Science.gov

Sample records for mglu receptor activation

  1. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network.

    PubMed

    Tassin, Valériane; Girard, Benoît; Chotte, Apolline; Fontanaud, Pierre; Rigault, Delphine; Kalinichev, Mikhail; Perroy, Julie; Acher, Francine; Fagni, Laurent; Bertaso, Federica

    2016-01-01

    Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations. PMID:27199672

  2. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network

    PubMed Central

    Tassin, Valériane; Girard, Benoît; Chotte, Apolline; Fontanaud, Pierre; Rigault, Delphine; Kalinichev, Mikhail; Perroy, Julie; Acher, Francine; Fagni, Laurent; Bertaso, Federica

    2016-01-01

    Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations. PMID:27199672

  3. Neurobiological Insights from mGlu Receptor Allosteric Modulation

    PubMed Central

    O’Brien, Daniel E

    2016-01-01

    Allosteric modulation of metabotropic glutamate (mGlu) receptors offers a promising pharmacological approach to normalize neural circuit dysfunction associated with various psychiatric and neurological disorders. As mGlu receptor allosteric modulators progress through discovery and clinical development, both technical advances and novel tool compounds are providing opportunities to better understand mGlu receptor pharmacology and neurobiology. Recent advances in structural biology are elucidating the structural determinants of mGlu receptor–negative allosteric modulation and supplying the means to resolve active, allosteric modulator-bound mGlu receptors. The discovery and characterization of allosteric modulators with novel pharmacological profiles is uncovering the biological significance of their intrinsic agonist activity, biased mGlu receptor modulation, and novel mGlu receptor heterodimers. The development and exploitation of optogenetic and optopharmacological tools is permitting a refined spatial and temporal understanding of both mGlu receptor functions and their allosteric modulation in intact brain circuits. Together, these lines of research promise to provide a more refined understanding of mGlu receptors and their allosteric modulation that will inform the development of mGlu receptor allosteric modulators as neurotherapeutics in the years to come. PMID:26647381

  4. Modulation by group I mGLU receptor activation and group III mGLU receptor blockade of locomotor responses induced by D1-like and D2-like receptor agonists in the nucleus accumbens.

    PubMed

    Rouillon, Christophe; Degoulet, Mickael; Chevallier, Karine; Abraini, Jacques H; David, Hélène N

    2008-03-10

    Evidence for functional motor interactions between group I and group III metabotropic glutamatergic (mGlu) receptors and dopamine neurotransmission is now clearly established [David, H.N., Abraini, J.H., 2001a. The group I metabotropic glutamate receptor antagonist S-4-CPG modulates the locomotor response produced by the activation of D1-like, but not D2-like, dopamine receptors in the rat nucleus accumbens. Eur. J. Neurosci. 15, 2157-2164, David, H.N., Abraini, J.H., 2002. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur. J. Neurosci. 15, 869-875]. Nevertheless, whether or not and how, activation of group I and blockade of group III mGlu receptors modulate the motor responses induced by the activation of dopaminergic receptors in the NAcc still remains unknown. Answering this question needs to be assessed since functional interactions between neurotransmitters in the NAcc are well known to depend upon the level of activation of glutamatergic and/or dopaminergic receptors and because the effects of glutamatergic receptor agonists and antagonists on dopaminergic receptor-mediated locomotor responses are not always reciprocal as shown in previous studies. Our results show that activation of group I mGlu receptors by DHPG in the NAcc potentiated the locomotor response induced by intra-NAcc activation of D1-like receptors and blocked those induced by D2-like presynaptic or postsynaptic receptors. Alternatively, blockade of group III mGlu receptors by MPPG in the NAcc potentiated the locomotor responses mediated by D1-like receptors and by D2-like postsynaptic receptors and inhibited that induced by D2-like presynaptic receptors. These results compiled with previous data demonstrate that group I mGlu receptors and group III mGlu receptors can modulate the locomotor responses produced by D1-like and/or D2-like receptor agonists in a complex phasic and tonic

  5. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia

    PubMed Central

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  6. mGlu receptors and drug addiction

    PubMed Central

    Cleva, Richard M.; Olive, M. Foster

    2011-01-01

    Historically, brain catecholamine systems have been the primary focus of studies examining the neural substrates of drug addiction. In the past two decades, however, a wealth of evidence has accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors as well as long-term neuroplasticity associated with chronic drug use. As a result, there has been increased interest in developing glutamate-based therapies for the treatment of addictive disorders. Metabotropic glutamate (mGlu) receptors are classified into subcategories designated as Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3), and Group III (mGlu4, mGlu6, mGlu7, and mGlu8), and have received a great deal of attention due to their mediation of slower modulatory excitatory neurotransmission. Pharmacological ligands targeting these receptors have demonstrated reduced incidences of excitotoxicity or severe adverse side effects as compared to those targeting ionotropic glutamate (iGlu) receptors. Behavioral genetic and pharmacological studies have explored the role of individual mGlu receptor subtypes in regulating various addiction-related behaviours and several mGlu receptor ligands have been the subject of clinical testing for other medical conditions. PMID:22662312

  7. Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu2/3) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence

    PubMed Central

    2015-01-01

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure–activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4–8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology. PMID:24735492

  8. OptoGluNAM4.1, a Photoswitchable Allosteric Antagonist for Real-Time Control of mGlu4 Receptor Activity.

    PubMed

    Rovira, Xavier; Trapero, Ana; Pittolo, Silvia; Zussy, Charleine; Faucherre, Adèle; Jopling, Chris; Giraldo, Jesús; Pin, Jean-Philippe; Gorostiza, Pau; Goudet, Cyril; Llebaria, Amadeu

    2016-08-18

    OptoGluNAM4.1, a negative allosteric modulator (NAM) of metabotropic glutamate receptor 4 (mGlu4) contains a reactive group that covalently binds to the receptor and a blue-light-activated, fast-relaxing azobenzene group that allows reversible receptor activity photocontrol in vitro and in vivo. OptoGluNAM4.1 induces light-dependent behavior in zebrafish and reverses the activity of the mGlu4 agonist LSP4-2022 in a mice model of chronic pain, defining a photopharmacological tool to better elucidate the physiological roles of the mGlu4 receptor in the nervous system. PMID:27478159

  9. DSR-98776, a novel selective mGlu5 receptor negative allosteric modulator with potent antidepressant and antimanic activity.

    PubMed

    Kato, Taro; Takata, Makoto; Kitaichi, Maiko; Kassai, Momoe; Inoue, Mitsuhiro; Ishikawa, Chihiro; Hirose, Wataru; Yoshida, Kozo; Shimizu, Isao

    2015-06-15

    Modulation of monoaminergic systems has been the main stream of treatment for patients with mood disorders. However, recent evidence suggests that the glutamatergic system plays an important role in the pathophysiology of these disorders. This study pharmacologically characterized a structurally novel metabotropic glutamate 5 (mGlu5) receptor negative allosteric modulator, DSR-98776, and evaluated its effect on rodent models of depression and mania. First, DSR-98776 in vitro profile was assessed using intracellular calcium and radioligand binding assays. This compound showed dose-dependent inhibitory activity for mGlu5 receptors by binding to the same allosteric site as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a known mGlu5 inhibitor. The in vivo therapeutic benefits of DSR-98776 were evaluated in common rodent models of depression and mania. In the rat forced swimming test, DSR-98776 (1-3mg/kg) significantly reduced rats immobility time after treatment for 7 consecutive days, while paroxetine (3 and 10mg/kg) required administration for 2 consecutive weeks to reduce rats immobility time. In the mouse forced swimming test, acute administration of DSR-98776 (10-30 mg/kg) significantly reduced immobility time. This effect was not influenced by 4-chloro-DL-phenylalanine methyl ester hydrochloride-induced 5-HT depletion. Finally, DSR-98776 (30 mg/kg) significantly decreased methamphetamine/chlordiazepoxide-induced hyperactivity in mice, which reflects this compound antimanic-like effect. These results indicate that DSR-98776 acts as an orally potent antidepressant and antimanic in rodent models and can be a promising therapeutic option for the treatment of a broad range of mood disorders with depressive and manic states. PMID:25823809

  10. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    PubMed

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  11. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light

    PubMed Central

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A.; Tam, Shu K. E.; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J.; Bannerman, David M.; Foster, Russell G.; Peirson, Stuart N.

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  12. Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism

    PubMed Central

    Hathaway, Hannah A.; Pshenichkin, Sergey; Grajkowska, Ewa; Gelb, Tara; Emery, Andrew C.; Wolfe, Barry B.; Wroblewski, Jarda T.

    2015-01-01

    The majority of existing research on the function of metabotropic glutamate (mGlu) receptor 1 focuses on G protein-mediated outcomes. However, similar to other G protein-coupled receptors (GPCR), it is becoming apparent that mGlu1 receptor signaling is multi-dimensional and does not always involve G protein activation. Previously, in transfected CHO cells, we showed that mGlu1 receptors activate a G protein-independent, β-arrestin-dependent signal transduction mechanism and that some mGlu1 receptor ligands were incapable of stimulating this response. Here we set out to investigate the physiological relevance of these findings in a native system using primary cultures of cerebellar granule cells. We tested the ability of a panel of compounds to stimulate two mGlu1 receptor-mediated outcomes: (1) protection from decreased cell viability after withdrawal of trophic support and (2) G protein-mediated phosphoinositide (PI) hydrolysis. We report that the commonly used mGlu1 receptor ligands quisqualate, DHPG, and ACPD are completely biased towards PI hydrolysis and do not induce mGlu1 receptor-stimulated neuroprotection. On the other hand, endogenous compounds including glutamate, aspartate, cysteic acid, cysteine sulfinic acid, and homocysteic acid stimulate both responses. These results show that some commonly used mGlu1 receptor ligands are biased agonists, stimulating only a fraction of mGlu1 receptor-mediated responses in neurons. This emphasizes the importance of utilizing multiple agonists and assays when studying GPCR function. PMID:25700650

  13. Perirhinal Cortex mGlu5 Receptor Activation Reduces Relapse to Methamphetamine Seeking by Restoring Novelty Salience.

    PubMed

    Peters, Jamie; Scofield, Michael D; Ghee, Shannon M; Heinsbroek, Jasper A; Reichel, Carmela M

    2016-05-01

    Rats that have self-administered methamphetamine (meth) under long access, but not short access, conditions do not recognize novel objects. The perirhinal cortex is critical for novelty detection, and perirhinal metabotropic glutamate 5 receptors (mGlu5) are downregulated after long-access meth. The novel positive allosteric modulator (PAM) 1-(4-(2,4-difluorophenyl) piperazin-1-yl)-2-((4-fluorobenzyl)oxy)-ethanone, or DPFE, demonstrates improved solubility compared with other mGlu5 PAMs, thus allowing brain-site-specific pharmacological studies. Infusion of DPFE into perirhinal cortex restored novel object recognition in long-access meth rats. To investigate the impact of these cognitive enhancing effects on relapse, we tested the effects of DPFE infusions into perirhinal cortex on meth-seeking under two different test conditions. In the standard cue relapse test, perirhinal DPFE infusions did not alter meth-seeking in the presence of meth cues. However, in a novel cue relapse test, wherein animals were allowed to allocate responding between a novel cue and meth-conditioned cue, perirhinal DPFE infusions shifted the pattern of responding in long-access rats toward a profile resembling short-access rats, which respond equally for novel and meth cues. Perirhinal mGlu5 are thus a promising pharmacological target for the restoration of cognitive function in meth addicts. Targeting these receptors may also reduce relapse, particularly in situations where novel stimuli compete with conditioned stimuli for control over meth seeking. PMID:26365953

  14. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    PubMed

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  15. Chemical Modulation of Mutant mGlu1 Receptors Derived from Deleterious GRM1 Mutations Found in Schizophrenics

    PubMed Central

    2014-01-01

    Schizophrenia is a complex and highly heterogeneous psychiatric disorder whose precise etiology remains elusive. While genome-wide association studies (GWAS) have identified risk genes, they have failed to determine if rare coding single nucleotide polymorphisms (nsSNPs) contribute in schizophrenia. Recently, two independent studies identified 12 rare, deleterious nsSNPS in the GRM1 gene, which encodes the metabotropic glutamate receptor subtype 1 (mGlu1), in schizophrenic patients. Here, we generated stable cell lines expressing the mGlu1 mutant receptors and assessed their pharmacology. Using both the endogenous agonist glutamate and the synthetic agonist DHPG, we found that several of the mutant mGlu1 receptors displayed a loss of function that was not due to a loss in plasma membrane expression. Due to a lack of mGlu1 positive allosteric modulators (PAM) tool compounds active at human mGlu1, we optimized a known mGlu4 PAM/mGlu1 NAM chemotype into a series of potent and selective mGlu1 PAMs by virtue of a double “molecular switch”. Employing mGlu1 PAMs from multiple chemotypes, we demonstrate that the mutant receptors can be potentiated by small molecules and in some cases efficacy restored to that comparable to wild type mGlu1 receptors, suggesting deficits in patients with schizophrenia due to these mutations may be amenable to intervention with an mGlu1 PAM. However, in wild type animals, mGlu1 negative allosteric modulators (NAMs) are efficacious in classic models predictive of antipsychotic activity, whereas we show that mGlu1 PAMs have no effect to slight potentiation in these models. These data further highlight the heterogeneity of schizophrenia and the critical role of patient selection strategies in psychiatric clinical trials to match genotype with therapeutic mechanism. PMID:25137254

  16. The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal.

    PubMed

    Vandergriff, J; Rasmussen, K

    1999-02-01

    Naltrexone-precipitated morphine withdrawal induces hyperactivity of locus coeruleus (LC) neurons, as well as a plethora of behavioral withdrawal signs. Previous research has demonstrated that an increased release of glutamate and activation of AMPA receptors, particularly in the LC, play an important role in opiate withdrawal. LY354740 is a novel Group II metabotropic glutamate mGlu2/3 receptor agonist that decreases the release of glutamate. Therefore, we investigated the effect of LY354740 on naltrexone-precipitated morphine-withdrawal-induced activation of LC neurons and behavioral signs of morphine withdrawal. In in vivo recordings from anesthetized rats, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently attenuated the morphine-withdrawal-induced activation of LC neurons. In unanesthetized, morphine-dependent animals, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently suppressed the severity and occurrence of many naltrexone-precipitated morphine-withdrawal signs. These results indicate mGlu2/3 receptor agonists: (1) can attenuate the morphine-withdrawal-induced activation of LC neurons and many behavioral signs of morphine withdrawal; and (2) may have therapeutic effects in man for the treatment of opiate withdrawal. PMID:10218862

  17. Implication of mGlu5 receptor in the enhancement of morphine-induced hyperlocomotion under chronic treatment with zolpidem.

    PubMed

    Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu

    2014-09-01

    Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. PMID:24930812

  18. Adult siRNA-induced knockdown of mGlu7 receptors reduces anxiety in the mouse.

    PubMed

    O'Connor, Richard M; Thakker, Deepak R; Schmutz, Markus; van der Putten, Herman; Hoyer, Daniel; Flor, Peter J; Cryan, John F

    2013-09-01

    Our knowledge regarding the molecular pathophysiology underlying anxiety disorders remains incomplete. Increasing evidence points to a role of glutamate in anxiety. The group III metabotropic glutamate receptors (mGlu4, mGlu6, mGlu7 and mGlu8 receptors) remain the least investigated glutamate receptor subtypes partially due to a delay in the development of specific pharmacological tools. Early work using knockout animals and pharmacological tools aimed at investigating the role of mGlu7 receptor in the pathophysiology of anxiety disorders has yielded exciting yet not always consistent results. To further investigate the role this receptor plays in anxiety-like behaviour, we knocked down mGlu7 receptor mRNA levels in the adult mouse brain using siRNA delivered via an osmotic minipump. This reduced anxiety-like behaviour in the light-dark box coupled with an attenuation of stress-induced hyperthermia (SIH) and a reduction of the acoustic startle response (ASRs) in the fear-potentiated startle paradigm (FPS). These effects on anxiety-like behaviour were independent of any impairment of locomotor activity and surprisingly, no behavioural changes were observed in the forced swim test (FST), which is in contrast to mGlu7 receptor knockout animals. Furthermore, the previously reported epilepsy-prone phenotype seen in mGlu7 receptor knockout animals was not observed following siRNA-induced knockdown of the receptor. These data suggest targeting mGlu7 receptors with selective antagonist drugs may be an effective and safe strategy for the treatment of anxiety disorders. PMID:23603202

  19. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats.

    PubMed

    D'Amore, V; Santolini, I; van Rijn, C M; Biagioni, F; Molinaro, G; Prete, A; Conn, P J; Lindsley, C W; Zhou, Y; Vinson, P N; Rodriguez, A L; Jones, C K; Stauffer, S R; Nicoletti, F; van Luijtelaar, G; Ngomba, R T

    2013-03-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22705340

  20. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats

    PubMed Central

    D’Amore, V.; Santolini, I.; van Rijn, C.M.; Biagioni, F.; Molinaro, G.; Prete, A.; Conn, P.J.; Lindsley, C.W.; Zhou, Y.; Vinson, P.N.; Rodriguez, A.L.; Jones, C.K.; Stauffer, S.R.; Nicoletti, F.; van Luijtelaar, G.; Ngomba, R.T.

    2013-01-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. PMID:22705340

  1. Prolonged administration of antidepressant drugs leads to increased binding of [(3)H]MPEP to mGlu5 receptors.

    PubMed

    Nowak, Gabriel; Pomierny-Chamioło, Lucyna; Siwek, Agata; Niedzielska, Ewa; Pomierny, Bartosz; Pałucha-Poniewiera, Agnieszka; Pilc, Andrzej

    2014-09-01

    Metabotropic glutamate 5 (mGlu5) receptors are functionally connected with NMDA receptors. The antidepressant activity of the NMDA receptor antagonist ketamine in both preclinical and clinical studies, along with the antidepressant-like activities of negative allosteric modulators (NAMs) of mGlu5, led us to investigate if prolonged administration of various antidepressant drugs or the mGlu5 NAM, MTEP, causes changes in mGlu5 receptor availability or protein expression or in expression of Homer proteins in the rat brain. Our results clearly show that prolonged treatment with antidepressants with various mechanisms of action (such as escitalopram, reboxetine, milnacipran, moclobemide and imipramine) or with MTEP led to significant increases in [(3)H]MPEP binding in homogenates of the hippocampus and/or cerebral cortex. Increases in mGlu5 expression were also observed, though they did not always parallel the increase in binding. The results indicate that adaptive up-regulation of mGlu5 receptors may be a common change induced by antidepressant drugs. PMID:24796254

  2. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity

    PubMed Central

    Masuoka, T; Nakamura, T; Kudo, M; Yoshida, J; Takaoka, Y; Kato, N; Ishibashi, T; Imaizumi, N; Nishio, M

    2015-01-01

    Background and Purpose Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. Experimental Approach We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. Key Results Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. Conclusions and Implications These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia. PMID:25297838

  3. mGlu1 receptor mediates homeostatic control of intrinsic excitability through Ih in cerebellar Purkinje cells.

    PubMed

    Shim, Hyun Geun; Jang, Sung-Soo; Jang, Dong Cheol; Jin, Yunju; Chang, Wonseok; Park, Joo Min; Kim, Sang Jeong

    2016-06-01

    Homeostatic intrinsic plasticity is a cellular mechanism for maintaining a stable neuronal activity level in response to developmental or activity-dependent changes. Type 1 metabotropic glutamate receptor (mGlu1 receptor) has been widely known to monitor neuronal activity, which plays a role as a modulator of intrinsic and synaptic plasticity of neurons. Whether mGlu1 receptor contributes to the compensatory adjustment of Purkinje cells (PCs), the sole output of the cerebellar cortex, in response to chronic changes in excitability remains unclear. Here, we demonstrate that the mGlu1 receptor is involved in homeostatic intrinsic plasticity through the upregulation of the hyperpolarization-activated current (Ih) in cerebellar PCs. This plasticity was prevented by inhibiting the mGlu1 receptor with Bay 36-7620, an mGlu1 receptor inverse agonist, but not with CPCCOEt, a neutral antagonist. Chronic inactivation with tetrodotoxin (TTX) increased the components of Ih in the PCs, and ZD 7288, a hyperpolarization-activated cyclic nucleotide-gated channel selective inhibitor, fully restored reduction of firing rates in the deprived neurons. The homeostatic elevation of Ih was also prevented by BAY 36-7620, but not CPCCOEt. Furthermore, KT 5720, a blocker of protein kinase A (PKA), prevented the effect of TTX reducing the evoked firing rates, indicating the reduction in excitability of PCs due to PKA activation. Our study shows that both the mGlu1 receptor and the PKA pathway are involved in the homeostatic intrinsic plasticity of PCs after chronic blockade of the network activity, which provides a novel understanding on how cerebellar PCs can preserve the homeostatic state under activity-deprived conditions. PMID:26912592

  4. On the mechanism of anti-hyperthermic effects of LY379268 and LY487379, group II mGlu receptors activators, in the stress-induced hyperthermia in singly housed mice.

    PubMed

    Wierońska, J M; Stachowicz, K; Brański, P; Pałucha-Poniewiera, A; Pilc, A

    2012-01-01

    Earlier studies have demonstrated that the agonists of the mGlu(2/3) receptors produced anxiolytic actions after peripheral administration. However, the mechanism of their action is still not clear. Therefore the aim of the present study was to specify the role of the GABAergic and serotonergic system in the mechanism of the anxiolytic activity of group II mGlu receptor activators by using the stress induced hyperthermia test (SIH) in singly housed mice. We used an orthosteric mGlu(2/3) receptor agonist, LY379268, which induced anti-hyperthermic efficacy in the doses of 1-5mg/kg (73% of inhibition after a highest dose). The effect of the second ligand used, a mGlu(2) receptor positive modulator (PAM), LY487379, was observed in a dose range of 0.5-5mg/kg and reached 53% of the inhibition. The blockade of GABAergic system by GABA(A) receptor antagonist flumazenil (10mg/kg) or GABA(B) receptor antagonist CGP55845 (10mg/kg), and the blockade of serotonergic system by 5-HT(1A) receptor antagonist WAY100635 (0.1 and 1mg/kg) or 5-HT(2A/2C) receptor antagonist ritanserin (0.5mg/kg) had no influence on the anti-hyperthermic effect induced by effective dose of LY379268. However, the action of the effective dose of LY487379 was enhanced when co-administered with flumazenil, WAY100635 (0.1mg/kg) and ritanserin. Similar results were observed for the subeffective dose of LY379268 (0.5mg/kg). WAY100635 in a dose of 1mg/kg did not induce any enhancing effect on the activity of compounds. Therefore, it seems that the antagonism towards GABA(A) receptors, presynaptic 5-HT(1A) and postsynaptic 5-HT(2A/2C) receptors is responsible for the phenomenon. This article is part of a Special Issue entitled 'Anxiety and Depression'. PMID:21855555

  5. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor

    PubMed Central

    Lavreysen, Hilde; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Langlois, Xavier; Mackie, Claire; Pype, Stefan; Lütjens, Robert; Le Poul, Emmanuel; Trabanco, Andrés A; Nuñez, José María Cid

    2015-01-01

    Compounds modulating metabotropic glutamate type 2 (mGlu2) receptor activity may have therapeutic benefits in treating psychiatric disorders like schizophrenia and anxiety. The pharmacological and pharmacokinetic properties of a novel mGlu2 receptor-positive allosteric modulator (PAM), 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-2(1H)-pyridinone (JNJ-40411813/ADX71149) are described here. JNJ-40411813 acts as a PAM at the cloned mGlu2 receptor: EC50 = 147 ± 42 nmol/L in a [35S]GTPγS binding assay with human metabotropic glutamate type 2 (hmGlu2) CHO cells and EC50 = 64 ± 29 nmol/L in a Ca2+ mobilization assay with hmGlu2 Gα16 cotransfected HEK293 cells. [35S]GTPγS autoradiography on rat brain slices confirmed PAM activity of JNJ-40411813 on native mGlu2 receptor. JNJ-40411813 displaced [3H]JNJ-40068782 and [3H]JNJ-46281222 (mGlu2 receptor PAMs), while it failed to displace [3H]LY341495 (a competitive mGlu2/3 receptor antagonist). In rats, JNJ-40411813 showed ex vivo mGlu2 receptor occupancy using [3H]JNJ-46281222 with ED50 of 16 mg/kg (p.o.). PK-PD modeling using the same radioligand resulted in an EC50 of 1032 ng/mL. While JNJ-40411813 demonstrated moderate affinity for human 5HT2A receptor in vitro (Kb = 1.1 μmol/L), higher than expected 5HT2A occupancy was observed in vivo (in rats, ED50 = 17 mg/kg p.o.) due to a metabolite. JNJ-40411813 dose dependently suppressed REM sleep (LAD, 3 mg/kg p.o.), and promoted and consolidated deep sleep. In fed rats, JNJ-40411813 (10 mg/kg p.o.) was rapidly absorbed (Cmax 938 ng/mL at 0.5 h) with an absolute oral bioavailability of 31%. Collectively, our data show that JNJ-40411813 is an interesting candidate to explore the therapeutic potential of mGlu2 PAMs, in in vivo rodents experiments as well as in clinical studies. PMID:25692015

  6. Tetrahydronaphthyridine and Dihydronaphthyridinone Ethers As Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 5 (mGlu5)

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure–activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis. PMID:24914612

  7. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System

    PubMed Central

    Pittaluga, Anna

    2016-01-01

    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature.

  8. mGLU3 metabotropic glutamate receptors modulate the differentiation of SVZ-derived neural stem cells towards the astrocytic lineage.

    PubMed

    Ciceroni, C; Mosillo, P; Mastrantoni, E; Sale, P; Ricci-Vitiani, L; Biagioni, F; Stocchi, F; Nicoletti, F; Melchiorri, D

    2010-05-01

    Neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of postnatal mice, and cultured as neurospheres, expressed functional mGlu3 receptors. Following mitogen withdrawal and plating onto poly-ornitine-coated dishes, cells dissociated from the neurospheres differentiated into GFAP(+) astrocytes (about 85%), and a small percentage of beta-III tubulin(+)-neurons and O1(+)-oligodendrocytes. Activation of mGlu3 receptors with LY379268 (100 nM, applied every other day), during the differentiation period, impaired astrocyte differentiation, favoring the maintenance in culture of proliferating progenitors co-expressing GFAP with the immature markers, Sox1 and nestin. Co-treatment with the preferential mGlu2/3 receptor antagonist, LY341495 (100 nM), reversed this effect. We examined whether mGlu3 receptors could modulate the canonical signaling pathway activated by bone morphogenic proteins (BMPs), which are known to promote astrocyte differentiation of SVZ/NSCs. An acute challenge of cells isolated from the neurospheres with BMP4 (100 ng/mL) led to phosphorylation and nuclear translocation of the transcription factors, Smads. This effect was largely attenuated by the mGlu2/3 receptor agonist, LY379268. The interaction of mGlu3 and BMP4 receptors was mediated by the activation of the mitogen-activated protein kinase (MAPK) pathway. Accordingly, LY379268 failed to affect BMP receptor signaling when combined with the MAPK kinase inhibitor, UO-126 (30 muM). These data raise the intriguing possibility that glutamate regulates differentiation of SVZ/NSCs by activating mGlu3 receptors. PMID:20091783

  9. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    2013-01-01

    Background Spinocerebellar ataxia type 1 (SCA1) is a genetic disorder characterized by severe ataxia associated with progressive loss of cerebellar Purkinje cells. The mGlu1 metabotropic glutamate receptor plays a key role in mechanisms of activity-dependent synaptic plasticity in the cerebellum, and its dysfunction is linked to the pathophysiology of motor symptoms associated with SCA1. We used SCA1 heterozygous transgenic mice (Q154/Q2) as a model for testing the hypothesis that drugs that enhance mGlu1 receptor function may be good candidates for the medical treatment of SCA1. Results Symptomatic 30-week old SCA1 mice showed reduced mGlu1 receptor mRNA and protein levels in the cerebellum. Interestingly, these mice also showed an intense expression of mGlu5 receptors in cerebellar Purkinje cells, which normally lack these receptors. Systemic treatment of SCA1 mice with the mGlu1 receptor positive allosteric modulator (PAM), Ro0711401 (10 mg/kg, s.c.), caused a prolonged improvement of motor performance on the rotarod and the paw-print tests. A single injection of Ro0711401 improved motor symptoms for several days, and no tolerance developed to the drug. In contrast, the mGlu5 receptor PAM, VU0360172 (10 mg/kg, s.c.), caused only a short-lasting improvement of motor symptoms, whereas the mGlu1 receptor antagonist, JNJ16259685 (2.5 mg/kg, i.p.), further impaired motor performance in SCA1 mice. The prolonged symptomatic benefit caused by Ro0711401 outlasted the time of drug clearance from the cerebellum, and was associated with neuroadaptive changes in the cerebellum, such as a striking reduction of the ectopically expressed mGlu5 receptors in Purkinje cells, increases in levels of total and Ser880-phosphorylated GluA2 subunit of AMPA receptors, and changes in the length of spines in the distal dendrites of Purkinje cells. Conclusions These data demonstrate that pharmacological enhancement of mGlu1 receptors causes a robust and sustained motor improvement in SCA

  10. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    PubMed

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS. PMID:24672001

  11. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes.

    PubMed

    Ciccarelli, Renata; D'Alimonte, Iolanda; Ballerini, Patrizia; D'Auro, Mariagrazia; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Bruno, Valeria; Nicoletti, Ferdinando; Caciagli, Francesco

    2007-05-01

    Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways. PMID:17293559

  12. Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors.

    PubMed

    Schweitzer, C; Kratzeisen, C; Adam, G; Lundstrom, K; Malherbe, P; Ohresser, S; Stadler, H; Wichmann, J; Woltering, T; Mutel, V

    2000-07-24

    The binding properties of [(3)H]-LY354740 were characterized on rat metabotropic glutamate receptors mGlu2 and mGlu3 expressed in Chinese hamster ovary (CHO) cells using Semliki Forest virus vectors. The saturation isotherm gave K(D) values of 20+/-5 and 53+/-8 nM and B(max) values of 474+/-161 and 667+/-89 fmol/mg protein for mGlu2 and mGlu3 receptors, respectively. NMDA, CaCl(2), DHPG and kainate were inactive up to 1 mM, whereas LY341495, DCG IV and ibotenate inhibited [(3)H]-LY354740 binding with similar potencies on both receptors. L-CCG I, L-AP4, L-AP5, LY354740 and 1S,3R-ACPD were 2- to 4-fold more potent inhibitors of [(3)H]-LY354740 binding to mGlu2 than mGlu3 receptors. However, MPPG and L-AP3 had a 6-fold and DTT a 28-fold preference for mGlu2 over mGlu3. ZnCl(2), at 10 mM, inhibited more than 70% of [(3)H]-LY354740 binding to mGlu2 receptors. At the same concentration it did not affect significantly [(3)H]-LY354740 binding to mGlu3 receptors. On the contrary, glutamate, quisqualate, EGLU and NAAG showed a 3-, 5-, 7- and 12-fold preference for mGlu3 over mGlu2. Finally, GTPgammaS, which partially inhibited the binding on mGlu2 receptors, was inactive to inhibit [(3)H]-LY354740 binding on mGlu3 receptors. PMID:10884552

  13. Could MDMA Promote Stemness Characteristics in Mouse Embryonic Stem Cells via mGlu5 Metabotropic Glutamate Receptors?

    PubMed Central

    Meamar, Rokhsareh; Karamali, Fereshte; Mousavi, Seyed Ali; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2012-01-01

    Objective: Ecstasy, or 3, 4 (±) methylenedioxymethamphetamine (MDMA), is a potent neurotoxic drug. One of the mechanisms for its toxicity is the secondary release of glutamate. Mouse embryonic stem cells (mESCs) express only one glutamate receptor, the metabotropic glutamate receptor 5 (mGlu5), which is involved in the maintenance and self-renewal of mESCs. This study aims to investigate whether MDMA could influence self-renewal via the mGlu5 receptor in mESCs. Materials and Methods: In this expremental study, we used immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to determine the presence of the mGlu5 receptor in mESCs. The expression of mGlu5 was evaluated after MDMA was added to mESCs throughout neural precursor cell formation as group 1 and during neural precursor cell differentiation as group 2. The stemness characteristic in treated mESCs by immunofluorescence and flow cytometry was studied. Finally, caspase activity was evaluated by fluorescence staining in the treated group. One-way ANOVA or repeated measure of ANOVA according to the experimental design was used for statistical analyses. Results: In this study mGlu5 expression was shown in mESCs. In terms of neuronal differentiation, MDMA affected mGlu5 expression during neural precursor cell formation (group 1) and not during neural precursor differentiation (group 2). MDMA (450 µM) induced a significant increment in self-renewal properties in mESCs but did not reverse 2-methyl-6(phenylethynyl) pyridine (MPEP, 1 µM), a non-competitive selective mGlu5 antagonist. Fluorescence staining with anti-caspase 3 showed a significant increase in the number of apoptotic cells in the MDMA group. Conclusion: We observed a dual role for MDMA on mESCs: reduced proliferation and maintenance of self-renewal. The lack of decreasing stemness characteristic in presence of MPEP suggests that MDMA mediates its role through a different mechanism that requires further investigation. In

  14. Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction

    PubMed Central

    Moussawi, Khaled; Kalivas, Peter W.

    2015-01-01

    Drug addiction is characterized by maladaptive decision-making and dysfunctional brain circuitry regulating motivated behaviors, resulting in loss of the behavioral flexibility needed to abstain from drug seeking. Hence, addicts face high risk of relapse even after prolonged periods of abstinence from drug use. This is thought to result from long-lasting drug-induced neuroadaptations of glutamate and dopaminergic transmission in the mesocorticolimbic and corticostriatal circuits where group II metabotropic glutamate receptors (mGlu2/3 receptors) are densely expressed. mGlu2/3 receptors presynaptically control glutamate as well as dopamine release throughout the mesocorticolimbic structures involved in reward processing and drug seeking, and their function is reduced after prolonged exposure to drugs of abuse. In pre-clinical models, mGlu2/3 receptors have been shown to regulate both reward processing and drug seeking, in part through the capacity to control release of dopamine and glutamate respectively. Specifically, mGlu2/3 receptor agonists administered systemically or locally into certain brain structures reduce the rewarding value of commonly abused drugs and inhibit the reinstatement of drug seeking. Given the ability of mGlu2/3 receptor agonists to compensate for and possibly reverse drug-induced neuroadaptations in mesocorticolimbic circuitry, this class of receptors emerges as a new therapeutic target for reducing relapse in drug addiction. PMID:20371233

  15. Location-Dependent Signaling of the Group 1 Metabotropic Glutamate Receptor mGlu5

    PubMed Central

    Jong, Yuh-Jiin I.; Sergin, Ismail; Purgert, Carolyn A.

    2014-01-01

    Although G protein–coupled receptors are primarily known for converting extracellular signals into intracellular responses, some receptors, such as the group 1 metabotropic glutamate receptor, mGlu5, are also localized on intracellular membranes where they can mediate both overlapping and unique signaling effects. Thus, besides “ligand bias,” whereby a receptor’s signaling modality can shift from G protein dependence to independence, canonical mGlu5 receptor signaling can also be influenced by “location bias” (i.e., the particular membrane and/or cell type from which it signals). Because mGlu5 receptors play important roles in both normal development and in disorders such as Fragile X syndrome, autism, epilepsy, addiction, anxiety, schizophrenia, pain, dyskinesias, and melanoma, a large number of drugs are being developed to allosterically target this receptor. Therefore, it is critical to understand how such drugs might be affecting mGlu5 receptor function on different membranes and in different brain regions. Further elucidation of the site(s) of action of these drugs may determine which signal pathways mediate therapeutic efficacy. PMID:25326002

  16. Exploration of Allosteric Agonism Structure-Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254)

    PubMed Central

    Turlington, Mark; Noetzel, Meredith J.; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D.; Nguyen, Elizabeth D.; Gregory, Karen J.; Vinson, Paige N.; Rook, Jerri M.; Gogi, Kiran K.; Xiang, Zixiu; Bridges, Thomas M.; Daniels, J. Scott; Jones, Carrie; Niswender, Colleen M.; Meiler, Jens; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2014-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs. PMID:24050755

  17. Selective silencing of individual dendritic branches by an mGlu2-activated potassium conductance in dentate gyrus granule cells

    PubMed Central

    Brunner, János; Ster, Jeanne; Van-Weert, Susan; Andrási, Tibor; Neubrandt, Máté; Corti, Corrado; Corsi, Mauro; Ferraguti, Francesco; Gerber, Urs; Szabadics, János

    2013-01-01

    Group II metabotropic glutamate receptors (mGlu-IIs) modulate hippocampal information processing through several presynaptic actions. We describe a novel postsynaptic inhibitory mechanism mediated by the mGlu2 subtype that activates an inwardly-rectifying potassium conductance in the dendrites of dentate gyrus granule cells (GCs) of rats and mice. Data from glutamate uncaging experiments and simulations indicate that the mGlu2-activated potassium conductance uniformly reduces the peak amplitude of synaptic inputs arriving in the distal two-thirds of dendrites with only minor effects on proximal inputs. This unique shunting profile is consistent with a peak expression of the mGlu2-activated conductance at the transition between the proximal and middle third of the dendrites. Further simulations under various physiologically relevant conditions show that when a shunting conductance is activated in the proximal third of a single dendrite it effectively modulates input to this specific branch while leaving inputs in neighboring dendrites relatively unaffected. Thus, the restricted expression of the mGlu2-activated potassium conductance in the proximal third of GC dendrites represents an optimal localization for achieving the opposing biophysical requirements for uniform yet selective modulation of individual dendritic branches. PMID:23616537

  18. Maternal lipopolysaccharide treatment differentially affects 5-HT(2A) and mGlu2/3 receptor function in the adult male and female rat offspring.

    PubMed

    Wischhof, Lena; Irrsack, Ellen; Dietz, Frank; Koch, Michael

    2015-10-01

    Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. However, it is still not fully understood which biochemical mechanisms are responsible for the emergence of neuropsychiatric symptoms following prenatal immune activation. The serotonin (5-hydroxytryptamine, 5-HT) and glutamate system have prominently been associated with the schizophrenia pathophysiology but also with the mechanism of antipsychotic drug actions. Here, we investigated the behavioral and cellular response to 5-HT2A and metabotropic glutamate (mGlu)2/3 receptor stimulation in male and female offspring born to lipopolysaccharide (LPS)-treated mothers. Additionally, we assessed protein expression levels of prefrontal 5-HT2A and mGlu2 receptors. Prenatally LPS-exposed male and female offspring showed locomotor hyperactivity and increased head-twitch behavior in response to the 5-HT2A receptor agonist DOI. In LPS-exposed male offspring, the mGlu2/3 receptor agonist LY379268 failed to reduce DOI-induced prepulse inhibition deficits. In LPS-males, the behavioral changes were further accompanied by enhanced DOI-induced c-Fos protein expression and an up-regulation of prefrontal 5-HT2A receptors. No changes in either 5-HT2A or mGlu2 receptor protein levels were found in female offspring. Our data support the hypothesis of an involvement of maternal infection during pregnancy contributing, at least partially, to the pathology of schizophrenia. Identifying biochemical alterations that parallel the behavioral deficits may help to improve therapeutic strategies in the treatment of this mental illness. Since most studies in rodents almost exclusively include male subjects, our data further contribute to elucidating possible gender differences in the effects of prenatal infection on 5-HT2A and mGlu2/3 receptor function. PMID:26051401

  19. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors

    PubMed Central

    Kupferschmidt, David A; Lovinger, David M

    2015-01-01

    Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2

  20. Joint CP-AMPA and group I mGlu receptor activation is required for synaptic plasticity in dentate gyrus fast-spiking interneurons

    PubMed Central

    Hainmüller, Thomas; Krieglstein, Kerstin; Kulik, Akos; Bartos, Marlene

    2014-01-01

    Hippocampal principal cell (PC) assemblies provide the brain with a mnemonic representation of space. It is assumed that the formation of cell assemblies is supported by long-lasting modification of glutamatergic synapses onto perisomatic inhibitory interneurons (PIIs), which provide powerful feedback inhibition to neuronal networks. Repetitive activation of dentate gyrus PIIs by excitatory mossy fiber (MF) inputs induces Hebbian long-term potentiation (LTP). In contrast, long-term depression (LTD) emerges in the absence of PII activity. However, little is known about the molecular mechanisms underlying synaptic plasticity in PIIs. Here, we examined the role of group I metabotropic glutamate receptors 1 and 5 (mGluRs1/5) in inducing plastic changes at MF-PII synapses. We found that mGluRs1/5 are located perisynaptically and that pharmacological block of mGluR1 or mGluR5 abolished MF-LTP. In contrast, their exogenous activation was insufficient to induce MF-LTP but cleared MF-LTD. No LTP could be elicited in PIIs loaded with blockers of G protein signaling and Ca2+-dependent PKC. Two-photon imaging revealed that the intracellular Ca2+ rise necessary for MF-LTP was largely mediated by Ca2+-permeable AMPA receptors (CP-AMPARs), but less by NMDA receptors or mGluRs1/5. Thus, our data indicate that fast Ca2+ signaling via CP-AMPARs and slow G protein-mediated signaling via mGluRs1/5 converge to a PKC-dependent molecular pathway to induce Hebbian MF-LTP. We further propose that Hebbian activation of mGluRs1/5 gates PIIs into a “readiness mode” to promote MF-LTP, which, in turn, will support timed PII recruitment, thereby assisting in PC assembly formation. PMID:25161282

  1. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1.

    PubMed

    Schmitz, Sabine K; King, Cillian; Kortleven, Christian; Huson, Vincent; Kroon, Tim; Kevenaar, Josta T; Schut, Desiree; Saarloos, Ingrid; Hoetjes, Joost P; de Wit, Heidi; Stiedl, Oliver; Spijker, Sabine; Li, Ka Wan; Mansvelder, Huibert D; Smit, August B; Cornelisse, Lennart Niels; Verhage, Matthijs; Toonen, Ruud F

    2016-06-01

    Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity. PMID:27056679

  2. Blocking Metabotropic Glutamate Receptor Subtype 7 (mGlu7) via the Venus Flytrap Domain (VFTD) Inhibits Amygdala Plasticity, Stress, and Anxiety-related Behavior♦

    PubMed Central

    Gee, Christine E.; Peterlik, Daniel; Neuhäuser, Christoph; Bouhelal, Rochdi; Kaupmann, Klemens; Laue, Grit; Uschold-Schmidt, Nicole; Feuerbach, Dominik; Zimmermann, Kaspar; Ofner, Silvio; Cryan, John F.; van der Putten, Herman; Fendt, Markus; Vranesic, Ivo; Glatthar, Ralf; Flor, Peter J.

    2014-01-01

    The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7's extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7's Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design. PMID:24596089

  3. Inhibitory effect of spinal mGlu(5) receptor antisense oligonucleotide on the up-regulated expression of spinal G protein associated with chronic morphine treatment.

    PubMed

    Chen, Moxi; Zhang, Xiaoli; Xu, Hao; Ma, Xiaqing; Jiang, Wei; Xu, Tao

    2014-01-15

    Knockdown of spinal metabotropic glutamate 5 (mGlu5) receptor was shown to inhibit the development of intrathecal morphine antinociceptive tolerance. The present work was designed to evaluate the expression of spinal G-protein during morphine tolerance and knockdown of spinal mGlu5 receptor with antisense oligonucleotide (ODN). Rats were treated with saline, morphine, mGlu5 receptor antisense or mismatch ODN intrathecally. Behavioral tests were employed to test the thermal and mechanical pain thresholds. Five days later, rats were scarified and spinal expression of spinal Gαi, Gαo, Gαq and Gβ were detected. Consistent with the previous results, knockdown of spinal mGlu5 receptor could inhibit spinal morphine antinociceptive tolerance in behavioral tests (P<0.05). The mGlu5 receptor antisense ODN produced a significant reduction in mGlu5 receptor protein of about 56.6% compared with the control group (P<0.05). Expression of spinal Gαi, Gαo, Gαq and Gβ were up-regulated while morphine tolerance developed (P<0.05). Antisense ODN of spinal mGlu5 receptor, but not mismatched ODN, reduced the spinal dorsal horn levels of Gαi, Gαo, Gαs, Gαq and Gβ (P<0.05). We conclude that expression of spinal G (αi, αo, αs, αq and β) protein may be up-regulated after chronic morphine treatment which could be attenuated by knockdown of spinal mGlu5 receptor with antisense ODN. PMID:24296320

  4. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia.

    PubMed

    Sciamanna, G; Ponterio, G; Tassone, A; Maltese, M; Madeo, G; Martella, G; Poli, S; Schirinzi, T; Bonsi, P; Pisani, A

    2014-10-01

    Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia. PMID:24951854

  5. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus

    PubMed Central

    Klar, Rebecca; Walker, Adam G.; Ghose, Dipanwita; Grueter, Brad A.; Engers, Darren W.; Hopkins, Corey R.; Lindsley, Craig W.; Xiang, Zixiu

    2015-01-01

    Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders. PMID:25972184

  6. The Rapidly Acting Antidepressant Ketamine and the mGlu2/3 Receptor Antagonist LY341495 Rapidly Engage Dopaminergic Mood Circuits.

    PubMed

    Witkin, J M; Monn, J A; Schoepp, D D; Li, X; Overshiner, C; Mitchell, S N; Carter, G; Johnson, B; Rasmussen, K; Rorick-Kehn, L M

    2016-07-01

    Ketamine is a rapidly acting antidepressant in patients with treatment-resistant depression (TRD). Although the mechanisms underlying these effects are not fully established, inquiry to date has focused on the triggering of synaptogenesis transduction pathways via glutamatergic mechanisms. Preclinical data suggest that blockade of metabotropic glutamate (mGlu2/3) receptors shares many overlapping features and mechanisms with ketamine and may also provide rapid efficacy for TRD patients. Central dopamine circuitry is recognized as an end target for mood regulation and hedonic valuation and yet has been largely neglected in mechanistic studies of antidepressant-relevant effects of ketamine. Herein, we evaluated the changes in dopaminergic neurotransmission after acute administration of ketamine and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid ] in preclinical models using electrophysiologic, neurochemical, and behavioral endpoints. When given acutely, both ketamine and LY341495, but not the selective serotonin reuptake inhibitor (SSRI) citalopram, increased the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), increased extracellular levels of dopamine in the nucleus accumbens and prefrontal cortex, and enhanced the locomotor stimulatory effects of the dopamine D2/3 receptor agonist quinpirole. Further, both ketamine and LY341495 reduced immobility time in the tail-suspension assay in CD1 mice, which are relatively resistant to SSRI antidepressants. Both the VTA neuronal activation and the antidepressant phenotype induced by ketamine and LY341495 were attenuated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo- (9CI)-benzo[f]quinoxaline-7-sulfonamide, indicating AMPA-dependent effects. These findings provide another overlapping mechanism of action of ketamine and mGlu2/3 receptor

  7. Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2015-01-01

    In Parkinson's disease (PD) and l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs), overactivity of brain glutamate neurotransmission is documented and antiglutamatergic drugs decrease LID. Serotonin (5-HT) receptors and transporter (SERT) are also implicated in LID and we hypothesize that antiglutamatergic drugs can also regulate brain serotoninergic activity. Our aim was to investigate the long-term effect of the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) with L-DOPA on basal ganglia SERT, 5-HT(1A) and 5-HT(2A) receptor levels in monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP monkeys were treated for one month with L-DOPA and developed LID while those treated with L-DOPA and MPEP (10 mg/kg) developed significantly less LID. Normal controls and saline-treated MPTP monkeys were included for biochemical analysis. The MPTP lesion and experimental treatments left unchanged striatal 5-HT concentrations. MPTP lesion induced an increase of striatal 5-HIAA concentrations similar in all MPTP monkeys as compared to controls. [(3)H]-8-OH-DPAT and [(3)H]-citalopram specific binding levels to 5-HT(1A) receptors and SERT respectively remained unchanged in the striatum and globus pallidus of all MPTP monkeys compared to controls and no difference was observed between groups of MPTP monkeys. [(3)H]-ketanserin specific binding to striatal and pallidal 5-HT2A receptors was increased in L-DOPA-treated MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys and no difference between the latter groups was observed; dyskinesia scores correlated positively with this binding. In conclusion, reduction of development of LID with MPEP was associated with lower striatal and pallidal 5-HT2A receptors showing that glutamate activity also affects serotoninergic markers. PMID:25046277

  8. Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor.

    PubMed

    De Colle, C; Bessis, A S; Bockaert, J; Acher, F; Pin, J P

    2000-04-01

    In the brain, group-III metabotropic glutamate (mGlu) receptors mGlu(4), mGlu(7) and mGlu(8) receptors play a critical role in controlling the release process at many glutamatergic synapses. The pharmacological profile of mGlu(4) receptor has been studied extensively, allowing us to propose a pharmacophore model for this receptor subtype. Surprisingly, the activity of only a few compounds have been reported on mGlu(7) and mGlu(8) receptors. In order to identify new possibilities for the design of selective compounds able to discriminate between the members of the group-III mGlu receptors, we have undertaken a complete pharmacological characterization of mGlu(8) receptor and compared it with that of mGlu(4) receptor, using the same expression system, and the same read out. The activities of 32 different molecules revealed that these two mGlu receptors subtypes share a similar pharmacological profile. Only small differences were noticed in addition to that previously reported with S-carboxyglutamate (S-Gla) being a partial agonist at mGlu(4) receptor and a full antagonist at mGlu(8) receptor. These include: a slightly higher relative potency of the agonists 1S,3R and 1S,3S-aminocyclopentane-1,3-dicarboxylic acid (ACPD), S-4-carboxyphenylglycine (S-4CPG) and S-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG), and a slightly higher potency of the antagonists 2-aminobicyclo[3.1.0]hexane-2, 6-dicarboxylic acid (LY354740) and RS-alpha-methyl-4-phosphonophenylglycine (MPPG) on mGlu(8) receptor. When superimposed on the mGlu(4) receptor pharmacophore model, these molecules revealed three regions that may be different between the ligand binding sites of mGlu(8) and mGlu(4) receptors. PMID:10771029

  9. The Metabotropic Glutamate Receptor, mGlu5, Is Required for Extinction Learning That Occurs in the Absence of a Context Change

    PubMed Central

    André, Marion Agnes Emma; Güntürkün, Onur; Manahan-Vaughan, Denise

    2015-01-01

    The metabotropic glutamate (mGlu) receptors and, in particular, mGlu5 are crucially involved in multiple forms of synaptic plasticity that are believed to underlie explicit memory. MGlu5 is also required for information transfer through neuronal oscillations and for spatial memory. Furthermore, mGlu5 is involved in extinction of implicit forms of learning. This places this receptor in a unique position with regard to information encoding. Here, we explored the role of this receptor in context-dependent extinction learning under constant, or changed, contextual conditions. Animals were trained over 3 days to take a left turn under 25% reward probability in a T-maze with a distinct floor pattern (Context A). On Day 4, they experienced either a floor pattern change (Context B) or the same floor pattern (Context A) in the absence of reward. After acquisition of the task, the animals were returned to the maze once more on Day 5 (Context A, no reward). Treatment with the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine, before maze exposure on Day 4 completely inhibited extinction learning in the AAA paradigm but had no effect in the ABA paradigm. A subsequent return to the original context (A, on Day 5) revealed successful extinction in the AAA paradigm, but impairment of extinction in the ABA paradigm. These data support that although extinction learning in a new context is unaffected by mGlu5 antagonism, extinction of the consolidated context is impaired. This suggests that mGlu5 is intrinsically involved in enabling learning that once-relevant information is no longer valid. © 2014 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:25160592

  10. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction

    PubMed Central

    Walker, Adam G.; Wenthur, Cody J.; Xiang, Zixiu; Rook, Jerri M.; Emmitte, Kyle A.; Niswender, Colleen M.; Lindsley, Craig W.; Conn, P. Jeffrey

    2015-01-01

    Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders. PMID:25583490

  11. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.

    PubMed

    Cuccurazzu, Bruna; Bortolotto, Valeria; Valente, Maria Maddalena; Ubezio, Federica; Koverech, Aleardo; Canonico, Pier Luigi; Grilli, Mariagrazia

    2013-10-01

    Acetyl-L-carnitine (ALC) is a naturally occurring molecule with an important role in cellular bioenergetics and as donor of acetyl groups to proteins, including NF-κB p65. In humans, exogenously administered ALC has been shown to be effective in mood disturbances, with a good tolerability profile. No current information is available on the antidepressant effect of ALC in animal models of depression and on the putative mechanism involved in such effect. Here we report that ALC is a proneurogenic molecule, whose effect on neuronal differentiation of adult hippocampal neural progenitors is independent of its neuroprotective activity. The in vitro proneurogenic effects of ALC appear to be mediated by activation of the NF-κB pathway, and in particular by p65 acetylation, and subsequent NF-κB-mediated upregulation of metabotropic glutamate receptor 2 (mGlu2) expression. When tested in vivo, chronic ALC treatment could revert depressive-like behavior caused by unpredictable chronic mild stress, a rodent model of depression with high face validity and predictivity, and its behavioral effect correlated with upregulated expression of mGlu2 receptor in hippocampi of stressed mice. Moreover, chronic, but not acute or subchronic, drug treatment significantly increased adult born neurons in hippocampi of stressed and unstressed mice. We now propose that this mechanism could be potentially involved in the antidepressant effect of ALC in humans. These results are potentially relevant from a clinical perspective, as for its high tolerability profile ALC may be ideally employed in patient subpopulations who are sensitive to the side effects associated with classical antidepressants. PMID:23670591

  12. The effect of mGlu8 deficiency in animal models of psychiatric diseases.

    PubMed

    Fendt, M; Bürki, H; Imobersteg, S; van der Putten, H; McAllister, K; Leslie, J C; Shaw, D; Hölscher, C

    2010-02-01

    The metabotropic glutamate receptor subtype 8 (mGlu(8)) is presynaptically located and regulates the release of the transmitter. Dysfunctions of this mechanism are involved in the pathophysiology of different psychiatric disorders. mGlu(8) deficient mice have been previously investigated in a range of studies, but the results are contradictory and there are still many open questions. Therefore, we tested mGlu(8)-deficient animals in different behavioral tasks that are commonly used in neuropsychiatric research. Our results show a robust contextual fear deficit in mGlu(8)-deficient mice. Furthermore, novel object recognition, chlordiazepoxide-facilitated extinction of operant conditioning and the acoustic startle response were attenuated by mGlu(8) deficiency. We found no changes in sensory processing, locomotor activity, prepulse inhibition, phencyclidine-induced changes in locomotion or prepulse inhibition, operant conditioning, conditioned fear to a discrete cue or in animal models of innate fear and post-traumatic stress disorder. We conclude that mGlu(8) might be a potential target for disorders with pathophysiological changes in brain areas where mGlu(8) modulates glutamate and gamma-amino butyric acid (GABA) transmission. Our data especially point to anxiety disorders involving exaggerated contextual fear, such as generalized anxiety disorders, and to conditions with disturbed declarative memory. PMID:19740090

  13. Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity.

    PubMed

    David, Hélène N; Abraini, Jacques H

    2002-03-01

    Evidence for functional interactions between metabotropic glutamate (mGlu) receptors and dopamine (DA) neurotransmission is now clearly established. In the present study, we investigated interactions between group III mGlu receptors and D1- and D2-like receptors in the nucleus accumbens (NAcc). Administration, into the NAcc, of the selective group III mGlu receptor agonist, AP4, resulted in an increase in locomotor activity, which was blocked by pretreatment with the group III mGlu receptor antagonist, MPPG. In addition, pretreatment with AP4 further blocked the increase in motor activity induced by the D1-like receptor agonist, SKF 38393, but potentiated the locomotor responses induced by either the D2-like receptor agonist, quinpirole, or coinfusion of SKF 38393 and quinpirole. MPPG reversed the effects of AP4 on the motor responses induced by D1-like and/or D2-like receptor activation. These results confirm that glutamate transmission may control DA-dependent locomotor function through mGlu receptors and further indicate that group III mGlu receptors oppose the behavioural response produced by D1-like receptor activation and favour those produced by D2-like receptor activation. PMID:11906529

  14. Biased mGlu5 positive allosteric modulators provide in vivo efficacy without potentiating mGlu5 modulation of NMDAR currents

    PubMed Central

    Rook, Jerri M.; Xiang, Zixiu; Lv, Xiaohui; Ghoshal, Ayan; Dickerson, Jonathan W.; Bridges, Thomas M.; Johnson, Kari A.; Foster, Daniel J.; Gregory, Karen J.; Vinson, Paige N.; Thompson, Analisa D.; Byun, Nellie; Collier, Rebekah L.; Bubser, Michael; Nedelcovych, Michael T.; Gould, Robert W.; Stauffer, Shaun R.; Daniels, J. Scott; Niswender, Colleen M.; Lavreysen, Hilde; Mackie, Claire; Conde-Ceide, Susana; Alcazar, Jesus; Bartolomé-Nebreda, José M.; Macdonald, Gregor J.; Steckler, Thomas; Jones, Carrie K.; Lindsley, Craig W.; Conn, P. Jeffrey

    2015-01-01

    Summary Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAM that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq–mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for in vivo efficacy. PMID:25937172

  15. mGlu5 Receptors and Relapse to Cocaine-Seeking: The Role of Receptor Trafficking in Postrelapse Extinction Learning Deficits

    PubMed Central

    Knackstedt, Lori A.

    2016-01-01

    We have previously demonstrated that MTEP, an allosteric antagonist of mGlu5, infused into the nucleus accumbens attenuates relapse after abstinence from cocaine self-administration. MTEP infused into the dorsolateral striatum (dlSTR) does not alter relapse but has long-lasting effects on subsequent extinction learning. Here we tested whether systemic MTEP would prevent relapse after abstinence or alter extinction learning. We also investigated the mechanism of action by which intra-dlSTR MTEP on test day alters extinction on subsequent days. Animals self-administered cocaine for 12 days followed by abstinence for 20-21 days. MTEP (0.5–5 mg/kg IP) was administered prior to placement into the operant chamber for a context-primed relapse test. A separate group of animals received intra-dlSTR MTEP prior to the relapse test and were sacrificed day later. Systemic administration of MTEP attenuated abstinent-relapse without significantly affecting extinction learning. Surface biotinylation analysis of protein expression in the dlSTR revealed that, in cocaine animals, intra-dlSTR MTEP administration decreased mGlu5 surface expression and prevented changes in Arc and GluA1/GluA2 observed in their vehicle counterparts. Thus, blockade of mGlu5 receptors may be utilized in future treatment strategies for relapse prevention in humans, although the effects of chronic blockade on extinction learning should be further evaluated. PMID:26881139

  16. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction

    PubMed Central

    Monastyrskaia, Katherine; Lundstrom, Kenneth; Plahl, Doris; Acuna, Gonzalo; Schweitzer, Christophe; Malherbe, Pari; Mutel, Vincent

    1999-01-01

    The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5′[γ-35S]-thiotriphosphate [γ-35S]-GTP binding assay.Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters KD and Bmax values of 150 nM and 9.3 pmoles mg−1 protein, respectively. The specific binding was inhibited concentration-dependently by several mGlu receptor ligands, and their rank order of affinity was established.Several peptides inhibited the [3H]-L-AP4 binding with the following rank order of potency: glutamate-glutamate>glutamate-glutamate-leucine=aspartate - glutamate>>glutamate - glutamate-aspartate>lactoyl-glutamate>>aspartate-aspartate. Aspartate-phenylalanine-methyl ester (aspartame) was inactive up to 1 mM and guanosine-5′-monophosphate and inosine-5′-monophosphate were inactive up to 100 μM.The [γ-35S]-GTP binding functional assay was used to determine the agonist activities of the different compounds. For the rat mGlu4 agonists, L-AP4 and L-glutamate, the correlation between their occupancy and activation of the receptor was close to one. The peptides, Glu-Glu, Asp-Glu and Glu-Glu-Asp failed to stimulate the [γ-35S]-GTP binding at receptor occupancy greater than 80% and Glu-Glu-Leu appeared to be a weak partial agonist. These peptides did not elicit a clear dose-dependent umami perception. However, Glu-lac showed a good correlation between its potency to stimulate the [γ-35S]-GTP binding and its affinity for displacement of [3H]-L-AP4 binding. These data are in agreement with the peptide taste assessment in human subjects, which showed that the acid derivatives of glutamate had characteristics similar to umami. PMID:10556940

  17. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists.

    PubMed

    Moreno, José L; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C; González-Maeso, Javier

    2011-04-15

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type and mGluR2-KO mice. [(3)H]Ketanserin binding displacement curves by DOI were performed in mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens. PMID:21276828

  18. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade

    PubMed Central

    Stefani, Mark R.; Moghaddam, Bita

    2010-01-01

    Metabotropic glutamate (mGlu) receptors provide a mechanism by which the function of NMDA glutamate receptors can be modulated. As NMDA receptor hypofunction is implicated in the etiology of psychiatric disorders, including schizophrenia, the pharmacological regulation of mGlu receptor activity represents a promising therapeutic approach. We examined the effects of the positive allosteric mGlu5 receptor modulator 3- cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), alone and in combination with the NMDA receptor antagonist MK-801, on a task measuring cognitive set-shifting ability. This task measures NMDA receptor-dependent cognitive abilities analogous to those impaired in schizophrenia. Systemic administration of CDPPB (10 & 30 mg/kg i.p) blocked MK-801 (0.1 mg/kg, i.p.)-induced impairments in set-shifting ability. The effect on learning was dose-dependent, with the 30 mg/kg dose having a greater effect than the 10 mg/kg dose across all trials. This ameliorative effect of CDPPB reflected a reduction in MK-801-induced perseverative responding. These results add to the evidence that mGlu5 receptors interact functionally with NMDA receptors to regulate behavior, and suggest that positive modulators of mGlu5 receptors may have therapeutic potential in the treatment of disorders, like schizophrenia, characterized by impairments in cognitive flexibility and memory. PMID:20371234

  19. Atypical signaling of metabotropic glutamate receptor 1 in human melanoma cells.

    PubMed

    Gelb, Tara; Pshenichkin, Sergey; Hathaway, Hannah A; Grajkowska, Ewa; Dalley, Carrie Bowman; Wolfe, Barry B; Wroblewski, Jarda T

    2015-11-01

    The metabotropic glutamate 1 (mGlu1) receptor has emerged as a novel target for the treatment of metastatic melanoma and various other cancers. Our laboratory has demonstrated that a selective, non-competitive mGlu1 receptor antagonist slows human melanoma growth in vitro and in vivo. In this study, we sought to determine if the activation of a canonical G protein-dependent signal transduction cascade, which is often used as an output of mGlu1 receptor activity in neuronal cells, correlated with mGlu1 receptor-mediated melanoma cell viability. Glutamate, the endogenous ligand of mGlu1 receptors, significantly increased melanoma cell viability, but did not stimulate phosphoinositide (PI) hydrolysis in several human melanoma cell lines. In contrast, melanoma cell viability was not increased by quisqualate, a highly potent mGlu1 receptor agonist, or DHPG, a selective group I mGlu receptor agonist. Similarly to glutamate, quisqualate also failed to stimulate PI hydrolysis in mGlu1 receptor-expressing melanoma cells. These results suggest that the canonical G protein-dependent signal transduction cascade is not coupled to mGlu1 receptors in all human melanoma cells. On the other hand, dynamin inhibition selectively decreased viability of mGlu1 receptor-expressing melanoma cells, suggesting that a mechanism requiring internalization may control melanoma cell viability. Taken together, these data demonstrate that the approaches commonly used to study mGlu1 receptor function and signaling in other systems may be inappropriate for studying mGlu1 receptor-mediated melanoma cell viability. PMID:26291396

  20. Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for metabotropic glutamate receptor subtype 4 (mGlu4).

    PubMed

    Kil, Kun-Eek; Poutiainen, Pekka; Zhang, Zhaoda; Zhu, Aijun; Choi, Ji-Kyung; Jokivarsi, Kimmo; Brownell, Anna-Liisa

    2014-11-13

    Four 4-phthalimide derivatives of N-(3-chlorophenyl)-2-picolinamide were synthesized as potential ligands for the PET imaging of mGlu4 in the brain. Of these compounds, N-(3-chloro-4-(4-fluoro-1,3-dioxoisoindolin-2-yl)phenyl)-2-picolinamide (3, KALB001) exhibited improved binding affinity (IC50 = 5.1 nM) compared with ML128 (1) and was subsequently labeled with (18)F. When finally formulated in 0.1 M citrate buffer (pH 4) with 10% ethanol, the specific activity of [(18)F]3 at the end of synthesis (EOS) was 233.5 ± 177.8 GBq/μmol (n = 4). The radiochemical yield of [(18)F]3 was 16.4 ± 4.8% (n = 4), and the purity was over 98%. In vivo imaging studies in a monkey showed that the radiotracer quickly penetrated the brain with the highest accumulation in the brain areas known to express mGlu4. Despite some unfavorable radiotracer properties like fast washout in rodent studies, [(18)F]3 is the first (18)F-labeled mGlu4 radioligand, which can be further modified to improve pharmacokinetics and brain penetrability for future human studies. PMID:25330258

  1. Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction

    PubMed Central

    Zanos, Panos; Georgiou, Polymnia; Gonzalez, Loreto Rojo; Hourani, Susanna; Chen, Ying; Kitchen, Ian; Kieffer, Brigitte L; Winsky-Sommerer, Raphaelle

    2016-01-01

    Background: A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. Methods: Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. Results: Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. Conclusions: These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of

  2. An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia.

    PubMed

    Balu, Darrick T; Li, Yan; Takagi, Shunsuke; Presti, Kendall Taylor; Ramikie, Teniel S; Rook, Jerri M; Jones, Carrie K; Lindsley, Craig W; Conn, P Jeffrey; Bolshakov, Vadim Y; Coyle, Joseph T

    2016-07-01

    There is substantial evidence that NMDA receptor (NMDAR) hypofunction contributes to the pathophysiology of schizophrenia (SCZ). A recent large-scale genome-wide association study identified serine racemase (SR), the enzyme that produces the NMDAR co-agonist D-serine, as a risk gene for SCZ. Serine racemase knockout (SR-/-) mice, which lack D-serine, exhibit many of the neurochemical and behavioral abnormalities observed in SCZ. Metabotropic glutamate receptor 5 (mGlu5)-positive allosteric modulators (PAMs) are currently being developed to treat cognitive dysfunction. We used in vitro electrophysiology to determine whether the mGlu5 PAM VU0409551 directly enhances NMDAR function in hippocampal slices from adult male SR-/- mice. We administered VU0409551 systemically for 5 days to adult male wild-type C57BL/6 animals to determine the optimal dose to test in SR-/- mice. We used western blot analyses and trace-fear conditioning to determine whether 5 days of VU0409551 treatment could reverse the neuroplasticity and learning deficits, respectively, in SR-/- mice. We show that VU0409551 enhances NMDAR function and rescues long-term potentiation in hippocampal slices obtained from SR-/- mice. Systemic treatment with VU0409551 (10 and 30 mg/kg) to wild-type mice causes a dose-dependent increase in the Akt/GS3Kα/β signaling pathway, which is reduced in SR-/- mice and in SCZ. Furthermore, the administration of VU0409551 to SR-/- mice reverses their deficits in several neuroplasticity signaling pathways and improves their contextual fear memory. These results support positive allosteric modulation of mGlu5, particularly with VU0409551, as a viable mechanism to reverse the deficits in NMDAR function, synaptic plasticity, and memory that are known to be impaired in SCZ. PMID:26741285

  3. Antagonism of mGlu receptors and potentiation of EPSCs at rat spinal motoneurones in vitro.

    PubMed

    Cao, C Q; Tse, H W; Jane, D E; Evans, R H; Headley, P M

    1997-03-01

    The patch-clamp technique has been used to record synaptic responses, elicited by electrical stimulation of dorsal roots, in 28 single motoneurones of in vitro spinal cord preparations from neonate (P5 to P8) rats. The effects of (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) (200 microM), a potent antagonist at L-2-amino-4-phosphonobutanoate (AP4)-sensitive receptors, and (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (500 microM), which is a less selective antagonist of mGluRs, were tested on EPSCs alone and as antagonists of AP4-induced depression of EPSCs. The EC50 for depression of EPSCs by AP4 (1.16 +/- 0.12 microM, n = 8) was increased to 18.9 +/- 0.7 microM (n = 6) by MPPG. MCPG (500 microM) had no significant effect on the depressant potency of AP4. Under control conditions, EPSCs had mean peak amplitudes of 983 pA +/- 64 SEM and mean charge transferred of 306 +/- 37 pC (n = 28). These values were increased significantly (p < 0.05) to 1168 +/- 68 pA and 363 +/- 39 pC by MPPG (n = 6), and 1150 +/- 54 pA and 358 +/- 33 pC (n = 6) by MCPG. There was no significant difference between the enhancement of the initial peak of the EPSCs (mean latency from stimulus artifact 5.9 +/- 0.3 ms) and later components, suggesting mGluRs to be present on primary afferent terminals presynaptic to motoneurones as well as in pathways via interneurones. These results are consistent with the presence of at least two types of presynaptic mGluR that modulate release of glutamate in segmental pathways convergent onto motoneurones. These receptors appear to be activated by interstitial glutamate tonically present in the present preparations. PMID:9175609

  4. Preclinical evaluation of the antipsychotic potential of the mGlu2-positive allosteric modulator JNJ-40411813

    PubMed Central

    Lavreysen, Hilde; Langlois, Xavier; Donck, Luc Ver; Nuñez, José María Cid; Pype, Stefan; Lütjens, Robert; Megens, Anton

    2015-01-01

    JNJ-40411813/ADX71149 (1-butyl-3-chloro-4-(4-phenylpiperidin-1-yl) pyridin-2(1H)-one) is a positive allosteric modulator (PAM) of the mGlu2 receptor, which also displays 5-Hydroxytryptamine (5HT2A) antagonism after administration in rodents due to a rodent-specific metabolite. JNJ-40411813 was compared with the orthosteric mGlu2/3 agonist LY404039 (4-amino-2-thiabicyclo [3.1.0] hexane-4,6-dicarboxylic acid 2,2-dioxide), the selective mGlu2 PAM JNJ-42153605 (3-(cyclopropylmethyl)-7-(4-phenylpiperidin-1-yl)-8-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine) and the 5HT2A antagonist ritanserin in rodent models for antipsychotic activity and potential side effects, attempting to differentiate between the various compounds and mechanisms of action. In mice, JNJ-40411813, JNJ-42153605, and LY404039 inhibited spontaneous locomotion and phencyclidine- and scopolamine-induced but not d-amphetamine-induced hyperlocomotion; the 5HT2A antagonist ritanserin inhibited only spontaneous locomotion and phencyclidine-induced hyperlocomotion. As measured by 2-deoxyglucose uptake, all compounds reversed memantine-induced brain activation in mice. The two mGlu2 PAMs and LY404039, but not ritanserin, inhibited conditioned avoidance behavior in rats. Like ritanserin, the mGlu2 ligands antagonized 2,5-dimethoxy-4-methylamphetamine-induced head twitches in rats. LY404039 but not the mGlu2 PAMs impaired rotarod performance in rats and increased the acoustic startle response in mice. Our results show that although 5HT2A antagonism has effect in some models, mGlu2 receptor activation is sufficient for activity in several animal models of antipsychotic activity. The mGlu2 PAMs mimicked the in vivo pharmacodynamic effects observed with LY404039 except for effects on the rotarod and acoustic startle, suggesting that they produce a primary activity profile similar to that of the mGlu2/3 receptor agonist while they can be differentiated based on their secondary activity profile. The results are

  5. Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors.

    PubMed

    David, H N; Abraini, J H

    2003-05-01

    Previous investigations have shown that mGlu receptors would be involved in the amphetamine-induced motor response. However, data are somewhat controversial across studies where methodological protocols vary. The aim of the present study was to determine the involvement of mGlu receptors in the NAcc in the locomotor-activating properties of amphetamine in rats well habituated to their experimental environment, a condition known to modulate the motor response to amphetamine. Focal infusion of the group I mGlu receptor antagonist S-4-CPG, which has no effect on basal motor activity, virtually suppressed the locomotor response to amphetamine, while infusion of the group II mGlu receptor antagonist LY 341495 or the group III mGlu receptor agonist AP4, at the minimal dose that produces locomotor activation, reduced it by approximately a half. These effects were blocked by the group I mGlu receptor agonist DHPG, the group II mGlu receptor agonist APDC, and the group III mGlu receptor antagonist MPPG, respectively. These data confirm that mGlu receptors in the NAcc contribute to the psychostimulant motor effect of amphetamine. Results are discussed from the view of recent neuropharmacological studies that have defined the effects of these mGlu receptor ligands on basal motor activity and DA receptor agonists-induced locomotor responses in rats exposed to similar experimental procedures (Eur J Neuroscience 13 (2001) 2157; Neuropharmacology 41 (2001) 454; Eur J Neuroscience 13 (2001) 869). It is suggested that the contribution of mGlu receptors to the amphetamine-induced motor response may result mainly from their functional, either direct or indirect, interactions with D1-like receptors in the NAcc. PMID:12681370

  6. Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures.

    PubMed

    Bruno, V; Copani, A; Bonanno, L; Knoepfel, T; Kuhn, R; Roberts, P J; Nicoletti, F

    1996-08-22

    (RS)-alpha-Methyl-4-phosphonophenylglycine (MPPG) and (S)-alpha-methyl-3-carboxyphenylalanine (M3CPA), two novel preferential antagonists of group III metabotropic glutamate (mGlu) receptors, antagonized the neuroprotective activity of L-2-amino-4-phosphono-butanoate (L-AP4) or L-serine-O-phosphate in mice cultured cortical cells exposed to a toxic pulse of N-methyl-D-aspartate. In contrast, MPPG did not influence the neuroprotective activity of the selective group II mGlu receptor agonist, (2S,1'R,2'R,3'R)-2-(2,3-dicarboxy-cyclopropyl) glycine (DCG-IV). These results indicate that activation of group III mGu receptors exerts neuroprotective activity against excitotoxic neuronal death. At least one of the two major group III mGlu receptor subtypes, i.e. mGlu4 receptor, is expressed by cultured cortical neurons, as shown by immunocytochemical analysis with specific polyclonal antibodies. PMID:8880068

  7. Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: In vitro and in vivo studies.

    PubMed

    Domin, Helena; Przykaza, Łukasz; Jantas, Danuta; Kozniewska, Ewa; Boguszewski, Paweł M; Śmiałowska, Maria

    2016-03-01

    In the present study, we investigated the effect of ACPT-I [(1S, 3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid], a blood-brain-barrier permeable agonist of group III mGlu receptor, against oxygen-glucose deprivation (OGD)-evoked neuronal cell death in primary neuronal cell cultures and in the model of transient middle cerebral artery occlusion (MCAO) in rats. We found that ACPT-I (1-200 μM) in a concentration- and time-dependent way attenuated the OGD-induced neuronal cell damage, being also effective after a delayed application (30 min after OGD). The neuroprotective effects of ACPT-I were blocked by the group III mGlu receptor antagonist, (RS)-alpha-cyclopropyl-4-phosphonophenyl glycine (CPPG), and by the activator of cAMP-dependent PKA, 8-Bromo-cAMP, but not by an inhibitor of PI-3-K signaling pathway. Moreover, ACPT-I attenuated the OGD-induced calpain activity and glutamate release. In the in vitro study, we also demonstrated the neuroprotective potential of mGluR4 positive allosteric modulators (PAMs), PHCCC (30 μM) and VU0155041 (10 and 30 μM) and synergism in neuroprotective action of low concentrations of ACPT-I and mGluR4 PAMs suggesting an important role of mGluR4 activation in prevention of ischemic neuronal cell death. In the rat MCAO model, we demonstrated that ACPT-I (30 mg/kg) injected intraperitoneally either 30 min after starting MCAO or 30 min after beginning reperfusion not only diminished the infarction volume by about 30%, but also improved selected gait parameters (CatWalk analysis) and the mobility of animals in the open field test. In conclusion, our results indicate that ACPT-I may be not only neuroprotective against ischemic neuronal damage but may also diminish the postischemic functional deficits. PMID:26647070

  8. Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor.

    PubMed

    Vilar, Bruno; Busserolles, Jérôme; Ling, Bing; Laffray, Sophie; Ulmann, Lauriane; Malhaire, Fanny; Chapuy, Eric; Aissouni, Youssef; Etienne, Monique; Bourinet, Emmanuel; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain; Goudet, Cyril

    2013-11-27

    Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain. PMID:24285900

  9. The effect of ((-)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis.

    PubMed

    Fujáková, Michaela; Páleníček, Tomáš; Brunovský, Martin; Gorman, Ingmar; Tylš, Filip; Kubešová, Anna; Řípová, Daniela; Krajča, Vladimír; Horáček, Jiří

    2014-07-01

    In the present study we investigated the potential antipsychotic effects of the mGlu2/3 agonist LY379268 on changes in EEG power spectra and coherence in the ketamine model of psychosis. In order to use behaviorally active drug doses, experiments detecting changes in locomotor activity and sensorimotor gating were also conducted. In EEG experiments, adult male Wistar rats were injected with ketamine 30 mg/kg i.p. and LY379268 3 mg/kg i.p. Cortical EEG was recorded from twelve (2 × 6) electrodes placed homolaterally on each hemisphere. To avoid interference with the behavioral hyperactivity of ketamine challenge, the behavioral activity of animals was simultaneously registered at the time of recording. Subsequent power spectral and coherence analyses were assessed in epochs corresponding to behavioral inactivity. Analysis of segments with behavioral activity compared to inactivity was also performed. The effects of LY379268 3 mg/kg i.p. on the deficits in sensorimotor processing and on hyperlocomotion induced by ketamine were evaluated in the test of prepulse inhibition of acoustic startle reaction (PPI ASR) and in the open field. LY379268 reversed the ketamine-induced hyperlocomotion but had no effect on ketamine-induced PPI deficits. In EEG epochs corresponding to behavioral inactivity ketamine decreased the power in the delta band, induced a power increase in the high frequency bands and globally decreased EEG coherence. Pretreatment with the LY379268 completely reversed the ketamine-induced power increase in high frequency bands and had a partial effect on EEG coherence. LY379268 alone induced a decrease of beta, high beta and low-gamma power, and an increase in coherence in high frequency bands. Additional analysis revealed that behavioral activity increases power as well as coherence in most frequency bands. In conclusion, agonism of mGlu2/3 receptors was effective in reversing most of the changes induced by ketamine, however due to the lack of effectiveness

  10. Triple threat treatment: Exploiting the dependence receptor properties of metabotropic glutamate receptor 1 against melanoma

    PubMed Central

    Gelb, Tara; Hathaway, Hannah A; Wroblewski, Jarda T

    2014-01-01

    Melanoma cells that express metabotropic glutamate 1 (mGlu1) receptors depend on glutamate for their survival and proliferation. The dependence receptor properties of mGlu1 allow us to propose and justify three promising approaches for melanoma treatment: glutamate depletion, mGlu1 receptor antagonism, and targeting of mGlu1 receptor signaling.

  11. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications

    PubMed Central

    Yin, Shen; Niswender, Colleen M.

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are a group of Class C Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission in both the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, especially the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members. PMID:24793301

  12. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  13. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice

    PubMed Central

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A.; Hays, Seth A.; Paylor, Richard; Worley, Paul F.; Szumlinski, Karen K.

    2016-01-01

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5R/R) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5R/R mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical

  14. Discovery of 3-aminopicolinamides as metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulator warheads engendering CNS exposure and in vivo efficacy.

    PubMed

    Gogliotti, Rocco D; Engers, Darren W; Garcia-Barrantes, Pedro M; Panarese, Joseph D; Gentry, Patrick R; Blobaum, Anna L; Morrison, Ryan D; Daniels, J Scott; Thompson, Analisa D; Jones, Carrie K; Conn, P Jeffrey; Niswender, Colleen M; Lindsley, Craig W; Hopkins, Corey R

    2016-06-15

    This letter describes the further chemical optimization of the picolinamide-derived family of mGlu4 PAMs wherein we identified a 3-amino substituent to the picolinamide warhead that engendered potency, CNS penetration and in vivo efficacy. From this optimization campaign, VU0477886 emerged as a potent (EC50=95nM, 89% Glu Max) mGlu4 PAM with an attractive DMPK profile (brain:plasma Kp=1.3), rat CLp=4.0mL/min/kg, t1/2=3.7h) and robust efficacy in our standard preclinical Parkinson's disease model, haloperidol-induced catalepsy (HIC). PMID:27131990

  15. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective.

    PubMed

    Bruno, V; Ksiazek, I; Battaglia, G; Lukic, S; Leonhardt, T; Sauer, D; Gasparini, F; Kuhn, R; Nicoletti, F; Flor, P J

    2000-09-01

    We have used potent and selective non-competitive antagonists of metabotropic glutamate receptor subtype 5 (mGlu5) -- 2-methyl-6-phenylethynylpyridine (MPEP), [6-methyl-2-(phenylazo)-3-pyridinol] (SIB-1757) and [(E)-2-methyl-6-(2-phenylethenyl)pyridine] (SIB-1893) - to examine whether endogenous activation of this particular metabotropic glutamate receptor subtype contributes to neuronal degeneration. In cortical cultures challenged with N-methyl-D-aspartate (NMDA), all three mGlu5 receptor antagonists were neuroprotective. The effect of MPEP was highly specific because the close analogue, 3-methyl-6-phenylethynylpyridine (iso-MPEP), which did not antagonize heterologously expressed mGlu5 receptors, was devoid of activity on NMDA toxicity. Neuroprotection by mGlu5 receptor antagonists was also observed in cortical cultures challenged with a toxic concentration of beta-amyloid peptide. We have also examined the effect of mGlu5 receptor antagonists in in vivo models of excitotoxic degeneration. MPEP and SIB-1893 were neuroprotective against neuronal damage induced by intrastriatal injection of NMDA or quinolinic acid. These results indicate that mGlu5 receptors represent a suitable target for novel neuroprotective agents of potential application in neurodegenerative disorders. PMID:10974306

  16. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach.

    PubMed

    Jang, Jae Wan; Cho, Nam-Chul; Min, Sun-Joon; Cho, Yong Seo; Park, Ki Duk; Seo, Seon Hee; No, Kyoung Tai; Pae, Ae Nim

    2016-02-01

    Metabotropic glutamate receptor 1 (mGluR1) is considered as an attractive drug target for neuropathic pain treatments. The hierarchical virtual screening approach for identifying novel scaffolds of mGluR1 allosteric modulators was performed using a homology model built with the dopamine D3 crystal structure as template. The mGluR1 mutagenesis data, conserved amino acid sequences across class A and class C GPCRs, and previously reported multiple sequence alignments of class C GPCRs to the rhodopsin template, were employed for the sequence alignment to overcome difficulties of model generation with low sequence identity of mGluR1 and dopamine D3. The structures refined by molecular dynamics simulations were employed for docking of Asinex commercial libraries after hierarchical virtual screening with pharmacophore and naïve Bayesian models. Five of 35 compounds experimentally evaluated using a calcium mobilization assay exhibited micromolar activities (IC50) with chemotype novelty that demonstrated the validity of our methods. A hierarchical structure and ligand-based virtual screening approach with homology model of class C GPCR based on dopamine D3 class A GPCR structure was successfully performed and applied to discover novel negative mGluR1 allosteric modulators. PMID:26343933

  17. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.

    PubMed

    Nickols, Hilary Highfield; Yuh, Joannes P; Gregory, Karen J; Morrison, Ryan D; Bates, Brittney S; Stauffer, Shaun R; Emmitte, Kyle A; Bubser, Michael; Peng, Weimin; Nedelcovych, Michael T; Thompson, Analisa; Lv, Xiaohui; Xiang, Zixiu; Daniels, J Scott; Niswender, Colleen M; Lindsley, Craig W; Jones, Carrie K; Conn, P Jeffrey

    2016-01-01

    Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models. PMID:26503377

  18. Substituted 1-Phenyl-3-(pyridin-2-yl)urea Negative Allosteric Modulators of mGlu5: Discovery of a New Tool Compound VU0463841 with Activity in Rat Models of Cocaine Addiction

    PubMed Central

    2013-01-01

    Cocaine is a powerful and highly addictive stimulant that disrupts the normal reward circuitry in the central nervous system (CNS), producing euphoric effects. Cocaine use can lead to acute and life threatening emergencies, and abuse is associated with increased risk for contracting infectious diseases. Though certain types of behavioral therapy have proven effective for treatment of cocaine addiction, relapse remains high, and there are currently no approved medications for the treatment of cocaine abuse. Evidence has continued to accumulate that indicates a critical role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the modulation of neural circuitry associated with the addictive properties of cocaine. While the small molecule mGlu5 negative allosteric modulator (NAM) field is relatively advanced, investigation into the potential of small molecule mGlu5 NAMs for the treatment of cocaine addiction remains an area of high interest. Herein we describe the discovery and characterization of a potent and selective compound 29 (VU0463841) with good CNS exposure in rats. The utility of 29 (VU0463841) was demonstrated by its ability to attenuate drug seeking behaviors in relevant rat models of cocaine addiction. PMID:23682684

  19. Substituted 1-Phenyl-3-(pyridin-2-yl)urea negative allosteric modulators of mGlu5: discovery of a new tool compound VU0463841 with activity in rat models of cocaine addiction.

    PubMed

    Amato, Russell J; Felts, Andrew S; Rodriguez, Alice L; Venable, Daryl F; Morrison, Ryan D; Byers, Frank W; Daniels, J Scott; Niswender, Colleen M; Conn, P Jeffrey; Lindsley, Craig W; Jones, Carrie K; Emmitte, Kyle A

    2013-08-21

    Cocaine is a powerful and highly addictive stimulant that disrupts the normal reward circuitry in the central nervous system (CNS), producing euphoric effects. Cocaine use can lead to acute and life threatening emergencies, and abuse is associated with increased risk for contracting infectious diseases. Though certain types of behavioral therapy have proven effective for treatment of cocaine addiction, relapse remains high, and there are currently no approved medications for the treatment of cocaine abuse. Evidence has continued to accumulate that indicates a critical role for the metabotropic glutamate receptor subtype 5 (mGlu5) in the modulation of neural circuitry associated with the addictive properties of cocaine. While the small molecule mGlu5 negative allosteric modulator (NAM) field is relatively advanced, investigation into the potential of small molecule mGlu5 NAMs for the treatment of cocaine addiction remains an area of high interest. Herein we describe the discovery and characterization of a potent and selective compound 29 (VU0463841) with good CNS exposure in rats. The utility of 29 (VU0463841) was demonstrated by its ability to attenuate drug seeking behaviors in relevant rat models of cocaine addiction. PMID:23682684

  20. Characterization of [3H]-(2S,2′R,3′R)-2-(2′,3′-dicarboxy- cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes

    PubMed Central

    Cartmell, Jayne; Adam, Geo; Chaboz, Sylvie; Henningsen, Robert; Kemp, John A; Klingelschmidt, Agnes; Metzler, Veit; Monsma, Frederick; Schaffhauser, Hervé; Wichmann, Jürgen; Mutel, Vincent

    1998-01-01

    The binding of the new selective group II metabotropic glutamate receptor radioligand, [3H]-(2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine ([3H]-DCG IV), was characterized in rat mGlu2 receptor-transfected CHO cell membranes. [3H]-DCG IV binding was pH-dependent, but was not sensitive to temperature. Saturation analysis showed the presence of a single binding site, with a Kd value of 160 nM and a Bmax value of 10 pmol mg−1 protein. Binding was not sensitive to Na+-dependent glutamate uptake blockers or Cl−-dependent glutamate binding inhibitors. Furthermore, up to concentrations of 1 mM, the glutamate ionotropic receptor agonists, N-methyl-D-aspartic acid (NMDA), (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate, did not affect [3H]-DCG IV binding. Of the compounds observed to inhibit [3H]-DCG IV binding, the most potent were the recently described selective group II agonist, (+)-2-aminobicyclo-[3.1.0]hexane-2,6-dicarboxylate (LY 354740; Ki value 16 nM) and antagonist, 2-amino-2-(2-carboxycyclopropan-1-yl)-3-(dibenzopyran-4-yl) propanoic acid (LY 341495; Ki value 19 nM). As expected, for a G-protein-coupled receptor, guanosine-5′-O-(3-thiotriphosphate) (GTPγS) inhibited [3H]-DCG IV binding in a concentration-dependent manner, with an IC50 value of 12 nM. A highly significant correlation was observed between the potencies of compounds able to inhibit [3H]-DCG IV binding and potencies obtained for agonist activity in a GTPγ35S binding functional assay. In addition, these studies identified a number of compounds with previously unknown activity at mGlu2 receptors, including L(+)-2-amino-3-phosphonopropionic acid (L-AP3), L(+)-2-amino-5-phosphonopentanoic acid (L-AP5), 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (R-CPP), N-acetyl-L-aspartyl-L-glutamic acid (NAAG) and (RS)-α-methylserine-O-phosphate (MSOP). PMID:9504391

  1. The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist.

    PubMed Central

    Toms, N. J.; Jane, D. E.; Kemp, M. C.; Bedingfield, J. S.; Roberts, P. J.

    1996-01-01

    1. In this study we describe the potent antagonist activity of a novel metabotropic glutamate (mGlu) receptor antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG) which exhibits selectivity for mGlu receptors (group II and III) negatively coupled to adenylyl cyclase in the adult rat cortex. 2. Both the L-2-amino-4-phosphonobutyrate (L-AP4) and (2S, 1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-1) inhibition of forskolin-stimulated cyclic AMP accumulation were potently reversed by (RS)-CPPG (IC50 values: 2.2 +/- 0.6 nM and 46.2 +/- 18.2 nM, respectively). 3. In contrast, (RS)-CPPG acted as a weak antagonist against group I mGlu receptors. In neonatal rat cortical slices, (RS)-CPPG antagonized (KB = 0.65 +/- 0.07 mM) (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD)-stimulated phosphoinositide hydrolysis. (RS)-CPPG (100 microM) failed to influence L-quisqualate-stimulated phosphoinositide hydrolysis in cultured cerebellar granule cells. 4. In the rat cerebral cortex, (RS)-CPPG is the most potent antagonist of group II/III mGlu receptors yet described (with 20 fold selectivity for group III mGlu receptors), having negligible activity at group I mGlu receptors. PMID:8922731

  2. Behavioral and functional evidence of mGlu2/3 and mGlu5 metabotropic glutamate receptor dysregulation in cocaine-escalated rats: Factor in the transition to dependence

    PubMed Central

    Hao, Yue; Martin-Fardon, Rémi; Weiss, Friedbert

    2010-01-01

    Background Rats with extended daily cocaine access show escalating cocaine self-administration and behavioral signs of dependence. Regulation of glutamatergic transmission by metabotropic glutamate receptors (mGluR) has emerged as a mechanism in the addictive actions of drugs of abuse. We examined here whether neuroadaptive dysregulation of mGluR function is a factor in escalating cocaine self-administration. Methods Rats with 1 h daily cocaine access (short access, ShA) vs. 6 h access (long access, LgA) were tested for differences in the effects of the mGluR2/3 agonist LY379268 and the mGluR5 antagonist MTEP on cocaine-reinforced progressive-ratio (PR) responding and differences in expression levels and functional activity of mGluR2/3 and mGluR5. Results The LgA groups showed higher PR breakpoints than ShA groups. LY379268 (0-3 mg/kg, s.c.) dose-dependently lowered breakpoints in the LgA group but reduced breakpoints only at 3 mg/kg in the ShA group. Consistent with this behavioral effect, functional mGluR2/3 activity was significantly elevated following LgA cocaine exposure. MTEP (0-3 mg/kg, i.p.) reduced breakpoints in the ShA group only. LgA cocaine exposure was associated with decreased mGluR5 expression, accompanied by reduced functional mGluR5 activity in the nucleus accumbens. A downward trend developed in mGluR5 protein expression in the medial prefrontal cortex and hippocampus. Conclusion Functional upregulation of mGluR2/3 and downregulation of mGluR5 are likely factors in the transition to cocaine dependence. The differential behavioral effects of LY379268 and MTEP in rats with a history of long access to cocaine have implications for the treatment target potential of mGluR2/3 and mGluR5. PMID:20416862

  3. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson's disease

    PubMed Central

    Duty, Susan

    2010-01-01

    Current drugs used in the treatment of Parkinson's disease (PD), for example, L-DOPA and dopamine agonists, are very effective at reversing the motor symptoms of the disease. However, they do little to combat the underlying degeneration of dopaminergic neurones in the substantia nigra pars compacta (SNc) and their long-term use is associated with the appearance of adverse effects such as L-DOPA-induced dyskinesia. Much emphasis has therefore been placed on finding alternative non-dopaminergic drugs that may circumvent some or all of these problems. Group III metabotropic glutamate (mGlu) receptors were first identified in the basal ganglia a decade ago. One or more of these receptors (mGlu4, mGlu7 or mGlu8) is found on pre-synaptic terminals of basal ganglia pathways whose overactivity is implicated not only in the generation of motor symptoms in PD, but also in driving the progressive SNc degeneration. The finding that drugs which activate group III mGlu receptors can inhibit transmission across these overactive synapses has lead to the proposal that group III mGlu receptors are promising targets for drug discovery in PD. This paper provides a comprehensive review of the role and target potential of group III mGlu receptors in the basal ganglia. Overwhelming evidence obtained from in vitro studies and animal models of PD supports group III mGlu receptors as potentially important drug targets for providing both symptom relief and neuroprotection in PD. PMID:20735415

  4. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor.

    PubMed

    Lindemann, Lothar; Jaeschke, Georg; Michalon, Aubin; Vieira, Eric; Honer, Michael; Spooren, Will; Porter, Richard; Hartung, Thomas; Kolczewski, Sabine; Büttelmann, Bernd; Flament, Christophe; Diener, Catherine; Fischer, Christophe; Gatti, Silvia; Prinssen, Eric P; Parrott, Neil; Hoffmann, Gerhard; Wettstein, Joseph G

    2011-11-01

    The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition. PMID:21849627

  5. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    PubMed

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. PMID:27231330

  6. The Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator ADX88178 Inhibits Inflammatory Responses in Primary Microglia.

    PubMed

    Ponnazhagan, Ranjani; Harms, Ashley S; Thome, Aaron D; Jurkuvenaite, Asta; Gogliotti, Rocco; Niswender, Colleen M; Conn, P Jeffrey; Standaert, David G

    2016-06-01

    While the specific trigger of Parkinson Disease (PD) in most patients is unknown, considerable evidence suggests that the neuroinflammatory response makes an essential contribution to the neurodegenerative process. Drugs targeting metabotropic glutamate receptors (mGlu receptors), 7 Transmembrane (7TM) spanning/G protein coupled receptors that bind glutamate, are emerging as therapeutic targets for PD and may have anti-inflammatory properties. ADX88178 is novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 which is under evaluation for treatment of PD and other neurological disorders. We used microglia cultured from mouse brain to determine if ADX88178 had direct effects on the inflammatory responses of these cells. We studied both microglia from wild type and Grm4 knock out mice. We found that activation of mGlu4 with ADX88178 attenuated LPS-induced inflammation in primary microglia, leading to a decrease in the expression of TNFα, MHCII, and iNOS, markers of pro-inflammatory responses. These effects were absent in microglia from mice lacking mGlu4. These results demonstrate a cell-autonomous anti-inflammatory effect of ADX88178 mediated mGlu4 activation on microglia, and suggest that this drug or similar activators or potentiators of mGlu4 may have disease-modifying as well as symptomatic effects in PD and other brain disorders with an inflammatory component. PMID:26872456

  7. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  8. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators.

    PubMed

    Gregory, Karen J; Velagaleti, Ranganadh; Thal, David M; Brady, Ryan M; Christopoulos, Arthur; Conn, P Jeffrey; Lapinsky, David J

    2016-07-15

    G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily. PMID:27115427

  9. Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence

    PubMed Central

    Sidique, Shyama; Dhanya, Raveendra-Panickar; Sheffler, Douglas J.; Nickols, Hilary Highfield; Yang, Li; Dahl, Russell; Mangravita-Novo, Arianna; Smith, Layton H.; D’Souza, Manoranjan S.; Semenova, Svetlana; Conn, P. Jeffrey; Markou, Athina; Cosford, Nicholas D. P.

    2012-01-01

    Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans. PMID:23009245

  10. The metabotropic glutamate receptor subtype 5 antagonist fenobam is analgesic and has improved in vivo selectivity compared with the prototypical antagonist 2-methyl-6-(phenylethynyl)-pyridine.

    PubMed

    Montana, Michael C; Cavallone, Laura F; Stubbert, Kristi K; Stefanescu, Andrei D; Kharasch, Evan D; Gereau, Robert W

    2009-09-01

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been demonstrated to play a role in the modulation of numerous nociceptive modalities. When administered via peripheral, intrathecal, or systemic routes, mGlu5 antagonists have analgesic properties in a variety of preclinical pain models. Despite a wealth of data supporting the use of mGlu5 antagonists to treat pain, studies have been limited to preclinical animal models due to a lack of mGlu5 antagonists that are approved for use in humans. It has been demonstrated previously that fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], an anxiolytic shown to be safe and effective in human trials, is a selective and potent noncompetitive antagonist of mGlu5 (J Pharmacol Exp Ther 315:711-721, 2005). Here, we report a series of studies aimed at testing whether fenobam, similar to the prototypical mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has analgesic properties in mice. We show that fenobam reduces formalin-induced pain behaviors and relieves established inflammation-induced thermal hypersensitivity in mice. Similar results were seen with MPEP. Administration of fenobam resulted in an increase in locomotor activity in the open-field task but did not impair performance on the accelerating Rotarod. Analysis of brain and plasma fenobam levels indicated that fenobam is rapidly concentrated in brain after intraperitoneal administration in mice but is essentially cleared from circulation within 1 h after injection. Fenobam had no analgesic effect in mGlu5 knockout mice, whereas the prototypical antagonist MPEP retained significant analgesic efficacy in mGlu5 knockouts. These results demonstrate that fenobam is analgesic in mice and has an improved in vivo selectivity for mGlu5 over MPEP. PMID:19515968

  11. Activation of group III metabotropic glutamate receptors inhibits basal and amphetamine-stimulated dopamine release in rat dorsal striatum: an in vivo microdialysis study.

    PubMed

    Mao, L; Lau, Y S; Wang, J Q

    2000-09-22

    Group III metabotropic glutamate (mGlu) receptors are negatively coupled to adenylate cyclase and are distributed pre-synaptically in the striatum. A behavioral study previously conducted in this laboratory shows that activation of this group of mGlu receptors attenuates acute amphetamine-stimulated motor activity. By administering a group III selective agonist or antagonist via the dialysis probe, the present study employed in vivo microdialysis to evaluate the capacity of the group III selective agents to alter extracellular levels of dopamine in the dorsal striatum of normal and amphetamine-treated rats. It was found that the group III agonist L-2-amino-4-phosphonobutyrate (L-AP4) dose-dependently (1, 10 and 100 microM) reduced basal levels of extracellular dopamine. In contrast, the group III antagonist alpha-methyl-4-phosphonophenylglycine (MPPG) dose-dependently (10, 50 and 250 microM) elevated the basal release of extracellular dopamine. This elevation was antagonized by co-perfusion of L-AP4. Perfusion of 5-microM amphetamine through the dialysis probe increased extracellular dopamine in the dorsal striatum. Co-perfusion of L-AP4 (100 microM) significantly reduced amphetamine-stimulated dopamine levels, whereas co-perfusion of L-AP4 (100 microM) and MPPG (100 microM) did not alter the capacity of amphetamine to elicit dopamine release. The data obtained from this study demonstrate the presence of a tonically active glutamatergic tone on group III mGlu receptors in the dorsal striatum to pre-synaptically regulate basal dopamine release in an inhibitory fashion. Moreover, activation of L-AP4-sensitive group III mGlu receptors can suppress the phasic release of dopamine induced by a dopamine stimulant amphetamine. PMID:10996594

  12. Qualification of LSP1-2111 as a Brain Penetrant Group III Metabotropic Glutamate Receptor Orthosteric Agonist

    PubMed Central

    2013-01-01

    LSP1-2111 is a group III metabotropic glutamate receptor agonist with preference toward the mGlu4 receptor subtype. This compound has been extensively used as a tool to explore the pharmacology of mGlu4 receptor activation in preclinical animal behavioral models. However, the blood–brain barrier penetration of this amino acid derivative has never been studied. We report studies on the central nervous system (CNS) disposition of LSP1-2111 using quantitative microdialysis in rat. Significant unbound concentrations of the drug relative to its in vitro binding affinity and functional potency were established in extracellular fluid (ECF). These findings support the use of LSP1-2111 to study the CNS pharmacology of mGlu4 receptor activation through orthosteric agonist mechanisms. PMID:24900783

  13. Selective Actions of Novel Allosteric Modulators Reveal Functional Heteromers of Metabotropic Glutamate Receptors in the CNS

    PubMed Central

    Yin, Shen; Noetzel, Meredith J.; Johnson, Kari A.; Zamorano, Rocio; Jalan-Sakrikar, Nidhi; Gregory, Karen J.; Conn, P. Jeffrey

    2014-01-01

    Metabotropic glutamate (mGlu) receptors play important roles in regulating CNS function and are known to function as obligatory dimers. Although recent studies have suggested heterodimeric assembly of mGlu receptors in vitro, the demonstration that distinct mGlu receptor proteins can form heterodimers or hetero-complexes with other mGlu subunits in native tissues, such as neurons, has not been shown. Using biochemical and pharmacological approaches, we demonstrate here that mGlu2 and mGlu4 form a hetero-complex in native rat and mouse tissues which exhibits a distinct pharmacological profile. These data greatly extend our current understanding of mGlu receptor interaction and function and provide compelling evidence that mGlu receptors can function as heteromers in intact brain circuits. PMID:24381270

  14. Expression of group III metabotropic glutamate receptors in the reproductive system of male mice.

    PubMed

    Marciniak, Marcin; Chruścicka, Barbara; Lech, Tomasz; Burnat, Grzegorz; Pilc, Andrzej

    2016-03-01

    Although the presence of metabotropic glutamate (mGlu) receptors in the central nervous system is well documented, they have recently been found in peripheral and non-neuronal tissues. In the present study we investigated the expression of group III mGlu receptors in the reproductive system of male mice. Reverse transcription-polymerase chain reaction analysis revealed the presence of mGlu6, mGlu7 and mGlu8 (but not mGlu4) receptor transcripts in testes and epididymides from adult mice. In addition, expression of mGlu6 (Grm6) and mGlu8 receptor (Grm8) mRNA was detected in spermatozoa isolated from the vas deferens. The vas deferens was found to contain only mGlu7 receptor (Grm7) mRNA, which was particularly intense in 21-day-old male mice. In penile homogenates, only the mGlu7 receptor signal was detected. Genetic ablation of the mGlu7 receptor in males led to fertility disorders manifested by decreased insemination capability as well as deterioration of sperm parameters, particularly sperm motility, vitality, sperm membrane integrity and morphology, with a simultaneous increase in sperm concentration. These results indicate that constitutively expressed mGlu receptors in the male reproductive system may play an important role in ejaculation and/or erection processes, as well as in the formation and maturation of spermatozoa. PMID:25066043

  15. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  16. mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats

    PubMed Central

    Ahnaou, Abdallah; Lavreysen, Hilde; Tresadern, Gary; Cid, Jose M.; Drinkenburg, Wilhelmus H.

    2015-01-01

    G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted

  17. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells.

    PubMed

    Baki, Lia; Fribourg, Miguel; Younkin, Jason; Eltit, Jose Miguel; Moreno, Jose L; Park, Gyu; Vysotskaya, Zhanna; Narahari, Adishesh; Sealfon, Stuart C; Gonzalez-Maeso, Javier; Logothetis, Diomedes E

    2016-05-01

    We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011-1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca(2+) responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25-30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex. PMID:26780666

  18. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats

    PubMed Central

    Ahnaou, Abdallah; Biermans, Ria; Drinkenburg, Wilhelmus H.

    2016-01-01

    Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor (mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not. PMID:26808689

  19. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats.

    PubMed

    Ahnaou, Abdallah; Biermans, Ria; Drinkenburg, Wilhelmus H

    2016-01-01

    Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor (mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not. PMID:26808689

  20. Neonatal exposure to MK-801 reduces mRNA expression of mGlu3 receptors in the medial prefrontal cortex of adolescent rats.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Rujescu, Dan; Genius, Just; Matsuoka, Tadasu; Takasaki, Ichiro; Itoh, Hiroko; Kurachi, Masayoshi

    2014-05-01

    Schizophrenia is considered as a "neurodegenerative" and "neurodevelopmental" disorder, the pathophysiology of which may include hypofunction of the N-methyl-D-aspartate receptor (NMDA-R) or subsequent pathways. Accordingly, administration of NMDA-R antagonists to rodents during the perinatal period may emulate some core pathophysiological aspects of schizophrenia. The effect of 4-day (postnatal day; PD 7-10) administration of MK-801, a selective NMDA-R antagonist, on gene expression in the medial prefrontal cortex (mPFC), hippocampus, and amygdala was evaluated using quantitative polymerase chain reaction methods. Specifically, we sought to determine whether genes related to Glu transmissions, for example those encoding for NMDA-Rs, metabotropic Glu receptors (mGluRs), or Glu transporters, were altered by neonatal treatment with MK-801. Model rats showed downregulation of the mGluR3 subtype in the mPFC around puberty, especially at PD 35 in response to MK-801 or during ontogenesis without pharmacological manipulations. Genes encoding for other mGluRs subtypes, that is NMDA-Rs and Glu transporters, were not affected by the neonatal insult. These results suggest that NMDA-R antagonism in the early course of development modulates the expression of mGluR3 in mPFC around puberty. Thus, mGluR3 may serve as a potential target to prevent the onset and progression of schizophrenia. PMID:24549941

  1. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration.

    PubMed

    Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka; Choi, Ji-Kyung; Kil, Kun-Eek; Zhang, Zhaoda; Kuruppu, Darshini; Aytan, Nurgul; Dedeoglu, Alpaslan; Brownell, Anna-Liisa

    2016-09-01

    G-protein coupled dopamine and metabotropic glutamate receptors (mGlu) can modulate neurotransmission during Parkinson's disease (PD)-like neurodegeneration. PET imaging studies in a unilateral dopamine denervation model (6-OHDA) showed a significant inverse correlation of presynaptic mGlu4 and postsynaptic mGlu5 expression in the striatum and rapidly declining mGlu4 and enhanced mGlu5 expression in the hippocampus during progressive degeneration over time. Immunohistochemical studies verified the decreased mGlu4 expression in the hippocampus on the lesion side but did not show difference in mGlu5 expression between lesion and control side. Pharmacological MRI studies showed enhanced hemodynamic response in several brain areas on the lesion side compared to the control side after challenge with mGlu4 positive allosteric modulator or mGlu5 negative allosteric modulator. However, mGlu4 response was biphasic having short enhancement followed by negative response on both sides of brain. Studies in mGlu4 expressing cells demonstrated that glutamate induces cooperative increase in binding of mGlu4 ligands - especially at high glutamate levels consistent with in vivo concentration. This suggests that mGlu allosteric modulators as drug candidates will be highly sensitive to changes in glutamate concentration and hence metabolic state. These experiments demonstrate the importance of the longitudinal imaging studies to investigate temporal changes in receptor functions to obtain individual response for experimental drugs. PMID:26581500

  2. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against hepatic mitochondrial dysfunction in 6-OHDA lesioned Parkinsonian rats.

    PubMed

    Ferrigno, Andrea; Vairetti, Mariapia; Ambrosi, Giulia; Rizzo, Vittoria; Richelmi, Plinio; Blandini, Fabio; Fuzzati-Armentero, Marie-Therese

    2015-06-01

    Non-motor symptoms including those involving the splanchnic district are present in Parkinson's disease (PD). The authors previously reported that PD-like rats, bearing a lesion of the nigrostriatal pathway induced by the injection of 6-hydroxydopamine (6-OHDA), have impaired hepatic mitochondrial function. Glutamate intervenes at multiple levels in PD and liver pathophysiologies. The metabotropic glutamate receptor 5 (mGluR5) is abundantly expressed in brain and liver and may represent a pharmacological target for PD therapy. This study investigated whether and how chronic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a well-characterized mGluR5 antagonist, may influence hepatic function with regard to neuronal cell loss in PD-like rats. Chronic treatment with MPEP was started immediately (Early) or 4 weeks after (Delayed) intrastriatal injection of 6-OHDA and lasted 4 weeks. Early MPEP treatment significantly prevented the decrease in adenosine triphosphate (ATP) production/content and counteracted increased reactive oxygen species (ROS) formation in isolated hepatic mitochondria of PD-like animals. Early MPEP administration also reduced the toxin-induced neurodegenerative process; improved survival of nigral dopaminergic neurons correlated with enhanced mitochondrial ATP content and production. ATP content/production, in turn, negatively correlated with ROS formation suggesting that the MPEP-dependent improvement in hepatic function positively influenced neuronal cell survival. Delayed MPEP treatment had no effect on hepatic mitochondrial function and neuronal cell loss. Antagonizing mGluR5 may synergistically act against neuronal cell loss and PD-related hepatic mitochondrial alterations and may represent an interesting alternative to non-dopaminergic therapeutic strategies for the treatment of PD. PMID:25904005

  3. Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression.

    PubMed

    Kent, Justine M; Daly, Ella; Kezic, Iva; Lane, Rosanne; Lim, Pilar; De Smedt, Heidi; De Boer, Peter; Van Nueten, Luc; Drevets, Wayne C; Ceusters, Marc

    2016-06-01

    This phase 2a, randomized, multicenter, double-blind, proof-of-concept study was designed to evaluate, efficacy, safety and tolerability of JNJ-40411813/ADX71149, a novel metabotropic glutamate 2 receptor positive allosteric modulator as an adjunctive treatment for major depressive disorder (MDD) with significant anxiety symptoms. Eligible patients (18-64years) had a DSM-IV diagnosis of MDD, Hamilton Depression Rating Scale-17 (HDRS17) score of ≥18, HDRS17 anxiety/somatization factor score of ≥7, and an insufficient response to current treatment with a selective serotonin reuptake inhibitor or serotonin-norepinephrine reuptake inhibitor. The doubly-randomized, 8-week double-blind treatment phase was comprised of two 4-week periods, from which a combined test statistic was generated, with pre-determined weights assigned to each of the 2 treatment periods. Period 1: patients (n=121) were randomly assigned (1:1) to JNJ-40411813 (n=62; 50mg to 150mg b.i.d, flexibly dosed) or placebo (n=59); Period 2: placebo-treated patients (n=22) who continued to meet entry severity criteria were re-randomized (1:1) to JNJ-40411813 or placebo, while other patients underwent sham re-randomization and continued on their same treatment. Of 121 randomized patients, 100 patients (82.6%) were completers. No efficacy signal was detected on the primary endpoint, the 6-item Hamilton Anxiety Subscale (HAM-A6, p=0.51). Efficacy signals (based on prespecified 1-sided p<0.20) were evident on several secondary outcome measures of both depression (HDRS17 total score, 6-item subscale of HDRS17 assessing core depressive symptoms [HAM-D6], and Inventory of Depressive Symptomatology [IDS-C30]) and anxiety (HDRS17 anxiety/somatization factor, IDS-C30 anxiety subscale). Although well-tolerated, the results do not suggest efficacy for JNJ-40411813 as an adjunctive treatment for patients with MDD with significant anxious symptoms in the dose range studied. PMID:26804646

  4. The astrocyte surface NAAG receptor and NAAG peptidase signaling complex as a therapeutic target.

    PubMed

    Baslow, Morris H

    2008-06-01

    There is evidence that schizophrenia and other neuropathies may involve malfunction of a unique N-acetylaspartylglutamate (NAAG) receptor and its associated NAAG peptidase, a receptor and enzyme found together on the astrocyte surface. NAAG is a peptide neurotransmitter released by stimulated neurons and specifically targeted to the group II metabotropic glutamate receptor 3 (mGlu(3)), activation of which initiates astrocyte Ca(2+) waves responsible for astrocyte-astrocyte and astrocyte-vascular system signaling and induction of vascular hyperemic responses that increase energy supplies to stimulated neurons. In this review, it is hypothesized that the receptor and enzyme exist as a cytostructural unit on the astrocyte surface, and the nature of this proposed mGlu(3)-NAAG peptidase complex is considered in terms of its physiological signaling role, and of the effect of drugs on this role. The mGlu(3) receptor has been the target of extrinsic antagonists and agonists that mimic NAAG structure and compete with natural NAAG for the receptor site. NAAG metabolism has also been the target of extrinsic NAAG-like substances that inhibit NAAG peptidase, competing with NAAG for the enzyme active site. Several drugs that affect the mGlu(3) receptor or NAAG peptidase have reached a stage of human testing. Two are agonists of the mGlu(3) receptor, and another is an NAAG peptidase inhibitor. These substances appear to have potential for treating schizophrenia and other cognitive neuropathies by interfering with a homeostatic NAAG activated neuron-astrocyte-vascular energy supply system. PMID:18596989

  5. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus

    PubMed Central

    Cirone, Jennifer; Salt, Thomas E

    2001-01-01

    Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. We found that application of the Group III metabotropic glutamate receptor agonist l-2-amino-4-phosphonobutyric acid (l-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABAB receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli. PMID:11433000

  6. Metabotropic Glutamate Receptors for Parkinson's Disease Therapy

    PubMed Central

    Gasparini, Fabrizio; Di Paolo, Thérèse; Gomez-Mancilla, Baltazar

    2013-01-01

    Excessive glutamatergic signalling within the basal ganglia is implicated in the progression of Parkinson's disease (PD) and inthe emergence of dyskinesia associated with long-term treatment with L-DOPA. There is considerable research focus on the discovery and development of compounds that modulate glutamatergic signalling via glutamate receptors, as treatments for PD and L-DOPA-induced dyskinesia (LID). Although initial preclinical studies with ionotropic glutamate receptor antagonists showed antiparkinsonian and antidyskinetic activity, their clinical use was limited due to psychiatric adverse effects, with the exception of amantadine, a weak N-methyl-d-aspartate (NMDA) antagonist, currently used to reduce dyskinesia in PD patients. Metabotropic receptor (mGlu receptor) modulators were considered to have a more favourable side-effect profile, and several agents have been studied in preclinical models of PD. The most promising results have been seen clinically with selective antagonists of mGlu5 receptor and preclinically with selective positive allosteric modulators of mGlu4 receptor. The growing understanding of glutamate receptor crosstalk also raises the possibility of more precise modulation of glutamatergic transmission, which may lead to the development of more effective agents for PD. PMID:23853735

  7. Allosteric Modulation of Metabotropic Glutamate Receptors: Structural Insights and Therapeutic Potential

    PubMed Central

    Gregory, Karen J.; Dong, Elizabeth N.; Meiler, Jens; Conn, P. Jeffrey

    2010-01-01

    Allosteric modulation of G protein-coupled receptors (GPCRs) represents a novel approach to the development of probes and therapeutics that is expected to enable subtype-specific regulation of central nervous system target receptors. The metabotropic glutamate receptors (mGlus) are class C GPCRs that play important neuromodulatory roles throughout the brain, as such they are attractive targets for therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, depression, Fragile X Syndrome, Parkinson’s disease and schizophrenia. Over the last fifteen years, selective allosteric modulators have been identified for many members of the mGlu family. The vast majority of these allosteric modulators are thought to bind within the transmembrane-spanning domains of the receptors to enhance or inhibit functional responses. A combination of mutagenesis-based studies and pharmacological approaches are beginning to provide a better understanding of mGlu allosteric sites. Collectively, when mapped onto a homology model of the different mGlu subtypes based on the β2-adrenergic receptor, the previous mutagenesis studies suggest commonalities in the location of allosteric sites across different members of the mGlu family. In addition, there is evidence for multiple allosteric binding pockets within the transmembrane region that can interact to modulate one another. In the absence of a class C GPCR crystal structure, this approach has shown promise with respect to the interpretation of mutagenesis data and understanding structure-activity relationships of allosteric modulator pharmacophores. PMID:20637216

  8. Regulatory role of C-terminus in the G-protein coupling of the metabotropic glutamate receptor 1.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2008-11-01

    The signaling property of metabotropic glutamate receptor 1alpha (mGlu1alpha) is different from that of short-form splice variants. This could be caused by the exposure of a cluster of positively charged amino acid residues, RRKK, in the proximal C-tail which is thought to be masked by the long C-tail of mGlu1alpha. We found that the RRKK residues, when exposed, attenuate Gq coupling and decrease the basal activity and the surface expression of mGlu1, in agreement with previous results. Moreover, these residues abolish the Gi/o coupling of mGlu1, but do not affect glutamate-induced dimeric rearrangement and protein kinase A-dependent modulation of mGlu1. These results suggest that the RRKK residues do not inhibit the conformational change upon glutamate binding and protein accessibility to the intracellular loops where G-protein coupling occurs, but rather act as an inhibitory domain against G-protein coupling in a different manner depending on the type of G protein. PMID:18786167

  9. N-Aryl Piperazine Metabotropic Glutamate Receptor 5 Positive Allosteric Modulators Possess Efficacy in Preclinical Models of NMDA Hypofunction and Cognitive Enhancement

    PubMed Central

    Gregory, K.J.; Herman, E.J.; Ramsey, A.J.; Hammond, A.S.; Byun, N.E.; Stauffer, S.R.; Manka, J.T.; Jadhav, S.; Bridges, T.M.; Weaver, C.D.; Niswender, C.M.; Steckler, T.; Drinkenburg, W.H.; Ahnaou, A.; Lavreysen, H.; Macdonald, G.J.; Bartolomé, J.M.; Mackie, C.; Hrupka, B.J.; Caron, M.G.; Daigle, T.L.; Lindsley, C.W.; Conn, P.J.

    2013-01-01

    Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca2+ mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of novel

  10. Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics.

    PubMed

    Walker, Adam G; Conn, P Jeffrey

    2015-02-01

    Recently, there has been a shift in the schizophrenia field focusing on restoring glutamate signaling. Extensive preclinical data suggests that mGlu5 PAMs could have efficacy in all three symptom domains but there is concern of potential adverse effects. New insights into mechanisms underlying this toxicity may provide a path for discovery of safe mGlu5 PAMs. Genetic mutations in mGlu1 have been described in schizophrenics creating interest in this receptor as a therapeutic target. Preclinical data demonstrated the antipsychotic potential of mGlu2/3 agonists but clinical trials were not successful. However, studies have suggested that mGlu2 is the subtype mediating antipsychotic effects and selective mGlu2 PAMs are now in clinical development. Finally, recent genetic studies suggest mGlu3 modulators may be pro-cognitive. PMID:25462291

  11. Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice.

    PubMed

    Georgiou, Polymnia; Zanos, Panos; Ehteramyan, Mazdak; Hourani, Susanna; Kitchen, Ian; Maldonado, Rafael; Bailey, Alexis

    2015-09-01

    The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking. PMID:25522112

  12. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  13. Differential Modulation of Thresholds for Intracranial Self-Stimulation by mGlu5 Positive and Negative Allosteric Modulators: Implications for Effects on Drug Self-Administration

    PubMed Central

    Cleva, Richard M.; Watterson, Lucas R.; Johnson, Meagan A.; Olive, M. Foster

    2011-01-01

    Pharmacological manipulation of the type 5 metabotropic glutamate (mGlu5) receptor alters various addiction related behaviors such as drug self-administration and the extinction and reinstatement of drug-seeking behavior. However, the effects of pharmacological modulation of mGlu5 receptors on brain reward function have not been widely investigated. We examined the effects of acute administration of positive and negative allosteric modulators (PAMs and NAMs, respectively) on brain reward function by assessing thresholds for intracranial self-stimulation (ICSS). In addition, when acute effects were observed, we examined changes in ICSS thresholds following repeated administration. Male Sprague-Dawley rats were implanted with bipolar electrodes into the medial forebrain bundle and trained to respond for ICSS, followed by assessment of effects of mGlu5 ligands on ICSS thresholds using a discrete trials current–intensity threshold determination procedure. Acute administration of the selective mGlu5 NAMs MTEP (0, 0.3, 1, or 3 mg/kg) and fenobam (0, 3, 10, or 30 mg/kg) dose-dependently increased ICSS thresholds (∼70% at the highest dose tested), suggesting a deficit in brain reward function. Acute administration of the mGlu5 PAMs CDPPB (0, 10, 30, and 60 mg/kg) or ADX47273 (0, 10, 30, and 60 mg/kg) was without effect at any dose tested. When administered once daily for five consecutive days, the development of tolerance to the ability of threshold-elevating doses of MTEP and fenobam to increase ICSS thresholds was observed. We conclude that mGlu5 PAMs and NAMs differentially affect brain reward function, and that tolerance to the ability of mGlu5 NAMs to reduce brain reward function develops with repeated administration. These brain reward deficits should be taken into consideration when interpreting acute effects of mGlu5 NAMs on drug self-administration, and repeated administration of these ligands may be an effective method to reduce these deficits. PMID

  14. Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations.

    PubMed

    Lopatář, Jan; Dale, Nicholas; Frenguelli, Bruno G

    2015-06-01

    The activation of Group I metabotropic glutamate receptors (GI mGluRs) in the hippocampus results in the appearance of persistent bursts of synchronised neuronal activity. In response to other stimuli, such activity is known to cause the release of the purines ATP and its neuroactive metabolite, adenosine. We have thus investigated the potential release and role of the purines during GI mGluR-induced oscillations in rat hippocampal areas CA3 and CA1 using pharmacological techniques and microelectrode biosensors for ATP and adenosine. The GI mGluR agonist DHPG induced both persistent oscillations in neuronal activity and the release of adenosine in areas CA1 and CA3. In contrast, the DHPG-induced release of ATP was only observed in area CA3. Whilst adenosine acting at adenosine A1 receptors suppressed DHPG-induced burst activity, the activation of mGlu5 and P2Y1 ATP receptors were necessary for the induction of DHPG-induced oscillations. Selective inhibition of pannexin-1 hemichannels with a low concentration of carbenoxolone (10 μM) or probenecid (1 mM) did not affect adenosine release in area CA3, but prevented both ATP release in area CA3 and DHPG-induced bursting. These data reveal key aspects of GI mGluR-dependent neuronal activity that are subject to bidirectional regulation by ATP and adenosine in the initiation and pacing of burst firing, respectively, and which have implications for the role of GI mGluRs in seizure activity and neurodevelopmental disorders. PMID:25645390

  15. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction

    PubMed Central

    Olive, M. Foster

    2010-01-01

    Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu1 and mGlu5 receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu5 receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu5 receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu5 receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use. PMID:20371237

  16. Metabotropic glutamate receptor subtypes modulating neurotransmission at parallel fibre-Purkinje cell synapses in rat cerebellum.

    PubMed

    Neale, S A; Garthwaite, J; Batchelor, A M

    2001-07-01

    The actions of reportedly group-selective metabotropic glutamate (mGlu) receptor agonists and antagonists on neurotransmission at parallel fibre-Purkinje cell synapses in the rat cerebellum have been characterised using sharp microelectrode recording and an in vitro slice preparation. Application of the group I agonist (S)-3,5-dihydroxyphenylglycine (DHPG) or the group III selective agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depressed synaptic transmission in a reversible and concentration-dependent manner (EC(50)=18 and 5 microM, respectively). The depression produced by DHPG was unrelated to the depolarisation observed in some Purkinje cells. The group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV, 1 microM) had no effect. The effects of DHPG were inhibited by the group I-selective antagonist 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), but not by the group II/III antagonist alpha-methyl-4-phosphonophenylglycine (MPPG). The effect of L-AP4 was inhibited by MPPG, but not by the group I/II antagonist (S)-alpha-methyl-4-carboxyphenylglycine (MCPG). By themselves, the antagonists did not affect the EPSPs, suggesting that neither receptor is activated during low frequency neurotransmission. It is concluded that, in addition to the excitatory role for group I receptors described previously, both group I and III (but not group II) mGlu receptors operate at this synapse to inhibit synaptic transmission. The specific receptor subtypes involved are likely to be mGlu1 and mGlu4. PMID:11445184

  17. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  18. Characterization of the Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 ADX88178 in Rodent Models of Neuropsychiatric Disorders

    PubMed Central

    Le Poul, Emmanuel; Boléa, Christelle; Girard, Françoise; Campo, Brice; Fonsi, Massimiliano; Royer-Urios, Isabelle; Browne, Susan E.; Uslaner, Jason M.; Davis, Matthew J.; Raber, Jacob; Duvoisin, Robert; Bate, Simon T.; Reynolds, Ian J.; Celanire, Sylvain

    2014-01-01

    There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]–induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis. PMID:24947466

  19. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders.

    PubMed

    Kalinichev, Mikhail; Le Poul, Emmanuel; Boléa, Christelle; Girard, Françoise; Campo, Brice; Fonsi, Massimiliano; Royer-Urios, Isabelle; Browne, Susan E; Uslaner, Jason M; Davis, Matthew J; Raber, Jacob; Duvoisin, Robert; Bate, Simon T; Reynolds, Ian J; Poli, Sonia; Celanire, Sylvain

    2014-09-01

    There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis. PMID:24947466

  20. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory

    PubMed Central

    Simonyi, Agnes; Schachtman, Todd R.; Christoffersen, Gert R. J.

    2010-01-01

    Summary The role of the metabotropic glutamate receptor 5 (mGlu5 receptor) in learning and memory and other behaviors are reviewed by examining the influence of selective antagonists and genetic knockout on performance. This receptor is involved in spatial learning, contextual fear conditioning, inhibitory avoidance, fear potentiated startle, and conditioned taste aversion. However, mGlu5 receptor antagonists have proven to be ineffective in other learning tasks, such as the delayed-match-to-position test and a three-hole spatial learning task. Locomotion is often decreased by mGlu5 receptor antagonists; and other behaviors such as social interaction and consummatory responses can also be affected. In mGlu5 receptor knockout mice, performance in contextual fear conditioning and spatial water maze tasks is impaired. Although the available evidence is suggestive of an important contribution of mGlu5 receptors to cognitive functions, further studies are needed, particularly those with in vivo evaluation of the role of mGlu5 receptors in selective brain regions in different stages of memory formation. PMID:20363219

  1. Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats

    PubMed Central

    Siniscalco, Dario; Giordano, Catia; Fuccio, Carlo; Luongo, Livio; Ferraraccio, Franca; Rossi, Francesca; de Novellis, Vito; Roth, Kevin A.; Maione, Sabatino

    2008-01-01

    The effect of the non-selective, 1-aminoindan-1,5-dicarboxylic acid (AIDA), and selective (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4- methoxycyclohexyl) methanone (JNJ16259685), metabotropic glutamate subtype 1 (mGlu1) receptor antagonists, on rat sciatic nerve chronic constrictive injury (CCI)- induced hyperalgesia, allodynia, spinal dorsal horn apoptosis, and gliosis was examined at 3 and 7 days post-injury. RT-PCR analysis showed increased expression of bax, apoptotic protease-activating factor-1 (apaf-1), nestin, GFAP, and caspase-7 mRNA in the dorsal horn spinal cord by 3 days post-CCI. At 7 days post-CCI, only over-expression of bcl-2, nestin and GFAP mRNA was observed. Administration of AIDA reduced thermal hyperalgesia and mechanical allodynia at 3 and 7 days post-CCI; administration of JNJ16259685 reduced thermal hyperalgesia at 3 and 7 days post-CCI, but not mechanical allodynia. AIDA decreased the mRNA levels of bax, apaf-1, GFAP and caspase-7 genes. JNJ16259685 increased the mRNA levels of bcl- 2 and GFAP gene, and decreased APAF-1 and caspases-7 genes. Inhibiting mGlu1 receptors also reduced TUNEL-positive profiles and immunohistochemical reactivity for caspase-7. We report here that despite inhibiting CCI-induced over-expression of pro-apoptotic genes in the spinal cord dorsal horn, the selective mGlu1 receptor antagonist JNJ16259685 exerted only a slight and transient allodynic effect. Moreover, JNJ16259685, but not the non-selective AIDA, increased astrogliosis which may account for its decreased analgesic efficacy. This study provides evidence that the contemporary and partial blockade of group I and likely ionotropic glutamate receptors may be a more suitable therapy than selective blockade of mGlu1 subtype receptors condition to decrease neuropathic pain symptoms. PMID:18325779

  2. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  3. Paired inhibitory and activating receptor signals.

    PubMed

    Taylor, L S; Paul, S P; McVicar, D W

    2000-01-01

    The immunological literature has become inundated with reports regarding paired inhibitory receptors. Paired inhibitory receptor systems are highly conserved families that contain receptors involved in either cellular inhibition or activation. In most cases the paired putative biochemical antagonists are co-expressed on a given cell and thought to bind similar, if not identical, ligands making their biological role difficult to understand. Examples of these systems include immunoglobulin (Ig)-like receptors (Killer Ig Receptors, Immunoglobulin-like Transcripts/Leukocyte Ig-like Receptors/Monocyte Macrophage Ig Receptors, and Paired Ig-like Receptors), and type II lectin-like receptor systems (NKG2 and Ly49). General characteristics of these inhibitory receptors include a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM). The ITIM is phosphorylated upon engagement and recruits protein tyrosine phosphatases that dephosphorylate cellular substrates that would otherwise mediate activation. In contrast, the activating receptors of these pairs use charged residues within their transmembrane domains to associate with various signal transduction chains including the gamma chain of the receptor for the Fc portion of IgE, DAP12 or DAP10. Once phosphorylated, these chains direct the signal transduction cascade resulting in cellular activation. Here we review the signaling of several paired systems and present the current models for their signal transduction cascades. PMID:11258418

  4. Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination.

    PubMed

    Zhou, Liang; Yang, Dong; Wang, De-Juan; Xie, Ya-Jun; Zhou, Jia-Huan; Zhou, Lin; Huang, Hao; Han, Shuo; Shao, Chong-Yu; Li, Hua-Shun; Zhu, J Julius; Qiu, Meng-Sheng; De Zeeuw, Chris I; Shen, Ying

    2015-12-15

    Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1. PMID:26621723

  5. Hormone activation of baculovirus expressed progesterone receptors.

    PubMed

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  6. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer.

    PubMed

    Xia, Hui; Zhao, Ying-Nan; Yu, Chang-Hai; Zhao, Yun-Long; Liu, Yang

    2016-07-15

    Metabotropic glutamate receptor 1 (mGlu1 receptor) is expressed in many cancer cell types as compared to normal counterparts underscoring its potential role in tumor behavior. The aim of present study was to test the role of mGlu1 receptor in experimental non-small cell lung cancer (NSCLC). First, protein expression of mGlu1 receptor was higher in human NSCLC cell lines, including both adenocarcinoma and squamous carcinoma subtypes, when compared to normal bronchial epithelial cells. Inhibition of mGlu1 receptor by BAY36-7620 (an mGlu1 receptor-specific inhibitor) inhibited tumor growth and prolonged survival of mice with tumors of A549 or H1299. Treatment with BAY36-7620 suppressed AKT phosphorylation in A549 tumors and pre-treatment with BAY36-7620 blocked the L-quisqualate (a potent mGlu1 receptor agonist)-induced AKT phosphorylation in A549 cells. Treatment with BAY36-7620 reduced cellular proliferation of A549 cells. Treatment with BAY36-7620 enhanced cleaved PARP levels and reduced protein expression of bcl-2, HIF-1α, and VEGF. In contrast, treatment with L-quisqualate reduced cleaved PARP levels and enhanced protein expression of bcl-2, HIF-1α, VEGF, and IL-8, which was reversed by co-incubation with MK2206 (an AKT inhibitor). Pre-treatment with BAY36-7620 blocked the VEGF-induced AKT phosphorylation in HUVECs. Treatment of HUVECs with L-quisqualate resulted in enhancement of capillary tube formation, which was reversed by co-incubation with MK2206. Furthermore, mGlu1 receptor knockdown suppressed tumor growth and prolonged survival of mice with tumors of A549 or H1299. Collectively, inhibition of mGlu1 receptor suppressed tumor growth and angiogenesis in experimental NSCLC. PMID:27132814

  7. Estrogen receptors modulate striatal metabotropic receptor type 5 in intact and MPTP male mice model of Parkinson's disease.

    PubMed

    Al-Sweidi, S; Morissette, M; Di Paolo, T

    2016-07-01

    Glutamate is the most important brain excitatory neurotransmitter and glutamate overactivity is well documented in Parkinson's disease (PD). Metabotropic glutamate (mGlu) receptors are reported to interact with membrane estrogen receptors (ERs) and more specifically the mGlu5 receptor subtype. 17β-estradiol and mGlu5 antagonists have neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We previously reported that ERα and ERβ are involved in neuroprotection following MPTP toxicity. The present study investigated the implication of ERs on the mGlu5 receptor adaptive response to MPTP toxicity in the brain of wild type (WT), ER knockout (ERKO)α and ERKOβ male mice. Autoradiography of [(3)H]ABP688 specific binding to striatal mGlu5 receptors showed a dorsal/ventral gradient similar for WT, ERKOα and ERKOβ mice with higher values ventrally. The lateral septum had highest [(3)H]ABP688 specific binding that remained unchanged in all experimental groups. ERKOα and ERKOβ mice had similarly lower striatal [(3)H]ABP688 specific binding than WT mice as measured also by Western blots. MPTP dose-dependently decreased striatal [(3)H]ABP688 specific binding in WT but not in ERKOα and ERKOβ mice; this correlated positively with striatal dopamine concentrations. A 17β-estradiol treatment for 10 days left unchanged striatal [(3)H]ABP688 specific binding of unlesioned mice of the three genotypes. 17β-estradiol treatment for 5 days before MPTP and for 5 days after partially prevented the mGlu5 receptor decrease only in WT MPTP mice and this was associated with higher BDNF striatal contents. These results thus show that in male mice ERs affect striatal mGlu5 receptor levels and their response to MPTP. PMID:26873133

  8. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders.

    PubMed

    Peterlik, Daniel; Flor, Peter J; Uschold-Schmidt, Nicole

    2016-01-01

    Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders. PMID:27296643

  9. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-01

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia. PMID:21289196

  10. Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors.

    PubMed

    Bedingfield, J S; Jane, D E; Kemp, M C; Toms, N J; Roberts, P J

    1996-08-01

    The metabotropic glutamate (mGlu) receptor antagonist properties of novel phenylglycine analogues were investigated in adult rat cortical slices (mGlu receptors negatively coupled to adenylyl cyclase), neonatal rat cortical slices and in cultured rat cerebellar granule cells (mGlu receptors coupled to phosphoinositide hydrolysis). (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-methyl-3-carboxymethyl-4-hydroxyphenylglycine (M3CM4HPG) and (RS)-alpha-methyl-4-hydroxy-3-phosphonomethylphenylglycine (M4H3PMPG) were demonstrated to have potent and selective effects against 10 microM L-2-amino-4-phosphonobutyrate (L-AP4)- and 0.3 microM (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-1)-mediated inhibition of forskolin-stimulated cAMP accumulation in the adult rat cortex. In contrast, these compounds demonstrated either weak or no antagonism at mGlu receptors coupled to phosphoinositide hydrolysis in either neonatal rat cortex or in cultured cerebellar granule cells. These compounds thus appear to be useful discriminatory pharmacological tools for mGlu receptors and form the basis for the further development of novel antagonists. PMID:8864696

  11. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  12. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review.

    PubMed

    Matrisciano, Francesco; Panaccione, Isabella; Grayson, Danis R; Nicoletti, Ferdinando; Guidotti, Alessandro

    2016-01-01

    Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as "major psychosis"; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors. PMID:26813121

  13. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review

    PubMed Central

    Matrisciano, Francesco; Panaccione, Isabella; Grayson, Danis R.; Nicoletti, Ferdinando; Guidotti, Alessandro

    2016-01-01

    Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors. PMID:26813121

  14. Mechanism of FGF receptor dimerization and activation.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  15. NMDA Receptor Activity in Neuropsychiatric Disorders

    PubMed Central

    Lakhan, Shaheen E.; Caro, Mario; Hadzimichalis, Norell

    2013-01-01

    N-Methyl-d-aspartate (NMDA) receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington’s disease, Alzheimer’s disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms. PMID:23772215

  16. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  17. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  18. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed

    Jain, N; Kemp, N; Adeyemo, O; Buchanan, P; Stone, T W

    1995-10-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  19. Anxiolytic activity of adenosine receptor activation in mice.

    PubMed Central

    Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T. W.

    1995-01-01

    1. Purine analogues have been examined for anxiolytic- and anxiogenic-like activity in mice, by use of the elevated plus-maze. 2. The selective A1 receptor agonist, N6-cyclopentyladenosine (CPA) had marked anxiolytic-like activity at 10 and 50 microg kg(-1), with no effect on locomotor performance at these doses. 3. The A1 selective adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (CPX) had no significant effect on anxiety-related measures or locomotor behaviour, but blocked the anxiolytic-like activity of CPA. The hydrophilic xanthine, 8-(p-sulphophenyl) theophylline did not prevent anxiolysis by CPA. 4. Caffeine had anxiogenic-like activity at 30 mg kg(-1) which was prevented by CPA at 50 micro kg(-1). 5. The A2 receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2(2-methylphenyl)-ethyl]adenosine (DPMA) had no effect on anxiety behaviour but depressed locomotor activity at the highest dose tested of 1 mg kg(-1). The A2 receptor antagonist, 1,3-dimethyl-l-propargylxanthine (DMPX) had no effect on anxiety-related measures or locomotion and did not modify the anxiolytic-like activity of CPA. 6. Administration of DPMA in combination with anxiolytic doses of CPA prevented the anxiolytic-like activity of the latter. 7. The results suggest that the selective activation of central A1 adenosine receptors induces anxiolytic-like behaviour, while the activation of A2 sites causes locomotor depression and reduces the effects of A1 receptor activation. The absence of any effect of CPX alone suggests that the receptors involved in modulating behaviour in the elevated plus-maze in mice are not activated tonically by endogenous adenosine. PMID:8640355

  20. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  1. The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice

    PubMed Central

    Chesworth, Rose; Brown, Robyn M.; Kim, Jee Hyun; Lawrence, Andrew J.

    2013-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience. PMID:23861896

  2. Progesterone receptors activation after acute cocaine administration.

    PubMed

    Wu, Hui-Bing K; Fabian, Sosimo; Jenab, Shirzad; Quiñones-Jenab, Vanya

    2006-12-18

    Cocaine modulates serum levels of progesterone in intact female and male rats, as well as in pregnant dams, and progesterone decreases or attenuates cocaine-induced behavioral and reward responses. It has been postulated that cocaine's modulation of serum progesterone levels may in turn alter progesterone receptor activity, thereby contributing to cocaine-induced alterations of neuronal functions and genomic regulations. To test this hypothesis, intact male rats received acute injections of saline or cocaine (15 or 30 mg/kg, dissolved in 0.9% saline, intraperitoneal). Progesterone serum levels, progesterone receptor (PR) protein levels, and PR-DNA binding complexes were measured in the striatum by radioimmunoassay, Western blot, and gel shift analyses, respectively. After injection of 15 mg/kg of cocaine, induction of progesterone serum levels was closely followed by an increase in receptor protein levels and DNA binding complexes. After injection of 30 mg/kg of cocaine, similar effects were observed along with an attenuation of receptor protein levels and DNA binding complexes at 60 min. Our results suggest that activation of progesterone receptors may be a mechanism by which cocaine mediates behavior through molecular alterations in the central nervous system. PMID:17109827

  3. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  4. Common mechanisms activate plant guard receptors and TLR4

    PubMed Central

    Kagan, Jonathan C.

    2014-01-01

    In metazoans, the innate immune system uses Pattern Recognition Receptors to detect conserved microbial products, whereas in plants Guard Receptors detect virulence factors or activities encoded by pathogens. In a recent study, Williams and colleagues report that plant Guard receptors can be activated by a mechanism remarkably similar to that of mammalian Toll-like Receptor 4. PMID:25224694

  5. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  6. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  7. Activation Requirements for Metabotropic Glutamate Receptors

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2013-01-01

    It has been common experimentally to use high frequency, tetanic, stimulation to activate metabotropic glutamate receptors (mGluRs) in cortex and thalamus. To determine what type of stimulation is actually necessary to activate mGluRs we examined the effects of varying stimulation duration and intensity on activating mGluR responses. We used a thalamocortical and an intracortical slice preparation from mice and performed whole cell recordings from neurons in the ventral posterior medial nucleus or in layer 4 of primary somatosensory cortex (S1) while electrically stimulating in layer 6 of S1. Extracellular ionotropic glutamate receptor antagonists and GABAA receptor antagonists were used to isolate Group I or Group II mGluR responses. We observed that high frequency stimulation is not necessary for the activation of either Group I or Group II mGluRs. Either could be activated with as few as 2-3 pulses at stimulation frequencies around 15-20Hz. Additionally, increasing the number of pulses, intensity of stimulation, or stimulation frequency increased amplitude and duration of the mGluR response. PMID:23416319

  8. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  9. METABOTROPIC GLUTAMATE TYPE 5, DOPAMINE D2 AND ADENOSINE A2A RECEPTORS FORM HIGHER-ORDER OLIGOMERS IN LIVING CELLS

    PubMed Central

    Cabello, Nuria; Gandía, Jorge; Bertarelli, Daniela C. G.; Watanabe, Masahiko; Lluís, Carme; Franco, Rafael; Ferré, Sergi; Luján, Rafael; Ciruela, Francisco

    2009-01-01

    G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer (SRET) technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders. PMID:19344374

  10. Structural requirements of bitter taste receptor activation

    PubMed Central

    Brockhoff, Anne; Behrens, Maik; Niv, Masha Y.; Meyerhof, Wolfgang

    2010-01-01

    An important question in taste research is how 25 receptors of the human TAS2R family detect thousands of structurally diverse compounds. An answer to this question may arise from the observation that TAS2Rs in general are broadly tuned to interact with numerous substances. Ultimately, interaction with chemically diverse agonists requires architectures of binding pockets tailored to combine flexibility with selectivity. The present study determines the structure of hTAS2R binding pockets. We focused on a subfamily of closely related hTAS2Rs exhibiting pronounced amino acid sequence identities but unique agonist activation spectra. The generation of chimeric and mutant receptors followed by calcium imaging analyses identified receptor regions and amino acid residues critical for activation of hTAS2R46, -R43, and -R31. We found that the carboxyl-terminal regions of the investigated receptors are crucial for agonist selectivity. Intriguingly, exchanging two residues located in transmembrane domain seven between hTAS2R46, activated by strychnine, and hTAS2R31, activated by aristolochic acid, was sufficient to invert agonist selectivity. Further mutagenesis revealed additional positions involved in agonist interaction. The transfer of functionally relevant amino acids identified in hTAS2R46 to the corresponding positions of hTAS2R43 and -R31 resulted in pharmacological properties indistinguishable from the parental hTAS2R46. In silico modeling of hTAS2R46 allowed us to visualize the putative mode of interaction between agonists and hTAS2Rs. Detailed structure-function analyses of hTAS2Rs may ultimately pave the way for the development of specific antagonists urgently needed for more sophisticated analyses of human bitter taste perception. PMID:20534469

  11. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  12. Origin of basal activity in mammalian olfactory receptor neurons

    PubMed Central

    2010-01-01

    Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. PMID:20974772

  13. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  14. Monoclonal Antibodies to the Human Insulin Receptor that Activate Glucose Transport but not Insulin Receptor Kinase Activity

    NASA Astrophysics Data System (ADS)

    Forsayeth, John R.; Caro, Jose F.; Sinha, Madhur K.; Maddux, Betty A.; Goldfine, Ira D.

    1987-05-01

    Three mouse monoclonal antibodies were produced that reacted with the α subunit of the human insulin receptor. All three both immunoprecipitated 125I-labeled insulin receptors from IM-9 lymphocytes and competitively inhibited 125I-labeled insulin binding to its receptor. Unlike insulin, the antibodies failed to stimulate receptor autophosphorylation in both intact IM-9 lymphocytes and purified human placental insulin receptors. Moreover, unlike insulin, the antibodies failed to stimulate receptor-mediated phosphorylation of exogenous substrates. However, like insulin, two of the three antibodies stimulated glucose transport in isolated human adipocytes. One antibody, on a molar basis, was as potent as insulin. These studies indicate, therefore, that monoclonal antibodies to the insulin receptor can mimic a major function of insulin without activating receptor kinase activity. They also raise the possibility that certain actions of insulin such as stimulation of glucose transport may not require the activation of receptor kinase activity.

  15. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  16. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  17. Syntheses of 2-amino and 2-halothiazole derivatives as high-affinity metabotropic glutamate receptor subtype 5 ligands and potential radioligands for in vivo imaging.

    PubMed

    Siméon, Fabrice G; Wendahl, Matthew T; Pike, Victor W

    2011-02-10

    The structure of the potent selective mGlu(5) ligand, SP203 (1, 3-fluoro-5-[[2-(fluoromethyl)thiazol-4-yl]ethynyl]benzonitrile), was modified by replacing the 2-fluoromethyl substituent with an amino or halo substituent and by variation of substituents in the distal aromatic ring to provide a series of new high-affinity mGlu(5) ligands. In this series, among the most potent ligands obtained, the 2-chloro-thiazoles 7a and 7b and the 2-fluorothiazole 10b showed subnanomolar mGlu(5) affinity. 10b also displayed >10000-fold selectivity over all other metabotropic receptor subtypes plus a wide range of other receptors and binding sites. The 2-fluorothiazoles 10a and 10b were labeled using [(18)F]fluoride ion (t(1/2) = 109.7 min) in moderately high radiochemical yield to provide potential radioligands that may resist troublesome radiodefluorination during the imaging of brain mGlu(5) with position emission tomography. The iodo compound 9b has nanomolar affinity for mGlu(5) and may also serve as a lead to a potential (123)I-labeled ligand for imaging brain mGlu(5) with single photon emission computed tomography. PMID:21207959

  18. Syntheses of 2-Amino and 2-Halothiazole Derivatives as High-Affinity Metabotropic Glutamate Receptor Subtype 5 Ligands and Potential Radioligands for In Vivo Imaging

    PubMed Central

    Siméon, Fabrice G; Wendahl, Matthew T.; Pike, Victor W.

    2011-01-01

    The structure of the potent selective mGlu5 ligand, SP203 (1, 3-fluoro-5-[[2-(fluoromethyl)thiazol-4-yl]ethynyl]benzonitrile), was modified by replacing the 2-fluoromethyl substituent with an amino or halo substituent and by variation of substituents in the distal aromatic ring to provide a series of new high-affinity mGlu5 ligands. In this series, among the most potent ligands obtained, the 2-chloro-thiazoles 7a and 7b and the 2-fluorothiazole 10b showed sub-nanomolar mGlu5 affinity. 10b also displayed >10,000-fold selectivity over all other metabotropic receptor subtypes plus a wide range of other receptors and binding sites. The 2-fluorothiazoles 10a and 10b were labeled using [18F]fluoride ion (t1/2 = 109.7 min) in moderately high radiochemical yield to provide potential radioligands that may resist troublesome radiodefluorination during the imaging of brain mGlu5 with position emission tomography. The iodo compound 9b has nanomolar affinity for mGlu5 and may also serve as a lead to a potential 123I-labeled ligand for imaging brain mGlu5 with single photon emission computed tomography. PMID:21207959

  19. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  20. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  1. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  2. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  3. Positive Allosteric Modulators of Metabotropic Glutamate 2 Receptors in Schizophrenia Treatment

    PubMed Central

    Ellaithy, Amr; Younkin, Jason; Gonzalez-Maeso, Javier; Logothetis, Diomedes E.

    2015-01-01

    The last two decades have witnessed a rise in the “NMDA receptor hypofunction” hypothesis for schizophrenia, a devastating disorder that affects around 1% of the population worldwide. A variety of presynaptic, postsynaptic and regulatory proteins involved in glutamatergic signaling have thus been proposed as potential therapeutic targets. This Review focuses on positive allosteric modulation of metabotropic glutamate 2 receptors (mGlu2Rs) and discusses how recent preclinical epigenetic data may provide a molecular explanation for the discrepant results of clinical studies, further stimulating the field to exploit the promise of mGlu2R as a target for schizophrenia treatment. PMID:26148747

  4. Composition, assembly and activation of the avian progesterone receptor.

    PubMed

    Smith, D F; Toft, D O

    1992-03-01

    When isolated from chick oviduct cytosol by antibody adsorption, the inactive progesterone receptor is associated with the two heat shock proteins, hsp90 and hsp70, plus three additional proteins termed p54, p50, and p23 according to their molecular weights. While their functions remain unknown, all of these receptor associated proteins are dissociated upon receptor activation in intact cells. To better understand the assembly and activation mechanisms of progesterone receptor complexes, we have developed a cell-free system for studying receptor interactions with hsp90 and hsp70 and have used this system to examine requirements for hsp90 binding to the receptor. Purified receptor, free of hsp90 and immobilized on an antibody affinity resin, will rebind hsp90 in rabbit reticulocyte lysate when several conditions are met. These include: (1) absence of progesterone, (2) elevated temperature (30 degrees C), (3) presence of ATP, and (4) presence of Mg2+. We have obtained maximal hsp90 binding to receptor when lysate is supplemented with 3 mM MgCl2 and an ATP regenerating system. ATP depletion of lysate by dialysis or ATPase addition blocks hsp90 binding to the receptor. When progesterone is added to pre-formed receptor complexes in reticulocyte lysate it promotes activation and the dissociation of hsp90. This process is also dependent upon ATP. Thus, both the assembly, and activation of the progesterone receptor can be accomplished in the reticulocyte lysate system. PMID:1562503

  5. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties*

    PubMed Central

    Watkins, Harriet A.; Chakravarthy, Madhuri; Abhayawardana, Rekhati S.; Gingell, Joseph J.; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M. W. R.; Lathbridge, Alex; Constantine, Arran; Harris, Paul W. R.; Yuen, Tsz-Ying; Brimble, Margaret A.; Barwell, James; Poyner, David R.; Woolley, Michael J.; Conner, Alex C.; Pioszak, Augen A.; Reynolds, Christopher A.

    2016-01-01

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  6. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties.

    PubMed

    Watkins, Harriet A; Chakravarthy, Madhuri; Abhayawardana, Rekhati S; Gingell, Joseph J; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M W R; Lathbridge, Alex; Constantine, Arran; Harris, Paul W R; Yuen, Tsz-Ying; Brimble, Margaret A; Barwell, James; Poyner, David R; Woolley, Michael J; Conner, Alex C; Pioszak, Augen A; Reynolds, Christopher A; Hay, Debbie L

    2016-05-27

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  7. The insulin receptor C-terminus is involved in regulation of the receptor kinase activity.

    PubMed

    Kaliman, P; Baron, V; Alengrin, F; Takata, Y; Webster, N J; Olefsky, J M; Van Obberghen, E

    1993-09-21

    During the insulin receptor activation process, ligand binding and autophosphorylation induce two distinct conformational changes in the C-terminal domain of the receptor beta-subunit. To analyze the role of this domain and the involvement of the C-terminal autophosphorylation sites (Tyr1316 and Tyr1322) in receptor activation, we used (i) antipeptide antibodies against three different C-terminal sequences (1270-1281, 1294-1317, and 1309-1326) and (ii) an insulin receptor mutant (Y/F2) where Tyr1316 and Tyr1322 have been replaced by Phe. We show that the autophosphorylation-induced C-terminal conformational change is preserved in the Y/F2 receptor, indicating that this change is not induced by phosphorylation of the C-terminal sites but most likely by phosphorylation of the major sites in the kinase domain (Tyr1146, Tyr1150, and Tyr1151). Binding of antipeptide antibodies to the C-terminal domain modulated (activated or inhibited) both mutant and wild-type receptor-mediated phosphorylation of poly(Glu/Tyr). In contrast to the wild-type receptor, Y/F2 exhibited the same C-terminal configuration before and after insulin binding, evidencing that mutation of Tyr1316 and Tyr1322 introduced conformational changes in the C-terminus. Finally, the mutant receptor was 2-fold more active than the wild-type receptor for poly(Glu/Tyr) phosphorylation. In conclusion, the whole C-terminal region of the insulin receptor beta-subunit is likely to exert a regulatory influence on the receptor kinase activity. Perturbations of the C-terminal region, such as binding of antipeptides or mutation of Tyr1316 and Tyr1322, provoke alterations at the receptor kinase level, leading to activation or inhibition of the enzymic activity. PMID:7690586

  8. Constitutive Activity of the Androgen Receptor

    PubMed Central

    Chan, Siu Chiu; Dehm, Scott M.

    2014-01-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this review, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional co-regulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients. PMID:24931201

  9. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  10. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.

    PubMed

    Mackowiak, Bryan; Wang, Hongbing

    2016-09-01

    The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26877237

  11. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  12. Structure–Activity Relationships Comparing N-(6-Methylpyridin-yl)-Substituted Aryl Amides to 2-Methyl-6-(substituted-arylethynyl)pyridines or 2-Methyl-4-(substituted-arylethynyl)thiazoles as Novel Metabotropic Glutamate Receptor Subtype 5 Antagonists†

    PubMed Central

    Kulkarni, Santosh S.; Zou, Mu-Fa; Cao, Jianjing; Deschamps, Jeffrey R.; Rodriguez, Alice L.; Conn, P. Jeffrey; Newman, Amy Hauck

    2010-01-01

    The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in anxiety, depression, pain, mental retardation, and addiction. The potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1) has been a critically important tool used to further elucidate the role of mGluR5 in these CNS disorders. In an effort to provide novel and structurally diverse selective mGluR5 antagonists, we previously described a set of analogues with moderate activity wherein the alkyne bond was replaced with an amide group. In the present report, extended series of both amide and alkyne-based ligands were synthesized. MGluR5 binding and functional data were obtained that identified (1) several novel alkynes with comparable affinities to 1 at mGluR5 (e.g., 10 and 20–23), but (2) most structural variations to the amide template were not well tolerated, although a few potent amides were discovered (e.g., 55 and 56). Several of these novel analogues show drug-like physical properties (e.g., cLogP range) 2–5) that support their use for in vivo investigation into the role of mGluR5 in CNS disorders. PMID:19445453

  13. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    PubMed

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  14. Glutamate receptor ligands as anxiolytics.

    PubMed

    Chojnacka-Wójcik, E; Kłodzinska, A; Pilc, A

    2001-08-01

    The glutamatergic system has received considerable attention over recent years as a potential target for anxiolytic drugs. In spite of the pronounced anxiolytic-like effects of competitive and non-competitive antagonists of NMDA receptors in animal models of anxiety, these substances can not be regarded as potential anxiolytic drugs, mainly due to their side-effect profiles (eg, ataxia, myorelaxation, impairment of learning and memory processes and psychotomimetic effects). Antagonists and partial agonists of the glycine, receptor inhibit function of the NMDA receptor complex and evoke in animals an anxiolytic-like response. Although data concerning anti-anxiety-like effects of glycine, receptor antagonists are not very promising, studies are underway to develop new, brain-penetrating agents devoid of side effects. Further developments are necessary to more fully elucidate the possible involvement of AMPA/kainate receptors in anxiety. The recent discovery of metabotropic glutamate receptors, which modulate the function of the glutamatergic system, offers new hope for discovery of a new generation of anxiolytics. MPEP, a highly selective, brain penetrable, noncompetitive mGlu5 receptor antagonist, evokes anxiolytic-like effects in several animal models of anxiety, remaining remarkably free of side effects. LY-354740, a selective brain-penetrable group II mGlu receptor agonist, evokes marked anxiolytic-like effects in animal models of anxiety. LY-354740 causes mild sedation in mice, does not disturb motor coordination and has no potential to cause dependence. Therefore mGlu receptor ligands may become the anxiolytics of the future, free from the side effects characteristic of benzodiazepines. PMID:11892923

  15. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  16. The insulin receptor activation process involves localized conformational changes.

    PubMed

    Baron, V; Kaliman, P; Gautier, N; Van Obberghen, E

    1992-11-15

    The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation. PMID:1331080

  17. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men.

    PubMed

    Ahnaou, A; de Boer, P; Lavreysen, H; Huysmans, H; Sinha, V; Raeymaekers, L; Van De Casteele, T; Cid, J M; Van Nueten, L; Macdonald, G J; Kemp, J A; Drinkenburg, W H I M

    2016-04-01

    Alterations in rapid eye movement sleep (REM) have been suggested as valid translational efficacy markers: activation of the metabotropic glutamate receptor 2 (mGluR2) was shown to increase REM latency and to decrease REM duration. The present paper addresses the effects on vigilance states of the mGluR2 positive allosteric modulator (PAM) JNJ-40411813 at different circadian times in rats and after afternoon dosing in humans. Due to its dual mGluR2 PAM/serotonin 2A (5-HT2A) receptor antagonism in rodents, mGlu2R specificity of effects was studied in wild-type (WT) and mGluR2 (-/-) mice. 5-HT2A receptor occupancy was determined in humans using positron emission tomography (PET). Tolerance development was examined in rats after chronic dosing. EEG oscillations and network connectivity were assessed using multi-channel EEG. In rats, JNJ-40411813 increased deep sleep time and latency of REM onset but reduced REM time when administered 2 h after 'lights on' (CT2): this was sustained after chronic dosing. At CT5 similar effects were elicited, at CT10 only deep sleep was enhanced. Withdrawal resulted in baseline values, while re-administration reinstated drug effects. Parieto-occipital cortical slow theta and gamma oscillations were correlated with low locomotion. The specificity of functional response was confirmed in WT but not mGluR2 (-/-) mice. A double-blind, placebo-controlled polysomnographic study in healthy, elderly subjects showed that 500 mg of JNJ-40411813 consistently increased deep sleep time, but had no effect on REM parameters. This deep sleep effect was not explained by 5-HT2A receptor binding, as in the PET study even 700 mg only marginally displaced the tracer. JNJ-40411813 elicited comparable functional responses in rodents and men if circadian time of dosing was taken into account. These findings underscore the translational potential of sleep mechanisms in evaluating mGluR2 therapeutics when administered at the appropriate circadian time. PMID

  18. Steroid receptor RNA activator: Biologic function and role in disease.

    PubMed

    Liu, Chan; Wu, Hong-Tao; Zhu, Neng; Shi, Ya-Ning; Liu, Zheng; Ao, Bao-Xue; Liao, Duan-Fang; Zheng, Xi-Long; Qin, Li

    2016-08-01

    Steroid receptor RNA activator (SRA) is a type of long noncoding RNA (lncRNA) which coordinates the functions of various transcription factors, enhances steroid receptor-dependent gene expression, and also serves as a distinct scaffold. The novel, profound and expanded roles of SRA are emerging in critical aspects of coactivation of nuclear receptors (NRs). As a nuclear receptor coactivator, SRA can coactivate androgen receptor (AR), estrogen receptor α (ERα), ERβ, progesterone receptor (PR), glucocorticoid receptor (GR), thyroid hormone receptor and retinoic acid receptor (RAR). Although SRA is one of the least well-understood molecules, increasing studies have revealed that SRA plays a key role in both biological processes, such as myogenesis and steroidogenesis, and pathological changes, including obesity, cardiomyopathy, and tumorigenesis. Furthermore, the SRA-related signaling pathways, such as the mitogen-activated protein kinase (p38 MAPK), Notch and tumor necrosis factor α (TNFα) pathways, play critical roles in the pathogenesis of estrogen-dependent breast cancers. In addition, the most recent data demonstrates that SRA expression may serve as a new prognostic marker in patients with ER-positive breast cancer. Thus, elucidating the molecular mechanisms underlying SRA-mediated functions is important to develop proper novel strategies to target SRA in the diagnosis and treatment of human diseases. PMID:27282881

  19. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    PubMed Central

    Bai, Qifeng; Yao, Xiaojun

    2016-01-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1. PMID:26887338

  20. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  1. The novel platelet activation receptor CLEC-2.

    PubMed

    Suzuki-Inoue, Katsue; Inoue, Osamu; Ozaki, Yukio

    2011-01-01

    The c-type lectin-like receptor 2 (CLEC-2) was first identified from a bio-informatic screen for c-type lectin-like receptors. However, neither its function nor its ligand(s) had been elucidated for several years. In 2006, we reported that the receptor is expressed on the surface of platelets and serves as a receptor for the snake venom rhodocytin, which potently stimulates platelet aggregation. Since then CLEC-2 has been intensively investigated, and its endogenous/exogenous ligands and several physiological/pathological roles have been clarified. In this article and its accompanying poster, we outline the structure, distribution, signal transduction mechanism and functions of CLEC-2. PMID:21714702

  2. Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms.

    PubMed

    Carr, Richard; Koziol-White, Cynthia; Zhang, Jie; Lam, Hong; An, Steven S; Tall, Gregory G; Panettieri, Reynold A; Benovic, Jeffrey L

    2016-01-01

    Gαqβγ heterotrimer (Gq), an important mediator in the pathology of airway disease, plays a central role in bronchoconstriction and airway remodeling, including airway smooth muscle growth and inflammation. Current therapeutic strategies to treat airway disease include the use of muscarinic and leukotriene receptor antagonists; however, these pharmaceuticals demonstrate a limited clinical efficacy as multiple Gq-coupled receptor subtypes contribute to these pathologies. Thus, broadly inhibiting the activation of Gq may be an advantageous therapeutic approach. Here, we investigated the effects of broadly inhibiting Gq activation in vitro and ex vivo using receptor-dependent and receptor-independent strategies. P4pal-10 is a protease activated receptor 4-derived pepducin that exhibits efficacy toward multiple Gq-coupled receptors. Mechanistic studies demonstrated that P4pal-10 selectively inhibits all G protein coupling to several Gq-coupled receptors, including protease activated receptor 1, muscarinic acetylcholine M3, and histamine H1 receptors, while demonstrating no direct effect on Gq. We also evaluated the ability of FR900359, also known as UBO-QIC, to directly inhibit Gq activation. FR900359 inhibited spontaneous Gαq nucleotide exchange, while having little effect on Gαsβγ, Gαiβγ, or Gα12/13βγ heterotrimer activity. Both P4pal-10 and FR900359 inhibited Gq-mediated intracellular signaling and primary human airway smooth muscle growth, whereas only FR900359 effectively interdicted agonist-promoted airway contraction in human precision cut lung slices. These studies serve as a proof of concept that the broad-based inhibition of Gq activation may be a useful therapeutic approach to treat multiple common pathologies of airway disease. PMID:26464325

  3. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  4. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  5. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  6. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum.

    PubMed

    ElMlili, Nisrin; Boix, Jordi; Ahabrach, Hanan; Rodrigo, Regina; Errami, Mohammed; Felipo, Vicente

    2010-02-01

    Reduced function of the glutamate--nitric oxide (NO)--cGMP pathway is responsible for some cognitive alterations in rats with hyperammonemia and hepatic encephalopathy. Hyperammonemia impairs the pathway in cerebellum by increasing neuronal nitric oxide synthase (nNOS) phosphorylation in Ser847 by calcium-calmodulin-dependent protein kinase II (CaMKII), reducing nNOS activity, and by reducing nNOS amount in synaptic membranes, which reduces its activation following NMDA receptors activation. The reason for increased CaMKII activity in hyperammonemia remains unknown. We hypothesized that it would be as a result of increased tonic activation of NMDA receptors. The aims of this work were to assess: (i) whether tonic NMDA activation receptors is increased in cerebellum in chronic hyperammonemia in vivo; and (ii) whether this tonic activation is responsible for increased CaMKII activity and reduced activity of nNOS and of the glutamate--NO--cGMP pathway. Blocking NMDA receptors with MK-801 increases cGMP and NO metabolites in cerebellum in vivo and in slices from hyperammonemic rats. This is because of reduced phosphorylation and activity of CaMKII, leading to normalization of nNOS phosphorylation and activity. MK-801 also increases nNOS in synaptic membranes and reduces it in cytosol. This indicates that hyperammonemia increases tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate--NO--cGMP pathway. PMID:20002515

  7. Biological activity of a polypeptide modulator of TRPV1 receptor.

    PubMed

    Dyachenko, I A; Andreev, Ya A; Logashina, Yu A; Murashev, A N; Grishin, E V

    2015-11-01

    This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature. PMID:26725234

  8. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture.

    PubMed

    Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Al-Eryani, Laila; Prough, Russell A; States, J Christopher; Coslo, Denise M; Omiecinski, Curtis J; Cave, Matthew C

    2014-08-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  9. Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture

    PubMed Central

    Wahlang, Banrida; Falkner, K. Cameron; Clair, Heather B.; Al-Eryani, Laila; Prough, Russell A.; States, J. Christopher; Coslo, Denise M.; Omiecinski, Curtis J.; Cave, Matthew C.

    2014-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα. PMID:24812009

  10. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  11. Amyloid β peptide oligomers directly activate NMDA receptors.

    PubMed

    Texidó, Laura; Martín-Satué, Mireia; Alberdi, Elena; Solsona, Carles; Matute, Carlos

    2011-03-01

    Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimeŕs disease. PMID:21349580

  12. Specific activation of the thyrotropin receptor by trypsin.

    PubMed

    Van Sande, J; Massart, C; Costagliola, S; Allgeier, A; Cetani, F; Vassart, G; Dumont, J E

    1996-05-31

    The identification of 16 different activating mutations in the TSH receptor, found in patients suffering from toxic autonomous adenomas or congenital hyperthyroidism, leads to the concept that this receptor is in a constrained conformation in its wild-type form. We used mild trypsin treatment of CHO-K1 cells or COS-7 cells, stably or transiently transfected with the human TSH receptor, respectively, and measured its consequences on the TSH receptor coupled cascades, i.e. cyclic AMP and inositol-phosphates accumulation. A 2-min, 0.01% trypsin treatment increased stably cyclic AMP but not inositol-phosphates formation. This was not observed after chymotrypsin, thrombin and endoproteinase glu C treatment. The TSH action on cyclic AMP was decreased by only 25%. The effect was also observed in cells expressing the dog TSH receptor. It was not observed in MSH receptor, LH receptor expressing or mock transfected cells (vector alone). It is therefore specific for the TSH receptor, for its action on the Gs/adenylate cyclase cascade, and for the proteolytic cleavage caused by trypsin. Using monoclonal (A. Johnstone and P. Shepherd, personal communication) and polyclonal antibodies directed against the extracellular domain of the TSH receptor, it was shown that treatment by trypsin removes or destroys a VFFEEQ epitope (residues 354-359) from the receptor. The effect mimics the action of TSH as it activates Gs alpha and enhances the action of forskolin. It is not reversible in 1 h. The results support the concept that activation of the receptor (by hormone, autoantibodies, mutations or mild proteolysis) might involve the relief of a built-in negative constrain. They suggest that the C-terminal portion of the large extracellular domain plays a role in the maintenance of this constrain. PMID:8807635

  13. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  14. Receptor tyrosine kinases: mechanisms of activation and signaling

    PubMed Central

    Hubbard, Stevan R.; Miller, W. Todd

    2008-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands — mainly growth factors — play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell. PMID:17306972

  15. Quantitative structure-activity relationship models with receptor-dependent descriptors for predicting peroxisome proliferator-activated receptor activities of thiazolidinedione and oxazolidinedione derivatives.

    PubMed

    Lather, Viney; Kairys, Visvaldas; Fernandes, Miguel X

    2009-04-01

    A quantitative structure-activity relationship study has been carried out, in which the relationship between the peroxisome proliferator-activated receptor alpha and the peroxisome proliferator-activated receptor gamma agonistic activities of thiazolidinedione and oxazolidinedione derivatives and quantitative descriptors, V(site) calculated in a receptor-dependent manner is modeled. These descriptors quantify the volume occupied by the optimized ligands in regions that are either common or specific to the superimposed binding sites of the targets under consideration. The quantitative structure-activity relationship models were built by forward stepwise linear regression modeling for a training set of 27 compounds and validated for a test set of seven compounds, resulting in a squared correlation coefficient value of 0.90 for peroxisome proliferator-activated receptor alpha and of 0.89 for peroxisome proliferator-activated receptor gamma. The leave-one-out cross-validation and test set predictability squared correlation coefficient values for these models were 0.85 and 0.62 for peroxisome proliferator-activated receptor alpha and 0.89 and 0.50 for peroxisome proliferator-activated receptor gamma respectively. A dual peroxisome proliferator-activated receptor model has also been developed, and it indicates the structural features required for the design of ligands with dual peroxisome proliferator-activated receptor activity. These quantitative structure-activity relationship models show the importance of the descriptors here introduced in the prediction and interpretation of the compounds affinity and selectivity. PMID:19243388

  16. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. PMID:26747838

  17. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  18. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    PubMed

    Wigmore, M A; Lacey, M G

    1998-02-01

    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  19. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    1998-01-01

    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) was reversed by the group III preferring mGlu receptor antagonist, α-methyl-4-phosphonophenylglycine (MPPG; 250 μM). The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3–30 μM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 μM) was reversed by (+)-α-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3±15.7%, 4 cells) by MPPG (250 μM). The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 μM), decreased e.p.s.p. amplitude by 27.1±8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1′R,2′R,3′R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 μM) by 26.7±4.3% (5 cells). DHPG (10–100 μM) caused a depolarization of the recorded cell, as did ACPD (3–30 μM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID:9517386

  20. Functions of the extracellular histidine residues of receptor activity-modifying proteins vary within adrenomedullin receptors

    SciTech Connect

    Kuwasako, Kenji Kitamura, Kazuo; Nagata, Sayaka; Kato, Johji

    2008-12-05

    Receptor activity-modifying protein (RAMP)-2 and -3 chaperone calcitonin receptor-like receptor (CRLR) to the plasma membrane, where together they form heterodimeric adrenomedullin (AM) receptors. We investigated the contributions made by His residues situated in the RAMP extracellular domain to AM receptor trafficking and receptor signaling by co-expressing hCRLR and V5-tagged-hRAMP2 or -3 mutants in which a His residue was substituted with Ala in HEK-293 cells. Flow cytometric analysis revealed that hRAMP2-H71A mediated normal hCRLR surface delivery, but the resultant heterodimers showed significantly diminished [{sup 125}I]AM binding and AM-evoked cAMP production. Expression of hRAMP2-H124A and -H127A impaired surface delivery of hCRLR, which impaired or abolishing AM binding and receptor signaling. Although hRAMP3-H97A mediated full surface delivery of hCRLR, the resultant heterodimers showed impaired AM binding and signaling. Other His residues appeared uninvolved in hCRLR-related functions. Thus, the His residues of hRAMP2 and -3 differentially govern AM receptor function.

  1. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  2. Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2.

    PubMed

    Felts, Andrew S; Rodriguez, Alice L; Smith, Katrina A; Engers, Julie L; Morrison, Ryan D; Byers, Frank W; Blobaum, Anna L; Locuson, Charles W; Chang, Sichen; Venable, Daryl F; Niswender, Colleen M; Daniels, J Scott; Conn, P Jeffrey; Lindsley, Craig W; Emmitte, Kyle A

    2015-11-25

    Both orthosteric and allosteric antagonists of the group II metabotropic glutamate receptors (mGlus) have been used to establish a link between mGlu2/3 inhibition and a variety of CNS diseases and disorders. Though these tools typically have good selectivity for mGlu2/3 versus the remaining six members of the mGlu family, compounds that are selective for only one of the individual group II mGlus have proved elusive. Herein we report on the discovery of a potent and highly selective mGlu2 negative allosteric modulator 58 (VU6001192) from a series of 4-oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides. The concept for the design of this series centered on morphing a quinoline series recently disclosed in the patent literature into a chemotype previously used for the preparation of muscarinic acetylcholine receptor subtype 1 positive allosteric modulators. Compound 58 exhibits a favorable profile and will be a useful tool for understanding the biological implications of selective inhibition of mGlu2 in the CNS. PMID:26524606

  3. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  4. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Proost, Paul; Vanden Broeck, Jozef

    2015-06-01

    Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage. PMID:25064813

  5. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD. PMID:23333599

  6. A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1997-01-01

    The function of the GABAA receptor has been studied using the whole cell voltage clamp recording technique in rat cerebellum granule cells in culture. Activation of NMDA-type glutamate receptors causes a reduction in the effect of GABA. Full GABAA receptor activity was recovered after washing out NMDA and NMDA action was prevented in a Mg+2 containing medium. The NMDA effect was also absent when extracellular Ca+2 was replaced by Ba+2 and when 10 mM Bapta was present in the intracellular solution. Charge accumulations via voltage activated Ca+2 channels greater than the ones via NMDA receptors do not cause any reduction in GABAA receptor function, suggesting that Ca+2 influx through NMDA receptor channels is critical for the effect. The NMDA effect was reduced by including adenosine-5'-O-3-thiophosphate (ATP-gamma-S) in the internal solution and there was a reduction in the NMDA effect caused by deltamethrin, a calcineurin inhibitor. Part of the NMDA induced GABAA receptor impairment was prevented by prior treatment with L-arginine. Analogously, part of the NMDA effect was prevented by blockage of NO-synthase activity by N omega-nitro-L-arginine. A combination of NO-synthase and calcineurin inhibitors completely eliminated the NMDA action. An analogous result was obtained by combining the NO-synthase inhibitor with the addition of ATP-gamma-S to the pipette medium. The additivity of the prevention of the NMDA impairment of GABAA receptor by blocking the L-arginine/NO pathway and inhibiting calcineurin activity suggests an independent involvement of these two pathways in the interaction between NMDA and the GABAA receptor. On the one hand Ca+2 influx across NMDA channels activates calcineurin and dephosphorylates the GABAA receptor complex directly or dephosphorylates proteins critical for the function of the receptor. On the other hand, Ca+2 influx activates NO-synthase and induces nitric oxide production, which regulates such receptors via protein kinase G

  7. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  8. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  9. Metabotropic glutamate receptor 5 negative allosteric modulators: discovery of 2-chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, RO4917523), a promising novel medicine for psychiatric diseases.

    PubMed

    Jaeschke, Georg; Kolczewski, Sabine; Spooren, Will; Vieira, Eric; Bitter-Stoll, Nadia; Boissin, Patrick; Borroni, Edilio; Büttelmann, Bernd; Ceccarelli, Simona; Clemann, Nicole; David, Beatrice; Funk, Christoph; Guba, Wolfgang; Harrison, Anthony; Hartung, Thomas; Honer, Michael; Huwyler, Jörg; Kuratli, Martin; Niederhauser, Urs; Pähler, Axel; Peters, Jens-Uwe; Petersen, Ann; Prinssen, Eric; Ricci, Antonio; Rueher, Daniel; Rueher, Marianne; Schneider, Manfred; Spurr, Paul; Stoll, Theodor; Tännler, Daniel; Wichmann, Jürgen; Porter, Richard H; Wettstein, Joseph G; Lindemann, Lothar

    2015-02-12

    Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinson's disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome. Analogue 3 is the first reported mGlu5 NAM with a long half-life in rodents and is therefore an ideal tool compound for chronic studies in mice and rats. PMID:25565255

  10. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  11. Analyzing the activation of the melanocortin-2 receptor of tetrapods.

    PubMed

    Dores, Robert M; Liang, Liang

    2014-07-01

    Following the biochemical characterization of the pituitary hormone, adrenocorticotropin (ACTH), in the 1950's, a number of structure/function studies were done which identifies two amino acid motifs in ACTH, the HFRW motif and KKRR motif, as critical for the activation of the "ACTH" receptor on adrenal cortex cells. In the 1990's the "ACTH" receptor was identified as a member of the melanocortin receptor gene family, and given the name melanocortin-2 receptor (MC2R). Since that time a number of studies on both tetrapod and teleost MC2R orthologs have established that these orthologs can only be activated by ACTH, but not by any of the MSH-sized melanocortin ligands, and these orthologs require interaction with the melanocortin-2 receptor accessory protein (MRAP) for functional expression. This review summarizes recent structure/function studies on human ACTH, and points out the importance of the GKPVG motif in ACTH for the activation of the receptor. In this regard, a multiple-step model for the activation of tetrapod and teleost MC2R orthologs is presented, and the evolution of gnathostome MC2R ligand selectivity and the requirement for MRAP interaction is discussed in light of a recent study on a cartilaginous fish MC2R ortholog. This review contains excerpts from the Gorbman/Bern Lecture presented at the Second Meeting of the North American Society for Comparative Endocrinology (NASCE). PMID:24713445

  12. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  13. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  14. The biologically active conformations of ligand CCK B receptor

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Kuznetsova, Nina B.; Schulgin, Sergey V.; Rogacheva, Svetlana M.; Sinyakov, Valeriy V.; Kovtun, Viktor A.

    2006-07-01

    We analyzed literature data about structures of ligands of CCK B receptor. The structure of the binding site (fragments of the third extracellular loop and the seventh transmembrane helix of CCK B receptor) was determined recently by experiments. We were finding presumable biologically active conformations (BAC) of the ligands by two methods. One of them is based on the fact that the most stable conformations of the biologically active peptide on the phase interface "water-lipophilic medium" are often similar to the BAC. Another method is based on the formation of the stable ligand-receptor complex during the modeling procedure. We used Monte-Carlo method with the fixed geometry of the receptor and the optimized geometry of tetrapeptide cholecystokinin (CCK-4). It has been shown, that the first method should be used to find BAC of antagonists of CCK B receptor. The strategy of the formation of the stable ligand-receptor complex during the modeling procedure can be used for the designing of peptide agonists of CCK B receptor.

  15. Opportunistic activation of TRP receptors by endogenous lipids: Exploiting lipidomics to understand TRP receptor cellular communication

    PubMed Central

    Bradshaw, Heather B.; Raboune, Siham; Hollis, Jennifer L.

    2012-01-01

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining “orphans”. That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are “promiscuous” in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically “opportunistic” in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an “orphan” lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. PMID:23178153

  16. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  17. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  18. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors

    PubMed Central

    Terunuma, Miho; Vargas, Karina J.; Wilkins, Megan E.; Ramírez, Omar A.; Jaureguiberry-Bravo, Matías; Pangalos, Menelas N.; Smart, Trevor G.; Moss, Stephen J.; Couve, Andrés

    2010-01-01

    Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substrate of AMP-dependent protein kinase (AMPK). NMDA-R activation leads to a rapid increase in phosphorylation of S783, followed by a slower dephosphorylation, which results from the activity of AMPK and protein phosphatase 2A, respectively. Agonist activation of GABABRs counters the effects of NMDA. Thus, NMDA-R activation alters the phosphorylation state of S783 and acts as a molecular switch to decrease the abundance of GABABRs at the neuronal plasma membrane. Such a mechanism may be of significance during synaptic plasticity or pathological conditions, such as ischemia or epilepsy, which lead to prolonged activation of glutamate receptors. PMID:20643948

  19. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  20. Structural mechanism of glutamate receptor activation and desensitization.

    PubMed

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  1. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  2. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  3. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  4. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  5. Biologic activity of antigen receptors artificially incorporated onto B lymphocytes.

    PubMed

    Peacock, J S; Londo, T R; Roess, D A; Barisas, B G

    1986-09-15

    We describe a method for incorporating monoclonal antibody molecules onto viable murine lymphocytes and summarize the biologic activity of these artificial receptors on B cells. Mouse spleen cells incubated overnight with palmitate conjugates of a monoclonal anti-DNP IgA (protein 315) in the presence of deoxycholic acid incorporate about 50,000 antibody molecules per cell. When concentrations of deoxycholate and palmitoyl-protein 315 are carefully controlled, this labeling procedure does not affect the viability or the normal functions of the receptor-decorated cells. The incorporated antibody specifically binds DNP-antigens, although it appears to be unable to communicate directly with internal cellular components. Yet when these receptor-decorated, unprimed cells are challenged with any one of several DNP-antigens, up to 42,000 per 10(6) B cells differentiate into Ig-secreting cells. This response is about 23-fold greater than that induced in normal cell cultures and is of the same magnitude as that induced by the polyclonal B cell activator LPS. This, in addition to the observation that only about 3.6% of receptor-decorated B cells responding to DNP-conjugated polymerized flagellin (DNP-POL) produce hapten-specific antibody, demonstrates that these antigens cause polyclonal B cell differentiation. Normal spleen cells in the presence of DNP-POL and irradiated spleen cells bearing the artificial receptors do not exhibit the polyclonal antibody response. Also, the response of receptor-decorated B cell is blocked by high but nontoxic concentrations of the nonimmunogenic hapten DNP-lysine. These observations demonstrate that the polyclonal B cell response in this system requires the binding of antigen to artificial receptors on functionally viable cells. The polyclonal B cell response to a thymus-dependent antigen DNP-conjugated bovine gamma-globulin (DNP-BGG) requires the presence of the carrier-primed T cells. On the other hand, T cell depletion by anti-Thy-1

  6. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  7. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  8. A Phytochrome Sensory Domain Permits Receptor Activation by Red Light.

    PubMed

    Reichhart, Eva; Ingles-Prieto, Alvaro; Tichy, Alexandra-Madelaine; McKenzie, Catherine; Janovjak, Harald

    2016-05-17

    Optogenetics and photopharmacology enable the spatio-temporal control of cell and animal behavior by light. Although red light offers deep-tissue penetration and minimal phototoxicity, very few red-light-sensitive optogenetic methods are currently available. We have now developed a red-light-induced homodimerization domain. We first showed that an optimized sensory domain of the cyanobacterial phytochrome 1 can be expressed robustly and without cytotoxicity in human cells. We then applied this domain to induce the dimerization of two receptor tyrosine kinases-the fibroblast growth factor receptor 1 and the neurotrophin receptor trkB. This new optogenetic method was then used to activate the MAPK/ERK pathway non-invasively in mammalian tissue and in multicolor cell-signaling experiments. The light-controlled dimerizer and red-light-activated receptor tyrosine kinases will prove useful to regulate a variety of cellular processes with light. PMID:27101018

  9. Novel positive allosteric modulators of GABAA receptors with anesthetic activity

    PubMed Central

    Maldifassi, Maria C.; Baur, Roland; Pierce, David; Nourmahnad, Anahita; Forman, Stuart A.; Sigel, Erwin

    2016-01-01

    GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics. PMID:27198062

  10. Endocannabinoid tone versus constitutive activity of cannabinoid receptors

    PubMed Central

    Howlett, Allyn C; Reggio, Patricia H; Childers, Steven R; Hampson, Robert E; Ulloa, Nadine M; Deutsch, Dale G

    2011-01-01

    This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545414

  11. Peroxisome proliferator-activated receptors in the cardiovascular system

    PubMed Central

    Bishop-Bailey, David

    2000-01-01

    Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARα, -δ, and -γ, which are members of the steriod receptor superfamily. The first member of the family (PPARα) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARα being involved in β-oxidation pathways, and PPARγ in the differentiation of adipocytes. Little is known about the functions of PPARδ, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands. PMID:10696077

  12. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    PubMed

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  13. OX1 orexin/hypocretin receptor activation of phospholipase D

    PubMed Central

    Jäntti, MH; Putula, J; Somerharju, P; Frohman, MA; Kukkonen, JP

    2012-01-01

    BACKGROUND AND PURPOSE Orexin receptors potently signal to lipid messenger systems, and our previous studies have suggested that PLD would be one of these. We thus wanted to verify this by direct measurements and clarify the molecular mechanism of the coupling. EXPERIMENTAL APPROACH Orexin receptor-mediated PLD activation was investigated in CHO cells stably expressing human OX1 orexin receptors using [14C]-oleic acid-prelabelling and the transphosphatidylation assay. KEY RESULTS Orexin stimulation strongly increased PLD activity – even more so than the phorbol ester TPA (12-O-tetradecanoyl-phorbol-13-acetate), a highly potent activator of PLD. Both orexin and TPA responses were mediated by PLD1. Orexin-A and -B showed approximately 10-fold difference in potency, and the concentration–response curves were biphasic. Using pharmacological inhibitors and activators, both orexin and TPA were shown to signal to PLD1 via the novel PKC isoform, PKCδ. In contrast, pharmacological or molecular biological inhibitors of Rho family proteins RhoA/B/C, cdc42 and Rac did not inhibit the orexin (or the TPA) response, nor did the molecular biological inhibitors of PKD. In addition, neither cAMP elevation, Gαi/o nor Gβγ seemed to play an important role in the orexin response. CONCLUSIONS AND IMPLICATIONS Stimulation of OX1 receptors potently activates PLD (probably PLD1) in CHO cells and this is mediated by PKCδ but not other PKC isoforms, PKDs or Rho family G-proteins. At present, the physiological significance of orexin-induced PLD activation is unknown, but this is not the first time we have identified PKCδ in orexin signalling, and thus some specific signalling cascade may exist between orexin receptors and PKCδ. PMID:21718304

  14. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  15. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  16. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  17. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  18. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  19. Lysophosphatidylserine analogues differentially activate three LysoPS receptors.

    PubMed

    Uwamizu, Akiharu; Inoue, Asuka; Suzuki, Kensuke; Okudaira, Michiyo; Shuto, Akira; Shinjo, Yuji; Ishiguro, Jun; Makide, Kumiko; Ikubo, Masaya; Nakamura, Sho; Jung, Sejin; Sayama, Misa; Otani, Yuko; Ohwada, Tomohiko; Aoki, Junken

    2015-03-01

    Lysophosphatidylserine (1-oleoyl-2 R-lysophosphatidylserine, LysoPS) has been shown to have lipid mediator-like actions such as stimulation of mast cell degranulation and suppression of T lymphocyte proliferation, although the mechanisms of LysoPS actions have been elusive. Recently, three G protein-coupled receptors (LPS1/GPR34, LPS2/P2Y10 and LPS3/GPR174) were found to react specifically with LysoPS, raising the possibility that LysoPS serves as a lipid mediator that exerts its role through these receptors. Previously, we chemically synthesized a number of LysoPS analogues and evaluated them as agonists for mast-cell degranulation. Here, we used a transforming growth factor-α (TGFα) shedding assay to see if these LysoPS analogues activated the three LysoPS receptors. Modification of the serine moiety significantly reduced the ability of the analogues to activate the three LysoPS receptors, whereas modification of other parts resulted in loss of activity in receptor-specific manner. We found that introduction of methyl group to serine moiety (1-oleoyl-lysophosphatidylallothreonine) and removal of sn-2 hydroxyl group (1-oleoyl-2-deoxy-LysoPS) resulted in reduction of reactivity with LPS1 and LPS3, respectively. Accordingly, we synthesized a LysoPS analogue with the two modifications (1-oleoyl-2-deoxy-lysophosphatidylallothreonine) and found it to be an LPS2-selective agonist. These pharmacological tools will definitely help to identify the biological roles of these LysoPS receptors. PMID:25320102

  20. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  1. Mechanisms of NOD-like receptor-associated inflammasome activation.

    PubMed

    Wen, Haitao; Miao, Edward A; Ting, Jenny P-Y

    2013-09-19

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs. PMID:24054327

  2. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  3. Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles.

    PubMed

    Hay, Debbie L; Pioszak, Augen A

    2016-01-01

    It is now recognized that G protein-coupled receptors (GPCRs), once considered largely independent functional units, have a far more diverse molecular architecture. Receptor activity-modifying proteins (RAMPs) provide an important example of proteins that interact with GPCRs to modify their function. RAMPs are able to act as pharmacological switches and chaperones, and they can regulate signaling and/or trafficking in a receptor-dependent manner. This review covers recent discoveries in the RAMP field and summarizes the known GPCR partners and functions of RAMPs. We also discuss the first peptide-bound structures of RAMP-GPCR complexes, which give insight into the molecular mechanisms that enable RAMPs to alter the pharmacology and signaling of GPCRs. PMID:26514202

  4. Interaction of receptor-activity-modifying protein1 with tubulin.

    PubMed

    Kunz, Thomas H; Mueller-Steiner, Sarah; Schwerdtfeger, Kerstin; Kleinert, Peter; Troxler, Heinz; Kelm, Jens M; Ittner, Lars M; Fischer, Jan A; Born, Walter

    2007-08-01

    Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors. PMID:17493758

  5. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  6. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  7. Effects of a metabotropic glutamate receptor 5 positive allosteric modulator, CDPPB, on spatial learning task performance in rodents.

    PubMed

    Fowler, S W; Walker, J M; Klakotskaia, D; Will, M J; Serfozo, P; Simonyi, A; Schachtman, T R

    2013-01-01

    Metabotropic glutamate receptor 5 (mGlu5) has been implicated in a variety of learning and memory processes and is important for avoidance learning. The present studies used an mGlu5 receptor positive allosteric modulator, 3-cyano-N-(1,3 diphenyl-1H-hyrazol-5-yl)benzamide (CDPPB), to characterize the importance of mGlu5 receptors in aversively- and appetitively-motivated spatial learning tasks (tasks in which the instrumental contingency involves discriminative cues that differ in spatial location). C57Bl/6 male mice were initially trained in the Barnes maze in the absence of drug. Subsequently, CDPPB (30mg/kg, i.p.), administered 20min prior to each of 3 daily reversal learning training sessions in the Barnes maze, significantly enhanced performance compared to vehicle-treated controls and had a significant effect on search strategy. Mice treated with CDPPB also displayed significantly less perseverative behavior than control-treated animals. In a second experiment, male Sprague-Dawley rats were trained in an appetitively-motivated, delayed alternation version of a T-maze. 30mg/kg CDPPB (s.c.), delivered 20min prior to each of 5 daily training sessions, enhanced the delay rats were able to withstand between the sample and choice portions of each T-maze trial. The present results emphasize the role of mGlu5 receptors in spatial learning tasks and support previous studies which report mGlu5 positive allosteric modulators can enhance learning in some tasks and may have potential as nootropic drugs. PMID:23137441

  8. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  9. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  10. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules. PMID:26308901