montiel, Ramon

    2005-12-15

    Sulfur oxides are one of the most hazardous atmospheric pollutants since they contribute directly to acid rain formation. Consequently, stringent environmental regulations limit atmospheric SOx emissions, motivating research on efficient ways to reduce them. To supply an alternative to reduce these emissions in fluid catalytic cracking units, this study discloses efficient SOx reducing materials based on calcined MgAlFe hydrotalcite-like compounds (HT's). Thus, HT materials were synthesized by several methods including cerium addition. The adsorption of SO2 was carried out by contacting the calcined solid with a mixture of SO2 (1%) in air at 650 degrees C. It was demonstrated that the isomorphic incorporation of iron increased its reduction capability which was reflected in higher reduction rates and metal sulfate reduction grade at 550 degrees C. Moreover, when cerium was present in the iron-containing materials the saturation rate was improved, because cerium oxide promotes the oxidation of SO2 to SO3. The way cerium is incorporated influences the SO2 adsorption capacity. PMID:16475357

  4. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  5. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  6. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  7. Insights into the flexibility of ZrMxOy (M = Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials.

    PubMed

    Mao, Xue; Bai, Ying; Yu, Jianyong; Ding, Bin

    2016-04-21

    A surprising brittle to flexible transition in ZrMxOy (M = Na, Mg, Al) nanofibrous membranes was found by varying the undersized dopant species and content. The fiber morphology, crystalline structure, and pore structure of the ZrMxOy nanofibrous membranes can be significantly modulated by varying the dopant valence from +1 to 3 and the dopant content from 1 to 20 mol%, respectively. Meanwhile, a classical Hall-Petch effect was revealed for the ZrMxOy nanofibrous membranes systems, which corresponded to a nanocrystalline size of 22.8 nm and an enhanced flexibility of 23 mN. Moreover, the substitutional solid solution and interstitial solid solution dissolution processes of Na, Mg, and Al into ZrO2 were analyzed using vacancy compensation and dopant interstitial compensation mechanisms, respectively. Most importantly, the flexible Al doped zirconia nanofibrous membranes exhibit a low infrared emissivity of 0.589 and 0.703 in the 3-5 μm and 8-14 μm wavebands, respectively, which suggests them to be a promising candidate for infrared stealth materials in the confrontation strategy field for personnel, aircraft, missiles, satellites, etc. PMID:26974663

  8. Fabrication of Nanocomposites of SnO2 and MgAl2O4 for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Nithyavathy, N.; Arunmetha, S.; Vinoth, M.; Sriram, G.; Rajendran, V.

    2016-04-01

    Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2) x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl2O4 (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C2H5OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.

  9. Optical absorption and thermoluminescence of MgAl 2O 4 spinel crystals implanted with Xe ++ ions

    NASA Astrophysics Data System (ADS)

    Afanasyev-Charkin, I. V.; Gritsyna, V. T.; Cooke, D. W.; Bennett, B. L.; Evans, C. R.; Hollander, M. G.; Sickafus, K. E.

    1999-01-01

    We have studied changes in optical absorption of MgAl 2O 4 spinel crystals implanted with 340 keV Xe ++ ions at about 120 K, to fluences ranging from 10 15-10 21 ions/m 2. With increasing ion fluence, we observe an increase in optical absorption, especially in the vicinity of two absorption bands: one centered at 5.3 eV, the other at 6.9 eV. The absorption band at 5.3 eV, caused by F-centers, saturates at a fluence between 1·10 18 and 1·10 19 ions/m 2. This is the same dose range in which formation of a metastable phase of spinel has been reported previously. The band at 6.9 eV grows with increasing dose and saturates at 1·10 20-3·10 20 ions/m 2. Previous studies have shown that spinel is amorphized by Xe ion irradiation in this dose range. Annealing studies were also conducted on the Xe ion implanted spinel crystals. By optical absorption, F-centers were found to anneal at 500°C. Thermoluminescence measurements revealed a temperature dependence of luminescence that correlates well with the optical absorption.

  10. Morphology control and luminescence properties of BaMgAl 10O 17:Eu 2+ phosphors prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhou, Yonghui; Lin, Jun

    2005-02-01

    Starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives, BaMgAl 10O 17:Eu 2+ (BAM:Eu 2+) phosphors were prepared by a two-step spray pyrolysis (SP) method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectra were used to characterize the resulted BAM:Eu 2+ phosphors. The obtained BAM:Eu 2+ phosphor particles have spherical shape, submicron size (0.5-3 μm). The effects of process conditions of the spray pyrolysis, such as molecular weight and concentration of PEG, on the morphology and luminescence properties of phosphor particles were investigated. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.03 g/ml in the precursor solution. Moreover, the emission intensity of the phosphors increased with increasing of metal ion concentration in the solution. Compared with the BAM:Eu 2+ phosphor prepared by citrate-gel method, spherical BAM:Eu 2+ phosphor particles showed a higher emission intensity.

  11. Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release.

    PubMed

    Seftel, E M; Cool, P; Lutic, D

    2013-12-01

    Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400°C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic-mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6h with Phe solution. A delivery test in PBS of pH=7.4 showed the release of the Phe in several steps up to 25 h indicating different host-guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer. PMID:24094226

  12. One-step production of biodiesel from oils with high acid value by activated Mg-Al hydrotalcite nanoparticles.

    PubMed

    Wang, Yi-Tong; Fang, Zhen; Zhang, Fan; Xue, Bao-Jin

    2015-10-01

    Activated Mg-Al hydrotalcite (HT-Ca) nanoparticles (<45 nm) were synthesized by co-precipitation and hydrothermal activation with aqueous Ca(OH)2 solution. They were characterized by various techniques including X-ray diffraction, inductively coupled plasma atomic-emission spectrometer, Brunauer-Emmett-Teller method, scanning electronic microscope-X-ray energy dispersive analysis and temperature programmed desorption method. HT-Ca presented both acidic and basic due to the formation of Mg4Al2(OH)14 · 3H2O, Mg2Al(OH)7 and AlO(OH) nanocrystals to esterify and transesterify oils with high acid value (AV). Under conditions of 5 wt% HT-Ca, 160 °C, 30/1 methanol/oil molar ratio and 4h, 93.4% Jatropha biodiesel yield was obtained at AV of 6.3 mg KOH/g with 4 cycles (biodiesel yield>86%). It was further found that it can resist free fatty acids, and biodiesel yield reached 92.9% from soybean oil with high AV of 12.1. HT-Ca catalyst showed a potential practical application for direct production of biodiesel from oils with high AV without pretreatment. PMID:26117239

  13. Pulsed-Current Welding Of Nickel-Based Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Kurgan, C.; Malone, T. W.

    1993-01-01

    Joints as strong (or stronger than) joints made with constant current. Report based on study of pulsed-current versus constant-current gas/tungsten arc welding of butt joints between panels of nickel-based alloy 718. In pulsed-current welding, arc current alternated between high and low value. Enables greater control of freezing and depth of penetration of weld puddle at given heat input. Thicker sections joined. Readily incorporated into automated welding system, with resultant greater uniformity and reproducibility of welds than attained in manual welding.

  14. Corrosion initiation and propagation of nickel base alloys in severe sea water applications

    SciTech Connect

    Oldfield, J.W.

    1995-10-01

    Nickel base alloys such as Alloy 625, C22, C276 and 59 are generally considered to have exceptional corrosion resistances in critical sea water applications at ambient temperature. Test results published in recent years however indicate that sever crevice corrosion of some of these alloys may occur under certain conditions. Exposure testes have been carried out in natural and chlorinated sea water on these alloys, together with two high N alloys, Alloy 24 and Alloy 654SMO. Electrochemical studies and simple mathematical mode.lling have also been carried out. These data, together with surface studies, help explain the observed phenomena and assist in the safe selection of alloys for critical sea water applications.

  15. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  16. Pack cementation diffusion coatings for iron-base alloys

    SciTech Connect

    Rapp, R.A.

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  17. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  18. Preparation and characterization of thin films of MgO, Al2O3 and MgAl2O4 by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ron; Kitai, Adrian H.

    1993-02-01

    MgO, Al2O3 and MgAl2O4 thin films were deposited on silicon substrates at various temperatures by the atomic layer deposition (ALD) method using bis(cyclopentadienyl)magnesium, triethylaluminum, and H2O and were characterized systematically. High-quality polycrystalline MgO films were deposited for a substrate temperature above 500°C, and amorphous thin films were deposited around 400°C. The deposited Al2O3 and MgAl2O4 thin films were characterized as amorphous in structure. Applicability of ALD to complex oxides is discussed.

  19. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Jiang, Ke; Li, Shuo-Qi; Zhang, Fen; Cui, Hong-Zhi; Han, En-Hou

    2015-03-01

    Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the Mg/Al/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively. The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210°C. The diffusion mechanism of the interfaces of Mg/Al and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HTat a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.

  20. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  1. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1986-01-01

    Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  2. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1987-01-01

    Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  3. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  4. Solidification study of some Ni- and Co-base alloys

    NASA Technical Reports Server (NTRS)

    Jeanfils, C. L.

    1984-01-01

    An ongoing research program aims to characterize the solidification of several Ni- and Co-based commercial wrought type alloys. The techniques used and the data items sought are: (1) thermal analysis, liquidus, nonequilibrium solidus as a function of cooling rate, secondary reactions temperatures, incipient melting, progress of solidification as a function of temperature; (2) optical metallography, characteristic structures and secondary dendrite arm spacing as a function of cooling rate; (3) X-ray diffraction, identification of precipitates; and (4) SEM/EDAX, measure of microsegregation.

  5. DENSITY-FUNCTIONAL STUDY OF Zr-BASED ACTINIDE ALLOYS

    SciTech Connect

    Landa, A; Soderlind, P; Turchi, P; Vitos, L; Ruban, A

    2008-06-26

    Density-functional formalism is applied to study the phase equilibria in the U-Zr system. The obtained ground-state properties of the {gamma} (bcc) and {delta} (C32) phases are in good agreement with experimental data. The decomposition curve for the {gamma}-based U-Zr solutions is calculated. We argue that stabilization of the {delta}-UZr{sub 2} phase relative to the {alpha}-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is alloyed with Zr.

  6. Kornerupine in Mg-Al-rich gneisses from Namaqualand, South Africa: mineralogy and evidence for late-metamorphic fluid activity

    NASA Astrophysics Data System (ADS)

    Waters, D. J.; Moore, J. M.

    1985-12-01

    Three kornerupine occurrences are reported in distinctive SiO2-poor, MgO- and Al2O3-rich paragneisses from the Namaqualand Metamorphic Complex in South Africa. Kornerupine coexists stably with phlogopite, cordierite, orthopyroxene, gedrite, sapphirine, sillimanite and plagioclase and, in sapphirine-free rocks, with spinel and corundum. Tourmaline of a texturally older generation than kornerupine is commonly present in the same samples. Ten analysed kornerupines show a variation in total Fe as FeO from 1.8 to 10.9 weight per cent. B2O3 contents are estimated from x-ray data and a few spectrochemical analyses to range from 0.9 to 3.5 weight per cent. There is a strong inverse correlation between B3+ and Al3+. Total iron content has a strong and systematic effect on refractive index, colour and dispersion. Fe and Mg are systematically partitioned with the other minerals, and Mg/(Mg+Fe) ratios increase as follows: spinel Mg-Al-rich, locally boron-bearing, sedimentary precursor.

  7. Photoinduced radical processes on the spinel (MgAl2O4) surface involving methane, ammonia, and methane/ammonia.

    PubMed

    Emeline, A V; Abramkin, D A; Zonov, I S; Sheremetyeva, N V; Rudakova, A V; Ryabchuk, V K; Serpone, N

    2012-05-15

    The present study explored photoinduced radical processes caused by interaction of CH(4) and NH(3) with a photoexcited surface of a complex metal oxide: magnesium-aluminum spinel (MgAl(2)O(4); MAS). UV irradiation of MAS in vacuo yielded V-type color centers as evidenced by the 360 nm band in difference diffuse reflectance spectra. Interaction of these H-bearing molecules with photogenerated surface-active hole states (O(S)(-)•) yielded radical species which on recombination produced more complex molecules (including heteroatomic species) relative to the initial molecules. For the MAS/CH(4) system, photoinduced dissociative adsorption of CH(4) on surface-active hole centers produced •CH(3) radicals that recombined to yield CH(3)CH(3). For MAS/NH(3), a similar dissociative adsorption process led to formation of •NH(2) radicals with formation of NH(2)NH(2) as an intermediate product; continued UV irradiation ultimately yielded N(2). For the mixed MAS/CH(4)/NH(3) system, however, interaction of adsorbed NH(3) and CH(4) on the UV-activated surface of MAS yielded •NH(2) and •CH(3) radicals, respectively, which produced CH(3)-NH(2) followed by loss of the remaining hydrogens to form a surface-adsorbed cyanide, CN(S), species. Recombination of photochemically produced radicals released sufficient energy to re-excite the solid spinel, generating new surface-active sites and a flash luminescence (emission decay time at 520 nm, τ ~ 6 s for the MAS/NH(3) case) referred to as the PhICL effect. PMID:22497296

  8. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  9. Structure and luminescence behaviour of as-synthesized, calcined, and restored MgAlEu-LDH with high crystallinity.

    PubMed

    Zhao, Yushuang; Li, Ji-Guang; Fang, Fang; Chu, Nankai; Ma, Hui; Yang, Xiaojing

    2012-10-21

    Highly crystalline Eu(3+)-incorporated MgAl layered double hydroxides (LDHs) were synthesized by the homogeneous precipitation method. For the crystals as-prepared, after their calcination from 200-1000 °C, and, further, after restoration in a Na(2)CO(3) solution, the structural and luminescent changes were investigated for the first time. Eu(3+) ions with a coordination number of, probably, 8, were incorporated into the hydrotalcite layer, which led to a basal spacing (d(basal)) increase, microstrain formation, and crystalline morphology imperfections, while retaining the original lattice symmetry, R3[combining macron]m. In the deconstruction process due to calcination, the Eu(3+) ions restrained the formation of the spinel phase from the layered double oxide (LDO), but did not significantly change the memory effect, by which LDOs can convert to LDHs during the hydration process. For the reversible phase transformation between LDH and LDO, the morphology observation revealed that, in addition to the formation of pores on the surface, nano-slabs were formed, especially for the restored crystals. A layered phase with a d(basal) of 5.8 Å, due to bridging bidentate carbonates with the hydrotalcite layer, was formed in the calcination process at low temperature (300 °C) before the formation of LDO, but could not be restored to a large spacing. Typical (5)D(0) → (7)F(J) (J = 0-4) transitions of Eu(3+) at 579, 593, 615, 653, and 698 nm were observed in the photoluminescence spectra and the intensity of the dominating 615 nm band decreased with the LDH deconstruction and the formation of free water, and then increased with the formation of LDOs in the calcination process, and vice versa in the reconstruction process. The Eu(3+) ions had a probable 9- or 10-coordination mode in addition to the probable 8-coordination mode as the spinel phase appeared. PMID:22930336

  10. On the corrosion behavior and biocompatibility of palladium-based dental alloys

    NASA Astrophysics Data System (ADS)

    Sun, Desheng

    Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental

  11. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  12. Defect Interaction in Iron and Iron-based Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 <111>interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme

    PubMed Central

    Hussein Al Ali, Samer Hasan; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Ismail, Maznah; Zainal, Zulkarnain; Hakim, Muhammad Nazrul

    2012-01-01

    The intercalation of a drug active, perindopril, into Mg/Al-layered double hydroxide for the formation of a new nanocomposite, PMAE, was accomplished using a simple ion exchange technique. A relatively high loading percentage of perindopril of about 36.5% (w/w) indicates that intercalation of the active took place in the Mg/Al inorganic interlayer. Intercalation was further supported by Fourier transform infrared spectroscopy, and thermal analysis shows markedly enhanced thermal stability of the active. The release of perindopril from the nanocomposite occurred in a controlled manner governed by pseudo-second order kinetics. MTT assay showed no cytotoxicity effects from either Mg/Al-layered double hydroxide or its nanocomposite, PMAE. Mg/Al-layered double hydroxide showed angiotensin-converting enzyme inhibitory activity, with 5.6% inhibition after 90 minutes of incubation. On incubation of angiotensin-converting enzyme with 0.5 μg/mL of the PMAE nanocomposite, inhibition of the enzyme increased from 56.6% to 70.6% at 30 and 90 minutes, respectively. These results are comparable with data reported in the literature for Zn/Al-perindopril. PMID:22904631

  14. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Huang, Liang-liang; Meng, Hui-min; Liang, Li-kang; Li, Sen; Shi, Jin-hui

    2015-10-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant appears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance ( W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarily γ-FeOOH and Fe3O4.

  15. Nanohybrids of Mg/Al layered double hydroxide and long-chain (C18) unsaturated fatty acid anions: Structure and sorptive properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-chain (C18) unsaturated fatty acid anions, elaidate (ELA), oleate (OLE), linoleate (LINO), and linolenate (LINOLEN), were intercalated into Mg/Al (3:1) layered double hydroxide (LDH) and the resultant organo-LDH nanohybrid materials were characterized and subsequently evaluated as sorbents of s...

  16. Effect of intercalated aromatic sulfonates on uptake of aromatic compounds from aqueous solutions by modified Mg-Al layered double hydroxide

    SciTech Connect

    Kameda, Tomohito; Yamazaki, Takashi; Yoshioka, Toshiaki

    2010-06-15

    In this study, we utilized Mg-Al layered double hydroxide (Mg-Al LDH) modified by intercalation with three aromatic sulfonates-2,7-naphthalene disulfonate (2,7-NDS{sup 2-}), benzenesulfonate (BS{sup -}), and benzenedisulfonate (BDS{sup 2-})-for the uptake of two aromatics-1,3-dinitrobenzene (DNB) and anisole (AS)-from aqueous solution and determined the effect of the aromatic sulfonates on the uptake of these aromatics. We found that the electron-rich aromatic ring of the intercalated aromatic sulfonates such as 2,7-NDS{sup 2-} undergoes strong {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB in aqueous solution, and these interactions result in a higher uptake of DNB by the modified Mg-Al LDHs. In contrast, the electron-poor aromatic ring of the aromatic sulfonates such as BDS{sup 2-} undergoes weak {pi}-{pi} stacking interactions with the electron-poorer benzene ring of DNB, and these interactions result in a lower uptake of DNB by the modified Mg-Al LDHs.

  17. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  18. A new phase in rapidly solidified Ti[sub 3]Al-based alloys

    SciTech Connect

    Xu Rui; Xu Daming; Li Qingchun . Dept. of Materials Science and Engineering); Li Dong; Cui Yuyou; Hu Zhuangqi . State Key Lab. for RSA)

    1995-01-15

    Rapid solidification processing has been developed to improve the properties of alloys through refining microstructures, disordering and forming metastable phases. The as-melt spun Ti[sub 3]Al-based alloy with Nb additions above 5-at%, which consist of [alpha][sub 2] and [beta][sub 0] phases in a normal condition, exhibited as single [beta][sub 0] structure. Jackson et al have carried out a comparative study of I/M and RS Ti[sub 3]Al-1 Zr(at%) alloy. Their study revealed that considerable refinement of grains and anti-phase domains was achieved in the rapidly solidified material prepared by the pendant drop melt extraction process (PDME). It is suggested that rapid solidification processing can reduce the ordering of the Ti[sub 3]Al-based alloy. In the past years, it was found that the Ti[sub 3]Al-based alloy with alloying additions (mainly Nb) has been studied extensively, and some new phases such as T and O have been observed in the alloys, but less attention has been given to alloys with low Nb additions. The RS Ti[sub 3]Al-base alloys with Nb below 5-at% have been investigated systematically and a new metastable phase, ordering martensite [alpha][double prime][sub 0] (orthogonal), has been observed in these alloys.

  19. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  20. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  1. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  2. Metal science and engineering aspects of TiAl-based binary alloys investigations

    SciTech Connect

    Bondarev, B.I.; Elagin, D.V.; Molotkov, A.V.; Notkin, A.B.

    1995-12-31

    This paper covers structure and mechanical properties of TiAl-based alloys depending on the process of material production as well as on working and heat treatment conditions. TiAl-based binary alloys were studied. The basic types of structures which can be observed in this alloy were revealed.These structures were examined and methods of their formation were determined.The processes for manufacturing components for gas turbine and car engine applications are discussed.

  3. Toughening of Fe-based laser-clad alloy coating

    NASA Astrophysics Data System (ADS)

    Yao, Chengwu; Huang, Jian; Zhang, Peilei; Li, Zhuguo; Wu, Yixiong

    2011-01-01

    An investigation is reported on crack-free laser clad Fe-based alloy by use of biaxial powder feeding shielded with argon gas. The microstructure and phase structure of the coating were studied, and mechanical properties were analyzed through hardness, tension strength and wear resistance of the coating. Microstructure analysis showed that there was retained austenite with spherical particles distributed therein in the interdendritic and nearby grain boundary regions. The mechanical test results showed that net-like distributed retained austenite in the interdendritic region had certain toughening effect through blunting crack-tip. Under wear condition of high sliding speed and high loading, the wear resistance of the coating with net-like retained austenite was much higher than that of the coating with some discontinuous carbide network or carbide blocks. The results showed that toughening of laser clad Fe-based alloy with high hardness over 850 HV could be achieved by modifying interdendritic phases from net-like carbide to net-like austenite with spherical particles.

  4. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  5. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  6. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  7. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  8. Pseudosinhalite: discovery of the hydrous MgAl-borate as a new mineral in the Tayozhnoye, Siberia, skarn deposit

    NASA Astrophysics Data System (ADS)

    Schreyer, W.; Pertsev, N. N.; Medenbach, O.; Burchard, M.; Dettmar, D.

    After its initial synthesis as the new compound Mg2Al3B2O9(OH) (Daniels et al. 1997) pseudosinhalite has now been discovered as a new mineral. It occurs, together with hydrotalcite, as a replacement product of sinhalite, MgAlBO4, in an impure marble of the contact metasomatic iron boron deposit of Tayozhnoye in the Aldan Shield of Siberia. Its chemical composition determined by electron microprobe is (wt%): Al2O3 46.88; MgO 25.12; FeO 1.99; B2O3 (calculated) 21.75; H2O (calculated) 2.81 giving a total of 98.55 and leading to the empirical formula (Mg2.00 Fe2+0.09)Σ=2.09 Al2.94 B2O9(OH). The small deviation from the ideal stoichiometry with (Mg+Fe2+):Al≠2:3 may be caused by either solid solution towards, or submicroscopic interlayering with lamellae of, the structurally similar mineral sinhalite. The underlying substitution involving also B and H would be (Mg+Fe)+B=Al+2H. Pseudosinhalite is monoclinic, space group P21/c, with a=7.49(1), b=4.33(1), c=9.85(2) Å β=110.7(1)° V=299(1) Å3 Z=2. Calculated density is 3.508g/cm3. Pseudosinhalite is colourless with white streak and has a vitreous lustre. It is transparent; no fluorescence was detected. There is no cleavage and parting; fractures are concoidal. Optical constants could not be measured properly due to polysynthetic microtwinning, but α<1.72<γ. For synthetic pseudosinhalite α=1.691(1) β=1.713(1) γ=1.730(1) Δ=0.039 2V=80°. The temperature of pseudosinhalite formation was below about 400°C at low pressures and with a hydrous, CO2-bearing fluid participating in the reaction.

  9. Doping Experiments on Low-Dimensional Oxides and a Search for Unusual Magnetic Properties of MgAlB14

    SciTech Connect

    Julienne Marie Hill

    2002-12-31

    Doping experiments on La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 3} and SrCu{sub 2}(BO{sub 3}){sub 2} were performed with the intent of synthesizing new metallic low-=dimensional cuprate oxide compounds. Magnetic susceptibility {chi}(T) measurements on a polycrystalline La{sub 2}CuO{sub 4} sample chemically oxidized at room temperature in aqueous NaClO showed superconductivity with a superconducting transition temperature T{sub c} of 42.6 K and a Meissner fraction of 26%. They were unable to electrochemically oxidize La{sub 2}CuO{sub 4} in a nonaqueous solution of tetramethylammonium hydroxide (TMAOH) and methanol. Sr{sub 2}CuO{sub 3} was found to decompose upon exposure to air and water. Electron paramagnetic resonance, isothermal magnetization M(H), and {chi}(T) measurements on the primary decomposition product, Sr{sub 2}Cu(OH){sub 6}, were consistent with a nearly isolated, spin S = 1/2, local moment model for the Cu{sup +2} spins. From a fit of {chi}(T) by the Curie-Weiss law and of the M(H) isotherms by a modified Brillouin function, the weakly antiferromagnetic exchange interaction between adjacent Cu{sup +2} spins in Sr{sub 2}Cu(OH){sub 6} was found to be J/k{sub B} = 1.06(4) K. Doping studies on SrCu{sub 2}(BO{sub 3}){sub 2} were inconclusive. {chi}(T) measurements on an undoped polycrystalline sample of SrCu{sub 2}(BO{sub 3}){sub 2}, a sample treated with distilled water, and a sample treated with aqueous NaClO showed no qualitative differences between the samples. In addition, {chi}(T) and M(H, T) studies of the ultra-hard material MgAlB{sub 14} were carried out in search of superconductivity or ferromagnetism in this compound. {chi}(T) measurements on a powder sample revealed temperature-independent diamagnetism from 1.8 K up to room temperature with a Curie-Weiss impurity concentration equivalent to {approx} 1 mol% of spin-1/2 ions. In contrast, M(H, T) data on hot pressed samples showed evidence of ferromagnetic transitions above {approx} 330 K. Scanning

  10. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

    NASA Astrophysics Data System (ADS)

    Balcerzak, M.; Jakubowicz, J.; Kachlicki, T.; Jurczyk, M.

    2015-04-01

    Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti2Ni-based nanocrystalline alloys and their nanocomposites. Ti2Ni alloy was chemically modified by Pd and multi-walled carbon nanotubes. An objective of the present study is to provide data on hydrogenation properties of Ti2Ni-based alloys and compounds containing Pd and/or multi-walled carbon nanotubes. Alloys and composites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer, transmission electron microscopy, atomic force microscopy to evaluate phase composition, crystal structure, grain size, particle morphology and distribution of catalyst element. Hydrogenation/dehydrogenation properties and hydriding kinetics of materials were measured using a Sievert's apparatus. Hydrogenation properties of nanostructured Ti2Ni-based alloy and Ti2Ni-based nanocomposites were compared with those of the binary Ti2Ni compound. In present work we shown how mechanical alloying method and chemical modification by Pd and MWCNTs affected hydrogen storage properties of Ti2Ni alloy. The highest hydrogen capacity obtained for nanostructured Ti2Ni + Pd alloy equaled 2.1 wt.%. Up to our knowledge it is the highest hydrogen storage capacity obtained so far for Ti2Ni-based materials.

  11. Dental devices; dental noble metal alloys and dental base metal alloys; designation of special controls. Final rule.

    PubMed

    2004-08-23

    The Food and Drug Administration is amending the identification and classification regulations of gold-based alloys and precious metal alloys for clinical use and base alloys devices in order to designate a special control for these devices. FDA is also exempting these devices from premarket notification requirements. The agency is taking this action on its own initiative. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 (SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the draft guidance documents that would serve as special controls for these devices. PMID:15329980

  12. Single-Crystal Elastic Properties of the Spinel (MgAl2O4) - Galaxite (MnAl2O4) Solid Solution Series

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Bruschini, E.; Andreozzi, G. B.; Bosi, F.; Hålenius, U.

    2014-12-01

    Spinels are a subject of intense research in solid state physics, materials science and geosciences. Their general formula is T(A1-i)M(AiB2-i)X4 (A and B are cations, X are anions, T and M indicate tetrahedrally- and octahedrally-coordinated sites and i is the inversion degree). They are ideal materials to study the interplay between chemical substitutions, structure and the physical properties of solids. As spinel-structured ringwoodite (Mg,Fe)2SiO4 is the most abundant mineral in the lower transition zone, understanding the effect of chemical substitution on the elastic properties of spinels is of crucial for geophysics. We have experimentally studied the variation of the elastic properties along the join MgAl2O4 - MnAl2O4. Crystals of 4 compositions along the join were synthesized at the very same experimental conditions and their crystal chemistry was fully characterized. Single-crystal elastic constants Cij of all the samples were measured by Brillouin spectroscopy at ambient conditions. For compositions with Mn/Mg < 0.5 C11 remains constant, then it decreases of ~4% for higher Mn contents. From MgAl2O4 to MnAl2O4 C12 lineraly increases ~ 5% and C44 decreases ~ 20% . The bulk modulus KS is almost constant, whereas the shear modulus G decreases ~ 18% across the join. The elastic constants of MnAl2O4 are C11 = 271.3 (± 1.3) GPa, C12 = 164.8 (± 1.3) GPa and C44 = 124.9 (5) GPa. Using the empirical polyhedral approach [1] we have inferred the effectve polyhedral bulk moduli of Mg, Mn and Al in T and M sites. We observe that KMnM < KMgM < KMgT ≈ KMnT < KAlM << KAlT. The relationship between polyhedral moduli and ionic potential IP [2] can be expressed as Ki j (GPa) = 20 ( ± 2) × IP + 108 (± 10), where i is the cation, j is the site and IP is in units of (e/Å). Using our correlation and atomic radii from [3] we successfully reproduced the bulk modulus of different oxide spinels with bi- and tri-valent cations. Our preliminary results confirm that empirical

  13. High performance Zr-based metal hydride alloys for nickel metal hydride batteries

    SciTech Connect

    Young, R.C.; Ovshinsky, S.R.; Huang, B.; Chao, B.S.; Li, Y.

    2000-07-01

    Based upon Ovonic's multi-element, atomic engineering approach, two families of alloys are being used in commercial Nickel Metal Hydride (NiMH) rechargeable batteries, i.e., the mischmetal (Mm) based AB{sub 5} and Zr based AB{sub 2} alloys. While Mm based alloys are faster to activate, they are limited by a discharge capacity of only 320--340 mAh/g. The Zr based alloy, although slightly slower to activate, provides a much higher discharge capacity. In this paper, the authors first discuss the use of Ovonic's multi-element approach to generate a spectrum of disordered local environments. They then present experimental data to illustrate that through these atomically engineered local environments, they are able to control the hydrogen site occupancy, discharge capacity, kinetics, and surface states. The Zr based alloy with a specific discharge capacity of 465 mAh/g and excellent rate capability has been demonstrated.

  14. Ellipsometric characterization of surface freezing in Ga-based alloys

    NASA Astrophysics Data System (ADS)

    Bartel, K.; Nattland, D.; Kumar, A.; Dogel, S.; Freyland, W.

    2006-04-01

    We present results on surface freezing of Ga-based alloys, GaBi, GaPb and GaTl, above the liquidus line between the Ga-rich eutectic and the monotectic point. Spectroscopic ellipsometry (0.8 eV <=hν<=4.2 eV) and kinetic single wavelength ellipsometry (2.75 eV) have been employed to probe the changes of the interfacial electronic structures on surface freezing. To minimize thermal gradients across the sample a heatable cap that covers the sample and crucible was developed. The surface freezing temperature, TSF, for the spontaneous formation of a solid-like film on top of the Ga-rich liquid on cooling the sample from the homogeneous phase region was found to be independent of the temperature difference between the upper and lower furnace (ΔT: +10 to -10 K) and only weakly dependent on the cooling rate (\\partial T/\\partial t : 2.5-20 K h-1). In the case of GaPb the solid film consists of solid Pb with a thickness h>=400 Å. Comparing with GaBi we draw analogous conclusions for GaPb and GaTl and suggest that the surface freezing transition precedes the bulk phase transition along the liquidus line as the alloy is cooled.

  15. Oxidation/vaporization of silicide coated columbium base alloys

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  16. Reactive gas atomization processing for Fe-based ODS alloys

    SciTech Connect

    Rieken, Joel R; Anderson, Iver E; Kramer, Matthew J; Odette, G R; Stergar, E; Haney, E

    2011-08-24

    Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe–Cr–Y–Hf). During this process a reactive atomization gas (i.e., Ar–O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 50 nm) metastable Cr-enriched oxide shell that was used as a vehicle to transport oxygen into the consolidated microstructure. Subsequent elevated temperature heat treatment promoted thermodynamically driven oxygen exchange reactions between trapped films of Cr-enriched oxide and internal (Y, Hf)-enriched intermetallic precipitates, resulting in highly stable nano-metric mixed oxide dispersoids (i.e., Y–Hf–O) that were identified with X-ray diffraction. Transmission electron microscopy and atom probe tomography results also revealed that the size and distribution of the dispersoids were found to depend strongly on the original rapidly solidified microstructure. To exploit this, several oxide dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal–mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

  17. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Astrophysics Data System (ADS)

    Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Notardonato, W. U.; Vaidyanathan, R.

    2004-06-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First — a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second — fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  18. Ground based preparation for microgravity growth of alloy semiconductors

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Crouch, R. K.; Simchick, R. T.; Sorokach, S. K.; Rosch, W.; Knuteson, D. J.; Barber, P. G.

    1991-01-01

    Ground-based research conducted in order to prepare a microgravity space flight experiment is presented. The thermophysical properties of a PbSnTe alloy used for semiconductors are investigated, and furnace calibration and fluid-flow measurements are performed. The alloy has a zero energy crossing at approximately 40 percent SnTe in its band-gap vs composition diagram, which facilitates the design of long-wavelength IR detectors and lasers. The uniformity of devices made from this material depends on the ratio of PbTe and SnTe and requires the composition of the crystal growth to be closely controlled. The main obstacle to such control is the fact that liquid of this material is always solutally or thermally unstable, and, in a high-temperature gradient, the double convective instability cannot be made stable by balancing thermal and solutal expansion. In order to extend the science of crystal growth, the limits of suppression of convection have to be tested in low earth orbit.

  19. 'Age-hardened alloy' based on bulk polycrystalline oxide ceramic

    NASA Astrophysics Data System (ADS)

    Gurnani, Luv; Singh, Mahesh Kumar; Bhargava, Parag; Mukhopadhyay, Amartya

    2015-05-01

    We report here for the first time the development of 'age-hardened/toughened' ceramic alloy based on MgO in the bulk polycrystalline form. This route allows for the facile development of a 'near-ideal' microstructure characterized by the presence of nanosized and uniformly dispersed second-phase particles (MgFe2O4) within the matrix grains, as well as along the matrix grain boundaries, in a controlled manner. Furthermore, the intragranular second-phase particles are rendered coherent with the matrix (MgO). Development of such microstructural features for two-phase bulk polycrystalline ceramics is extremely challenging following the powder metallurgical route usually adopted for the development of bulk ceramic nanocomposites. Furthermore, unlike for the case of ceramic nanocomposites, the route adopted here does not necessitate the usage of nano-powder, pressure/electric field-assisted sintering techniques and inert/reducing atmosphere. The as-developed bulk polycrystalline MgO-MgFe2O4 alloys possess considerably improved hardness (by ~52%) and indentation toughness (by ~35%), as compared to phase pure MgO.

  20. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  1. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  2. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction.

    SciTech Connect

    Greeley, J.; Norskov, J.; Center for Nanoscale Materials; Technical Univ. of Denmark

    2009-03-26

    A density functional theory (DFT) -based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active for the ORR but, with few exceptions, they are found to be thermodynamically unstable in the acidic environments typical of low-temperature fuel cells. The results suggest that, absent other thermodynamic or kinetic mechanisms to stabilize the alloys, surface alloys are unlikely to serve as useful ORR catalysts over extended periods of operation.

  3. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  4. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  5. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    SciTech Connect

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.; Burke, M.G.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.

  6. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  7. Electron-ion plasma modification of Al-based alloys

    NASA Astrophysics Data System (ADS)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  8. The effect of annealing process on the optical and microwave dielectric properties of transparent MgAl2O4 ceramics by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Fu, Ping; Xu, Yong; Shi, Haohao; Zhang, Baohua; Ruan, Xuefeng; Lu, Wenzhong

    2014-05-01

    Transparent MgAl2O4 ceramics were fabricated by using spark plasma sintering (SPS). The effects of annealing temperature on the optical and microwave dielectric properties were investigated by positron annihilation technique and X-ray photoelectron spectroscopy (XPS). The results showed that the optimal annealing temperature for the optical property improvement was 900 °C and the in-line transmittance was improved to 74.9% at the wavelength of 550 nm. The further elevation of annealing temperature damaged the optical performance due to the combination of oxygen vacancies. The Q × f values of transparent MgAl2O4 ceramics were an overall increase from 800 °C to 1200 °C, but decreased at 1300 °C. It can be concluded that the annealing temperature plays an important role in the Q × f value, while a certain annealing temperature is corresponding to the best microwave dielectric property.

  9. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  10. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    SciTech Connect

    Purdy, I.M.

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  11. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    SciTech Connect

    Peterson, D.T. ); Hull, A.B.; Loomis, B.A. )

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed.

  12. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    SciTech Connect

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-12-31

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed.

  13. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl{sub 2}O{sub 4} substrates

    SciTech Connect

    Zhu, Guo-zhen; Majdi, Tahereh; Preston, John S.; Shao, Yang; Bugnet, Matthieu; Botton, Gianluigi A.

    2014-12-08

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl{sub 2}O{sub 4} substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  14. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl2O4 substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-zhen; Majdi, Tahereh; Shao, Yang; Bugnet, Matthieu; Preston, John S.; Botton, Gianluigi A.

    2014-12-01

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl2O4 substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  15. The effect of solution chemistry on the preparation of MgAl{sub 2}O{sub 4} by hydrothermal-assisted sol-gel processing

    SciTech Connect

    Amini, M.M. . E-mail: m-pouramini@cc.sbu.ac.ir; Mirzaee, M.; Sepanj, N.

    2007-03-22

    Preparation of magnesium aluminate spinel powder by hydrothermal-assisted sol-gel processing from MgAl{sub 2}(OCH{sub 2}CH{sub 2}OR){sub 8}, R=CH{sub 3} (1), CH{sub 2}CH{sub 2}OCH{sub 3} (2), MgAl{sub 2}[OCH(CH{sub 3}){sub 2}]{sub 8} (3) and MgAl{sub 2}(O- {sup s}Bu){sub 8} (4) in toluene and parent alcohol has been investigated. Coordination status of aluminum atom in precursors was determined by {sup 27}Al NMR and correlation between coordination number of aluminum and development of spinel phase in hydrothermal-assisted sol-gel processing has been studied. The gels obtained from hydrothermal-assisted hydrolysis of magnesium-aluminum alkoxides that contain six-coordinated aluminum atoms in solution (1 and 2) after calcination at 700 deg. C resulted in the formation of pure spinel phase, whereas in similar hydrolysis and calcination processes of precursors that contain four-coordinated aluminum (3 and 4) spinel phase forms along with some Al{sub 2}O{sub 3} and MgO. Selected powders obtained from hydrothermal-assisted sol-gel processing were characterized by thermal analysis (TGA/DSC), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Results indicate that the coordination status of aluminum in the precursor is very crucial for the formation of pure phase spinel. The morphology of prepared spinels was studied by SEM and the results showed that the solvent in hydrothermal-assisted sol-gel processing has a marked effect on the morphology of the resulting MgAl{sub 2}O{sub 4}. In hydrothermal-assisted sol-gel processing of aluminum-magnesium alkoxides in hydrophobic solvent, spherical particles are formed, while in the parent alcohol, non-spherical powders are formed.

  16. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  17. Spectroscopic properties of MgAl2-xO4:xCr3+ nanoparticles prepared by a high-temperature calcination method

    NASA Astrophysics Data System (ADS)

    Du, Xinhua; Tian, Hai; Yao, Shiyue; Long, Yumei; Liang, Bo; Li, Weifeng

    2015-12-01

    In this study, Cr3+-doped MgAl2O4 nanophosphors have been prepared via a facile high-temperature calcination route. The structure and morphology of the products were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques, which confirmed the typical spinel MgAl2O4 phase and sphere-like shape with particle size distribution of 50-80 nm. It was found that the Cr3+-doped MgAl2O4 can be efficiently excited by visible light and exhibits intense red emission peaking at 695 nm, corresponding to the 2Eg→4A2g transition of Cr3+ ions. The evolution of the luminescent properties on the Cr-doping concentration (0, 0.5, 1, 2, 3, 4 and 6 mol%) was then investigated and the optimal concentration was 3.0 mol%. It is believed that active intermediates and gases created in the calcining process play important roles not only on the formation of the monodispersed nanoparticles, but also on the homogeneous doping of Cr3+ at high concentration.

  18. Unravelling regolith material types using Mg/Al and K/Al plot to support field regolith identification in the savannah regions of NW Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    Arhin, Emmanuel; Zango, Saeed M.

    2015-12-01

    The XRF analytical method was used to measure the weight % of the major oxides in regolith samples. The metal weight % of Mg, K and Al were calculated from their oxides and were normalised relative to immobile Al calculated from its oxide. The plot of Mg/Al and K/Al identified the regolith of the study area to consist of 137 transported clays, 4 ferruginous sediments or ferricrete, 2 lateritic duricrust and 4 saprolites. Surface regolith that had undergone secondary transformation and shows compositional overlaps were 4 transported clays with Fe-oxide impregnation may be referred to as nodular laterite and 5 ferruginous saprolites. The variable regolith materials features identified from the 154 samples enabled the characterisation and identification of the different sample materials because an overprint of bedrock geochemistry is reflected in the regolith. Plot of Mg/Al and K/Al highlighted the compositional variability of the regolith samples and refute the notion of the homogeneity of all the sampled materials in the area. The study thus recognized Mg/Al versus K/Al plots to be used in supporting field identification of regolith mapping units particularly in complex regolith terrains of savannah regions of Ghana and in similar areas where geochemical exploration surveys are being carried out under cover.

  19. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Nassar, Mostafa Y.; Ahmed, Ibrahim S.; Samir, Ihab

    2014-10-01

    In this paper a novel and inexpensive route for the preparation of spinel magnesium aluminate nanoparticles (MgAl2O4) is proposed. Magnesium aluminate photocatalyst was synthesized via sol-gel auto combustion method using oxalic acid, urea, and citric acid fuels at 350 °C. Subsequently, the burnt samples were calcined at different temperatures. The pure spinel MgAl2O4 with average crystallite size 27.7, 14.6 and 15.65 nm was obtained at 800 °C calcinations using the aforementioned fuels, respectively. The obtained samples were characterized by powder X-ray diffraction, Fourier transform infrared, UV-Vis spectroscopy, transmission electron microscope, scanning electron microscope. The photo catalytic activity of MgAl2O4 product was studied by performing the decomposition of Reactive Red Me 4BL dye under UV illumination or sunlight irradiation. The dye considerably photocatalytically degraded by 90.0% and 95.45% under UV and sunlight irradiation, respectively, within ca. 5 h with pseudo first order rate constants of 5.85 × 10-3 and 8.38 × 10-3 min-1, respectively.

  20. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties.

    PubMed

    Nassar, Mostafa Y; Ahmed, Ibrahim S; Samir, Ihab

    2014-10-15

    In this paper a novel and inexpensive route for the preparation of spinel magnesium aluminate nanoparticles (MgAl2O4) is proposed. Magnesium aluminate photocatalyst was synthesized via sol-gel auto combustion method using oxalic acid, urea, and citric acid fuels at 350°C. Subsequently, the burnt samples were calcined at different temperatures. The pure spinel MgAl2O4 with average crystallite size 27.7, 14.6 and 15.65nm was obtained at 800°C calcinations using the aforementioned fuels, respectively. The obtained samples were characterized by powder X-ray diffraction, Fourier transform infrared, UV-Vis spectroscopy, transmission electron microscope, scanning electron microscope. The photo catalytic activity of MgAl2O4 product was studied by performing the decomposition of Reactive Red Me 4BL dye under UV illumination or sunlight irradiation. The dye considerably photocatalytically degraded by 90.0% and 95.45% under UV and sunlight irradiation, respectively, within ca. 5h with pseudo first order rate constants of 5.85×10(-3) and 8.38×10(-3)min(-1), respectively. PMID:24835935

  1. Eu2+ and Mn2+ Co-doped BaMgAl10O17 Blue- and Green-Emitting Phosphor: A Luminescence and EPR Study

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Singh, N.; Srivastava, Anoop K.; Jirimali, H. D.; Li, J.; Gao, H.; Kumaran, R. Senthil; Singh, Pramod K.; Dhoble, S. J.

    2016-06-01

    Eu2+ and Mn2+ co-doped BaMgAl10O17 phosphor has been prepared by a solution combustion method. The structural, morphological and compositional analysis of the BaMgAl10O17:Eu2+ and Mn2+ powders have been studied by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The electron paramagnetic resonance (EPR) spectrum exhibited resonance signals with the effective g values of g ≈ 4.88 and g ≈ 1.98. The resonance signal with the effective g value of g ≈ 4.88 is characteristic of Eu2+ ions whereas g ≈ 1.98 is due to Mn2+ ions. The number of spins participating in resonance, Gibbs free energy, magnetic susceptibility, Curie constant, effective magnetic moment, zero-field splitting parameter and hyperfine splitting constant have been evaluated. From optical and EPR correlation, it is inferred that Eu2+ and Mn2+ are present in the BaMgAl10O17 matrix.

  2. Luminescence Properties and Synthesis of SrMgAl10O17:Mn4+ Red Phosphor for White Light-Emitting Diodes.

    PubMed

    Cao, Renping; Xue, Hongdong; Yu, Xiaoguang; Xiao, Fen; Wu, Donglan; Zhang, Fenxiang

    2016-04-01

    A series of Mn4+ doped SrMgAl10O17 phosphors are synthesized by a conventional solid-state reaction method in air, and their crystal structure, morphology, and fluorescence properties are investigated. The luminescence properties show clearly that SrMgAl10O17:Mn4+ phosphor can be excited by UV (200-380 nm), near UV (380-420 nm), and blue (420-480 nm) bands of LEDs chip, and emits red light in the range of 600 nm to 750 nm with satisfying CIE chromaticity coordinates (0.7207, 0.2793). The optimal doping concentration of Mn4+ ion is ~1 mol%, and its lifetime is ~1.15 ms. The possible luminous mechanism of Mn4+ ion is discussed by Tanabe-Sugano diagram. These experiment results indicate that Mn4+ doped SrMgAl10O17 phosphors can be a potential application as a red-emitting phosphor candidate in white LEDs. PMID:27451654

  3. Structural and photoluminescent properties of nanosized BaMgAl10O17:Eu2+ blue-emitting phosphors prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Van Bui, Hao; Nguyen, Tu; Nguyen, Manh Cuong; Tran, Trong An; Le Tien, Ha; Tam Tong, Hao; Nguyen, Thi Kim Lien; Pham, Thanh Huy

    2015-09-01

    We report on the photoluminescent properties of Ba0.9Eu0.1MgAl10O17 (BAM) phosphors in correlation with the host crystalline structures. The phosphors were synthesized by citrate sol-gel process, followed by a sintering and a reduction step, both at elevated temperatures. We found that the phosphors were amorphous when sintered at temperatures below 900 °C. At 1000 °C, the crystalline structure was mainly that of BaAl2O4 phase. The BaMgAl10O17 phase appeared at 1100 °C, and became dominant with increasing temperature. At 1300 °C, the BaAl2O4 phase almost disappeared, and only BaMgAl10O17 features were found. The luminescent characteristics of the phosphors were closely related to the structures of the host lattice. Under the same reduction conditions, the phosphors sintered at 1000 °C showed the emission of both Eu3+ and Eu2+. For the phosphors sintered at higher temperatures, the main features were originated from the emission of Eu2+. We additionally observed the increase of emission intensity and the broadening of emission spectra with increasing reduction temperature.

  4. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  5. Research into Oil-based Colloidal-Graphite Lubricants for Forging of Al-based Alloys

    SciTech Connect

    Petrov, A.; Petrov, P.; Petrov, M.

    2011-05-04

    The presented paper describes the topical problem in metal forging production. It deals with the choice of an optimal lubricant for forging of Al-based alloys. Within the scope of the paper, the properties of several oil-based colloidal-graphite lubricants were investigated. The physicochemical and technological properties of these lubricants are presented. It was found that physicochemical properties of lubricant compositions have an influence on friction coefficient value and quality of forgings.The ring compression method was used to estimate the friction coefficient value. Hydraulic press was used for the test. The comparative analysis of the investigated lubricants was carried out. The forging quality was estimated on the basis of production test. The practical recommendations were given to choose an optimal oil-based colloidal-graphite lubricant for isothermal forging of Al-based alloy.

  6. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  7. Performance of Alumina-Forming Austenitic Steels, Fe-base and Ni-base alloys exposed to metal dusting environments

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Unocic, Kinga A; Pint, Bruce A; Brady, Michael P

    2011-01-01

    A series of conventional Fe- and Ni- base, chromia- and alumina- forming alloys, and a newly developed creep-resistant, alumina-forming austenitic steel were developed and its performance relative to conventional Fe- and Ni-based chromia-forming alloys was evaluated in metal dusting environments with a range of water vapor contents. Five 500h experiments have been performed at 650 C with different water vapor contents and total pressures. Without water vapor, the Ni-base alloys showed greater resistance to metal dusting than the Fe-base alloys, including AFA. However, with 10-28% water vapor, more protective behavior was observed with the higher-alloyed materials and only small mass changes were observed. Longer exposure times are in progress to further differentiate performance.

  8. Pore Formation Upon Nitriding Iron and Iron-Based Alloys: The Role of Alloying Elements and Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Schwarz, B.; Göhring, H.; Meka, S. R.; Schacherl, R. E.; Mittemeijer, E. J.

    2014-12-01

    Pure iron and a series of iron-based Fe-Me alloys (with Me = Al, Si, Cr, Co, Ni, and Ge) were nitrided in a NH3/H2 gas mixture at 923 K (650 °C). Different nitriding potentials were applied to investigate the development of pores under ferrite and austenite stabilizing conditions. In all cases, pores developed in the nitrided microstructure, i.e., also and strikingly pure ferritic iron exhibited pore development. The pore development is shown to be caused by the decomposition of (homogeneous) nitrogen-rich Fe(-Me)-N phase into nitrogen-depleted Fe(-Me)-N phase and molecular N2 gas. The latter, gas phase can be associated with such high pressure that the surrounding iron-based matrix can yield. Thermodynamic assessments indicate that continued decomposition, i.e., beyond the state where yielding is initiated, is possible. Precipitating alloying-element nitrides, i.e., AlN, CrN, or Si3N4, in the diffusion zone below the surface, hinder the formation of pores due to the competition of alloying-element nitride (Me x N y ) precipitation and pore (N2) development; alloying elements reducing the solubility of nitrogen enhance pore formation. No pore formation was observed upon nitriding a single crystalline pure iron specimen, nitrided under ferrite stabilizing conditions, thereby exhibiting the essential function of grain boundaries for nucleation of pores.

  9. Development and study of chemical vapor deposited tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  10. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Carmichael, C.A.

    1996-05-01

    This paper summarizes recent progress in developing Cr{sub 2}Nb/Cr(Nb) alloys for structural use in advanced fossil energy conversion systems. Alloy additions were added to control the microstructure and mechanical properties. Two beneficial elements have been identified among all alloying additions added to the alloys. One element is effective in refining the coarse eutectic structure and thus substantially improves the compressive strength and ductility of the alloys. The other element enhances oxidation resistance without sacrificing the ductility. The tensile properties are sensitive to cast defects, which can not be effectively reduced by HIPping at 1450-1580{degrees}C and/or directionally solidifying via a floating zone remelting method.

  11. Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.

  12. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    SciTech Connect

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P.; Windisch, C.F.; Johnson, C.D.; Schaeffer, C.

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  13. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  14. Corrosion of austenitic stainless steels and nickel-base alloys in supercritical water and novel control methods

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2012-01-01

    This chapter contains sections titled: (1) Introduction; (2) Thermodynamics of Alloy Oxidation; (3) Corrosion of Austenitic Stainless Steels and Ni-Base Alloys in SCW; (4) Novel Corrosion Control Methods; (5) Factors Influencing Corrosion; (6) Summary; and (7) References.

  15. MECHANICAL BEHAVIOR OF MOLYBDENUM DISILICIDE-BASED ALLOYS

    SciTech Connect

    A. MISRA; A. SHARIF; ET AL

    2000-12-01

    We have investigated the mechanical behavior of the following single-phase polycrystalline alloys with the MoSi{sub 2} body-center tetragonal structure: MoSi{sub 2} alloyed with {approximately}2.5 at.% Re, MoSi{sub 2} alloyed with 2 at.% Al, MoSi{sub 2} alloyed with 1 at.% Nb, and MoSi{sub 2} alloyed with 1 at.% Re and 2 at.% Al. Several anomalies in the mechanical behavior of alloyed materials were observed. For example, (1) addition of only {approximately}2.5 at. % Re results in an order of magnitude increase in compressive strength at 1600 C, (2) additions of Nb and Al cause solution softening at near-ambient temperatures, and (3) quaternary MoSi{sub 2}-Re-Al alloys show strengthening at elevated temperatures and reduction in flow stress with enhanced plasticity at near-ambient temperatures in compression. The mechanisms of anomalous solution hardening and softening are discussed.

  16. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    SciTech Connect

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  17. Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Yoshizawa, Y.

    2011-02-01

    High saturation magnetic flux density (high-Bs) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m-1 and a high Bs of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe80.5Cu1.5Si4B14 nanocrystalline alloy is 0.46 W kg-1, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg-1, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  18. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    PubMed

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties. PMID:26398780

  19. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  20. Effect of exposure in steam or argon on the creep properties of Ni-based alloys: Creep properties of Ni-based alloys

    SciTech Connect

    Dryepondt, S.; Unocic, K. A.; Pint, B. A.

    2012-09-17

    Although expensive, Ni-based superalloys are of interest for the ultrasupercritical steam program because of their good creep and oxidation resistance at temperature above 700 C. However, the effect of steam oxidation on the alloy mechanical properties is unknown, and creep specimens of alloy CCA617, 740 and 230 were pre-oxidized for 2000 and 4000h in steam at 800 C before testing in air at the same temperature. Exposure in steam decreased the creep properties of alloy CCA617 compared with as fabricated material, had less of an effect on alloy 740, and did not affect alloy 230. Testing of a specimen repolished after steam exposure as well as microstructure observation indicate that the oxidation affected zone at the specimen surface is not responsible for the properties degradation. Surprisingly, a similar time anneal in an inert environment resulted in a drastic decrease of creep rupture life and an increase in the creep rate and elongation at rupture. TEM analysis revealed that the mechanical properties decrease for alloy CCA617 is related to the absence of precipitates in the grain.

  1. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  2. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  3. Factors affecting the optical properties of Pd-free Au-Pt-based dental alloys.

    PubMed

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Tanaka, Yasuhiro; Hisatsune, Kunihiro

    2003-12-01

    The optical properties of experimental Au-Pt-based alloys containing a small amount of In, Sn, and Zn were investigated by spectrophotometric colorimetry to extract factors affecting color of Au-Pt-based high-karat dental alloys. It was found that the optical properties of Au-Pt-based alloys are strongly affected by the number of valence electrons per atom in an alloy, namely, the electron:atom ratio, e/a. That is, by increasing the e/a-value, activities of reflection in the long-wavelength range and absorption in the short-wavelength range in the visible spectrum apparently increased. As a result, the maximum slope of the spectral reflectance curve at the absorption edge, which is located near 515 nm (approximately 2.4 eV), apparently increased with e/a-value. Due to this effect, the b*-coordinate (yellow-blue) in the CIELAB color space considerably increased and the a*-coordinate (red-green) slightly increased with e/a-value. The addition of a third element with a higher number of valence electrons to the binary Au-Pt alloy is, therefore, effective in giving a gold tinge to the parent Au-Pt alloy. This information may be useful in controlling the color of Au-Pt-based dental alloys. PMID:15348493

  4. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  5. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  6. Shape-Memory-Alloy-Based Deicing System Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  7. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  8. Shape Memory Alloy (SMA)-Based Launch Lock

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  9. The HIP-nitriding of steels and titanium based alloys

    SciTech Connect

    Jacobs, M.H.; Ashworth, M.A.; Marshall, A.J.

    1996-12-31

    The paper discusses the HIP processing of nitriding steels (S106 and EN41B), austenitic stainless steel and titanium based alloys (cp Ti, Ti-6Al-4V and Ti-48Al-2Mn-2Nb), using ammonia and nitrogen gases as the pressurizing media to produce a nitrided surface. The paper compares the HIP-nitrided material with conventionally nitrided samples in terms of microstructure, case depths (in particular the ability to nitride uniformly down blind holes) and mechanical properties. The effect of HIP process parameters (time, temperature and pressure) on the resultant nitrided surface will also be discussed. Results obtained using NH{sub 3} will be compared with those obtained on samples HIPed in a pure N{sub 2} atmosphere with particular reference to the nitriding steels and the formation of a white layer. The use of NH{sub 3}/N{sub 2} gas mixtures on the nitriding of steels is investigated to determine the effect of NH{sub 3} concentration on process kinetics.

  10. Shape Memory Alloy (SMA)-based launch lock

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-04-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing free motion of the shaft, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  11. High strength nickel-base alloy with improved oxidation resistance up to 2200 degrees F

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J.

    1968-01-01

    Modifying the chemistry of the NASA TAZ-8 alloy and utilizing vacuum melting techniques provides a high strength, workable nickel base superalloy with improved oxidation resistance for use up to 2200 degrees F.

  12. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  13. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  14. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  15. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGESBeta

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  16. Molecular simulation of dislocation motion in magnesium alloys under high strain rates

    NASA Astrophysics Data System (ADS)

    Yi, Peng; Cammarata, Robert; Falk, Michael

    Dislocation motion of < a>dislocations on the basal and the prismatic planes under simple shear was studied using molecular simulations in Mg/Al and Mg/Y alloys. The critical resolved shear stress (CRSS) was calculated at temperature from 0K to 500K with solute concentrations from 0 to 7 at.%. The strain rates of 106-108 s-1 used in the simulation correspond to experimental strain rates of 101-105 s-1 based on Orowan's equation. Basal slip is dominated by the < a>edge dislocations. Solute hardening to the CRSS follows a power law, cn, where c is the solute concentration. The exponent n transitions from close to 2/3 at low temperature to close to 1 at high temperature. Temperature and strain rate effects on the CRSS are captured by Kocks model based on thermally activated events. Prismatic slip is controlled by the < a>screw dislocation that cross-slips between the basal and the prismatic planes, in a locking-unlocking pattern. Temperature affects the slip kinetics through the diffusion of the screw dislocation on the basal plane, which leads to vacancy and loop generation. Solute softening was observed for both Mg/Al and Mg/Y alloys. The softening on prismatic slip is due to the solute pinning effect on the basal plane, and Al is more effective in softening.

  17. Correlation between stoichiometry and surface structure of the polar MgAl2O4(100) surface as a function of annealing temperature.

    PubMed

    Jensen, Thomas N; Rasmussen, Morten K; Knudsen, Jan; Vlad, Alina; Volkov, Sergey; Lundgren, Edvin; Stierle, Andreas; Lauritsen, Jeppe V

    2015-02-28

    The correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity. Surface X-ray diffraction reveals a reduced occupancy in the top two surface layers for both Mg, Al, and O and, moreover, vacancies are preferably located in octahedral sites, indicating that Al and Mg ions interchange sites. The excess of Al and high concentration of octahedral vacancies, very interestingly, indicates that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1473 K, the Al/Mg ratio restores to its initial value, the occupancy of all elements increases, and the surface transforms into a well-defined structure with large flat terraces and straight step edges, indicating a restoration of the surface stoichiometry. It is proposed that the tetrahedral vacancies at these high temperatures are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures. PMID:25626848

  18. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    SciTech Connect

    Moddeman, William E.; Birkbeck, Janine C.; Barklay, Chadwick D.; Kramer, Daniel P.; Miller, Roger G.; Allard, Lawrence F.

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries.

  19. The effect of the concentration of citric acid and pH values on the preparation of MgAl{sub 2}O{sub 4} ultrafine powder by citrate sol-gel process

    SciTech Connect

    Zhang Haijun; Jia Xiaolin; Yan Yongjie; Liu Zhanjie; Yang Daoyuan; Li Zhenzhen

    2004-05-05

    Ultrafine MgAl{sub 2}O{sub 4} was synthesized by citrate sol-gel process. A model was presented to evaluate the concentration of species in a citric solution for preparing MgAl{sub 2}O{sub 4} ultrafine powder. The evaluated concentration of species can provide valuable information and help in selecting the optimal condition for preparation of MgAl{sub 2}O{sub 4} powder by citrate sol-gel process. The influence of molar ratio of cations, citric acid and pH on the formation of MgAl{sub 2}O{sub 4} was studied. The spinel precursor gel and the ultrafine MgAl{sub 2}O{sub 4} spinel were characterized by X-ray diffraction (XRD), differential thermal analysis, thermogravimetric (TG-DTA) and scanning electron microscope (SEM). The results show that the MgAl{sub 2}O{sub 4} spinel phase begins to form at 600 deg. C, and most of MgAl{sub 2}O{sub 4} crystals are spherical with a crystal size about 30-50 nm.

  20. Dimensional stability, optical and elastic properties of MgAl 2O 4 spinel irradiated in FFTF to very high exposures

    NASA Astrophysics Data System (ADS)

    Garner, F. A.; Hollenberg, G. W.; Hobbs, F. D.; Ryan, J. L.; Li, Z.; Black, C. A.; Bradt, R. C.

    1994-09-01

    Stoichiometric MgAl 2O 4 spinel specimens irradiated in FFTF-MOTA at temperatures between 385 and 750°C to fluences ranging from 2.2 to 24.9 × 10 22 n/cm 2 ( E > 0.1 MeV) darken significantly, but do not develop any significant loss in weight or change in dimensions. Similar behavior was observed in both single crystal and fully dense polycrystalline specimens. Measurements of elastic constants by an ultrasonic technique show that no measurable changes occur as a result of the irradiation. These and other results confirm the stability of this material for fusion applications.

  1. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    SciTech Connect

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC; Kovarik, Libor; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark A.; Rousseau, Roger J.; Dagle, Robert A.

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh and ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the

  2. Comparison of laser generation in thermally bonded and unbonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Belghachem, Nabil; Mlynczak, Jaroslaw

    2015-08-01

    Pulse laser generation in several Er3+,Yb3+:glasses thermally bonded with Co2+:MgAl2O4 was achieved. Peak power in the range of 1.83-7.68 kW with pulse duration between 2.9 and 4.2 ns and energy up to 24 μJ was obtained. The output characteristics for different transmissions of the output couplers were investigated. To show the improvements gained by the thermal bonding procedure, a comparison of thermally bonded and unbonded samples was done in terms of generation efficiency, peak power, beam quality, generated spectra and pulse to pulse jitter.

  3. Origin of anomalous magnetite properties in crystallographic matched heterostructures: Fe3O4(111)/MgAl2O4(111).

    PubMed

    Gilks, D; Lari, L; Naughton, J; Cespedes, O; Cai, Z; Gerber, A; Thompson, S M; Ziemer, K; Lazarov, V K

    2013-12-01

    Magnetite films grown on crystallographically matched substrates such as MgAl2O4 are not expected to show anomalous properties such as negative magnetoresistance and high saturation fields. By atomic resolution imaging using scanning transmission electron microscopy we show direct evidence of anti-phase domain boundaries (APB) present in these heterostructures. Experimentally identified 1/4<101> shifts determine the atomic structure of the observed APBs. The dominant non-bulk superexchange interactions are between 180° octahedral-Fe/O/octahedral-Fe sites which provide strong antiferromagnetic coupling across the defect interface resulting in non-bulk magnetic and magnetotransport properties. PMID:24177186

  4. Relativistic multireference many-body perturbation theory calculations on F-, Ne-, Na-, Mg-, Al-, Si-, and P-like xenon ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2005-12-22

    Many-Body Perturbation Theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. They discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, {Delta}n = 0 transitions of Na-, Mg-, Al-like, and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance.

  5. Effect of gamma irradiation on thermoluminescence and fracto-mechanoluminescence properties of SrMgAl10O17:Eu2+ phosphor

    NASA Astrophysics Data System (ADS)

    Tigga, Shalinta; Brahme, Nameeta; Bisen, D. P.

    2016-03-01

    SrMgAl10O17:Eu2+ phosphor has been synthesized by combustion method using urea as a fuel. Thermoluminescence (TL) and mechanoluminescence (ML) properties of synthesized phosphors under gamma irradiation were reported and discussed in this paper. The structural and morphological studies were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Photoluminescence emission spectrum is obtained at 460 nm. Thermoluminescence glow curves of synthesized phosphor show a broad peak, which has been deconvoluted into three peaks and activation energies were calculated using peak shape method. Total mechanoluminescence (ML) intensity increases linearly with gamma doses.

  6. Synthesis, characterization and TL response of Ce{sup 3+} activated BaMgAl{sub 10}O{sub 17} phosphor

    SciTech Connect

    Selot, Anupam; Aynyas, Mahendra; Tiwari, Manoj; Dev, Kapil

    2015-06-24

    Phosphor material BaMgAl{sub 10}O{sub 17} with varying concentration of rare earth Ce{sup 3+} synthesis by combustion method at 500°C. The synthesized phosphor material characterized for their crystallinity and nature by XRD measurements. The thermoluminescecne response of phosphor exhibit TL spectra at 204°c and detailed analysis of kinetic parameter by de convoluted curve. These results show that concentration quenching occur at 5mol% of Ce dopant. The results suggest the possibility of utilizing as a phosphor may be in UV dosimeter and solid state lighting.

  7. Synthesis, characterization and optical properties of Ce{sup 3+} activated CaMgAl{sub 10}O{sub 17} phosphor

    SciTech Connect

    Selot, Anupam; Aynyas, Mahendra; Tiwari, Manoj; Dev, Kapil

    2014-04-24

    Phosphor material CaMgAl{sub 10}O{sub 17} with varying concentration of rare earth Ce{sub 3+} synthesis by combustion method at 500°C. The synthesized phosphor material characterized for their crystallinity and nature by XRD measurements. The photoluminescence measurements of phosphor exhibit mainly two PL spectra 382nm and 575 nm in blue and red region, respectively, this is due to crystal field and covalence effect. These results show that concentration quenching occur at 5mol° of Ce dopant. The results suggest the possibility of utilizing as a phosphor may be in solid state lighting.

  8. Energy-filtered plasmon images of MgAl{sub 2}O{sub 4} implanted with Al{sup +} and Mg{sup +} ions

    SciTech Connect

    Evans, N.D.; Bentley, J.; Zinkle, S.J.

    1995-06-01

    Magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) is a candidate material for specialized applications in proposed fusion reactors, and previously, has been irradiated with Al{sup +} or Mg{sup +} ions to assess the effects of high-dose irradiation. Electron energy-loss spectrometry (EELS) has been used to confirm the identity of metallic aluminum colloids located in the ion-implanted region of the spinel because electron diffraction experiments were inconclusive for phase identification. In the present study, energy-filtered plasmon images of the ion-implanted region have been obtained to reveal this colloid distribution.

  9. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    SciTech Connect

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; Wharry, Janelle P.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

  10. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE PAGESBeta

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; Wharry, Janelle P.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  11. Commercialization status of Ni{sub 3}Al-based alloys

    SciTech Connect

    Sikka, V.K.

    1997-12-31

    The Ni{sub 3}Al-based alloys have been under development at the Oak Ridge National Laboratory (ORNL) and other research institutions in the United States and around the world for the last ten years. The incremental developments of composition, melting process, casting methods, property data, corrosion data, weldability development, and prototype component testing under production-like operating conditions have pushed the ORNL-developed Ni{sub 3}Al-based alloys closer to commercialization. This paper will present the highlights of incremental technical developments along with the approach and current status of commercialization. It is concluded that cast components are the primary applications of Ni{sub 3}Al-based alloys, and applications range from heat-treating fixtures of forging dies. It is also concluded that the commercialization process is accelerated when technology is licensed to an organization that can produce the alloy, has component manufacturing capability, and is also a user.

  12. Corrosion Performance Based on the Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Freitas, Emmanuelle S.; Garcia, Amauri

    2014-01-01

    The aim of this study is to compare the electrochemical behavior of three monotectic Al-based alloys (Al-Pb, Al-Bi, and Al-In) in a 0.5 M NaCl solution at room temperature. Two distinct microstructure arrays were experimentally obtained for each Al monotectic alloy by using a water-cooled unidirectional solidification system. Results of electrochemical impedance spectroscopy (EIS) plots, potentiodynamic polarization curves, and impedance parameters obtained by an equivalent circuit analysis are discussed. It was found that the Al-Pb alloy has lower corrosion current density, higher polarization resistance, lower relative weight, and cost than the corresponding values of Al-Bi and Al-In alloys. It is also shown that the electrochemical behavior of the three alloys examined are intimately correlated with the scale of the corresponding microstructure, with smaller droplets and spacings (i.e., cell and interphase spacings) being associated with a decrease in the corrosion resistance.

  13. Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.

  14. Development of tough, strong, iron-base alloy for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1983-01-01

    The development of an iron-base alloy that combines the normally divergent properties of high toughness and high strength at cryogenic temperatures is discussed. Specifically, alloy properties were sought which at -196 C would exhibit a fracture toughness of 220 MPa-m(1/2) with a corresponding yield strength of 1.4 GPa (200 ksi). Early work showed that high toughness could be achieved in Fe-12Ni alloys containing reactive metal additions such as Al, Nb, Ti, and V. Further research emphasized strengthening of these tough alloys by thermomechanical processing and the addition of Cu. Results showed that high strength and high toughness could be achieved in a single alloy at temperatures as low as -196 C. An alloy with composition Fe-12Ni-9.5Al-2Cu exhibited a yield strength of 1.65 GPa with a corresponding fracture toughness of 220 MPa-m(1/2) at -196 C. Strengthening due to Cu additions to the Fe-12Ni base alloys results primarily from precipitation of Cu-rich epsilon particles approximately 20 nm in diameter. Strengthening mechanisms are discussed in terms of an elastic modulus hardening model and are supported by transimission electron microscopy examinations of selected test specimens.

  15. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  16. Biocompatibility of new Ti-Nb-Ta base alloys.

    PubMed

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity. PMID:26838885

  17. Interstitial-phase precipitation in iron-base alloys: a comparative study

    SciTech Connect

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.

  18. Erosion-corrosion performance of nickel-based and copper-based alloys in the Arabian Gulf seawater

    SciTech Connect

    Al-Hashem, A.; Carew, J.; Al-Sayegh, A.

    1996-10-01

    The erosion-corrosion behavior of nickel-based (UNS N0 6022) and copper-based (UNS C71500) alloy tubes in water flowing seawater containing sulfide ions is investigated. Visual, optical and scanning electron microscopy examinations of the internal surfaces of the tubes were conducted to compare the susceptibilities to erosion-corrosion attack of these two alloys, taking into consideration the nature of the product films formed.

  19. Photoluminescence properties of AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors

    SciTech Connect

    Wang, Yong; Tang, Jianfeng; Ouyang, Xicheng; Liu, Buqiong; Lin, Rong Han

    2013-06-01

    Highlights: ► Ideal hexagonal shape particle size in 5 μm and 2.5–3 μm in thickness are obtained. ► The growth mechanism is studied by a computer simulation. ► The influence of introduced AlN on the sites of Eu{sup 2+} and photoluminescence properties was investigated. - Abstract: The AlN-doped BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors were synthesized by conventional solid-state reaction. Powder X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum (PL) were used for characterization. The growth mechanism was carried out by computer simulation with CASTEP application, and revealed that an ideal hexagonal shape, particle size in 5 μm and 2.5–3 μm in thickness, could be obtained by AlN doping. Additionally, due to the low electronegativity of N{sup 3−}, the AlN-doped sample showed 35% increase in PL intensity and improvement of thermal stability. These fine particle size and better photoluminescence properties are expected to be applicable to industrial production of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors.

  20. Metastability in the MgAl2O4-Al2O3 System

    SciTech Connect

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.

  1. SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4

    SciTech Connect

    O'Hara, Kelley; Smith, Jeffrey D; Sander, Todd P.; Hemrick, James Gordon

    2013-01-01

    Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition. Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.

  2. Ni/MgO-MgAl2O4 Catalysts with Bimodal Pore Structure for Steam-CO2-Reforming of Methane.

    PubMed

    Kim, Byung-Hyuk; Yang, Eun-Hyeok; Moon, Dong Ju; Kim, Sang Woo

    2015-08-01

    The bead type MgO-MgAl2O4 catalyst supports with bimodal pore structures were fabricated via an extrusion molding of gels derived from the precursor mixture of mesoporous MgO particles and aluminum magnesium hydroxide, followed by heat treatment. To investigate the effect of macro pore structures on the catalytic activity of the Ni/MgO-MgAl2O4 catalysts in the steam and carbon dioxide reforming of methane (SCR), two kinds of the catalysts with largely different macro pore volumes and sizes but nearly the same meso pore volume and size were compared. The bimodal catalyst with a large macro pore size and volume exhibited a highly enhanced CO2 conversion from 22.3 to 37.1% but a slightly reduced CH4 conversion from 95.3 to 92.1% at the same feed ratio. The SCR results show that the large macro pores can lead to a highly enhanced mass transfer rate of CO2 absorption into the pore channels of the magnesium alumina spinel. PMID:26369180

  3. Fast reactor irradiation effects on fracture toughness of Si3N4 in comparison with MgAl2O4 and yttria stabilized ZrO2

    NASA Astrophysics Data System (ADS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-04-01

    Fracture toughness of silicon nitride (Si3N4), magnesia-alumina spinel (MgAl2O4) and yttria stabilized zirconia (8 mol%Y2O3-ZrO2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si3N4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl2O4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks.

  4. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg Al-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Kang; Guo, Shaohuan; Duan, Xue

    2006-06-01

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interaction involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45.

  5. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  6. Chromium boron surfaced nickel-iron base alloys

    NASA Technical Reports Server (NTRS)

    Rashid, James M. (Inventor); Friedrich, Leonard A. (Inventor); Freling, Melvin (Inventor)

    1984-01-01

    Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.

  7. Antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes.

    PubMed

    Ruiz-Gómez, Sandra; Ranchal, Rocío; Abuín, Manuel; Aragón, Ana María; Velasco, Víctor; Marín, Pilar; Mascaraque, Arantzazu; Pérez, Lucas

    2016-03-01

    The capability of synthesizing Fe-based antiferromagnetic metal alloys would fuel the use of electrodeposition in the design of new magnetic devices such as high-aspect-ratio spin valves or new nanostructured hard magnetic composites. Here we report the synthesis of high quality antiferromagnetic FeMn alloys electrodeposited from chloride-based electrolytes. We have found that in order to grow homogeneous FeMn films it is necessary to incorporate a large concentration of NH4Cl as an additive in the electrolyte. The study of the structure and magnetic properties shows that films with composition close to Fe50Mn50 are homogeneous antiferromagnetic alloys. We have established a parameter window for the synthesis of FeMn alloys that show antiferromagnetism at room temperature. PMID:26925594

  8. Tool wear mechanisms in the machining of Nickel based super-alloys: A review

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sun, Jianfei; Sun, Pengfei; Chen, Wuyi; Saleem, Zawar

    2014-06-01

    Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

  9. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  10. Surface modification of ferritic and Ni based alloys for improved oxidation resistance of SOFC interconnect applications

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.; Kung, Steven C.

    2005-08-01

    This research is aimed at evaluating a surface modification of ferritic stainless steels (Type-430 and Crofer 22APU) and nickel-base alloys (Haynes 230) for use in the SOFC temperature range of 700 to 800°C. A surface treatment was devised to enhance the stability of the base metal oxide that forms and to reduce the oxidation rate of the materials at high temperature. Oxidation tests (in wet air; treated and untreated) were conducted at 800°C to evaulate the corrosion resistance of the alloys. It was found that the surface treatment improved the oxidation resistance of all the alloys tested. However, the treatment improved the performance of 430SS more than that of the other alloys.

  11. Tailoring Fe-Base Alloys for Intermediate Temperature SOFC Interconnect Application

    SciTech Connect

    J.H. Zhu; M.P. Brady; H.U. Anderson

    2007-12-31

    This report summarized the research efforts and major conclusions for our SECA Phase I and II project focused on Cr-free or low Cr Fe-Ni based alloy development for intermediate temperature solid oxide fuel cell (SOFC) interconnect application. Electrical conductivity measurement on bulk (Fe,Ni){sub 3}O{sub 4} coupons indicated that this spinel phase possessed a higher electrical conductivity than Cr{sub 1.5}Mn{sub 1.5}O{sub 4} spinel and Cr{sub 2}O{sub 3}, which was consistent with the low area specific resistance (ASR) of the oxide scale formed on these Fe-Ni based alloys. For Cr-free Fe-Ni binary alloys, although the increase in Ni content in the alloys improved the oxidation resistance, and the Fe-Ni binary alloys exhibited adequate CTE and oxide scale ASR, their oxidation resistance needs to be further improved. Systematic alloy design efforts have led to the identification of one low-Cr (6wt.%) Fe-Ni-Co based alloy which formed a protective, electrically-conductive Cr{sub 2}O{sub 3} inner layer underneath a Cr-free, highly conductive spinel outer layer. This low-Cr, Fe-Ni-Co alloy has demonstrated a good CTE match with other cell components; high oxidation resistance comparable to that of Crofer; low oxide scale ASR with the formation of electrically-insulating phases in the oxide scale; no scale spallation during thermal cycling; adequate compatibility with cathode materials; and comparable mechanical properties with Crofer. The existence of the Cr-free (Fe,Co,Ni){sub 3}O{sub 4} outer layer effectively reduced the Cr evaporation and in transpiration testing resulted in a 6-fold decrease in Cr evaporation as compared to a state-of-the-art ferritic interconnect alloy. In-cell testing using an anode supported cell with a configuration of Alloy/Pt/LSM/YSZ/Ni+YSZ indicates that the formation of the Cr-free spinel layer via thermal oxidation was effective in blocking the Cr migration and thus improving the cell performance stability. Electroplating of the Fe

  12. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  13. Towards first principles-based identification of ternary alloys for hydrogen purification membranes

    SciTech Connect

    Kamakoti, P.; Sholl, D.S.

    2006-08-01

    Using dense films of metal alloys offers a useful path towards fabricating membranes for hydrogen purification that simultaneously exhibit high H2 fluxes and are chemically robust. Experimental identification of ternary alloys with these properties has been limited by the large resources needed to test multiple materials. We have considered whether first principles calculations could be used to screen ternary alloys in the absence of experimental data by examining methods that could allow these calculations to be applied to large numbers of materials. In particular, we have used models based on density functional theory (DFT) calculations to examine a class of ternary metal alloys made up of Pd, Cu and a third additive metal as H2 membranes. Our calculations suggest additive metals that yield ternary alloys that retain the favorable surface chemistry of CuPd binary alloys but are predicted to yield higher H2 fluxes than the corresponding binary membranes. Our results also point to future directions for the development of first principles calculations in screening ternary alloys for H2 purification.

  14. Strain ageing and yield plateau phenomena in {gamma}-TiAl based alloys containing boron

    SciTech Connect

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-08

    There has been considerable interest over the past few years in {gamma}-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron ({ge}0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi`s results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near {gamma}-TiAl alloys.

  15. Atmospheric Corrosion of Different Fe-based Alloys in Nanocrystalline State

    NASA Astrophysics Data System (ADS)

    Sitek, J.; Sedlačková, K.; Seberíni, M.

    2005-07-01

    Nanocrystalline Fe-based alloys are interesting for their soft magnetic properties. Because these alloys are potentially applicable in outdoor-working components, their corrosion behaviour requires careful analysis. This work presents the results of the atmospheric corrosion tests in industrial and rural environments performed for up to 6 months. We compared the corrosion behaviour of two different compositions of NANOPERM-type alloys: Fe87.5Zr6.5B6 and Fe76Mo8Cu1B15 with classical FINEMET alloys of the nominal composition of Fe73.5Cu1Nb3Si13.5B9 type. The techniques of Mössbauer spectroscopy, conversion electron Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy have been employed to compare their corrosion rate, characterize corrosion products and inspect the structural changes of the nanocrystalline structure. It was found that the Si-containing FINEMET alloys are the most corrosion-resistant whereas worse corrosion properties were observed for molybdenum-containing Fe76Mo8Cu1B15 alloy. The corrosion product formed on the surface of NANOPERM-type alloys showed a needlelike morphology and a poor crystalline order and has been identified as lepidocrocite, γ-FeOOH.

  16. Characteristics of strength and plasticity of tungsten and tungsten-base alloys I. Mechanical properties

    SciTech Connect

    Bukhanovskii, V.V.; Golovin, S.A.; Kharchenko, V.K.; Kravchenko, V.S.; Nikol'skii, V.N.; Ol'shanskii, A.B.

    1986-01-01

    The authors establish the temperature relationship of the strength and plastic properties of tungsten and tungsten-base alloys taking into consideration the statistical parameters of the spread caused by structural and technical factors and a quantitative determination of the influence in tension of dispersion hardening of tungsten with refractory particles of hafnium and yttrium oxides. The observed dip in plasticity in the dispersion-hardened tungsten alloys does not contradict the mechanism of high temperature embrittlement of commercially pure tungsten.

  17. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  18. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  19. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    SciTech Connect

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  20. Assessment of the Oxidation Behavior of a Pt-Based Alloy for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Odusote, J. K.; Cornish, L. A.; Papo, J. M.

    2013-11-01

    Pt-based alloys are being developed as a possible future replacement for Ni-based superalloy components in the hottest section of turbine engines. The critical properties of these alloys are their ability to withstand higher thermal and mechanical stresses as well as to resist aggressive corrosive and oxidizing environments in applications. Oxidation properties of these alloys were investigated between 1150 and 1350 °C. The surface roughness of the as-polished samples was determined using atomic force microscopy, while the microstructures of both the as-polished and oxidized samples were examined using scanning electron microscopy. The alloy was found to be composed of a two-phase gamma/gamma prime microstructure, while the average surface roughness decreased from 5.78 nm after 1 μm diamond paste polishing to 4.13 nm with 0.25 μm diamond paste polishing. Microstructure examination of the oxidized alloy samples revealed the formation of compact and protective external oxide scale composed of α-alumina, as confirmed by the XRD and Raman spectroscopy. The results also showed that the oxide scale thickens with increased exposure time and temperatures according to parabolic kinetics. It was concluded from the results that the Pt-based alloys possess good oxidation resistance and thus will be suitable for high temperature applications, such as turbine engines.

  1. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  2. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  3. Ductility enhancement in NiAl (B2)-base alloys by microstructural control

    NASA Astrophysics Data System (ADS)

    Ishida, K.; Kainuma, R.; Ueno, N.; Nishizawa, T.

    1991-02-01

    An attempt to improve ductility of NiAl (B2)-base alloys has been made by the addition of alloying elements and the control of microstructure. It has been found that a small amount of fcc γ phase formed by the addition of Fe, Co, and Cr has a drastic effect not only on the hot workability but also on the tensile ductility at room temperature. The enhancement in ductility is mainly due to the modification of Β-phase grains by the coexistence of γ phase. The effect of alloying elements on the hot forming ability is strongly related to the phase equilibria and partition behavior among γ, γ' (L12 structure), and Β phases in the Ni-Al-X alloy systems. The ductility-enhancement method shows promise for expanding the practical application of nickel aluminide.

  4. Self passivating W-based alloys as plasma facing material for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Koch, F.; Bolt, H.

    2007-03-01

    Self passivating tungsten-based alloys may provide a major safety advantage in comparison with pure tungsten (W) which is presently the main candidate material for the plasma-facing protection of future fusion power reactors. Films of binary and ternary tungsten alloys were synthesized by magnetron sputtering. The oxidation behaviour was measured with a thermo balance set-up under synthetic air at temperatures up to 1273 K. Binary alloys of W-Si showed good self passivation properties by forming an SiO2 film at the surface. Using ternary alloys the oxidation behaviour could be further improved. A compound of W-Si-Cr showed a reduction of the oxidation rate by a factor of 104 at 1273 K.

  5. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  6. Optimization of Iron Cobalt-based Nanocomposite Alloys for High Induction and Increased Resistivity

    NASA Astrophysics Data System (ADS)

    Shen, Shen

    FeCo-based nanocrystalline soft magnetic materials are promising to provide high saturation induction, high Curie temperature and excellent soft magnetic properties for electric vehicle and high frequency power conversion applications. The increasing operation frequency of various inductive applications requires nanocomposite alloys with higher resistivity to suppress power losses. In this thesis, the method of measuring as-cast and annealed resistivity of melt-spun ribbon alloys by obtaining alloy densities was established. Archimedes method with deionized water as a medium was used to determine the density of crystalline alloys. A gas pycnometer using dry Helium gas as the medium exhibited improved accuracy in measuring the density of amorphous ribbon alloys compared to the conventional Archimedes method using a liquid medium. This method was applied to previously developed HITPERM (FeCoZrBCu) and HTX002 (FeCoBSiCu) type of alloys as well as carbon-containing (FeCoBCCu) alloys to guide composition adjustments pursuing for improved magnetic properties. In the HITPERM type of alloys, the composition dependence of as-cast resistivity was studied and simulated by Mott's two-current model with a rigid-band assumption which provided guidance for further adjusting alloy composition looking for higher resistivity. An alloy designed with the Fe:Co ratio for maximum as-cast resistivity and Hf as glass former exhibits low power loss values being approximately 1/4 of those measured on the alloy with the original HITPERM composition for a range of frequencies. The Al and Si additions were found effective to achieve a high resistivity of 151.9 muO·cm in the as-cast alloys but also lead to embrittlement of melt-spun ribbons. Composition adjustments on the HTX002 type of alloys which are castable in air and available for larger-scale production were also explored. Increasing the ferromagnetic late transition metal content by reducing glass formers was found effective to achieve

  7. Application of Laser Design of Amorphous Feco-Based Alloys for the Formation of Amorphous-Crystalline Composites

    NASA Astrophysics Data System (ADS)

    Permyakova, I. E.; Glezer, A. M.; Ivanov, A. A.; Shelyakov, A. V.

    2016-01-01

    Morphological and fractographic features of change of FeCo-based amorphous alloy surfaces after laser treatment are studied in detail. Regimes of laser treatment that allow various degrees of crystallization of the examined alloys to be obtained, including thin (<1 •m) crystal layers on amorphous alloy surfaces, amorphous-crystalline composites, and completely crystalline alloys are adjusted. The Vickers hardness is estimated in zones of selective laser irradiation. The structure of the examined alloys attendant to the change of their mechanical properties is analyzed.

  8. Physical Simulation of Friction Stir Welding and Processing of Nickel-Base Alloys Using Hot Torsion

    NASA Astrophysics Data System (ADS)

    Rule, James R.; Lippold, John C.

    2013-08-01

    The Gleeble hot torsion test was utilized in an attempt to simulate the friction stir-processed microstructure of three Ni-base alloys: Hastelloy X, Alloy 625, and Alloy 718. The simulation temperatures were based on actual thermal cycles measured by embedded thermocouples during friction stir processing of these alloys. Peak process temperatures were determined to be approximately 1423 K (1150 °C) for Hastelloy X and Alloy 625 K and 1373 K (352 °C and 1100 °C) for Alloy 718. The peak temperature and cooling rates were programed into the Gleeble™ 3800 thermo-mechanical simulator to reproduce the stir zone and thermo-mechanically affected zone (TMAZ) microstructures. The TMAZ was successfully simulated using this technique, but the stir zone microstructure could not be accurately reproduced, with hot torsion samples exhibiting larger grain size than actual friction stir processing trials. Shear stress and strain rates as a function of temperature were determined for each material using hot torsion simulation.

  9. Processing-property-microstructure relationships in TiAl-based alloys

    SciTech Connect

    Loretto, M.H.; Hu, D.; Godfrey, A.

    1997-12-31

    A range of Ti-Al-based alloys have been produced by plasma melting either small buttons (1kg samples) or ingots (up to 50kg). Some of the ingots have been atomized. The influence of thermomechanical processing on the microstructure of these materials has been assessed using optical and electron microscopy and the room temperature mechanical properties and creep strengths determined. It has been found that either through appropriate processing and/or through alloy development, it is possible to obtain alloys with room temperature strengths up to 1,000 MPa. Elongations of about 1% at room temperature have been obtained for alloys with this strength and this is coupled with significant improvements in creep strength over the reference alloy, Ti-48Al-2Mn-2Nb. The influence of the difficulty of slip transfer between gamma and alpha 2 has been assessed as one of the factors limiting ductility. Regions which are low in aluminum, which are present in the atomized powders initiate fracture at very low strains. These results are discussed in terms of the factors that control the strength and fracture behavior of TiAl-based alloys.

  10. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    SciTech Connect

    Rapp, R.A.

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  11. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  12. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation.

    PubMed

    Reclaru, L; Unger, R E; Kirkpatrick, C J; Susz, C; Eschler, P-Y; Zuercher, M-H; Antoniac, I; Lüthy, H

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. PMID:24364945

  13. Luminescence and optical absorption properties of Nd(3+) ions in K-Mg-Al phosphate and fluorophosphate glasses.

    PubMed

    Surendra Babu, S; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2006-04-26

    Absorption and emission properties and fluorescence lifetimes for the [Formula: see text] transition of Nd(3+) ions embedded in P(2)O(5)-K(2)O-MgO-Al(2)O(3) (PKMA)-based glasses modified with AlF(3) and BaF(2) are reported at room temperature. The observed energy levels of Nd(3+) ions in these glasses have been analysed through a semi-empirical free-ion Hamiltonian model. The spin-orbit interaction and net electrostatic interaction experienced by the Nd(3+) ions follow the trend as PKMA>PKMA+AlF(3)> PKMA+BaF(2) glasses. Judd-Ofelt analysis has been carried out on the absorption spectra of 1.0 mol% Nd(3+)-doped glasses to predict the radiative properties for the fluorescent levels of the Nd(3+) ion. Branching ratios and stimulated emission cross-sections show that the [Formula: see text] transition of the glasses under investigation has the potential for laser applications. The Inokuti-Hirayama model has been applied to investigate the non-radiative relaxation of the Nd(3+) ion emitting state, (4)F(3/2). Based on the decay curve analysis, concentration quenching of the (4)F(3/2) emission has been attributed to a cross-relaxation process between the Nd(3+) ions. PMID:21690752

  14. Wear Behavior Characterization for the Screening of Magnesium-based Alloys

    NASA Astrophysics Data System (ADS)

    McGhee, Paul R.

    This research is focused on the development of a systematic approach to evaluate the selection of materials for Mg-based alloys under wear conditions for biomedical applications. A pilot study was carried out in order to establish an accurate and reliable wear testing technique for magnesium and its alloys. This pilot study was conducted on aluminum (Al) and pure Mg, and showed that aluminum has a lower wear rate compared to Mg. The technique displayed good repeatability and high precision. For the main study, an ERC Mg-based alloy was to be compared with pure Mg. The same technique, when applied to pure Mg from a different vendor, produced up to 90% scatter in the data. Microstructure was studied to see if it had any correlation with the scatter. It was discovered that Mg ingot from the second vendor had outsized grains that contributed to the disproportional scatter in the wear data. Increasing the stroke length during wear testing was required so that the wear data would be averaged over multiple grains and reduces the variation in computed wear rates. In the main study, wear behavior and friction properties were analyzed using microtribometery, mechanical stylus profilometry, and microindentation. Surface morphology and microstructure were characterized using optical microscopy, scanning electron microscopy, and optical profilometry. For the main study, pure Mg and the ERC alloy as-cast and extruded conditions were compared. Pure Mg and MZCR alloys were extruded at 350°C and 400°C, respectively. Mg and MZCR alloy were cast at 350°C and heat treated at 510°C. The extruded specimens were divided into two sections, cross-section and longitudinal section. Wear tests were carried out under the applied normal load 0.5 N - 2.5 N in 0.5 N increments sliding at a rate of 0.2 Hz for 240 passes. The results show that the alloying and extrusion processes increase the hardness of the MZCR alloy significantly up to 80%. The as-cast MZCR has a lower resistance to wear

  15. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    NASA Astrophysics Data System (ADS)

    Varga, B.; Fazakas, E.; Hargitai, H.; Varga, L. K.

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al100-xSix (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  16. Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy

    SciTech Connect

    Liu, C.; Chen, D.L. Bhole, S.; Cao, X.; Jahazi, M.

    2009-05-15

    Galvanic corrosion of a dissimilar friction stir welded 2024-T3 Al/AZ31B-H24 Mg joint prepared using a water-based and a non-water-based polishing solution was characterized. Microstructure and the distribution of chemical elements were analyzed using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The stir zone polished using water-based solution was observed to be much more susceptible to galvanic corrosion attack than that obtained using non-water-based polishing solution. The location of corrosion attack was observed in the narrow regions of AZ31 Mg alloy adjacent to Al2024 regions in the stir zone. The occurrence of galvanic corrosion was due to the formation of Mg/Al galvanic couples with a small ratio of anode-to-cathode surface area. The corrosion product was primarily the porous magnesium hydroxide with characteristic microcracks and exhibited a low microhardness value.

  17. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    DOE PAGESBeta

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; Kovarik, Libor; Albrecht, Karl O.; Deshmane, Chinmay; Dagle, Robert A.

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  18. On the Production of He, Ne, and AR Isotopes from Mg, Al, Si, Ca, Fe, and NI in an Artificially Irradiated Meteoroid

    NASA Astrophysics Data System (ADS)

    Wieler, R.; Signet, P.; Rosel, R.; Herpers, U.; Lupke, M.; Lange, H.-J.; Michel, R.

    1992-07-01

    The production of He, Ne, and Ar isotopes from their main target elements was investigated in an experiment (1) by irradiating a 50-cm-diameter gabbro sphere isotropically with 1.6 GeV protons. The model meteoroid contained, among a large number of other targets, pure element foils of Mg, Al, Si, Fe, and Ni at 10 different depths and wollastonite targets at 3 different depths in central bores. After the irradiation, radionuclide production in these targets was measured by gamma spectrometry. Stable He, Ne, and Ar isotopes were measured in statically operated mass spectrometers. Here, we report the results for stable He, Ne, and Ar isotopes and for ^22Na. The production depth profiles vary widely, ranging from profiles with near-surface production 15% higher than in the center (^22Na from Fe) to such profiles with production in the center 45% higher than near the surface (^20Ne from Mg). The isotope ratios ^3He/^4He and ^3He/^21Ne in Mg, Al, Si and ^22Ne/^21Ne in Mg all decrease significantly with increasing shielding. The production rates of He, Ne, and ^22Na from Mg, Al, and Si in the 1600-MeV simulation experiment are 1.5 to 3 times higher than in the model meteoroid of similar size but irradiated earlier with 600 MeV protons (2). This increase is attributed to the increase of the production of secondary neutrons with primary energies rising from 600 to 1600 MeV. This effect also causes the depth dependences of isotope ratios observed in the 1600-MeV simulation that was not seen in the 600-MeV experiment. Model calculations of the production of He, Ne, and Ar isotopes and of ^22Na were performed for the artificial meteorites of the 600- and 1600 MeV-exposures as well as for real meteoroids. Production rates were calculated from depth-dependent p- and n- spectra, which were derived by Monte Carlo techniques using the HERMES code system (3), and from cross sections for the relevant nuclear reactions as described earlier (4). The cross section database for p

  19. Preparation of Nanoporous MgAl{sub 2}O{sub 4} by Combined Utilization of Sol-Gel Process and Combustion of Biorenewable Oil

    SciTech Connect

    Hörtz, Christian; Ladd, Danielle M.; Seo, Dong-Kyun

    2011-01-01

    Nanoporous MgAl{sub 2}O{sub 4} particulates with high porosities were successfully prepared from sol-gel reactions, solvent exchange with castor oil and subsequent combustion and calcination at 700 °C. The products were crystalline and semitransparent. Changes in the metal precursor concentrations allowed control of pore volumes from 0.7 to 1.1 cm{sup 3}/g and average pore sizes from 14 to 19 nm. The specific surface areas are about 200 m{sup 2}/g regardless of the precursor concentrations. After heating at 1000 °C for 10 hours, the products kept about 70% of their original pore volume and about 60% of the original surface area. Heating at 1100 °C caused a drastic reduction of pore volume and surface area to 40 and 36%, respectively, as the average particle size increased to 23 nm.

  20. High-dose neutron irradiation of MgAl 2O 4 spinel: effects of post-irradiation thermal annealing on EPR and optical absorption

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Bravo, D.; Lopez, F. J.; Garner, F. A.

    2005-02-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra were measured during thermal annealing of stoichiometric MgAl 2O 4 spinel that was previously irradiated in the Materials Open Test Assembly in the Fast Flux Test Facility (FFTF/MOTA) at ≈680 K to ≈50 dpa. Both F and F + centres are to persist up to very high temperatures (over 1000 K) suggesting the operation of an annealing mechanism controlled by the thermal stability of extended defects. Using X-ray irradiation following the different annealing steps it was shown that an optical absorption band at 37 000 cm -1 is related to a sharp EPR band at g = 2.0005 and that the defect causing these effects is the F + centre.

  1. Influence of high dose neutron irradiation at 385 and 750°C on the microhardness of MgAl 2O 4 spinel

    NASA Astrophysics Data System (ADS)

    Black, C. A.; Garner, F. A.; Bradt, R. C.

    1994-09-01

    High-purity specimens of stoichiometric MgAl 2O 4 single crystal spinel and a hot-pressed polycrystalline ceramic spinel were irradiated to exposures as large as 24.9 × 10 22 n cm -2 ( E > 0.1 MeV) in FFTF at 385 and 750°C. The specimens did not develop any brittleness or fragility, and maintained their physical integrity. Microhardness measurements revealed that initially all specimens hardened a small amount and then recovered slightly. At the lower irradiation temperature, the dependence of microhardness on orientation observed prior to irradiation tended to disappear. There was also some evidence that a secondary slip system was being activated. Following 750°C irradiation, the orientation dependence was not lost, and the evidence for activation of a secondary slip system was stronger.

  2. Fully spin-polarized two-dimensional electron gas at the CoFe2O4/MgAl2O4(001) polar interface

    NASA Astrophysics Data System (ADS)

    Arras, R.; Calmels, L.

    2014-07-01

    We performed first-principles calculations to show that a fully spin-polarized two-dimensional electron gas can be created at the interface between the polar and insulating spinel oxides CoFe2O4 and MgAl2O4. We give a clear description of the physical parameters (in particular the atomic termination of the interfaces), which favor the formation of this electron gas that is due either to an electric field induced in stoichiometric oxide layers because of their polar character or to a charge reorganization that preserves the global electric neutrality in nonstoichiometric layers. We show that the electric field-induced spin-polarized two-dimensional electron gas can only exist if the thickness of the CoFe2O4 layer is large enough and that it may be destroyed by intermixing at the interfaces.

  3. Probing on growth and characterizations of SnFe2O4 epitaxial thin films on MgAl2O4 substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Ram; Candler, J.; Kumar, D.; Gupta, Bipin; Kahol, Pawan

    2014-08-01

    Epitaxial tin ferrite (SnFe2O4) thin films were grown using KrF excimer (248 nm) pulsed laser deposition technique under different growth conditions. Highly epitaxial thin films were obtained at growth temperature of 650 ˚C. The quality and epitaxial nature of the films were examined by X-ray diffraction technique. Furthermore, the phi scans of the film and substrate exhibit four folds symmetry which indicates a cube-on-cube epitaxial growth of the film on MgAl2O4 substrate. Moreover, the magnetic force microscopy measurement shows domains with cluster-like structure which is associated with ferromagnetic phase at room temperature. The coercive field and remnant magnetization of the films decrease with increase in temperature. These high quality ingenious magnetic films could be potentially used in data storage devices.

  4. Damage behavior and atomic migration in MgAl2O4 under an 80 keV scanning focused probe in a STEM.

    PubMed

    Zhu, Guo-zhen; Botton, Gianluigi A

    2015-01-01

    With the dramatic improvement in the spatial resolution of scanning transmission electron microscopes over the past few decades, the tolerance of a specimen to the high-energy electron beam becomes the limiting factor for the quality of images and spectra obtained. Therefore, a deep understanding of the beam irradiation processes is crucial to extend the applications of electron microscopy. In this paper, we report the structural evolution of a selected oxide, MgAl2O4, under an 80 keV focused electron probe so that the beam irradiation process is not dominated by the knock-on mechanism. The formation of peroxyl bonds and the assisted atomic migration were studied using imaging and electron energy-loss spectroscopic techniques. PMID:25043440

  5. Ti diffusion in (001) SrTiO3-CoFe2O4 epitaxial heterostructures: blocking role of a MgAl2O4 buffer.

    PubMed

    Rebled, J M; Foerster, M; Estradé, S; Rigato, F; Kanamadi, C; Sánchez, F; Peiró, F; Fontcuberta, J

    2013-11-01

    Titanium diffusion from (001) SrTiO3 (STO) substrates into CoFe2O4 (CFO) films grown using pulsed laser deposition is reported. To elucidate the reasons for Ti interdiffusion, a comparative study of CFO films grown on MgAl2O4 (MAO) and STO substrates, buffered by thin STO and MAO layers, has been made. It is shown that whereas bottom STO layers always result in Ti migration, a thin MAO layer, only 8 nm thick, is effective in blocking it. We argue that this success relies on the lower mobility of Ti ions in the MAO lattice compared to that of CFO. This result should contribute to the development of high quality epitaxial heterostructures of dissimilar complex oxides. PMID:24068072

  6. Synthesis, ESR investigation, and optical properties of the potential vibronic laser material LaMgAl 11- xCr xO 19

    NASA Astrophysics Data System (ADS)

    Viana, B.; Lejus, A. M.; Vivien, D.; Ponçon, V.; Boulon, G.

    1987-11-01

    Cr 3+ doped LaMgAl 11O 19 single crystals have been grown. The ESR spectra and the optical properties of this matrix with magnetoplumbite structure have been studied. Three kinds of isolated sites have been identified by the 2E → 4A 2 transition associated with the Cr 3+ ion doped into the 4 f antiprism site, the regular 2 a octahedral site, and the 12 k octahedral site. Additional lines in ESR and fluorescence spectra arise from the occurrence of 4 f-4 f pairs even for low doping levels. The presence of the 4T2 → 4A2 broad band of fluorescence makes this material a possible candidate for a red or near-infrared emitting vibronic laser.

  7. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite.

    PubMed

    Ay, Ahmet Nedim; Zümreoglu-Karan, Birgül; Temel, Abidin; Rives, Vicente

    2009-09-21

    This paper describes the synthesis and characterization of a composite constituted by an antiarthritic agent (AA) intercalated into a layered double hydroxide (LDH) supported on magnesium ferrite. Core-shell nanocomposites were prepared by depositing Mg-Al-NO(3)-LDH on a MgFe(2)O(4) core prepared by calcination of a nonstoichiometric Mg-Fe-CO(3)-LDH. Intercalation of ibuprofen and glucuronate anions was performed by ion-exchange with nitrate ions. The structural characteristics of the obtained products were investigated by powder X-ray diffraction, element chemical analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Morphologies of the nanocomposite particles were examined by scanning electron microscopy and transmission electron microscopy. The products were shown to intercalate substantial amounts of AA with enhanced thermal stabilities. Room-temperature magnetic measurements by vibrating sample magnetometry revealed that the products show soft ferromagnetic properties suitable for potential utilization in magnetic arthritis therapy. PMID:19691269

  8. Degradation mode survey of titanium-base alloys

    SciTech Connect

    Gdowski, G.E.; Ahluwalia, H.S.

    1995-01-30

    Of the materials reviewed, commercially pure titanium, Ti Gr 2, is the most susceptible to crevice corrosion. Ti Gr 7, 12, and 16 are likely to be resistant to crevice corrosion under the current expected Yucca Mountain repository conditions. Although Grade 7 has the greatest resistance to crevice corrosion it is also the most expensive. Although the possibility of sustained loads cracking exists, it has not yet been observed in a Ti alloys. For hydride precipitation to occur 100{degrees}C, the hydrogen concentration would need to be relatively high, much higher than the maximum amount of hydrogen allowed during the manufacture of ({alpha} Ti alloys (0.0 15 wt%). A large amount of (SCC) stress corrosion cracking data accumulated at SNL and BNL for the WIPP program and by the Canadian Waste Management Program on titanium grades 2 and 12 indicates that there is no SCC at naturally occurring potentials in various brines. Hydride-induced cracking of titanium is a possibility and therefore, further investigation of this phenomenon under credible repository conditions is warranted. One disadvantage of titanium and its alloys is that their strengths decrease rather rapidly with temperature. This is due to the strong temperature dependence of interstitial solute strengthening mechanisms. Ti Gr 12 and 16 are recommended for further consideration as candidate materials for high level nuclear waste containers.

  9. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  10. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  11. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  12. Microstructure Evaluation of Fe-BASED Amorphous Alloys Investigated by Doppler Broadening Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    Microstructure of Fe-based amorphous and nanocrystalline soft magnetic alloy has been investigated by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and Doppler broadening positron annihilation technique (PAT). Doppler broadening measurement reveals that amorphous alloys (Finemet, Type I) which can form a nanocrystalline phase have more defects (free volume) than alloys (Metglas, Type II) which cannot form this microstructure. XRD and TEM characterization indicates that the nanocrystallization of amorphous Finemet alloy occurs at 460°C, where nanocrystallites of α-Fe with an average grain size of a few nanometers are formed in an amorphous matrix. With increasing annealing temperature up to 500°C, the average grain size increases up to around 12 nm. During the annealing of Finemet alloy, it has been demonstrated that positron annihilates in quenched-in defect, crystalline nanophase and amorphous-nanocrystalline interfaces. The change of line shape parameter S with annealing temperature in Finemet alloy is mainly due to the structural relaxation, the pre-nucleation of Cu nucleus and the nanocrystallization of α-Fe(Si) phase during annealing. This study throws new insights into positron behavior in the nanocrystallization of metallic glasses, especially in the presence of single or multiple nanophases embedded in the amorphous matrix.

  13. Ballistic Impact Properties of Zr-Based Amorphous Alloy Composites Reinforced with Woven Continuous Fibers

    NASA Astrophysics Data System (ADS)

    Kim, Gyeong Su; Son, Chang-Young; Lee, Sang-Bok; Lee, Sang-Kwan; Song, Young Buem; Lee, Sunghak

    2012-03-01

    This study aims at investigating ballistic impact properties of Zr-based amorphous alloy (LM1 alloy) matrix composites reinforced with woven stainless steel or glass continuous fibers. The fiber-reinforced composites with excellent fiber/matrix interfaces were fabricated without pores and misinfiltration by liquid pressing process, and contained 35 to 41 vol pct of woven continuous fibers homogeneously distributed in the amorphous matrix. The woven-STS-continuous-fiber-reinforced composite consisted of the LM1 alloy layer of 1.0 mm in thickness in the upper region and the fiber-reinforced composite layer in the lower region. The hard LM1 alloy layer absorbed the ballistic impact energy by forming many cracks, and the fiber-reinforced composite layer interrupted the crack propagation and blocked the impact and traveling of the projectile, thereby resulting in the improvement of ballistic performance by about 20 pct over the LM1 alloy. According to the ballistic impact test data of the woven-glass-continuous-fiber-reinforced composite, glass fibers were preferentially fragmented to form a number of cracks, and the amorphous matrix accelerated the fragmentation of glass fibers and the initiation of cracks. Because of the absorption process of ballistic impact energy by forming very large amounts of cracks, fragments, and debris, the glass-fiber-reinforced composite showed better ballistic performance than the LM1 alloy.

  14. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    NASA Astrophysics Data System (ADS)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  15. Tensile properties of vanadium-base alloys with a tungsten/inert-gas weld zone

    SciTech Connect

    Loomis, B.A.; Konicek, C.F.; Nowicki, L.J.; Smith, D.L.

    1992-12-31

    The tensile properties of V-(0-20)Ti and V-(O-15)Cr-5Ti alloys after butt-joining by tungsten/inert-gas (TIG) welding were determined from tests at 25{degrees}C. Tensile tests were conducted on both annealed and cold-worked materials with a TIG weld zone. The tensile properties of these materials were strongly influenced by the microstructure in the heat-affected zone adjacent to the weld zone and by the intrinsic fracture toughness of the alloys. TIG weld zones in these vanadium-base alloys had tensile properties comparable to those of recrystallized alloys without a weld zone. Least affected by the TIG welding were tensile properties of the V-5Ti and V-5Cr-5Ti alloys. Although the tensile properties of the V-5Ti and V- 5Cr-5Ti alloys with a TIG weld zone were acceptable for structural material, these properties would be improved by optimization of the welding parameters for minimum grain size in the heat-affected zone.

  16. Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications

    SciTech Connect

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-06

    Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys

  17. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  18. Electronic structure of Fe-based amorphous alloys studied using electron-energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Gu, X. J.; Poon, S. J.; Shiflet, G. J.

    2008-01-01

    The local atomic electronic structures of Fe-Mo-C-B metallic glasses are investigated using electron energy-loss spectroscopy (EELS). The fracture behavior of this Fe-based amorphous alloy system undergoes the transition from being ductile to exhibiting brittleness when alloyed with Cr or Er atoms. In addition, the glass-forming ability is also enhanced. This plastic-to-brittle transition is suggested to correlate with the change of local atomic short-range order or bonding configurations. Therefore, the bonding configuration of Fe-Mo-C-B-Er(Cr) amorphous alloys is investigated by studying the electronic structure of Fe and C atoms using electron energy-loss spectroscopy. It is shown that the normalized EELS white line intensities of Fe-L2,3 edges decrease slightly with an increasing amount of Er additions, while no noticeable difference is obtained with Cr additions. As for the C K edge, a prominent change of edge shape is observed for both alloy systems, where the first peak corresponding to a 1s→1π* transition increases with increasing Er and Cr additions. Accordingly, it is concluded that changes in the local atomic and electronic structure occur around Fe and C atoms when Er and Cr are introduced into the alloys. Furthermore, it is pointed out that the formation of Er-C and Cr-C carbide like local order inferred from the observed C K edge spectra can provide a plausible explanation for the plastic-to-brittle transition observed in these Fe-based amorphous alloys. In spite of the complexity of electronic and atomic structure in this multicomponent Fe-based metallic glass system, this study could serve as a starting point for providing a qualitative interpretation between electronic structure and plasticity in the Fe-Mo-C-B amorphous alloy system. Complimentary techniques, such as x-ray diffraction and high-resolution transmission electron microscope are also employed, providing a more complete structural characterization.

  19. Investigation of boron distribution in a TiAl-based alloy using particle-tracking

    SciTech Connect

    Pu, Z.; Wu, K.H.

    1996-01-01

    One of the key shortcomings of current TiAl intermetallic alloy is the inverse relationship between tensile properties and fracture/creep resistance. TiAl-based alloys with a fully lamellar structure generally display`s high fracture toughness and creep resistance, but poor ductility. Inversely, material with a duplex microstructure has very good ductility, but poor fracture toughness and creep resistance. Research efforts have focused on overcoming this deficiency. Now that it is widely accepted that the poor ductility of lamellar structures originates from the large grain size, refining the lamellar structure of TiAl-based alloys presents itself as a feasible solution. The question remains as to how to accomplish this goal. Microalloying is considered one approach for refining the fully lamellar structure. The present authors have reported that the addition of boron can effectively refine the grain size of fully lamellar structure. However, the distribution of boron in TiAl alloys and the mechanism in boron that suppresses grain growth are not yet clear. In the present paper, the distribution of boron in a Ti-rich TiAl-based alloy, as a function of the bulk boron content, annealing temperature, and thermomechanical process, is analyzed using a Particle-Tracking Autoradiography (PTA) technique.

  20. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896