Science.gov

Sample records for mhc heterozygote superiority

  1. Major Histocompatibility Complex Heterozygote Superiority during Coinfection

    PubMed Central

    McClelland, Erin E.; Penn, Dustin J.; Potts, Wayne K.

    2003-01-01

    Genes of the major histocompatibility complex (MHC) play a critical role in immune recognition, and many alleles confer susceptibility to infectious and autoimmune diseases. How these deleterious alleles persist in populations is controversial. One hypothesis postulates that MHC heterozygote superiority emerges over multiple infections because MHC-mediated resistance is generally dominant and many allele-specific susceptibilities to pathogens will be masked by the resistant allele in heterozygotes. We tested this hypothesis by using experimental coinfections with Salmonella enterica (serovar Typhimurium C5TS) and Theiler's murine encephalomyelitis virus (TMEV) in MHC-congenic mouse strains where one haplotype was resistant to Salmonella and the other was resistant to TMEV. MHC heterozygotes were superior to both homozygotes in 7 out of 8 comparisons (P = 0.0024), and the mean standardized pathogen load of heterozygotes was reduced by 41% over that of homozygotes (P = 0.01). In contrast, no heterozygote superiority was observed when the MHC haplotype combinations had similar susceptibility profiles to the two pathogens. This is the first experimental evidence for MHC heterozygote superiority against multiple pathogens, a mechanism that would contribute to the evolution of MHC diversity and explain the persistence of alleles conferring susceptibility to disease. PMID:12654829

  2. Heterozygote advantage at MHC DRB may influence response to infectious disease epizootics.

    PubMed

    Osborne, Amy J; Pearson, John; Negro, Sandra S; Chilvers, B Louise; Kennedy, Martin A; Gemmell, Neil J

    2015-04-01

    The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations. PMID:25728376

  3. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    PubMed

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. PMID:26610365

  4. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  5. The Heterozygote Superiority Hypothesis for Polymorphic Color Vision Is Not Supported by Long-Term Fitness Data from Wild Neotropical Monkeys

    PubMed Central

    Fedigan, Linda M.; Melin, Amanda D.; Addicott, John F.; Kawamura, Shoji

    2014-01-01

    The leading explanatory model for the widespread occurrence of color vision polymorphism in Neotropical primates is the heterozygote superiority hypothesis, which postulates that trichromatic individuals have a fitness advantage over other phenotypes because redgreen chromatic discrimination is useful for foraging, social signaling, or predator detection. Alternative explanatory models predict that dichromatic and trichromatic phenotypes are each suited to distinct tasks. To conclusively evaluate these models, one must determine whether proposed visual advantages translate into differential fitness of trichromatic and dichromatic individuals. We tested whether color vision phenotype is a significant predictor of female fitness in a population of wild capuchins, using longterm 26 years survival and fertility data. We found no advantage to trichromats over dichromats for three fitness measures fertility rates, offspring survival and maternal survival. This finding suggests that a selective mechanism other than heterozygote advantage is operating to maintain the color vision polymorphism. We propose that attention be directed to field testing the alternative mechanisms of balancing selection proposed to explain opsin polymorphism nichedivergence, frequencydependence and mutual benefit of association. This is the first indepth, longterm study examining the effects of color vision variation on survival and reproductive success in a naturallyoccurring population of primates. PMID:24404195

  6. MHC heterozygosity and survival in red junglefowl.

    PubMed

    Worley, Kirsty; Collet, Julie; Spurgin, Lewis G; Cornwallis, Charlie; Pizzari, Tommaso; Richardson, David S

    2010-08-01

    Genes of the major histocompatibility complex (MHC) form a vital part of the vertebrate immune system and play a major role in pathogen resistance. The extremely high levels of polymorphism observed at the MHC are hypothesised to be driven by pathogen-mediated selection. Although the exact nature of selection remains unclear, three main hypotheses have been put forward; heterozygote advantage, negative frequency-dependence and fluctuating selection. Here, we report the effects of MHC genotype on survival in a cohort of semi-natural red junglefowl (Gallus gallus) that suffered severe mortality as a result of an outbreak of the disease coccidiosis. The cohort was followed from hatching until 250 days of age, approximately the age of sexual maturity in this species, during which time over 80% of the birds died. We show that on average birds with MHC heterozygote genotypes survived infection longer than homozygotes and that this effect was independent of genome-wide heterozygosity, estimated across microsatellite loci. This MHC effect appeared to be caused by a single susceptible haplotype (CD_c) the effect of which was masked in all heterozygote genotypes by other dominant haplotypes. The CD_c homozygous genotype had lower survival than all other genotypes, but CD_c heterozygous genotypes had survival probabilities equal to the most resistant homozygote genotype. Importantly, no heterozygotes conferred greater resistance than the most resistant homozygote genotype, indicating that the observed survival advantage of MHC heterozygotes was the product of dominant, rather than overdominant processes. This pattern and effect of MHC diversity in our population could reflect the processes ongoing in similarly small, fragmented natural populations. PMID:20618904

  7. Diversifying selection on MHC class I in the house sparrow (Passer domesticus).

    PubMed

    Loiseau, Claire; Richard, Murielle; Garnier, Stéphane; Chastel, Olivier; Julliard, Romain; Zoorob, Rima; Sorci, Gabriele

    2009-04-01

    Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host-parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows (Passer domesticus) in France. To infer the nature of the selection, we compared patterns of population differentiation based on two types of molecular markers: MHC class I and microsatellites. This allowed us to test whether the observed differentiation at MHC genes merely reflects demographic and/or stochastic processes. At the global scale, diversifying selection seems to be the main factor maintaining MHC diversity in the house sparrow. We found that (i) overall population differentiation at MHC was stronger than for microsatellites, (ii) MHC marker showed significant isolation by distance. In addition, the slope of the regression of F(ST) on geographical distance was significantly steeper for MHC than for microsatellites due to a stronger pairwise differentiation between populations located at large geographical distances. These results are in agreement with the hypothesis that spatially heterogeneous selective pressures maintain different MHC alleles at local scales, possibly resulting in local adaptation. PMID:19368641

  8. MHC allele frequency distributions under parasite-driven selection: A simulation model

    PubMed Central

    2010-01-01

    Background The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. Results In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality. Conclusions Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes. PMID:20979635

  9. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes

    PubMed Central

    Ejsmond, Maciej Jan; Radwan, Jacek

    2015-01-01

    Major Histocompatibility Complex (MHC) genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens) of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS) are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process). Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation. PMID:26599213

  10. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism.

    PubMed

    Reusch, T B; Häberli, M A; Aeschlimann, P B; Milinski, M

    2001-11-15

    The origin and maintenance of polymorphism in major histocompatibility complex (MHC) genes in natural populations is still unresolved. Sexual selection, frequency-dependent selection by parasites and pathogens, and heterozygote advantage have been suggested to explain the maintenance of high allele diversity at MHC genes. Here we argue that there are two (non-exclusive) strategies for MHC-related sexual selection, representing solutions to two different problems: inbreeding avoidance and parasite resistance. In species prone to inadvertent inbreeding, partners should prefer dissimilar MHC genotypes to similar ones. But if the goal is to maximize the resistance of offspring towards potential infections, the choosing sex should prefer mates with a higher diversity of MHC alleles. This latter strategy should apply when there are several MHC loci, as is the case in most vertebrates. We tested the relative importance of an 'allele counting' strategy compared to a disassortative mating strategy using wild-caught three-spined sticklebacks (Gasterosteus aculeatus) from an interconnected system of lakes. Here we show that gravid female fish preferred the odour of males with a large number of MHC class-IIB alleles to that of males with fewer alleles. Females did not prefer male genotypes dissimilar to their own. PMID:11713527

  11. Sex-specific selection for MHC variability in Alpine chamois

    PubMed Central

    2012-01-01

    Background In mammals, males typically have shorter lives than females. This difference is thought to be due to behavioural traits which enhance competitive abilities, and hence male reproductive success, but impair survival. Furthermore, in many species males usually show higher parasite burden than females. Consequently, the intensity of selection for genetic factors which reduce susceptibility to pathogens may differ between sexes. High variability at the major histocompatibility complex (MHC) genes is believed to be advantageous for detecting and combating the range of infectious agents present in the environment. Increased heterozygosity at these immune genes is expected to be important for individual longevity. However, whether males in natural populations benefit more from MHC heterozygosity than females has rarely been investigated. We investigated this question in a long-term study of free-living Alpine chamois (Rupicapra rupicapra), a polygynous mountain ungulate. Results Here we show that male chamois survive significantly (P = 0.022) longer if heterozygous at the MHC class II DRB locus, whereas females do not. Improved survival of males was not a result of heterozygote advantage per se, as background heterozygosity (estimated across twelve microsatellite loci) did not change significantly with age. Furthermore, reproductively active males depleted their body fat reserves earlier than females leading to significantly impaired survival rates in this sex (P < 0.008). This sex-difference was even more pronounced in areas affected by scabies, a severe parasitosis, as reproductively active males were less likely to survive than females. However, we did not find evidence for a survival advantage associated with specific MHC alleles in areas affected by scabies. Conclusions Increased MHC class II DRB heterozygosity with age in males, suggests that MHC heterozygous males survive longer than homozygotes. Reproductively active males appear to be less likely to

  12. Cystic fibrosis heterozygote screening in 5,161 pregnant women

    SciTech Connect

    Witt, D.R.; Hallam, P.; Blumberg, B.; Fishbach, A.

    1996-04-01

    A screening program for cystic fibrosis (CF) heterozygotes was conducted in a large HMO prenatal population, to evaluate the level of interest among eligible patients, the effectiveness of prescreening education, attitudes toward the screening process, psychological effects, and utilization of prenatal diagnosis and its outcomes. The heterozygote identification rate and frequency of specific CFTR mutations were also assessed. Identified carriers were offered genetic counseling and testing of male partners. Prenatal diagnosis was offered if both partners were identified as carriers. A total of 5,161 women underwent carrier testing; 947 others completed survey instruments only. The acceptance rate of screening was high (78%), and pretest education by videotape was generally effective. Adverse psychological effects were not reported. Participants generally found screening to be desirable and useful. Screening identified 142 female heterozygotes, 109 couples in which the male partner was not a carrier, and 7 high-risk couples. The incidence of R117H mutations was much higher than expected. The number of identified carriers was much lower in Hispanics than in Caucasians. We conclude that large-scale prenatal screening for CF heterozygotes in the absence of a family history of CF is an acceptable method for identifying couples at risk for affected fetuses. Sufficient pretest education can be accomplished efficiently, test insensitivity is well accepted, adverse psychological events are not observed, and general patient satisfaction is high. 66 refs., 1 fig., 8 tabs.

  13. MHC genotypes associate with resistance to a frog-killing fungus

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2011-01-01

    The emerging amphibian disease chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian populations and species differ in susceptibility to Bd, yet we know surprisingly little about the genetic basis of this natural variation. MHC loci encode peptides that initiate acquired immunity in vertebrates, making them likely candidates for determining disease susceptibility. However, MHC genes have never been characterized in the context of chytridiomycosis. Here, we performed experimental Bd infections in laboratory-reared frogs collected from five populations that show natural variation in Bd susceptibility. We found that alleles of an expressed MHC class IIB locus associate with survival following Bd infection. Across populations, MHC heterozygosity was a significant predictor of survival. Within populations, MHC heterozygotes and individuals bearing MHC allele Q had a significantly reduced risk of death, and we detected a significant signal of positive selection along the evolutionary lineage leading to allele Q. Our findings demonstrate that immunogenetic variation affects chytridiomycosis survival under controlled experimental conditions, confirming that host genetic polymorphisms contribute to chytridiomycosis resistance. PMID:21949385

  14. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  15. Organizing MHC Class II Presentation

    PubMed Central

    Fooksman, David R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules are ligands for CD4+ T cells and are critical for initiating the adaptive immune response. This review is focused on what is currently known about MHC class II organization at the plasma membrane of antigen presenting cells and how this affects antigen presentation to T cells. The organization and diffusion of class II molecules have been measured by a variety of biochemical and microscopic techniques. Membrane lipids and other proteins have been implicated in MHC class II organization and function. However, when compared with the organization of MHC class I or TCR complexes, much less is known about MHC class II. Since clustering of T cell receptors occurs during activation, the organization of MHC molecules prior to recognition and during synapse formation may be critical for antigen presentation. PMID:24782863

  16. Hemochromatosis heterozygotes may constitute a radiation-sensitive subpopulation.

    SciTech Connect

    Stevens, R G.; Morris, James E. ); Anderson, Larry E. )

    1999-12-01

    A primary mechanism of radiation-induced DNA damage is by generation of free radicals. Chronically increased oxidative stress from elevated body iron may increase radiation sensitivity by decreasing cellular oxygen radical scavenging capability. Hemochromatosis heterozygotes have elevated body iron. Low-level radiation sensitization by iron may be particularly pertinent for risk of breast cancer. Since ten percent of the population appears to be heterozygous for the hemochromatosis gene, a radiosensitizing effect would have pervasive implications.

  17. MHC and Evolution in Teleosts.

    PubMed

    Grimholt, Unni

    2016-01-01

    Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions. PMID:26797646

  18. MHC and Evolution in Teleosts

    PubMed Central

    Grimholt, Unni

    2016-01-01

    Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions. PMID:26797646

  19. Aspartame metabolism in normal adults, phenylketonuric heterozygotes, and diabetic subjects.

    PubMed

    Filer, L J; Stegink, L D

    1989-01-01

    This study reviews clinical studies testing the effects of various doses of aspartame on blood levels of phenylalanine, aspartate, and methanol in normal subjects and known phenylketonuric heterozygotes. The effect of aspartame on the phenylalanine-to-large neutral amino acid ratio under various feeding situations is shown. The clinical studies of aspartame in diabetic subjects are limited to observations of its effects on blood levels of glucose, lipids, insulin, and glucagon. These studies clearly demonstrate the safety of this high-intensity sweetener for use by humans. PMID:2653751

  20. Extremely varied phenotypes in granular corneal dystrophy type 2 heterozygotes

    PubMed Central

    Han, Kyung Eun; Choi, Seung-il; Chung, Woo Suk; Jung, Se Hwan; Katsanis, Nicholas; Kim, Tae-im

    2012-01-01

    Purpose To investigate the phenotypic variability of patients bearing the heterozygous R124H mutation in the TGFBI (transforming growth factor-beta-induced) gene that causes granular corneal dystrophy type 2 (GCD2). Methods We describe the phenotypic range of GCD2 heterozygotes for the common R124H mutation in TGFBI; seven with an extremely mild phenotype and six with an extremely severe phenotype. Detailed slit-lamp photographs of these patients were generated. All patients had no history of ocular surgery and were diagnosed as being heterozygous for GCD2 by DNA analysis from peripheral blood. Expression levels of transforming growth factor-beta-induced protein (TGFBIp) were compared among cultured corneal fibroblasts from ten normal donors. Results We report profound differences in the severity of the phenotype across our case series. Two patients with a mild phenotype were diagnosed as unaffected at presentation; however follow-up examinations revealed granular deposits. Importantly, we also observed familial clustering of phenotypic variance; five patients from two families with a mild phenotype showed a similarly mild phenotype within family members. Similarly, six patients from two families with severe phenotypes showed corneal deposits with similar patterns and severity within each distinct family, but distinct patterns between families. TGFBIp expressions from different donor derived cultured corneal fibroblasts were different between one another. Conclusions GCD2 heterozygotes have extremely varied phenotypes between individual patients. However phenotypes were broadly consistent within families, suggesting that the observed variable expressivity might be regulated by other genetic factors that could influence the abundance of TGFBIp or the function of the pathway. From a clinical perspective, our data also highlighted that genetic analysis and meticulous slit-lamp examination in both eyes at multiple time intervals is necessary. PMID:22815629

  1. Heterozygote Advantage in a Finite Population: Black Color in Wolves.

    PubMed

    Hedrick, Philip W; Stahler, Daniel R; Dekker, Dick

    2014-05-01

    There is a striking color polymorphism for wolves in the Yellowstone National Park where approximately half the wolves are black. The genetic basis for this polymorphism is known, and fitnesses of the genotypes are estimated. These estimates suggest that there is strong heterozygote advantage but substantial asymmetry in the fitness differences of the 2 homozygotes. Theoretically, such fitnesses in a finite population are thought to reduce genetic variation at least as fast as if there were no selection at all. Because the color polymorphism has remained at about the same frequency for 17 years, about 4 generations, we investigated whether this was consistent with the theoretical predictions. Counter to this general expectation of loss, given the initial frequency of black wolves, the theoretical expectation in this case was found to be that the frequency would only decline slowly over time. For example, if the effective population size is 20, then the expected black allele frequency after 4 generations would be 0.191, somewhat less than the observed value of 0.237. However, nearly 30% of the time the expected frequency is 0.25 or greater, consistent with the contemporary observed frequency. In other words and in contrast to general theoretical predictions, because of the short period of time in evolutionary terms and the relatively weak selection at low frequencies, the observed variation and the predicted theoretical variation are not inconsistent. PMID:24795451

  2. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys

    PubMed Central

    Lugo, Juan S.; Cadavid, Luis F.

    2015-01-01

    The MHC class I (MHC-I) region in New World monkeys (Platyrrhini) has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10) and –B (15) loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i) MHC-I genes has expanded differentially among Platyrrhini species, ii) Callitrichinae (tamarins and marmosets) MHC-B loci have limited or tissue-specific expression, iii) MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv) the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding. PMID:26121030

  3. Revisiting MHC genes in spondyloarthritis.

    PubMed

    Breban, Maxime; Costantino, Félicie; André, Claudine; Chiocchia, Gilles; Garchon, Henri-Jean

    2015-06-01

    Spondyloarthritis (SpA) refers to a variety of inflammatory rheumatic disorders with strong heritability. Shared genetic predisposition, as shown by familial aggregation, is largely attributable to the major histocompatibility complex (MHC) locus, which was estimated to account for approximately half of the whole disease heritability. The first predisposing allele identified more than 40 years ago is HLA-B27, which is a major gene predisposing to all forms of SpA. However, despite intensive research, its pathogenesis remains uncertain. Other MHC alleles belonging to the class I and class II regions have been identified to exert additional effect. Candidate-gene approaches and genome-wide studies have recently allowed identification of several new loci residing outside of the MHC region that are involved in the predisposition to SpA. Interestingly, some of those new genes, such as ERAP1, ERAP2, and NPEPPS, code for aminopeptidases that are involved in MHC class I presentation and were shown to interact with HLA-B27. PMID:25903667

  4. MHC variability in heritage breeds of chickens.

    PubMed

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. PMID:26827122

  5. [MHC tetramers: tracking specific immunity].

    PubMed

    Kosor, Ela; Gagro, Alenka; Drazenović, Vladimir; Kuzman, Ilija; Jeren, Tatjana; Rakusić, Snjezana; Rabatić, Sabina; Markotić, Alemka; Gotovac, Katja; Sabioncello, Ante; Cecuk, Esma; Kerhin-Brkljacić, Vesna; Gjenero-Margan, Ira; Kaić, Bernard; Mlinarić-Galinović, Gordana; Kastelan, Andrija; Dekaris, Dragan

    2003-01-01

    In an adaptive immune response, antigen is recognized by two distinct sets of highly variable receptor molecules: (1) immunoglobulins, that serve as antigen receptors on B cells and (2) the antigen-specific receptors on T cells. T cells play important role in the control of infection and in the development of protective immunity. These cells can also mediate anti-tumor effects and, in case of autoimmune syndromes, contribute to the development and pathology of disease. The specificity of T cells is determined by T cell receptors (TCR). Understanding of the success of immune responses requires the direct measurement of antigen-specific T lymphocytes. Cell with major histocompatibility complex (MHC) class I molecules are able to present antigens to antigen-specific CD8+ cytotoxic T lymphocytes. MHC class I molecules present small peptides (epitopes) processed from intracellular antigens such as viruses and intracellular bacteria. MHC class I molecules in humans are designated as human leukocyte antigen (HLA) class I and divided into HLA-A, -B and -C. CD8+ T cells recognize MHC class I molecules and after activation produce proteins that destroy infected cells. MHC class II molecules receive their peptides mainly from extracellular and soluble antigens and present them to the CD4+ T helper cells. A recently described technique that can be used in flow cytometry enables us to quantify ex vivo antigen-specific T cells by binding of soluble tetramer MHC-peptide complexes attached to fluorochrome. Quantitative analyses of antigen-specific T cell populations provide important information on the natural course of immune responses. The interaction of T cell receptors on T lymphocytes with tetrameric MHC-peptide complexes mimics the situation on the cell surface, and allows for reliable binding. Tetramers consist of four biotinylated HLA-peptide epitope complexes bound to streptavidin conjugated with fluorescent dye. Tetramer technology has sensitivity of detection as little

  6. Increased initial levels of chromosome damage and heterogeneous chromosome repair in ataxia telangiectasia heterozygote cells.

    PubMed

    Pandita, T K; Hittelman, W N

    1994-10-01

    Individuals heterozygous for ataxia telangiectasia (AT) appear clinically normal but have a 2-3-fold overall excess risk of cancer. Various approaches have been used to identify AT heterozygotes, however, the results are ambiguous. We recently reported that AT homozygotes exhibit more initial chromosome damage after irradiation than normal cells despite identical levels of DNA double strand breaks (DSBs) as well as a reduced fast repair component at both the DNA and chromosome levels. To determine whether AT heterozygotes exhibit the AT or normal cellular phenotype, we compared four AT heterozygote lymphoblastoid cell lines with normal control and AT homozygote lymphoblastoid cells with regard to cell survival, initial levels of damage, and repair at the DNA and chromosome levels after gamma-irradiation in G1, S, and G2 phase (estimated by neutral DNA filter elution and premature chromosome condensation). There was no significant difference in survival, induction and repair of DNA DSBs, or chromosome repair between AT heterozygote and normal cells. In contrast, all four AT heterozygote cell lines showed increased levels of chromosome damage; G1 phase cells showed intermediate levels and G2 phase cells showed levels equivalent to the AT homozygote phenotype. These results suggest that premature chromosome condensation may be useful for detecting AT heterozygotes. PMID:7523872

  7. MHC-assortative facial preferences in humans

    PubMed Central

    Roberts, S. Craig; Little, Anthony C; Gosling, L. Morris; Jones, Benedict C; Perrett, David I; Carter, Vaughan; Petrie, Marion

    2005-01-01

    Individuals tend to choose mates who are sufficiently genetically dissimilar to avoid inbreeding. As facial attractiveness is a key factor in human mate preference, we investigated whether facial preferences were related to genetic dissimilarity. We asked female volunteers to rate the attractiveness of men from photographs and compared these results with individual genotypes at the major histocompatibility complex (MHC). In contrast to previously reported preferences based on odour, we found a non-significant tendency for women to rate MHC-similar faces as more attractive, suggesting a preference for cues to a self-similar MHC in faces. Further analysis revealed that male faces received higher attractiveness scores when rated by women who were MHC-similar than by MHC-dissimilar women. Although unexpected, this MHC-similar facial preference is consistent with other studies documenting assortative preferences in humans, including for facial phenotype. PMID:17148217

  8. The MHC class I genes of zebrafish

    PubMed Central

    Dirscherl, Hayley; McConnell, Sean C.; Yoder, Jeffrey A.; de Jong, Jill L. O.

    2014-01-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species. PMID:24631581

  9. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan

    PubMed Central

    Watanabe, Hideto; Nakata, Ken; Kimata, Koji; Nakanishi, Isao; Yamada, Yoshihiko

    1997-01-01

    Mouse cartilage matrix deficiency (cmd) is an autosomal recessive disorder caused by a genetic defect of aggrecan, a large chondroitin sulfate proteoglycan in cartilage. The homozygotes (−/−) are characterized by cleft palate and short limbs, tail, and snout. They die just after birth because of respiratory failure, and the heterozygotes (+/−) appear normal at birth. Here we report that the heterozygotes show dwarfism and develop spinal misalignment with age. Within 19 months of age, they exhibit spastic gait caused by misalignment of the cervical spine and die because of starvation. Histological examination revealed a high incidence of herniation and degeneration of vertebral discs. Electron microscopy showed a degeneration of disc chondrocytes in the heterozygotes. These findings may facilitate the identification of mutations in humans predisposed to spinal degeneration. PMID:9192671

  10. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  11. Convective gas mixing, airway dimensions and lung function parameters in patients homo- or heterozygote for hereditary alpha1-antitrypsin deficiency.

    PubMed

    Siekmeier, R; Schiller-Scotland, C F

    1998-08-01

    Informations about convective gas transport and airway morphometry as a function of volumetric lung depth (V(LD)) can be evaluated by means of two methods based on aerosol inhalation and determination of aerosol pulse parameters (APP) and effective airway dimensions (EAD). APP, EAD and conventional pulmonary function tests (PFT) were measured in patients homo- and heterozygote for alpha1-antitrypsin (alpha1-AT) deficiency. Thirteen homozygote subjects (ZZ allele), 21 heterozygote subjects (MZ allele) and 20 healthy controls were included. Anthropometric data were similar in all groups. APP but not PFT and EAD showed slight significant differences between controls and heterozygotes. However, PFT, APP and EAD from ZZ-homozygotes were strongly different from those of the other groups. Differences were also observed for APP between control smokers and nonsmokers and for APP, PFT and EAD between control nonsmokers and heterozygote smokers but not between heterozygote smokers and heterozygote nonsmokers and control nonsmokers and heterozygote nonsmokers, respectively. The data suggest that lung emphysema causes variations of pulmonary convective gas mixing detectable by measurement of APP which obviously precede variations of PFT. Our data further suggest that heterozygotes are not automatically at risk for the development of lung emphysema. Therefore we also regarded the results with request to individual smoking habits and found an increased risk in heterozygote smokers when compared to control nonsmokers. PMID:9820684

  12. Cystic Fibrosis Heterozygote Resistance to Cholera Toxin in the Cystic Fibrosis Mouse Model

    NASA Astrophysics Data System (ADS)

    Gabriel, Sherif E.; Brigman, Kristen N.; Koller, Beverly H.; Boucher, Richard C.; Stutts, M. Jackson

    1994-10-01

    The effect of the number of cystic fibrosis (CF) alleles on cholera toxin (CT)-induced intestinal secretion was examined in the CF mouse model. CF mice that expressed no CF transmembrane conductance regulator (CFTR) protein did not secrete fluid in response to CT. Heterozygotes expressed 50 percent of the normal amount of CFTR protein in the intestinal epithelium and secreted 50 percent of the normal fluid and chloride ion in response to CT. This correlation between CFTR protein and CT-induced chloride ion and fluid secretion suggests that CF heterozygotes might possess a selective advantage of resistance to cholera.

  13. Quantifying Significance of MHC II Residues.

    PubMed

    Fan, Ying; Lu, Ruoshui; Wang, Lusheng; Andreatta, Massimo; Li, Shuai Cheng

    2014-01-01

    The major histocompatibility complex (MHC), a cell-surface protein mediating immune recognition, plays important roles in the immune response system of all higher vertebrates. MHC molecules are highly polymorphic and they are grouped into serotypes according to the specificity of the response. It is a common belief that a protein sequence determines its three dimensional structure and function. Hence, the protein sequence determines the serotype. Residues play different levels of importance. In this paper, we quantify the residue significance with the available serotype information. Knowing the significance of the residues will deepen our understanding of the MHC molecules and yield us a concise representation of the molecules. In this paper we propose a linear programming-based approach to find significant residue positions as well as quantifying their significance in MHC II DR molecules. Among all the residues in MHC II DR molecules, 18 positions are of particular significance, which is consistent with the literature on MHC binding sites, and succinct pseudo-sequences appear to be adequate to capture the whole sequence features. When the result is used for classification of MHC molecules with serotype assigned by WHO, a 98.4 percent prediction performance is achieved. The methods have been implemented in java (http://code.google.com/p/quassi/). PMID:26355503

  14. "Untangling Sickle-Cell Anemia and the Teaching of Heterozygote Protection"

    ERIC Educational Resources Information Center

    Howe, Eric Michael

    2007-01-01

    Introductory biology textbooks often use the example of sickle-cell anemia to illustrate the concept of heterozygote protection. Ordinarily scientists expect the frequency of a gene associated with a debilitating illness would be low owing to its continual elimination by natural selection. The gene that causes sickle-cell anemia, however, has a…

  15. Heterozygote advantage: the effect of artificial selection in livestock and pets.

    PubMed

    Hedrick, Philip W

    2015-01-01

    There are a number of mutants in livestock and pets that have a heterozygote advantage because of artificial selection for these mutants in heterozygotes and strong detrimental effects from natural selection in homozygotes. In livestock, these mutants include ones that influence milk yield in dairy cattle, fecundity in sheep, litter size in pigs, muscling in beef cattle, color in horses, lean meat content in pigs, and comb morphology in chickens. In pets, these mutants include ones that influence tail length in cats and hairlessness, muscling, color, or ridgeback hair in dogs. A large variety of mutants are responsible, including small or large deletions or insertions and single base-pair nonsynonymous changes. Many of the mutants cause loss of function for the genes involved, a change that results in the pleiotropic effects of a desired phenotype in heterozygotes and low fitness or an undesirable phenotype in mutant homozygotes. I examine how selection changes the frequency of these mutants and provide an approach to estimate the amount of artificial selection that is necessary to maintain these mutants at the high frequencies often observed. The amount of artificial selection ranges from low selection favoring heterozygotes for double muscling in whippet dogs to very strong selection favoring the "flash" (part white, part solid) heterozygote in boxer dogs and the rose comb in chickens. In several examples (rose comb in Wyandotte chickens and the hair ridge in Rhodesian ridgeback dogs), there is actually stronger selection for the mutant than against it, making the frequency of the mutant greater than 50%. PMID:25524994

  16. `Untangling Sickle-cell Anemia and the Teaching of Heterozygote Protection'

    NASA Astrophysics Data System (ADS)

    Howe, Eric Michael

    2007-01-01

    Introductory biology textbooks often use the example of sickle-cell anemia to illustrate the concept of heterozygote protection. Ordinarily scientists expect the frequency of a gene associated with a debilitating illness would be low owing to its continual elimination by natural selection. The gene that causes sickle-cell anemia, however, has a relatively high frequency in many parts of the world. Historically, scientists proposed and defended several alternative theories to account for this anomaly, though it is now widely recognized among the scientific community that high frequencies of the gene reflect its benefit to heterozygotes against malaria. Textbooks normally develop this concept with reference to the often-used maps of Africa showing how in areas where the frequency of the sickle-cell gene is high, there is also higher exposure to the disease malaria. While sickle-cell anemia is often the example of choice for explaining and illustrating the concept of heterozygote protection, the present paper argues that exploring the history of scientific research behind our contemporary understanding has advantages for helping students understand multiple factors related to population genetics (e.g. mutation, gene flow, drift) in addition to heterozygote protection. In so doing, this approach invites students to evaluate the legitimacy of their own alternative conceptions about introductory population genetics or about the genetics of the disease sickle-cell anemia. The various historical theories scientists proposed and defended often resemble those of students who first learn about the disease. As such, a discussion of how scientists reached consensus about the role of heterozygote protection may help students understand and appreciate what are now recognized to be limitations in the views they bring to their classrooms. The paper concludes by discussing the ramifications of this approach in potentially helping students to examine certain aspects of the nature of

  17. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure

    PubMed Central

    Chen, Li-Cheng; Lan, Hong; Sun, Li; Deng, Yan-Li; Tang, Ke-Yi; Wan, Qiu-Hong

    2015-01-01

    The major histocompatibility complex (MHC) plays an important role in immune response. Avian MHCs are not well characterized, only reporting highly compact Galliformes MHCs and extensively fragmented zebra finch MHC. We report the first genomic structure of an endangered Pelecaniformes (crested ibis) MHC containing 54 genes in three regions spanning ~500 kb. In contrast to the loose BG (26 loci within 265 kb) and Class I (11 within 150) genomic structures, the Core Region is condensed (17 within 85). Furthermore, this Region exhibits a COL11A2 gene, followed by four tandem MHC class II αβ dyads retaining two suites of anciently duplicated “αβ” lineages. Thus, the crested ibis MHC structure is entirely different from the known avian MHC architectures but similar to that of mammalian MHCs, suggesting that the fundamental structure of ancestral avian class II MHCs should be “COL11A2-IIαβ1-IIαβ2.” The gene structures, residue characteristics, and expression levels of the five class I genes reveal inter-locus functional divergence. However, phylogenetic analysis indicates that these five genes generate a well-supported intra-species clade, showing evidence for recent duplications. Our analyses suggest dramatic structural variation among avian MHC lineages, help elucidate avian MHC evolution, and provide a foundation for future conservation studies. PMID:25608659

  18. Decreased HIV Type 1 Transcription in CCR5-Δ32 Heterozygotes During Suppressive Antiretroviral Therapy

    PubMed Central

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C.; Lada, Steven M.; Yukl, Steven; Cockerham, Leslie R.; Pilcher, Christopher D.; Hecht, Frederick M.; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D.; Deeks, Steven G.; Pillai, Satish K.

    2014-01-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P = .035), RNA to DNA transcriptional ratios (P = .013), and frequency of detectable HIV 2–long terminal repeat circular DNA (P = .013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2 = 0.136; P = .002). Our findings suggest that curative strategies should further explore manipulation of CCR5. PMID:24935955

  19. Heterozygote screening for Tay-Sachs disease: past successes and future challenges.

    PubMed

    Natowicz, M R; Prence, E M

    1996-12-01

    Tay-Sachs disease (TSD) is an autosomal recessive, neurodegenerative disorder caused by a deficiency of beta-hexosaminidase A activity. Mass screening for TSD heterozygotes has been routine in the Ashkenazi Jewish population since the early 1970s. Recent advances in the molecular genetics and epidemiology of TSD require a reevaluation of heterozygote screening practices. The use of DNA-based analyses for a panel of common mutations detects about 98% of TSD mutations found in the Ashkenazi Jews and about 50% of TSD mutations found in the general non-Jewish population; enzyme-based analysis has nearly 100% sensitivity for all populations. We recommend 1) that members of several ethnic groups and persons with a family history consistent with TSD be offered testing for TSD heterozygosity and 2) that assays of enzyme activity be used as the primary screening tool, with mutation analysis used as an adjunct tool in certain cases. PMID:9018448

  20. Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency: Activity in Normal, Mutant, and Heterozygote-Cultured Human Skin Fibroblasts

    PubMed Central

    Fujimoto, Wilfred Y.; Seegmiller, J. Edwin

    1970-01-01

    Cultured skin fibroblasts from patients deficient for the enzyme hypoxanthine-guanine phosphoribosyltransferase (PRT) activity show very low but nevertheless significant levels of apparent PRT enzyme despite absence of detectable activity (<0.004% of normal) in erythrocytes of the same patients. In fibroblasts this mutant enzyme is more heat labile than the normal enzyme. These findings indicate that PRT deficiency in this disorder is not due to a deletion mutation of the PRT locus. Individual cultured skin fibroblasts from heterozygote females for PRT deficiency show normal, intermediate, or very low levels of PRT activity. The mosaicism demonstrated in the heterozygotes for this X-linked disorder accounts for the cells with normal and very low activities of PRT. Intermediate activity can best be explained by the phenomenon of metabolic cooperation presumably from the transfer of either PRT enzyme or messenger RNA, from normal to mutant cells. Images PMID:5267139

  1. Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences.

    PubMed

    Montarry, Josselin; Jan, Pierre-Loup; Gracianne, Cecile; Overall, Andrew D J; Bardou-Valette, Sylvie; Olivier, Eric; Fournet, Sylvain; Grenier, Eric; Petit, Eric J

    2015-04-01

    Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances. PMID:25735762

  2. Heterozygote Advantage Probably Maintains Rhesus Factor Blood Group Polymorphism: Ecological Regression Study

    PubMed Central

    Flegr, Jaroslav

    2016-01-01

    Rhesus factor polymorphism has been an evolutionary enigma since its discovery in 1939. Carriers of the rarer allele should be eliminated by selection against Rhesus positive children born to Rhesus negative mothers. Here I used an ecologic regression study to test the hypothesis that Rhesus factor polymorphism is stabilized by heterozygote advantage. The study was performed in 65 countries for which the frequencies of RhD phenotypes and specific disease burden data were available. I performed multiple multivariate covariance analysis with five potential confounding variables: GDP, latitude (distance from the equator), humidity, medical care expenditure per capita and frequencies of smokers. The results showed that the burden associated with many diseases correlated with the frequencies of particular Rhesus genotypes in a country and that the direction of the relation was nearly always the opposite for the frequency of Rhesus negative homozygotes and that of Rhesus positive heterozygotes. On the population level, a Rhesus-negativity-associated burden could be compensated for by the heterozygote advantage, but for Rhesus negative subjects this burden represents a serious problem. PMID:26811928

  3. p53 centrosomal localization diagnoses ataxia-telangiectasia homozygotes and heterozygotes

    PubMed Central

    Prodosmo, Andrea; De Amicis, Andrea; Nisticò, Cecilia; Gabriele, Mario; Di Rocco, Giuliana; Monteonofrio, Laura; Piane, Maria; Cundari, Enrico; Chessa, Luciana; Soddu, Silvia

    2013-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder characterized by radiosensitivity, genomic instability, and predisposition to cancer. A-T is caused by biallelic mutations in the ataxia-telangiectasia mutated (ATM) gene, but heterozygous carriers, though apparently healthy, are believed to be at increased risk for cancer and more sensitive to ionizing radiation than the general population. Despite progress in functional and sequencing-based assays, no straightforward, rapid, and inexpensive test is available for the identification of A-T homozygotes and heterozygotes, which is essential for diagnosis, genetic counseling, and carrier prediction. The oncosuppressor p53 prevents genomic instability and centrosomal amplification. During mitosis, p53 localizes at the centrosome in an ATM-dependent manner. We capitalized on the latter finding and established a simple, fast, minimally invasive, reliable, and inexpensive test to determine mutant ATM zygosity. The percentage of mitotic lymphoblasts or PBMCs bearing p53 centrosomal localization clearly discriminated among healthy donors (>75%), A-T heterozygotes (40%–56%), and A-T homozygotes (<30%). The test is specific for A-T, independent of the type of ATM mutations, and recognized tumor-associated ATM polymorphisms. In a preliminary study, our test confirmed that ATM is a breast cancer susceptibility gene. These data open the possibility of cost-effective, early diagnosis of A-T homozygotes and large-scale screenings for heterozygotes. PMID:23454770

  4. Heterozygote to homozygote related living donor liver transplantation in maple syrup urine disease: a case report.

    PubMed

    Patel, N; Loveland, J; Zuckerman, M; Moshesh, P; Britz, R; Botha, J

    2015-05-01

    Liver transplantation is an accepted treatment modality in the management of MSUD. To our knowledge, ours is only the second successful case to date of a patient with MSUD receiving an allograft from an RLD who is a heterozygous carrier for the disease. In view of the worldwide shortage of available organs for transplantation, heterozygote to homozygote transplantation in the setting of MSUD may provide a viable alternative for those awaiting transplantation. We report on the case of a two-yr-old infant with MSUD, who received a left lateral segment (segments II and III) liver transplant from his mother, a heterozygote carrier of one of the three abnormal genes implicated in MSUD. Post-operative BCAA levels normalized in our patient and remained so on an unrestricted protein diet and during times of physiological stress. To date, this is only the second case of a successful RLD liver transplant in a child with MSUD. Preliminary results indicate that RLD liver transplants are at least equivalent to deceased donor liver transplants in the treatment of MSUD, although longer term follow-up is required. Heterozygote to homozygote RLD transplant in patients with MSUD presents a new pool of potential liver donors. PMID:25677046

  5. Heterozygote Advantage Probably Maintains Rhesus Factor Blood Group Polymorphism: Ecological Regression Study.

    PubMed

    Flegr, Jaroslav

    2016-01-01

    Rhesus factor polymorphism has been an evolutionary enigma since its discovery in 1939. Carriers of the rarer allele should be eliminated by selection against Rhesus positive children born to Rhesus negative mothers. Here I used an ecologic regression study to test the hypothesis that Rhesus factor polymorphism is stabilized by heterozygote advantage. The study was performed in 65 countries for which the frequencies of RhD phenotypes and specific disease burden data were available. I performed multiple multivariate covariance analysis with five potential confounding variables: GDP, latitude (distance from the equator), humidity, medical care expenditure per capita and frequencies of smokers. The results showed that the burden associated with many diseases correlated with the frequencies of particular Rhesus genotypes in a country and that the direction of the relation was nearly always the opposite for the frequency of Rhesus negative homozygotes and that of Rhesus positive heterozygotes. On the population level, a Rhesus-negativity-associated burden could be compensated for by the heterozygote advantage, but for Rhesus negative subjects this burden represents a serious problem. PMID:26811928

  6. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.

    PubMed Central

    Hua, J P; Xing, Y Z; Xu, C G; Sun, X L; Yu, S B; Zhang, Qifa

    2002-01-01

    We introduced an experimental design that produced an "immortalized F(2)" population allowing for complete dissection of genetic components underlying quantitative traits. Data for yield and three component traits of the immortalized F(2) were collected from replicated field trials over 2 years. Using 231 marker loci, we resolved the genetic effects into individual components and assessed relative performance of all the genotypes at both single- and two-locus levels. Single-locus analysis detected 40 QTL for the four traits. Dominance effects for about one-half of the QTL were negative, resulting in little "net" positive dominance effect. Correlation between genotype heterozygosity and trait performance was low. Large numbers of digenic interactions, including AA, AD, and DD, were detected for all the traits, with AA as the most prevalent interaction. Complementary two-locus homozygotes frequently performed the best among the nine genotypes of many two-locus combinations. While cumulative small advantages over two-locus combinations may partly explain the genetic basis of heterosis of the hybrid as double heterozygotes frequently demonstrated marginal advantages, double heterozygotes were never the best genotypes in any of the two-locus combinations. It was concluded that heterozygotes were not necessarily advantageous for trait performance even among genotypes derived from such a highly heterotic hybrid. PMID:12524357

  7. Interrelationships of Heterozygosity, Growth Rate and Heterozygote Deficiencies in the Coot Clam, Mulinia Lateralis

    PubMed Central

    Gaffney, P. M.; Scott, T. M.; Koehn, R. K.; Diehl, W. J.

    1990-01-01

    Allozyme surveys of marine invertebrates commonly report heterozygote deficiencies, a correlation between multiple locus heterozygosity and size, or both. Hypotheses advanced to account for these phenomena include inbreeding, null alleles, selection, spatial or temporal Wahlund effects, aneuploidy and molecular imprinting. Previous studies have been unable to clearly distinguish among these alternative hypotheses. This report analyzes a large data set (1906 individuals, 15 allozyme loci) from a single field collection of the coot clam Mulinia lateralis and demonstrates (1) significant heterozygote deficiencies at 13 of 15 loci, (2) a correlation between the magnitude of heterozygote deficiency at a locus and the effect of heterozygosity at that locus on shell length, and (3) a distribution of multilocus heterozygosity which deviates from that predicted by observed single-locus heterozygosities. A critical examination of the abovementioned hypotheses as sources of these findings rules out inbreeding, null alleles, aneuploidy, population mixing and imprinting as sole causes. The pooling of larval subpopulations subjected to varying degrees of selection, aneuploidy or imprinting could account for the patterns observed in this study. PMID:2311919

  8. The opossum MHC genomic region revisited.

    PubMed

    Krasnec, Katina V; Sharp, Alana R; Williams, Tracey L; Miller, Robert D

    2015-04-01

    The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci. PMID:25737310

  9. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  10. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction

    PubMed Central

    2013-01-01

    Background Computational methods for the prediction of Major Histocompatibility Complex (MHC) class II binding peptides play an important role in facilitating the understanding of immune recognition and the process of epitope discovery. To develop an effective computational method, we need to consider two important characteristics of the problem: (1) the length of binding peptides is highly flexible; and (2) MHC molecules are extremely polymorphic and for the vast majority of them there are no sufficient training data. Methods We develop a novel string kernel MHC2SK (MHC-II String Kernel) method to measure the similarities among peptides with variable lengths. By considering the distinct features of MHC-II peptide binding prediction problem, MHC2SK differs significantly from the recently developed kernel based method, GS (Generic String) kernel, in the way of computing similarities. Furthermore, we extend MHC2SK to MHC2SKpan for pan-specific MHC-II peptide binding prediction by leveraging the binding data of various MHC molecules. Results MHC2SK outperformed GS in allele specific prediction using a benchmark dataset, which demonstrates the effectiveness of MHC2SK. Furthermore, we evaluated the performance of MHC2SKpan using various benckmark data sets from several different perspectives: Leave-one-allele-out (LOO), 5-fold cross validation as well as independent data testing. MHC2SKpan has achieved comparable performance with NetMHCIIpan-2.0 and outperformed NetMHCIIpan-1.0, TEPITOPEpan and MultiRTA, being statistically significant. MHC2SKpan can be freely accessed at http://datamining-iip.fudan.edu.cn/service/MHC2SKpan/index.html. PMID:24564280

  11. Ornithine carbamoyltransferase deficiency: improved sensitivity of testing for protein tolerance in the diagnosis of heterozygotes.

    PubMed

    Potter, M; Hammond, J W; Sim, K G; Green, A K; Wilcken, B

    2001-02-01

    The most direct test of functional capacity of the liver in nitrogen disposal is to stress the urea cycle with a high protein load. This has been used in the diagnosis of heterozygosity for ornithine carbamoyltransferase deficiency for many years by measuring the subsequent excretion of orotic acid in urine. Reports have shown some ambiguity in both this and the more recent allopurinol test. We investigated the effects of different foods as the protein load and of different analytical methods. A standardized protocol was developed, giving 35 g protein per m2 surface area as steamed fat-free chicken breast to be eaten within 30 min. Urine was collected at zero time and over 0-2, 2-4 and 4-6 h. Compliance was checked by assessing excretion of amino acids. Diagnostic sensitivity was improved by reference to the change in excretion, i.e. the ratio of excretions 2-4 h/0-2 h. Extension of the test to 6 h gave no diagnostic advantage over a 4 h test. Comparison of the analysis of total orotic acids by the photometric method of Harris and Oberholtzer, the reference method for this study, with that by the method of Goldstein and colleagues showed that the latter gave erratic results with some false positives. However, comparison of the method of Harris and Oberholtzer with specific orotic acid analysis by a modification of the stable-isotope internal standard method of Rimoldi and colleagues yielded the same diagnoses. The improved protein load test gave a clearly positive result in all 16 obligate heterozygotes and 2 possible heterozygotes tested from 14 kindred, and a clearly negative result in all 18 control subjects and all 6 of the possible heterozygotes who were later shown by DNA studies not to carry the family mutation. The test appears at least as sensitive and specific as the allopurinol test, and is more convenient because of the short period of sample collection. PMID:11286382

  12. Olfactory imprinting is triggered by MHC peptide ligands.

    PubMed

    Hinz, Cornelia; Namekawa, Iori; Namekawa, Ri; Behrmann-Godel, Jasminca; Oppelt, Claus; Jaeschke, Aaron; Müller, Anke; Friedrich, Rainer W; Gerlach, Gabriele

    2013-01-01

    Olfactory imprinting on environmental, population- and kin-specific cues is a specific form of life-long memory promoting homing of salmon to their natal rivers and the return of coral reef fish to natal sites. Despite its ecological significance, natural chemicals for olfactory imprinting have not been identified yet. Here, we show that MHC peptides function as chemical signals for olfactory imprinting in zebrafish. We found that MHC peptides consisting of nine amino acids elicit olfactory imprinting and subsequent kin recognition depending on the MHC genotype of the fish. In vivo calcium imaging shows that some olfactory bulb neurons are highly sensitive to MHC peptides with a detection threshold at 1 pM or lower, indicating that MHC peptides are potent olfactory stimuli. Responses to MHC peptides overlapped spatially with responses to kin odour but not food odour, consistent with the hypothesis that MHC peptides are natural signals for olfactory imprinting. PMID:24077566

  13. Failure to support the right-shift theory's hypothesis of a 'heterozygote advantage' for cognitive abilities.

    PubMed

    Cerone, L J; McKeever, W F

    1999-02-01

    Annett's (1985) 'right-shift' theory of language dominance and handedness posits three genotypes, rs++, rs(+)- and rs(-)-, and Annett has hypothesized that there are cognitive ability correlates of these genotypes. The rs++ genotype person is held to be 'at risk' for maldevelopment of spatial or other right hemisphere-based cognitive abilities, and the rs(-)- genotype individual is held to be at risk for maldevelopment of phonological abilities. Noting that there must be some adaptive advantage conferred by the heterozygous genotype for it to have survived over a presumably long period of evolution, Annett has hypothesized that heterozygotes are afforded an adaptive advantage over homozygotes because of their freedom from 'risks' to intelligence generally. Annett and colleagues have used two different indices, or markers, from which they have inferred differing concentrations of the three genotypes within groups of participants. One marker, based on responses to hand preference items of the Annett Handedness Inventory, was found by Annett (1992) to support her theory in that the least dextral of right-handed participants did best on spatial tests. The other marker Annett has used is based on the degree of right-hand advantage on a simple peg moving speed task. The present study utilized both methods and studied the performances of 259 dextral college men and women on two tests of mental rotation ability and two tests of verbal abilities. Results were not supportive of the heterozygote advantage hypothesis, and suggested that visuospatial ability was modestly related to greater dextrality of participants. PMID:10085549

  14. Coevolution of T-cell receptors with MHC and non-MHC ligands.

    PubMed

    Castro, Caitlin D; Luoma, Adrienne M; Adams, Erin J

    2015-09-01

    The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  15. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  16. Identifiying human MHC supertypes using bioinformatic methods.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-04-01

    Classification of MHC molecules into supertypes in terms of peptide-binding specificities is an important issue, with direct implications for the development of epitope-based vaccines with wide population coverage. In view of extremely high MHC polymorphism (948 class I and 633 class II HLA alleles) the experimental solution of this task is presently impossible. In this study, we describe a bioinformatics strategy for classifying MHC molecules into supertypes using information drawn solely from three-dimensional protein structure. Two chemometric techniques-hierarchical clustering and principal component analysis-were used independently on a set of 783 HLA class I molecules to identify supertypes based on structural similarities and molecular interaction fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed "supertype fingerprints" to be identified. Thus, the A2 supertype fingerprint is Tyr(9)/Phe(9), Arg(97), and His(114) or Tyr(116); the A3-Tyr(9)/Phe(9)/Ser(9), Ile(97)/Met(97) and Glu(114) or Asp(116); the A24-Ser(9) and Met(97); the B7-Asn(63) and Leu(81); the B27-Glu(63) and Leu(81); for B44-Ala(81); the C1-Ser(77); and the C4-Asn(77). PMID:15034046

  17. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  18. Towards a systems understanding of MHC class I and MHC class II antigen presentation.

    PubMed

    Neefjes, Jacques; Jongsma, Marlieke L M; Paul, Petra; Bakke, Oddmund

    2011-12-01

    The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review. PMID:22076556

  19. Human MHC architecture and evolution: implications for disease association studies

    PubMed Central

    Traherne, J A

    2008-01-01

    Major histocompatibility complex (MHC) variation is a key determinant of susceptibility and resistance to a large number of infectious, autoimmune and other diseases. Identification of the MHC variants conferring susceptibility to disease is problematic, due to high levels of variation and linkage disequilibrium. Recent cataloguing and analysis of variation over the complete MHC has facilitated localization of susceptibility loci for autoimmune diseases, and provided insight into the MHC's evolution. This review considers how the unusual genetic characteristics of the MHC impact on strategies to identify variants causing, or contributing to, disease phenotypes. It also considers the MHC in relation to novel mechanisms influencing gene function and regulation, such as epistasis, epigenetics and microRNAs. These developments, along with recent technological advances, shed light on genetic association in complex disease. PMID:18397301

  20. Compound heterozygote state for GgammaAgamma(deltabeta) degrees -thalassemia and hereditary persistence of fetal hemoglobin.

    PubMed

    Fucharoen, Supan; Panyasai, Sitthichai; Surapot, Satja; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan

    2005-10-01

    We report a hitherto undescribed interaction of a deletional (deltabeta) degrees -thalassemia and a deletional hereditary persistence of fetal hemoglobin (HPFH) in an adult Thai individual. He was a 40-year-old Thai male who had the following hematologic data: Hb 13.9 g/dL, Hct 43.8%, MCV 78.0 fL, MCH 24.7 pg, MCHC 31.6 g/dL, and RDW 17.1%. Hemoglobin analysis revealed 97% Hb F with Ggamma-globin chain predominant. Globin gene analyses demonstrated that he carried the GgammaAgamma(deltabeta) degrees -thalassemia deletion in trans to the HPFH-6. Hematologic data of the patient were compared to those of the heterozygotes for these high-Hb F determinants found in his parents and an unrelated Thai patient with a compound HPFH-6/deletion-inversion Ggamma(Agammadeltabeta) degrees -thalassemia previously described. PMID:16184575

  1. Molecular Mechanisms for Contribution of MHC Molecules to Autoimmune Diseases

    PubMed Central

    Sollid, Ludvig M.; Pos, Wouter; Wucherpfennig, Kai W.

    2014-01-01

    It will soon be 50 years since the first MHC associations with human disease were described. These seminal studies opened a flourishing area of research, yet much remains to be discovered. Genome-wide association studies of autoimmune diseases have demonstrated that the MHC region has effect sizes that supersede those for any non-MHC locus for most diseases. Thus, an understanding of how particular MHC alleles confer susceptibility will be essential for a comprehensive understanding of autoimmune disease pathogenesis. Here we review recent exciting findings in this important field. PMID:25216261

  2. In search of the chemical basis for MHC odourtypes

    PubMed Central

    Kwak, Jae; Willse, Alan; Preti, George; Yamazaki, Kunio; Beauchamp, Gary K.

    2010-01-01

    Mice can discriminate between chemosignals of individuals based solely on genetic differences confined to the major histocompatibility complex (MHC). Two different sets of compounds have been suggested: volatile compounds and non-volatile peptides. Here, we focus on volatiles and review a number of publications that have identified MHC-regulated compounds in inbred laboratory mice. Surprisingly, there is little agreement among different studies as to the identity of these compounds. One recent approach to specifying MHC-regulated compounds is to study volatile urinary profiles in mouse strains with varying MHC types, genetic backgrounds and different diets. An unexpected finding from these studies is that the concentrations of numerous compounds are influenced by interactions among these variables. As a result, only a few compounds can be identified that are consistently regulated by MHC variation alone. Nevertheless, since trained animals are readily able to discriminate the MHC differences, it is apparent that chemical studies are somehow missing important information underlying mouse recognition of MHC odourtypes. To make progress in this area, we propose a focus on the search for behaviourally relevant odourants rather than a random search for volatiles that are regulated by MHC variation. Furthermore, there is a need to consider a ‘combinatorial odour recognition’ code whereby patterns of volatile metabolites (the basis for odours) specify MHC odourtypes. PMID:20356897

  3. Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae).

    PubMed

    Basheva, Ekaterina A; Torgasheva, Anna A; Gomez Fernandez, Maria Jimena; Boston, Emma; Mirol, Patricia; Borodin, Pavel M

    2014-09-01

    The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco. PMID:24924853

  4. Analysis of porcine MHC using microarrays.

    PubMed

    Gao, Yu; Wahlberg, Per; Marthey, Sylvain; Esquerré, Diane; Jaffrézic, Florence; Lecardonnel, Jérome; Hugot, Karine; Rogel-Gaillard, Claire

    2012-07-15

    The major histocompatibility complex (MHC) in Mammals is one of the most gene dense regions of the genome and contains the polymorphic histocompatibility gene families known to be involved in pathogen response and control of auto-immunity. The MHC is a complex genetic system that provides an interesting model system to study genome expression regulation and genetic diversity at the megabase scale. The pig MHC or SLA (Swine Leucocyte Antigen) complex spans 2.4 megabases and 151 loci have been annotated. We will review key results from previous RNA expression studies using microarrays containing probes specific to annotated loci within SLA and in addition present novel data obtained using high-density tiling arrays encompassing the whole SLA complex. We have focused on transcriptome modifications of porcine peripheral blood mononuclear cells stimulated with a mixture of phorbol myristate acetate and ionomycin known to activate B and T cell proliferation. Our results show that numerous loci mapping to the SLA complex are affected by the treatment. A general decreased level of expression for class I and II genes and an up-regulation of genes involved in peptide processing and transport were observed. Tiling array-based experiments contributed to refined gene annotations as presented for one SLA class I gene referred to as SLA-11. In conclusion, high-density tiling arrays can serve as an excellent tool to draw comprehensive transcription maps, and improve genome annotations for the SLA complex. We are currently studying their relevance to characterize SLA genetic diversity in combination with high throughput next generation sequencing. PMID:21561666

  5. Neurons Preferentially Respond to Self-MHC Class I Allele Products Regardless of Peptide Presented

    PubMed Central

    Escande-Beillard, Nathalie; Washburn, Lorraine; Zekzer, Dan; Wu, Zhongqi-Phyllis; Eitan, Shoshy; Ivkovic, Sonja; Lu, Yuxin; Dang, Hoa; Middleton, Blake; Bilousova, Tina V.; Yoshimura, Yoshitaka; Evans, Christopher J.; Joyce, Sebastian; Tian, Jide; Kaufman, Daniel L.

    2010-01-01

    Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination. PMID:20018625

  6. Leukocyte beta-glucosidase in homozygotes and heterozygotes for Gaucher disease.

    PubMed

    Raghavan, S S; Topol, J; Kolodny, E H

    1980-03-01

    Human leukocytes contain at least two isozymes of 4-methylumbelliferyl-beta-glucosidase acting optimally at pH 4.0 and 4.8; in Gaucher disease, only the former is deficient. Brief exposure of the leukocyte homogenate to pH 4.0 at room temperature results in irreversible inactivation of the pH 4.8 activity, while the activity at pH 4.0 remains unaffected. The more acidic isozyme is stimulated four- to fivefold by 0.2% sodium taurodeoxycholate (TDC) with a shift in the pH optimum to 5.0. The less acidic isozyme is completely suppressed in the presence of this detergent. Both leukocyte isozymes appear to be membrane-bound since gel filtration of Sephadex G-200 produces only one peak of activity located at the void volume, unlike in liver and kidney where a second peak also can be demonstrated. Heat inactivation analysis indicated that in controls, assayed in the absence of detergent, pH 4.0 activity is more thermostable than pH 4.8 activity. However, in Gaucher disease, the residual beta-glucosidase at pH 4.0 is just as thermolabile as the unaffected pH 4.8 activity. Heat inactivation of the enzyme in the presence of TDC resulted in rapid loss of activity, suggesting a direct effect of the bile salt on the configuration of the enzyme decreasing its thermal stability. In the absence of detergent, acid beta-glucosidase shows two K(m)'s, one at 3.2 mM and another at 0.9 mM. In the presence of detergent, only the higher K(m) at 3.3 mM is obtained. In patients with Gaucher disease and in obligate carriers, the K(m) remains essentially unaffected while the V(max) shows the expected deficiency.A reliable and reproducible selective assay technique has been developed for the diagnosis of Gaucher disease homozygotes and obligate heterozygotes and for the carrier screening of individuals at risk for this inherited disorder. The efficacy of this technique has been demonstrated by studying the activity in 42 controls, 26 patients, 32 obligate heterozygotes, and 23 healthy

  7. The melting pot of the MHC II peptidome.

    PubMed

    Stern, Lawrence J; Santambrogio, Laura

    2016-06-01

    Recent advances in mass spectrometry technology have facilitated detailed examination of MHC-II immunopeptidomes, for example the repertoires of peptides bound to MHC-II molecules expressed in antigen presenting cells. These studies have deepened our view of MHC-II presentation. Other studies have broadened our view of pathways leading up to peptide loading. Here we review these recent studies in the context of earlier work on conventional and non-conventional MHC-II processing. The message that emerges is that sources of antigen beyond conventional endosomal processing of endocytosed proteins are important for generation of cellular immune responses to pathogens and maintenance of central and peripheral tolerance. The multiplicity of pathways results in a broad MHC II immunopeptidome that conveys the sampled environment to patrolling T cells. PMID:27018930

  8. Both man & bird & beast: Comparative organization of MHC genes

    SciTech Connect

    Trowsdale, J.

    1995-01-01

    The major histocompatibility complex (MHC) is the center of the immune universe. Genes in the MHC determine which antigens are processed and presented. Not surprisingly, the MHC contributes the major genetic component to important autoimmune diseases and will no doubt, although evidence is limited, contribute to resistance to infectious disorders. Vertebrates all seem to have MHC genes and it should be possible to determine, within the next few years, whether the clustering of antigen processing and presenting genes in this region is a conserved feature. One could imagine an evolutionary advantage to maintaining the MHC as a unit, either to coordinate expression of the genes in different tissues, or to coordinate T-cell selection during thymic ontogeny, since inheriting a linked set of polymorphic gene products may help to avoid conflicts during positive and negative selection. 153 refs., 9 figs., 3 tabs.

  9. MHC genotype and near-deterministic mortality in grey seals.

    PubMed

    de Assunção-Franco, M; Hoffman, J I; Harwood, J; Amos, W

    2012-01-01

    The Major Histocompatability Complex (MHC) is one of the best known and best characterised components of the immune system, yet its functions remain somewhat enigmatic, including both anti-pathogen activity and kin recognition. To explore the importance of the MHC relative to literally hundreds of other components of the immune system, we compared MHC genotype frequencies between pups and adults in the grey seal (Halichoerus grypus), one of many marine mammals that exhibit low allelic diversity. We find that one allele is strongly associated with pup survival, pups being more likely to be found dead if they lack it, while total allele number is a remarkably strong predictor of survivorship to adulthood. We estimate that approximately 70% of mortality can be attributed to the MHC. Our study therefore shows that low MHC allele diversity belies its critical role in determining whether a weaned pup negotiates disease to become a breeding adult. PMID:22997548

  10. Colonizing the world in spite of reduced MHC variation

    USGS Publications Warehouse

    Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.

    2012-01-01

    Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.

  11. Simulation of Major Histocompatibility Complex (MHC) structure and peptide loading into an MHC binding pocket with teachers'hands.

    PubMed

    Sankian, Mojtaba

    2013-10-01

    Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students. PMID:26989722

  12. Extended longevity and survivorship during amino-acid starvation in a Drosophila Sir2 mutant heterozygote.

    PubMed

    Slade, Jennifer D; Staveley, Brian E

    2016-05-01

    The regulation of energy homeostasis is pivotal to survive periods of inadequate nutrition. A combination of intricate pathways and proteins are responsible for maximizing longevity during such conditions. The sirtuin deacetylase Sir2 is well conserved from single-celled yeast to mammals, and it controls a number of downstream targets that are active during periods of extreme stress. Overexpression of Sir2 has been established to enhance survival of a number of model organisms undergoing calorie restriction, during which insulin receptor signalling (IRS) is reduced, a condition that itself can enhance survivorship during starvation. Increased Sir2 expression and reduced IRS result in an increase in the activity of the transcription factor foxo, an advantageous activation during stress but lethal when overly active. We have found that a lowered gene dosage of Sir2, in mutant heterozygotes, can extend normal longevity and greatly augment survivorship during amino-acid starvation in Drosophila. Additionally, these mutants, in either heterozygous or homozygous form, do not appear to have any disadvantageous effects upon development or cell growth of the organism unlike IRS mutants. These results may advance the understanding of the biological response to starvation and allow for the development of a model organism to mimic the ability of individuals to tolerate nutrient deprivation. PMID:27074822

  13. Molecular and genetic analysis of a compound heterozygote for dysprothrombinemia of prothrombin Tokushima and hypoprothrombinemia

    SciTech Connect

    Iwahana, Hiroyuki; Yoshimoto, Katsuhiko; Shigekiyo, Toshio; Shirakami, Akira; Saito, Shiro; Itakura, Mitsuo )

    1992-12-01

    The molecular and genetic basis of a compound heterozygote for dys- and hypoprothrombinemia was analyzed. Abnormal nucleotide sequences of the human prothrombin gene were screened by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion and mutated primer-mediated PCR-RFLP. A single nucleotide substitution responsible for dysprothrombinemia of prothrombin Tokushima was detected, as were three polymorphisms. The mutation for hypoprothrombinemia was detected by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion in exon 6, near MboII-RFLP and NcoI-RFLP. Sequencing of PCR-amplified genomic DNA revealed a single base insertion of thymine (T) at position 4177. The resulting frameshift mutation caused both an altered amino acid sequence from codon 114 and a premature termination codon (i.e., TGA) at codon 174 in exon 7. Because exon 7 encodes the kringle 2 domain preceding the thrombin sequence, this frameshift leads to the null prothrombin phenotype. The inheritance of the hypoprothrombinemia gene from the father to the proband was proved by PCR-SSCP with endonuclease digestion and mutated primer-mediated PCR-RFLP. 30 refs., 7 figs., 1 tab.

  14. Intragenic deletion of TRIM32 in compound heterozygotes with sarcotubular myopathy/LGMD2H.

    PubMed

    Borg, Kristian; Stucka, Rolf; Locke, Matthew; Melin, Eva; Ahlberg, Gabrielle; Klutzny, Ursula; Hagen, Maja von der; Huebner, Angela; Lochmüller, Hanns; Wrogemann, Klaus; Thornell, Lars-Eric; Blake, Derek J; Schoser, Benedikt

    2009-09-01

    In 2005 the commonality of sarcotubular myopathy (STM) and limb girdle muscular dystrophy type 2H (LGMD2H) was demonstrated, as both are caused by the p D487N missense mutation in TRIM32 originally found in the Manitoba Hutterite population. Recently, three novel homozygous TRIM32 mutations have been described in LGMD patients. Here we describe a three generation Swedish family clinically presenting with limb girdle muscular weakness and histological features of a microvacuolar myopathy. The two index patients were compound heterozygotes for a frameshift mutation in TRIM32 (c.1560delC ) and a 30 kb intragenic deletion, encompassing parts of intron 1 and the entire exon 2 of TRIM32. In these patients, no full-length or truncated TRIM32 could be detected. Interestingly, heterozygous family members carrying only one mutation showed mild clinical symptoms and vacuolar changes in muscle. In our family, the phenotype encompasses additionally a mild demyelinating polyneuropathic syndrome. Thus STM and LGMD2H are the result of loss of function mutations that can be either deletions or missense mutations. PMID:19492423

  15. Compound heterozygote mutations in SPG7 in a family with adult-onset primary lateral sclerosis

    PubMed Central

    Yang, Yi; Lynch, David R.; Lukas, Thomas; Ahmeti, Kreshnik; Sleiman, Patrick M.A.; Ryan, Eanna; Schadt, Kimberly A.; Newman, Jordan H.; Deng, Han-Xiang; Siddique, Nailah

    2016-01-01

    Objective: To identify the genetic defect for adult-onset primary lateral sclerosis (PLS) in a family with 5 patients. Methods: Whole-exome sequencing was performed to identify the shared genetic variants in 3 affected members in a PLS family with 5 affected individuals. Sanger sequencing was used for validation of the variants and for cosegregation analysis. Mitochondrial activity for both patients and unaffected siblings was measured using a SeaHorse metabolic analyzer. Results: Whole-exome sequencing and subsequent cosegregation analysis demonstrated that compound heterozygous missense variants L695P and I743T in SPG7 were the only mutations cosegregating with the disease in an autosomal recessive fashion in this family. The parents and siblings are genetically heterozygous and clinically unaffected. Functional studies suggested that the PLS-associated SPG7 mutants affect mitochondrial function when glucose is reduced. Conclusions: Compound heterozygote mutations in SPG7 are associated with adult-onset PLS, extending the spectrum of SPG7-linked neurologic diseases. Patients with the PLS phenotype should have genetic testing for paraplegin, especially when the condition is familial. PMID:27123479

  16. Pictorial Superiority Effect

    ERIC Educational Resources Information Center

    Nelson, Douglas L.; And Others

    1976-01-01

    Pictures generally show superior recognition relative to their verbal labels. This experiment was designed to link this pictorial superiority effect to sensory or meaning codes associated with the two types of symbols. (Editor)

  17. MHC-Dependent Desensitization of Intrinsic Anti-Self Reactivity

    PubMed Central

    Jubala, Cristan M.; Lamerato-Kozicki, Angela R.; Borakove, Michelle; Lang, Julie; Gardner, Lori A.; Coffey, David; Helm, Karen M.; Schaack, Jerome; Baier, Monika; Cutter, Gary R.; Bellgrau, Donald; Modiano, Jaime F.

    2008-01-01

    The survival of naïve T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naïve T cells. To test this hypothesis, we generated MHC class I and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naïve B6 T cells, respectively, to reject transplanted wild type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance. PMID:18523772

  18. Major Histocompatibility Complex (MHC) Markers in Conservation Biology

    PubMed Central

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  19. Major Histocompatibility Complex (MHC) markers in conservation biology.

    PubMed

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  20. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    PubMed

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC. PMID:23589541

  1. Autophagy proteins in antigen processing for presentation on MHC molecules.

    PubMed

    Münz, Christian

    2016-07-01

    Autophagy describes catabolic pathways that deliver cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) molecules sample protein degradation products and present them to T cells for adaptive immunity, it is maybe not too surprising that autophagy contributes to this protein antigen processing for MHC presentation. However, the recently recognized breath of pathways, by which autophagy contributes to MHC antigen processing, is exciting. Macroautophagy does not only seem to deliver intracellular but facilitates also extracellular antigen processing by lysosomal hydrolysis for MHC class II presentation. Moreover, even MHC class I molecules that usually display proteasomal products are regulated by macroautophagy, probably using a pool of these molecules outside the endoplasmic reticulum, where MHC class I molecules are loaded with peptide during canonical MHC class I antigen processing. This review aims to summarize these recent developments and point out gaps of knowledge, which should be filled by further investigation, in order to harness the different antigen-processing pathways via autophagy for vaccine improvement. PMID:27319339

  2. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  3. Colonizing the world in spite of reduced MHC variation.

    PubMed

    Gangoso, L; Alcaide, M; Grande, J M; Muñoz, J; Talbot, S L; Sonsthagen, S A; Sage, G K; Figuerola, J

    2012-07-01

    The major histocompatibility complex (MHC), which harbours the most polymorphic vertebrate genes, plays a critical role in the host-pathogen coevolutionary arms race. However, the extent to which MHC diversity determines disease susceptibility and long-term persistence of populations is currently under debate, as recent studies have demonstrated that low MHC variability does not necessarily hamper population viability. However, these studies typically assayed small and decimated populations in species with restricted distribution, thereby making inferences about the evolutionary potential of these populations difficult. Here, we show that MHC impoverishment has not constrained the ecological radiation and flourishing of falcons (Aves: Falconidae) worldwide. We found two remarkably different patterns of MHC variation within the genus Falco. Whereas MHC variation in kestrels (the basal group within the genus) is very high, falcons exhibit ancestrally low intra- and interspecific MHC variability. This pattern is not due to the inadvertent survey of paralogous genes or pseudogenes. Further, patterns of variation in mitochondrial or other nuclear genes do not indicate a generalized low level of genome-wide variability among falcons. Although a relative contribution of genetic drift cannot be completely ruled out, we propose the falcons went through an evolutionary transition, driven and maintained by natural selection, from primarily highly variable towards low polymorphic and slow-evolving MHC genes with a very specific immune function. This study highlights that the importance of MHC diversity cannot be generalized among vertebrates, and hints at the evolution of compensatory immune mechanisms in falcons to cope with emerging and continuously evolving pathogens. PMID:22686489

  4. MHCcluster, a method for functional clustering of MHC molecules.

    PubMed

    Thomsen, Martin; Lundegaard, Claus; Buus, Søren; Lund, Ole; Nielsen, Morten

    2013-09-01

    The identification of peptides binding to major histocompatibility complexes (MHC) is a critical step in the understanding of T cell immune responses. The human MHC genomic region (HLA) is extremely polymorphic comprising several thousand alleles, many encoding a distinct molecule. The potentially unique specificities remain experimentally uncharacterized for the vast majority of HLA molecules. Likewise, for nonhuman species, only a minor fraction of the known MHC molecules have been characterized. Here, we describe a tool, MHCcluster, to functionally cluster MHC molecules based on their predicted binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where both the functional relationship and the individual binding specificities of MHC molecules are visualized. We demonstrate that conventional sequence-based clustering will fail to identify the functional relationship between molecules, when applied to MHC system, and only through the use of the predicted binding specificity can a correct clustering be found. Clustering of prevalent HLA-A and HLA-B alleles using MHCcluster confirms the presence of 12 major specificity groups (supertypes) some however with highly divergent specificities. Importantly, some HLA molecules are shown not to fit any supertype classification. Also, we use MHCcluster to show that chimpanzee MHC class I molecules have a reduced functional diversity compared to that of HLA class I molecules. MHCcluster is available at www.cbs.dtu.dk/services/MHCcluster-2.0. PMID:23775223

  5. Prenatal diagnosis of trisomy 21 by quantitatively pyrosequencing heterozygotes using amniotic fluid as starting material of PCR.

    PubMed

    Ye, Hui; Wu, Haiping; Huang, Huan; Liu, Yunlong; Zou, Bingjie; Sun, Lizhou; Zhou, Guohua

    2013-04-21

    Allelic ratio of an SNP has been used for prenatal diagnosis of fetal trisomy 21 by MALDI-TOF mass spectrometry (MS). Because MALDI-TOF MS is challenging in quantification performance, pyrosequencing was proposed to replace MS by better quantification of allelic ratios. To achieve a simple and rapid clinical diagnostic, PCR with "HpH Buffer" (a buffer with a high pH) was developed to directly amplify amniotic fluid. By the established assay, 114 samples of amniotic fluid were analyzed by pyrosequencing five SNPs of each sample; the allelic ratios of euploid heterozygotes were thus calculated to determine the cut-off values for prenatal diagnosis of trisomy 21. The panel of five SNPs were high in heterozygosity so that at least one heterozygote was found in each sample, and 86% of the samples had at least two heterozygotes, giving a nearly 100% sensitivity (population coverage) of the assay. By using the cut-off values of each SNP, 20 pre-diagnosed clinical samples were detected as trisomy 21 carriers with a confidence level over 99%, indicating that our method and karyotyping analysis were consistent in results. In conclusion, this pyrosequencing-based approach, coupled with direct amplification of amniotic fluid, is accurate in quantitative genotyping and simple in operation. We believe that the approach could be a promising alternative to karyotyping analysis in prenatal diagnosis. PMID:23463136

  6. Evolution of nonclassical MHC-dependent invariant T cells

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-01-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets. PMID:25117267

  7. A single nomenclature and associated database for alleles at the MHC class II DRB1 locus of sheep: IPD-MHC-OLA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of standardised nomenclatures with associated databases containing reference sequences for alleles at polymorphic loci within the Major Histocompatibility Complex (MHC) has been facilitated by the development of the Immuno Polymorphism Database (IPD-MHC). Recently, included within I...

  8. MHC haplotype involvement in avian resistance to an ectoparasite.

    PubMed

    Owen, Jeb P; Delany, Mary E; Mullens, Bradley A

    2008-10-01

    Research on immune function in evolutionary ecology has frequently focused on avian ectoparasites (e.g., mites and lice). However, host immunogenetics involved with bird resistance to ectoparasites has not been determined. The critical role of the major histocompatibility complex (MHC) in adaptive immunity and high genetic variation found within the MHC make this gene complex useful for exploring the immunogenetic basis for bird resistance to ectoparasites. The objective of this study was to determine if the avian MHC influenced resistance to a blood-feeding ectoparasite. Four congenic lines of chickens, differing only at the MHC, were comparatively infested with a cosmopolitan ectoparasite of birds-northern fowl mite (NFM)-which is also a serious pest species of poultry. Mite infestations were monitored over time and mite densities (weekly and maximum) were compared among lines. Chickens with the MHC haplotype B21 were relatively resistant to NFM, compared with birds in the B15 congenic line (P < 0.02). To test for similar effects in an outbred genetic background, a separate experiment was performed with 107 commercial chickens (white leghorn, W-36 strain) infested with NFM. Hens were genotyped using a MHC microsatellite marker (LEI0258) and associations between MHC haplotype and NFM density were tested. The highest peak NFM populations occurred more often on hens with the B15 haplotype versus the B21 haplotype (P = 0.012), which supported the results of the congenic study. These data indicate the avian MHC influences ectoparasite resistance, which is relevant to disease ecology and avian-ectoparasite interaction. PMID:18626638

  9. Female Rose Bitterling Prefer MHC-Dissimilar Males: Experimental Evidence

    PubMed Central

    Reichard, Martin; Spence, Rowena; Bryjová, Anna; Bryja, Josef; Smith, Carl

    2012-01-01

    The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to “good allele” models of sexual selection, “compatible allele” models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus) demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC) alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC. PMID:22815816

  10. Identification of ataxia telangiectasia heterozygotes, a cancer-prone population, using the single-cell gel electrophoresis (Comet) assay.

    PubMed

    Djuzenova, C S; Schindler, D; Stopper, H; Hoehn, H; Flentje, M; Oppitz, U

    1999-06-01

    Heterozygotes of ataxia telangiectasia (AT) may comprise up to 1% of the general population. Because these individuals have no clinical expression of AT but may be highly radiosensitive and strongly predisposed for several forms of cancer, identification of AT carriers represents a considerable interest in cancer epidemiology and radiotherapy. We report a new approach for the in vitro identification of AT-heterozygotes based on the evaluation of the radiosensitivity and DNA damage repair ability of peripheral blood mononuclear cells using the single-cell gel electrophoresis (Comet) assay. The assay was performed on cells isolated from four different groups of individuals: (1) apparently healthy donors (n = 10); (2) patients with breast cancer showing a normal reaction to radiotherapy (n = 10); (3) a group of obligate AT carriers (parents of AT-homozygotes, n = 20); and (4) AT-homozygotes (n = 4). Cells irradiated with 3 Gy of x-rays were assayed for three parameters: (1) the initial and (2) residual DNA damage and (3) the kinetics of DNA damage repair. Both AT-heterozygotes' and AT-homozygotes' cells were found to be highly sensitive to x-irradiation. Quantitative evaluation of the single-cell electrophoregrams revealed that the average initial DNA damage in AT-heterozygous and AT-homozygous cells was almost three times higher than that in control non-AT cells. In addition, the DNA repair process in irradiated AT carrier cells was almost three times slower, and the extent of irreparable DNA damage in these cells was three times greater than in controls. Simultaneous assessment of the three parameters enabled correct identification of all tested AT carriers. This method seems to be a sensitive and useful tool for populational studies as a rapid prescreening test for a mutated AT status. The approach can also be extended for prediction of the in vivo radiosensitivity, which would enable optimization of individual radiotherapy schedules. PMID:10378512

  11. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1.

    PubMed

    Ljunggren, Stefan A; Levels, Johannes H M; Hovingh, Kees; Holleboom, Adriaan G; Vergeer, Menno; Argyri, Letta; Gkolfinopoulou, Christina; Chroni, Angeliki; Sierts, Jeroen A; Kastelein, John J; Kuivenhoven, Jan Albert; Lindahl, Mats; Karlsson, Helen

    2015-12-01

    The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol levels, impaired cholesterol efflux from macrophages and attenuated adrenal function. Here, the composition and function of lipoproteins were studied in SR-B1(P297S) heterozygotes.Lipoproteins from six SR-B1(P297S) carriers and six family controls were investigated. HDL and LDL/VLDL were isolated by ultracentrifugation and proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. HDL antioxidant properties, paraoxonase 1 activities, apoA-I methionine oxidations and HDL cholesterol efflux capacity were assessed.Multivariate modeling separated carriers from controls based on lipoprotein composition. Protein analyses showed a significant enrichment of apoE in LDL/VLDL and of apoL-1 in HDL from heterozygotes compared to controls. The relative distribution of plasma apoE was increased in LDL and in lipid-free form. There were no significant differences in paraoxonase 1 activities, HDL antioxidant properties or HDL cholesterol efflux capacity but heterozygotes showed a significant increase of oxidized methionines in apoA-I.The SR-B1(P297S) mutation affects both HDL and LDL/VLDL protein compositions. The increase of apoE in carriers suggests a compensatory mechanism for attenuated SR-B1 mediated cholesterol uptake by HDL. Increased methionine oxidation may affect HDL function by reducing apoA-I binding to its targets. The results illustrate the complexity of lipoprotein metabolism that has to be taken into account in future therapeutic strategies aiming at targeting SR-B1. PMID:26454245

  12. Identification of hemoglobin AC heterozygote status in a Malay family: a decision between hemoglobin electrophoresis and high performance liquid chromotography.

    PubMed

    Rosline, H; Roshan, T M; Ahmed, S A; Ilunihayati, I

    2007-05-01

    Thalassemia is a common public health problem among Malays. Hemoglobin C (Hb C) is a hemoglobin beta variant resulting from a single base mutation at the 6th position of the beta-globin gene leading to the substitution of glycine for glutamic acid. Hb C is commonly detected in West Africans and in African American but has not been reported in Malaysia. It can be falsely diagnosed as HbE trait in the Malaysian Thalassemia Screening Program which utilizes cellulose acetate hemoglobin electrophoresis. This is the first reported case of Hb AC heterozygote status in a Malay family, with unusual splenomegaly in one of the family members. PMID:17877232

  13. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions

    PubMed Central

    Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2014-01-01

    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003

  14. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

    PubMed Central

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-01-01

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880

  15. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    PubMed

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  16. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  17. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant

    PubMed Central

    Dirscherl, Hayley; Yoder, Jeffrey A.

    2015-01-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ∼30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanyx mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idellus). PMID:26254596

  18. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant.

    PubMed

    Dirscherl, Hayley; Yoder, Jeffrey A

    2015-09-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella). PMID:26254596

  19. G6PD A- Deficiency and Severe Malaria in The Gambia: Heterozygote Advantage and Possible Homozygote Disadvantage

    PubMed Central

    Sirugo, Giorgio; Predazzi, Irene M.; Bartlett, Jacquelaine; Tacconelli, Alessandra; Walther, Michael; Williams, Scott M.

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is frequent in Africa, because it confers resistance to Plasmodium falciparum malaria; however, the nature of the protection and the genotypes associated with it have been controversial. In 1972, Bienzle and others described protection from malaria in West African females heterozygous for G6PD A-. They determined that G6PD A- heterozygotes had lower parasite counts than A- homozygotes, hemizygous males, and normal individuals. However, other studies have reached different conclusions about the protective genotypes. DNA samples from 135 children with severe malaria and 146 children with mild malaria from The Gambia were genotyped for the G6PD A- mutation that is most frequent among Gambians (G6PD 968 T->C); there was a marked deficiency of heterozygotes and an excess of homozygotes with severe malaria, producing a strong deviation from Hardy–Weinberg equilibrium. Our results support the protective effect in G6PD A- heterozygous females and suggest that homozygotes might be more susceptible to severe malaria attacks. PMID:24615128

  20. Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology.

    PubMed

    Slade, R W

    1992-08-22

    Genes of the major histocompatibility complex (MHC) are highly polymorphic in most terrestrial mammal populations so far studied. Exceptions to this are typically populations that lack genome-wide diversity. Here I show that two populations of the southern elephant seal (Mirounga leonina) have low DNA restriction fragment length polymorphism at MHC loci when compared with terrestrial mammals. Limited studies on MHC polymorphism in two cetacean species suggest this is a feature of marine mammal populations in general. MHC polymorphism is thought to be maintained by balancing selection, and several types of disease-based and reproductive-based mechanisms have been proposed. For the three marine mammal species examined, the low MHC polymorphism cannot be explained by low genome-wide diversity, or by any reproductive-based selection pressure. It can, however, be explained by diminished exposure to pathogenic selection pressure compared with terrestrial mammals. Reduced exposure to pathogens would also mean that marine mammal populations may be susceptible to occasional pathogen-induced mass mortalities. PMID:1360677

  1. Self/nonself perception, reproduction and the extended MHC

    PubMed Central

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara

    2010-01-01

    Self/nonself perception governs mate selection in most eukaryotic species. It relies on a number of natural barriers that act before, during and after copulation. These hurdles prevent a costly investment into an embryo with potentially suboptimal genetic and immunological properties and aim at discouraging fertilization when male and female gametes exhibit extensive sharing of alleles. Due to the fact that several genes belonging to the extended major histocompatibility complex (xMHC) carry out crucial immune functions and are the most polymorphic within vertebrate genomes, it is likely that securing heterozygosity and the selection of rare alleles within this gene complex contributes to endowing the offspring with an advantage in fighting infections. Apart from MHC class I and II antigens, the products of several other genes within the xMHC are candidates for participating in mate choice, especially since the respective loci are subject to long-range linkage disequilibrium which may aid to preserve functionally connected alleles within a given haplotype. Among these loci are polymorphic odorant receptor genes that are expressed not only in the olfactory epithelium, but also within male reproductive tissues. They may thus not only be of importance in olfaction-influenced mate choice, by recognizing MHC-dependent individual-specific olfactory signals, but could also guide spermatozoa along chemical gradients to their target, the oocyte. By focusing on the human HLA complex and genes within its vicinity, we show here that the products of several xMHC-specified molecules might be involved in self/nonself perception during reproduction. Although the molecular details are often unknown, the existence of highly diverse, yet intertwined pre- and post-copulatory barriers suggests that xMHC-encoded proteins may be important for various stages of mate choice, germ cell development, as well as embryonic and foetal life in mammals and other vertebrates. Many of these genes

  2. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  3. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. PMID:24447175

  4. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  5. Strong selection at MHC in Mexicans since admixture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the major histocompatibility complex (MHC) region Mexicans have excessive African ance...

  6. Modo-UG, a marsupial nonclassical MHC class I locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found...

  7. Molecular mimicry in the MHC: hidden clues to autoimmunity?

    PubMed

    Baum, H; Davies, H; Peakman, M

    1996-02-01

    The term 'molecular mimicry' has been used to describe a spectrum of antigenic crossreactivities thought to underlie autoimmune disease. For T-cell crossreactivities to occur, appropriate T-cell clones must be available. Here, Harold Baum, Huw Davies and Mark Peakman speculate that an important source of self-peptides that govern thymic selection of such clones are MHC molecules themselves. PMID:8808052

  8. Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation

    PubMed Central

    Malkki, Mari; Horowitz, Mary M.; Spellman, Stephen R.; Haagenson, Michael D.; Wang, Tao

    2013-01-01

    Life-threatening risks associated with HLA-mismatched unrelated donor hematopoietic cell transplantation limit its general application for the treatment of blood diseases. The increased risks might be explained by undetected genetic variation within the highly polymorphic major histocompatibility complex (MHC) region. We retrospectively assessed each of 1108 MHC region single nucleotide polymorphisms (SNPs) in 2628 patients and their HLA-mismatched unrelated donors to determine whether SNPs are associated with the risk of mortality, disease-free survival, transplant-related mortality, relapse, and acute and chronic graft-versus-host disease (GVHD). Multivariate analysis adjusted for HLA mismatching and nongenetic variables associated with each clinical end point. Twelve SNPs were identified as transplantation determinants. SNP-associated risks were conferred by either patient or donor SNP genotype or by patient-donor SNP mismatching. Risks after transplantation increased with increasing numbers of unfavorable SNPs. SNPs that influenced acute GVHD were independent of those that affected risk of chronic GVHD and relapse. HLA haplotypes differed with respect to haplotype content of (un)favorable SNPs. Outcome after HLA-mismatched unrelated donor transplantation is influenced by MHC region variation that is undetected with conventional HLA typing. Knowledge of the SNP content of HLA haplotypes provides a means to estimate risks prior to transplantation and to lower complications through judicious selection of donors with favorable MHC genetics. PMID:23305741

  9. Cohesin regulates major histocompatibility complex class II genes through interactions with MHC-II insulators1

    PubMed Central

    Majumder, Parimal; Boss, Jeremy M.

    2011-01-01

    Cohesin is a multiprotein ringed complex that is most well known for its role in stabilizing the association of sister chromatids between S phase and M. More recently cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human major histocompatibility complex class II (MHC-II) locuscontains ten intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC transcription factor (CTCF). MHC-II insulators interact with each other forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. Here we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA dependent manner, cohesin subunits interacted with CTCF and the MHC-II specific transcription factors RFX and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5’ MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements; events which are required for maximal MHC-II transcription. PMID:21911605

  10. CONTOURITES IN LAKE SUPERIOR

    EPA Science Inventory

    Contour currents influence sedimentation in an area 15 km wide and 65 km long at the base of the slope off the Keweenaw Peninsula in Lake Superior, northwestern Michigan. Seismic-reflection profiles (3.5 kHz) from this area show distinct wavy reflectors in a scoured trough at a d...

  11. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions

    PubMed Central

    2014-01-01

    Background Computational prediction of major histocompatibility complex class II (MHC-II) binding peptides can assist researchers in understanding the mechanism of immune systems and developing peptide based vaccines. Although many computational methods have been proposed, the performance of these methods are far from satisfactory. The difficulty of MHC-II peptide binding prediction comes mainly from the large length variation of binding peptides. Methods We develop a novel multiple instance learning based method called MHC2MIL, in order to predict MHC-II binding peptides. We deem each peptide in MHC2MIL as a bag, and some substrings of the peptide as the instances in the bag. Unlike previous multiple instance learning based methods that consider only instances of fixed length 9 (9 amino acids), MHC2MIL is able to deal with instances of both lengths of 9 and 11 (11 amino acids), simultaneously. As such, MHC2MIL incorporates important information in the peptide flanking region. For measuring the distances between different instances, furthermore, MHC2MIL explicitly highlights the amino acids in some important positions. Results Experimental results on a benchmark dataset have shown that, the performance of MHC2MIL is significantly improved by considering the instances of both 9 and 11 amino acids, as well as by emphasizing amino acids at key positions in the instance. The results are consistent with those reported in the literature on MHC-II peptide binding. In addition to five important positions (1, 4, 6, 7 and 9) for HLA(human leukocyte antigen, the name of MHC in Humans) DR peptide binding, we also find that position 2 may play some roles in the binding process. By using 5-fold cross validation on the benchmark dataset, MHC2MIL outperforms two state-of-the-art methods of MHC2SK and NN-align with being statistically significant, on 12 HLA DP and DQ molecules. In addition, it achieves comparable performance with MHC2SK and NN-align on 14 HLA DR molecules. MHC2MIL

  12. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo H G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. PMID:26284483

  13. MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus.

    PubMed

    Baratti, M; Dessì-Fulgheri, F; Ambrosini, R; Bonisoli-Alquati, A; Caprioli, M; Goti, E; Matteo, A; Monnanni, R; Ragionieri, L; Ristori, E; Romano, M; Rubolini, D; Scialpi, A; Saino, N

    2012-08-01

    Females of several vertebrate species selectively mate with males on the basis of the major histocompatibility complex (MHC) genes. As androgen-mediated maternal effects have long-lasting consequences for the adult phenotype, both mating and reproductive success may depend on the combined effect of MHC genotype and exposure to androgens during early ontogeny. We studied how MHC-based mate choice in ring-necked pheasants (Phasianus colchicus) was influenced by an experimental in ovo testosterone (T) increase. There was no conclusive evidence of in ovo T treatment differentially affecting mate choice in relation to MHC genotype. However, females avoided mating with males with a wholly different MHC genotype compared with males sharing at least one MHC allele. Females also tended to avoid mating with MHC-identical males, though not significantly so. These findings suggest that female pheasants preferred males with intermediate MHC dissimilarity. Male MHC heterozygosity or diversity did not predict the expression of ornaments or male dominance rank. Thus, MHC-based mating preferences in the ring-necked pheasant do not seem to be mediated by ornaments' expression and may have evolved mainly to reduce the costs of high heterozygosity at MHC loci for the progeny, such as increased risk of autoimmune diseases or disruption of coadapted gene pools. PMID:22591334

  14. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    PubMed Central

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-01-01

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  15. Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird

    PubMed Central

    Leclaire, Sarah; van Dongen, Wouter F. D.; Voccia, Steeve; Merkling, Thomas; Ducamp, Christine; Hatch, Scott A.; Blanchard, Pierrick; Danchin, Étienne; Wagner, Richard H.

    2014-01-01

    Animals are known to select mates to maximize the genetic diversity of their offspring in order to achieve immunity against a broader range of pathogens. Although several bird species preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC), it remains unknown whether they can use olfactory cues to assess MHC similarity with potential partners. Here we combined gas chromatography data with genetic similarity indices based on MHC to test whether similarity in preen secretion chemicals correlated with MHC relatedness in the black-legged kittiwake (Rissa tridactyla), a species that preferentially mates with genetically dissimilar partners. We found that similarity in preen secretion chemicals was positively correlated with MHC relatedness in male-male and male-female dyads. This study provides the first evidence that preen secretion chemicals can encode information on MHC relatedness and suggests that odor-based mechanisms of MHC-related mate choice may occur in birds. PMID:25370306

  16. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  17. Lake Superior, Duluth, MN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This view shows the west end of Lake Superior and Duluth, MN (47.0N, 91.0W). Portions of Minnesota, Michigan and Ontario, Canada are in the scene. The Duluth metropolitan area is at the west end of the lake. The discoloration plume in the water at Duluth is the result of tailings from the iron ore smelters that process the iron ore from the nearby open pit mines seen near the upper left corner of the photo.

  18. The relationship between MHC antigen expression and metastasis.

    PubMed

    Gopas, J; Rager-Zisman, B; Bar-Eli, M; Hämmerling, G J; Segal, S

    1989-01-01

    From the studies summarized here a complex picture of the role played by MHC products in determining tumorigenicity and metastasis is emerging. In order to be able to understand this relationship better, it is necessary to consider several factors. 1. Each tumor system or neoplastic tissue is unique, and its behavior reflects the influence of cell-specific characteristics, as well as its ability to modulate other cells and tissues--including cells belonging to the immune system--and also to be modulated by other cells and soluble factors. 2. Since metastasis formation is a multistep process in which only small subpopulations of tumor cells with complex and defined phenotypes are able to colonize secondary tissues, elimination of even one single phenotypic component of this structured process can easily reverse the metastatic capacity of the cells. Acquisition of metastatic ability, on the other hand, would be a more difficult task, since any new characteristic expressed by the cells or induced experimentally, such as gene transfection or results of IFN treatment, must be expressed in a temporal manner and in concert with other cellular characteristics. Therefore, an experimental protocol measuring a specific element in determining metastasis can easily produce conflicting results, depending on the type of cells and genetic background of the host studied. 3. The level of specific MHC products on tumor cells is one among many other cell characteristics that may determine the metastatic potential of cells. Moreover, each of the class 1 MHC products, and the relationship among them, including other than the classical K, L, or D products (Brickell et al., 1983), should be regarded as independent entities, with possible different regulatory roles in cell-cell recognition, in a general sense, which may be involved in determining invasiveness and homing as well as recognition by the immune system. 4. Both specific T-cell and nonspecific natural mediated immunity (which is

  19. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b.

    PubMed

    Michelet, Xavier; Garg, Salil; Wolf, Benjamin J; Tuli, Amit; Ricciardi-Castagnoli, Paola; Brenner, Michael B

    2015-03-01

    Dendritic cells (DCs) are specialized APCs with the ability to prime naive T cells. DCs first sample Ags from the environment and then orchestrate their processing and loading onto MHC class II (MHC II) Ag-presenting molecules in lysosomes. Once MHC II molecules have bound a peptide, the MHC II-peptide complex is delivered to the cell surface for presentation to CD4(+) T cells. Regulation of Ag uptake via macropinocytosis and phagocytosis has been extensively studied, as well as trafficking in early endocytic vesicles notably regulated by the small GTPase Rab5 and its effectors. However, little is known about the regulators of Ag delivery from early endosomes to lysosomal compartments where the proper pH, proteases, MHC II, invariant chain, and HLA-DM reside, awaiting exogenous Ags for loading. In this article, we report the crucial role of the small GTPase ADP-ribosylation factor-like 8b (Arl8b) in MHC II presentation in DCs. We show for the first time, to our knowledge, that Arl8b localizes to MHC II compartments in DCs and regulates formation of MHC II-peptide complexes. Arl8b-silenced DCs display a defect in MHC II-Ag complex formation and its delivery to the cell surface during infection resulting in a defect in T cell recognition. Our results highlight the role of Arl8b as a trafficking regulator of the late stage of complex formation and MHC II presentation in DCs. PMID:25637027

  20. Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine

    PubMed Central

    Jones, Matthew R; Cheviron, Zachary A; Carling, Matthew D

    2015-01-01

    The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ∽26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC. PMID:25798222

  1. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  2. FCRL6 is an MHC class II receptor1

    PubMed Central

    Schreeder, Daniel M.; Cannon, John P.; Wu, Jiongru; Li, Ran; Shakhmatov, Mikhail A.; Davis, Randall S.

    2016-01-01

    Receptors for the Fc portion (FCR) of Ig have been extensively characterized and are known to regulate humoral responses, but members of the closely related FCR-like (FCRL) family have not been found to bind Ig and to date no ligand has been identified for any FCRL. Using a cell-based GFP reporter system and a recombinant Fc chimeric protein, we show that human FCRL6, a receptor selectively expressed by cytotoxic T and NK cells, directly binds HLA-DR, a major histocompatibility complex (MHC) class II molecule. Given the similarity among constant regions of Ig and MHC molecules, these findings suggest that representatives of the FCR and FCRL multigene families may have independently evolved to engage two ancestral elements fundamental to adaptive immunity. This discovery may offer new insight into the interaction between cytotoxic lymphocytes and antigen presenting cells and may have important implications for better understanding HLA disease susceptibility and pathogenesis. PMID:20519654

  3. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?

    PubMed Central

    Carrillo-Bustamante, Paola; Kesmir, Can; de Boer, Rob J.

    2015-01-01

    Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure. PMID:26136746

  4. Hypothesis: Possible respiratory advantages for heterozygote carriers of cystic fibrosis linked mutations during dusty climate of last glaciation.

    PubMed

    Borzan, Vladimir; Tomašević, Boris; Kurbel, Sven

    2014-12-21

    This paper puts forward a new hypothesis to interpret the high carrier frequency of CFTR mutations in individuals of European descent. The proposed heterozygote advantage factor is related to the specific climate conditions in Europe during the last 50 ky that might have heavily compromised the respiratory function of our ancestors in Eurasia. A large part of the last 50 ky was cold, and the coldest period was the Last Glacial Maximum (LGM) (26.5 to 19 kya). The global climate was dry with a dust-laden atmosphere (20 to 25 times more dust than the present level). High levels of atmospheric dust started more than 40 kya and ended less than 10 kya. Secretion of airway fluid is usually related to the submucosal tissue hydration, while salt reabsorption relies on activation of CFTRs that allow ENaCs to absorb salt and water. The water loss by evaporation depends on the air humidity and flow rate. Salt accumulation in the mucus is normally prevented by reabsorption of Na(+) and Cl(-) by epithelial cells if the presence of functional CFTRs is normal. If one gene for CFTR is mutated, the number of functional CFTRs is reduced and this limits the capacity of salt reabsorption by epithelial cells. This means that evaporation makes the airway fluid more hypertonic, and osmotic forces bring more water from the interstitial space, thus leading to a new balance in mucosal fluid traffic. Increased osmolarity and volume of airway fluid can be more moveable in cases when evaporation and dust exposure is increased. If both CFTR genes are mutated, low number of functional CFTRs diminishes salt resorption of epithelial cells. Salt accumulated in the mucous fluid within respiratory ducts, as previously described. The hypertonic ductal content forces more water and some electrolytes to enter the airway fluid from the interstitial fluid, and evaporation leads to further concentration of thick immobile mucus. The proposed interpretation is that CFTR mutations have spread among our

  5. Clinical expression in heterozygotes of two frequent low density lipoprotein receptor gene mutations in the French Canadian population

    SciTech Connect

    Roy, M.; Minnich, A.; Davignon, J.

    1994-09-01

    Five mutations in the low density lipoprotein (LDL) receptor (R) gene account for approximately 83% of cases of heterozygous familial hypercholesterolemia (hFH) in French Canadians in Quebec. The two most prevalent mutations are a >10kb deletion (10kb) of the promoter region resulting in a null allele (60.5% of cases) and a trp{sub 66}{r_arrow}gly missense mutation in exon 3 (ex3) resulting in a binding-defective R (11.7%). We have compared the phenotypic expression of these two mutations in 427 10kb hFH patients, 239 women (age 37.5 {plus_minus} 14.2 years) and 188 men (33.7 {plus_minus} 11.7) and 69 ex3 hFH patients, 42 women (40.6 {plus_minus} 14.3) and 27 men (36.8 {plus_minus}13.2). All data were analyzed separately for women and men. Tendon xanthomas were more prevalent in the 10kb (women 63%, men 68%) than in the ex3 patients (48%,48%). Total and LDL cholesterol were significantly higher in the 10kb patients with than without xanthomas but similar in ex3 patients. There were no significant differences in plasma lipoprotein concentrations between 10kb and ex3 patients with coronary artery disease (CAD) or between 10kb and ex3 patients without CAD. Among men with CAD, those with 10kb were significantly younger than those with ex3 (39.6 {plus_minus} 9.8, n=93 and 46.4 {plus_minus} 7.0, n=9, respectively). In both sexes, high plasma lipoprotein concentrations conferred an increased risk of CAD in 10kb but not in ex3 patients. Thus, as in homozygotes (previous study), the >10kb deletion is associated with more severe expression of FH than is the exon 3 mutation, although the plasma lipoprotein concentrations are not significantly different between the 10kb and ex3 heterozygotes. Since in homozygotes plasma cholesterol levels in 10kb are 60% higher than in ex3 patients, these observations suggest that the expression of the normal LDL-R allele compensates for the lack of a second allele in 10kb heterozygotes.

  6. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection

    PubMed Central

    Walter, Lutz; Ansari, Aftab A.

    2015-01-01

    Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model. PMID:26557119

  7. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  8. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  9. Strong Selection at MHC in Mexicans since Admixture.

    PubMed

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-02-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  10. Bright superior mirages

    NASA Astrophysics Data System (ADS)

    Lehn, Waldemar H.

    2003-01-01

    Superior mirages of unusual brightness are occasionally observed. Two such cases, photographed over the frozen surface of Lake Winnipeg, Canada, are documented. Visually, these mirages appear as featureless bright barriers far out on the lake. They are just images of the lake ice, yet the luminance in one case was 2.5 times (in the other, 1.7 times) the luminance of the ice surface in front of the mirage. The mirage itself can be modeled by means of a conduction inversion, but a proper explanation of the brightness is not yet available.

  11. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase by mevinolin in familial hypercholesterolemia heterozygotes: effects on cholesterol balance.

    PubMed Central

    Grundy, S M; Bilheimer, D W

    1984-01-01

    Patients with heterozygous familial hypercholesterolemia (FH) have a deficiency of receptors for plasma low-density lipoprotein (LDL) that impairs removal of LDL from plasma. In these patients, mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase [mevalonate:NAD+ oxidoreductase (CoA-acylating), EC 1.1.1.88], increases receptors for LDL and decreases LDL concentrations. To determine whether mevinolin also causes severe decreases in total body synthesis of cholesterol, fecal excretions of neutral steroids and acidic steroids were determined in five FH heterozygotes before and during treatment with mevinolin. The drug produced an average decrease in plasma total cholesterol of 23% and in LDL cholesterol of 24%. Mevinolin caused a significant decrease in the output of neutral and acidic steroids in three patients, but it caused no alterations in two others. Changes in fecal output of steroids did not correlate with the degree of lowering of the patients' LDL-cholesterol level. In none of the patients did the output of fecal steroids fall below the values seen in normal subjects studied under similar conditions. One patient had a previous ileal exclusion operation and had a massive output of acidic steroids in the control period; mevinolin therapy caused a slight decrease in excretion of acidic steroids, but the output was still markedly above normal. We conclude that the LDL lowering action of mevinolin does not appear to require a severe decrease in cholesterol synthesis that might lead to depletion of vital body stores of cholesterol. PMID:6371816

  12. A compound heterozygote harboring novel and recurrent DTDST mutations with intermediate phenotype between atelosteogenesis type II and diastrophic dysplasia.

    PubMed

    Maeda, Koichi; Miyamoto, Yoshinari; Sawai, Hideaki; Karniski, Lawrence P; Nakashima, Eiji; Nishimura, Gen; Ikegawa, Shiro

    2006-06-01

    Diastrophic dysplasia sulfate transporter (DTDST) is a sulfate transporter required for the synthesis of sulfated proteoglycans in the cartilage. Over 30 mutations have been described in the DTDST gene, which result in a continuous clinical spectrum of recessively inherited chondrodysplasias, including, in order of increasing severity, a recessive form of multiple epiphyseal dysplasia (rMED), diastrophic dysplasia (DTD), atelosteogenesis type II (AO-II) and achondrogenesis 1B (ACG-1B). Correlation between disease severity and residual sulfate transport activity has been reported. Here we report a patient with DTDST mutations, whose manifestations fell in a range between AO-II and DTD. The patient was a compound heterozygote for the recurrent c.835C>T (p.R279W) and novel c.1987G>A (p.G663R) mutations. Immunocytochemical analysis in HEK293 cells showed that the p.G663R mutation was localized within the cytoplasm, and not to the cell membrane, suggesting p.G663R is a loss-of-function mutation. Our case supports the previously described correlation between the severity of the phenotype and the putative level of residual transport function. PMID:16642506

  13. An MHC class I immune evasion gene of Marek’s Disease Virus

    PubMed Central

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D.

    2014-01-01

    Marek’s Disease Virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. PMID:25462349

  14. MHC class I loci of the Bar-Headed goose (Anser indicus)

    PubMed Central

    2010-01-01

    MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade. PMID:21637434

  15. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents. PMID:23334245

  16. A CD74-DEPENDENT MHC CLASS I ENDOLYSOSOMAL CROSS-PRESENTATION PATHWAY

    PubMed Central

    Basha, Genc; Omilusik, Kyla; Chavez-Steenbock, Ana; Reinicke, Anna T.; Lack, Nathan; Choi, Kyung Bok; Jefferies, Wilfred A.

    2016-01-01

    Immune responses are initiated and primed by dendritic cells (DCs) that cross-present exogenous antigen. The CD74 (invariant chain) chaperone protein is thought to exclusively promote DC priming in the context of MHC class II. However, we demonstrate herein a CD74-dependent MHC class I cross-presentation pathway in DCs that plays a major role in the generation of MHC class I restricted, cytolytic T lymphocyte (CTL) responses against viral protein- and cell-associated antigens. CD74 associates with MHC class I molecules in the endoplasmic reticulum of DCs and mediates trafficking of MHC class I to endolysosomal compartments for loading with exogenous peptides. We conclude that CD74 plays a hitherto, undiscovered physiological function in endolysosomal DC cross-presentation for priming MHC class I-mediated CTL responses. PMID:22306692

  17. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection.

    PubMed

    Kubinak, Jason L; Stephens, W Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J; Petrosino, Joseph F; Morrison, Linda; Potts, Wayne K; Jensen, Peter E; O'Connell, Ryan M; Round, June L

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  18. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection

    PubMed Central

    Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  19. Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

    PubMed Central

    Shin, Seulmee; Hyun, Bobae; Lee, Aeri; Kong, Hyunseok; Han, Shinha; Lee, Chong-Kil; Ha, Nam-Joo; Kim, Kyungjae

    2013-01-01

    Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs. PMID:24009856

  20. An MHC-defined primate model reveals significant rejection of bone marrow after mixed chimerism induction despite full MHC matching.

    PubMed

    Larsen, C P; Page, A; Linzie, K H; Russell, M; Deane, T; Stempora, L; Strobert, E; Penedo, M C T; Ward, T; Wiseman, R; O'Connor, D; Miller, W; Sen, S; Singh, K; Kean, L S

    2010-11-01

    In murine models, mixed hematopoietic chimerism induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade-/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after nonmyeloablative transplant. Using busulfan-based pretransplant preparation and maintenance immunosuppression with sirolimus, as well as CD28 and CD154 blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism. Thus, the vast majority of T cells presenting posttransplant were recipient-rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen-experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  1. Fine-mapping in the MHC region accounts for 18% additional genetic risk for celiac disease

    PubMed Central

    Gutierrez-Achury, Javier; Zhernakova, Alexandra; Pulit, Sara L.; Trynka, Gosia; Hunt, Karen A.; Romanos, Jihane; Raychaudhuri, Soumya; van Heel, David A.; Wijmenga, Cisca; de Bakker, Paul I.W.

    2015-01-01

    Although dietary gluten is the trigger, celiac disease risk is strongly influenced by genetic variation in the major histocompatibility complex (MHC) region. We fine-mapped the MHC association signal to identify additional risk factors independent of the HLA-DQ alleles and observed five novel associations that account for 18% of the genetic risk. Together with the 57 known non-MHC loci, genetic variation can now explain up to 48% of celiac disease heritability. PMID:25894500

  2. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation. PMID:23288359

  3. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    PubMed

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-01

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016. PMID:27087581

  4. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated. PMID:22957875

  5. DockTope: a Web-based tool for automated pMHC-I modelling.

    PubMed

    Rigo, Maurício Menegatti; Antunes, Dinler Amaral; Vaz de Freitas, Martiela; Fabiano de Almeida Mendes, Marcus; Meira, Lindolfo; Sinigaglia, Marialva; Vieira, Gustavo Fioravanti

    2015-01-01

    The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8(+) T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design. PMID:26674250

  6. Endogenous Antigen Presentation of MHC Class II Epitopes through Non-Autophagic Pathways

    PubMed Central

    Leung, Carol S. K.

    2015-01-01

    Antigenic peptides presented by major histocompatibility complex (MHC) class II molecules are generally derived from exogenous proteins acquired by antigen presenting cells. However, in some circumstances, MHC class II molecules can present intracellular proteins expressed within the antigen-presenting cells. There are several described pathways by which endogenous antigens are degraded and gain access to MHC class II molecules. These include autophagy and other non-autophagic pathways; the latter category includes the MHC class I-like pathways, heat shock protein 90-mediated pathways, and internalization from the plasma membrane. This review will summarize and discuss the non-autophagic pathways. PMID:26441969

  7. The arginine methyltransferase PRMT5 regulates CIITA-dependent MHC II transcription.

    PubMed

    Fan, Zhiwen; Kong, Xiaocen; Xia, Jun; Wu, Xiaoyan; Li, He; Xu, Huihui; Fang, Mingming; Xu, Yong

    2016-05-01

    Class II major histocompatibility complex (MHC II) dependent antigen presentation serves as a key step in mammalian adaptive immunity and host defense. In antigen presenting cells (e.g., macrophages), MHC II transcription can be activated by interferon gamma (IFN-γ) and mediated by class II transactivator (CIITA). The underlying epigenetic mechanism, however, is not completely understood. Here we report that following IFN-γ stimulation, symmetrically dimethylated histone H3 arginine 2 (H3R2Me2s) accumulated on the MHC II promoter along with CIITA. IFN-γ augmented expression, nuclear translocation, and promoter binding of the protein arginine methyltransferase PRMT5 in macrophages. Over-expression of PRMT5 potentiated IFN-γ induced activation of MHC II transcription in an enzyme activity-dependent manner. In contrast, PRMT5 silencing or inhibition of PRMT5 activity by methylthioadenosine (MTA) suppressed MHC II transactivation by IFN-γ. CIITA interacted with and recruited PRMT5 to the MHC II promoter and mediated the synergy between PRMT5 and ASH2/WDR5 to activate MHC II transcription. PRMT5 expression was down-regulated in senescent and H2O2-treated macrophages rendering ineffectual induction of MHC II transcription by IFN-γ. Taken together, our data reveal a pathophysiologically relevant role for PRMT5 in MHC II transactivation in macrophages. PMID:26972221

  8. MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer

    PubMed Central

    Siddle, Hannah V.; Marzec, Jolanta; Cheng, Yuanyuan; Jones, Menna; Belov, Katherine

    2010-01-01

    Tasmanian devils face extinction owing to the emergence of a contagious cancer. Devil facial tumour disease (DFTD) is a clonal cancer spread owing to a lack of major histocompatibility complex (MHC) barriers in Tasmanian devil populations. We present a comprehensive screen of MHC diversity in devils and identify 25 MHC types and 53 novel sequences, but conclude that overall levels of MHC diversity at the sequence level are low. The majority of MHC Class I variation can be explained by allelic copy number variation with two to seven sequence variants identified per individual. MHC sequences are divided into two distinct groups based on sequence similarity. DFTD cells and most devils have sequences from both groups. Twenty per cent of individuals have a restricted MHC repertoire and contain only group I or only group II sequences. Counterintuitively, we postulate that the immune system of individuals with a restricted MHC repertoire may recognize foreign MHC antigens on the surface of the DFTD cell. The implication of these results for management of DFTD and this endangered species are discussed. PMID:20219742

  9. DockTope: a Web-based tool for automated pMHC-I modelling

    PubMed Central

    Menegatti Rigo, Maurício; Amaral Antunes, Dinler; Vaz de Freitas, Martiela; Fabiano de Almeida Mendes, Marcus; Meira, Lindolfo; Sinigaglia, Marialva; Fioravanti Vieira, Gustavo

    2015-01-01

    The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design. PMID:26674250

  10. A Case of Probable MHC Class II Deficiency with Disseminated BCGitis.

    PubMed

    Alyasin, Soheyla; Abolnezhadian, Farhad; Khoshkhui, Maryam

    2015-09-01

    Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficiency), as evidenced by failure to develop disseminated infection after BCG vaccination. Therefore, MHC II deficiency with BCGosis, that is disseminated BCGitis, is not reported commonly. We report an interesting case of BCGosis after vaccination that was diagnosed to have probable MHC II deficiency. PMID:26412640

  11. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  12. Clinical spectrum in homozygotes and compound heterozygotes inheriting cystic fibrosis mutation 3849+10kbC>T: Significance for geneticists

    SciTech Connect

    Gilbert, F.; Li, Zhen; Arzimanoglou, I.

    1995-09-25

    We describe patients inheriting cystic fibrosis (CF) mutation 3849+10kbC>T as homozygotes or compound heterozygotes. Three unrelated homozygotes for this mutation were all pancreatic-sufficient and sweat test-negative or inconclusive. Among the compound heterozygotes, both pancreatic sufficiency and insufficiency, as well as positive and negative/inconclusive sweat test results are reported, expanding the range of clinical expression associated with inheritance of this mutation. 3849+10kbC>T is one of several CF mutations that can result in atypical or variant forms of CF. For geneticists, the diagnosis of variant CF has implications for recurrence risk and prognosis counseling of the families of affected individuals, and possibly for CF carrier screening in the general population. 19 refs., 1 tab.

  13. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability. PMID:21183613

  14. The relative roles of MHC and non-MHC antigens in bone marrow transplantation in rats. Graft acceptance and antigenic expression on donor red blood cells.

    PubMed

    Pinto, M; Gill, T J; Kunz, H W; Dixon-McCarthy, B D

    1983-06-01

    In order to investigate the influence of MHC and non-MHC genes in bone marrow transplantation, various combinations of congenic and inbred strains of rats were used as donors and recipients. A standard regimen of busulfan and cyclophosphamide treatment was used to condition the recipients. The resultant survival patterns of the animals indicated that: (1) a difference across the entire RT1 (MHC) complex is sufficient for the induction of fatal graft-versus-host disease (GVHD) in 100% of the engrafted animals; and (2) the blood group antigens RT2 and RT3, which are controlled by non-MHC genes, do not cause bone marrow graft rejection or GVHD. There were sequential changes of expression in surface alloantigens on the red cells in different donor-recipient combinations without other hematologic changes in the busulfan-cyclophosphamide conditioned bone marrow chimeras. PMID:6346598

  15. Signals of heterogeneous selection at an MHC locus in geographically proximate ecotypes of sockeye salmon.

    PubMed

    Larson, Wesley A; Seeb, James E; Dann, Tyler H; Schindler, Daniel E; Seeb, Lisa W

    2014-11-01

    The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen-mediated selection in wild populations. Here, we examined variation at the MHC class II peptide-binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south-western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine-scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist. PMID:25283474

  16. Evaluating the role of HLA-DM in MHC II-peptide association reactions1

    PubMed Central

    Yin, Liusong; Maben, Zachary; Becerra, Aniuska; Stern, Lawrence J.

    2015-01-01

    Antigen presentation by major histocompatibility complex class II molecules (MHC II) to CD4+ T cells plays a key role in the regulation of the adaptive immune response. Loading of antigenic peptides onto MHC II is catalyzed by HLA-DM (DM), a non-classical MHC II molecule. The mechanism of DM-facilitated peptide loading is an outstanding problem in the field of antigen presentation. In this study we systemically explored possible kinetic mechanisms for DM-catalyzed peptide association, by measuring real time peptide association kinetics using fluorescence polarization assays and comparing the experimental data with numerically modeled peptide association reactions. We found that DM does not facilitate peptide association by stabilizing peptide-free MHC II against aggregation. Moreover, DM does not promote transition of an inactive peptide-averse conformation of MHC II to an active peptide-receptive conformation. Instead, DM forms an intermediate with MHC II that binds peptide with faster kinetics than MHC II in the absence of DM. In the absence of peptides, interaction of MHC II with DM leads to inactivation and formation of a peptide-averse form. This study provides novel insights into how DM efficiently catalyzes peptide loading during antigen presentation. PMID:26062997

  17. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  18. Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations.

    PubMed

    Schuster, Andrea C; Herde, Antje; Mazzoni, Camila J; Eccard, Jana A; Sommer, Simone

    2016-07-01

    Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations. PMID:27225422

  19. MHC-correlated odour preferences in humans and the use of oral contraceptives

    PubMed Central

    Roberts, S. Craig; Gosling, L. Morris; Carter, Vaughan; Petrie, Marion

    2008-01-01

    Previous studies in animals and humans show that genes in the major histocompatibility complex (MHC) influence individual odours and that females often prefer odour of MHC-dissimilar males, perhaps to increase offspring heterozygosity or reduce inbreeding. Women using oral hormonal contraceptives have been reported to have the opposite preference, raising the possibility that oral contraceptives alter female preference towards MHC similarity, with possible fertility costs. Here we test directly whether contraceptive pill use alters odour preferences using a longitudinal design in which women were tested before and after initiating pill use; a control group of non-users were tested with a comparable interval between test sessions. In contrast to some previous studies, there was no significant difference in ratings between odours of MHC-dissimilar and MHC-similar men among women during the follicular cycle phase. However, single women preferred odours of MHC-similar men, while women in relationships preferred odours of MHC-dissimilar men, a result consistent with studies in other species, suggesting that paired females may seek to improve offspring quality through extra-pair partnerships. Across tests, we found a significant preference shift towards MHC similarity associated with pill use, which was not evident in the control group. If odour plays a role in human mate choice, our results suggest that contraceptive pill use could disrupt disassortative mate preferences. PMID:18700206

  20. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age

    PubMed Central

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973

  1. Superior Sagittal Sinus Thrombosis

    PubMed Central

    Nakase, Hiroyuki; Takeshima, Toshikazu; Sakaki, Toshisuke; Heimann, Axel; Kempski, Oliver

    1998-01-01

    Sinus-vein thrombosis is increasingly recognized as a much more frequent neurological disorder than was anticipated before. We examined the pathophysiology of superior sagittal sinus thrombosis (SSST) from 19 patients and a rat SSST model. We treated 19 cases with SSST who were diagnosed by angiography. The symptoms of nine patients, who suffered multiple intracerebral hemorrhage, were abrupt. In another ten patients who recovered satisfactorily, the condition progressed slowly and they were treated with heparin and urokinase. Multivariate analysis demonstrated that female, sudden onset (<24 hours) and posterior 1/3 occlusion are related to bad outcome. Experimentally, SSST was induced by ligation and slow injection of kaolin-cephalin suspension into SSS in rats. Regional cerebral blood flow (rCBF) and tissue hemoglobin oxygen saturation (Hb Sao2) using a “scanning” technique were measured at 48 locations, and fluorescence angiography was performed before and until 90 min after SSST induction. After 48 hours the animals were sacrificed for histological studies. Decrease of rCBF and tissue Hb SO2 and brain damage were seen in group B (n = 10) with an extension of thrombosis from SSS into cortical veins. Brain injury was not observed in group A (n = 8) with SSS thrombus alone and sham-operated animals (n = 5). In conclusion, a brain with acute extension of thrombus from SSS into cortical veins becomes critical for cerebral blood supply and metabolism. CBF, tissue HbSO2 and repeated angiography can be helpful monitors for the early detection of critical conditions after SSST. As to the therapy, restraint on the ongoing thrombus is essential to protect the brain with SSST, and we encourage the use of combination therapy of heparin and urokinase as early as possible in cases without intracerebral hemorrhage. ImagesFigure 1Figure 2 PMID:17171061

  2. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

    PubMed

    Bordner, Andrew J

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC

  3. Complete MHC haplotype sequencing for common disease gene mapping.

    PubMed

    Stewart, C Andrew; Horton, Roger; Allcock, Richard J N; Ashurst, Jennifer L; Atrazhev, Alexey M; Coggill, Penny; Dunham, Ian; Forbes, Simon; Halls, Karen; Howson, Joanna M M; Humphray, Sean J; Hunt, Sarah; Mungall, Andrew J; Osoegawa, Kazutoyo; Palmer, Sophie; Roberts, Anne N; Rogers, Jane; Sims, Sarah; Wang, Yu; Wilming, Laurens G; Elliott, John F; de Jong, Pieter J; Sawcer, Stephen; Todd, John A; Trowsdale, John; Beck, Stephan

    2004-06-01

    The future systematic mapping of variants that confer susceptibility to common diseases requires the construction of a fully informative polymorphism map. Ideally, every base pair of the genome would be sequenced in many individuals. Here, we report 4.75 Mb of contiguous sequence for each of two common haplotypes of the major histocompatibility complex (MHC), to which susceptibility to >100 diseases has been mapped. The autoimmune disease-associated-haplotypes HLA-A3-B7-Cw7-DR15 and HLA-A1-B8-Cw7-DR3 were sequenced in their entirety through a bacterial artificial chromosome (BAC) cloning strategy using the consanguineous cell lines PGF and COX, respectively. The two sequences were annotated to encompass all described splice variants of expressed genes. We defined the complete variation content of the two haplotypes, revealing >18,000 variations between them. Average SNP densities ranged from less than one SNP per kilobase to >60. Acquisition of complete and accurate sequence data over polymorphic regions such as the MHC from large-insert cloned DNA provides a definitive resource for the construction of informative genetic maps, and avoids the limitation of chromosome regions that are refractory to PCR amplification. PMID:15140828

  4. Population genetic segmentation of MHC-correlated perfume preferences.

    PubMed

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization. PMID:22084926

  5. Loss of MHC class-I expression in cervical carcinomas.

    PubMed

    Connor, M E; Stern, P L

    1990-12-15

    The expression of MHC class-I antigens was analysed in 67 cervical carcinoma biopsies; 16% of the biopsies showed complete or heterogeneous loss of HLA expression as judged by reactivity with antibodies recognizing monomorphic determinants of the class-I heavy chain bound to beta 2 microglobulin (beta 2m). In addition, other biopsies showed a loss in expression of particular allelic products: 23% for HLA-A2; 17% for HLA-A3; 23% for HLA-Bw4 and 19% for HLA-Bw6. Three biopsies showed changes at 2 alleles, 2 of which were at both HLA-A and -B loci. Down-regulation of class-I expression may be virally mediated and HPV DNA is frequently found in cervical carcinomas. However, there appeared to be no direct correlation between the detection of HPV 16 or 18 DNA in these tumours and changes in HLA expression. There was also no correlation with the expression of the oncofoetal antigen 5T4. Our results show that a significant proportion (at least 30%) of the cervical carcinomas showed some alteration in MHC class-I expression. Such changes may allow tumours to evade immune surveillance with more rapid progression. There was, however, no correlation with tumour type, degree of differentiation or stage of disease at presentation. PMID:2174412

  6. Structural interplay between germline and adaptive recognition determines TCR-peptide-MHC cross-reactivity

    PubMed Central

    Adams, Jarrett J.; Narayanan, Samanthi; Birnbaum, Michael E.; Sidhu, Sachdev S.; Blevins, Sydney J.; Gee, Marvin H.; Sibener, Leah V.; Baker, Brian M.; Kranz, David M.; Garcia, K. Christopher

    2015-01-01

    The T cell receptor - peptide-MHC interface is comprised of conserved and diverse regions, yet the relative contributions of each in shaping T cell recognition remain unclear. We isolated cross-reactive peptides with limited homology, allowing us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR’s cross-reactivity is rooted in highly similar recognition of an apical ‘hotspot’ position in the peptide, while tolerating significant sequence variation at ancillary positions. Furthermore, we find a striking structural convergence onto a germline-mediated interaction between TCR CDR1α and the MHC α2 helix of twelve TCR-pMHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hotspot, may place limits on peptide antigen cross-reactivity. PMID:26523866

  7. Heparan sulfates targeting increases MHC class I- and MHC class II-restricted antigen presentation and CD8(+) T-cell response.

    PubMed

    Knittel, Delphine; Gadzinski, Adeline; Hua, Stéphane; Denizeau, Jordan; Savatier, Alexandra; de la Rochère, Philippe; Boulain, Jean-Claude; Amigorena, Sebastian; Piaggio, Eliane; Sedlik, Christine; Léonetti, Michel

    2016-06-01

    Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines. PMID:27154391

  8. Assembly and characterization of the MHC class I region of the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis).

    PubMed

    Ruan, Rui; Wan, Xiao-Ling; Zheng, Yang; Zheng, Jin-Song; Wang, Ding

    2016-01-01

    The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) is the sole freshwater subspecies of N. asiaeorientalis and is now critically endangered. Major histocompatibility complex (MHC) is a family of highly polymorphic genes that play an important immunological role in antigen presentation in the vertebrates. Currently, however, little is known about MHC region in the genome of the YFP, which hampers conservation genetics and evolutionary ecology study using MHC genes. In this work, a nucleotide sequence of 774,811 bp covering the YFP MHC class I region was obtained by screening a YFP bacterial artificial chromosome (BAC) library, followed by sequencing and assembly of positive BAC clones. A total of 45 genes were successfully annotated, of which four were MHC class I genes. There are high similarities among the four YFP MHC class I genes (>94%). Divergence in the coding region of the four YFP MHC class I genes is mainly localized to exons 2 and 3, which encode the antigen-binding sites of MHC class I genes. Additionally, comparison of the MHC structure in YFP to those of cattle, sheep, and pig showed that MHC class I genes are located in genome regions with regard to the conserved genes, and the YFP contains the fewest MHC class I genes among these species. This is the first report characterizing a cetacean MHC class I region and describing its organization, which would be valuable for further investigation of adaptation in natural populations of the YFP and other cetaceans. PMID:26585324

  9. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I.

    PubMed

    van den Boomen, D J H; Lehner, P J

    2015-12-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2's use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  10. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I

    PubMed Central

    van den Boomen, D.J.H.; Lehner, P.J.

    2015-01-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2’s use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. PMID:26210183

  11. High Levels of MeCP2 Depress MHC Class I Expression in Neuronal Cells

    PubMed Central

    Miralvès, Julie; Magdeleine, Eddy; Kaddoum, Lara; Brun, Hélène; Peries, Sophie; Joly, Etienne

    2007-01-01

    Background The expression of MHC class I genes is repressed in mature neurons. The molecular basis of this regulation is poorly understood, but the genes are particularly rich in CpG islands. MeCP2 is a transcriptional repressor that binds to methylated CpG dinucleotides; mutations in this protein also cause the neurodevelopmental disease called Rett syndrome. Because MHC class I molecules play a role in neuronal connectivity, we hypothesised that MeCP2 might repress MHC class I expression in the CNS and that this might play a role in the pathology of Rett syndrome. Methodology We show here that transiently transfected cells expressing high levels of MeCP2 specifically downregulate cell-surface expression of MHC class I molecules in the neuronal cell line N2A and they prevent the induction of MHC class I expression in response to interferon in these cells, supporting our first hypothesis. Surprisingly, however, overexpression of the mutated forms of MeCP2 that cause Rett syndrome had a similar effect on MHC class I expression as the wild-type protein. Immunohistological analyses of brain slices from MECP2 knockout mice (the MeCP2tm1.1Bird strain) demonstrated a small but reproducible increase in MHC class I when compared to their wild type littermates, but we found no difference in MHC class I expression in primary cultures of mixed glial cells (mainly neurons and astrocytes) from the knockout and wild-type mice. Conclusion These data suggest that high levels of MeCP2, such as those found in mature neurons, may contribute to the repression of MHC expression, but we find no evidence that MeCP2 regulation of MHC class I is important for the pathogenesis of Rett syndrome. PMID:18159237

  12. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma

    PubMed Central

    Paulson, Kelly G.; Tegeder, Andrew; Willmes, Christoph; Iyer, Jayasri G; Afanasiev, Olga K.; Schrama, David; Koba, Shinichi; Thibodeau, Renee; Nagase, Kotaro; Simonson, William T; Seo, Aaron; Koelle, David M.; Madeleine, Margaret; Bhatia, Shailender; Nakajima, Hideki; Sano, Shigetoshi; Hardwick, James S.; Disis, Mary L.; Cleary, Michele A; Becker, Jürgen C.; Nghiem, Paul

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive, polyomavirus-associated skin cancer. Robust cellular immune responses are associated with excellent outcomes in MCC patients, but these responses are typically absent. We determined the prevalence and reversibility of class I MHC (MHC-I) downregulation in MCC, a potentially reversible immune evasion mechanism. Cell surface MHC-I expression was assessed on 5 MCC cell lines using flow cytometry as well as immunohistochemistry on tissue microarrays representing 114 patients. Three additional patients were included that had received intralesional interferon treatment and had evaluable specimens before and after treatment. mRNA expression analysis of antigen presentation pathway genes from 35 MCC tumors was used to examine mechanisms of downregulation. 84% of MCCs (total n=114) demonstrated reduced MHC-I expression as compared to surrounding tissues, and 51% had poor or undetectable MHC-1 expression. Expression of MHC-I was lower in polyomavirus-positive MCCs as compared to virus-negative MCCs (p<0.01). The MHC-I downregulation mechanism was multifactorial and did not depend solely on HLA gene expression. Treatment of MCC cell lines with ionizing radiation, etoposide, or interferon (IFN) resulted in MHC-I upregulation, with IFNs strongly upregulating MHC-I expression in vitro and in 3 of 3 patients treated with intralesional IFNs. MCC tumors may be amenable to immunotherapy, but downregulation of MHC-I is frequently present in these tumors, particularly those that are polyomavirus-positive. This downregulation is reversible with any of several clinically available treatments that may thus promote the effectiveness of immune stimulating therapies for MCC. PMID:25116754

  13. apo B gene knockout in mice results in embryonic lethality in homozygotes and neural tube defects, male infertility, and reduced HDL cholesterol ester and apo A-I transport rates in heterozygotes.

    PubMed Central

    Huang, L S; Voyiaziakis, E; Markenson, D F; Sokol, K A; Hayek, T; Breslow, J L

    1995-01-01

    apo B is a structural constituent of several classes of lipoprotein particles, including chylomicrons, VLDL, and LDL. To better understand the role of apo B in the body, we have used gene targeting in embryonic stem cells to create a null apo B allele in the mouse. Homozygous apo B deficiency led to embryonic lethality, with resorption of all embryos by gestational day 9. Heterozygotes showed an increased tendency to intrauterine death with some fetuses having incomplete neural tube closure and some live-born heterozygotes developing hydrocephalus. The majority of male heterozygotes were sterile, although the genitourinary system and sperm were grossly normal. Viable heterozygotes had normal triglycerides, but total, LDL, and HDL cholesterol levels were decreased by 37, 37, and 39%, respectively. Hepatic and intestinal apo B mRNA levels were decreased in heterozygotes, presumably contributing to the decreased LDL levels through decreased synthesis of apo B-containing lipoproteins. Kinetic studies indicated that heterozygotes had decreased transport rates of HDL cholesterol ester and apo A-I. As liver and intestinal apo A-I mRNA levels were unchanged, the mechanism for decreased apo A-I transport must be posttranscriptional. Heterozygotes also had normal cholesterol absorption and a normal response of the plasma lipoprotein pattern to chronic consumption of a high fat, high cholesterol, Western-type diet. In summary, we report a mouse model for apo B deficiency with several phenotypic features that were unexpected based on clinical studies of apo B-deficient humans, such as embryonic lethality in homozygotes and neural tube closure defects, male infertility, and a major defect in HDL production in heterozygotes. This model presents an opportunity to study the mechanisms underlying these phenotypic changes. Images PMID:7593600

  14. How to Undertake Research of MHC Utilization in Under-developed Countries? A Case Study of MHC Utilization in Central and Western Rural China

    PubMed Central

    Wang, Zhaoxin; Zhang, Yin; Chen, Minxing

    2014-01-01

    Objective: This study was undertaken to address practical problems in maternal health care (MHC) utilization and conduct in-depth study of maternal health services utilization in underdeveloped countries(regions), thus to contribute to the achieving of the UN Millennium Development Goal 5. Data Collection: After searching and screening based on key words like “MHC” and “utilization”, we included 45 English articles and 106 Chinese articles from Pubmed, Medline, China Knowledge Resource Integrated and Wang Fang data base. The research themes, issues, designs, perspectives, dimensions and methods of these dissertations were analyzed. Results: The development of MHC utilization research can be divided into three phases: Studies of the first phase focused primarily on decreasing MMR, which caused attention to the central and western rural areas maternal health services in China from domestic as well as international community; Studies of the second phase centered around the practical impacts of the implementation of MHC relevant programs and policy, confirming that the implementation of these programs and policies improved MHC service delivery and utilization, and promoted cooperation between researchers and practitioners; Studies of the third phase focused on the quality of MHC service utilization. We also found that the major problem in the current MHC service utilization is the huge gap across regions and the existing researches lack innovation and comparison researches between in different countries. Conclusion: Research themes of MHC services change regularly. We should grasp the characteristics and defects of current research to increase the innovation of future research and to better response to the problem solving, and thus to provide more valuable reference for the policy and practice of underdeveloped countries and areas. PMID:24639861

  15. ERAAP and Tapasin independently edit the amino and carboxyl termini of MHC class I peptides

    PubMed Central

    Kanaseki, Takayuki; Lind, Kristin Camfield; Escobar, Hernando; Nagarajan, Niranjana; Reyes-Vargas, Eduardo; Rudd, Brant; Rockwood, Alan L.; Van Kaer, Luc; Sato, Noriyuki; Delgado, Julio C.; Shastri, Nilabh

    2013-01-01

    Effective CD8+ T cell responses depend upon presentation of a stable peptide repertoire by MHC I molecules on the cell surface. The overall quality of pMHC I is determined by poorly understood mechanisms that generate and load peptides with appropriate consensus motifs onto MHC I. Here we show that both tapasin, a key component of the peptide loading complex, and ERAAP, the ER aminopeptidase associated with antigen processing, are quintessential editors of distinct structural features of the peptide repertoire. We carried out reciprocal immunization of wild-type mice with cells from tapasin- or ERAAP-deficient mice. Specificity analysis of T cell responses showed that absence of tapasin or ERAAP independently altered the peptide repertoire by causing loss as well as gain of new pMHC I. Changes in amino acid sequences of MHC bound-peptides revealed that ERAAP and tapasin respectively defined the characteristic amino and carboxy termini of canonical MHC I peptides. Thus, the optimal pMHC I repertoire is produced by two distinct peptide editing steps in the ER. PMID:23863903

  16. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors

    PubMed Central

    Ardolino, Michele; Azimi, Camillia S.; Iannello, Alexandre; Trevino, Troy N.; Horan, Lucas; Zhang, Lily; Deng, Weiwen; Ring, Aaron M.; Fischer, Suzanne; Garcia, K. Christopher; Raulet, David H.

    2014-01-01

    Various cytokines have been evaluated as potential anticancer drugs; however, most cytokine trials have shown relatively low efficacy. Here, we found that treatments with IL-12 and IL-18 or with a mutant form of IL-2 (the “superkine” called H9) provided substantial therapeutic benefit for mice specifically bearing MHC class I–deficient tumors, but these treatments were ineffective for mice with matched MHC class I+ tumors. Cytokine efficacy was linked to the reversal of the anergic state of NK cells that specifically occurred in MHC class I–deficient tumors, but not MHC class I+ tumors. NK cell anergy was accompanied by impaired early signal transduction and was locally imparted by the presence of MHC class I–deficient tumor cells, even when such cells were a minor population in a tumor mixture. These results demonstrate that MHC class I–deficient tumor cells can escape from the immune response by functionally inactivating NK cells, and suggest cytokine-based immunotherapy as a potential strategy for MHC class I–deficient tumors. These results suggest that such cytokine therapies would be optimized by stratification of patients. Moreover, our results suggest that such treatments may be highly beneficial in the context of therapies to enhance NK cell functions in cancer patients. PMID:25329698

  17. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  18. Evidence for evolutionary convergence at MHC in two broadly distributed mesocarnivores.

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Mainguy, Julien; Kyle, Christopher J

    2012-04-01

    Variation within major histocompatibility complex (MHC) genes is important in recognizing pathogens and initiating an immune response. These genes are relevant in enhancing our understanding of how species cope with rapid environmental changes and concomitant fluctuations in selective pressures such as invasive, infectious diseases. Disease-based models suggest that diversity at MHC is maintained through balancing selection arising from the coevolution of hosts and pathogens. Despite intensive balancing selection, sequence motifs or even identical MHC alleles can be shared across multiple species; three potential mechanisms have been put forth to explain this phenomenon: common ancestry, convergent evolution, and random chance. To understand the processes that maintain MHC similarity across divergent species, we examined the variation at two orthologous MHC-DRB genes in widespread North American Musteloid species, striped skunks (Mephitis mephitis), and raccoons (Procyon lotor). These species are often sympatric and exposed to a similar suite of diseases (e.g., rabies, canine distemper, and parvovirus). Given their exposure to similar selective pressures from pathogens, we postulated that similar DRB alleles may be present in both species. Our results indicated that similar motifs are present within both species, at functionally relevant polymorphic sites. However, based on phylogenetic analyses that included previously published MHC sequences of several closely related carnivores, the respective MHC-DRB alleles do not appear to have been maintained through common ancestry and unlikely through random chance. Instead, the similarities observed between the two mesocarnivore species may rather be due to evolutionary convergence. PMID:22085968

  19. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  20. Evolution and comparative analysis of the bat MHC-I region.

    PubMed

    Ng, Justin H J; Tachedjian, Mary; Deakin, Janine; Wynne, James W; Cui, Jie; Haring, Volker; Broz, Ivano; Chen, Honglei; Belov, Katherine; Wang, Lin-Fa; Baker, Michelle L

    2016-01-01

    Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the β duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease. PMID:26876644

  1. Cryptic preference for MHC-dissimilar females in male red junglefowl, Gallus gallus.

    PubMed

    Gillingham, Mark A F; Richardson, David S; Løvlie, Hanne; Moynihan, Anna; Worley, Kirsty; Pizzari, Tom

    2009-03-22

    An increasing number of studies test the idea that females increase offspring fitness by biasing fertilization in favour of genetically compatible partners; however, few have investigated or controlled for corresponding preferences in males. Here, we experimentally test whether male red junglefowl, Gallus gallus, prefer genetically compatible females, measured by similarity at the major histocompatibility complex (MHC), a key gene complex in vertebrate immune function. Theory predicts that because some degree of MHC heterozygosity favours viability, individuals should prefer partners that carry MHC alleles different from their own. While male fowl showed no preference when simultaneously presented with an MHC-similar and an MHC-dissimilar female, they showed a 'cryptic' preference, by allocating more sperm to the most MHC-dissimilar of two sequentially presented females. These results provide the first experimental evidence that males might respond to the MHC similarity of a female through differential ejaculate expenditure. By revealing that cryptic male behaviours may bias fertilization success in favour of genetically compatible partners, this study demonstrates the need to experimentally disentangle male and female effects when studying preferences for genetically compatible partners. PMID:19129124

  2. Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.).

    PubMed

    Miller, Hilary C; Allendorf, Fred; Daugherty, Charles H

    2010-09-01

    Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well-known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection. PMID:20723045

  3. Evolution and comparative analysis of the bat MHC-I region

    PubMed Central

    Ng, Justin H. J.; Tachedjian, Mary; Deakin, Janine; Wynne, James W.; Cui, Jie; Haring, Volker; Broz, Ivano; Chen, Honglei; Belov, Katherine; Wang, Lin-Fa; Baker, Michelle L.

    2016-01-01

    Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the β duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease. PMID:26876644

  4. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal. PMID:27386072

  5. Are large wattles related to particular MHC genotypes in the male pheasant?

    PubMed

    Baratti, Mariella; Ammannati, Martina; Magnelli, Claudia; Massolo, Alessandro; Dessì-Fulgheri, Francesco

    2010-06-01

    In sexually dimorphic species, partners can assess heritable mate quality by analyzing costly sexual ornaments in terms of their dimension and possibly of their symmetry. In vertebrates an important aspect of genetic quality is the efficiency of the immune system, and in particular the Major Histocompatibility Complex (MHC). If ornaments are honest advertisements of pathogen resistance (good genes), in line with the Hamilton-Zuk hypothesis, a correlation between ornament expression and MHC profiles should exist. We tested this hypothesis in the common pheasant Phasianus colchicus by comparing male ornament characteristics (wattle and spur size, and wattle fluctuating asymmetry) with a portion of exon 2 of the class IIB MHC genes containing 19 putative antigen recognition sites. A total of 8 new alleles was observed in the MHCPhco exon IIB. We found significant differences in the occurrence of MHC genotypes between males carrying large or small wattles. Homozygous genotypes predicted large wattle males more correctly than small wattle males. The association between the dimension of the spur and the occurrence of MHC genotypes was marginally significant, however, we did not find any significant association between MHC genotypes and asymmetry. Our results suggest that female pheasants may use the ornament size as a cue to evaluate male quality and thus choose males carrying particular MHC profiles. PMID:20145977

  6. Prediction of MHC binding peptides and epitopes from alfalfa mosaic virus.

    PubMed

    Gomase, Virendra S; Kale, Karbhari V; Chikhale, Nandkishor J; Changbhale, Smruti S

    2007-08-01

    Peptide fragments from alfalfa mosaic virus involved multiple antigenic components directing and empowering the immune system to protect the host from infection. MHC molecules are cell surface proteins, which take active part in host immune reactions and involvement of MHC class-I & II in response to almost all antigens. Coat protein of alfalfa mosaic virus contains 221 aa residues. Analysis found five MHC ligands in coat protein as 64-LSSFNGLGV-72; 86- RILEEDLIY-94; 96-MVFSITPSY-104; 100- ITPSYAGTF-108; 110- LTDDVTTED-118; having rescaled binding affinity and c-terminal cleavage affinity more than 0.5. The predicted binding affinity is normalized by the 1% fractil. The MHC peptide binding is predicted using neural networks trained on c-terminals of known epitopes. In analysis predicted MHC/peptide binding is a log transformed value related to the IC50 values in nM units. Total numbers of peptides found are 213. Predicted MHC binding regions act like red flags for antigen specific and generate immune response against the parent antigen. So a small fragment of antigen can induce immune response against whole antigen. This theme is implemented in designing subunit and synthetic peptide vaccines. The sequence analysis method allows potential drug targets to identify active sites against plant diseases. The method integrates prediction of peptide MHC class I binding; proteosomal c-terminal cleavage and TAP transport efficiency. PMID:17691913

  7. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  8. MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus.

    PubMed

    Knafler, Gabrielle J; Clark, J Alan; Boersma, P Dee; Bouzat, Juan L

    2012-01-01

    We estimated levels of diversity at the major histocompatibility complex (MHC) class II DRß1 gene in 50 breeding pairs of the Magellanic penguin and compared those to estimates from Humboldt and Galapagos penguins. We tested for positive selection and 2 conditions required for the evolution of MHC-based disassortative mating: 1) greater MHC diversity between breeding pairs compared to random mating, and 2) associations between MHC genotype and fitness. Cloning and sequencing of the DRß1 gene showed that Magellanic penguins had higher levels of genetic variation than Galapagos and Humboldt penguins. Sequence analysis revealed 45 alleles with 3.6% average proportion of nucleotide differences, nucleotide diversity of 0.030, and observed heterozygosity of 0.770. A gene phylogeny showed 9 allelic lineages with interspersed DRß1 sequences from Humboldt and Galapagos penguins, indicating ancestral polymorphisms. d (N)/d (S) ratios revealed evidence for positive selection. Analysis of breeding pairs showed no disassortative mating preferences. Significant MHC genotype/fitness associations in females suggest, however, that selection for pathogen resistance plays a more important role than mate choice in maintaining diversity at the MHC in the Magellanic penguin. The differential effect of MHC heterozygosity on fitness between the sexes is likely associated with the relative role of hatching and fledging rates as reliable indicators of overall fitness in males and females. PMID:22952272

  9. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases.

    PubMed

    Alvarez-Navarro, Carlos; López de Castro, José A

    2014-01-01

    The endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in the final processing of Major Histocompatibility Complex class I (MHC-I) ligands and with a significant influence in the stability and immunological properties of MHC-I proteins. ERAP1 polymorphism is associated with ankylosing spondylitis among HLA-B27-positive individuals and the altered enzymatic activity of natural variants has significant effects on the HLA-B27 peptidome, suggesting a critical pathogenetic role of peptides in this disease. Likewise, the association of ERAP1 with other MHC-I associated disorders and its epistasis with their susceptibility MHC alleles point out to a general role of the MHC-I peptidome in these diseases. The functional interaction between ERAP1 and HLA-B27 or other MHC-I molecules may be related to the processing of specific epitopes, or to a more general peptide-dependent influence on other biological features of the MHC-I proteins. In addition, from a consideration of the reported functions of ERAP1, including its involvement in angiogenesis and macrophage activation, a more complex and multi-level influence in the inflammatory and immune pathways operating in these diseases cannot be ruled out. PMID:23916068

  10. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study

    PubMed Central

    Thron, Cindy; Akhyari, Payam; Godehardt, Erhard; Lichtenberg, Artur; Rüther, Ulrich; Seehaus, Stefanie

    2015-01-01

    Background Single nucleotide polymorphisms (SNPs) within the Fat mass and obesity associated (FTO) gene have been linked with increased body weight. However, the data on an association of FTO with cardiovascular diseases remains conflicting. Therefore, we ascertained whether FTO is associated with aortic valve stenosis (AVS), one of the most frequent cardiovascular diseases in the Western world. Methods and Findings In this population-based case-control study the FTO SNP rs9939609 was analyzed in 300 German patients with AVS and 429 German controls of the KORA survey S4, representing a random population. Blood samples were collected prior to aortic valve replacement in AVS cases and FTO rs9939609 was genotyped via ARMS-PCR. Genotype frequencies differed significantly between AVS cases and KORA controls (p = 0.004). Separate gender-analyses uncovered an association of FTO with AVS exclusively in males; homozygote carriers for the risk-allele (A) had a higher risk to develop AVS (p = 0.017, odds ratio (OR) 1.727; 95% confidence interval (CI) 1.087–2.747, recessive model), whereas heterozygote carriers for the risk-allele showed a lower risk (p = 0.002, OR 0.565, 95% CI 0.384–0.828, overdominant model). After adjustment for multiple co-variables, the odds ratios of heterozygotes remained significant for an association with AVS (p = 0.008, OR 0.565, 95% CI 0.369–0.861). Conclusions This study revealed an association of FTO rs9939609 with AVS. Furthermore, this association was restricted to men, with heterozygotes having a significantly lower chance to develop AVS. Lastly, the association between FTO and AVS was independent of BMI and other variables such as diabetes mellitus. PMID:26431034

  11. RAT CYTOMEGALOVIRUS INFECTION DEPLETES MHC II IN BONE MARROW DERIVED DENDRITIC CELLS

    PubMed Central

    Baca Jones, Carmen C.; Kreklywich, Craig N.; Messaoudi, Ilhem; Vomaske, Jennifer; McCartney, Erin; Orloff, Susan L.; Nelson, Jay A.; Streblow, Daniel N.

    2009-01-01

    While cytomegalovirus (CMV) infects and replicates in a multitude of cell types, the ability of the virus to replicate in antigen presenting cells (APCs) is believed to play a critical role in the viral dissemination and latency. CMV infection of APCs and manipulation of their function is an important area of investigation. CMV down regulation of MHC II is reportedly mediated by the HCMV proteins US2, US3, UL83, UL111a (vIL10) or through the induction of cellular IL10. In this study, we demonstrate that rat CMV (RCMV) significantly reduces MHC II expression by mechanisms that do not involve orthologues of the known HCMV genes nor by an increase in cellular IL10. Rat bone marrow derived dendritic cells (BMDC) were highly susceptible to infection with RCMV and a recombinant RCMV expressing eGFP. RCMV infection of BMDCs depleted both surface and intracellular MHC II to nearly undetectable levels as well as reduced surface expression of MHC I. The effect on MHC II only occurred in the infected GFP positive cells and is mediated by an immediate early or early viral gene product. Furthermore, treatment of uninfected immature DCs with virus-free conditioned supernatants from infected cells failed to down regulate MHC II. RCMV depletion of MHC II was sensitve to treatment with lysosomal inhibitors but not proteasomal inhibitors suggesting that the mechanism of RCMV mediated down-regulation of MHC II occurs through endocytic degradation. Since RCMV does not encode homologues of US2, US3, UL83 or UL111a, these data indicate a novel mechanism for RCMV depletion of MHC II. PMID:19349057

  12. Olfactory signals and the MHC: a review and a case study in Lemur catta.

    PubMed

    Knapp, Leslie A; Robson, Julie; Waterhouse, John S

    2006-06-01

    The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates. PMID:16715507

  13. Leukocyte Ig-Like Receptors – A Model for MHC Class I Disease Associations

    PubMed Central

    Hudson, Laura Emily; Allen, Rachel Louise

    2016-01-01

    MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system. PMID:27504110

  14. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma

    PubMed Central

    Capasso, Cristian; Hirvinen, Mari; Garofalo, Mariangela; Romaniuk, Dmitrii; Kuryk, Lukasz; Sarvela, Teea; Vitale, Andrea; Antopolsky, Maxim; Magarkar, Aniket; Viitala, Tapani; Suutari, Teemu; Bunker, Alex; Yliperttula, Marjo; Urtti, Arto; Cerullo, Vincenzo

    2016-01-01

    ABSTRACT The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing. PMID:27141389

  15. Mechanisms for dominance: Adh heterodimer formation in heterozygotes between ENU or x-ray induced null alleles and normal alleles in drosophila melanogaster

    SciTech Connect

    Jiang, J.C.; Lee, W.R.; Chang, S.H.; Silverman, H. )

    1992-01-01

    To study mechanisms for dominance of phenotype, eight ENU- and four x-ray-induced mutations at the alcohol dehydrogenase (Adh) locus were analyzed for partial dominance in their interaction with normal alleles. All ENU and one of the x-ray mutations were single base substitutions; the other three x-ray mutations were 9-21 base deletions. All but one of the 12 mutant alleles were selected for this study because they produced detectable mutant polypeptides, but seven of the 11 producing a peptide could not form dimers with the normal peptide and the enzyme activity of heterozygotes was about half that of normal homozygotes. Four mutations formed dimers with a decreased catalytic efficiency and two of these were near the limit of detectability; these two also inhibited the formation of normal homodimers. The mutant alleles therefore show multiple mechanisms leading to partial enzyme expression in heterozygotes and a wide range of dominance ranging from almost complete recessive to nearly dominant. All amino acid changes in mutant peptides that form dimers are located between amino acids 182 and 194, so this region is not critical for dimerization. It may, however, be an important surface domain for catalyzation. 34 refs., 8 figs., 2 tabs.

  16. Soluble peptide-MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules

    NASA Astrophysics Data System (ADS)

    Ge, Qing; Stone, Jennifer D.; Thompson, M. Todd; Cochran, Jennifer R.; Rushe, Mia; Eisen, Herman N.; Chen, Jianzhu; Stern, Lawrence J.

    2002-10-01

    T cell receptor (TCR)-mediated activation of CD4+ T cells is known to require multivalent engagement of the TCR by, for example, oligomeric peptide-MHC complexes. In contrast, for CD8+ T cells, there is evidence for TCR-mediated activation by univalent engagement of the TCR. We have here compared oligomeric and monomeric Ld and Kb peptide-MHC complexes and free peptide as stimulators of CD8+ T cells expressing the 2C TCR. We found that the monomers are indeed effective in activating naïve and effector CD8+ T cells, but through an unexpected mechanism that involves transfer of peptide from soluble monomers to T cell endogenous MHC (Kb) molecules. The result is that T cells, acting as antigen-presenting cells, are able to activate other naïve T cells.

  17. The saga of MHC-bound peptides: a renaissance for antigen presentation?

    PubMed Central

    Teyton, Luc

    2007-01-01

    In this issue of the JCI, two separate studies on MHC-bound peptides reopen the debate on the utility of peptides for the purposes of vaccination and treatment of autoimmune diseases. In the first study, by Wahlström et al., peptides bound to HLA-DR17 from bronchoalveolar lavage cells of sarcoidosis patients were analyzed in order to identify target antigens of the autoimmune response (see the related article beginning on page 3576). In the second study, by Le Gall et al., the modulation of epitope immunodominance and the processing and presentation of HIV peptides for MHC class I recognition were shown to be dependent on flanking residues that were N terminal to the natural epitopes (see the related article beginning on page 3563). Both studies highlight the tremendous therapeutic potential of MHC-bound peptides. They also emphasize that technical issues are still plaguing this field and hindering our understanding of MHC presentation in vivo. PMID:17975658

  18. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  19. Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants.

    PubMed

    Lillie, Mette; Cui, Jian; Shine, Richard; Belov, Katherine

    2016-07-01

    The cane toad has gained notoriety for its invasion across the Australian landscape, with significant impacts on the native Australian fauna. The invasion has accelerated over time, with invading cane toads adapted for highly dispersive traits. This, however, has come at the cost of the immune system, with lower investment in some immune functions. To investigate the cane toad's immunogenetics, we characterized four major histocompatibility complex (MHC) class IIA and three MHC class IIB loci. Preliminary observations suggest very low allelic diversity at all loci. We also observed various splice isoforms. One isoform seen at one class IIA and two class IIB loci was missing exon 2, which is essential to peptide binding and presentation. The other isoform, observed at a class IIA locus, is likely to be a soluble MHC product. These results may suggest a significant role of alternative splicing of MHC loci in the Australian cane toad. PMID:27233954

  20. Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion

    PubMed Central

    Mahmoud, Ahmad Bakur; Tu, Megan M.; Wight, Andrew; Zein, Haggag S.; Rahim, Mir Munir A.; Lee, Seung-Hwan; Sekhon, Harman S.; Brown, Earl G.; Makrigiannis, Andrew P.

    2016-01-01

    The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed (“functional”), or unlicensed (“hypofunctional”). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab’)2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans. PMID:26928844

  1. Targeted capture enrichment and sequencing identifies extensive nucleotide variation in the turkey MHC-B.

    PubMed

    Reed, Kent M; Mendoza, Kristelle M; Settlage, Robert E

    2016-03-01

    Variation in the major histocompatibility complex (MHC) is increasingly associated with disease susceptibility and resistance in avian species of agricultural importance. This variation includes sequence polymorphisms but also structural differences (gene rearrangement) and copy number variation (CNV). The MHC has now been described for multiple galliform species including the best defined assemblies of the chicken (Gallus gallus) and domestic turkey (Meleagris gallopavo). Using this sequence resource, this study applied high-throughput sequencing to investigate MHC variation in turkeys of North America (NA turkeys). An MHC-specific SureSelect (Agilent) capture array was developed, and libraries were created for 14 turkeys representing domestic (commercial bred), heritage breed, and wild turkeys. In addition, a representative of the Ocellated turkey (M. ocellata) and chicken (G. gallus) was included to test cross-species applicability of the capture array allowing for identification of new species-specific polymorphisms. Libraries were hybridized to ∼12 K cRNA baits and the resulting pools were sequenced. On average, 98% of processed reads mapped to the turkey whole genome sequence and 53% to the MHC target. In addition to the MHC, capture hybridization recovered sequences corresponding to other MHC regions. Sequence alignment and de novo assembly indicated the presence of several additional BG genes in the turkey with evidence for CNV. Variant detection identified an average of 2245 polymorphisms per individual for the NA turkeys, 3012 for the Ocellated turkey, and 462 variants in the chicken (RJF-256). This study provides an extensive sequence resource for examining MHC variation and its relation to health of this agriculturally important group of birds. PMID:26729471

  2. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  3. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    PubMed

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction. PMID:20680261

  4. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance?

    PubMed Central

    Walter, W; Lingnau, K; Schmitt, E; Loos, M; Maeurer, M J

    2000-01-01

    Qualitative differences in the MHC class II antigen processing and presentation pathway may be instrumental in shaping the CD4+ T cell response directed against tumour cells. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M, a heterodimeric MHC class II-like molecule. In contrast to the HLA-DM region in humans, the β-chain locus is duplicated in mouse, with the H2-Mb1 (Mb1β-chain distal to H2-Mb2 (Mb2) and the H2-Ma (Ma) α-chain gene). Here, we show that murine MHC class II and H2-M genes are coordinately regulated in murine tumour cell lines by T helper cell 1 (IFN-γ) and T helper cell 2 (IL-4 or IL-10) cytokines in the presence of the MHC class II-specific transactivator CIITA as determined by mRNA expression and Western blot analysis. Furthermore, Mαβ1 and Mαβ2 heterodimers are differentially expressed in murine tumour cell lines of different histology. Both H2-M isoforms promote equally processing and presentation of native protein antigens to H2-Ad- and H2-Ed-restricted CD4+ T cells. Murine tumour cell lines could be divided into three groups: constitutive MHC class II and CIITA expression; inducible MHC class II and CIITA expression upon IFN-γ-treatment; and lack of constitutive and IFN-γ-inducible MHC class II and CIITA expression. These differences may impact on CD4+ T cell recognition of cancer cells in murine tumour models. © 2000 Cancer Research Campaign PMID:11027433

  5. MHC class II allosteric site drugs: new immunotherapeutics for malignant, infectious and autoimmune diseases.

    PubMed

    Xu, M; Li, J; Gulfo, J V; Von Hofe, E; Humphreys, R E

    2001-01-01

    The discovery of the interactions of the 'Ii-Key' segment of the Ii protein with the major histocmpatibility complex (MHC) Class II allosteric site, which is adjacent to the antigenic peptide-binding site, creates therapeutic opportunities by regulating the antigenic peptide binding to MHC class II molecules. The binding of Ii-Key to the MHC class II allosteric site loosens the hold of the MHC Class II 'clamshell' on antigenic peptides and leads to highly efficient antigenic peptide charging to or releasing from the MHC class II antigenic peptide-binding groove. Ii-Key peptide-induced spilling of bound antigenic peptide, or replacement with inert blockers, leads to 'inert immunosuppression'. Highly efficient replacement of ambient with vaccine peptides by Ii-Key permits 'active immunosuppression' for antigen-specific control of autoimmune diseases in the absence of cytokines or adjuvants. On the other hand, active immunization against cancer or infectious disease can result from epitope replacement mediated by Ii-Key and accompanied by cytokines or other adjuvants. Finally, linking the Ii-Key peptide through a simple polymethylene bridge to an antigenic sequence vastly increases the potency of MHC Class II peptide vaccines. In summary, the discovery of the MHC class II allosteric site allows one to increase the efficiency of MHC class II-related, antigenic epitope-specific therapy for malignant, infectious, and autoimmune diseases. The focus of this review is on the mechanism and potential clinical use of such novel allosteric site-directed, Ii-key drugs. PMID:11439146

  6. MHC II expression in the CNS after long-term demyelination

    SciTech Connect

    Cannella, B.; Aquino, D.A.; Raine, C.S.

    1995-07-01

    The ability of chronically demyelinated central nervous system (CNS) tissue to express major histocompatibility complex (MHC) class II molecules has been measured in mouse spinal cord cultures exposed for 1 and 3 weeks to demyelinating anti-white matter (WM) serum. From previous studies, It was known that after 3 weeks of demyelination in vitro, such cultures are incapable of remyelination. In the present report, MHC II levels were evaluated by immunocytochemistry and by Western and Northern blots. The results have shown that after both 1 and 3 weeks of exposure to myelinotoxic anti-WM serum, the cultures retained the ability to express MHC II and this could be further upregulated by incubation with interferon {gamma} (IFN{gamma}). Control groups showed increased expression of MHC II with age. By immunocytochemistry, all groups of cultures expressed high levels of MHC II and all groups showed upregulation after IFN{gamma} treatment. Anti-WM-treated cultures demonstrated slightly higher levels of MHC II than controls. Morphologically, the MHC II expression was associated with the surface of astrocytes. Semiquantitative analysis by Western blotting confirmed the increase in class II MHC expression in the long-term treated cultures after IFN{gamma} exposure, revealing no differences between anti-WM-treated and complement-treated cultures. This was also supported by Northern blotting which showed similar mRNA levels in both groups. These findings suggest that long-term demyelinated CNS tissue still possesses the ability to interact with CD4{sup +} T cells, observations of significance to the expansion of the chronic multiple sclerosis lesion. 50 refs., 6 figs., 2 tabs.

  7. New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    PubMed Central

    Wright, Belinda; Hamede, Rodrigo; Levan, Laura; Jones, Menna; Ujvari, Beata; Belov, Katherine

    2012-01-01

    Background Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease. Methodology/Principal Findings We compared MHC class I sequences in 29 healthy and 22 diseased Tasmanian devils from West Pencil Pine, a population in north-western Tasmania exhibiting reduced disease impacts of DFTD. Amplified alleles were assigned to four loci, Saha-UA, Saha-UB, Saha-UC and Saha-UD based on recently obtained genomic sequence data. Copy number variation (caused by a deletion) at Saha-UA was confirmed using a PCR assay. No association between the frequency of this deletion and disease status was identified. All individuals had alleles at Saha-UD, disproving theories of disease susceptibility relating to copy number variation at this locus. Genetic variation between the two sub-groups (healthy and diseased) was also compared using eight MHC-linked microsatellite markers. No significant differences were identified in allele frequency, however differences were noted in the genotype frequencies of two microsatellites located near non-antigen presenting genes within the MHC. Conclusions/Significance We did not find predictable differences in MHC class I copy number variation to account for differences in susceptibility to DFTD. Genotypic data was equivocal but indentified genomic

  8. Viral MHC class I-like molecule allows evasion of NK cell effector responses in vivo.

    PubMed

    Pyzik, Michal; Dumaine, Anne; Dumaine, Anne A; Charbonneau, Benoît; Fodil-Cornu, Nassima; Jonjic, Stipan; Vidal, Silvia M

    2014-12-15

    The outcome of mouse CMV (MCMV) infection varies among different inbred mouse strains depending on NK cell effector functions governed through recognition receptor triggering. NK cells from different mouse strains possess diverse repertoires of activating or inhibitory Ly49 receptors, which share some of their polymorphic MHC class I (MHC-I) ligands. By examining the NK cell response to MCMV infection in novel BALB substrains congenic for different MHC (or H-2 in mice) haplotypes, we show that recognition of viral MHC-I-like protein m157 by inhibitory Ly49C receptor allows escape from NK cell control of viral replication. Dominant inhibition by Ly49C bound to self-H-2(b) encoded MHC-I molecules masks this effect, which only becomes apparent in distinct H-2 haplotypes, such as H-2(f). The recognition of m157-expressing cells by Ly49C resulted in both decreased NK cell killing in vitro and reduced rejection in vivo. Further, control of infection with m157-deletant (Δm157) MCMV was improved in mice carrying H-2 molecules unrecognized by Ly49C but allowing expansion of NK cell effectors expressing activating Ly49L receptors. Hence, our study is the first, to our knowledge, to demonstrate that MHC-I mimicry strategies used by MCMV to avoid NK cell control are biologically relevant during in vivo viral infection. Of value for human studies is that only a few genetic assortments conditional on the repertoires of viral MHC-I-like proteins/host NK receptors/MHC haplotypes should allow efficient protection against CMV infection. PMID:25392524

  9. Rapid high resolution MHC class I genotyping of Chinese rhesus macaques by capillary reference strand mediated conformational analysis

    PubMed Central

    Blasky, Alex J.; Karl, Julie A.; Wiseman, Roger W.; Read, Daniel S.; O’Connor, David H.

    2008-01-01

    Rhesus macaques (Macaca mulatta) provide well-established models for studying human disease pathogenesis and vaccine development. When challenged with infectious agents macaques exhibit individual differences in susceptibility. An important determinant of these differences is the complement of major histocompatability complex (MHC) class I sequences expressed by each animal. Although previous studies have reported strong associations between MHC expression and disease outcome, a rapid, cost effective method for high resolution MHC genotyping in macaques is lacking. Here, we adapted a modified heteroduplex assay, reference strand mediated conformational analysis (RSCA), to an ABI 3130xl capillary electrophoresis genetic analyzer for macaque MHC class I genotyping. For validation, we investigated the concordance of RSCA genotyping for fourteen MHC class I sequences in twelve Chinese rhesus macaques whose genotypes were established through cDNA cloning and sequencing of MHC class I sequences. We observed a concordance greater than 98% between RSCA and the cloning and sequencing data. Further, RSCA confirmed the presence of MHC haplotype sharing between three macaques as predicted previously by microsatellite analysis. RSCA genotyping of an additional 25 Chinese rhesus macaques demonstrated that the frequency of these fourteen MHC class I sequences ranged from 5 to 32%, with the Mamu-A1*2601 sequence being most common in this cohort. Capillary RSCA genotyping has the potential to enable researchers to rapidly evaluate MHC class I genotypes in rhesus macaques and associate specific MHC sequences with disease susceptibility. PMID:18629489

  10. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.

    PubMed

    Rasmussen, Michael; Fenoy, Emilio; Harndahl, Mikkel; Kristensen, Anne Bregnballe; Nielsen, Ida Kallehauge; Nielsen, Morten; Buus, Søren

    2016-08-15

    Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL, and insights into the mechanisms that govern peptide-MHC-I binding should facilitate our understanding of CTL biology. Peptide-MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity, yet it has been shown that the stability of the peptide-MHC-I complex is a better correlate of immunogenicity compared with binding affinity. In this study, we have experimentally analyzed peptide-MHC-I complex stability of a large panel of human MHC-I allotypes and generated a body of data sufficient to develop a neural network-based pan-specific predictor of peptide-MHC-I complex stability. Integrating the neural network predictors of peptide-MHC-I complex stability with state-of-the-art predictors of peptide-MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan. PMID:27402703

  11. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure.

    PubMed

    Herdegen, M; Babik, W; Radwan, J

    2014-11-01

    Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles. PMID:25244157

  12. Genomic Porosity between Invasive Chondrostoma nasus and Endangered Endemic Parachondrostoma toxostoma (Cyprinidae): The Evolution of MHC IIB Genes

    PubMed Central

    Šimková, Andrea; Civáňová, Kristína; Gettová, Lenka; Gilles, André

    2013-01-01

    Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic

  13. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species. PMID:21607694

  14. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans.

    PubMed

    Reiser, Jean-Baptiste; Legoux, François; Gras, Stéphanie; Trudel, Eric; Chouquet, Anne; Léger, Alexandra; Le Gorrec, Madalen; Machillot, Paul; Bonneville, Marc; Saulquin, Xavier; Housset, Dominique

    2014-12-15

    The structural rules governing peptide/MHC (pMHC) recognition by T cells remain unclear. To address this question, we performed a structural characterization of several HLA-A2/peptide complexes and assessed in parallel their antigenicity, by analyzing the frequency of the corresponding Ag-specific naive T cells in A2(+) and A2(-) individuals, as well as within CD4(+) and CD8(+) subsets. We were able to find a correlation between specific naive T cell frequency and peptide solvent accessibility and/or mobility for a subset of moderately prominent peptides. However, one single structural parameter of the pMHC complexes could not be identified to explain each peptide antigenicity. Enhanced pMHC antigenicity was associated with both highly biased TRAV usage, possibly reflecting favored interaction between particular pMHC complexes and germline TRAV loops, and peptide structural features allowing interactions with a broad range of permissive CDR3 loops. In this context of constrained TCR docking mode, an optimal peptide solvent exposed surface leading to an optimal complementarity with TCR interface may constitute one of the key features leading to high frequency of specific T cells. Altogether our results suggest that frequency of specific T cells depends on the fine-tuning of several parameters, the structural determinants governing TCR-pMHC interaction being just one of them. PMID:25392532

  15. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  16. ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules.

    PubMed

    Nagarajan, Niranjana A; de Verteuil, Danielle A; Sriranganadane, Dev; Yahyaoui, Wafaa; Thibault, Pierre; Perreault, Claude; Shastri, Nilabh

    2016-08-15

    The peptide repertoire presented by classical as well as nonclassical MHC class I (MHC I) molecules is altered in the absence of the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that most peptides found in wild-type (WT) cells were retained in the absence of ERAAP. In contrast, a subset of "ERAAP-edited" peptides was lost in WT cells, and ERAAP-deficient cells presented a unique "unedited" repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than did those from WT cells. We found that the number and immunogenicity of peptides associated with nonclassical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells. PMID:27371725

  17. No evidence for the effect of MHC on male mating success in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear. PMID:25470381

  18. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis

    PubMed Central

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P.; Stenner, Melanie D.; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W.; Yates, Robin M.; Shi, Yan

    2014-01-01

    Peptides presented by MHC class I molecules are derived mostly from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are derived predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. We report that mouse dendritic cell engagement of a phagocytic target alters endocytic processing and inhibits their proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression towards the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway. PMID:25378230

  19. A flexible docking approach for prediction of T cell receptor–peptide–MHC complexes

    PubMed Central

    Pierce, Brian G; Weng, Zhiping

    2013-01-01

    T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein–protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near-native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes. PMID:23109003

  20. Evolution of MHC class II E beta diversity within the genus Peromyscus.

    PubMed Central

    Richman, Adam D; Herrera, L Gerardo; Nash, Deanna

    2003-01-01

    Progress in understanding the evolution of variation at the MHC has been slowed by an inability to assess the relative roles of mutation vs. intragenic recombination in contributing to observed polymorphism. Recent theoretical advances now permit a quantitative treatment of the problem, with the result that the amount of recombination is at least an order of magnitude greater than that of mutation in the history of class II genes. We suggest that this insight allows progress in evaluating the importance of other factors affecting the evolution of the MHC. We investigated the evolution of MHC class II E beta sequence diversity in the genus Peromyscus. We find evidence for extensive recombination in the history of these sequences. Nevertheless, it appears that intragenic recombination alone is insufficient to account for evolution of MHC diversity in Peromyscus. Significant differences in silent variation among subgenera arose over a relatively short period of time, with little subsequent change. We argue that these observations are consistent with the effects of historical population bottleneck(s). Population restrictions may explain general features of MHC evolution, including the large amount of recombination in the history of MHC genes, because intragenic recombination may efficiently regenerate allelic polymorphism following a population constriction. PMID:12750340

  1. Single-Molecule Motions of MHC Class II Rely on Bound Peptides

    PubMed Central

    Kozono, Haruo; Matsushita, Yufuku; Ogawa, Naoki; Kozono, Yuko; Miyabe, Toshihiro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Okimoto, Noriaki; Taiji, Makoto; Kanagawa, Osami; Sasaki, Yuji C.

    2015-01-01

    The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells. PMID:25606683

  2. ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription

    PubMed Central

    Al-Kandari, Wafa; Jambunathan, Srikarthika; Navalgund, Vandana; Koneni, Rupa; Freer, Margot; Parimi, Neeta; Mudhasani, Rajini; Fontes, Joseph D.

    2006-01-01

    The class II trans-activator (CIITA) is recognized as the master regulator of major histocompatibility complex (MHC) class II gene transcription and contributes to the transcription of MHC class I genes. To better understand the function of CIITA, we performed yeast two-hybrid with the C-terminal 807 amino acids of CIITA, and cloned a novel human cDNA named zinc finger, X-linked, duplicated family member C (ZXDC). The 858 amino acid ZXDC protein contains 10 zinc fingers and a transcriptional activation domain, and was found to interact with the region of CIITA containing leucine-rich repeats. Over-expression of ZXDC in human cell lines resulted in super-activation of MHC class I and class II promoters by CIITA. Conversely, silencing of ZXDC expression reduced the ability of CIITA to activate transcription of MHC class II genes. Given the specific interaction between the ZXDC and CIITA proteins, as well as the effect of ZXDC on MHC gene transcription, it appears that ZXDC is an important regulator of both MHC class I and class II transcription. PMID:16600381

  3. No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear

    PubMed Central

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E.; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear. PMID:25470381

  4. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment

    PubMed Central

    Joncker, Nathalie T.; Shifrin, Nataliya; Delebecque, Frédéric

    2010-01-01

    Some mature natural killer (NK) cells cannot be inhibited by major histocompatibility complex (MHC) I molecules, either because they lack corresponding inhibitory receptors or because the host lacks the corresponding MHC I ligands for the receptors. Such NK cells nevertheless remain self-tolerant and exhibit a generalized hyporesponsiveness to stimulation through activating receptors. To address whether NK cell responsiveness is set only during the NK cell differentiation process, we transferred mature NK cells from wild-type (WT) to MHC I–deficient hosts or vice versa. Remarkably, mature responsive NK cells from WT mice became hyporesponsive after transfer to MHC I–deficient mice, whereas mature hyporesponsive NK cells from MHC I–deficient mice became responsive after transfer to WT mice. Altered responsiveness was evident among mature NK cells that had not divided in the recipient animals, indicating that the cells were mature before transfer and that alterations in activity did not require cell division. Furthermore, the percentages of NK cells expressing KLRG1, CD11b, CD27, and Ly49 receptors specific for H-2b were not markedly altered after transfer. Thus, the functional activity of mature NK cells can be reset when the cells are exposed to a changed MHC environment. These findings have important implications for how NK cell functions may be curtailed or enhanced in the context of disease. PMID:20819928

  5. Evaluation of the major histocompatibility complex (Mhc) in cranes: applications to conservation efforts

    USGS Publications Warehouse

    Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.

    2001-01-01

    Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

  6. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions.

    PubMed

    Cecconi, Virginia; Moro, Monica; Del Mare, Sara; Dellabona, Paolo; Casorati, Giulia

    2008-11-01

    MHC-class I tetramers technology enabled the characterization of peptide-specific T cells at the single cell level in a variety of studies. Several laboratories have also developed MHC-class II multimers to characterize Ag-specific CD4+ T cells. However, the generation and use of MHC-class II multimers seems more problematic than that of MHC-I multimers. We have generated HLA-DR*1101 tetramers in a versatile empty form, which can be loaded after purification with peptides of interest. We discuss the impact of critical biological and structural parameters for the optimal staining of Ag-specific CD4+ T cells using HLA-DR*1101 tetramers, such as: (i) activation state of CD4+ T cells; (ii) membrane trafficking in the target CD4+ T cells; (iii) binding characteristics of the loaded CD4 epitope. Our data indicate that reorganization of TCR on the plasma membrane upon CD4+ T cell activation, as well as an homogenous binding frame of the CD4 epitopes to the soluble HLA-DR monomer, are critical for a stable TCR/MHC-class II tetramer interaction. These factors, together with the low frequencies and affinities of specific CD4+ T cells, explain the need for in vitro expansion or ex vivo enrichment of specific T cells for the optimal visualization with MHC-class II tetramers. PMID:18612991

  7. Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells

    PubMed Central

    Sapkota, Bishu; Hill, Charles E.; Pollack, Brian P.

    2013-01-01

    To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600Eactivity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients. PMID:23483066

  8. HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins.

    PubMed

    Reches, Adi; Nachmani, Daphna; Berhani, Orit; Duev-Cohen, Alexandra; Shreibman, Dorin; Ophir, Yael; Seliger, Barbara; Mandelboim, Ofer

    2016-06-15

    MHC class I molecules, in addition to their role in specific activation of the CTL of adaptive immune system, function also as the main ligands for NK cell inhibitory receptors, which prevent NK cells from killing normal, healthy cells. MHC class I proteins are divided into classical and nonclassical proteins. The former group consists of hundreds of HLA-A, B, and C alleles, which are universally expressed, whereas several alleles of the latter group, such as HLA-G, manifest a restricted expression pattern. Despite the important role played by these molecules in innate and adaptive immune responses, their complex expression regulation is not fully known. In our study, we investigated the regulation processes controlling the expression of MHC class I molecules, with a particular focus on their 3' untranslated regions. We identified heterogeneous nuclear ribonucleoprotein R (HNRNPR) as an important positive regulator of classical and nonclassical MHC class I molecules. HNRNPR is a RNA-binding protein belonging to the heterogeneous nuclear ribonucleoprotein family, which has a known role in processing of precursor mRNA. We demonstrated that HNRNPR binds MHC class I mRNAs in their 3' untranslated regions and enhances their stability and consequently their expression. Furthermore, regulation by HNRNPR modulates the cytotoxic activity of NK cells. In conclusion, we show that HNRNPR acts as a general positive regulator of MHC class I expression. PMID:27194785

  9. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info . PMID:27076335

  10. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    PubMed Central

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  11. 75 FR 28542 - Superior Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... orient the new Superior Resource Advisory Committee members on their roles and responsibilities. DATES... of the roles and responsibilities of the Superior Resource Advisory Committee members; Election...

  12. Characterization and phylogenetic relationship of prosimian MHC class I genes.

    PubMed

    Flügge, Perris; Zimmermann, Elke; Hughes, Austin L; Günther, Eberhard; Walter, Lutz

    2002-12-01

    MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians. PMID:12486535

  13. Spectrum of MHC Class II Variability in Darwin’s Finches and Their Close Relatives

    PubMed Central

    Sato, Akie; Tichy, Herbert; Grant, Peter R.; Grant, B. Rosemary; Sato, Tetsuji; O’hUigin, Colm

    2011-01-01

    The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin’s finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura

  14. Internal jugular vein thrombosis due to heterozygote methylene tetrahydrofolate reductase (MTHFR) 1298C and Factor V G1691A mutations after a minor trauma

    PubMed Central

    Gumussoy, Murat; Arslan, Ilker B.; Cukurova, Ibrahim; Uluyol, Sinan

    2014-01-01

    Internal jugular vein thrombosis usually appears in central venous catheterization, distant malignancies, hypercoagulation, infections, or secondary to ovarian hyperstimulation syndrome. A 44-year-old female patient presented to us with sore throat, and pain and swelling on the right side of her neck. She had a history of simple neck trauma 10 days ago. Ultrasonography and computed tomography showed bilateral multiple lymphadenopathies and right internal jugular vein thrombosis. Patient was put on parenteral antibiotherapy and oral anticoagulant treatment. Genomic DNA tests for hypercoagulation revealed methylene tetrahydrofolate reductase 1298C heterozygote mutation and Factor V G1691A (Leiden) mutation. Patient has been under clinical control for 1 year and does not have any complaints. In this article, diagnosis, treatment, and the etiology of internal jugular vein thrombosis, which is a rare and potentially fatal condition, have been discussed through this case. PMID:25937730

  15. MHC-mediated spatial distribution in brown trout (Salmo trutta) fry

    PubMed Central

    O'Farrell, B; Benzie, J A H; McGinnity, P; Carlsson, J; Eyto, E de; Dillane, E; Graham, C; Coughlan, J; Cross, T

    2012-01-01

    Major histocompatibility complex (MHC) class I-linked microsatellite data and parental assignment data for a group of wild brown trout (Salmo trutta L.) provide evidence of closer spatial aggregation among fry sharing greater numbers of MHC class I alleles under natural conditions. This result confirms predictions from laboratory experiments demonstrating a hierarchical preference for association of fry sharing MHC alleles. Full-siblings emerge from the same nest (redd), and a passive kin association pattern arising from limited dispersal from the nest (redd effect) would predict that all such pairs would have a similar distribution. However, this study demonstrates a strong, significant trend for reduced distance between pairs of full-sibling fry sharing more MHC class I alleles reflecting their closer aggregation (no alleles shared, 311.5±(s.e.)21.03m; one allele shared, 222.2±14.49m; two alleles shared, 124.9±23.88m; P<0.0001). A significant trend for closer aggregation among fry sharing more MHC class I alleles was also observed in fry pairs, which were known to have different mothers and were otherwise unrelated (ML-r=0) (no alleles: 457.6±3.58m; one allele (422.4±3.86 m); two alleles (381.7±10.72 m); P<0.0001). These pairs are expected to have emerged from different redds and a passive association would then be unlikely. These data suggest that sharing MHC class I alleles has a role in maintaining kin association among full-siblings after emergence. This study demonstrates a pattern consistent with MHC-mediated kin association in the wild for the first time. PMID:21934705

  16. Multiple divergent haplotypes express completely distinct sets of class I MHC genes in zebrafish.

    PubMed

    McConnell, Sean C; Restaino, Anthony C; de Jong, Jill L O

    2014-03-01

    The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation. PMID:24291825

  17. Stepwise Threshold Clustering: A New Method for Genotyping MHC Loci Using Next-Generation Sequencing Technology

    PubMed Central

    Stutz, William E.; Bolnick, Daniel I.

    2014-01-01

    Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications. PMID

  18. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    SciTech Connect

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.; Townend, D.C.; Dawkins, R.L. ||

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  19. Evolution of MHC class I genes in the European badger (Meles meles)

    PubMed Central

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately. PMID:22957169

  20. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    PubMed

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC. PMID:17457582

  1. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz.

    PubMed

    Wroblewski, Emily E; Norman, Paul J; Guethlein, Lisbeth A; Rudicell, Rebecca S; Ramirez, Miguel A; Li, Yingying; Hahn, Beatrice H; Pusey, Anne E; Parham, Peter

    2015-05-01

    Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe's three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA

  2. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz

    PubMed Central

    Wroblewski, Emily E.; Norman, Paul J.; Guethlein, Lisbeth A.; Rudicell, Rebecca S.; Ramirez, Miguel A.; Li, Yingying; Hahn, Beatrice H.; Pusey, Anne E.; Parham, Peter

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe’s three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like

  3. The role of polymorphic amino acids of the MHC molecule in the selection of the T cell repertoire

    SciTech Connect

    Bhayani, H.R.; Hedrick, S.M. )

    1991-02-15

    Allelic variants of MHC molecules expressed on cells of the thymus affect the selection and the specificity of the T cell repertoire. The selection is based on either the direct recognition by the TCR of the MHC molecules, or the recognition of a complex determinant formed by self-peptides bound to MHC molecules. In an analysis of the T cell repertoire in bone marrow chimeras that express allelic forms of MHC class II molecules in the thymus epithelium, we find that amino acid substitutions that are predicted to affect peptide binding influence the selection of the T cell repertoire during thymic selection.

  4. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population

    PubMed Central

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.

    2013-01-01

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242

  5. Construction of bioactive chimeric MHC class I tetramer by expression and purification of human-murine chimeric MHC heavy chain and beta(2)m as a fusion protein in Escherichia coli.

    PubMed

    Ren, Ding; Wang, Fang; He, Xiaowen; Jiang, Lei; Li, Dean; Ying, He; Sun, Shuhan

    2006-12-01

    Major histocompatibility (MHC) class I tetramers are used in the quantitative analysis of epitope peptide-specific CD8+ T-cells. An MHC class I tetramer was composed of 4 MHC class I complexes and a fluorescently labeled streptavidin (SA) molecule. Each MHC class I complex consists of an MHC heavy chain, a beta(2)-microglobulin (beta(2)m) molecule and a synthetic epitope peptide. In most previous studies, an MHC class I complex was formed in the refolding buffer with an expressed MHC heavy chain molecule and beta(2)m, respectively. This procedure inevitably resulted in the disadvantages of forming unwanted multimers and self-refolding products, and the purification of each kind of monomer was time-consuming. In the present study, the genes of a human/murine chimeric MHC heavy chain (HLA-A2 alpha1, HLA-A2 alpha2 and MHC-H2D alpha3) and beta(2)m were tandem-cloned into plasmid pET17b and expressed as a fusion protein. The recombinant fusion protein was refolded with each of the three HLA-A2 restricted peptides (HBc18-27 FLPSDFFPSI, HBx52-60 HLSLRGLPV, and HBx92-100 VLHKRTLGL) and thus three chimeric MHC class I complexes were obtained. Biotinylation was performed, and its level of efficiency was observed via a band-shift assay in non-reducing polyacrylamide gel electrophoresis (PAGE). Such chimeric MHC class I tetramers showed a sensitive binding activity in monitoring HLA/A2 restrictive cytotoxic T lymphocytes (CTLs) in immunized HLA/A*0201 transgenic mice. PMID:17046278

  6. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  7. The letter height superiority illusion.

    PubMed

    New, Boris; Doré-Mazars, Karine; Cavézian, Céline; Pallier, Christophe; Barra, Julien

    2016-02-01

    Letters are identified better when they are embedded within words rather than within pseudowords, a phenomenon known as the word superiority effect (Reicher in Journal of Experimental Psychology, 81, 275-280, 1969). This effect is, inter alia, accounted for by the interactive-activation model (McClelland & Rumelhart in Psychological Review, 88, 375-407, 1981) through feedback from word to letter nodes. In this study, we investigated whether overactivation of features could lead to perceptual bias, wherein letters would be perceived as being taller than pseudoletters, or words would be perceived as being taller than pseudowords. In two experiments, we investigated the effects of letter and lexical status on the perception of size. Participants who had to compare the heights of letters and pseudoletters, or of words and pseudowords, indeed perceived the former stimuli as being taller than the latter. Possible alternative interpretations of this height superiority effect for letters and words are discussed. PMID:26370216

  8. Writing superiority in cued recall.

    PubMed

    Fueller, Carina; Loescher, Jens; Indefrey, Peter

    2013-01-01

    In list learning paradigms with free recall, written recall has been found to be less susceptible to intrusions of related concepts than spoken recall when the list items had been visually presented. This effect has been ascribed to the use of stored orthographic representations from the study phase during written recall (Kellogg, 2001). In other memory retrieval paradigms, by contrast, either better recall for modality-congruent items or an input-independent writing superiority effect have been found (Grabowski, 2005). In a series of four experiments using a paired associate learning paradigm we tested (a) whether output modality effects on verbal recall can be replicated in a paradigm that does not involve the rejection of semantically related intrusion words, (b) whether a possible superior performance for written recall was due to a slower response onset for writing as compared to speaking in immediate recall, and (c) whether the performance in paired associate word recall was correlated with performance in an additional episodic memory recall task. We observed better written recall in the first half of the recall phase, irrespective of the modality in which the material was presented upon encoding. An explanation for this effect based on longer response latencies for writing and hence more time for memory retrieval could be ruled out by showing that the effect persisted in delayed response versions of the task. Although there was some evidence that stored additional episodic information may contribute to the successful retrieval of associate words, this evidence was only found in the immediate response experiments and hence is most likely independent from the observed output modality effect. In sum, our results from a paired associate learning paradigm suggest that superior performance for written vs. spoken recall cannot be (solely) explained in terms of additional access to stored orthographic representations from the encoding phase. Our findings rather

  9. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  10. MHC class II proteins contain a potential binding site for the verotoxin receptor glycolipid CD77.

    PubMed

    George, T; Boyd, B; Price, M; Lingwood, C; Maloney, M

    2001-11-01

    Globotriaosyl ceramide or CD77 functions as a cell surface receptor for toxins of the Shiga toxin/verotoxin family and as a marker for germinal center stage B-cells. The B-cell protein CD19 and the interferon-alpha receptor possess verotoxin-like amino acid sequences in their extracellular domains, and CD77 has been shown to function in CD19-mediated adhesion and interferon-induced growth inhibition. The Burkitt's lymphoma cell line, Daudi, is similar to germinal center B-cells in their expression of CD77, CD19 and MHC class II molecules. Using the multiple sequence alignment program, ClustalW, we have identified a verotoxin-like amino acid sequence on the beta-chain of human and murine MHC class II molecules. Binding of CD77 at this site could modulate the peptide-binding properties of these MHC class II molecules. Using Western blot analysis of whole cell extracts, we found that CD77-positive Daudi cells have higher levels of HLA-D proteins than VT500 cells, a Daudi-derived CD77-deficient mutant cell line. In contrast, MHC class II-mediated adhesion and surface expression are similar in the two cell lines. Therefore, CD77 could play a functional or regulatory role in MHC class II-mediated functions specifically relating to antigen presentation by B-cells to T helper cells. PMID:11838965