Science.gov

Sample records for mhd waves effects

  1. Study of MHD Effects on Surface Waves in Liquid Gallium

    NASA Astrophysics Data System (ADS)

    Fox, W.; Ji, H.; Pace, D.; Rappaport, H.

    2001-10-01

    The liquid metal experiment (LMX) at the Princeton Plasma Physics Laboratory has been constructed to study magnetohydrodynamic (MHD) effects on the propagation of surface waves in liquid metals in an imposed horizontal magnetic field. The physics of liquid metal is of interest generally as a regime of small magnetic Reynolds number MHD and more specifically contributes basic knowledge to the applications of liquid lithium walls in a fusion reactor. Surface waves are driven by a wave driver controlled by a PC-based Labview system. A non-invasive diagnostic measures surface fluctuations at multiple locations accurately by reflecting an array of lasers off the surface and onto a screen recorded by an ICCD camera. The real part of the dispersion relation has been measured precisely and agrees well with a linear theory, revealing the role of surface oxidation. Experiments have also confirmed that a transverse magnetic field does not affect wave propagation, and have qualitatively observed MHD damping (a non-zero imaginary component of the dispersion relation) of waves propagating in a parallel magnetic field. Planned upgrades to LMX will enable quantitative measurement of this MHD damping rate as well as experiments on two-dimensional waves and nonlinear waves. Implications to the liquid metal wall concept in fusion reactors will be discussed.

  2. MHD Wave in Sunspots

    NASA Astrophysics Data System (ADS)

    Sych, Robert

    2016-02-01

    The study of magnetohydrodynamic (MHD) waves and oscillations in the solar atmosphere is one of the fastest developing fields in solar physics, and lies in the mainstream of using solar instrumentation data. This chapter first addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, and height localization with the mechanism of cutoff frequency that forms the observed emission variability. Then, it presents a review dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, and investigates the oscillation frequency transformation depending on the wave energy. The chapter also addresses the initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves.

  3. MHD simple waves and the divergence wave

    SciTech Connect

    Webb, G. M.; Pogorelov, N. V.; Zank, G. P.

    2010-03-25

    In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.

  4. Is the Alfven-wave propagation effect important for energy decay in homogeneous MHD turbulence?

    SciTech Connect

    Hossain, Murshed; Gray, Perry C.; Pontius, Duane H. Jr.; Matthaeus, William H.; Oughton, Sean

    1996-07-20

    We investigate the role of three-point decorrelation due to Alfven wave propagation in three-dimensional incompressible homogeneous MHD turbulence. By comparing numerical simulations with theoretical expectations, we have studied how this effect influences the decay of turbulent energy caused by both an external mean magnetic field and the fluctuating turbulent field. Decay is initially suppressed by a mean magnetic field, as expected, but the effect soon saturates. The decay rate does not scale with mean magnetic field for higher values. The disagreement with theoretical predictions can be accounted for by anisotropic spectral transfer. Thus, phenomenological models for energy decay that include decorrelation due to Alfvenic propagation are not substantiated. This work complements our detailed study of various models of energy decay in homogeneous MHD [Hossain et al., 1995].

  5. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  6. Three-dimensional MHD modeling of flare-induced waves in coronal loops: thermal effects

    NASA Astrophysics Data System (ADS)

    Provornikova, Elena; Ofman, Leon; Wang, Tongjiang

    EUV imaging and spectroscopic observations from several space missions (SOHO, TRACE, Hinode/EIS, SDO/AIA) have revealed the presence of MHD waves in solar coronal loops. Past analysis of SOHO/SUMER data suggested that slow magnetosonic waves in hot coronal loops are excited by flares at the loop`s footpoint. Recent Hinode/EIS observed propagating disturbances in active region loops were interpreted as flows as well as waves most likely generated by plasma outflows or jets. In order to understand dynamics of plasma in coronal loops due to flares or jets at the lower corona boundary, we perform full 3D MHD modeling of an active region and consider different mechanisms of wave excitation. We assume an initial equilibrium of the model active region with dipole magnetic field structure, gravitationally stratified density and temperature obtained from polytropic equation of state of the background coronal plasma. We extend previous isothermal studies by including full energy equation with empirical heating and radiative losses terms in the model. We study waves in both, short and long loops, and consider two excitation mechanisms in the model: impulsive plasma injection into the steady plasma upflow along the magnetic field lines, and impulsive heating at the footpoint of the loop. We show initiation and evolution of flows, excitation and damping of waves and flow-wave interaction in the loops. We compare our new results with previous models and observations.

  7. Alfven Wave Tomography for Cold MHD Plasmas

    SciTech Connect

    I.Y. Dodin; N.J. Fisch

    2001-09-07

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.

  8. Effects of spatial transport and ambient wave intensity on the generation of MHD waves by interstellar pickup protons

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.

    1995-01-01

    Intense MHD waves generated by the isotropization of interstellar pickup protons were predicted by Lee and Ip (1987) to appear in the solar wind whenever pickup proton fluxes were high enough. However, in reality these waves have proved surprisingly difficult to identify, even in the presence of observed pickup protons. We investigate the wave excitation by isotropization from an initially broad pitch-angle distribution instead of the narrow ring-beam assumed by Lee and Ip. The pitch angle of a newly-ionized proton is given by theta(sub o), the angle between the magnetic field (averaged over a pickup proton gyroradius) and the solar wind flow at the time of ionization. Then, a broadened distribution results from spatial transport of pickup protons prior to isotropization from regions upstream along the field containing different values of theta(sub o). The value of theta(sub o) will vary as a result of the ambient long-wavelength fluctuations in the solar wind. Thus, the range of initial pitch-angles is directly related to the amplitude of these fluctuations within a length-scale determined by the isotropization time. We show that a broad initial pitch-angle distribution can significantly modify the intensity and shape of the pickup-proton-generated wave spectrum, and we derive a criterion for the presence of observable pickup-proton generated waves given the intensity of the ambient long wavelength fluctuations.

  9. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    SciTech Connect

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  10. MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2016-02-01

    This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.

  11. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  12. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  13. Nonlinear MHD Waves in a Prominence Foot

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  14. Dispersion equation of gravito-MHD waves

    NASA Astrophysics Data System (ADS)

    Jovanović, Gordana

    2016-03-01

    We derive the dispersion equation for gravito-MHD waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. In the present model the sound and the Alfvén speeds are constant. It is known that in this model analytical solutions can be obtained for linearized perturbations. There are three modes propagating in the considered plasma: the fast, the slow and the Alfvén mode, all modified by gravity. In the extreme short wavelength limit, these waves propagate in a locally uniform plasma. The waves with larger wavelengths will be affected by the nonuniformity of the medium resulting from the action of gravitational force ρg. In the case without magnetic field these waves become gravito-acoustic waves.

  15. Dispersive waves in a seeded MHD generator.

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    The equations giving the response of a slightly ionized plasma with monatomic components to sinusoidal perturbations have been formulated. Included in the model equations were the electron Hall effect, electron thermal diffusion, radiation, and electron-atom rate processes. Plasma conditions were limited to those where viscous effects, the induced magnetic field, ion slip, and atom-atom inelastic processes can be neglected. Presented are results of numerical calculations for MHD generators with a working fluid of potassium seeded argon.

  16. Propagation and damping of slow MHD waves in a flowing viscous coronal plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Kumar, Anil; Murawski, K.

    2016-04-01

    We investigate the propagation of slow MHD waves in a flowing viscous solar coronal plasma. The compressive viscosity and steady flow along and opposite to the wave propagation are taken into account to study the damping of slow waves. We numerically solve the MHD equations by MacCormack method to examine the effect of steady flow on the damping of slow MHD waves in viscous solar coronal plasma. Amplitude of velocity perturbation and damping time of slow waves decrease with the increase in the value of Mach number. Flow causes a phase shift in the perturbed velocity amplitude and an increase in wave period. The damping of slow waves in flowing viscous plasma is stronger than the damping of waves in viscous plasma. Slow wave in backward flow damps earlier than the wave in forward flow.

  17. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.

  18. Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2014-01-01

    In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.

  19. MHD Effects on Surface Stability and Turbulence in Liquid Metal

    NASA Astrophysics Data System (ADS)

    Bell, Lauren; Ji, Hantau; Zweben, Stewart

    2000-10-01

    Magnetohydrodynamic (MHD) turbulence is a significant element in understanding many phenomena observed in space and laboratory plasmas. MHD models also appropriately describe behaviors of liquid metals. Currently, there are many interests in the utilization of liquid metal in fusion devices; therefore an understanding of MHD physics in liquid metals is imperative. A small experiment has been built to study the MHD effects on turbulence and surface waves in liquid metal. To fully examine the MHD properties, a reference case in hydrodynamics is established using water or Gallium without the presence of the magnetic field or electrical current. An external wave driver with varying frequency and amplitude excites surface waves on the liquid metal. The experimental case using Gallium is run with the presence of the magnetic field and/ or electric pulses. The magnetic field is induced using two magnetic field coils on either side of the liquid metal and the electrical current is induced using electrodes. The measured dispersion relations of the two cases are then compared to the theoretical predictions. Several diagnostics are used in concert to accurately measure the wave characteristics. The surface waves will be recorded visually through a camera and the amplitude and frequency of the waves will be measured using a laser and fiber-optic system. This successful experiment will significantly enhance knowledge of liquid metal wave behavior and therefore aid in the applications of MHD in fusion plasmas. This worked was conducted as part of the DOE-sponsored National Undergraduate Fellowship Program in Plasma Physics

  20. A Leaky Waveguide Model for MHD Wave Driven Winds from Coronal Holes

    NASA Technical Reports Server (NTRS)

    Davila, J. M.

    1985-01-01

    Magnetohydrodynamic (MHD) waves, driven by the large scale convective motions of the photosphere are suggested as a possible source of additional acceleration for the stellar wind. Most of the turbulent power in a coronal hole is carried by MHD waves with periods of a few hundred seconds or longer. This is evident from direct observations of turbulence in the solar photosphere, as well as in situ observations of turbulence in the solar wind. But waves with periods this long have wavelengths which are typically as large as the transverse scale of the coronal hole flux tube itself. For these waves boundary effects are important and the coronal hole must be treated as a waveguide. The propagation of MHD waves using this waveguide approach is discussed. The simple model presented demonstrates that coronal holes can act as waveguides for MHD waves. For typical solar parameters the waves are compressible and can generate a wave tensile force which tends to cancel at least part of the wave pressure force. This effect tends to decrease the efficiency of MHD wave acceleration.

  1. Two-fluid MHD Regime of Drift Wave Instability

    NASA Astrophysics Data System (ADS)

    Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong

    2015-11-01

    Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.

  2. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  3. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  4. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  5. Doppler displacements in kink MHD waves in solar flux tubes

    NASA Astrophysics Data System (ADS)

    Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto

    Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.

  6. MHD-waves in the geomagnetic tail: A review

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil

    2015-03-01

    This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.

  7. Eigen-Frequencies of MHD Wave Equations in the Presence of Longitudinal Stratification Density

    NASA Astrophysics Data System (ADS)

    Esmaeili, Shahriar; Nasiri, Mojtaba; Dadashi, Neda; Safari, Hossein

    2015-04-01

    Coronal Loops oscillations and MHD waves propagating in solar corona and transition region has been observed by TRACE telescope in 1999. In this Study, the MHD mode oscillations of the coronal plasma are studied. The aim is to identify the effect of structuring such as density on the frequencies of oscillations. We modeled the coronal medium as a zero-plasma with longitudinally density stratification. Magnetic flux tube oscillations are categorized into sausage, kink and torsion modes. The MHD equations are reduced and the governing equation are solved numerically using Finite Element Method. Eigenfrequencies and eigenfunctions are extracted. The torsional mode is analyzed. By changing the stratification parameter the antinodes move towards the footpoints and we also concluded that in the thin tube approximation, leakage modes are propagated.

  8. Is the magnetosphere a lens for MHD waves?

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Sharma, A. S.; Valdivia, J. A.

    1993-01-01

    A viewpoint of the magnetosphere as a lens for MHD waves is presented. Using a simple model of the variation of the Alfven speed as proportional to the local magnetic value given by the Earth's dipole field and that due to the magnetopause currents represented by a current loop, it is found that the near-Earth magnetotail, in the range 8-16 R(sub E), is the focus of the magnetospheric lens. This location is found to be quite insensitive to a wide variation of parameters. By using simple diffraction theory analysis it is found that the focal region extends about 1 R(sub E) about the neutral sheet in the north-south plane and 0.2 - 0.5 R(sub E) along the Sun-Earth line. Compressive MHD waves carried by the solar wind or created by the interaction of the wind with the magnetopause can be amplified by a factor of about 100 in the focal region and this has potentially important implications to substorm activity.

  9. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  10. Kelvin-Helmholtz Unstable Magnetotail Flow Channels: Deceleration and Radiation of MHD Waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-12-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with burstybulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes areinvestigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. Theseinstabilities are likely to be important for flow channel braking where the KHI removes energy from the flow.At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modesinto propagating modes leading to the radiation of MHD waves from the flow channel. The coupling ofBBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBFexcitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for theobservations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  11. Kelvin-Helmholtz unstable magnetotail flow channels: Deceleration and radiation of MHD waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-06-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with bursty bulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes are investigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. These instabilities are likely to be important for flow channel braking where the KHI removes energy from the flow. At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modes into propagating modes leading to the radiation of MHD waves from the flow channel. The coupling of BBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBF excitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for the observations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  12. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  13. Energetic particle effects on global MHD modes

    SciTech Connect

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite {omega}{sub *i}). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs.

  14. On the theory of MHD waves in a shear flow of a magnetized turbulent plasma

    NASA Astrophysics Data System (ADS)

    Mishonov, Todor M.; Maneva, Yana G.; Dimitrov, Zlatan D.; Hristov, Tihomir S.

    The set of equations for magnetohydrodynamic (MHD) waves in a shear flow is consecutively derived. This investigation is devoted on the wave heating of space plasmas. The proposed scenario involves the presence of a self-sustained turbulence and magnetic field. In the framework of Langevin--Burgers approach the influence of the turbulence is described by an additional external random force in the MHD system. Kinetic equation for the spectral density of the slow magnetosonic (Alfvénic) mode is derived in the short wavelength (WKB) approximation. The results show a pressing need for conduction of numerical Monte Carlo (MC) simulations with a random driver to take into account the influence of the long wavelength modes and to give a more precise analytical assessment of the short ones. Realistic MC calculations for the heating rate and shear stress tensor should give an answer to the perplexing problem for the missing viscosity in accretion disks and reveal why the quasars are the most powerful sources of light in the universe. It is supposed that the heating mechanism by alfvén waves absorption is common for many kinds of space plasmas from solar corona to active galactic nuclei and the solution of these longstanding puzzles deserves active interdisciplinary research. The work is illustrated by typical solutions of MHD equations and their spectral densities obtained by numerical calculations or by analytical solutions with the help of Heun functions. The amplification coefficient of slow magnetosonic wave in shear flow is analytically calculated. Pictorially speaking, if in WKB approximation we treat Alfvén waves as particles -- this amplification is effect of ``lasing of alfvons.''

  15. Computational Investigation of Extended-MHD Effects on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    King, Jacob R.; Kruger, Scott E.

    2013-10-01

    We present studies with the extended-MHD NIMROD code of the tearing instability and edge-localized modes (ELMs). In our first study we use analytics and computations to examine tearing in a large-guide field with a nonzero pressure gradient where previous results show drift effects are stabilizing [Coppi, PoF (1964)]. Our work finds three new results: (1) At moderately large ion gyroradius the mode rotates at the electron drift velocity and there is no stabilization. (2) With collision-less drift reconnection, computations must also include electron gyroviscosity and advection. And (3) we derive a dispersion relation that exhibits diamagnetic stabilization and describes the transition between the electron-fluid-mediated regime of (1) and the semi-collisional regime [Drake and Lee, PoF (1977)]. Our second study investigates the transition from an ideal- to an extended-MHD model in an ELM unstable tokamak configuration. With the inclusion of a full generalized Ohm's law the growth rate is enhanced at intermediate wave-numbers and cut-off at large wave-numbers by diamagnetic effects consistent with analytics [Hastie et al., PoP (2003)]. Adding ion gyroviscosity to the model is stabilizing at large wave-numbers consistent with recent results [Xu et al., PoP (2013)]. Support provided by US DOE.

  16. Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops

    NASA Technical Reports Server (NTRS)

    Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.

    1995-01-01

    The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.

  17. Stirring Coronal Spaghetti: Exploring Multiple Interactions Between MHD Waves and Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-05-01

    The solar corona has been revealed in the past few decades to be a highly dynamic nonequilibrium plasma environment. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be strongly turbulent, and models that invoke the dissipation of incompressible Alfvenic fluctuations have had some success in explaining the heating. However, many of these models neglect the mounting evidence that density and pressure variations may play an important role in the mass and energy balance of this system. In this presentation I will briefly review observations of both compressible and incompressible MHD fluctuations in the corona and solar wind, and discuss future prospects with DKIST. I will also attempt to outline the many ways that these different fluctuation modes have been proposed to interact with one another -- usually with an eye on finding ways to enhance their dissipation and heating. One under-appreciated type of interaction is the fact that Alfven waves will undergo multiple reflections and refractions in a "background plasma" filled with localized density fluctuations. It is becoming increasingly clear that models must not only include the effects of longitudinal variability (e.g., magnetoacoustic waves and pulse-like jets) but also transverse "striations" that appear naturally in a structured magnetic field with small-scale footpoint variability. Future off-limb observations, such as those with DKIST's Cryo-NIRSP instrument, will be crucial for providing us with a detailed census of MHD waves and their mutual interactions in the corona.

  18. Study of Magnetorotational Instability and MHD Surface Waves in Liquid Gallium

    NASA Astrophysics Data System (ADS)

    Ji, H.; Chen, F.; Kageyama, A.; Goodman, J.; Shoshan, E.; Rappaport, H.; Borg, M.; Halcrow, J.

    2002-11-01

    Two liquid gallium experiments have been constructed in PPPL to study basic MHD physics related to astrophysics and fusion sciences. The first experiment focuses on laboratory studies of the magnetorotational instability (MRI) in a rotating gallium disk or a short Couette flow geometry. The MRI has been proposed as a dominant mechanism for fast angular momentum transport in electrically-conducting accretion disks ranging from quasars and X-ray binaries to cataclysmic variables and perhaps even protoplanetary disks. Experiments using a prototype water disk has revealed importance of Ekman circulation, consistent with 2D hydrodynamic simulations. A revised design using multiple rings at each end of the flow are being implemented. The second experiment focuses on MHD surface waves in a large liquid gallium pool. It has been found that the damping rates of driven 1D surface waves propogating along a magnetic field are consistent with linear theory. The parametric excitation of 2D surface waves is being studied to elucidate effects of a horizonally imposed magnetic field on the dynamics of pattern formation. Detailed results will be presented for both experiments and implications to astrophysics and to the liquid metal wall concept in fusion reactors will be discussed. This work is supported by DoE.

  19. Nonlinear Alfvén waves in dissipative MHD plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, Jugao; Chen, Yinhua; Yu, M. Y.

    2016-03-01

    Nonlinear Alfvén wave trains in resistive and viscous magnetohydrodynamics plasmas are investigated. In weakly dissipative one-dimensional systems the inclusion of these effects leads to dissipative damping of Alfvén waves and heating of the plasma. It is found that plasma flow along the background magnetic field can reduce/increase the visco-resistive damping when the flow is along/against the Alfvén wave. In strongly dissipative systems, the front of the Alfvén wave train damps slower than the others, and it gradually forms a damping soliton. In two-dimensional systems, Alfvén wave phase mixing induced by inhomogeneity of the background plasma leads to enhancement of the dissipative damping and the corresponding plasma heating.

  20. Linear MHD Wave Propagation in Time-Dependent Flux Tube. II. Finite Plasma Beta

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-04-01

    The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi ( Solar Phys. 2013, doi:10.1007/s11207-013-0366-9, Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.

  1. On The Role of MHD Waves in Heating Localised Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Nelson, C. J.

    2016-04-01

    Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.

  2. Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zheng, Huinan; Wang, S.; Thompson, B. J.; Plunkett, S. P.; Zhao, X. P.; Dryer, M.

    2001-11-01

    We investigate the global large amplitude waves propagating across the solar disk as observed by the SOHO/Extreme Ultraviolet Imaging Telescope (EIT). These waves appear to be similar to those observed in Hα in the chromosphere and which are known as ``Moreton waves,'' associated with large solar flares [Moreton, 1960, 1964]. Uchida [1968] interpreted these Moreton waves as the propagation of a hydromagnetics disturbance in the corona with its wavefront intersecting the chromosphere to produce the Moreton wave as observed in movie sequences of Hα images. To search for an understanding of the physical characteristics of these newly observed EIT waves, we constructed a three-dimensional, time-dependent, numerical magnetohydrodynamic (MHD) model. Measured global magnetic fields, obtained from the Wilcox Solar Observatory (WSO) at Stanford University, are used as the initial magnetic field to investigate hydromagnetics wave propagation in a three-dimensional spherical geometry. Using magnetohydrodynamic wave theory together with simulation, we are able to identify these observed EIT waves as fast mode MHD waves dominated by the acoustic mode, called magnetosonic waves. The results to be presented include the following: (1) comparison of observed and simulated morphology projected on the disk and the distance-time curves on the solar disk; (2) three-dimensional evolution of the disturbed magnetic field lines at various viewing angles; (3) evolution of the plasma density profile at a specific location as a function of latitude; and (4) computed Friedrich's diagrams to identify the MHD wave characteristics.

  3. Realistic Modeling of SDO/AIA-discovered Coronal Fast MHD Wave Trains in Active Regions

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Liu, Wei

    2016-05-01

    High-resolution EUV observations by space telescopes have provided plenty of evidence for coronal MHD waves in active regions. In particular, SDO/AIA discovered quasi-periodic, fast-mode propagating MHD wave trains (QFPs), which can propagate at speeds of ~1000 km/s perpendicular to the magnetic field. Such waves can provide information on the energy release of their associated flares and the magnetized plasma structure of the active regions. Before we can use these waves as tools for coronal seismology, 3D MHD modeling is required for disentangling observational ambiguities and improving the diagnostic accuracy. We present new results of observationally contained models of QFPs using our recently upgraded radiative, thermally conductive, visco-resistive 3D MHD code. The waves are excited by time-depended boundary conditions constrained by the spatial (localized) and quasi-periodic temporal evolution of a C-class flare typically associated with QFPs. We investigate the excitation, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, magnetic field structure, and the location of the flaring site within the active region. We synthesize EUV intensities in multiple AIA channels and then obtain the model parameters that best reproduce the properties of observed QFPs. We discuss the implications of our model results for the seismological application of QFPs and for understanding the dynamics of their associated flares.

  4. Guided MHD waves as a coronal diagnostic tool

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.

  5. MHD Turbulence and the FIP Effect

    NASA Astrophysics Data System (ADS)

    Laming, Martin

    2010-11-01

    The First Ionization Potential (FIP) Effect is the by now well known abundance anomaly in the solar corona and slow speed solar wind, where elements with FIP less than about 10 eV (e.g. Fe, Mg, Si) are enhanced in abundance by a factor of about 3-4. High FIP elements (e.g. C, O, Ar) are essentially unchanged, while the highest FIP element, He, is depleted by a factor of about 0.5. A similar, though reduced abundance anomaly is found in the fast speed solar wind, and in coronal holes. These element fractionations are best explained by the action of the ponderomotive force in the solar chromosphere, arising as Alfvén waves reflect from the strong density gradients. Chromospheric ions, but not neutrals, are preferentially accelerated upwards. I will describe some recent developments, including the parametric generation of slow mode waves by the Alfvén wave driver, that now allows both the enhancement of Fe, Mg, S, etc, and the depletion of He to occur simultaneously.

  6. Linear MHD Wave Propagation in Time-Dependent Flux Tube. I. Zero Plasma-β

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-03-01

    MHD waves and oscillations in sharply structured magnetic plasmas have been studied for static and steady systems in the thin tube approximation over many years. This work will generalize these studies by introducing a slowly varying background density in time, in order to determine the changes to the wave parameters introduced by this temporally varying equilibrium, i.e. to investigate the amplitude, frequency, and wavenumber for the kink and higher order propagating fast magnetohydrodynamic wave in the leading order approximation to the WKB approach in a zero- β plasma representing the upper solar atmosphere. To progress, the thin tube and over-dense loop approximations are used, restricting the results found here to the duration of a number of multiples of the characteristic density change timescale. Using such approximations it is shown that the amplitude of the kink wave is enhanced in a manner proportional to the square of the Alfvén speed, . The frequency of the wave solution tends to the driving frequency of the system as time progresses; however, the wavenumber approaches zero after a large multiple of the characteristic density change timescale, indicating an ever increasing wavelength. For the higher order fluting modes the changes in amplitude are dependent upon the wave mode; for the m=2 mode the wave is amplified to a constant level; however, for all m≥3 the fast MHD wave is damped within a relatively small multiple of the characteristic density change timescale. Understanding MHD wave behavior in time-dependent plasmas is an important step towards a more complete model of the solar atmosphere and has a key role to play in solar magneto-seismological applications.

  7. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect

    Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  8. The Generation and Damping of Propagating MHD Kink Waves in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; Verth, G.; Hillier, A.; Erdélyi, R.

    2014-03-01

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  9. Numerical modelling of MHD waves in the solar chromosphere.

    PubMed

    Carlsson, Mats; Bogdan, Thomas J

    2006-02-15

    Acoustic waves are generated by the convective motions in the solar convection zone. When propagating upwards into the chromosphere they reach the height where the sound speed equals the Alfvén speed and they undergo mode conversion, refraction and reflection. We use numerical simulations to study these processes in realistic configurations where the wavelength of the waves is similar to the length scales of the magnetic field. Even though this regime is outside the validity of previous analytic studies or studies using ray-tracing theory, we show that some of their basic results remain valid: the critical quantity for mode conversion is the angle between the magnetic field and the k-vector: the attack angle. At angles smaller than 30 degrees much of the acoustic, fast mode from the photosphere is transmitted as an acoustic, slow mode propagating along the field lines. At larger angles, most of the energy is refracted/reflected and returns as a fast mode creating an interference pattern between the upward and downward propagating waves. In three-dimensions, this interference between waves at small angles creates patterns with large horizontal phase speeds, especially close to magnetic field concentrations. When damping from shock dissipation and radiation is taken into account, the waves in the low-mid chromosphere have mostly the character of upward propagating acoustic waves and it is only close to the reflecting layer we get similar amplitudes for the upward propagating and refracted/reflected waves. The oscillatory power is suppressed in magnetic field concentrations and enhanced in ring-formed patterns around them. The complex interference patterns caused by mode-conversion, refraction and reflection, even with simple incident waves and in simple magnetic field geometries, make direct inversion of observables exceedingly difficult. In a dynamic chromosphere it is doubtful if the determination of mean quantities is even meaningful. PMID:16414886

  10. Large amplitude MHD waves upstream of the Jovian bow shock: Reinterpretation

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Wong, H. K.; Vinas, A. F.; Smith, C. W.

    1984-01-01

    Observations of large amplitude magnetohydrodynamic (MHD) waves upstream of the Jovian bow shock were previously interpreted as arising from a resonant electromagnetic ion beam instability. That interpretation was based on the conclusion that the observed fluctuations were predominantly right elliptically polarized in the solar wind rest frame. Because it was noted that the fluctuations are, in fact, left elliptically polarized, a reanalysis of the observations was necessary. Several mechanisms for producing left hand polarized MHD waves in the observed frequency range were investigated. Instabilities excited by protons appear unlikely to account for the observations. A resonant instability excited by relativistic electrons escaping from the Jovian magnetosphere is a likely source of free energy consistent with the observations. Evidence for the existence of such a population of electrons was found in both the Low Energy Charged Particle experiments and Cosmic Ray experiments on Voyager 2.

  11. Determining the Importance of Energy Transfer between Magnetospheric Regions via MHD Waves using Constellations of Spacecraft

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia A.

    2004-01-01

    This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.

  12. The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.

  13. Nonlinear Waves in Hall MHD: Analysis and Comparison to Known Linear Waves

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Mahajan, Swadesh; Dorland, William

    2004-11-01

    Recently, a novel set of nonlinear waves were found to satisfy the Hall-Magnetohydrodynamic (HMHD) equations. The Mahajan-Krishan solution is a generalization of the classic Walén Nonlinear Alvén wave, of the form b=±αv. The implications of this mode are studied, including polarization and superposition. In particular, the gyrokinetic limit (k_⊥≫ k_\\|) is used in an attempt to match the MK wave to known Kinetic Alfvén waves and introduce FLR effects.

  14. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  15. MHD waves and oscillations in the solar plasma. Introduction.

    PubMed

    Erdélyi, Robert

    2006-02-15

    The Sun's magnetic field is responsible for many spectacularly dynamic and intricate phenomena, such as the 11 year solar activity cycle, the hot and tenuous outer atmosphere called the solar corona, and the continuously expanding stream of solar particles known as the solar wind.Recently, there has been an enormous increase in our understanding of the role of solar magnetism in producing the observed complex atmosphere of the Sun. One such advance has occurred in the detection, by several different high-resolution space instruments on-board the Solar and Heliospheric Observatory and Transition Region and Coronal Explorer satellites, of magnetic waves and oscillations in the solar corona. The new subjects of solar atmospheric and coronal seismology are undergoing rapid development. The aim of this Scientific Discussion Meeting was to address the progress made through observational, theoretical and numerical studies of wave phenomena in the magnetic solar plasma. Major theoretical and observational advances were reported by a wide range of international scientists and pioneers in this field, followed by lively discussions and poster sessions on the many intriguing questions raised by the new results. Theoretical and observational aspects of magnetohydrodynamic waves and oscillations in general, and how these wave phenomena differ in various regions of the Sun, including sunspots, the transient lower atmosphere and the corona (in magnetic loops, plumes and prominences), were addressed through invited review papers and selected poster presentations. The results of these deliberations are collected together in this volume. PMID:16414880

  16. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  17. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  18. Ultralow frequency MHD waves in Jupiter's middle magnetosphere

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1989-01-01

    Ultralow frequency (ULF) magnetohydrodynamic pulsations (periods between 10 and 20 min) were observed on July 8-11, 1979 as Voyager 2 traveled through the middle magnetosphere of Jupiter between radial distances of 10 R(J) and 35 R(J). The particle and magnetic pressure perturbations associated with the waves were anticorrelated. The electron and ion perturbations on the dayside were in phase. The pressure perturbations occurred both within and outside of the plasma sheet. Perturbations in the transverse components of the magnetic field were associated with the compressional perturbations but the transverse power peaked within the plasma sheet of Jupiter and diminished rapidly outside of it.

  19. Linear MHD Wave Propagation in Time-Dependent Flux Tube. III. Leaky Waves in Zero-Beta Plasma

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2016-01-01

    In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys. 289, 899 - 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought.

  20. Effect of gasdynamic turbulence on the integral characteristics of conduction MHD generators

    SciTech Connect

    Vatazhin, A.B.; Levitan, Y.S.

    1986-04-01

    The authors analyze the effect of correlations on the integral characteristics of conduction MHD generators of different type. The paper studies a flow in the core of the channel of an MGD generator in the approximation of small magnetic Reynolds numbers. Two limiting situations characteristic for MHD setups are examined: a liquid-metal MHD channel and a conduction MHD generator operating on combustion products.

  1. Fast Wave Trains Associated with Solar Eruptions: Insights from 3D Thermodynamic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Downs, C.; Liu, W.; Torok, T.; Linker, J.; Mikic, Z.; Ofman, L.

    2015-12-01

    EUV imaging observations during the SDO/AIA era have provided new insights into a variety of wave phenomena occurring in the low solar corona. One example is the observation of quasi-periodic, fast-propagating wave trains that are associated with solar eruptions, including flares and CMEs. While there has been considerable progress in understanding such waves from both an observational and theoretical perspective, it remains a challenge to pin down their physical origin. In this work, we detail our results from a case-study 3D thermodynamic MHD simulation of a coronal mass ejection where quasi-periodic wave trains are generated during the simulated eruption. We find a direct correlation between the onset of non-steady reconnection in the flare current sheet and the generation of quasi-periodic wave train signatures when patchy, collimated downflows interact with the flare arcade. Via forward modeling of SDO/AIA observables, we explore how the appearance of the wave trains is affected by line-of-sight integration and the multi-thermal nature of the coronal medium. We also examine how the wave trains themselves are channeled by natural waveguides formed in 3D by the non-uniform background magnetic field. While the physical association of the reconnection dynamics to the generation of quasi-periodic wave trains appears to be a compelling result, unanswered questions posed from recent observations as well as future prospects will be discussed.

  2. On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.

    2016-01-01

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  3. Wall surface leakage effects on MHD power generator performance

    SciTech Connect

    Pian, C.C.P.; Schmitt, E.W.

    1994-12-31

    Internal surface leakage effects on the MHD generator performance were studied using a combined experimental and analytical approach. A method to determine the wall resistances and slag layer conductivities from seed shut-off test data is introduced. These measured resistance values are then utilized in generator performance analyses. Calculated results were compared with measured data from MHD generator tests to verify the modeling approach. Finally, these calculated results were used to investigate the distribution of internal leakage currents as a function of generator size, generator operating conditions, and iron oxide injection rates. An advantage of this analysis methodology is the ability to differentiate between wall leakage and apparent leakage effects in the measured test data.

  4. Ultra-High-Resolution Observations of MHD Waves in Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Jess, D. B.; Verth, G.

    2016-02-01

    This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

  5. Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.

    1997-01-01

    Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.

  6. Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.

  7. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves

  8. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    SciTech Connect

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I.; Downs, Cooper; Roussev, Ilia I.; Evans, Rebekah M.

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  9. The energy flux of MHD wave modes excited by realistic photospheric drivers

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart

    The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.

  10. The properties of MHD waves and instabilities in solar plasmas with anisotropic temperature and thermal fluxes

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir; Dzhalilov, Namig

    As confirmed by observations, the temperature anisotropy relative to the magnetic field and the thermal fluxes are typical characteristics of the collisionless and magnetized plasma of the solar corona and solar wind. The properties of such plasma are described in terms of the anisotropic magnetohydrodynamics based on the kinetic equation under the 16-moment approximation. MHD waves and instabilities in the collisionless solar plasma have been analyzed under the aforementioned approximation taking into account the anisotropy of the plasma pressure along and across the magnetic field and the thermal flux along the field. It is established that the thermal flux results in the asymmetry of phase velocities of the compressible wave modes with respect to the outer magnetic field, in a strong interaction between the modes (particularly, between the retrograde modes propagating against the magnetic field), and in oscillatory in-stability of these modes. The thresholds of the mirror and fire-hose instabilities coincide with their kinetic expressions; the increments coincide qualitatively. At a certain propagation angle, the resonance interaction of three retrograde modes (fast sound, slow magnetosound, and slow sound ones) under the occurrence conditions of the classical aperiodic fire-hose instability gives rise to the oscillatory "fire-hose" instability of compressible modes, whose maximum increment may exceed the maximum increment of the classical fire-hose instability. A good agreement of the results obtained in terms of anisotropic MHD with the low-frequency limit of the kinetic description allows us to consider the applied approximation adequate for the description of large-scale dynamics of collisionless anisotropic solar plasma and to use it in the study of waves and instabilities in magnetic tubes and other magnetic features in the solar corona, magnetic reconnection, etc.

  11. Generalized reduced MHD equations

    SciTech Connect

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson.

  12. Kinetic Effects of Energetic Particles on Resistive MHD Stability

    SciTech Connect

    Takahashi, R.; Brennan, D. P.; Kim, C. C.

    2009-04-03

    We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle {beta}{sub frac} is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a {delta}f particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD[C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant {beta}, {beta}{sub frac}, and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.

  13. MHD nature of ionospheric wave packets generated by the solar terminator

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Yu. V.; Zhivetiev, I. V.

    2010-02-01

    The morphology of medium-scale traveling wave packets is for the first time presented based on the total electron content (TEC), measured at the global network of GPS receivers (up to 1500 stations) during the long period (from 1998 to 2007) and at the GPS/GEONET dense Japan network (1220 stations) in 2008—2009. In the time domain, these packets are chains of narrowband TEC variations (trains) with a duration of about 1—2 h, a total duration of up to 6 h, and a variation period of 10—30 min. In the winter Northern Hemisphere, traveling wave packets are observed mostly 3 h after the passage of the morning solar terminator. In the equinox they appear after the passage of the solar terminator without a pronounced delay or advance. In summer traveling wave packets are registered 1.5—2 h before the appearance of the evening solar terminator at the observation point when the solar terminator passes in the magnetically conjugate region. The spatial structure of traveling wave packets is characterized by a high degree of anisotropy and coherence at a distance larger than ten wavelengths (the wavelength is 100—300 km). A high quality of the oscillatory system and synchronization with the appearance of the solar terminator at the observation point and in the magnetically conjugate region indicate that the generation of traveling wave packets by the solar terminator is of the MHD nature. Our results for the first time experimentally confirm the hypothesis that the solar terminator generates ion sound waves, proposed by Huba et al. [2000b].

  14. Magnetopause surface waves triggered by a rotating IMF with the global MHD SWMF/BAT-S-RUS model

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Spencer, E. A.

    2010-12-01

    The solar wind driving of magnetopause surface waves is only partly understood. In particular we do not have a picture of the magnetopause surface wave properties and behavior when a magnetic cloud event, which sometimes involves a rotating IMF, impinges on the magnetosphere. Here we investigate the effect of a twisting or rotational IMF under moderate solar wind velocity (about 500 km/s) upon the magnetosphere with the Global MHD BATS-R-US code. Synthetic solar wind data is constructed to simulate the most important features of a magnetic cloud event, but without including shock features. A sinusoidally varying By component accompanied by a cosinusoidally varying Bz component of the IMF is input into the model with magnitude 10-20 nT. The synthetic data is representative of the magnetic cloud event that occurred on October 3-7 2000. We use the results of the simulation to infer the modes, properties, and particularly the phase speed and wavelength of the surface wave structures.

  15. Stormtime Ionospheric Outflow Effects in Global Multi-Fluid MHD

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Eccles, V.; Merkin, V. G.; Welling, D. T.; Schunk, R. W.; Barakat, A. R.

    2015-12-01

    We present work detailing the effects of ionospheric outflow in the magnetosphere during the Sept 27- Oct 4, 2002 and Oct 22- Oct 29, 2002 GEM storms. The Multi-Fluid LFM global MHD code is driven by OMNI solar wind and IMF data and by outflow from the Generalized Polar Wind (GPW) model. The GPW input results in a realistic and dynamic, although not self-consistent, outflow of O+, H+, and He+ from the ionosphere. The validity of this outflow and its entry into the magnetosphere is tested through comparisons to Cluster and geosynchronous spacecraft observations. We show the access of these various populations to the magnetosphere, and we examine their effects on plasma sheet structure and storm time dynamics.

  16. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  17. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  18. Magnetohydrodynamic (MHD) nuclear weapons effects on submarine cable systems. Volume 1. Experiments and analysis. Final report

    SciTech Connect

    Not Available

    1987-06-01

    This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.

  19. Characteristics of laminar MHD fluid hammer in pipe

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier-Stocks equations, coupling with Lorentz force is numerically solved in a reservoir-pipe-valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems.

  20. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect

    Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  1. Comparison of three artificial models of the MHD effect on the electrocardiogram

    PubMed Central

    Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.

    2013-01-01

    The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753

  2. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  3. A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2005-01-01

    The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.

  4. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  5. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Zhang, Xiujie; Xu, Zengyu; Pan, Chuanjie

    2008-12-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  6. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  7. Coexistence of weak and strong wave turbulence in incompressible Hall MHD

    NASA Astrophysics Data System (ADS)

    Meyrand, Romain; Kiyani, Khurom; Galtier, Sebastien

    2016-04-01

    We report a numerical investigation of 3D Hall Magnetohydrodynamic turbulence with a strong mean magnetic field. By using a helicity decomposition and a cross-bicoherence analysis, we observe that the nonlinear 3-wave coupling is substantial among ion cyclotron and whistler waves. By studying in detail the degree of nonlinearity of these two populations we show that ion cyclotron and whistler turbulent fluctuations belong respectively to strong and weak wave turbulence. The non trivial blending of these two regime give rise to anomalous anisotropy and scaling properties. The separation of the weak random wave and strong coherent turbulence component can however be effectively done using simultaneous space and time Fourier transforms. Using this techniques we show that it is possible to recover some statistical prediction of weak turbulent theory.

  8. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  9. Infinitesimal structure of inverse pinch effect cylindrical MHD shocks

    SciTech Connect

    Baty, Roy S; Stanescu, Dan; Tucker, Don H

    2008-01-01

    Nonstandard analysis is used to derive the relationships between the jump functions for density, pressure, velocity and magnetic field within a diverging cylindrical magnetohydrodynamic shock caused by the inverse pinch effect. The shock is assumed to have infinitesimal thickness. The obtained relationships allow explicit numerical constructions of the shock structure once the variation in one variable, here chosen to be the density, is specified. The shapes thus constructed offer additional insight into the physics of such shock waves from a perspective which would be extremely difficult to investigate experimentally.

  10. The energy associated with MHD waves generation in the solar wind plasma

    NASA Technical Reports Server (NTRS)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  11. HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR

    SciTech Connect

    L. YIN; D. WINSKE; ET AL

    2001-05-01

    In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.

  12. Numerical Simulation of MHD Effect in Liquid Metal Blankets with Flow Channel Insert

    NASA Astrophysics Data System (ADS)

    Mao, J.; Pan, H. C.

    2011-09-01

    The magnetohydrodynamic effect in liquid metal blankets with flow channel insert and pressure equalization slot for fusion liquid metal blanket is studied by numerical simulation based on two dimensional fully developed flow model. The code is verified by comparing analytical solution and numerical solution of Hunt Case II. The velocity field and MHD pressure drop varying with electric conductivity of the FCI is analyzed. The result shows that the average velocity in central area of the cross section decreases with the increase of the electric conductivity of FCI. While the average velocity in gap zone is reverse. Comparing with MHD duct flow without FCI, MHD pressure drop is reduced significantly when the FCI material is electrically insulating.

  13. Full wave effects on the lower hybrid wave spectrum and driven current profile in tokamak plasmas

    SciTech Connect

    Shiraiwa, S.; Ko, J.; Meneghini, O.; Parker, R.; Schmidt, A. E.; Greenwald, M.; Hubbard, A. E.; Hughes, J.; Ma, Y.; Podpaly, Y.; Rice, J. E.; Wallace, G.; Wolfe, S. M.; C-Mod Group, Alcator; Scott, S.; Wilson, J. R.

    2011-08-15

    A numerical modeling of current profile modification by lower hybrid current drive (LHCD) using a fullwave/Fokker-Planck simulation code is presented. A MHD stable LHCD discharge on Alcator C-Mod was analyzed, and the current profile from full wave simulations was found to show better agreement with the experiment than a ray-tracing code. Comparison of full wave and ray-tracing simulation shows that, although ray-tracing can reproduce the stochastic wave spectrum broadening, the full wave calculation predicts even wider spectrum broadening, and the wave spectrum fills all of the kinematically allowed domain. This is the first demonstration of LHCD current profile modeling using a full wave simulation code in a multi-pass absorption regime, showing the clear impact of full wave effects on the LHCD driven current profile.

  14. MHD Stability Analysis Using an X-ray Wave Array Diagnostic on the PEGASUS Toroidal Experiment*

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Fonck, R.; Intrator, T.; Thorson, T.

    1998-11-01

    Tearing mode instabilities during plasma current ramp-up are important for extremely low aspect ratio devices. Fast current ramping, aided by the low internal inductance of low aspect ratio plasmas, induces skin currents. The resulting hollow current profile may produce double tearing modes, which allows for reconnection and current penetration. Another area of interest for MHD stability studies in the first phase of operation of the P EGASUS Experiment is the nature of the plasma stability boundary as the edge-q is lowered at extremely low aspect ratio. This boundary plays a major role in the accessibility to stable operation at very low toroidal field. P EGASUS will employ an X-ray diode (XRD) detector array to diagnose the internal plasma MHD structure. We are designing and installing a vertical 20 channel radially viewing pinhole array of XRD's for >= 50 eV photon measurement. Each channel will have a vertical resolution of 2 cm and an upper frequency limit of 100 kHz. The lithium drifted XRD's have a large surface area of 90 mm^2, thereby being quite sensitive and suited to a low temperature start-up plasma. The expected signal-to-noise ratio due to photon noise is < 0.1% for P EGASUS plasmas. * *Supported by U.S. DoE grant No. DE-FG02-96ER54375

  15. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-05-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  16. On the nature of propagating MHD waves in polar coronal hole

    NASA Astrophysics Data System (ADS)

    Gupta, Girjesh R.; Banerjee, Dipankar

    Waves play an important role in the heating of the solar corona and in the acceleration of the fast solar wind from polar Coronal Holes (pCHs). Recently using EIS/Hinode and SUMER/SOHO, we have reported the presence of accelerating waves in polar region (Gupta et al. 2010, ApJ, 718, 11). These waves appeared to be originating from a bright location on-disk, presumably the footprint of the coronal funnels. These waves were interpreted in terms of either propagating Alfven waves or fast magneto-acoustic waves. The new sets of observations are obtained from the EIS/Hinode 2'' slit and imaging data from AIA/SDO in various filters over plume and inter-plume regions as HOP175 programme. The combination of spectroscopic and imaging data will provide further details on mode identification and properties of these waves and will help in the energy calculations. In this presentation, preliminary results obtained from these observations in terms of different nature of propagating waves in plume and inter-plume regions and energy carried by these waves will be presented.

  17. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  18. MHD wave generators with a screw flow-through channel for automated soldering of the printed-circuit assemblies of radioelectronic apparatus

    SciTech Connect

    Gel'fgat, Y.M.; Simsons, Y.A.

    1985-04-01

    The basic characteristics of MHDW for soldering with a continuous wave of solder are presented. A similar presentation of characteristics describe soldering with two jets of solder. A diagram of an MHDW with a screw flow-through channel for creating a single continuous wave of solder is illustrated, and consists of a vat with the melted metal. The vat's bottom is constructed in the form of a circular cylinder placed in the hollow of a three-phase rotating-magnetic-field inductor. The main designs of MHD wave generators have proved to be very efficient for mass and large series production.

  19. Computation of the MHD modes with rotation and kinetic effects: AEGIS

    NASA Astrophysics Data System (ADS)

    Zheng, L.-J.; Kotschenreuther, M.; Turnbull, A.; Waelbroeck, F.; van Dam, J. W.; Berk, H.

    2003-10-01

    A new linear MHD eigenvalue code called AEGIS (Adaptive EiGenfunction Independent Shooting) is being developed at the IFS. The benchmarking of AEGIS with GATO is underway and will be presented. Plasma rotation is being included, with the effect of rotation-enhanced plasma compressibility also taken into account. As a first step in including rotational effects, the ideal MHD model is being employed. Details of the numerical scheme will be described, along with preliminary numerical results. The plan to include kinetic compressiblity will be discussed. With this new code, rotational stabilization of resistive wall modes can be rigorously calculated for the first time. The algorithm also allows FLR effects to be included. Many helpful suggestions from A. Glasser are acknowledged.

  20. Survey of MHD plant applications

    NASA Technical Reports Server (NTRS)

    Lynch, J. J.; Seikel, G. R.; Cutting, J. C.

    1979-01-01

    Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.

  1. Excitation of MHD waves upstream of Jupiter by energetic sulfur or oxygen ions

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Wong, H. K.; Eviatar, A.

    1986-01-01

    Large fluxes of heavy ions have been reported upstream of Jupiter's bow shock as Voyager 1 approached the planet (Zwickl et al., 1981; Krimigis et al., 1985). Enhanced low-frequency magnetic wave activity was also observed during the particle events. The fluctuations are left-handed, elliptically polarized in the plasma frame. The spectrum of these fluctuations contains a peak close to the Doppler-shifted resonance frequency of a sulfur or oxygen beam with streaming energy of approximately 30 keV. These fluctuations are also present in the spectrum of the magnitude of the field. It is concluded that the observations result from an instability driven by an energetic beam of either sulfur or oxygen. The wave observations can be described by a heavy ion distribution with both a streaming anisotropy and a temperature anisotropy. This class of heavy ion streaming instabilities may also play a role in wave-particle interactions in the vicinity of comets.

  2. Laboratory Study of MHD Effects on Stability of Free-surface Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Burin, M. J.; Ji, H.; McMurtry, K.; Peterson, L.; Giannakis, D.; Rosner, R.; Fischer, P.

    2006-10-01

    The dynamics of free-surface MHD shear flows is potentially important to both astrophysics (e.g. in the mixing of dense plasma accreted upon neutron star surfaces) and fusion reactors (e.g. in liquid metal ‘first walls’). To date however few relevant experiments exist. In order to study the fundamental physics of such flows, a small-scale laboratory experiment is being built using a liquid gallium alloy flowing in an open- channel geometry. The flow dimensions are nominally 10cm wide, 1cm deep, and 70cm long under an imposed magnetic field up to 7kG, leading to maximum Hartman number of 2000 and maximum Reynolds number of 4x10^5. Two basic physics issues will ultimately be addressed: (1) How do MHD effects modify the stability of the free surface? For example, is the flow more stable (through the suppression of cross-field motions), or less stable (through the introduction of new boundary layers)? We also investigate whether internal shear layers and imposed electric currents can control the surface stability. (2) How do MHD effects modify free-surface convection driven by a vertical and/or horizontal temperature gradient? We discuss aspects of both of these issues, along with detailed descriptions of the experimental device. Pertinent theoretical stability analyses and initial hydrodynamic results are presented in companion posters. This work is supported by DoE under contract #DE-AC02-76-CH03073.

  3. The effect of line-tying on the radiative MHD stability of coronal plasmas with radial pressure profile

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1984-01-01

    The role of photospheric line-tying, i.e., solar coronal loop structures, was investigated in terms of the effect on radiative modes and the influence that different radial pressure profiles exert on the effects of line-tying on radiative MHD stability. Energy is assumed dissipated by heat conduction and radiation and zero- and first-order solutions are obtained for the radiative time scales. Line-tying is a magnetic tension in the zero-order MHD mode and produces stability. Heat conduction occurs along bent field lines in first-order MHD modes when plasmas cross the field lines. Irradiated cool-core loops can experience MHD instabilities in the cylinder center, while line-tying can stabilize the plasma in the surrounding hot medium. Line-tying also adds stability to magnetosonic and condensation modes.

  4. Some effects of MHD activity on impurity transport in the PBX tokamak

    SciTech Connect

    Ida, K.; Fonck, R.J.; Hulse, R.A.; LeBlanc, B.

    1985-10-01

    The effects of MHD activity on intrinsic impurity transport are studied in ohmic discharges of the Princeton Beta Experiment (PBX) by measuring of the Z/sub eff/ profile from visible bremsstrahlung radiation and the spectral line intensities from ultraviolet spectroscopy. A diffusive/convective transport model, including an internal disruption model, is used to simulate the data. The Z/sub eff/ profile with no MHD activity is fitted with a strong inward convection, characterized by a peaking parameter c/sub v/ (= -a/sup 2/v/2rD) = 11 (3.5, +4.5). At the onset of MHD activity (a large m = 1 n = 1 oscillation followed by sawteeth), this strongly peaked profile is flattened and subsequently reaches a new quasi-equilibrium shape. This profile is characterized by reduced convection (c/sub v/ = 3.6 (-1.1, +1.6), D = 1.4 (-0.7, +5.6) x 10/sup 4/ cm/sup 2//s), in addition to the particle redistribution which accompanies the sawtooth internal disruptions. 10 figs.

  5. Mode properties of low-frequency waves: Kinetic theory versus Hall-MHD

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.; Quest, K. B.

    1994-01-01

    In fluid theory, the ordering of low-frequency modes in a homogeneous plasma is based on the phase velocity, since modes do not intersect each other in dispersion diagrams as a function of wavenumber or other parameters. In linear kinetic theory, modes cross each other. Thus a consistent and useful classification should be based on the physical properties of the modes instead. This paper attempts such a classification by documeting the dispersion and general mode properties of the low-frequency waves (omega much less than (OMEGA(sub ci) OMEGA(sub ce) (exp 1/2)), where OMEGA(sub ci), OMEGA(sub ce) are the cyclotron frequencies of the ions and electrons, respectively) in kinetic theory, and by comparing them to the results of two-fluid theory. Kinetic theory gives a seperate Alfven/ion-cyclotron (A/IC) wave with phase speed Omega/k approximately = v(sub A) cos theta for omega much less than OMEGA(sub ci), where v(sub A) is the Alfven velocity and theta the angle of propagation between wave vector k and background magnetic field B(sub o). For a given wavenumber, the magnetosonic mode is a double-valued solution with a singular point in theta, beta parameter space, where beta is the ratio of thermal pressure to magnetic pressure. It is shown that a branch cut starting at the singular point theta approximately 30 deg, beta approximately 3 and leading to larger beta gives a practical and consitent seperation of this double-valued magnetosonic solution. Selection of this branch cut results in a moderately damped fast/magnetos onic and a heavily damped slow/sound wave. A comprehensive review of the polarization, compressibility and other mode properties is given and shown to be consistent with the selected branch cut. At small wavenumbers, the kinetic mode properties typically start to deviate significantly from their fluid counterparts at beta approximately 0.5. At larger beta, there is no longer a consistent correspondence between the fluid and kinetic modes. Kinetic

  6. Small scale MHD wave processes in the solar atmosphere and solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1987-01-01

    Solar wind observations suggesting wave-particle interactions via ion-cyclotron resonances are reviewed. The required power at high frequencies is presumably supplied via a turbulent cascade. Tu's (1987) model, which considers a turbulent cascade explicitly, is outlined. In the solar atmosphere, resonance absorption is considered. The meanings of the cusp and Alfven resonances are discussed, and it is shown how energy gets pumped into small scales. It is shown that resonance absorption can heat the corona and spicules in a manner consistent with observations, if turbulence provides an eddy viscosity.

  7. Modeling of magnetic reconnection in the magnetotail using global MHD simulation with an effective resistivity model

    NASA Astrophysics Data System (ADS)

    Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.

    2011-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4

  8. Case Studies on MHD Wave Propagation by the Exos-D Electric Field Measurements

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Seon; Lee, Dong-Hun

    1997-12-01

    Magnetohydrodynamic wave phenomena have been investigated in the deep plasmasphere by the electric field measurements in the EXOS-D(Akebono) satellite. EXOS-D has highly eccentric orbits(the perigee: 274km, the apogee: 10,500km), which allows relatively long observational time interval near the apogee region compared to othe satellites which pass by the same region with less eccentric orbits. Case studies are peformed on one month data of October in 1989 where the apogee is located near the equator and the magnetic local time is about 9:00-12:00 a.m. in the dayside plasmasphere. The observational region ranges from L=2 to L=3 and the magnetic latitude is restricted to less than 30 degress. The power spectrum is examined for each 128 point series of 8-sec averaged data through a FFT, which covers f=0-62.3 mHz frequency bands. The results are well consistent with field line resonances(FLRs) and cavity modes in the plasmasphere.

  9. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  10. Effects of MHD instabilities on neutral beam current drive

    DOE PAGESBeta

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  11. Studying effect of MHD on thin films of a micropolar fluid

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Gamal M.

    2009-11-01

    This paper deals with the study of the effect of MHD on thin films of a micropolar fluid. These thin films are considered for three different geometries, namely: (i) flow down an inclined plane, (ii) flow on a moving belt and (iii) flow down a vertical cylinder. The transformed boundary layer governing equations of a micropolar fluid and the resulting system of coupled non-linear ordinary differential equations are solved numerically by using shooting method. Numerical results were presented for velocity and micro-rotation profiles within the boundary layer for different parameters of the problem including micropolar fluid parameters, magnetic field parameter, etc., which are also discussed numerically and illustrated graphically.

  12. Broadband Electron Precipitation in Global MHD Simulation and its Effect on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Lotko, W.; Brambles, O. J.; Wiltberger, M. J.

    2010-12-01

    A broadband electron (BBE) precipitation model is implemented and analyzed in the MI coupling module of the Lyon-Fedder-Mobarry MHD simulation. Both number flux and energy flux of precipitating BBEs are regulated by MHD variables calculated near the low-altitude boundary of the LFM simulation. An empirical relation deduced from results of Keiling et al. (2003) is used to relate the AC Poynting flux to the energy flux precipitating BBEs in the simulation. We are investigating two different ways of regulating the number flux of BBE precipitation, one using an empirical relation between AC Poynting flux and number flux (Strangeway, unpublished) and another by constraining the intensity and cut-off energy of a fixed-pitch angle distribution of BBEs in terms of MHD simulation variables. The contributions to ionospheric conductance from BBE precipitation are evaluated using empirical relations derived by Robinson et al. (1987). The BBE-induced-conductance is added to the “standard” auroral contribution to conductance derived from monoenergetic and diffuse electron precipitation in the existing LFM precipitation model. The simulation is driven by ideal SW/IMF conditions with Vsw=400 km/s, Nsw=5/cc and Bz=-5 nT. The simulated time-average AC Poynting flux pattern resembles statistical patterns from Polar data (Keiling et al. 2003), and the simulated statistical pattern of BBE number flux resembles the statistical maps derived from DMSP data (Newell et al. 2009) on the nightside with a similar dawn-dusk asymmetry. The ionospheric Pedersen and Hall conductances are enhanced about 20% by the BBE precipitation. The number flux produced by BBEs is the same order of magnitude as that of monoenergetic and diffuse electrons. We thus expect BBE precipitation to have a moderate effect on the E-region ionosphere and a more significant influence on the density distribution of the F-region ionosphere.

  13. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  14. Investigation of Neutral Wind Effects on the Global Joule Heating Rate Using MHD and TI Models

    NASA Astrophysics Data System (ADS)

    Kalafatoglu, E.; Kaymaz, Z.

    2013-12-01

    Precise calculation of global Joule heating rate is a long standing question in thermosphere-ionosphere coupling processes. The absence of the complete and direct, in-situ measurements of the parameters involved in the calculation of Joule heating such as the conductivity of the medium, small-scale variations of electric fields, and neutral winds at the ionospheric heights poses a great uncertainty in its determination. In this work, we study the effects of the neutral wind on the global Joule heating rate. Most of the time, owing to above mentioned difficulties the effects of the neutral wind have been neglected in the calculations. We investigate their effects using BATSRUS MHD model, TIEGCM and GITM. Using horizontal current density, Cowling conductivity, and Pedersen conductivities from the MHD model, we calculate the joule heating rate with and without the neutral wind contribution. We apply the procedure for March 2008 magnetospheric substorm events and quantify the differences to show the neutral wind contribution. We compare the results with those obtained using neutral wind velocities from TIEGCM and GITM models. This way while we compare and demonstrate the discrepancies between the models, we also provide an assessment for the integration of thermospheric and magnetospheric models.

  15. Analysis of Helicities and Hall and MHD Dynamo Effects in Two-Fluid Reversed-Field Pinch Simulations

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Sovinec, Carl

    2015-11-01

    Relaxation in the RFP is studied numerically with extended-MHD modeling that includes the Hall term and ion gyroviscous stress. Previous results show significant coupling between magnetic relaxation and parallel flow evolution [King PoP 19, 055905]. Computations presented here display quasi-periodic relaxation events with current relaxation through MHD and Hall dynamo drives. The MHD dynamo always relaxes currents while the Hall dynamo may add or subtract from it, but the total dynamo drive is similar to single-fluid MHD computations. Changes in plasma momentum are due to viscous coupling to the wall and fluctuation-induced Maxwell stresses transport momentum radially inward when two-fluid effects are included. The magnetic helicity and hybrid helicity, a two-fluid extension of magnetic helicity that includes cross and kinetic helicity [Turner, 1986], are well-conserved relative to magnetic energy at each event. The cross helicity is well-conserved in single-fluid MHD but is significantly affected by both two-fluid effects and ion gyroviscosity. The plasma parallel current evolves towards the predicted flat profile; however, the plasma flow does not. Work supported through NSF grant PHY-0821899 and DOE grant DE-FG02-06ER54850.

  16. Effect of low frequency MHD instability on fast ion distribution in NSTX

    NASA Astrophysics Data System (ADS)

    Hao, G.; Liu, D.; Heidbrink, W. W.; Podesta, M.; Fredrickson, E. D.; Bortolon, A.; White, R.; Darrow, D.; Fu, G. Y.; Wang, Z. R.; Kramer, G. J.; Liu, Y. Q.; Tritz, K.

    2015-11-01

    In NSTX spherical tokamak plasmas, the onset of low-frequency MHD modes cause a rapid ~ 25% reduction in the fast-ion D-alpha (FIDA) signal. These, 5-20 kHz instabilities are commonly observed in the early phase of neutral beam heated plasmas that often have reversed magnetic shear in the plasma core. The collapse of the core fast ion density is measured by the vertical FIDA diagnostic. Although the profile flattens, changes in spectral shape are modest, suggesting that much of the distribution function is affected. Meanwhile, a modest increase of fast-ion losses is indicated by the measurements from neutron and fast-ion loss detectors. Moreover, this mode is always accompanied by Compressional Alfven Eigenmode (CAE). This suggests that low-f MHD instabilities can cause the redistribution of fast ions in both real and velocity space. Preliminary simulation results from the MARS-F code suggest that the low-f instability is a coupled infernal-peeling mode. The dependence of the mode's onset on the equilibrium parameters and its effect on the fast ion distribution will be computed, and compared with experimental measurements. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  17. Extended MHD Simulations of Tearing Instabilities and the Dynamo Effect in the Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Dearborn, J.; Bhattacharjee, A.

    2009-11-01

    Observations on MST indicate the importance of the Hall current in sawtooth crashes and the dynamo effect in a RFP. We employ our Magnetic Reconnection Code (MRC) to perform fully 3D extended MHD simulations in the RFP, including the Hall current and electron pressure gradient in a generalized Ohm's law. The MRC is an MPI-parallelized finite-volume based simulation code that integrates the extended MHD equations. It supports arbitrary curvilinear coordinate mappings, allowing it to be adapted to cylindrical and toroidal geometries. In order to overcome restrictive time-step limits, it uses implicit time integration. We have benchmarked the code for linear tearing instabilities, and performed fully nonlinear simulations. Due to the presence of the Hall current, novel vortical flows are seen in the vicinity of rational surfaces, akin to those seen in recent sawtooth studies in tokamaks, when the peak of the current density separates from the stagnation point of the flow. We calculate the dynamo field by averaging, and compare simulations with observations.

  18. Ideal MHD

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey P.

    2014-06-01

    1. Introduction; 2. The ideal MHD model; 3. General properties of ideal MHD; 5. Equilibrium: one-dimensional configurations; 6. Equilibrium: two-dimensional configurations; 7. Equilibrium: three-dimensional configurations; 8. Stability: general considerations; 9. Alternate MHD models; 10. MHD stability comparison theorems; 11. Stability: one-dimensional configurations; 12. Stability: multi-dimensional configurations; Appendix A. Heuristic derivation of the kinetic equation; Appendix B. The Braginskii transport coefficients; Appendix C. Time derivatives in moving plasmas; Appendix D. The curvature vector; Appendix E. Overlap limit of the high b and Greene-Johnson stellarator models; Appendix F. General form for q(y); Appendix G. Natural boundary conditions; Appendix H. Upper and lower bounds on dQKIN.

  19. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Nadeem, Sohail; Hayat Khan, Zafar; Sher Akbar, Noreen

    2015-01-01

    Present model is devoted for the stagnation point flow of nanofluid with magneto-hydrodynamics (MHD) and thermal radiation effects passed over a stretching sheet. Moreover, we have considered the combined effects of velocity and thermal slip. Condition of zero normal flux of nanoparticles at the wall for the stretched flow phenomena is yet to be explored in the literature. Convinced partial differential equations of the model are transformed into the system of coupled nonlinear differential equations and then solved numerically. Graphical results are plotted for velocity, temperature and nanoparticle concentration for various values of emerging parameters. Variation of stream lines, skin friction coefficient, local Nusselt and Sherwood number are displayed along with the effective parameters. Final conclusion has been drawn on the basis of both numerical and graphs results.

  20. A pressure-based high resolution numerical method for resistive MHD

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2014-10-01

    In the paper we describe in detail a numerical method for the resistive magnetohydrodynamic (MHD) equations involving viscous flow and report the results of application to a number of typical MHD test cases. The method is of the finite volume type but mixes aspects of pressure-correction and density based solvers; the algorithm arrangement is patterned on the well-known PISO algorithm, which is a pressure method, while the flux computation makes use of the AUSM-MHD scheme, which originates from density based methods. Five groups of test cases are addressed to verify and validate the method. We start with two resistive MHD cases, namely the Shercliff and Hunt flow problems, which are intended to validate the method for low-speed resistive MHD flows. The remaining three test cases, namely the cloud-shock interaction, the MHD rotor and the MHD blast wave, are standard 2D ideal MHD problems that serve to validate the method under high-speed flow and complex interaction of MHD shocks. Finally, we demonstrate the method with a more complex application problem, and discuss results of simulation for a quasi-bi-dimensional self-field magnetoplasmadynamic (MPD) thruster, for which we study the effect of cathode length upon the electromagnetic nozzle performance.

  1. A kinetic-MHD model for low frequency phenomena

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  2. Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Haq, Rizwan; Nadeem, Sohail; Khan, Zafar; Okedayo, Toyin

    2014-12-01

    Current study examines the magnetohydrodynamic (MHD) boundary layer flow of a Casson nanofluid over an exponentially permeable shrinking sheet with convective boundary condition. Moreover, we have considered the suction/injection effects on the wall. By applying the appropriate transformations, system of non-linear partial differential equation along with the boundary conditions are transformed to couple non-linear ordinary differential equations. The resulting systems of non-linear ordinary differential equations are solved numerically using Runge-Kutta method. Numerical results for velocity, temperature and nanoparticle volume concentration are presented through graphs for various values of dimensionless parameters. Effects of parameters for heat transfer at wall and nanoparticle volume concentration are also presented through graphs and tables. At the end, fluid flow behavior is examined through stream lines. Concluding remarks are provided for the whole analysis.

  3. The effect of conjugate heat transfer on MHD mixed convection about a vertical slender hollow cylinder

    NASA Astrophysics Data System (ADS)

    Kaya, Ahmet

    2011-04-01

    The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender hollow cylinder is studied numerically, under the effect of wall conduction. A uniform magnetic field is applied perpendicular to the cylinder. The non-similar solutions using the Keller box method are obtained. The wall conduction parameter, the magnetic parameter and the Richardson number are the main parameters. For various values of these parameters the local skin friction and local heat transfer parameters are determined. The validity of the methodology is checked by comparing the results with those available in the open literature and a fairly good agreement is observed. Finally, it is determined that the local skin friction and the local heat transfer coefficients increase with an increase the magnetic parameter Mn and buoyancy parameter Ri and decrease with conjugate heat transfer parameter p.

  4. Convective boundary conditions effect on peristaltic flow of a MHD Jeffery nanofluid

    NASA Astrophysics Data System (ADS)

    Kothandapani, M.; Prakash, J.

    2016-03-01

    This work is aimed at describing the influences of MHD, chemical reaction, thermal radiation and heat source/sink parameter on peristaltic flow of Jeffery nanofluids in a tapered asymmetric channel along with slip and convective boundary conditions. The governing equations of a nanofluid are first formulated and then simplified under long-wavelength and low-Reynolds number approaches. The equation of nanoparticles temperature and concentration is coupled; hence, homotopy perturbation method has been used to obtain the solutions of temperature and concentration of nanoparticles. Analytical solutions for axial velocity, stream function and pressure gradient have also constructed. Effects of various influential flow parameters have been pointed out through with help of the graphs. Analysis indicates that the temperature of nanofluids decreases for a given increase in heat transfer Biot number and chemical reaction parameter, but it possesses converse behavior in respect of mass transfer Biot number and heat source/sink parameter.

  5. Implementation of Inductive Magnetosphere-Ionosphere Coupling and its Effects on Global MHD Magnetospheric Simulations

    NASA Astrophysics Data System (ADS)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Merkin, V. G.

    2010-12-01

    In global modeling, magnetosphere-ionosphere (MI) coupling physically connects a global magnetospheric (GM) model and a global ionospheric-thermospheric (GIT) model. The field-aligned current from the GM model and the conductance distributions from the GIT model are used in a Poisson equation derived from the ionospheric Ohm's law combined with current continuity to determine the electrostatic potential in the ionosphere. In current GM models, this electrostatic potential is mapped to the inner boundary of the GM simulation to determine electrostatic boundary conditions on the electric field and MHD velocity there. Inductive effects and the finite Alfven transit time between the low-altitude GM boundary and the high-altitude GIT boundary (MI gap region) are neglected in this formulation of MI coupling. Using fields and currents derived from Lyon-Fedder-Mobarry GM simulations, and conductance distributions derived from its standalone empirical conductance model in the MI coupling Poisson equation, we have computed the fast Fourier transform of the electrostatic field at the low-altitude LFM simulation boundary as described above, and the FFT of the inductive electric field at the boundary under the assumption that μ 0 Σ P vA ≤ 1, where Σ P is the ionospheric Pedersen conductance and vA is the smallest value of the Alfven speed in the MI gap region. In this regime, the complete electric field at the low-altitude simulation boundary includes the usual mapped electrostatic field with an inductive addition for which the finite Alfven transit time and the diversion of field-aligned into polarization currents in the gap region are negligible (Lotko, 2004). By comparing the boundary-averaged spectra of the electrostatic and so-determined inductive fields, we confirm that the purely electrostatic formulation of MI coupling is valid when the MHD state varies on times scales exceeding about 200 s. For faster MHD time variations, the inductive electric field is shown to

  6. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  7. Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja

    2016-04-01

    We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.

  8. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    SciTech Connect

    Lauber, Ph. Guenter, S.; Koenies, A.; Pinches, S.D.

    2007-09-10

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfven physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU Muenchen, 2003; Ph. Lauber, S. Guenter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfven regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfven

  9. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    SciTech Connect

    R.B. White; Ya.I. Kolesnichenko; V.V. Lutsenko; V.S. Marchenko

    2002-05-30

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked.

  10. Spectrum of resistive MHD modes in cylindrical plasmas

    SciTech Connect

    Ryu, C.M.; Grimm, R.C.

    1983-07-01

    A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed.

  11. MHD simulations of Earth's bow shock: Interplanetary magnetic field orientation effects on shape and position

    NASA Astrophysics Data System (ADS)

    Chapman, J. F.; Cairns, Iver H.; Lyon, J. G.; Boshuizen, Christopher R.

    2004-04-01

    The location and geometry of Earth's bow shock vary considerably with the solar wind conditions. More specifically, Earth's bow shock is formed by the steepening of fast mode waves, whose speed vms depends upon the angle θbn between the local shock normal n and the magnetic field vector BIMF, as well as the Alfvén and sound speeds (vA and cS). Since vms is a minimum for θbn = 0° and low Alfvén Mach number MA, and maximum for θbn = 90° and high MA, this implies that as θIMF (the angle between BIMF and vsw) varies, the magnitude of vms should vary also across the shock, leading to changes in shape. This paper presents 3-D MHD simulation data which illustrate the changes in shock location and geometry in response to changes in θIMF and MA, for 1.4 ≤ MA ≤ 9.7 and 0° ≤ θIMF ≤ 90°. Specifically, for oblique IMF the shock's geometry is shown to become skewed in planes containing BIMF (e.g., the x - z plane). This is also emphasized in the terminator plane data, where the shock is best represented by ellipses, with centers translated along the z axis. For the θIMF = 90° simulations the shock is symmetric about the x axis in both the x - y and x - z planes. Simulations for field-aligned flow (θIMF = 0°) show a dimpling of the nose of the shock as MA → 1. The simulations also illustrate the general movement of the shock in response to changes in MA; high MA shocks are found closer to Earth than low MA shocks. 's [1991] magnetopause model is used in the simulations, and we discuss the limitations of this, as well as the expected results using a self-consistent model.

  12. MHD stability of ITER H-mode confinement with pedestal bootstrap current effects taken into account

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.; Mahajan, S. M.; Hatch, D.; Liu, X.

    2015-11-01

    We have shown that the bootstrap current can have significant effects both on tokamak equilibrium and stability (Nucl. Fusion 53, 063009 (2013)). For ITER H-mode discharges pedestal density is low and consequently bootstrap current is large. We reconstruct numerically ITER equilibria with bootstrap current taken into account. Especially, we have considered a more realistic scenario in which density and temperature profiles can be different. The direct consequence of bootstrap current effects on equilibrium is the modification of local safety factor profile at pedestal. This results in a dramatic change of MHD mode behavior. The stability of ITER numerical equilibria is investigated with AEGIS code. Both low-n and peeling-ballooning modes are investigated. Note that pressure gradient at pedestal is steep. High resolution computation is needed. Since AEGIS code is an adaptive code, it can well handle this problem. Also, the analytical continuation technique based on the Cauchy-Riemann condition of dispersion relation is applied, so that the marginal stability conditions can be determined. Both numerical scheme and results will be presented. The effects of different density and temperature profiles on ITER H-mode discharges will be discussed. This research is supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  13. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads; Edlundd, Eric; Ji, Hantao

    2013-04-01

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x B| / |ρ (υ • ∇), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-049±0.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  14. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  15. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed

    2014-09-01

    This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.

  16. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  17. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  18. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  19. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  20. New wave effects in nonstationary plasma

    SciTech Connect

    Schmit, P. F.; Fisch, N. J.

    2013-05-15

    Through particle-in-cell simulations and analytics, a host of interesting and novel wave effects in nonstationary plasma are examined. In particular, Langmuir waves serve as a model system to explore wave dynamics in plasmas undergoing compression, expansion, and charge recombination. The entire wave life-cycle is explored, including wave excitation, adiabatic evolution and action conservation, nonadiabatic evolution and resonant wave-particle effects, collisional dissipation, and potential laboratory applications of the aforementioned phenomenology.

  1. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We < 1) is presented. Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  2. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium.

    PubMed

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  3. Soret and Dufour effects on MHD viscoelastic fluid flow through a vertical flat plate with constant suction

    NASA Astrophysics Data System (ADS)

    Hossain, Sheikh Imamul; Alam, Md. Mahmud

    2016-07-01

    An attempt is made to represent the numerical solution of magnetohydrodynamics (MHD) viscoelastic fluid flow through an infinite vertical flat plate with constant suction in the presence of Soret and Dufour effects. The expressions of non-dimensional, coupled partial momentum, energy and concentration differential equations are obtained with the help of the usual non-dimensional variables. Implicit finite difference method is imposed to obtain the non-dimensional equations. Also the stability conditions and convergence criteria are analyzed. The effects of the various parameters entering into the problem on shear stress, Nusselt number, and Sherwood number are demonstrated graphically with physical interpretation.

  4. Viscous dissipation and thermal radiation effects on the magnetohydrodynamic (MHD) flow and heat transfer over a stretching slender cylinder

    NASA Astrophysics Data System (ADS)

    Kalteh, M.; Ghorbani, S.; Khademinejad, T.

    2016-05-01

    An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.

  5. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

    PubMed Central

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  6. MHD turbulence in the solar wind: highlights on the effects of expansion

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Müller, Wolf Christian; Landi, Simone; Hellinger, Petr; Matteini, Lorenzo; Franci, Luca; Velli, Marco

    2015-04-01

    Properties of solar wind fluctuations are often interpreted as those of a homogenous turbulent plasma, at MHD or ion scales. However solar wind turbulence is not homogenous, being embedded in a spherically expanding flow of approximately constant speed. We briefly review some of the recent results on MHD turbulence obtained with the Expanding Box Model (EBM), which reveal the influence of expansion on the spectral anisotropy, the component anisotropy, and the z+/z- imbalance. We then focus on structure functions, computed in frames attached to the local or global mean field, and show that most of the observed features are well reproduced in our EBM simulations. We finally comment on the role of expansion in determining the injection scale of solar wind turbulence and its anisotropy.

  7. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1998-12-31

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures.

  8. MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Aini Mat, Nor Azian; Arifin, Norihan Md.; Nazar, Roslinda; Ismail, Fudziah; Bachok, Norfifah

    2013-09-01

    A similarity solution of the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow due to a stretching vertical heated sheet in a power law nanofluid with thermal radiation effect is theoretically studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations. The transformed equations are solved numerically using the shooting method. The influence of pertinent parameters such as the nanoparticle volume fraction parameter, the magnetic parameter, the buoyancy or mixed convection parameter and the radiation parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented.

  9. A Steady-state Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-driven MHD Model

    NASA Astrophysics Data System (ADS)

    Oran, R.; Landi, E.; van der Holst, B.; Lepri, S. T.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R.; Manchester, W.; Sokolov, I.; Gombosi, T. I.

    2015-06-01

    The higher charge states found in slow (<400 km s-1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops and is released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using the Alfvén Wave Solar Model (AWSoM), a global MHD model driven by Alfvén waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge state calculation covering all latitudes in a realistic magnetic field. The ratios {{O}+7}/{{O}+6} and {{C}+6}/{{C}+5} are compared to in situ Ulysses observations and are found to be higher in the slow wind, as observed; however, they are underpredicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to Extreme-ultraviolet Imaging Spectrometer (EIS) observations above a coronal hole. The agreement is partial and suggests that all ionization rates are underpredicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest that there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows that it originates from coronal hole boundaries (CHBs), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global and observationally supported by EUV tomography.

  10. Reduced Extended MHD

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.

    2015-11-01

    Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.

  11. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    SciTech Connect

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  12. Effects of the driving mechanism in MHD simulations of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Linker, J. A.; Van Hoven, G.; Schnack, D. D.

    1990-01-01

    Results of time-dependent MHD simulations of mass ejections in the solar coronal are presented. Previous authors have shown that results from simulations using a thermal driving mechanism are consistent with the observations only if an elaborate model of the initial corona is used. The first simulation effort, using a simple model of a plasmoid as the driving mechanism and a simple model of the initial corona, produces results that are also consistent with many observational features, suggesting that the nature of the driving mechanism plays an important role in determining the subsequent evolution of mass ejections. First simulations are based on the assumption that mass ejections are driven by magnetic forces.

  13. Effects of the driving mechanism in MHD simulations of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Linker, J. A.; van Hoven, G.; Schnack, D. D.

    Results of time-dependent MHD simulations of mass ejections in the solar coronal are presented. Previous authors have shown that results from simulations using a thermal driving mechanism are consistent with the observations only if an elaborate model of the initial corona is used. The first simulation effort, using a simple model of a plasmoid as the driving mechanism and a simple model of the initial corona, produces results that are also consistent with many observational features, suggesting that the nature of the driving mechanism plays an important role in determining the subsequent evolution of mass ejections. First simulations are based on the assumption that mass ejections are driven by magnetic forces.

  14. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  15. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  16. Effects of Wave Nonlinearity on Wave Attenuation by Vegetation

    NASA Astrophysics Data System (ADS)

    Wu, W. C.; Cox, D. T.

    2014-12-01

    The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell

  17. SciDAC - Center for Simulation of Wave Interactions with MHD -- General Atomics Support of ORNL Collaboration

    SciTech Connect

    Abla, G

    2012-11-09

    The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.

  18. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  19. Absence of Complete Finite-Larmor-Radius Stabilization in Extended MHD

    SciTech Connect

    Zhu, P.; Schnack, D. D.; Ebrahimi, F.; Zweibel, E. G.; Suzuki, M.; Hegna, C. C.; Sovinec, C. R.

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-{beta} or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  20. Absence of complete finite-Larmor-radius stabilization in extended MHD.

    PubMed

    Zhu, P; Schnack, D D; Ebrahimi, F; Zweibel, E G; Suzuki, M; Hegna, C C; Sovinec, C R

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-beta or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity. PMID:18764628

  1. Effects of Wall Shear Stress on Unsteady MHD Conjugate Flow in a Porous Medium with Ramped Wall Temperature

    PubMed Central

    Khan, Arshad; Khan, Ilyas; Ali, Farhad; ulhaq, Sami; Shafie, Sharidan

    2014-01-01

    This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details. PMID:24621775

  2. Acoustic wave coupled magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Gao, J. S.; Zhang, N.

    2016-07-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm-1 Oe-1) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  3. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  4. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    SciTech Connect

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  5. MHD waveguides in space plasma

    SciTech Connect

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-07-15

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, {omega}) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  6. Broken Ergodicity in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.

  7. Structure of convective surface deposits and effect on MHD steam-plant design

    NASA Astrophysics Data System (ADS)

    Johnson, T. R.; Chow, L. S. H.; Smyk, E. B.

    Experimental and analytical investigations are being made of the seed-ash deposits that will form on convective-heat-transfer surfaces in the MHD steam-bottoming plant. The results show that, although fouling of the steam and air heaters will be severe, the fouling problems can be solved by proper specification of tube bank arrangements, gas velocities, soot-blower placement, and soot-blowing schedule, which will vary depending on the gas temperature. At gas temperatures below the seed melting point, weak, non-adherent deposits are formed and can be easily controlled by conventional soot blowers. At gas temperatures well above the seed melting point, it appears practical to operate steam and air heaters without soot blowing, because the deposit thickness will be limited by the formation of a freely flowing, molten surface. The intermediate-temperature range (1300 to 16000K) is the most troublesome because the deposits can become very strong and adherent. This section of the steam heaters must be designed to limit heat fluxes and must be operated with frequent soot blowing.

  8. Gravitational Waves in Effective Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier; Kuntz, Iberê; Mohapatra, Sonali

    2016-08-01

    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration.

  9. MHD Oscillations in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Leonovich, A. S.; Mazur, V. A.; Kozlov, D. A.

    2016-02-01

    In studies of hydromagnetic oscillations of the Earth's magnetosphere, it is often considered as a giant resonator for magnetohydrodynamic (MHD) waves. A shear flow instability on the magnetopause has long been regarded as a possible source of MHD oscillations in the Earth's magnetosphere. A most interesting phenomenon investigated for the past two decades are ultra-low-frequency oscillations with a discrete spectrum. Such oscillations are recorded usually in the midnight-morning sector of the magnetosphere at 60° to 80° latitudes. Another type of MHD oscillations typical of the magnetotail is the coupled Alfvén and slow magnetosonic waves on stretched magnetic field lines passing through the current sheet. Each of these modes can propagate along paths that almost coincide with the magnetic field lines. The recently discovered kink-like oscillations are oscillations of the current sheet itself, similar to a piece of fabric fluttering in the wind. In this regard they are called flapping modes.

  10. Effects of stress waves on cells

    SciTech Connect

    Campbell, H L; Da Silva, L B; Visuri, S R

    1998-03-02

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse delivered to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.

  11. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  12. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  13. Performance of Scramjet Engine with MHD Energy Bypass System

    NASA Astrophysics Data System (ADS)

    Kaminaga, Susumu; Tomioka, Sadatake; Yamasaki, Hiroyuki

    Flow behavior and thrust performance of MHD energy bypass scramjet engine was examined numerically. MHD generator was placed at the isolator to enhance the flow compression. Kinetic energy was converted to electrical energy in the MHD generator. Extracted electrical energy was consumed at the MHD accelerator placed at the downstream of the combustor. When MHD energy bypass system was used, the flow was decelerated and compressed in the MHD generator. Effect of velocity and Mach number on wall friction was analyzed and decrease of friction force was pointed out. Also, high pressure in the combustor resulted in increase of pressure contribution to net thrust. Despite of positive effects, decelerating Lorentz force in the MHD generator was comparably large and no significant difference in net thrust performance is observed.

  14. Variance anisotropy in compressible 3-D MHD

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, Minping; Parashar, Tulasi

    2016-06-01

    We employ spectral method numerical simulations to examine the dynamical development of anisotropy of the variance, or polarization, of the magnetic and velocity field in compressible magnetohydrodynamic (MHD) turbulence. Both variance anisotropy and spectral anisotropy emerge under influence of a large-scale mean magnetic field B0; these are distinct effects, although sometimes related. Here we examine the appearance of variance parallel to B0, when starting from a highly anisotropic state. The discussion is based on a turbulence theoretic approach rather than a wave perspective. We find that parallel variance emerges over several characteristic nonlinear times, often attaining a quasi-steady level that depends on plasma beta. Consistency with solar wind observations seems to occur when the initial state is dominated by quasi-two-dimensional fluctuations.

  15. Hall effects on the Walén relation in rotational discontinuities and Alfvén waves

    NASA Astrophysics Data System (ADS)

    Wu, B. H.; Lee, L. C.

    2000-08-01

    For Alfvénic fluctuations in magnetohydrodynamics (MHD) the perturbed transverse velocity Vt and magnetic field Bt can be related by the Walén relation, Vt = ±Bt/(μ0ρ)1/2 ≡;±VAt, where ρ is the plasma density, VAt is the transverse Alfvén velocity, and the plus (minus) sign is for antiparallel (parallel) propagation. However, observations of Vt and Bt for Alfvén waves and rotational discontinuities in the solar wind and at the magnetopause showed an obvious deviation from the relation. In this paper, modifications of the Walén relation for linear and nonlinear Alfvén waves and rotational discontinuities (RDs) are examined in the Hall-MHD formulation. Let Vit (≈ Vt) be the transverse ion velocity and Vet be the transverse electron velocity. It is found that Vit = ±Bt(z)/(μ0ρ1)1/2 = ±(ρ(z)/ρ1)1/2 VAt(z) and Vet = ±(ρ1/μ0)1/2Bt(z)/ρ(z) = ±(ρ1/ρ(z))1/2 VAt(z)for RDs in Hall-MHD, where ρ1 is the upstream plasma density. The ion and electron Walén ratios are defined as Ai = Vit/VAt and Ae = Vet/VAt, respectively. It is found in Hall-MHD that ?, AiAe = 1 and Ai < 1 (Ai > 1) for Alfvén waves and RDs with right-hand (left-hand) polarization. The Hall dispersive effect may modify the ion Walén ratio by ΔAi≈±0.14 for the magnetopause RDs and by ΔAi≈±0.07 for the interplanetary RDs.

  16. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  17. Nonlinear Talbot effect of rogue waves

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Belić, Milivoj R.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  18. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  19. MHD memes

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  20. Observations of wave effects on inlet circulation

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara; Raubenheimer, Britt; Elgar, Steve

    2014-07-01

    Observations of water levels, winds, waves, and currents in Katama Bay, Edgartown Channel, and Katama Inlet on Martha's Vineyard, Massachusetts are used to test the hypothesis that wave forcing is important to circulation in inlet channels of two-inlet systems and to water levels in the bay between the inlets. Katama Bay is connected to the Atlantic Ocean via Katama Inlet and to Vineyard Sound via Edgartown Channel. A numerical model based on the momentum and continuity equations that uses measured bathymetry and is driven with observed water levels in the ocean and sound, ocean waves, and local winds predicts the currents observed in Katama Inlet more accurately when wave forcing is included than when waves are ignored. During Hurricanes Irene and Sandy, when incident (12-m water depth) significant wave heights were greater than 5 m, breaking-wave cross-shore (along-inlet-channel) radiation stress gradients enhanced flows from the ocean into the bay during flood tides, and reduced (almost to zero during Irene) flows out of the bay during ebb tides. Model simulations without the effects of waves predict net discharge from the sound to the ocean both during Hurricane Irene and over a 1-month period with a range of conditions. In contrast, simulations that include wave forcing predict net discharge from the ocean to the sound, consistent with the observations.

  1. Combined Effect of Hall and Ion-Slip Currents on Unsteady MHD Couette Flows in a Rotating System

    NASA Astrophysics Data System (ADS)

    Jha, Basant K.; Apere, Clement A.

    2010-10-01

    The unsteady MHD Couette flows of a viscous incompressible electrically conducting fluid between two parallel plates in a rotating system are studied taking hall and ion-slip currents into consideration. The relevant equations are solved analytically using the Laplace transform techniques. A unified closed form analytical expressions for the velocity and the skin friction for the cases; when the magnetic lines of force are fixed relative to the fluid or to the moving plate are derived. The solution obtained shows that the inclusion of Hall and ion-slip currents gives some interesting results. It is found that the influence of the Hall and ion slip parameters have a reducing effect on the magnitude of the secondary velocity especially when the magnetic lines of force are fixed relative to the moving plate. It is also interesting to note that the presence of Hall and ion-slip currents led to an increase in the time it took both the primary and the secondary velocities to achieve their steady state values. On the other hand, the resultant skin friction on the moving plate decreases with an increase in both the Hall and ion-slip parameters when the magnetic field is fixed relative to the fluid, while the opposite behaviour is noticed the magnetic field is fixed relative to the moving plate.

  2. Variation of effective roll number on MHD Rayleigh-Benard convection confined in a small-aspect ratio box

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Yanagisawa, Takatoshi; Vogt, Tobias; Eckert, Sven

    2015-11-01

    MHD Rayleigh-Benard convection was studied experimentally using a box filled with liquid metal with five in aspect ratio and square horizontal cross section. Applying horizontal magnetic field organizes the convection motion into quasi-two dimensional rolls arranged parallel to the magnetic field. The number of rolls has tendency, decreases with increasing Rayleigh number Ra and increases with increasing Chandrasekhar number Q. To fit the box with relatively smaller aspect ratio, the convection rolls take regime transition accompanying variation of the roll number against variations of Ra and Q. We explored convection regimes in a ranges, 2 ×103 < Q <104 and 5 ×103 < Ra < 3 ×105 using ultrasonic velocity profiling that can capture time variations of instantaneous velocity profile. In a range Ra / Q ~ 10 , we found periodic flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of rolls. We performed POD analysis on the spatio-temporal velocity distribution obtained by UVP and indicated that that the periodic flow reversals consist of periodic emergence of 4-rolls mode in dominant 5-rolls mode. POD analysis also provided evaluation of effective number of rolls as a more objective approach.

  3. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    SciTech Connect

    Isobe, M.; Ogawa, K.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Spong, Donald A; Okumura, S.

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  4. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  5. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  6. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  7. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  8. New wave effects in nonstationary plasma

    NASA Astrophysics Data System (ADS)

    Schmit, Paul

    2012-10-01

    In plasma undergoing compression, embedded waves can have very unusual and possibly useful properties. For example, part of the mechanical energy of compressing plasma can be transferred controllably to hot electrons by seeding the plasma with plasma waves. Under compression, wherein wave action is conserved, the wave energy grows as its frequency and wavenumber change adiabatically, until, suddenly, the wave damps, resulting in switch-like production not only of heat [1], but also voltage and current [2]. These bursts can be controlled precisely in time by prescribing the compression script. Several classic problems in wave physics, including the bump-on-tail instability, exhibit new effects under compression [3]. In addition, the waves undergoing compression or expansion affect fundamental properties of plasma, such as the plasma compressibility; moreover, and rather remarkably, nonlinear waves, such as BGK modes, affect the plasma compressibility differently [4]. Wave-particle interactions mediated by plasma compression also can enhance the performance of plasma-based particle accelerators. To describe numerically all these effects, novel particle-in-cell simulations were developed. These findings point towards potentially beneficial applications, including in inertial confinement fusion and high energy density plasma physics, where extreme compression is exercised on dense plasma, which could be seeded with waves. [4pt] [1] P. F. Schmit, I. Y. Dodin, and N. J. Fisch, PRL 105, 175003 (2010).[0pt] [2] P. F. Schmit and N. J. Fisch, PRL 108, 215003 (2012).[0pt] [3] P. F. Schmit et al., J. Plasma Phys. 77, 629 (2011).[0pt] [4] P. F. Schmit, I. Y. Dodin, and N. J. Fisch, Phys. Plasmas 18, 042103 (2011).[0pt] [5] P. F. Schmit and N. J. Fisch, Phys. Plasmas 18, 102102 (2011).

  9. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  10. Antiferromagnetic Spin Wave Field-Effect Transistor.

    PubMed

    Cheng, Ran; Daniels, Matthew W; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  11. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGESBeta

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  12. Antiferromagnetic Spin Wave Field-Effect Transistor

    PubMed Central

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  13. Antiferromagnetic Spin Wave Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.

  14. Calculating Rotating Hydrodynamic and Magnetohydrodynamic Waves to Understand Magnetic Effects on Dynamical Tides

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  15. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  16. MHD waves detected by ice at distances > 28 x 10/sup 6/ km from Comet Halley: Cometary or solar wind origin

    SciTech Connect

    Tsurutani, B.T.; Brinca, A.L.; Smith, E.J.; Thorne, R.M.; Scarf, F.L.; Gosling, J.T.; Ipavich, F.M.

    1986-01-01

    Spectral analyses of the high resolution magnetic field data are employed to determine if there is evidence of cometary heavy ion pickup when ICE was closest to Halley, approx.28 x 10/sup 6/ km. No evidence is found for the presence of heavy ion cyclotron waves. However, from this search, two new wave modes are discovered in the solar wind: electromagnetic ion cyclotron waves and drift mirror mode waves. Both modes have scales of 10 to 60 s (1 to 6 T/sub p/) in the spacecraft frame. The possibility of wave generation by cometary hydrogen pickup is explored. Theoretical arguments and further experimental evidence indicates that cometary origin is improbable. The most likely source is plasma instabilities associated with solar wind stream-stream interactions. VLF electrostatic emissions are found to occur in field minima or at gradients of the drift mirror structures. Possible generation mechanisms of drift mirror mode waves, cyclotron waves and electrostatic waves are discussed.

  17. Modeling the effect of wave-vegetation interaction on wave setup

    NASA Astrophysics Data System (ADS)

    van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.

    2016-06-01

    Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).

  18. Flow development and analysis of MHD generators and seawater thrusters

    SciTech Connect

    Doss, E.D. ); Roy, G.D. )

    1992-03-01

    In this paper, the flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.

  19. Power facility with a built-in multipolar MHD generator

    SciTech Connect

    Kovalev, K.L.; Markina, T.A.

    1995-05-01

    The scheme of a power facility with a built-in multipolar MHD generator is discussed. In most papers devoted to airborne high-power MHD generators (self-contained or built into the nozzle of the propulsion unit), MHD channels are discussed that are based on a two-pole scheme. The processes of energy conversion in these MHD generators are usually accompanied by disturbances of flow in the entire channel volume, which, in many cases, is undesirable for the operation of power facilities. Depending on the number of pairs of poles, the proposed facility makes it possible to accomplish MHD conversion both in the nozzle peripheral zone and in the central part of the flow. An analysis of the methods and results of calculations of volume MHD effects for finite Hall parameters {beta} and MHD-interaction s, as well as of the output characteristics of multipolar MHD generators equipped with electrode modules of different types are given. A comparison of the theoretical and experimental data is made. A scheme involving an advanced propulsion unit fired with cryogenic fuel H{sub 2}+O{sub 2} and a built-in multipolar MHD generator is considered. The problems of using built-in multipolar MHD generators in propulsion units utilizing other fuel pairs are discussed.

  20. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number. PMID:27006069

  1. Global MHD simulations of plasmaspheric plumes

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Ouellette, J.; Merkin, V. G.

    2015-12-01

    The plasmasphere represents a separate population from the rest of themagnetosphere, generally high density but cold. When the solar windturns strongly southward this plasma is convected toward the daysidemagnetopause and affects the interaction of the solar wind with themagnetosphere. We have used multi-fluid simulations using the LFMglobal MHD code to model this interaction. The plasmasphere isinitialized as a cold (~1eV) hydrogen plasma in a quiet northward IMFstate with a density distribution appropriate for K_p = 1. Thecorotation potential from the ionosphere spins up the plasmasphereinto rough corotation. After a initialization period of hours, asouthward IMF is introduced and the enhanced convection initiates asurge of plasmaspheric density to the dayside. We discuss two aspectsof this interaction, the effects on dayside reconnection and on theKelvin-Helmholtz instability (KHI). We find that the mass loading ofmagnetospheric flux tubes slows local reconnection rates, though notas much as predicted by Borovsky et al. [2013]. We findthat the total reconnection rate is reduced, although not as much aswould be predicted by just the sub-solar reconnection rate. The KHIis somewhat reduced by the plasmaspheric loading of density in the lowlatitude boundary layer. It has been suggested that the presence ofthe plasmasphere may lead to enhanced ULF wave power in the interiorof the magnetosphere from the KHI waves. We find only a minimal effect during northward IMF. For southward IMF, the situation is complicated by the interaction of KHI with non-steady reconnection.

  2. Material effects in photoconductive frozen wave generators

    NASA Astrophysics Data System (ADS)

    Oconnell, Robert M.; Thaxter, J. B.; Bell, Richard E.

    1991-04-01

    Linear photoconductive gallium arsenide (GaAs) fast closing switches for microwave applications, such as frozen wave pulse generation, are analyzed and compared to experimental measurements. Material effects in photo-conductive frozen wave generators fabricated in semiconductor-based microstrip transmission line are studied from three perspectives; frozen wave propagation in the line; the spacing between the switches in a frozen wave generator and their maximum number; and the switching behavior of the gap-switch itself, which is modeled as a lumped-element, modified Ebers-Moll equivalent circuit. The experimental transient behavior of hybrid gap-switches fabricated on semi-insulating GaAs with ohmic and non-ohmic contacts is compared with predicted performance. Picosecond laser pulses, doubled to 527 micron wavelength are used to excite linear photoconductivity in 75 micron gap switches mounted in a test fixture of 50 ohm microstrip lines on alumina.

  3. Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, G. V.; Bhaskar Reddy, N.; Gorla, R. S. R.

    2016-02-01

    This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.

  4. INCORPORATING AMBIPOLAR AND OHMIC DIFFUSION IN THE AMR MHD CODE RAMSES

    SciTech Connect

    Masson, J.; Mulet-Marquis, C.; Chabrier, G.; Teyssier, R.

    2012-08-01

    We have implemented non-ideal magnetohydrodynamics (MHD) effects in the adaptive mesh refinement code RAMSES, namely, ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test, and the Alfven wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics.

  5. Hall Effects And Rotation Effects On MHD Flow Past An Exponentially Accelerated Vertical Plate With Combined Heat And Mass Transfer Effects

    NASA Astrophysics Data System (ADS)

    Thamizhsudar, M.; Pandurangan, J.; Muthucumaraswamy, R.

    2015-08-01

    A theoretical solution of flow past an exponentially accelerated vertical plate in the presence of Hall current and MHD relative to a rotating fluid with uniform temperature and mass diffusion is presented. The dimensionless equations are solved using the Laplace method. The axial and transverse velocity, temperature and concentration fields are studied for different parameters such as the Hall parameter (m), Hartmann number (M), Rotation parameter (Ω), Schmidt number, Prandtl number, thermal Grashof number (Gr) and mass Grashof number (Gc). It has been observed that the temperature of the plate decreases with increasing values of the Prandtl number and the concentration near the plate increases with decreasing values of Schmidt number. It is also observed that both axial and transverse velocities increase with decreasing values of the magnetic field parameter or rotation parameter, but the trend gets reversed with respect to the Hall parameter. The effects of parameters m, M, Ω, Gr and Gc on the axial and transverse velocity profiles are shown graphically.

  6. Flow Shear Effects in the Onset Physics of Resistive MHD Instabilities in Tokamaks. Final report

    SciTech Connect

    Brennan, Dylan P.

    2013-04-24

    The progress in this research centers around the computational analysis of flow shear effects in the onset of a 3/2 mode driven by a 1/1 mode in DIII-D equilibria. The initial idea was to try and calculate, via nonlinear simulations with NIMROD, the effects of rotation shear on driven 3/2 and 2/1 seed island physics, in experimentally relevant DIIID equilibria. The simulations indicated that very small seed islands were directly driven, as shielding between the sawtooth and the surfaces is significant at the high Lundquist numbers of the experiment. Instead, long after the initial crash the difference in linear stability of the 3/2, which remained prevalent despite the flattening of the core profiles from the sawtooth, contributed to a difference in the eventual seed island evolution. Essentially the seed islands grew or decayed long after the sawtooth crash, and not directly from it. Effectively the dominant 1/1 mode was found to be dragging the coupled modes surrounding it at a high rate through the plasma at their surfaces. The 1/1 mode is locked to the local frame of the plasma in the core, where the flow rate is greatest. The resonant perturbations at the surrounding surfaces propagate in the 'high slip regime' in the language of Fitzpatrick. Peaked flux averaged jxb forces (see Figs. 1 and 2) agree with localized flow modifications at the surfaces in analogy with Ebrahimi, PRL 2007. We track the mode into nonlinear saturation and have found oscillatory states in the evolution. During a visit (11/09) to Tulsa by R.J. LaHaye (GA), it became clear that similar oscillatory states are observed in DIII-D for these types of discharges.

  7. Solar Wind Interaction Effects on Mars Crustal Field Measurements Inferred from MHD Simulations

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet G.; Ma, Yingjuan; Brain, David; Lillis, Rob

    2014-05-01

    Analyses of MGS mapping orbit measurements of the planetary magnetic fields of Mars used best practices to minimize the contributions of induced magnetic fields and other features associated with the solar wind interaction. In particular, these concentrated on nightside sampling over long periods of time so as to average out external contributions and perturbations, and eliminated apparently disturbed times in the interplanetary medium. However solar wind interaction-related features at the mapping orbit altitude of 400km may not average out because of non-symmetrical distortions produced by reconnection and dawn-dusk differences associated with the average Parker Spiral external field. The potential issues especially affect the weaker large scale components whose influences are best measured where the solar wind effects are most influential. This includes the important axial dipole field that may be either crustal, a fossil of a previously active dynamo, or evidence of a weak presently active dynamo. We use BATS-R-US models of the Mars-solar wind interaction to investigate these effects and to demonstrate that we still may not know the low order components of the Martian magnetic field very well.

  8. Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji Bandpy, M.; Ellahi, R.; Hassan, Mohsan; Soleimani, Soheil

    2014-01-01

    In this study magnetohydrodynamic effect on natural convection heat transfer of Cu-water nanofluid in an enclosure with hot elliptic cylinder is investigated. The governing equations of fluid motion and heat transfer in their vorticity stream function form are used to simulate the nanofluid flow and heat transfer. Control Volume based Finite Element Method (CVFEM) is applied to solve these equations. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. The calculations are performed for different governing parameters such as the Hartmann number, Rayleigh number, nanoparticle volume fraction and inclined angle of inner cylinder. Also a correlation of average Nusselt number corresponding to active parameters is presented. The results indicate that Nusselt number is an increasing function of nanoparticle volume fraction, Rayleigh numbers and inclination angle while it is a decreasing function of Hartmann number. Also it can be found that increasing Rayleigh number leads to decrease heat transfer enhancement while opposite trend is observed with augment of Hartmann number.

  9. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  10. Effects of prescribed heat flux and transpiration on MHD axisymmetric flow impinging on stretching cylinder

    NASA Astrophysics Data System (ADS)

    Mabood, Fazle; Lorenzini, Giulio; Pochai, Napporat; Ibrahim, Sheikh Muhammad

    2016-07-01

    A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.

  11. Soret and dufour effects on MHD mixed convection heat and mass transfer in a micropolar fluid

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, Darbhasayanam; Upendar, Mendu

    2013-12-01

    This paper analyzes the flow, heat and mass transfer characteristics of the mixed convection on a vertical plate in a micropolar fluid in the presence of Soret and Dufour effects. A uniform magnetic field of magnitude is applied normal to the plate. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The rate of heat and mass transfer at the plate are presented graphically for various values of coupling number, magnetic parameter, Prandtl number, Schmidt number, Dufour and Soret numbers. In addition, the skin-friction coefficient, the wall couple stress are shown in a tabular form.

  12. MHD Mixed Convective Peristaltic Motion of Nanofluid with Joule Heating and Thermophoresis Effects

    PubMed Central

    Shehzad, Sabir Ali; Abbasi, Fahad Munir; Hayat, Tasawar; Alsaadi, Fuad

    2014-01-01

    The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are studied through graphs. It is noted that the concentration of nanoparticles near the boundaries is enhanced for larger thermophoresis parameter. However reverse situation is observed for an increase in the value of Brownian motion parameter. Further, the mass transfer rate at the wall significantly decreases when Brownian motion parameter is assigned higher values. PMID:25391147

  13. On 2-D Boussinesq equations for MHD convection with stratification effects

    NASA Astrophysics Data System (ADS)

    Bian, Dongfen; Gui, Guilong

    2016-08-01

    This paper is concerned with the two-dimensional magnetohydrodynamics-Boussinesq system with the temperature-dependent viscosity, thermal diffusivity and electrical conductivity. The first progress on this topic was made independently by Chae and Hou-Li [8,26] where the Boussinesq system with partial constant viscosity is obtained. Recently, Wang-Zhang [45] considered the temperature-dependent viscosity and thermal diffusivity, and Li-Xu [16] generalized the Wang-Zhang's result to the inviscid case with temperature-dependent thermal diffusivity. In this paper, we include the stratification and magnetic effects and consider the full system, in the framework of low regularity. We prove that, without any smallness assumption on the initial data, the full system is globally well-posed. Moreover, by applying the uniformly bounded generalized Oseen operator, time decay estimate of the solution is obtained.

  14. MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects.

    PubMed

    Shehzad, Sabir Ali; Abbasi, Fahad Munir; Hayat, Tasawar; Alsaadi, Fuad

    2014-01-01

    The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are studied through graphs. It is noted that the concentration of nanoparticles near the boundaries is enhanced for larger thermophoresis parameter. However reverse situation is observed for an increase in the value of Brownian motion parameter. Further, the mass transfer rate at the wall significantly decreases when Brownian motion parameter is assigned higher values. PMID:25391147

  15. Magnetohydrodynamic Waves in Dynamic Plasmas with Solar Applications: Effect of Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Al-Ghafri, Khalil

    2013-08-01

    In the present thesis we examine the effect of the cooling background coronal plasma on damping coronal oscillations. The background plasma is assumed to be cooling because of thermal conduction. Moreover, the cooling of the background temperature is assumed to have an exponential profile with characteristic cooling times typical for solar coronal loops. We have investigated the propagating slow magneto-acoustic waves in a homogeneous magnetised plasma embedded in a hot coronal loop. The background plasma is assumed to be cooling due to thermal conduction in a weakly stratified atmosphere. The influence of cooling of the background plasma on the properties of magneto-acoustic waves is examined. The background temperature is found to decrease exponentially with time by solving the background plasma equations. On the other hand, we have considered the influence of a cooling background plasma on the longitudinal standing (slow) magneto-acoustic waves generated in a loop of hot corona. The cooling of the background plasma is dominated by a physically unspecified thermodynamic source. A dominance of the cooling in the absence of any dissipative mechanisms is found to amplify the oscillation amplitude. Thermal conduction, which is presumed to be a weak, is only present in the perturbations, causing a damping for the hot-loop oscillations. The previous study is expanded on investigating the effect of strong thermal conduction on the hot coronal oscillations. The competition between the cooling of plasma and the damping of oscillations can be captured from the behaviour of MHD waves. The hot-loop oscillations undergo strong damping due to thermal conduction, although the cooling coronal plasma exerts resistive role on the damping method by decreasing the rate of decaying for cool coronal oscillations. Contrary to cool loops, the amplitude of very hot loops that undergoes a high amount of cooling experiences faster damping than others. However, the damping of the standing

  16. Effects of chemical reaction on MHD mixed convection stagnation point flow toward a vertical plate in a porous medium with radiation and heat generation

    NASA Astrophysics Data System (ADS)

    Hari, Niranjan; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan

    2015-12-01

    The aim of the present study is to analyze the effects of chemical reaction on MHD mixed convection with the stagnation point flow towards a vertical plate embedded in a porous medium with radiation and internal heat generation. The governing boundary layer equations are transformed into a set of ordinary differential equations using similarity transformations. Then they are solved by shooting technique with Runge-Kutta fourth order iteration. The obtained numerical results are illustrated graphically and the heat and mass transfer rates are given in tabular form. The velocity and temperature profiles overshoot near the plate on increasing the chemical reaction parameter, Richardson number and magnetic field parameter.

  17. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  18. Identification of standing MHD modes in MHD simulations of planetary magnetospheres. Application to Mercury.

    NASA Astrophysics Data System (ADS)

    Griton, Léa; Pantellini, Filippo; Moncuquet, Michel

    2016-04-01

    We present 3D simulations of the interaction of the solar wind with Mercury's magnetosphere using the magnetohydrodynamic code AMRVAC. A procedure for the identification of standing MHD modes has been applied to these simulations showing that large scale standing slow mode structures may exist in Mercury's magnetosheath. The identification is mostly based on relatively simple approximate analytical solutions to the old problem of determining the family of all standing linear plane MHD waves in a flowing plasma. The question of the identification of standing slow mode structures using in situ measurements such as the future BepiColombo MMO mission to Mercury will be discussed as well.

  19. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    SciTech Connect

    Omelchenko, Yuri A; Karimabadi, Homa

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  20. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  1. A theory of MHD instability of an inhomogeneous plasma jet

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.

    2011-06-01

    A problem of the stability of an inhomogeneous axisymmetric plasma jet in a parallel magnetic field is solved. The jet boundary becomes, under certain conditions, unstable relative to magnetosonic oscillations (Kelvin-Helmholtz instability) in the presence of a shear flow at the jet boundary. Because of its internal inhomogeneity the plasma jet has resonance surfaces, where conversion takes place between various modes of plasma magnetohydrodynamic (MHD) oscillations. Propagating in inhomogeneous plasma, fast magnetosonic waves drive the Alfven and slow magnetosonic (SMS) oscillations, tightly localized across the magnetic shells, on the resonance surfaces. MHD oscillation energy is absorbed in the neighbourhood of these resonance surfaces. The resonance surfaces disappear for the eigenmodes of SMS waves propagating in the jet waveguide. The stability of the plasma MHD flow is determined by competition between the mechanisms of shear flow instability on the boundary and wave energy dissipation because of resonant MHD-mode coupling. The problem is solved analytically, in the Wentzel, Kramers, Brillouin (WKB) approximation, for the plasma jet with a boundary in the form of a tangential discontinuity over the radial coordinate. The Kelvin-Helmholtz instability develops if plasma flow velocity in the jet exceeds the maximum Alfven speed at the boundary. The stability of the plasma jet with a smooth boundary layer is investigated numerically for the basic modes of MHD oscillations, to which the WKB approximation is inapplicable. A new 'unstable mode of MHD oscillations has been discovered which, unlike the Kelvin-Helmholtz instability, exists for any, however weak, plasma flow velocities.

  2. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  3. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  4. Environmental Effects for Gravitational-wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-05-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

  5. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  6. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  7. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil

    2012-09-20

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  8. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  9. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    SciTech Connect

    Thomas, Edward Jr.; Fisher, Ross; Merlino, Robert L.

    2007-12-15

    An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies (f>100 Hz), extending the range of previous work. In this study, two previously unreported phenomena are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves, and the observation of finite dust temperature effects on the dispersion relation.

  10. High-Accuracy, Implicit Solution of the Extended-MHD Equations using High-Continuity Finite Elements

    NASA Astrophysics Data System (ADS)

    Jardin, Stephen C.

    2004-11-01

    It has been recognized for some time that it is necessary to go beyond the simple ``resistive MHD'' description of the plasma in order to get the correct quantitative results for the growth and saturation of global dissipative modes in a fusion device. The inclusion of a more complete ``generalized Ohms law'' and the off-diagonal terms in the ion pressure tensor introduce Whistler waves, Kinetic Alfven waves, and gyro-viscous waves, all of which are dispersive and require special numerical treatment. We have developed a new numerical approach to solving these Extended-MHD equations using a compact representation that is specifically designed to yield efficient high-order-of-accuracy, implicit solutions of a general formulation of the compressible Extended-MHD equations. The representation is based on a triangular finite element with fifth order accuracy that is constructed to have continuous derivatives across element boundaries, allowing its use with systems of equations containing complex spatial derivative operators of up to 4th order. The final set of equations are solved using the parallel sparse direct solver, SuperLU, which makes linear solutions exceptionally efficient, since only a one-time LU decomposition is required. The magnetic and velocity fields are decomposed without loss of generality in in a potential, stream function form. Subsets of the full set of 6 equations describing unreduced compressible extended MHD yield (1) the two variable reduced MHD equations, and (2) the 4-field Fitzpatrick-Porcelli equations. Applications are presented in straight and toroidal geometry showing the accuracy and efficiency of the method in computing highly anisotropic heat conduction, toroidal equilibrium, and the effect of ``two-fluid'' effects on resistive instabilities.

  11. BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MHD PLASMA. II. HOW TO GET ALFVEN WAVES THROUGH THE SOLAR TRANSITION REGION

    SciTech Connect

    Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu

    2012-05-20

    Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.

  12. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  13. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  14. Kinetic effects on global Alfven waves

    SciTech Connect

    Betti, R.

    1992-01-01

    A theoretical investigation is carried out on the effects of the kinetic particle response on global type shear-Alfven waves in tokamaks. Two kinds of wave-particle interactions have been identified: (1) resonant interaction between energetic circulating particles and high frequency Alfven waves, (2) nonresonant interaction between trapped particles and low frequency modes. The author focuses on gap modes which are discrete modes whose real frequency lies in gas of the Alfven continuum induced by geometrical effects. A new gap mode, the Ellipticity Induced Alfven Eigenmode (EAE), is induced by the ellipticity of the plasma cross section that couples the m and m + 2 poloidal harmonics. This mode is of the general class as the Toroidicity Induced Alfven Eigenmode (TAE). In configurations with finite ellipticity, the EAE (n; m, m + 2) has a global structure centered about the q = (m + 1)/n surface. In the presence of an energetic ion species any Alfven wave can be destabilized via transit resonance with circulating particles. A sufficient stability criterion is derived for energetic particle-Alfven mode. To include the stabilizing effects of the electron and ion Landau damping a general treatment using a newly derived drift kinetic description of each species is carried out. The analysis has been restricted to Alfven gap modes. Low frequency modes have been investigated using the new drift kinetic model. Focusing on the internal kink mode, the main kinetic contributions arises from trapped particles which process in the toroidal direction. The trapped bulk ions can destabilize the high frequency branch of the internal kink. The numerical solution of the dispersion relation shows that a sharp threshold in [beta][sub p] exists for the instability to grow and that stabilizing effects come from the trapped electron response.

  15. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  16. THE EFFECT OF A TWISTED MAGNETIC FIELD ON THE PERIOD RATIO P{sub 1}/P{sub 2} OF NONAXISYMMETRIC MAGNETOHYDRODYNAMIC WAVES

    SciTech Connect

    Karami, K.; Bahari, K. E-mail: K.Bahari@razi.ac.ir

    2012-10-01

    We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

  17. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  18. Effects of simulated heat waves on ApoE-/- mice.

    PubMed

    Wang, Chunling; Zhang, Shuyu; Tian, Ying; Wang, Baojian; Shen, Shuanghe

    2014-02-01

    The effects of simulated heat waves on body weight, body temperature, and biomarkers of cardiac function in ApoE-/- mice were investigated. Heat waves were simulated in a meteorological environment simulation chamber according to data from a heat wave that occurred in July 2001 in Nanjing, China. Eighteen ApoE-/- mice were divided into control group, heat wave group, and heat wave BH4 group. Mice in the heat wave and BH4 groups were exposed to simulated heat waves in the simulation chamber. Mice in BH4 group were treated with gastric lavage with BH4 2 h prior to heat wave exposure. Results showed that the heat waves did not significantly affect body weight or ET-1 levels. However, mice in the heat wave group had significantly higher rectal temperature and NO level and lower SOD activity compared with mice in the control group (p < 0.01), indicating that heat wave had negative effects on cardiac function in ApoE-/- mice. Gastric lavage with BH4 prior to heat wave exposure significantly reduced heat wave-induced increases in rectal temperature and decreases in SOD activity. Additionally, pretreatment with BH4 further increased NO level in plasma. Collectively, these beneficial effects demonstrate that BH4 may potentially mitigate the risk of coronary heart disease in mice under heat wave exposure. These results may be useful when studying the effects of heat waves on humans. PMID:24477215

  19. Relativistic MHD simulations of stellar core collapse and magnetars

    NASA Astrophysics Data System (ADS)

    Font, José A.; Cerdá-Durán, Pablo; Gabler, Michael; Müller, Ewald; Stergioulas, Nikolaos

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfvén oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfvén waves. We further compute Alfvén oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  20. Effective p -wave interaction and topological superfluids in s -wave quantum gases

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zheng, Zhen; Pu, Han; Zou, Xubo; Guo, Guangcan

    2016-03-01

    p -wave interaction in cold atoms may give rise to exotic topological superfluids. However, the realization of p -wave interaction in a cold atom system is experimentally challenging. Here we propose a simple scheme to synthesize effective p -wave interaction in conventional s -wave interacting quantum gases. The key idea is to load atoms into a spin-dependent optical lattice potential. Using two concrete examples involving spin-1/2 fermions, we show how the original system can be mapped into a model describing spinless fermions with nearest-neighbor p -wave interaction, whose ground state can be a topological superfluid that supports Majorana fermions under proper conditions. Our proposal has the advantage that it does not require spin-orbit coupling or loading atoms onto higher orbitals, which is the key in earlier proposals to synthesize effective p -wave interaction in s -wave quantum gases, and may provide a completely new route for realizing p -wave topological superfluids.

  1. Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: A numerical study

    NASA Astrophysics Data System (ADS)

    Babu, D. Harish; Narayana, P. V. Satya

    2016-08-01

    An analysis has been carried out to study the Joule heating effect on MHD heat transfer of an incompressible Jeffrey fluid due to a stretching porous sheet with power law heat flux and heat source. A constant magnetic field is applied normal to the stretching surface. The basic governing equations are reduced into the coupled nonlinear ordinary differential equations by using similarity transformations. The resulting equations are then solved numerically by shooting method with fourth order Runge-Kutta scheme. The effects of various physical parameters entering into the problem on dimensionless velocity and temperature distribution are discussed through graphs and tables. The results reveal that the momentum and thermal boundary layer thickness are significantly influenced by Deborah number (β), ratio of relaxation and retardation times parameter (λ), heat generation parameter (β*), Eckert number (Ec) and magnetic field parameter (M). A comparison with the previously published works shows excellent agreement.

  2. Conjugate Effects of Heat and Mass Transfer on MHD Free Convection Flow over an Inclined Plate Embedded in a Porous Medium

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Samiulhaq; Shafie, Sharidan

    2013-01-01

    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables. PMID:23840321

  3. A three-dimensional MHD simulation analysis of the origin of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Washimi, H.; Zank, G. P.; Hu, Q.; Nakamizo, A.; Tanaka, T.; Kojima, M.; Kubo, Y.

    2012-12-01

    We have developed a 3D MHD simulation model for the study of the solar-wind acceleration mechanism and for reproducing a realistic configuration of solar wind plasma by using observed photospheric magnetic field at each Carrington rotation cycle. Using an unstructured mesh coordinate system on spherical surface with fine spacing in radial direction, we aim to reproduce a wide range of solar-wind plasma configuration from the photosphere to 1AU. We have incorporated external source terms into the momentum and energy equations in our MHD simulation. The energy source term consists of two volumetric heating functions: one is a new term, as a new development from our original model (Nakamizo et al. JGR 114, A07109, 2009), for the heating in a very narrow region around the transition region. The other one is an additional heating source which probably comes from some nonlinear wave phenomena which are effective over a radial distance of an order of the solar radius in the corona. The Spitzer-type thermal conduction term is also taken into account. The momentum source term is given in a form similar to that of the nonlinear wave heating function noted above. Using this MHD simulation system, we will study the origin of the slow solar wind from nearby regions of some isolated active regions during CR1900-CR1913 in some details.

  4. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  5. Very low frequency and ELF effects in the upper ionosphere caused by large-scale acoustic waves in the lower ionosphere observed from AUREOL-3 satellite

    NASA Astrophysics Data System (ADS)

    Galperin, Y. I.; Gladyshev, V. A.; Jorjio, N. V.; Kovrazhkin, R. A.; Lissakov, Y. V.; Maslov, V. D.; Nikolaenko, L. M.; Sagdeev, R. Z.; Molchanov, O. A.; Mogilevsky, M. M.

    The active MASSA experiment studied the effects generated in the upper atmosphere and in the magnetosphere by a large-scale acoustic wave from a chemical explosion reaching ionospheric altitudes. The AUREOL-3 satellite crossed the corresponding magnetic force tubes by the time of the development of the electromagnetic processes expected in the lower ionosphere E-region above the explosion. Measurements reveal electromagnetic effects in the ionospheric and magnetospheric plasmas. Effects include nearly electrostatic ELF and VLF noises in the magnetic force tube based on the E-layer ionosphere above the explosion. Their area expands with a velocity of 0.6 km/sec, i.e., as of an acoustic wave in the lower ionosphere. An intense MHD wave is detected at L = 1.31, equatorwards from the explosion L-shell (L = 1.5).

  6. Collisionless Reconnection with Weak Slow Shocks Under Anisotropic MHD Approximation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, K.; Hoshino, M.

    2014-12-01

    Magnetic reconnection accompanied by a pair of slow-mode shock waves, known as Petschek's theory, has been widely studied as an efficient mechanism to convert magnetically stored energy to thermal and/or kinetic energy in plasmas. Satellite observations in the Earth's magnetotail, on the other hand, report that the detection of slow shocks is rare compared with the theory. As an important step to bridge the gap between the observational fact and the Petschek-type reconnection, we performed one- and two- dimensional collisionless magnetohydrodynamic (MHD) simulations of magnetic reconnection paying special attention to the effect of temperature anisotropy. In high-beta plasmas such as a plasma sheet in the magnetotail, it is expected that even weak temperature anisotropy can greatly modify the dynamics. We demonstrate that the slow shocks do exist in the reconnection layer even under the anisotropic temperature. The resultant shocks, however, are weaker than those in isotropic MHD in terms of plasma compression. In addition, the amount of magnetic energy released across the shock is extremely small, that is, the shock is no longer switch-off type. In spite of the weakness of the shocks, the reconnection rates measured by the inflow velocities are kept at the same level as the isotropic cases. Once the slow shock forms, the downstream plasma is heated in highly anisotropic manner, and the firehose-sense anisotropy affects the wave structure in the system. In particular, it is remarkable that the sequential order of propagation of slow shocks and rotational discontinuities reverses depending upon the magnitude of a superposed guide field. Our result is consistent with the rareness of the slow shock detection in the magnetotail, and implies that shocks do not necessarily play an important role. Furthermore, a variety of wave structure of a reconnection layer shown here will help interpretation of observational data in collisionless reconnection.

  7. Simulating solar MHD

    NASA Astrophysics Data System (ADS)

    Schüssler, M.

    1999-05-01

    Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse') are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

  8. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    PubMed

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. PMID:26499119

  9. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Bouwer, Edward J.; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  10. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.; Bouwer, E. J.

    2014-12-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.