Science.gov

Sample records for mice lacking presenilin-1

  1. A new and simple approach for genotyping Alzheimer’s disease presenilin-1 mutant knockin mice

    PubMed Central

    Gautheron, Vanessa; Auffret, Alexandra; Mattson, Mark P.; Mariani, Jean; Garabedian, Béatrice Vernet-der

    2009-01-01

    The use of transgenic mice expressing point mutations demands that the detection of the different alleles is efficient and reliable. In addition, the multiplication of transgenes included in mouse models of human disease underlines the importance of correct controls and the fact that investigators need an accurate and rapid genotyping of the littermates generated. In this study, we demonstrate a powerful alternative for genotyping using presenilin-1 mutant knockin (PS1M146KI) mice as an example. Mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease (AD). PS1M146VKI mice that express the PS1 M146V targeted allele at normal physiological levels and triple-transgenic model (3xTg-AD) derived from homozygous PS1M146VKI mice were generated to study the pathogenesis of AD. Genotyping PS1M146VKI line requires many steps and thus a large quantity of DNA. In PS1M146VKI mice, only three nucleotides are modified in the gene. Here we show that this small mutated DNA sequence can affect its secondary structure resulting in altered mobility that can be easily detected on a polyacrylamide gel, by the single-strand conformation polymorphism (SSCP) technique. Our results demonstrate that SSCP is a simple, accurate, repeatable and efficient method for the routine genotyping of this current AD model. This method could be easily applied to other transgenic mice. PMID:19465058

  2. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation

    PubMed Central

    Gama Sosa, Miguel A.; De Gasperi, Rita; Hof, Patrick R.; Elder, Gregory A.

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  3. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    PubMed

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  4. Physiologically generated presenilin 1 lacking exon 8 fails to rescue brain PS1-/- phenotype and forms complexes with wildtype PS1 and nicastrin.

    PubMed

    Brautigam, Hannah; Moreno, Cesar L; Steele, John W; Bogush, Alexey; Dickstein, Dara L; Kwok, John B J; Schofield, Peter R; Thinakaran, Gopal; Mathews, Paul M; Hof, Patrick R; Gandy, Sam; Ehrlich, Michelle E

    2015-01-01

    The presenilin 1 (PSEN1) L271V mutation causes early-onset familial Alzheimer's disease by disrupting the alternative splicing of the PSEN1 gene, producing some transcripts harboring the L271V point mutation and other transcripts lacking exon 8 (PS1(∆exon8)). We previously reported that PS1 L271V increased amyloid beta (Aβ) 42/40 ratios, while PS1(∆exon8) reduced Aβ42/40 ratios, indicating that the former and not the exon 8 deletion transcript is amyloidogenic. Also, PS1(∆exon8) did not rescue Aβ generation in PS1/2 double knockout cells indicating its identity as a severe loss-of-function splice form. PS1(∆exon8) is generated physiologically raising the possibility that we had identified the first physiological inactive PS1 isoform. We studied PS1(∆exon8) in vivo by crossing PS1(∆exon8) transgenics with either PS1-null or Dutch APP(E693Q) mice. As a control, we crossed APP(E693Q) with mice expressing a deletion in an adjacent exon (PS1(∆exon9)). PS1(∆exon8) did not rescue embryonic lethality or Notch-deficient phenotypes of PS1-null mice displaying severe loss of function in vivo. We also demonstrate that this splice form can interact with wildtype PS1 using cultured cells and co-immunoprecipitation (co-IP)/bimolecular fluorescence complementation. Further co-IP demonstrates that PS1(∆exon8) interacts with nicastrin, participating in the γ-secretase complex formation. These data support that catalytically inactive PS1(∆exon8) is generated physiologically and participates in protein-protein interactions. PMID:26608390

  5. Physiologically generated presenilin 1 lacking exon 8 fails to rescue brain PS1−/− phenotype and forms complexes with wildtype PS1 and nicastrin

    PubMed Central

    Brautigam, Hannah; Moreno, Cesar L.; Steele, John W.; Bogush, Alexey; Dickstein, Dara L.; Kwok, John B.J.; Schofield, Peter R.; Thinakaran, Gopal; Mathews, Paul M.; Hof, Patrick R.; Gandy, Sam; Ehrlich, Michelle E.

    2015-01-01

    The presenilin 1 (PSEN1) L271V mutation causes early-onset familial Alzheimer’s disease by disrupting the alternative splicing of the PSEN1 gene, producing some transcripts harboring the L271V point mutation and other transcripts lacking exon 8 (PS1∆exon8). We previously reported that PS1 L271V increased amyloid beta (Aβ) 42/40 ratios, while PS1∆exon8 reduced Aβ42/40 ratios, indicating that the former and not the exon 8 deletion transcript is amyloidogenic. Also, PS1∆exon8 did not rescue Aβ generation in PS1/2 double knockout cells indicating its identity as a severe loss-of-function splice form. PS1∆exon8 is generated physiologically raising the possibility that we had identified the first physiological inactive PS1 isoform. We studied PS1∆exon8 in vivo by crossing PS1∆exon8 transgenics with either PS1-null or Dutch APPE693Q mice. As a control, we crossed APPE693Q with mice expressing a deletion in an adjacent exon (PS1∆exon9). PS1∆exon8 did not rescue embryonic lethality or Notch-deficient phenotypes of PS1-null mice displaying severe loss of function in vivo. We also demonstrate that this splice form can interact with wildtype PS1 using cultured cells and co-immunoprecipitation (co-IP)/bimolecular fluorescence complementation. Further co-IP demonstrates that PS1∆exon8 interacts with nicastrin, participating in the γ–secretase complex formation. These data support that catalytically inactive PS1∆exon8 is generated physiologically and participates in protein-protein interactions. PMID:26608390

  6. Epicatechin Plus Treadmill Exercise are Neuroprotective Against Moderate-stage Amyloid Precursor Protein/Presenilin 1 Mice

    PubMed Central

    Zhang, Zhiyuan; Wu, Hao; Huang, Houcai

    2016-01-01

    Background: Epidemiological evidence suggests that exercise and dietary polyphenols are beneficial in reducing Alzheimer's disease (AD) risk. Materials and Methods: In the present study, 8 months old amyloid precursor protein/presenilin 1 (APP/PS1) mice (a moderate pathology phase) were given the green tea catechin (-)-epicatechin delivered orally in the drinking water (50 mg/kg daily), along with treadmill exercise for 4 months, in order to investigate whether the combination can ameliorate the cognitive loss and delay the progression of AD in APP/PS1 transgenic (Tg) mice. Results: At termination, untreated-Tg mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermates. The combined intervention protected against cognitive deficits in the Morris water maze, lowered soluble Aβ1–40 and Aβ1–42 levels in the hippocampus as well as reducing brain oxidative stress. In addition, brain-derived neurotrophic factor proteins wee elevated and Akt/GSK-3/cAMP response element-binding protein signaling was activated in the combination group. Conclusions: Dietary polyphenol plus exercise may exert beneficial effects on brain health and slow the progression of moderate- or mid-stages of AD. SUMMARY Amyloid precursor protein/presenilin 1 transgenic mice showed elevated soluble amyloid-β (Aβ1–40) and Aβ1–42 levels and deficits in spatial learning and memory, compared with their wild-type littermatesOral administration of epicatechin, combined with treadmill exercise for 4 months, could protect against cognitive deficits, and lowered soluble Aβ1–40 and Aβ1–42 levels as well as reducing brain oxidative stressBrain-derived neurotrophic factor proteins were elevated, and Akt/GSK-3/cAMP response element binding protein signaling was activated in the combination groupDietary polyphenol plus exercise might exert beneficial effects on brain health and slow the progression

  7. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation.

    PubMed

    Yang, Xifei; Yang, Ying; Li, Geng; Wang, Jianzhi; Yang, Edward S

    2008-02-01

    One of the neuropathological features of Alzheimer's disease (AD) is the deposition of senile plaques containing beta-amyloid (A beta). There is limited evidence for the treatment to arrest A beta pathology of AD. In our present study, we tested the effect of coenzyme Q10 (CoQ10), an endogenous antioxidant and a powerful free radical scavenger, on A beta in the aged transgenic mice overexpressing Alzheimer presenilin 1-L235P (leucine-to-proline mutation at codon 235, 16-17 months old). The treatment by feeding the transgenic mice with CoQ10 for 60 days (1,200 mg kg(-1) day(-1)) partially attenuated A beta overproduction and intracellular A beta deposit in the cortex of the transgenic mice compared with the age-matched untreated transgenic mice. Meanwhile, an increased oxidative stress reaction was detected as evidenced by elevated level of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) in the transgenic mice relative to the wild-type mice, and supplementation of CoQ10 partially decreased MDA level and upregulated the activity of SOD. The results indicate that oxidative stress is enhanced in the brain of the transgenic mice, that this enhancement may further promote A beta 42 overproduction in a vicious formation, and that CoQ10 would be beneficial for the therapy of AD. PMID:18181031

  8. Increase in presenilin 1 (PS1) levels in senescence-accelerated mice (SAMP8) may indirectly impair memory by affecting amyloid precursor protein (APP) processing.

    PubMed

    Kumar, Vijaya B; Franko, Mark; Banks, William A; Kasinadhuni, Pranav; Farr, Susan A; Vyas, Kamlesh; Choudhuri, Veena; Morley, John E

    2009-02-01

    Senescence-accelerated mice (SAMP8) serve as a model for Alzheimer's disease (AD) as they exhibit early loss of memory and increased amyloid precursor protein (APP) expression. APP is a ubiquitous membrane protein that is physiologically processed by site-specific proteolysis firstly by alpha- or beta-secretases, releasing a large fragment called APP(S) that contains most of the extracellular sequences of APP, a small extracellular stub, the transmembrane region and the cytoplasmic tail of APP (;AICD'-APP intracellular domain). These are subsequently cleaved by gamma-secretase at multiple sites in the transmembrane region, releasing small peptides, Abeta(1-40) and Abeta(1-42), the major components of AD-associated amyloid fibrils. gamma-secretase is a high-molecular-mass complex composed of presenilin-1 (PS1), nicastrin, APH-1 and Pen-2. As PS1 has been shown to play a critical role in facilitating gamma-secretase activity, and mutations in this protein are associated with familial AD (FAD), we have cloned it from SAMP8 mouse hippocampus and compared its sequence with those of other species. Furthermore, changes in the expression of PS1 with age in the hippocampal tissue of SAMP8 were studied. The results showed that the SAMP8 PS1 cDNA sequence is identical to that of normal mice. However, its expression in the hippocampus of SAMP8 exhibited an increase, while CD-1 mice, a strain that does not exhibit premature memory loss, showed no change with age. An increased amount or mutation(s) in PS1, which alters the stoichiometric balance of the gamma-secretase complex, may be the cause of aberrant or increased processing of APP, resulting in Abeta accumulation leading to loss of memory. PMID:19181896

  9. Alzheimer's disease-causing proline substitutions lead to presenilin 1 aggregation and malfunction.

    PubMed

    Ben-Gedalya, Tziona; Moll, Lorna; Bejerano-Sagie, Michal; Frere, Samuel; Cabral, Wayne A; Friedmann-Morvinski, Dinorah; Slutsky, Inna; Burstyn-Cohen, Tal; Marini, Joan C; Cohen, Ehud

    2015-11-12

    Do different neurodegenerative maladies emanate from the failure of a mutual protein folding mechanism? We have addressed this question by comparing mutational patterns that are linked to the manifestation of distinct neurodegenerative disorders and identified similar neurodegeneration-linked proline substitutions in the prion protein and in presenilin 1 that underlie the development of a prion disorder and of familial Alzheimer's disease (fAD), respectively. These substitutions were found to prevent the endoplasmic reticulum (ER)-resident chaperone, cyclophilin B, from assisting presenilin 1 to fold properly, leading to its aggregation, deposition in the ER, reduction of γ-secretase activity, and impaired mitochondrial distribution and function. Similarly, reduced quantities of the processed, active presenilin 1 were observed in brains of cyclophilin B knockout mice. These discoveries imply that reduced cyclophilin activity contributes to the development of distinct neurodegenerative disorders, propose a novel mechanism for the development of certain fAD cases, and support the emerging theme that this disorder can stem from aberrant presenilin 1 function. This study also points at ER chaperones as targets for the development of counter-neurodegeneration therapies. PMID:26438723

  10. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo.

    PubMed

    Thinakaran, G; Borchelt, D R; Lee, M K; Slunt, H H; Spitzer, L; Kim, G; Ratovitsky, T; Davenport, F; Nordstedt, C; Seeger, M; Hardy, J; Levey, A I; Gandy, S E; Jenkins, N A; Copeland, N G; Price, D L; Sisodia, S S

    1996-07-01

    The majority of early-onset cases of familial Alzheimer's disease (FAD) are linked to mutations in two related genes, PS1 and PS2, located on chromosome 14 and 1, respectively. Using two highly specific antibodies against nonoverlapping epitopes of the PS1-encoded polypeptide, termed presenilin 1 (PS1), we document that the preponderant PS1-related species that accumulate in cultured mammalian cells, and in the brains of rodents, primates, and humans are approximately 27-28 kDa N-terminal and approximately 16-17 kDa C-terminal derivatives. Notably, a FAD-linked PS1 variant that lacks exon 9 is not subject to endoproteolytic cleavage. In brains of transgenic mice expressing human PS1, approximately 17 kDa and approximately 27 kDa PS1 derivatives accumulate to saturable levels, and at approximately 1:1 stoichiometry, independent of transgene-derived mRNA. We conclude that PS1 is subject to endoproteolytic processing in vivo. PMID:8755489

  11. By suppressing the expression of anterior pharynx-defective-1α and -1β and inhibiting the aggregation of β-amyloid protein, magnesium ions inhibit the cognitive decline of amyloid precursor protein/presenilin 1 transgenic mice.

    PubMed

    Yu, Xin; Guan, Pei-Pei; Guo, Jing-Wen; Wang, Yue; Cao, Long-Long; Xu, Guo-Biao; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-12-01

    Alzheimer's disease (AD) is associated with a magnesium ion (Mg(2+)) deficit in the serum or brain. However, the mechanisms regulating the roles of Mg(2+) in the pathologic condition of AD remain unknown. We studied whether brain Mg(2+) can decrease β-amyloid (Aβ) deposition and ameliorate the cognitive decline in a model of AD, the APPswe/PS1DE9 transgenic (Tg) mouse. We used a recently developed compound, magnesium-L-threonate (MgT), for a treatment that resulted in enhanced clearance of Aβ in an anterior pharynx-defective (APH)-1α/-1β-dependent manner. To further explore how MgT treatment inhibits cognitive decline in APP/PS1 Tg mice, the critical molecules for amyloid precursor protein (APP) cleavage and signaling pathways were investigated. In neurons, ERK1/2 and PPARγ signaling pathways were activated by MgT treatment, which in turn suppressed (by >80%) the expression of APH-1α/-1β, which is responsible for the deposition of Aβ and potentially contributes to the memory deficit that occurs in AD. More important, Aβ oligomers in the cerebrospinal fluid (CSF) further promoted the expression of APH-1α/-1β (by >2.5-fold), which enhances the γ-cleavage of APP and Aβ deposition during AD progression. These findings provide new insights into the mechanisms of AD progression and are instrumental for developing better strategies to combat the disease. PMID:26293690

  12. Presenilin-1-immunoreactive neurons are preserved in late-onset Alzheimer's disease.

    PubMed Central

    Giannakopoulos, P.; Bouras, C.; Kövari, E.; Shioi, J.; Tezapsidis, N.; Hof, P. R.; Robakis, N. K.

    1997-01-01

    Recent studies have suggested that missense mutations in the presenilin-1 gene are causally related to the majority of familial early-onset Alzheimer's disease (AD). To examine the possible involvement of presenilin-1 in late-onset sporadic AD, a quantitative analysis of its distribution in the cerebral cortex of nondemented and AD patients was performed using immunocytochemistry. Stereological analyses revealed that AD brains showed a marked neuronal loss in the CA1 field of the hippocampus and hilus of the dentate gyrus, subiculum, and entorhinal cortex. In these areas, however, the fraction of neurofibrillary tangle (NFT)-free neurons showing presenilin-1 immunoreactivity was increased compared with nondemented controls. In contrast, cortical areas, which displayed no neuronal loss, did not show any significant increase in the fraction of presenilin-1-positive neurons. Moreover, presenilin-1 immunoreactivity was reduced in NFT-containing neurons. Thus, in AD, the fraction of NFT-free neurons that contained presenilin-1 varied from 0.48 to 0.77, whereas the fraction of NFT-containing neurons that were presenilin-1 positive varied from 0.1 to 0.24. Together, these observations indicate that presenilin-1 may have a neuroprotective role and that in AD low cellular expression of this protein may be associated with increased neuronal loss and NFT formation. Images Figure 1 PMID:9033258

  13. Presenilin-1 Dependent Neurogenesis Regulates Hippocampal Learning and Memory

    PubMed Central

    Bonds, Jacqueline A.; Kuttner-Hirshler, Yafit; Bartolotti, Nancy; Tobin, Matthew K.; Pizzi, Michael; Marr, Robert; Lazarov, Orly

    2015-01-01

    Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration. New granule neurons expressing reduced PS1 levels exhibit decreased dendritic branching and dendritic spines. Further, they exhibit reduced survival. Lastly, we show that PS1 effect on neurogenesis is mediated via β-catenin phosphorylation and notch signaling. Together, these observations suggest that impairments in adult neurogenesis induce learning and memory deficits and may play a role in the cognitive deficits observed in Alzheimer’s disease. PMID:26098332

  14. A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene

    PubMed Central

    Sitek, Emilia J.; Narożańska, Ewa; Pepłońska, Beata; Filipek, Sławomir; Barczak, Anna; Styczyńska, Maria; Mlynarczyk, Krzysztof; Brockhuis, Bogna; Portelius, Erik; Religa, Dorota; Barcikowska, Maria

    2013-01-01

    Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M). In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum. PMID:23593396

  15. Acetylcholinesterase modulates presenilin-1 levels and γ-secretase activity.

    PubMed

    Campanari, Maria-Letizia; García-Ayllón, María-Salud; Belbin, Olivia; Galcerán, Joan; Lleó, Alberto; Sáez-Valero, Javier

    2014-01-01

    The cholinergic enzyme acetylcholinesterase (AChE) and the catalytic component of the γ-secretase complex, presenilin-1 (PS1), are known to interact. In this study, we investigate the consequences of AChE-PS1 interactions, particularly the influence of AChE in PS1 levels and γ-secretase activity. PS1 is able to co-immunoprecipitate all AChE variants (AChE-R and AChE-T) and molecular forms (tetramers and light subunits) present in the human brain. Overexpression of AChE-R or AChE-T, or their respective inactive mutants, all trigger an increase in PS1 protein levels. The AChE species capable of triggering the biggest increase in PS1 levels is a complex of AChE with the membrane anchoring subunit proline-rich membrane anchor (PRiMA), which restricts the localization of the resulting AChE tetramer to the outer plasma membrane. Incubation of cultured cells with soluble AChE demonstrates that AChE is able to increase PS1 at both the protein and transcript levels. However, the increase of PS1 caused by soluble AChE is accompanied by a decrease in γ-secretase activity as shown by the reduction of the processing of the amyloid-β protein precursor. This inhibitory effect of AChE on γ-secretase activity was also demonstrated by directly assessing accumulation of CTF-AβPP in cell-free membrane preparations incubated with AChE. Our data suggest that AChE may function as an inhibitor of γ-secretase activity. PMID:24699279

  16. Acetylcholine receptor and behavioral deficits in mice lacking apolipoprotein E

    PubMed Central

    Siegel, Jessica A; Benice, Theodore S; Van Meer, Peter; Park, Byung S; Raber, Jacob

    2011-01-01

    Apolipoprotein E (apoE) is involved in the risk to develop sporadic Alzheimer’s disease (AD). Since impaired central acetylcholine (ACh) function is a hallmark of AD, apoE may influence ACh function by modulating muscarinic ACh receptors (mAChRs). To test this hypothesis, mAChR binding was measured in mice lacking apoE and wild type C57BL/6J mice. Mice were also tested on the pre-pulse inhibition, delay eyeblink classical conditioning, and 5-choice serial reaction time tasks, which are all modulated by ACh transmission. Mice were also given scopolamine to challenge central mAChR function. Compared to wild type mice, mice lacking apoE had reduced number of cortical and hippocampal mAChRs. Scopolamine had a small effect on delay eyeblink classical conditioning in wild type mice but a large effect in mice lacking apoE. Mice lacking apoE were also unable to acquire performance on the 5-choice serial reaction time task. These results support a role for apoE in ACh function and suggest that modulation of cortical and hippocampal mAChRs might contribute to genotype differences in scopolamine sensitivity and task acquisition. Impaired apoE functioning may result in cholinergic deficits that contribute to the cognitive impairments seen in AD. PMID:19178986

  17. Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels.

    PubMed

    Silveyra, María-Ximena; García-Ayllón, María-Salud; Serra-Basante, Carol; Mazzoni, Valeria; García-Gutierrez, María-Salud; Manzanares, Jorge; Culvenor, Janetta G; Sáez-Valero, Javier

    2012-03-01

    We have previously identified presenilin-1 (PS1), the active component of the γ-secretase complex, as an interacting protein of the amyloid-associated enzyme acetylcholinesterase (AChE). In this study, we have explored the consequences of AChE-PS1 interactions. Treatment of SH-SY5Y cells with the AChE-inhibitor tacrine decreased PS1 levels, in parallel with increase in the secretion of amyloid precursor protein APPα, whereas the cholinergic agonist carbachol had no effect on PS1. AChE knockdown with siRNA also decreased PS1 levels, while AChE overexpression exerted opposing effect. AChE-deficient also had decreased PS1. Mice administered with tacrine or donepezil displayed lower levels of brain PS1. However, sustained AChE inhibition failed to exert long-term effect on PS1. This limited duration of response may be due to AChE upregulation caused by chronic inhibition. Finally, we exposed SH-SY5Y cells to β-amyloid (Aβ)42 which triggered elevation of both AChE and PS1 levels. The Aβ42-induced PS1 increase was abolished by siRNA AChE pretreatment, suggesting that AChE may participate in the pathological feedback loop between PS1 and Aβ. Our results provide insight into AChE-amyloid interrelationships. PMID:21621296

  18. Presenilin 1 promotes trypsin-induced neuroprotection via the PAR2/ERK signaling pathway. Effects of presenilin 1 FAD mutations.

    PubMed

    Nikolakopoulou, Angeliki M; Georgakopoulos, Anastasios; Robakis, Nikolaos K

    2016-06-01

    Mutants of presenilin 1 (PS1) increase neuronal cell death causing autosomal-dominant familial Alzheimer's disease (FAD). Recent literature shows that treatment of neuronal cultures with low concentrations of trypsin, a member of the serine family of proteases, protects neurons from toxic insults by binding to the proteinase-activated receptor 2 and stimulating survival kinase extracellular signal-regulated kinase (ERK 1/2). Other studies show that PS1 is necessary for the neuroprotective activity of specific neurotrophic factors, such as brain-derived neurotrophic factor, against excitotoxicity and oxidative stress. Here, we show that treatment of mouse cortical neuronal cultures with trypsin activates ERK1/2 and protects neurons against glutamate excitoxicity. The trypsin-dependent ERK activation and neuroprotection requires both alleles of PS1 because neither PS1 knockout nor PS1 hemizygous neuronal cultures can use exogenous trypsin to activate ERK1/2 or increase neuronal survival. The protective effect of PS1 does not depend on its γ-secretase activity because inhibitors of γ-secretase have no effect on trypsin-mediated neuroprotection. Importantly, cortical neuronal cultures either heterozygous or homozygous for PS1 FAD mutants are unable to use trypsin to activate ERK1/2 and rescue neurons from excitotoxicity, indicating that FAD mutants inhibit trypsin-dependent neuroprotection in an autosomal-dominant manner. Furthermore, our data support the theory that PS FAD mutants increase neurodegeneration by inhibiting the ability of neurons to use cellular factors as protective agents against toxic insults. PMID:27143420

  19. Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice.

    PubMed

    Morici, Giuseppe; Rappa, Francesca; Cappello, Francesco; Pace, Elisabetta; Pace, Andrea; Mudò, Giuseppa; Crescimanno, Grazia; Belluardo, Natale; Bonsignore, Maria R

    2016-10-01

    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868633

  20. Impaired olfaction in mice lacking aquaporin-4 water channels

    PubMed Central

    Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552

  1. Characterization of mice lacking the gene for cholecystokinin.

    PubMed

    Lo, Chun-Min; Samuelson, Linda C; Chambers, James Brad; King, Alexandra; Heiman, Justin; Jandacek, Ronald J; Sakai, Randall R; Benoit, Stephen C; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2008-03-01

    CCK acts peripherally as a satiating peptide released during meals in response to lipid feeding and centrally functions in the modulation of feeding, exploratory, and memory activities. The present study determined metabolic parameters, food intake, anxiety-like behaviors, and cognitive function in mice lacking the CCK gene. We studied intestinal fat absorption, body composition, and food intake of CCK knockout (CCK-KO) mice by using the noninvasive measurement of intestinal fat absorption along with quantitative magnetic resonance (QMR) imaging and the DietMax system, respectively. Additionally, exploratory and memory capacities were assessed by monitoring running wheel activity and conducting elevated plus-maze and Morris water-maze tests with these mice. Compared with wild-type (WT) littermate controls, CCK-KO mice had normal food intake, fat absorption, body weight, and body mass. CCK-KO mice ate more food than control animals during the light period and less food during the dark period. Energy expenditure was unchanged between the genotypes; however, CCK-KO mice displayed greater fatty acid oxidation. CCK-KO mice were as active as WT animals in the running wheel test. CCK-KO mice spent more time in the closed arms of an elevated plus-maze, indicative of increased anxiety. Additionally, CCK-KO mice exhibited attenuated performance in a passive avoidance task and impaired spatial memory in the Morris water maze test. We conclude that CCK is involved in metabolic rate and is important for memory and exploration. CCK is intimately involved in multiple processes related to cognitive function and food intake regulation. PMID:18160529

  2. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    PubMed

    Lemieux, Maxime; D Laflamme, Olivier; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. PMID:26683069

  3. Mice completely lacking immunoproteasomes display major alterations in antigen presentation

    PubMed Central

    Kincaid, Eleanor Z; Che, Jenny W; York, Ian; Escobar, Hernando; Reyes-Vargas, Eduardo; Delgado, Julio C.; Welsh, Raymond M; Karow, Margaret L.; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rock, Kenneth L

    2011-01-01

    The importance of immunoproteasomes to antigen presentation has been unclear because animals totally lacking immunoproteasomes have not been previously developed. Here we show that dendritic cells from mice lacking the three immunoproteasome catalytic subunits display defects in presenting multiple major histocompatability (MHC) class I epitopes. During viral infection in vivo, the presentation of a majority of MHC class I epitopes is markedly reduced in immunoproteasome-deficient animals, while presentation of MHC class II peptides is unaffected. By mass spectrometry the repertoire of MHC class I-presented peptides is ~50% different and these differences are sufficient to stimulate robust transplant rejection of wild type cells in mutant mice. These results indicate that immunoproteasomes play a much more important role in antigen presentation than previously thought. PMID:22197977

  4. Behavioral abnormalities in mice lacking mesenchyme-specific Pten.

    PubMed

    Borniger, Jeremy C; Cissé, Yasmine M; Cantemir-Stone, Carmen Z; Bolon, Brad; Nelson, Randy J; Marsh, Clay B

    2016-05-01

    Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety. We further predicted that environmental enrichment would compensate for genetic deficits in these behaviors. We conducted a battery of behavioral assays on Fsp1-Cre;Pten(LoxP/LoxP) male and female homozygous knockouts (Pten(-/-)) and compared their behavior to Pten(LoxP/LoxP) (Pten(+/+)) conspecifics. Despite extensive physical differences (including reduced hippocampal size) and deficits in sensorimotor function, Pten(-/-) mice behaved remarkably similar to control mice on nearly all behavioral tasks. These results suggest that the social and anxiety-like phenotypes observed in CNS-specific Pten(-/-) mice may depend on neuronal Pten, as lack of Pten in Fsp1-expressing cells of the CNS had little effect on these behaviors. PMID:26876012

  5. Cardiorespiratory Anomalies in Mice Lacking CB1 Cannabinoid Receptors

    PubMed Central

    Bastianini, Stefano; Cohen, Gary; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are expressed in the nervous and cardiovascular systems. In mice, CB1 receptor deficiency protects from metabolic consequences of a high-fat diet (HFD), increases sympathetic activity to brown fat, and entails sleep anomalies. We investigated whether sleep-wake and diet-dependent cardiorespiratory control is altered in mice lacking CB1 receptors. CB1 receptor knock-out (KO) and intact wild-type (WT) mice were fed standard diet or a HFD for 3 months, and implanted with a telemetric arterial pressure transducer and electrodes for sleep scoring. Sleep state was assessed together with arterial pressure and heart rate (home cage), or breathing (whole-body plethysmograph). Increases in arterial pressure and heart rate on passing from the light (rest) to the dark (activity) period in the KO were significantly enhanced compared with the WT. These increases were unaffected by cardiac (β1) or vascular (α1) adrenergic blockade. The breathing rhythm of the KO during sleep was also more irregular than that of the WT. A HFD increased heart rate, impaired cardiac vagal modulation, and blunted the central autonomic cardiac control during sleep. A HFD also decreased cardiac baroreflex sensitivity in the KO but not in the WT. In conclusion, we performed the first systematic study of cardiovascular function in CB1 receptor deficient mice during spontaneous wake-sleep behavior, and demonstrated that CB1 receptor KO alters cardiorespiratory control particularly in the presence of a HFD. The CB1 receptor signaling may thus play a role in physiological cardiorespiratory regulation and protect from some adverse cardiovascular consequences of a HFD. PMID:24950219

  6. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.

    PubMed

    Xu, Wenjing; Barrientos, Tomasa; Mao, Lan; Rockman, Howard A; Sauve, Anthony A; Andrews, Nancy C

    2015-10-20

    Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure. PMID:26456827

  7. Optical stimulation in mice lacking the TRPV1 channel

    NASA Astrophysics Data System (ADS)

    Suh, Eul; Izzo Matic, Agnella; Otting, Margarete; Walsh, Joseph T., Jr.; Richter, Claus-Peter

    2009-02-01

    Lasers can be used to stimulate neural tissue, including the sciatic nerve or auditory neurons. Wells and coworkers suggested that neural tissue is likely stimulated by heat.[1,2] Ion channels that can be activated by heat are the TRPV channels, a subfamily of the Transient Receptor Potential (TRP) ion channels. TRPV channels are nonselective cation channels found in sensory neurons involved in nociception. In addition to various chemicals, TRPV channels can also be thermally stimulated. The activation temperature for the different TRPV channels varies and is 43°C for TRPV1 and 39°C for TRPV3. By performing an immunohistochemical staining procedure on frozen 20 μm cochlear slices using a primary TRPV1 antibody, we observed specific immunostaining of the spiral ganglion cells. Here we show that in mice that lack the gene for the TRPV1 channel optical radiation cannot evoke action potentials on the auditory nerve.

  8. Cortical atrophy in presymptomatic Alzheimer’s disease presenilin 1 mutation carriers

    PubMed Central

    Quiroz, Yakeel T; Stern, Chantal E; Reiman, Eric M; Brickhouse, Michael; Ruiz, Adriana; Sperling, Reisa A; Lopera, Francisco; Dickerson, Bradford C

    2013-01-01

    Background Sporadic late-onset Alzheimer’s disease (AD) dementia has been associated with a ‘signature’ of cortical atrophy in paralimbic and heteromodal association regions measured with MRI. Objective To investigate whether a similar pattern of cortical atrophy is present in presymptomatic presenilin 1 E280A mutation carriers an average of 6 years before clinical symptom onset. Methods 40 cognitively normal volunteers from a Colombian population with familial AD were included; 18 were positive for the AD-associated presenilin 1 mutation (carriers, mean age=38) whereas 22 were non-carriers. T1-weighted volumetric MRI images were acquired and cortical thickness was measured. A priori regions of interest from our previous work were used to obtain thickness from AD-signature regions. Results Compared to non-carriers, presymptomatic presenilin 1 mutation carriers exhibited thinner cortex within the AD-signature summary measure (p<0.008). Analyses of individual regions demonstrated thinner angular gyrus, precuneus and superior parietal lobule in carriers compared to non-carriers, with trend-level effects in the medial temporal lobe. Conclusion Results demonstrate that cognitively normal individuals genetically determined to develop AD have a thinner cerebral cortex than non-carriers in regions known to be affected by typical late-onset sporadic AD. These findings provide further support for the hypothesis that cortical atrophy is present in preclinical AD more than 5 years prior to symptom onset. Further research is needed to determine whether this method could be used to characterise the age-dependent trajectory of cortical atrophy in presymptomatic stages of AD. PMID:23134660

  9. Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.

    PubMed

    Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S

    2008-01-01

    Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family. PMID:19085559

  10. Generation and analysis of mice lacking the chemokine fractalkine.

    PubMed

    Cook, D N; Chen, S C; Sullivan, L M; Manfra, D J; Wiekowski, M T; Prosser, D M; Vassileva, G; Lira, S A

    2001-05-01

    Fractalkine (CX(3)CL1) is the first described chemokine that can exist either as a soluble protein or as a membrane-bound molecule. Both forms of fractalkine can mediate adhesion of cells expressing its receptor, CX(3)CR1. This activity, together with its expression on endothelial cells, suggests that fractalkine might mediate adhesion of leukocytes to the endothelium during inflammation. Fractalkine is also highly expressed in neurons, and its receptor, CX(3)CR1, is expressed on glial cells. To determine the biologic role of fractalkine, we used targeted gene disruption to generate fractalkine-deficient mice. These mice did not exhibit overt behavioral abnormalities, and histologic analysis of their brains did not reveal any gross changes compared to wild-type mice. In addition, these mice had normal hematologic profiles except for a decrease in the number of blood leukocytes expressing the cell surface marker F4/80. The cellular composition of their lymph nodes did not differ significantly from that of wild-type mice. Similarly, the responses of fractalkine(-/-) mice to a variety of inflammatory stimuli were indistinguishable from those of wild-type mice. PMID:11287620

  11. Generation and Analysis of Mice Lacking the Chemokine Fractalkine

    PubMed Central

    Cook, Donald N.; Chen, Shu-Cheng; Sullivan, Lee M.; Manfra, Denise J.; Wiekowski, Maria T.; Prosser, Dina M.; Vassileva, Galya; Lira, Sergio A.

    2001-01-01

    Fractalkine (CX3CL1) is the first described chemokine that can exist either as a soluble protein or as a membrane-bound molecule. Both forms of fractalkine can mediate adhesion of cells expressing its receptor, CX3CR1. This activity, together with its expression on endothelial cells, suggests that fractalkine might mediate adhesion of leukocytes to the endothelium during inflammation. Fractalkine is also highly expressed in neurons, and its receptor, CX3CR1, is expressed on glial cells. To determine the biologic role of fractalkine, we used targeted gene disruption to generate fractalkine-deficient mice. These mice did not exhibit overt behavioral abnormalities, and histologic analysis of their brains did not reveal any gross changes compared to wild-type mice. In addition, these mice had normal hematologic profiles except for a decrease in the number of blood leukocytes expressing the cell surface marker F4/80. The cellular composition of their lymph nodes did not differ significantly from that of wild-type mice. Similarly, the responses of fractalkine−/− mice to a variety of inflammatory stimuli were indistinguishable from those of wild-type mice. PMID:11287620

  12. Molecular insight of DREAM and presenilin 1 C-terminal fragment interactions.

    PubMed

    Pham, Khoa; Miksovska, Jaroslava

    2016-04-01

    Interactions between downstream regulatory element antagonist modulator (DREAM) and presenilin 1 (PS1) are related to numerous neuronal processes. We demonstrate that association of PS1 carboxyl peptide (residues 445-467, HL9) with DREAM is calcium dependent and stabilized by a cluster of three aromatic residues: F462 and F465 from PS1 and F252 from DREAM. Additional stabilization is provided by residues in a loop connecting α helices 7 and 8 in DREAM and residues of PS1, namely cation-π interactions between R200 in DREAM and F465 in PS1 and the salt bridges formed by R207 in DREAM and D450 and D458 in PS1. PMID:27009418

  13. Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    PubMed Central

    Nizzari, Mario; Thellung, Stefano; Corsaro, Alessandro; Villa, Valentina; Pagano, Aldo; Porcile, Carola; Russo, Claudio; Florio, Tullio

    2012-01-01

    Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration. PMID:22496686

  14. Impaired olfaction in mice lacking aquaporin-4 water channels.

    PubMed

    Lu, Daniel C; Zhang, Hua; Zador, Zsolt; Verkman, A S

    2008-09-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had approximately 12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 +/- 0.7 vs. 55 +/- 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 +/- 0.07 vs. 0.28 +/- 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K(+) buffering in the olfactory epithelium. PMID:18511552

  15. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia.

    PubMed Central

    Carlsson, L M; Jonsson, J; Edlund, T; Marklund, S L

    1995-01-01

    Extracellular superoxide dismutase (EC-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) is a secreted Cu- and Zn-containing tetrameric glycoprotein, the bulk of which is bound to heparan sulfate proteoglycans in the interstitium of tissues. To test the function of EC-SOD in vivo, mice carrying a targeted disruption of the EC-SOD gene were generated. The EC-SOD null mutant mice develop normally and remain healthy until at least 14 months of age. No compensatory induction of other SOD isoenzymes or other antioxidant enzymes was observed. When stressed by exposure to > 99% oxygen, the EC-SOD null mutant mice display a considerable reduction in survival time compared to wild-type mice and an earlier onset of severe lung edema. These findings suggest that while under normal physiological conditions other antioxidant systems may substitute for the loss of EC-SOD; when the animal is stressed these systems are unable to provide adequate protection. Images Fig. 1 PMID:7603981

  16. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    PubMed Central

    Cheng, Ching-Feng; Kuo, Terry B. J.; Chen, Wei-Nan

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  17. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases. PMID:24804235

  18. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene

    PubMed Central

    d'Anglemont de Tassigny, Xavier; Fagg, Lisa A.; Dixon, John P. C.; Day, Kate; Leitch, Harry G.; Hendrick, Alan G.; Zahn, Dirk; Franceschini, Isabelle; Caraty, Alain; Carlton, Mark B. L.; Aparicio, Samuel A. J. R.; Colledge, William H.

    2007-01-01

    The G protein-coupled receptor GPR54 (AXOR12, OT7T175) is central to acquisition of reproductive competency in mammals. Peptide ligands (kisspeptins) for this receptor are encoded by the Kiss1 gene, and administration of exogenous kisspeptins stimulates hypothalamic gonadotropin-releasing hormone (GnRH) release in several species, including humans. To establish that kisspeptins are the authentic agonists of GPR54 in vivo and to determine whether these ligands have additional physiological functions we have generated mice with a targeted disruption of the Kiss1 gene. Kiss1-null mice are viable and healthy with no apparent abnormalities but fail to undergo sexual maturation. Mutant female mice do not progress through the estrous cycle, have thread-like uteri and small ovaries, and do not produce mature Graffian follicles. Mutant males have small testes, and spermatogenesis arrests mainly at the early haploid spermatid stage. Both sexes have low circulating gonadotropin (luteinizing hormone and follicle-stimulating hormone) and sex steroid (β-estradiol or testosterone) hormone levels. Migration of GnRH neurons into the hypothalamus appears normal with appropriate axonal connections to the median eminence and total GnRH content. The hypothalamic–pituitary axis is functional in these mice as shown by robust luteinizing hormone secretion after peripheral administration of kisspeptin. The virtually identical phenotype of Gpr54- and Kiss1-null mice provides direct proof that kisspeptins are the true physiological ligand for the GPR54 receptor in vivo. Kiss1 also does not seem to play a vital role in any other physiological processes other than activation of the hypothalamic–pituitary–gonadal axis, and loss of Kiss1 cannot be overcome by compensatory mechanisms. PMID:17563351

  19. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  20. Lack of teratogenicity of aluminum hydroxide in mice

    SciTech Connect

    Domingo, J.S.; Mercedes Gomez, M.A.B.; Corbella, J.

    1989-01-01

    The embryotoxic and teratogenic potential of aluminum hydroxide, a therapeutic drug used as an antacid and phosphate binder, was investigated in Swiss mice. Mated female mice were given by gavage daily doses of 0, 66.5, 133 or 266 mg/kg of A1(OH)/sub 3/ on gestation days 6 through 15 and killed on gestation day 18. Females were evaluated for body weight gain, food consumption appearance and behavior, survival rates, and reproduction data. No significant effects attributable to A1(OH)/sub 3/ were noted in comparisons of maternal body weight and food consumption values, appearance and behavior. No treatment-related changes were recorded in the number of total implants, resorptions, the number of live and dead fetuses, fetal size parameters or fetal sex distribution data. Gross external, soft tissue and skeletal examination of the A1-treated fetuses did not reveal differences at any dose in comparison with the controls. Thus, no evidence of maternal toxicity, embryo/fetal toxicity or teratogenicity was observed with A1(OH)/sub 3/ in mice.

  1. Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase

    PubMed Central

    Kan, Hermien E; Jan Renema, W Klaas; Isbrandt, Dirk; Heerschap, Arend

    2004-01-01

    The effects of creatine (Cr) absence in skeletal muscle caused by a deletion of guanidinoacetate methyltransferase (GAMT) were studied in a knockout mouse model by in vivo 31P magnetic resonance (MR) spectroscopy. 31P MR spectra of hindleg muscle of GAMT-deficient (GAMT–/–) mice showed no phosphocreatine (PCr) signal and instead showed the signal for phosphorylated guanidinoacetate (PGua), the immediate precursor of Cr, which is not normally present. Tissue pH did not differ between wild-type (WT) and GAMT–/– mice, while relative inorganic phosphate (Pi) levels were increased in the latter. During ischaemia, PGua was metabolically active in GAMT–/– mice and decreased at a rate comparable to the decrease of PCr in WT mice. However, the recovery rate of PGua in GAMT–/– mice after ischaemia was reduced compared to PCr in WT mice. Saturation transfer measurements revealed no detectable flux from PGua to γ-ATP, indicating severely reduced enzyme kinetics. Supplementation of Cr resulted in a rapid increase in PCr signal intensity until only this resonance was visible, along with a reduction in relative Pi values. However, the PGua recovery rate after ischaemia did not change. Our results show that despite the absence of Cr, GAMT–/– mice can cope with mild ischaemic stress by using PGua for high energy phosphoryl transfer. The reduced affinity of creatine kinase (CK) for (P)Gua only becomes apparent during recovery from ischaemia. It is argued that absence of Cr causes the higher relative Pi concentration also observed in animals lacking muscle CK, indicating an important role of the CK system in Pi homeostasis. PMID:15284341

  2. Transcriptional regulation of the presenilin-1 gene controls gamma-secretase activity.

    PubMed

    Lee, Sebum; Das, Hriday K

    2010-01-01

    Inhibition of basal JNK activity by JNK inhibitor SP600125 or JNK1siRNA repressed presenilin-1 (PS1) expression in SK-N-SH cells by augmenting the level of p53, a repressor of the PS1 gene (1). We now showed that repression of PS1 transcription by JNK inhibitor SP600125 inhibited gamma-secretase mediated processing of amyloid precursor protein (APP) resulting in the accumulation of C99 fragment and the reduction of secreted Abeta40 level without altering the expression of nicastrin (NCT). Co-treatment of cells with SP600125 and p53 inhibitor, pifithrin-alpha, partially nullified the suppressive effects of SP610025 on PS1 expression and secreted Abeta40 level. Suppression of JNK1 by JNK1siRNA also decreased Abeta40 level. Furthermore, overexpression of the repressors p53, ZNF237 and CHD3 of the PS1 gene also suppressed the processing of APP through repression of PS1 transcription by deacetylation of histone at the PS1 promoter. Transcriptional activator Ets2 increased PS1 protein and secreted Abeta40 levels without affecting the expression of NCT by activating PS1 transcription via hyper-acetylation of histone at the PS1 promoter. Therefore, regulation of PS1 transcription modulates gamma-secretase activity. PMID:20036849

  3. Presenilin-1 influences processing of the acetylcholinesterase membrane anchor PRiMA.

    PubMed

    García-Ayllón, María-Salud; Campanari, María-Letizia; Montenegro, María-Fernanda; Cuchillo-Ibáñez, Inmaculada; Belbin, Olivia; Lleó, Alberto; Tsim, Karl; Vidal, Cecilio J; Sáez-Valero, Javier

    2014-07-01

    Presenilin-1 (PS1) is the catalytic component of the γ-secretase complex. In this study, we explore if PS1 participates in the processing of the cholinergic acetylcholinesterase (AChE). The major AChE variant expressed in the brain is a tetramer (G(4)) bound to a proline-rich membrane anchor (PRiMA). Overexpression of the transmembrane PRiMA protein in Chinese hamster ovary cells expressing AChE and treated with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester have enabled us to study whether, through its γ-secretase activity, PS1 participates in the processing of PRiMA-linked AChE. γ-Secretase inhibition led to a notable increase in the level of PRiMA-linked AChE, suggesting that γ-secretase is involved in the cleavage of PRiMA. We demonstrate that cleavage of PRiMA by γ-secretase results in a C-terminal PRiMA fragment. Immunofluorescence labeling allowed us to identify this PRiMA fragment in the nucleus. Moreover, we have determined changes in the proportion of the raft-residing AChE-PRiMA in a PS1 conditional knockout mouse. Our results are of interest as both enzymes have therapeutic relevance for Alzheimer's disease. PMID:24612677

  4. Identification of a novel mutation in the presenilin 1 gene in a Chinese Alzheimer's disease family.

    PubMed

    Deng, Bo; Lian, Yan; Wang, Xin; Zeng, Fan; Jiao, Bin; Wang, Ye-Ran; Liang, Chun-Rong; Liu, Yu-Hui; Bu, Xian-Le; Yao, Xiu-Qing; Zhu, Chi; Shen, Lu; Zhou, Hua-Dong; Zhang, Tao; Wang, Yan-Jiang

    2014-10-01

    This study has identified a gene mutation in a Chinese family with Alzheimer's disease (AD). Family members were screened by a set of medical examinations and neuropsychological tests. Their DNA was extracted from blood cells and sequenced for gene mutation in the amyloid precursor protein (APP), the presenilin 1 (PS1) and the presenilin 2 (PS2) genes. Genetic analysis showed that the AD patients in the family harbored a T to G missense mutation at the position 314 in exon 4 of the PS1 gene, resulting in a change of F105C in amino acid sequence. Clinical manifestation of these patients included memory loss, counting difficulty, personality change, disorientation, dyscalculia, agnosia, aphasia, and apraxia, which was similar to that of the familial AD (FAD) patients harboring other PS1 mutations. We intend to add a novel mutation F105C of the PS1 gene to the pool of FAD mutations. With the current available genetic data, mutations of the PS1 gene account for the majority of gene mutations in Chinese FAD. PMID:24737487

  5. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    SciTech Connect

    Nielsen, Anders Lade

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  6. The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer.

    PubMed

    Li, Ping; Lin, Xi; Zhang, Jun-Rong; Li, Yun; Lu, Jun; Huang, Fei-Chao; Zheng, Chao-Hui; Xie, Jian-Wei; Wang, Jia-Bin; Huang, Chang-Ming

    2016-03-01

    Presenilin 1 (PS-1, encoded by PSEN1) is a part of the gamma- (γ-) secretase complex. Mutations in PSEN1 cause the majority of cases of familial Alzheimer's disease (FAD). Although in recent years PS-1 has been implicated as a tumor enhancer in various cancers, nothing is known regarding its role in gastric cancer (GC). In the present study, we investigate the role and clinical significance of PS-1 in GC. We observed that PS-1 was significantly upregulated and amplified in GC tissues and cell lines, and its aberrant expression was positively correlated with lymph node metastasis and with poor overall survival. Furthermore, PS-1 promoted tumor invasion and metastasis of GC both in vitro and vivo without affecting the proliferation of GC cells (MGC-803 and MKN-45). The results of treatment with the γ-secretase inhibitor DAPT were consistent with the outcomes of PS-1 silencing. PS-1/γ-secretase cleaves E-cadherin and releases its bound protein partner, β-catenin, from the actin cytoskeleton, thereby allowing it to translocate into the nucleus and to activate the TCF/LEF-1 transcriptional activator, which may promote GC invasion and metastasis.In conclusion, PS-1 promotes invasion and metastasis in GC and may represent a novel prognostic biomarker and potential therapeutic target for GC treatment. PMID:26872378

  7. The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer

    PubMed Central

    Li, Ping; Lin, Xi; Zhang, Jun-Rong; Li, Yun; Lu, Jun; Huang, Fei-Chao; Zheng, Chao-Hui; Xie, Jian-Wei; Wang, Jia-Bin; Huang, Chang-Ming

    2016-01-01

    Presenilin 1 (PS-1, encoded by PSEN1) is a part of the gamma− (γ−) secretase complex. Mutations in PSEN1 cause the majority of cases of familial Alzheimer's disease (FAD). Although in recent years PS-1 has been implicated as a tumor enhancer in various cancers, nothing is known regarding its role in gastric cancer (GC). In the present study, we investigate the role and clinical significance of PS-1 in GC. We observed that PS-1 was significantly upregulated and amplified in GC tissues and cell lines, and its aberrant expression was positively correlated with lymph node metastasis and with poor overall survival. Furthermore, PS-1 promoted tumor invasion and metastasis of GC both in vitro and vivo without affecting the proliferation of GC cells (MGC-803 and MKN-45). The results of treatment with the γ-secretase inhibitor DAPT were consistent with the outcomes of PS-1 silencing. PS-1/γ-secretase cleaves E-cadherin and releases its bound protein partner, β-catenin, from the actin cytoskeleton, thereby allowing it to translocate into the nucleus and to activate the TCF/LEF-1 transcriptional activator, which may promote GC invasion and metastasis. In conclusion, PS-1 promotes invasion and metastasis in GC and may represent a novel prognostic biomarker and potential therapeutic target for GC treatment. PMID:26872378

  8. Motor learning of mice lacking cerebellar Purkinje cells.

    PubMed

    Porras-García, M Elena; Ruiz, Rocío; Pérez-Villegas, Eva M; Armengol, José Á

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input-output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  9. Motor learning of mice lacking cerebellar Purkinje cells

    PubMed Central

    Porras-García, M. Elena; Ruiz, Rocío; Pérez-Villegas, Eva M.; Armengol, José Á.

    2013-01-01

    The cerebellum plays a key role in the acquisition and execution of motor tasks whose physiological foundations were postulated on Purkinje cells' long-term depression (LTD). Numerous research efforts have been focused on understanding the cerebellum as a site of learning and/or memory storage. However, the controversy on which part of the cerebellum participates in motor learning, and how the process takes place, remains unsolved. In fact, it has been suggested that cerebellar cortex, deep cerebellar nuclei, and/or their combination with some brain structures other than the cerebellum are responsible for motor learning. Different experimental approaches have been used to tackle this question (cerebellar lesions, pharmacological agonist and/or antagonist of cerebellar neurotransmitters, virus tract tracings, etc.). One of these approaches is the study of spontaneous mutations affecting the cerebellar cortex and depriving it of its main input–output organizer (i.e., the Purkinje cell). In this review, we discuss the results obtained in our laboratory in motor learning of both Lurcher (Lc/+) and tambaleante (tbl/tbl) mice as models of Purkinje-cell-devoid cerebellum. PMID:23630472

  10. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin.

    PubMed

    Kronenberg, Golo; Mosienko, Valentina; Gertz, Karen; Alenina, Natalia; Hellweg, Rainer; Klempin, Friederike

    2016-04-01

    The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice. Furthermore, BDNF levels were increased in the prefrontal cortex of Tph2 (-/-) but not of SERT(-/-) mice. Our results emphasize the interaction between serotonin signaling and BDNF. Complete lack of brain serotonin induces BDNF expression. PMID:26100147

  11. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo.

    PubMed

    Borchelt, D R; Thinakaran, G; Eckman, C B; Lee, M K; Davenport, F; Ratovitsky, T; Prada, C M; Kim, G; Seekins, S; Yager, D; Slunt, H H; Wang, R; Seeger, M; Levey, A I; Gandy, S E; Copeland, N G; Jenkins, N A; Price, D L; Younkin, S G; Sisodia, S S

    1996-11-01

    Mutations in the presenilin 1 (PS1) and presenilin 2 genes cosegregate with the majority of early-onset familial Alzheimer's disease (FAD) pedigrees. We now document that the Abeta1-42(43)/Abeta1-40 ratio in the conditioned media of independent N2a cell lines expressing three FAD-linked PS1 variants is uniformly elevated relative to cells expressing similar levels of wild-type PS1. Similarly, the Abeta1-42(43)/Abeta1-40 ratio is elevated in the brains of young transgenic animals coexpressing a chimeric amyloid precursor protein (APP) and an FAD-linked PS1 variant compared with brains of transgenic mice expressing APP alone or transgenic mice coexpressing wild-type human PS1 and APP. These studies provide compelling support for the view that one mechanism by which these mutant PS1 cause AD is by increasing the extracellular concentration of Abeta peptides terminating at 42(43), species that foster Abeta deposition. PMID:8938131

  12. Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis

    PubMed Central

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I.; Glatzel, Markus

    2014-01-01

    Familial Alzheimer’s disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A–associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration. PMID:24569455

  13. The Role of Presenilin-1 in the Excitotoxicity of Ethanol Withdrawal.

    PubMed

    Jung, Marianna E; Metzger, Daniel B; Das, Hriday K

    2016-09-01

    Presenilin-1 (PS1) is a core component of γ-secretase that is involved in neurodegeneration. We have previously shown that PS1 interacts with a mitogen-activated protein kinase [(MAPK) jun-NH2-terminal-kinase], and another MAPK (p38) is activated by ethanol withdrawal (EW), abrupt termination from chronic ethanol exposure. EW is excitotoxic in nature, induces glutamate upregulation, and provokes neuronal damage. Here, we explored a potential mechanistic pathway involving glutamate, p38 (p38α isozyme), and PS1 that may mediate EW-induced excitotoxic stress. We used the prefrontal cortex of male rats withdrawn from a chronic ethanol diet. Additionally, we used ethanol-withdrawn HT22 cells (mouse hippocampal) treated with the inhibitor of glutamate receptors [dizocilpine (MK-801)], p38α (SB203580; 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine), or γ-secretase [N-[N- (3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)] during EW. Separately, ethanol-free HT22 cells were exposed to glutamate with or without SB203580 or DAPT. Protein levels, mRNA levels, and cell viability were assessed using immunoblotting, qualitative polymerase chain reaction, and calcein assay, respectively. The prefrontal cortex of ethanol-withdrawn rats or HT22 cells showed an increase in PS1 and p38α, which was attenuated by MK-801 and SB203580, but mimicked by glutamate treatment to ethanol-free HT22 cells. DAPT attenuated the toxic effect of EW or glutamate on HT22 cells. These results suggest that PS1 expression is triggered by glutamate through p38α, contributing to the excitotoxic stimulus of EW. PMID:27278235

  14. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells.

    PubMed

    Rivabene, Roberto; Visentin, Sergio; Piscopo, Paola; De Nuccio, Chiara; Crestini, Alessio; Svetoni, Francesca; Rosa, Paolo; Confaloni, Annamaria

    2014-02-01

    Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of γ-secretase, the enzyme that releases amyloid-β protein (Aβ) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Aβ protein precursor are involved in the etiology of familial Alzheimer's disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca(2+) regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and γ-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca(2+) perturbations and mimic the altered Ca(2+) homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca(2+)-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca(2+) fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD. PMID:24363250

  15. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis.

    PubMed

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I; Glatzel, Markus

    2014-04-01

    Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A-associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration. PMID:24569455

  16. Unusual type of mitochondrial DNA in mice lacking a maternally transmitted antigen.

    PubMed Central

    Ferris, S D; Ritte, U; Lindahl, K F; Prager, E M; Wilson, A C

    1983-01-01

    Mice that lack a maternally transmitted antigen (Mta) on the cell surface share a distinctive type of mitochondrial DNA. This is evident from restriction analyses of mitochondrial DNAs from 25 strains of mice whose antigenic state is known. One hundred sixty-eight cleavage sites have been mapped in the mitochondrial DNA of Mta- mice. Detailed maps for the 8 other types of mitochondrial DNA detected in the survey have also been prepared. The Mta- mice are estimated to differ from those expressing the antigen by 108 to 141 base substitutions at widely scattered points in the mitochondrial genome. PMID:6304659

  17. Reduced Alzheimer's disease β-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin

    PubMed Central

    Meckler, Xavier; Roseman, Jelita; Das, Pritam; Cheng, Haipeng; Pei, Susan; Keat, Marcia; Kassarjian, Breanne; Golde, Todd E.; Parent, Angèle T.; Thinakaran, Gopal

    2010-01-01

    Sequential cleavage of amyloid precursor protein by β- and γ-secretases generates β-amyloid peptides (Aβ), which accumulate in the brains of patients with Alzheimer's disease. We recently identified S-palmitoylation of two γ-secretase subunits, APH1 and nicastrin. S-palmitoylation is an essential post-translational modification for the proper trafficking and function of many neuronal proteins. In cultured cell lines, lack of S-palmitoylation causes instability of nascent APH1 and nicastrin, but does not affect γ-secretase processing of amyloid precursor protein. To determine the importance of γ-secretase S-palmitoylation for Aβ deposition in the brain, we generated transgenic mice co-expressing human wild-type or S-palmitoylation-deficient APH1aL and nicastrin in neurons in the forebrain. We found that lack of S-palmitoylation did not impair the ability of APH1aL and nicastrin to form enzymatically active protein complexes with endogenous presenilin 1 and PEN2, or affect the localization of γ-secretase subunits in dendrites and axons of cortical neurons. When we crossed these mice with 85Dbo transgenic mice, which co-express familial Alzheimer's disease-causing amyloid precursor protein and presenilin 1 variants, we found that co-expression of wild-type or mutant APH1aL and nicastrin led to marked stabilization of transgenic presenilin 1 in the brains of double transgenic mice. Interestingly, we observed a moderate, but significant, reduction in amyloid deposits in the forebrain of mice expressing S-palmitoylation-deficient γ-secretase subunits as compared with mice overexpressing wild-type subunits, as well as a reduction in the levels of insoluble Aβ40-42. These results indicate that γ-secretase S-palmitoylation modulates Aβ deposition in the brain. PMID:21123562

  18. Reduced Alzheimer's disease ß-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin.

    PubMed

    Meckler, Xavier; Roseman, Jelita; Das, Pritam; Cheng, Haipeng; Pei, Susan; Keat, Marcia; Kassarjian, Breanne; Golde, Todd E; Parent, Angèle T; Thinakaran, Gopal

    2010-12-01

    Sequential cleavage of amyloid precursor protein by β- and γ-secretases generates β-amyloid peptides (Aβ), which accumulate in the brains of patients with Alzheimer's disease. We recently identified S-palmitoylation of two γ-secretase subunits, APH1 and nicastrin. S-Palmitoylation is an essential posttranslational modification for the proper trafficking and function of many neuronal proteins. In cultured cell lines, lack of S-palmitoylation causes instability of nascent APH1 and nicastrin but does not affect γ-secretase processing of amyloid precursor protein. To determine the importance of γ-secretase S-palmitoylation for Aβ deposition in the brain, we generated transgenic mice coexpressing human wild-type or S-palmitoylation-deficient APH1aL and nicastrin in neurons in the forebrain. We found that lack of S-palmitoylation did not impair the ability of APH1aL and nicastrin to form enzymatically active protein complexes with endogenous presenilin 1 and PEN2 or affect the localization of γ-secretase subunits in dendrites and axons of cortical neurons. When we crossed these mice with 85Dbo transgenic mice, which coexpress familial Alzheimer's disease-causing amyloid precursor protein and presenilin 1 variants, we found that coexpression of wild-type or mutant APH1aL and nicastrin led to marked stabilization of transgenic presenilin 1 in the brains of double-transgenic mice. Interestingly, we observed a moderate, but significant, reduction in amyloid deposits in the forebrain of mice expressing S-palmitoylation-deficient γ-secretase subunits compared with mice overexpressing wild-type subunits, as well as a reduction in the levels of insoluble Aβ(40-42). These results indicate that γ-secretase S-palmitoylation modulates Aβ deposition in the brain. PMID:21123562

  19. Severe hepatocellular disease in mice lacking one or both CaaX prenyltransferases[S

    PubMed Central

    Yang, Shao H.; Chang, Sandy Y.; Tu, Yiping; Lawson, Gregory W.; Bergo, Martin O.; Fong, Loren G.; Young, Stephen G.

    2012-01-01

    Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) add 15- or 20-carbon lipids, respectively, to proteins that terminate with a CaaX motif. These posttranslational modifications of proteins with lipids promote protein interactions with membrane surfaces in cells, but the in vivo importance of the CaaX prenyltransferases and the protein lipidation reactions they catalyze remain incompletely defined. One study concluded that a deficiency of FTase was inconsequential in adult mice and led to little or no tissue pathology. To assess the physiologic importance of the CaaX prenyltransferases, we used conditional knockout alleles and an albumin–Cre transgene to produce mice lacking FTase, GGTase-I, or both enzymes in hepatocytes. The hepatocyte-specific FTase knockout mice survived but exhibited hepatocellular disease and elevated transaminases. Mice lacking GGTase-I not only had elevated transaminases but also had dilated bile cannaliculi, hyperbilirubinemia, hepatosplenomegaly, and reduced survival. Of note, GGTase-I–deficient hepatocytes had a rounded shape and markedly reduced numbers of actin stress fibers. Hepatocyte-specific FTase/GGTase-I double-knockout mice closely resembled mice lacking GGTase-I alone, but the disease was slightly more severe. Our studies refute the notion that FTase is dispensable and demonstrate that GGTase-I is crucial for the vitality of hepatocytes. PMID:22039581

  20. Lack of fibroblast growth factor 21 accelerates metabolic liver injury characterized by steatohepatities in mice

    PubMed Central

    Liu, Xingkai; Zhang, Ping; Martin, Robert C; Cui, Guozhen; Wang, Guangyi; Tan, Yi; Cai, Lu; Lv, Guoyue; Li, Yan

    2016-01-01

    Fibroblast growth factor 21 (FGF21) concentrations are increased in human subjects who either have type 2 diabetes or nonalcoholic fatty liver disease (NAFLD). While excessive fat in the liver promotes the release of pro-inflammatory cytokines, NAFLD progresses from steatosis to non alcoholic steatohepatitis (NASH), a more aggressive form of hepatic damage, and lastly toward cirrhosis and HCC. In our previous study, loss of FGF21 is associated with hyper-proliferation, aberrant p53, and HCC development in diabetes mice. In this study, we proposed to investigate the liver metabolic disorders by diabetes and the potential roles of FGF21 played in NASH and potential carcinogenetic transformation of HCC. NASH was induced in FGF21 knockout (FGF21KO) mice by streptozotocin administration or fed with high fat diet (HFD). The pathological transformation of steatohepatities as well as parameters of inflammation, lipid metabolism, cellular events, mesenchymal-epithelial transition (MET) and Wnt/β-catenin signaling was determined in the FGF21 KO diabetic mice and HFD fed mice. We found that mice lacking the FGF21 gene are more prone to develop NASH. A compromised microenvironment of NASH, which could facilitate the HCC carcinogenetic transformation, was found in FGF21 KO mice under metabolic disorders by diabetes and HFD feeding. This study provided further evidence that lack of FGF21 worsened the metabolic disorders in NASH and could render a tumor microenvironment for HCC initiation and progression in the liver of diabetes mice. PMID:27293995

  1. Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors.

    PubMed

    Blakeman, K H; Hao, J-X; Xu, X-J; Jacoby, A S; Shine, J; Crawley, J N; Iismaa, T; Wiesenfeld-Hallin, Z

    2003-01-01

    The neuropeptide galanin may have a role in modulation of nociception, particularly after peripheral nerve injury. The effect of galanin is mediated by at least three subtypes of receptors. In the present study, we assessed the nociceptive sensitivity in mice lacking the galanin receptor 1 gene (Galr1) and the development of neuropathic pain-like behaviours after photochemically induced partial sciatic nerve ischaemic injury. Under basal condition, Galr1 knock-out (Galr1(-/-)) mice had shortened response latency on the hot plate, but not tail flick and paw radiant heat, tests. The mechanical sensitivity was not different between Galr1(-/-) and wild type (Galr1(+/+)) mice, whereas the cold response was moderately enhanced in Galr1(-/-) mice. Both Galr1(-/-) mice and Galr1(+/+) controls developed mechanical and heat hypersensitivity after partial sciatic nerve injury. The duration of such pain-like behaviours was significantly increased in Galr1(-/-). The Galr1(-/-) mice and Galr1(+/+) mice did not differ in their recovery from deficits in toe-spread after sciatic nerve crush. The results provide some evidence for an inhibitory function for the neuropeptide galanin acting on galanin receptor 1 (GALR1) in nociception and neuropathic pain after peripheral nerve injury in mice. PMID:12605908

  2. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. PMID:21803530

  3. Locomotion and self-administration induced by cocaine in 129/OlaHsd mice lacking galanin

    PubMed Central

    Brabant, Christian; Kuschpel, Anna S; Picciotto, Marina R

    2010-01-01

    Previous studies have demonstrated that the galanin system modulates responses to drugs of abuse such as morphine. The current study examined whether genetic deletion of galanin could affect the locomotor and reinforcing effects of cocaine in mice. We examined spontaneous motor activity and cocaine-induced hyperactivity in wild-type (GAL-WT) and knockout mice lacking galanin (GAL-KO) maintained on the 129/OlaHsd background. Our results indicate that cocaine enhanced locomotion (defined as moving more than 5 cm) dose-dependently in GAL-WT and GAL-KO mice. However, general activity (total beam breaks) was increased by cocaine only in GAL-WT mice. An additional experiment indicated that galnon, a non-selective galanin receptor agonist, did not affect cocaine-induced hyperactivity. In a second set of experiments, mice of both genotypes were trained to self-administer cocaine under a fixed ratio schedule and tested with various doses of cocaine under different schedules of reinforcement. This set of experiments showed that cocaine self-administration did not differ markedly between genotypes. However, while GAL-WT mice acquired cocaine self-administration, a median split analysis showed that mice could be divided into large and small drug takers, whereas all GAL-KO mice were small drug takers. Our results indicate that wild-type and galanin knockout mice on a congenic 129/OlaHsd background are responsive to the locomotor effects of cocaine and can acquire i.v. cocaine self-administration. However, the phenotype observed in GAL-KO mice does not support a major role for galanin in cocaine-induced hyperlocomotion and self-administration. PMID:21038934

  4. Megacystis, mydriasis, and ion channel defect in mice lacking the α3 neuronal nicotinic acetylcholine receptor

    PubMed Central

    Xu, Wei; Gelber, Shari; Orr-Urtreger, Avi; Armstrong, Dawna; Lewis, Richard A.; Ou, Ching-Nan; Patrick, James; Role, Lorna; De Biasi, Mariella; Beaudet, Arthur L.

    1999-01-01

    The α3 subunit of the neuronal nicotinic acetylcholine receptor is widely expressed in autonomic ganglia and in some parts of the brain. The α3 subunit can form heteromultimeric ion channels with other α subunits and with β2 and β4 subunits, but its function in vivo is poorly understood. We prepared a null mutation for the α3 gene by deletion of exon 5 and found that homozygous (−/−) mice lacked detectable mRNA on Northern blotting. The −/− mice survive to birth but have impaired growth and increased mortality before and after weaning. The −/− mice have extreme bladder enlargement, dribbling urination, bladder infection, urinary stones, and widely dilated ocular pupils that do not contract in response to light. Detailed histological studies of −/− mice revealed no significant abnormalities in brain or peripheral tissues except urinary bladder, where inflammation was prominent. Ganglion cells and axons were present in bladder and bowel. Bladder strips from −/− mice failed to contract in response to 0.1 mM nicotine, but did contract in response to electrical field stimulation or carbamoylcholine. The number of acetylcholine-activated single-channel currents was severely reduced in the neurons of superior cervical ganglia in −/− mice with five physiologically distinguishable nicotinic acetylcholine receptor subtypes with different conductance and kinetic properties in wild-type mice, all of which were reduced in −/− mice. The findings in the α3-null mice suggest that this subunit is an essential component of the nicotinic receptors mediating normal function of the autonomic nervous system. The phenotype in −/− mice may be similar to the rare human genetic disorder of megacystis–microcolon–intestinal hypoperistalsis syndrome. PMID:10318955

  5. Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase.

    PubMed

    Demas, G E; Kriegsfeld, L J; Blackshaw, S; Huang, P; Gammie, S C; Nelson, R J; Snyder, S H

    1999-10-01

    Male mice with targeted deletion of the gene encoding the neuronal isoform of nitric oxide synthase (nNOS(-/-)) display increased aggressive behavior compared with wild-type (WT) mice. Specific pharmacological inhibition of nNOS with 7-nitroindazole also augments aggressive behavior. We report here that male mice with targeted deletion of the gene encoding endothelial NOS (eNOS(-/-)) display dramatic reductions in aggression. The effects are selective, because an extensive battery of behavioral tests reveals no other deficits. In the resident-intruder model of aggression, resident eNOS(-/-) males show virtually no aggression. Latency for aggression onset is 25-30 times longer in eNOS(-/-) males compared with WT males in the rare instances of aggressive behaviors. Similarly, a striking lack of aggression is noted in tests of aggression among groups of four mice monitored in neutral cages. Although eNOS(-/-) mice are hypertensive ( approximately 14 mmHg blood pressure elevation), hypertension does not appear responsible for the diminished aggression. Reduction of hypertension with hydralazine does not change the prevalence of aggression in eNOS(-/-) mice. Extensive examination of brains from eNOS(-/-) male mice reveals no obvious neural damage from chronic hypertension. In situ hybridization in WT animals reveals eNOS mRNA in the brain associated exclusively with blood vessels and no neuronal localizations. Accordingly, vascular eNOS in the brain appears capable of influencing behavior with considerable selectivity. PMID:10493775

  6. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    PubMed

    Kong, Xiang Yi; Kase, Eili Tranheim; Herskedal, Anette; Schjalm, Camilla; Damme, Markus; Nesset, Cecilie Kasi; Thoresen, G Hege; Rustan, Arild C; Eskild, Winnie

    2015-01-01

    Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1) has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice) were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury. PMID:26047317

  7. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2

    PubMed Central

    Pellieux, Corinne; Foletti, Alessandro; Peduto, Giovanni; Aubert, Jean-François; Nussberger, Jürg; Beermann, Friedrich; Brunner, Hans-R.; Pedrazzini, Thierry

    2001-01-01

    FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II–induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II–dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2–deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells. PMID:11748268

  8. Altered behavioral aspects of aged mice lacking the cellular prion protein.

    PubMed

    Massimino, Maria Lina; Redaelli, Marco; Bertoli, Alessandro; Sorgato, Maria Catia; Mucignat-Caretta, Carla

    2013-07-01

    The biological function of the prion protein, which is intimately involved in the onset of prion diseases, remains unclear. To understand whether the prion protein could play a role in animal behavior, a battery of tests was applied to young and aged mice that express, or not, the prion protein. In contrast to the similar results obtained in all young animals, we found that aged mice lacking the prion protein reacted to new and stressful environments differently than their wild-type counterparts. This may suggest that, upon aging, the absence of the prion protein results in altered neural processing at the basis of adaptation to new situations. PMID:23770331

  9. Increased Oral Detection, but Decreased Intestinal Signaling for Fats in Mice Lacking Gut Microbiota

    PubMed Central

    Duca, Frank A.; Swartz, Timothy D.; Sakar, Yassine; Covasa, Mihai

    2012-01-01

    Germ-free (GF) mice lacking intestinal microbiota are significantly leaner than normal (NORM) control mice despite consuming more calories. The contribution of microbiota on the recognition and intake of fats is not known. Thus, we investigated the preference for, and acceptance of, fat emulsions in GF and NORM mice, and associated changes in lingual and intestinal fatty acid receptors, intestinal peptide content, and plasma levels of gut peptides. GF and NORM C57Bl/6J mice were given 48-h two-bottle access to water and increasing concentrations of intralipid emulsions. Gene expression of the lingual fatty acid translocase CD36 and protein expression of intestinal satiety peptides and fatty-acid receptors from isolated intestinal epithelial cells were determined. Differences in intestinal enteroendocrine cells along the length of the GI tract were quantified. Circulating plasma satiety peptides reflecting adiposity and biochemical parameters of fat metabolism were also examined. GF mice had an increased preference and intake of intralipid relative to NORM mice. This was associated with increased lingual CD36 (P<0.05) and decreased intestinal expression of fatty acid receptors GPR40 (P<0.0001), GPR41 (P<0.0001), GPR43 (P<0.05), and GPR120 (P<0.0001) and satiety peptides CCK (P<0.0001), PYY (P<0.001), and GLP-1 (P<0.001). GF mice had fewer enteroendocrine cells in the ileum (P<0.05), and more in the colon (P<0.05), relative to NORM controls. Finally, GF mice had lower levels of circulating leptin and ghrelin (P<0.001), and altered plasma lipid metabolic markers indicative of energy deficits. Increased preference and caloric intake from fats in GF mice are associated with increased oral receptors for fats coupled with broad and marked decreases in expression of intestinal satiety peptides and fatty-acid receptors. PMID:22768116

  10. Myocardial Mitochondrial and Contractile Function Are Preserved in Mice Lacking Adiponectin

    PubMed Central

    Braun, Martin; Hettinger, Niko; Koentges, Christoph; Pfeil, Katharina; Cimolai, Maria C.; Hoffmann, Michael M.; Osterholt, Moritz; Doenst, Torsten; Bode, Christoph; Bugger, Heiko

    2015-01-01

    Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/-) mice and wildtypes (WT). In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24%) in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions. PMID:25785965

  11. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver

    PubMed Central

    Kong, Xiang Yi; Kase, Eili Tranheim; Herskedal, Anette; Schjalm, Camilla; Damme, Markus; Nesset, Cecilie Kasi; Thoresen, G. Hege; Rustan, Arild C.; Eskild, Winnie

    2015-01-01

    Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1) has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmpgt/gt mice (formerly known as Ncu-g1gt/gtmice) were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmpgt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmpgt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmpgt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmpgt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmpgt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmpgt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmpgt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury. PMID:26047317

  12. Subfertility with Defective Folliculogenesis in Female Mice Lacking Testicular Orphan Nuclear Receptor 4

    PubMed Central

    Chen, Lu-Min; Wang, Ruey-Sheng; Lee, Yi-Fen; Liu, Ning-Chun; Chang, Yu-Jia; Wu, Cheng-Chia; Xie, Shaozhen; Hung, Yao-Ching; Chang, Chawnshang

    2008-01-01

    Testicular orphan nuclear receptor 4 (TR4) plays essential roles for normal spermatogenesis in male mice. However, its roles in female fertility and ovarian function remain largely unknown. Here we found female mice lacking TR4 (TR4−/−) displayed subfertility and irregular estrous cycles. TR4−/− female mice ovaries were smaller with fewer or no preovulatory follicles and corpora lutea. After superovulation, TR4−/− female mice produced fewer oocytes, preovulatory follicles, and corpora lutea. In addition, more intensive granulosa apoptosis was found in TR4−/− ovaries. Functional analyses suggest that subfertility in TR4−/− female mice can be due to an ovarian defect with impaired folliculogenesis rather than a deficiency in pituitary gonadotropins. Molecular mechanism dissection of defective folliculogenesis found TR4 might induce LH receptor (LHR) gene expression via direct binding to its 5′ promoter. The consequence of reduced LHR expression in TR4−/− female mice might then result in reduced gonadal sex hormones via reduced expression of enzymes involved in steroidogenesis. Together, our results showed TR4 might play essential roles in normal folliculogenesis by influencing LHR signals. Modulation of TR4 expression and/or activation via its upstream signals or unidentified ligand(s) might allow us to develop small molecule(s) to control folliculogenesis. PMID:18174360

  13. Mice lacking the cerebral cortex develop normal song: insights into the foundations of vocal learning.

    PubMed

    Hammerschmidt, Kurt; Whelan, Gabriela; Eichele, Gregor; Fischer, Julia

    2015-01-01

    Mouse models play an increasingly important role in the identification and functional assessment of speech-associated genes, with a focus on genes involved in vocal production, and possibly vocal learning. Moreover, mice reportedly show direct projections from the cortex to brainstem vocal motor neurons, implying a degree of volitional control over vocal output. Yet, deaf mice did not reveal differences in call structures compared to their littermates, suggesting that auditory input is not a prerequisite for the development of species-specific sounds. To elucidate the importance of cortical structures for the development of mouse ultrasonic vocalizations (USVs) in more detail, we studied Emx1-CRE;Esco2(fl/fl) mice, which lack the hippocampus and large parts of the cortex. We conducted acoustic analyses of the USVs of 28 pups during short-term isolation and 23 adult males during courtship encounters. We found no significant differences in the vocalizations of Emx1-CRE;Esco2(fl/fl) mice, and only minor differences in call type usage in adult mice, compared to control littermates. Our findings question the notion that cortical structures are necessary for the production of mouse USVs. Thus, mice might be less suitable to study the mechanisms supporting vocal learning than previously assumed, despite their value for studying the genetic foundations of neurodevelopment more generally. PMID:25744204

  14. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  15. The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor

    PubMed Central

    Fischer, Katrin; Finan, Brian; Clemmensen, Christoffer; van der Ploeg, Lex H. T.; Tschöp, Matthias H.; Müller, Timo D.

    2015-01-01

    The gastrointestinal peptide hormone ghrelin is the endogenous ligand of the growth hormone secretagogue receptor (a.k.a. ghrelin receptor, GHR). Currently, ghrelin is the only circulating peripheral hormone with the ability to promote a positive energy balance by stimulating food intake while decreasing energy expenditure and body fat utilization, as defined in rodents. Based on these and additional, beneficial effects on metabolism, the endogenous ghrelin system is considered an attractive target to treat diverse pathological conditions including those associated with eating/wasting disorders and cachexia. As the pharmacological potential of ghrelin is hampered by its relatively short half-life, ghrelin analogs with enhanced pharmacokinetics offer the potential to sustainably improve metabolism. One of these ghrelin analogs is the pentapeptide RM-131, which promotes food intake and adiposity with higher potency as compared to native ghrelin in rodents. Whereas, the effect of RM-131 on energy metabolism is solidly confirmed in rodents, it remains elusive whether RM-131 exerts its effect solely via the ghrelin receptor. Accordingly, we assessed the receptor specificity of RM-131 to promote food intake and adiposity in mice lacking the GHR. Our data show that in wildtype mice RM-131 potently promotes weight gain and adiposity through stimulation of food intake. However, RM-131 fails to affect food intake and body weight in mice lacking the GHR, underlining that the anabolic effects of RM-131 are mediated via the ghrelin receptor in mice. PMID:25988130

  16. Expression of familial Alzheimer disease presenilin 1 gene attenuates vesicle traffic and reduces peptide secretion in cultured astrocytes devoid of pathologic tissue environment.

    PubMed

    Stenovec, Matjaž; Trkov, Saša; Lasič, Eva; Terzieva, Slavica; Kreft, Marko; Rodríguez Arellano, José Julio; Parpura, Vladimir; Verkhratsky, Alexei; Zorec, Robert

    2016-02-01

    In the brain, astrocytes provide metabolic and trophic support to neurones. Failure in executing astroglial homeostatic functions may contribute to the initiation and propagation of diseases, including Alzheimer disease (AD), characterized by a progressive loss of neurones over years. Here, we examined whether astrocytes from a mice model of AD isolated in the presymptomatic phase of the disease exhibit alterations in vesicle traffic, vesicular peptide release and purinergic calcium signaling. In cultured astrocytes isolated from a newborn wild-type (wt) and 3xTg-AD mouse, secretory vesicles and acidic endosomes/lysosomes were labeled by transfection with plasmid encoding atrial natriuretic peptide tagged with mutant green fluorescent protein (ANP.emd) and by LysoTracker, respectively. The intracellular Ca(2+) concentration ([Ca(2+)]i) was monitored with Fluo-2 and visualized by confocal microscopy. In comparison with controls, spontaneous mobility of ANP- and LysoTracker-labeled vesicles was diminished in 3xTg-AD astrocytes; the track length (TL), maximal displacement (MD) and directionality index (DI) were all reduced in peptidergic vesicles and in endosomes/lysosomes (P < 0.001), as was the ATP-evoked attenuation of vesicle mobility. Similar impairment of peptidergic vesicle trafficking was observed in wt rat astrocytes transfected to express mutated presenilin 1 (PS1M146V). The ATP-evoked ANP discharge from single vesicles was less efficient in 3xTg-AD and PS1M146V-expressing astrocytes than in respective wt controls (P < 0.05). Purinergic stimulation evoked biphasic and oscillatory [Ca(2+)]i responses; the latter were less frequent (P < 0.001) in 3xTg-AD astrocytes. Expression of PS1M146V in astrocytes impairs vesicle dynamics and reduces evoked secretion of the signaling molecule ANP; both may contribute to the development of AD. PMID:26462451

  17. Acid Sphingomyelinase Gene Knockout Ameliorates Hyperhomocysteinemic Glomerular Injury in Mice Lacking Cystathionine-β-Synthase

    PubMed Central

    Boini, Krishna M.; Xia, Min; Abais, Justine M.; Xu, Ming; Li, Cai-xia; Li, Pin-Lan

    2012-01-01

    Acid sphingomyelinase (ASM) has been implicated in the development of hyperhomocysteinemia (hHcys)-induced glomerular oxidative stress and injury. However, it remains unknown whether genetically engineering of ASM gene produces beneficial or detrimental action on hHcys-induced glomerular injury. The present study generated and characterized the mice lacking cystathionine β-synthase (Cbs) and Asm mouse gene by cross breeding Cbs+/− and Asm+/− mice. Given that the homozygotes of Cbs−/−/Asm−/− mice could not survive for 3 weeks. Cbs+/−/Asm+/+, Cbs+/−/Asm+/− and Cbs+/−/Asm−/− as well as their Cbs wild type littermates were used to study the role of Asm−/− under a background of Cbs+/− with hHcys. HPLC analysis revealed that plasma Hcys level was significantly elevated in Cbs heterozygous (Cbs+/−) mice with different copies of Asm gene compared to Cbs+/+ mice with different Asm gene copies. Cbs+/−/Asm+/+ mice had significantly increased renal Asm activity, ceramide production and O2.− level compared to Cbs+/+/Asm+/+, while Cbs+/−/Asm−/− mice showed significantly reduced renal Asm activity, ceramide production and O2.− level due to increased plasma Hcys levels. Confocal microscopy demonstrated that colocalization of podocin with ceramide was much lower in Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice, which was accompanied by a reduced glomerular damage index, albuminuria and proteinuria in Cbs+/−/Asm−/− mice. Immunofluorescent analyses of the podocin, nephrin and desmin expression also illustrated less podocyte damages in the glomeruli from Cbs+/−/Asm−/− mice compared to Cbs+/−/Asm+/+ mice. In in vitro studies of podocytes, hHcys-enhanced O2.− production, desmin expression, and ceramide production as well as decreases in VEGF level and podocin expression in podocytes were substantially attenuated by prior treatment with amitriptyline, an Asm inhibitor. In conclusion, Asm gene knockout or

  18. Murine Norovirus Infection Variably Alters Atherosclerosis in Mice Lacking Apolipoprotein E

    PubMed Central

    Hsu, Charlie C; Paik, Jisun; Brabb, Thea L; O'Brien, Kevin D; Kim, Jinkyu; Sullivan, Brittany G; Hudkins, Kelly L; Seamons, Audrey; Finley, Jennifer C; Meeker, Stacey M; Maggio-Price, Lillian

    2015-01-01

    Macrophages play a key role in the development of atherosclerosis. Murine noroviruses (MNV) are highly prevalent in research mouse colonies and infect macrophages and dendritic cells. Our laboratory found that MNV4 infection in mice lacking the LDL receptor alters the development of atherosclerosis, potentially confounding research outcomes. Therefore, we investigated whether MNV4 likewise altered atherosclerosis in ApoE−/− mice. In the presence of oxidized LDL, MNV4 infection of ApoE−/− bone marrow-derived macrophages increased the gene expression of the inflammatory markers inducible nitric oxide synthase, monocyte chemoattractant protein 1, and IL6. In addition, proteins involved in cholesterol transport were altered in MNV4-infected ApoE−/− bone marrow-derived macrophages and consisted of increased CD36 and decreased ATP-binding cassette transporter A1. MNV4 infection of ApoE−/− mice at 12 wk of age (during the development of atherosclerosis) had a variable effect on atherosclerotic lesion size. In one study, MNV4 significantly increased atherosclerotic plaque area whereas in a second study, no effect was observed. Compared with controls, MNV4-infected mice had higher circulating Ly6C-positive monocytes, and viral RNA was detected in the aortas of some mice, suggesting potential mechanisms by which MNV4 alters disease progression. Plaque size did not differ when ApoE−/− mice were infected at 4 wk of age (early during disease development) or in ApoE−/− mice maintained on a high-fat, high-cholesterol diet. Therefore, these data show that MNV4 has the potential to exert a variable and unpredictable effect on atherosclerosis in ApoE−/− mice. We therefore propose that performing experiments in MNV-free mouse colonies is warranted. PMID:26473341

  19. Murine Norovirus Infection Variably Alters Atherosclerosis in Mice Lacking Apolipoprotein E.

    PubMed

    Hsu, Charlie C; Paik, Jisun; Brabb, Thea L; O'Brien, Kevin D; Kim, Jinkyu; Sullivan, Brittany G; Hudkins, Kelly L; Seamons, Audrey; Finley, Jennifer C; Meeker, Stacey M; Maggio-Price, Lillian

    2015-10-01

    Macrophages play a key role in the development of atherosclerosis. Murine noroviruses (MNV) are highly prevalent in research mouse colonies and infect macrophages and dendritic cells. Our laboratory found that MNV4 infection in mice lacking the LDL receptor alters the development of atherosclerosis, potentially confounding research outcomes. Therefore, we investigated whether MNV4 likewise altered atherosclerosis in ApoE(-/-) mice. In the presence of oxidized LDL, MNV4 infection of ApoE(-/-) bone marrow-derived macrophages increased the gene expression of the inflammatory markers inducible nitric oxide synthase, monocyte chemoattractant protein 1, and IL6. In addition, proteins involved in cholesterol transport were altered in MNV4-infected ApoE -/- bone marrow-derived macrophages and consisted of increased CD36 and decreased ATP-binding cassette transporter A1. MNV4 infection of ApoE(-/-) mice at 12 wk of age (during the development of atherosclerosis) had a variable effect on atherosclerotic lesion size. In one study, MNV4 significantly increased atherosclerotic plaque area whereas in a second study, no effect was observed. Compared with controls, MNV4-infected mice had higher circulating Ly6C-positive monocytes, and viral RNA was detected in the aortas of some mice, suggesting potential mechanisms by which MNV4 alters disease progression. Plaque size did not differ when ApoE -/- mice were infected at 4 wk of age (early during disease development) or in ApoE -/- mice maintained on a high-fat, high-cholesterol diet. Therefore, these data show that MNV4 has the potential to exert a variable and unpredictable effect on atherosclerosis in ApoE(-/-) mice. We therefore propose that performing experiments in MNV-free mouse colonies is warranted. PMID:26473341

  20. Improved regeneration after femoral nerve injury in mice lacking functional T- and B-lymphocytes.

    PubMed

    Mehanna, Ali; Szpotowicz, Emanuela; Schachner, Melitta; Jakovcevski, Igor

    2014-11-01

    The immune system plays important functional roles in regeneration after injury to the mammalian central and peripheral nervous systems. After damage to the peripheral nerve several types of immune cells, invade the nerve within hours after the injury. To gain insights into the contribution of T- and B-lymphocytes to recovery from injury we used the mouse femoral nerve injury paradigm. RAG2-/- mice lacking mature T- and B-lymphocytes due to deletion of the recombination activating gene 2 were subjected to resection and surgical reconstruction of the femoral nerve, with the wild-type mice of the same inbred genetic background serving as controls. According to single frame motion analyses, RAG2-/- mice showed better motor recovery in comparison to control mice at four and eight weeks after injury. Retrograde tracing of regrown/sprouted axons of spinal motoneurons showed increased numbers of correctly projecting motoneurons in the lumbar spinal cord of RAG2-/- mice compared with controls. Whereas there was no difference in the motoneuron soma size between genotypes, RAG2-/- mice displayed fewer cholinergic and inhibitory synaptic terminals around somata of spinal motoneurons both prior to and after injury, compared with wild-type mice. Extent of myelination of regrown axons in the motor branch of the femoral nerve measured as g-ratio was more extensive in RAG2-/- than in control mice eight weeks after injury. We conclude that activated T- and B-lymphocytes restrict motor recovery after femoral nerve injury, associated with the increased survival of motoneurons and improved remyelination. PMID:24967682

  1. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3.

    PubMed

    Seal, Rebecca P; Akil, Omar; Yi, Eunyoung; Weber, Christopher M; Grant, Lisa; Yoo, Jong; Clause, Amanda; Kandler, Karl; Noebels, Jeffrey L; Glowatzki, Elisabeth; Lustig, Lawrence R; Edwards, Robert H

    2008-01-24

    The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. The early degeneration of some cochlear ganglion neurons in knockout mice also indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little change in ongoing motor behavior. The glutamate release conferred by expression of VGLUT3 thus has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability. PMID:18215623

  2. Mice Lacking Pten in Osteoblasts Have Improved Intramembranous and Late Endochondral Fracture Healing

    PubMed Central

    Burgers, Travis A.; Hoffmann, Martin F.; Collins, Caitlyn J.; Zahatnansky, Juraj; Alvarado, Martin A.; Morris, Michael R.; Sietsema, Debra L.; Mason, James J.; Jones, Clifford B.; Ploeg, Heidi L.; Williams, Bart O.

    2013-01-01

    The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing. PMID:23675511

  3. Mice lacking NCF1 exhibit reduced growth of implanted melanoma and carcinoma tumors.

    PubMed

    Kelkka, Tiina; Pizzolla, Angela; Laurila, Juha Petteri; Friman, Tomas; Gustafsson, Renata; Källberg, Eva; Olsson, Olof; Leanderson, Tomas; Rubin, Kristofer; Salmi, Marko; Jalkanen, Sirpa; Holmdahl, Rikard

    2013-01-01

    The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 (m1J) mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 (m1J) mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 (m1J) mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors. PMID:24358335

  4. Improved glycemic control in mice lacking Sglt1 and Sglt2.

    PubMed

    Powell, David R; DaCosta, Christopher M; Gay, Jason; Ding, Zhi-Ming; Smith, Melinda; Greer, Jennifer; Doree, Deon; Jeter-Jones, Sabrina; Mseeh, Faika; Rodriguez, Lawrence A; Harris, Angela; Buhring, Lindsey; Platt, Kenneth A; Vogel, Peter; Brommage, Robert; Shadoan, Melanie K; Sands, Arthur T; Zambrowicz, Brian

    2013-01-15

    Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone. PMID:23149623

  5. Inhibition of stress induced premature senescence in presenilin-1 mutated cells with water soluble Coenzyme Q10.

    PubMed

    Ma, Dennis; Stokes, Kyle; Mahngar, Kevinjeet; Domazet-Damjanov, Danijela; Sikorska, Marianna; Pandey, Siyaram

    2014-07-01

    A water-soluble formulation of CoQ10 (WS-CoQ10) was shown to stabilize mitochondria and prevent oxidative stress-induced neuronal death. Presenilin-1 (PS-1)-mutated Alzheimer's Disease (AD) fibroblasts (PSAF) were used for studying the effects of PS-1 mutation. PS-1 mutation correlated to increased reactive oxygen species (ROS) production and stress induced premature senescence (SIPS) in PSAF; WS-CoQ10 treatment decreased ROS generation, increased population doublings, and postponed SIPS. Treated PSAF had higher PCNA expression, and lower levels of MnSOD, p21, p16Ink4A, and Rb. WS-CoQ10 caused the resumption of autophagy in PSAF. Thus, WS-CoQ10 as inhibitor of SIPS and ameliorator of autophagy could be an effective prophylactic/therapeutic agent for AD. PMID:25034304

  6. The modeling of Alzheimer's disease by the overexpression of mutant Presenilin 1 in human embryonic stem cells.

    PubMed

    Honda, Makoto; Minami, Itsunari; Tooi, Norie; Morone, Nobuhiro; Nishioka, Hisae; Uemura, Kengo; Kinoshita, Ayae; Heuser, John E; Nakatsuji, Norio; Aiba, Kazuhiro

    2016-01-15

    Cellular disease models are useful tools for Alzheimer's disease (AD) research. Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), are promising materials for creating cellular models of such diseases. In the present study, we established cellular models of AD in hESCs that overexpressed the mutant Presenilin 1 (PS1) gene with the use of a site-specific gene integration system. The overexpression of PS1 did not affect the undifferentiated status or the neural differentiation ability of the hESCs. We found increases in the ratios of amyloid-β 42 (Aβ42)/Aβ40 and Aβ43/Aβ40. Furthermore, synaptic dysfunction was observed in a cellular model of AD that overexpressed mutant PS1. These results suggest that the AD phenotypes, in particular, the electrophysiological abnormality of the synapses in our AD models might be useful for AD research and drug discovery. PMID:26687948

  7. Rescue of NGF-deficient mice I: transgenic expression of NGF in skin rescues mice lacking endogenous NGF.

    PubMed

    Harrison, Susan M W; Davis, Brian M; Nishimura, Merry; Albers, Kathryn M; Jones, Marc E; Phillips, Heidi S

    2004-03-30

    Mice lacking a functional NGF gene (ngf-/- mice) have less than one third of the normal complement of sensory neurons, few sympathetic postganglionic neurons and die shortly after birth. We report here that transgenic expression of NGF under control of the K14 keratin promoter can rescue some elements of the peripheral nervous system and restore normal growth and viability to ngf-/- mice. While hybrid transgenic-ngf-/- mice (ngfTKOs) displayed marginal rescue of trigeminal ganglion neurons, the percentage of CGRP-positive neurons was restored to normal. Restoration of CGRP-positive terminals in skin and spinal cord was also found and accompanied by recovery of behavioral responses to noxious stimuli. ngfTKO mice displayed a normal number of superior cervical ganglion neurons and recovery of sympathetic innervation of skin. These results demonstrate that substitution of a functional NGF locus by a transgene directing expression largely to skin can result in normal growth and viability. Thus, the most vital functions of NGF are not dependent on faithful recapitulation of the normal spatiotemporal pattern of gene expression. PMID:15010204

  8. Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene.

    PubMed

    Pastorcic, M; Das, H K

    2000-11-10

    The expression of the human presenilin-1 cellular gene is suppressed by the p53 protooncogene. The rapid kinetic of the down-regulation has suggested that it may result from a primary mechanism. We show here that p53 also suppresses the transcription of a presenilin-1 promoter-chloramphenicol acetyltransferase reporter synthetic gene in transient infection assays in neuroblastoma (SK-N-SH) and hepatoma (HepG2) cell lines. Only a minimum promoter including sequences from -35 to + 6 from the transcription initiation is sufficient to confer down-regulation. We have previously defined a crucial DNA element controlling 90% of the expression of the gene within the same short area, and the identification of the transcription factors involved should also provide insights into the regulation of PS1 by p53. This region contains an Ets transcription factor binding motif, and a 2-base pair alteration within the core sequence (GGAA to TTAA) of the Ets consensus also reduced transcription by more than 90%. We now show that Ets1 and Ets2 indeed transactivate a PS1 promoter-chloramphenicol acetyltransferase reporter including the (-35 to +6) fragment. Furthermore, in vitro translated Ets2 binds specifically to the -10 Ets motif in electrophoretic mobility shift assays. Therefore, Ets1/2 factors bind specifically to the -10 Ets element and activate PS1 transcription. We also show that the coactivator p300 enhances the activation by Ets1 and Ets2 as well as the repression by p53. p300 is known to interact with p53 as well as with Ets1 and Ets2. We show that p53 does not bind directly to the PS1 promoter. Hence the repression of PS1 transcription by p53 is likely to be mediated through protein-protein interactions. PMID:10942770

  9. Increased context-dependent conditioning to amphetamine in mice lacking TAAR1.

    PubMed

    Sukhanov, Ilya; Caffino, Lucia; Efimova, Evgeniya V; Espinoza, Stefano; Sotnikova, Tatiana D; Cervo, Luigi; Fumagalli, Fabio; Gainetdinov, Raul R

    2016-01-01

    Given the recent evidence indicating that amphetamine derivatives may also act as direct agonists of the G protein-coupled trace amine-associated receptor 1 (TAAR1), we hypothesized that TAAR1 could contribute to the reinforcing and addictive properties of amphetamines. Accordingly, the present study aimed to investigate the role of TAAR1 in the effects of psychostimulants by analyzing context-dependent sensitization and conditioned place preference (CPP) to d-amphetamine (AMPH) in TAAR1-KO mice. In context-dependent sensitization experiment, TAAR1-KO mice showed higher conditioned locomotor responses compared to wild-type mice. In the CPP test, TAAR1-KO animals were also more sensitive to priming-induced reinstatement of AMPH-induced conditioned place preference (CPP) than wild type mice. Importantly, saline-treated and AMPH-treated mice lacking TAAR1 demonstrated significant alterations in the total levels and phosphorylation of the critical subunit of NMDA glutamate receptors, GluN1, in the striatum, suggesting a role of TAAR1 in the modulation of frontostriatal glutamate transmission; this effect could underlie the observed alterations in conditioning processes. In conclusion, our data suggest that TAAR1 receptors play an inhibitory role with respect to conditioned responses to AMPH by modulating, at least in part, corticostriatal glutamate transmission. PMID:26640076

  10. Lack of Melanopsin Is Associated with Extreme Weight Loss in Mice upon Dietary Challenge.

    PubMed

    Aytürk, Didem Göz; Castrucci, Ana Maria; Carr, David E; Keller, Susanna R; Provencio, Ignacio

    2015-01-01

    Metabolic disorders have been established as major risk factors for ocular complications and poor vision. However, little is known about the inverse possibility that ocular disease may cause metabolic dysfunction. To test this hypothesis, we assessed the metabolic consequences of a robust dietary challenge in several mouse models suffering from retinal mutations. To this end, mice null for melanopsin (Opn4-/-), the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs), were subjected to five weeks of a ketogenic diet. These mice lost significantly more weight than wild-type controls or mice lacking rod and cone photoreceptors (Pde6brd1/rd1). Although ipRGCs are critical for proper circadian entrainment, and circadian misalignment has been implicated in metabolic pathology, we observed no differences in entrainment between Opn4-/- and control mice. Additionally, we observed no differences in any tested metabolic parameter between these mouse strains. Further studies are required to establish the mechanism giving rise to this dramatic phenotype observed in melanopsin-null mice. We conclude that the causality between ocular disease and metabolic disorders merits further investigation due to the popularity of diets that rely on the induction of a ketogenic state. Our study is a first step toward understanding retinal pathology as a potential cause of metabolic dysfunction. PMID:26011287

  11. Lack of β2-adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice

    PubMed Central

    Voltarelli, Vanessa A; Bechara, Luiz RG; Bacurau, Aline VN; Mattos, Katt C; Dourado, Paulo MM; Bueno, Carlos R; Casarini, Dulce E; Negrao, Carlos E; Brum, Patricia C

    2014-01-01

    Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF. Considering that β2-adrenoceptors mediate the activity of sympathetic nervous system in skeletal muscle, we presently evaluated the contribution of β2-adrenoceptors for the morphofunctional alterations in skeletal muscle and also for exercise intolerance induced by HF. Male WT and β2-adrenoceptor knockout mice on a FVB genetic background (β2KO) were submitted to myocardial infarction (MI) or SHAM surgery. Ninety days after MI both WT and β2KO mice presented to cardiac dysfunction and remodelling accompanied by significantly increased norepinephrine and epinephrine plasma levels, exercise intolerance, changes towards more glycolytic fibres and vascular rarefaction in plantaris muscle. However, β2KO MI mice displayed more pronounced exercise intolerance and skeletal myopathy when compared to WT MI mice. Skeletal muscle atrophy of infarcted β2KO mice was paralleled by reduced levels of phosphorylated Akt at Ser 473 while increased levels of proteins related with the ubiquitin-–proteasome system, and increased 26S proteasome activity. Taken together, our results suggest that lack of β2-adrenoceptors worsen and/or anticipate the skeletal myopathy observed in HF. PMID:24629015

  12. Late-Onset Inner Retinal Dysfunction in Mice Lacking Sigma Receptor 1 (σR1)

    PubMed Central

    Ha, Yonju; Saul, Alan; Tawfik, Amany; Williams, Cory; Bollinger, Kathryn; Smith, Robert; Tachikawa, Masanori; Zorrilla, Eric; Ganapathy, Vadivel

    2011-01-01

    Purpose. Sigma receptor 1 (σR1) is expressed abundantly in the eye, and several reports suggest that this putative molecular chaperone plays a role in lens cell survival, control of intraocular pressure (IOP), and retinal neuroprotection. The present study examined the consequence of the absence of σR1 on ocular development, structure, and function. Methods. Wild-type (σR1+/+), heterozygous (σR1+/−), and homozygous (σR1−/−, knockout) mice aged 5 to 59 weeks were subjected to comprehensive electrophysiological testing and IOP measurement. The eyes were examined by light and electron microscopy and subjected to morphometric examination and detection of apoptosis. Results. Cornea and lens of σR1−/− mice were similar to wild-type mice in morphologic appearance at all ages examined, and IOP was within normal limits. Comprehensive ERG and morphometric analyses initially yielded normal findings in the σR1−/− mice compared with those in the wild-type. By 12 months, however, significantly decreased ERG b-wave amplitudes and diminished negative scotopic threshold responses, consistent with inner retinal dysfunction, were detected in σR1−/− mice. Concomitant with these late-onset changes were increased TUNEL- and active caspase 3-positive cells in the inner retina and significant loss of cells in the ganglion cell layer, particularly in the central retina. Before these functional and structural abnormalities, there was ultrastructural evidence of axonal disruption in the optic nerve head of σR1−/− mice as early as 6 months of age, although there were no alterations observed in retinal vascularization in σR1−/− mice. Conclusions. These data suggest that lack of σR1 leads to development of late-onset retinal dysfunction with similarities to optic neuropathy. PMID:21862648

  13. Behavioural phenotypic characterization of CD-1 mice lacking the neuropeptide S receptor.

    PubMed

    Ruzza, C; Pulga, A; Rizzi, A; Marzola, G; Guerrini, R; Calo', G

    2012-04-01

    Neuropeptide S (NPS) is the endogenous ligand of a previously orphan receptor now named NPSR. In the brain NPS regulates several biological functions including anxiety, arousal, locomotion, food intake, learning and memory, pain and drug abuse. Mice lacking the NPSR gene (NPSR(-/-)) represent an useful tool to investigate the neurobiology of the NPS/NPSR system. NPSR(-/-) mice have been generated in a 129S6/SvEv genetic background. In the present study we generated CD-1 congenic NPSR(+/+) and NPSR(-/-) mice and investigated their phenotype and sensitivity to NPS in various behavioural assays. The phenotype analysis revealed no locomotor differences between NPSR(+/+) and NPSR(-/-) mice. The behaviour of NPSR(+/+) and NPSR(-/-) mice in the righting reflex test was superimposable. No differences were recorded between the two genotypes in the elevated plus maze, open field and stress-induced hyperthermia tests, with the exception of rearing behaviour that was reduced in knockout animals. Moreover the behaviour of NPSR(+/+) and NPSR(-/-) mice in the forced swimming, novel object recognition and formalin assays was similar. The stimulatory effects of NPS in the locomotor activity test and its anxiolytic-like actions in the elevated plus maze and open field assays were evident in NPSR(+/+) but not NPSR(-/-) animals. In conclusion, the present study indicates that the NPS/NPSR system does not tonically control locomotion, sensitivity to diazepam, anxiety, depressive-like behaviours, memory and pain transmission in mice. Furthermore our results clearly show that the product of the NPSR gene represents the mandatory protein for all the NPS biological effects so far described. PMID:22248636

  14. Postischemic Brain Injury Is Attenuated in Mice Lacking the β2-Adrenergic Receptor

    PubMed Central

    Han, Ru-Quan; Ouyang, Yi-Bing; Xu, Lijun; Agrawal, Rani; Patterson, Andrew J.; Giffard, Rona G.

    2013-01-01

    Background Several β-adrenergic receptor (βAR) antagonists have been shown to have neuroprotective effects against cerebral ischemia. However, clenbuterol, a β2AR agonist, was shown to have neuroprotective activity by increasing nerve growth factor expression. We used β2AR knockout mice and a β2 selective antagonist to test the effect of loss of β2ARs on outcome from transient focal cerebral ischemia. Methods Ischemia was induced by the intraluminal suture method, for 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Neurological score was determined at 24 h reperfusion and infarct size was determined by cresyl violet or 2,3,5-triphenyltetrazolium chloride staining. β2AR knockout mice and wild-type congenic FVB/N controls were studied, as well as 2 groups of wild type mice given either ICI 118,551 (0.2 mg/kg) or 0.9% saline intraperitoneally 30 min before MCAO (n = 10 per group). Changes in expression of heat shock protein (Hsp)72 after ischemia were examined by immunohistochemistry and western blots. Results Compared with wild type littermates, infarct volume was decreased by 22.3% in β2AR knockout mice (39.7 ± 10.7 mm3 vs 51.0 ± 11.4 mm3, n = 10/group, P = 0.034) after 60 min of MCAO followed by 24 h reperfusion. Pretreatment with a β2AR selective antagonist, ICI 118,551, also decreased infarct size significantly, by 25.1%, compared with the saline control (32.8 ± 11.9 mm3 vs 43.8 ± 10.3 mm3, n = 10/group, P = 0.041). Neurological scores were also significantly improved in mice lacking the β2AR or pretreated with ICI 118,551. After cerebral ischemia, total levels of Hsp72 and the number of Hsp72 immunopositive cells were greater in mice lacking β2 AR. Conclusion Brain injury is reduced and neurological outcome improved after MCAO in mice lacking the β2AR, or in wild type mice pretreated with a selective β2AR antagonist. This is consistent with a shift away from prosurvival signaling to prodeath signaling in the

  15. Lethal Skeletal Dysplasia in Mice and Humans Lacking the Golgin GMAP-210

    PubMed Central

    Smits, Patrick; Bolton, Andrew D.; Funari, Vincent; Hong, Minh; Boyden, Eric D.; Lu, Lei; Manning, Danielle K.; Dwyer, Noelle D.; Moran, Jennifer L.; Prysak, Mary; Merriman, Barry; Nelson, Stanley F.; Bonafé, Luisa; Superti-Furga, Andrea; Ikegawa, Shiro; Krakow, Deborah; Cohn, Daniel H.; Kirchhausen, Tom; Warman, Matthew L.; Beier, David R.

    2011-01-01

    BACKGROUND Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations. PMID:20089971

  16. Mice lacking the Raf-1 kinase inhibitor protein exhibit exaggerated hypoxia-induced pulmonary hypertension

    PubMed Central

    Morecroft, I; Doyle, B; Nilsen, M; Kolch, W; Mair, K; MacLean, MR

    2011-01-01

    BACKGROUND AND PURPOSE Increased pulmonary vascular remodelling, pulmonary arterial pressure and pulmonary vascular resistance characterize the development of pulmonary arterial hypertension (PAH). Activation of the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)1/2 is thought to play an important role in PAH and Raf-1 kinase inhibitor protein (RKIP), negatively regulates this pathway. This study investigated whether genetic deletion of RKIP (and hence ERK1/2 up-regulation) resulted in a pulmonary hypertensive phenotype in mice and investigated a role for RKIP in mitogen-regulated proliferative responses in lung fibroblasts. EXPERIMENTAL APPROACH Pulmonary vascular haemodynamics and remodelling were assessed in mice genetically deficient in RKIP (RKIP−/−) after 2 weeks of either normoxia or hypoxia. Immunoblotting and immunohistochemistry were used to examine phosphorylation of Raf-1, RKIP and ERK1/2 in mouse pulmonary arteries. In vitro, RKIP inhibition of mitogen signalling was analysed in CCL39 hamster lung fibroblasts. KEY RESULTS RKIP−/− mice demonstrated elevated indices of PAH and ERK1/2 phosphorylation compared with wild-type (WT) mice. Hypoxic RKIP−/− mice exhibited exaggerated PAH indices. Hypoxia increased phosphorylation of Raf-1, RKIP and ERK1/2 in WT mouse pulmonary arteries and Raf-1 phosphorylation in RKIP−/− mouse pulmonary arteries. In CCL39 cells, inhibition of RKIP potentiated mitogen-induced proliferation and phosphorylation of RKIP, and Raf-1. CONCLUSIONS AND IMPLICATIONS The lack of RKIP protein resulted in a pulmonary hypertensive phenotype, exaggerated in hypoxia. Hypoxia induced phosphorylation of RKIP signalling elements in WT pulmonary arteries. RKIP inhibition potentiated mitogen-induced proliferation in lung fibroblasts. These results provide evidence for the involvement of RKIP in suppressing the development of hypoxia-induced PAH in mice. PMID:21385176

  17. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    NASA Astrophysics Data System (ADS)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  18. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene

    PubMed Central

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain. PMID:26107521

  19. A behavioral defect of temporal association memory in mice that partly lack dopamine reuptake transporter

    PubMed Central

    Deng, Shining; Zhang, Lingli; Zhu, Tailin; Liu, Yan-Mei; Zhang, Hailong; Shen, Yiping; Li, Wei-Guang; Li, Fei

    2015-01-01

    Temporal association memory, like working memory, is a type of episodic memory in which temporally discontinuous elements are associated. However, the mechanisms that govern this association remain incompletely understood. Here, we identify a crucial role of dopaminergic action in temporal association memory. We used hemizygote hyperdopaminergic mutant mice with reduced dopamine transporter (DAT) expression, referred to as DAT+/− mice. We found that mice with this modest dopamine imbalance exhibited significantly impaired trace fear conditioning, which necessitates the association of temporally discontinuous elements, and intact delay auditory fear conditioning, which does not. Moreover, the DAT+/− mice displayed substantial impairments in non-matching-to-place spatial working-memory tasks. Interestingly, these temporal association and working memory deficits could be mimicked by a low dose of the dopamine D2 receptor antagonist haloperidol. The shared phenotypes resulting from either the genetic reduction of DAT or the pharmacological inhibition of the D2 receptor collectively indicate that temporal association memory necessitates precise regulation of dopaminergic signaling. The particular defect in temporal association memory due to partial lack of DAT provides mechanistic insights on the understanding of cognitive impairments in multiple neurodevelopmental disorders. PMID:26658842

  20. Mice lacking Axl and Mer tyrosine kinase receptors are susceptible to experimental autoimmune orchitis induction.

    PubMed

    Li, Nan; Liu, Zhenghui; Zhang, Yue; Chen, Qiaoyuan; Liu, Peng; Cheng, C Yan; Lee, Will M; Chen, Yongmei; Han, Daishu

    2015-03-01

    The mammalian testis is an immunoprivileged organ where male germ cell autoantigens are immunologically ignored. Both systemic immune tolerance to autoantigens and local immunosuppressive milieu contribute to the testicular immune privilege. Testicular immunosuppression has been intensively studied, but information on systemic immune tolerance to autoantigens is lacking. In the present study, we aimed to determine the role of Axl and Mer receptor tyrosine kinases in maintaining the systemic tolerance to male germ cell antigens using the experimental autoimmune orchitis (EAO) model. Axl and Mer double-knockout (Axl(-/-)Mer(-/-)) mice developed evident EAO after a single immunization with germ cell homogenates emulsified with complete Freund's adjuvant. EAO was characterized by the accumulation of macrophages and T lymphocytes in the testis. Damage to the seminiferous epithelium was also observed. EAO induction was associated with pro-inflammatory cytokine upregulation in the testes, impaired permeability of the blood-testis barrier and generation of autoantibodies against germ cell antigens in Axl(-/-)Mer(-/-) mice. Immunization also induced mild EAO in Axl or Mer single-gene-knockout mice. By contrast, a single immunization failed to induce EAO in wild-type mice. The results indicate that Axl and Mer receptors cooperatively regulate the systemic immune tolerance to male germ cell antigens. PMID:25403570

  1. Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor

    PubMed Central

    Castilla-Ortega, Estela; Sánchez-López, Jorge; Hoyo-Becerra, Carolina; Matas-Rico, Elisa; Zambrana-Infantes, Emma; Chun, Jerold; Fonseca, Fernando Rodríguez De; Pedraza, Carmen; Estivill-Torrús, Guillermo; Santin, Luis J.

    2013-01-01

    Lysophosphatidic acid (LPA) is a new, intercellular signalling molecule in the brain that has an important role in adult hippocampal plasticity. Mice lacking the LPA1 receptor exhibit motor, emotional and cognitive alterations. However, the potential relationship among these concomitant impairments was unclear. Wild-type and maLPA1-null mice were tested on the hole-board for habituation and spatial learning. MaLPA1-null mice exhibited reduced exploration in a novel context and a defective intersession habituation that also revealed increased anxiety-like behaviour throughout the hole-board testing. In regard to spatial memory, maLPA1 nulls failed to reach the controls’ performance at the end of the reference memory task. Moreover, their defective working memory on the first training day suggested a delayed acquisition of the task’s working memory rule, which is also a long term memory component. The temporal interval between trials and the task’s difficulty may explain some of the deficits found in these mice. Principal components analysis revealed that alterations found in each behavioural dimension were independent. Therefore, exploratory and emotional impairments did not account for the cognitive deficits that may be attributed to maLPA1 nulls’ hippocampal malfunction. PMID:20388543

  2. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3

    PubMed Central

    Biel, Martin; Seeliger, Mathias; Pfeifer, Alexander; Kohler, Konrad; Gerstner, Andrea; Ludwig, Andreas; Jaissle, Gesine; Fauser, Sascha; Zrenner, Eberhart; Hofmann, Franz

    1999-01-01

    Two types of photoreceptors, rods and cones, coexist in the vertebrate retina. An in-depth analysis of the retinal circuitry that transmits rod and cone signals has been hampered by the presence of intimate physical and functional connections between rod and cone pathways. By deleting the cyclic nucleotide-gated channel CNG3 we have generated a mouse lacking any cone-mediated photoresponse. In contrast, the rod pathway is completely intact in CNG3-deficient mice. The functional loss of cone function correlates with a progressive degeneration of cone photoreceptors but not of other retinal cell types. CNG3-deficient mice provide an animal model to dissect unequivocally the contribution of rod and cone pathways for normal retinal function. PMID:10377453

  3. Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1

    PubMed Central

    Edgar, N M; Touma, C; Palme, R; Sibille, E

    2011-01-01

    Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3–9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (⩽9–12 months). Notably, Cnp1KO mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1KO mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1KO behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD

  4. Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1.

    PubMed

    Edgar, N M; Touma, C; Palme, R; Sibille, E

    2011-01-01

    Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3-9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (≤ 9-12 months). Notably, Cnp1(KO) mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1(KO) mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1(KO) behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may

  5. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras.

    PubMed

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly 'layered' with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  6. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras

    PubMed Central

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C.; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W.

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  7. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  8. Lack of Bcr and Abr Promotes Hypoxia-Induced Pulmonary Hypertension in Mice

    PubMed Central

    Lim, Min; Arutyunyan, Anna; Groffen, John; Heisterkamp, Nora

    2012-01-01

    Background Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. Methodology/Principal Findings Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr−/− and abr−/− macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia. Conclusions Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells. PMID:23152932

  9. Improved repair of dermal wounds in mice lacking microRNA-155.

    PubMed

    van Solingen, Coen; Araldi, Elisa; Chamorro-Jorganes, Aranzazu; Fernández-Hernando, Carlos; Suárez, Yajaira

    2014-06-01

    Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155(-/-) ) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155(-/-) mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155(-/-) mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process. PMID:24636235

  10. Improved repair of dermal wounds in mice lacking microRNA-155

    PubMed Central

    van Solingen, Coen; Araldi, Elisa; Chamorro-Jorganes, Aranzazu; Fernández-Hernando, Carlos; Suárez, Yajaira

    2014-01-01

    Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155−/−) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155−/− mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155−/− mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process. PMID:24636235

  11. Golgi Disruption and Early Embryonic Lethality in Mice Lacking USO1

    PubMed Central

    Kim, Susie; Hill, Adele; Warman, Matthew L.; Smits, Patrick

    2012-01-01

    Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development. PMID:23185636

  12. Dopamine pathway imbalance in mice lacking Magel2, a Prader-Willi syndrome candidate gene.

    PubMed

    Luck, Chloe; Vitaterna, Martha H; Wevrick, Rachel

    2016-08-01

    The etiology of abnormal eating behaviors, including binge-eating disorder, is poorly understood. The neural circuits modulating the activities of the neurotransmitters dopamine and serotonin are proposed to be dysfunctional in individuals suffering from eating disorders. Prader-Willi syndrome is a neurodevelopmental disorder that causes extreme food seeking and binge-eating behaviors together with reduced satiety. One of the genes implicated in Prader-Willi syndrome, Magel2, is highly expressed in the regions of the brain that control appetite. Our objective was to examine behaviors relevant to feeding and the neural circuits controlling feeding in a mouse model of Prader-Willi syndrome that lacks expression of the Magel2 gene. We performed behavioral tests related to dopaminergic function, measuring cocaine-induced hyperlocomotion, binge eating, and saccharin-induced anhedonia in Magel2-deficient mice. Next, we analyzed dopaminergic neurons in various brain regions and compared these findings between genotypes. Finally, we examined biochemical markers in the brain under standard diet, high-fat diet, and withdrawal from a high-fat diet conditions. We identified abnormal behaviors and biomarkers reflecting dopaminergic dysfunction in mice lacking Magel2. Our results provide a biological framework for clinical studies of dopaminergic function in children with Prader-Willi syndrome, and may also provide insight into binge-eating disorders that occur in the general population. (PsycINFO Database Record PMID:27254754

  13. Mice lacking the extracellular matrix protein MAGP1 display delayed thrombotic occlusion following vessel injury

    PubMed Central

    Werneck, Claudio C.; Vicente, Cristina P.; Weinberg, Justin S.; Shifren, Adrian; Pierce, Richard A.; Broekelmann, Thomas J.; Tollefsen, Douglas M.

    2008-01-01

    Mice lacking the extracellular matrix protein microfibril-associated glycoprotein-1 (MAGP1) display delayed thrombotic occlusion of the carotid artery following injury as well as prolonged bleeding from a tail vein incision. Normal occlusion times were restored when recombinant MAGP1 was infused into deficient animals prior to vessel wounding. Blood coagulation was normal in these animals as assessed by activated partial thromboplastin time and prothrombin time. Platelet number was lower in MAGP1-deficient mice, but the platelets showed normal aggregation properties in response to various agonists. MAGP1 was not found in normal platelets or in the plasma of wild-type mice. In ligand blot assays, MAGP1 bound to fibronectin, fibrinogen, and von Willebrand factor, but von Willebrand factor was the only protein of the 3 that bound to MAGP1 in surface plasmon resonance studies. These findings show that MAGP1, a component of microfibrils and vascular elastic fibers, plays a role in hemostasis and thrombosis. PMID:18281502

  14. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    PubMed

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. PMID:25872793

  15. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  16. Altered map of visual space in the superior colliculus of mice lacking early retinal waves.

    PubMed

    Mrsic-Flogel, Thomas D; Hofer, Sonja B; Creutzfeldt, Claire; Cloëz-Tayarani, Isabelle; Changeux, Jean-Pierre; Bonhoeffer, Tobias; Hübener, Mark

    2005-07-20

    During the development of the mammalian retinocollicular projection, a coarse retinotopic map is set up by the graded distribution of axon guidance molecules. Subsequent refinement of the initially diffuse projection has been shown to depend on the spatially correlated firing of retinal ganglion cells. In this scheme, the abolition of patterned retinal activity is not expected to influence overall retinotopic organization, but this has not been investigated. We used optical imaging of intrinsic signals to visualize the complete retinotopic map in the superior colliculus (SC) of mice lacking early retinal waves, caused by the deletion of the beta2 subunit of the nicotinic acetylcholine receptor. As expected from previous anatomical studies in the SC of beta2(-/-) mice, regions activated by individual visual stimuli were much larger and had less sharp borders than those in wild-type mice. Importantly, however, we also found systematic distortions of the entire retinotopic map: the map of visual space was expanded anteriorly and compressed posteriorly. Thus, patterned neuronal activity in the early retina has a substantial influence on the coarse retinotopic organization of the SC. PMID:16033902

  17. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5)

    PubMed Central

    Popp, Michael; Thielmann, Ina; Nieswandt, Bernhard; Stegner, David

    2015-01-01

    Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice. PMID:26172113

  18. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2

    PubMed Central

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-01-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca2+ into the cilia. Ca2+ activates a Cl− current that produces an efflux of Cl− ions and amplifies the depolarization. The molecular identity of Ca2+-activated Cl− channels is still elusive, although some bestrophins have been shown to function as Ca2+-activated Cl− channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca2+-activated Cl− currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca2+-activated Cl− currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons. PMID:19622610

  19. Primary Ciliary Dyskinesia in Mice Lacking the Novel Ciliary Protein Pcdp1▿ †

    PubMed Central

    Lee, Lance; Campagna, Dean R.; Pinkus, Jack L.; Mulhern, Howard; Wyatt, Todd A.; Sisson, Joseph H.; Pavlik, Jacqueline A.; Pinkus, Geraldine S.; Fleming, Mark D.

    2008-01-01

    Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD. PMID:18039845

  20. Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members

    PubMed Central

    Herms, Jochen; Anliker, Brigitte; Heber, Sabine; Ring, Sabine; Fuhrmann, Martin; Kretzschmar, Hans; Sisodia, Sangram; Müller, Ulrike

    2004-01-01

    The Alzheimer's disease β-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2−/−APLP1−/− and APLP2−/−APP−/− mice die postnatally, while APLP1−/−APP−/− mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival. PMID:15385965

  1. Female mice lacking Xist RNA show partial dosage compensation and survive to term.

    PubMed

    Yang, Lin; Kirby, James E; Sunwoo, Hongjae; Lee, Jeannie T

    2016-08-01

    X-chromosome inactivation (XCI) compensates for differences in X-chromosome number between male and female mammals. XCI is orchestrated by Xist RNA, whose expression in early development leads to transcriptional silencing of one X chromosome in the female. Knockout studies have established a requirement for Xist with inviability of female embryos that inherit an Xist deletion from the father. Here, we report that female mice lacking Xist RNA can, surprisingly, develop and survive to term. Xist-null females are born at lower frequency and are smaller at birth, but organogenesis is mostly normal. Transcriptomic analysis indicates significant overexpression of hundreds of X-linked genes across multiple tissues. Therefore, Xist-null mice can develop to term in spite of a deficiency of dosage compensation. However, the degree of X-autosomal dosage imbalance was less than anticipated (1.14-fold to 1.36-fold). Thus, partial dosage compensation can be achieved without Xist, supporting the idea of inherent genome balance. Nevertheless, to date, none of the mutant mice has survived beyond weaning stage. Sudden death is associated with failure of postnatal organ maturation. Our data suggest Xist-independent mechanisms of dosage compensation and demonstrate that small deviations from X-autosomal balance can have profound effects on overall fitness. PMID:27542829

  2. Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1α

    PubMed Central

    Ignat, Mihaela; Teletin, Marius; Tisserand, Johan; Khetchoumian, Konstantin; Dennefeld, Christine; Chambon, Pierre; Losson, Régine; Mark, Manuel

    2008-01-01

    Calcification of arteries is a major risk factor for cardiovascular mortality in humans. Using genetic approaches, we demonstrate here that the transcriptional intermediary factor 1α (TIF1α), recently shown to function as a tumor suppressor in murine hepatocytes, also participates in a molecular cascade that prevents calcifications in arterioles and medium-sized arteries. We further provide genetic evidence that this function of TIF1α is not exerted in hepatocytes. The sites of ectopic calcifications in mutant mice lacking TIF1α resemble those seen in mice carrying an activating mutation of the calcium sensor receptor (Casr) gene and, in TIF1α-deficient kidneys, Casr expression is increased together with that of many other vitamin D receptor (VDR) direct target genes, namely Car2, Cyp24a1, Trpv5, Trpv6, Calb1, S100g, Pthlh, and Spp1. Thus, our data indicate that TIF1α represses the VDR pathway in kidney and suggest that an up-regulation of Casr expression in this organ could account for ectopic calcifications generated upon TIF1α deficiency. Interestingly, the calcifying arteriopathy of TIF1α-null mutant mice shares features with the human age-related Mönckeberg's disease and, overall, the TIF1α-null mutant pathological phenotype supports the hypothesis that aging is promoted by increased activity of the vitamin D signaling pathway. PMID:18287084

  3. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system.

    PubMed

    Puig, Kendra L; Lutz, Brianna M; Urquhart, Siri A; Rebel, Andrew A; Zhou, Xudong; Manocha, Gunjan D; Sens, MaryAnn; Tuteja, Ashok K; Foster, Norman L; Combs, Colin K

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder histologically characterized by amyloid-β (Aβ) protein accumulation and activation of associated microglia. Although these features are well described in the central nervous system, the process and consequences of Aβ accumulation in the enteric nervous system have not been extensively studied. We hypothesized that Aβ also may accumulate in the enteric nervous system and lead to immune cell activation and neuronal dysfunction in the digestive tract not unlike that observed in diseased brain. To test this hypothesis, ileums of the small intestine of thirteen month old AβPP/PS1 and C57BL/6 (wild type) mice were collected and analyzed using immunohistochemistry, western blot analysis, cytokine arrays, and ELISA. AβPP/PS1 mice demonstrated no differences in intestinal motility or water absorption but elevated luminal IgA levels compared to wild type mice. They also had increased protein levels of AβPP and the proteolytic enzyme, BACE, corresponding to an increase in Aβ1-40 in the intestinal lysate as well as an increase in both Aβ1-40 and Aβ1-42 in the stool. This correlated with increased protein markers of proinflammatory and immune cell activation. Histologic analysis localized AβPP within enteric neurons but also intestinal epithelial cells with elevated Aβ immunoreactivity in the AβPP/PS1 mice. The presence of AβPP, Aβ, and CD68 immunoreactivity in the intestines of some patients with neuropathologically-confirmed AD are consistent with the findings in this mouse model. These data support the hypothesis that in AD the intestine, much like the brain, may develop proinflammatory and immune changes related to AβPP and Aβ. PMID:25408221

  4. Osteomyelosclerosis, anemia and extramedullary hematopoiesis in mice lacking the transcription factor NFATc2

    PubMed Central

    Bauer, Wolfgang; Rauner, Martina; Haase, Michael; Kujawski, Satu; Arabanian, Laleh S.; Habermann, Ivonne; Hofbauer, Lorenz C.; Ehninger, Gerhard; Kiani, Alexander

    2011-01-01

    Background Nuclear factors of activated T cells (NFAT) are transcription factors that are central to cytokine production in activated T cells and regulate the development and differentiation of various tissues. NFATc2 is expressed in hematopoietic stem cells and regulated during myeloid commitment in a lineage-specific manner. The biological role of NFATc2 in hematopoiesis is, however, unclear. Design and Methods In the present study, we analyzed steady-state hematopoiesis in young (<3 months) and old (>12 months) mice lacking NFATc2. Complete blood counts were performed in the peripheral blood, bone marrow and spleen. Using cytological and histological analyses, the blood cell differential was determined. Colony-formation assays were used to determine the differentiation potential of hematopoietic cells. Bone cell cultures were derived from the bone marrow, and bone remodeling markers were determined in the serum. Results NFATc2−/− mice older than 12 months were anemic and thrombocytopenic. The bone marrows of these mice showed a markedly reduced number of hematopoietic cells, of which megakaryocytic and erythroid lineages were most affected. While the number of hematopoietic progenitor cells in NFATc2-deficent bone marrow was reduced, the myeloid differentiation potential of these cells remained intact. Aged NFATc2−/− mice showed ossification of their bone marrow space and developed extramedullary hematopoiesis in the spleen. Ex vivo differentiation assays revealed an intrinsic defect of NFATc2-deficient stromal cells, in which NFATc2−/− osteoblasts differentiated more efficiently than wild-type cells, whereas osteoclast differentiation was impaired. Conclusions Our data suggest that NFATc2 may play a role in the maintenance of steady-state hematopoiesis and bone remodeling in adult organisms. PMID:21750088

  5. Overload-Induced Skeletal Muscle Extracellular Matrix Remodeling And Myofiber Growth in Mice Lacking IL-6

    PubMed Central

    White, James P.; Reecy, James M.; Washington, Tyrone A.; Sato, Shuichi; Le, Michael E.; Davis, J. Mark; Wilson, L. Britt; Carson, James A.

    2011-01-01

    Aim Overloading healthy skeletal muscle produces myofiber hypertrophy and extracellular matrix remodeling, and these processes are thought to be interdependent for producing muscle growth. Inflammatory cytokine interleukin-6 (IL-6) gene expression is induced in overloaded skeletal muscle, and the loss of this IL-6 induction can attenuate the hypertrophic response to overload. Although the overload induction of IL-6 in skeletal muscle may be an important regulator of inflammatory processes and satellite cell proliferation, less is known about its role in the regulation of extracellular matrix remodeling. The purpose of the current study was to examine if overload-induced extracellular matrix remodeling, muscle growth, and associated gene expression were altered in mice that lack IL-6, when compared to wild-type mice. Methods Male C57/BL6 (WT) and C57/BL6 × IL-6-/- (IL-6-/-) mice (10 wks of age) were assigned to either a sham control or synergist ablation overload (OV) treatments for 3 or 21 days. Results Plantaris muscle mass increased 59% in WT and 116% in IL-6-/- mice after 21d OV. Myofiber CSA was also increased by 21d OV in both WT and IL-6-/- mice. Overload induced a 2-fold greater increase in the volume of non-contractile tissue in IL-6-/- muscle as compared to WT. Overload also induced a significantly greater accumulation of hydroxyproline and procollagen-1 mRNA in IL-6-/- muscle, when compared to WT muscle after 21d OV. TGF-β and IGF-1 mRNA expression were also induced to a greater extent in IL-6-/- muscle when compared to WT muscle after 21d OV. There was no effect of IL-6 loss on the induction of myogenin, and cyclin D1 mRNA expression after 3d OV. However, MyoD mRNA expression in 3d OV IL-6-/- muscle was attenuated when compared to WT overload mice. Conclusion IL-6 appears to be necessary for the normal regulation of extracellular matrix remodeling during overload-induced growth. PMID:19681796

  6. Prominent Neuroleptic Sensitivity in a Case of Early-onset Alzheimer Disease due to Presenilin-1 G206A Mutation

    PubMed Central

    Cercy, Steven P.; Sadowski, Martin J.; Wisniewski, Thomas

    2016-01-01

    Objective We describe atypical motor and cognitive features in a case of familial Alzheimer disease (FAD) due to presenilin-1 (PS-1) mutation. Background Extrapyramidal signs (EPS) typically are a late-presenting feature of sporadic Alzheimer disease (AD), but relatively little data are available regarding EPS in FAD. Method A 59-year-old, right-handed man of Caribbean-Hispanic descent underwent brain imaging studies, laboratory tests for AD, and serial neurologic and neuropsychologic evaluations. Results The patient presented with recent-onset delusional ideation associated with cognitive decline. Prominent EPS developed soon after initiation of an atypical neuroleptic agent. Neuropsychologic evaluation revealed global cognitive deficits; he was found to be a carrier of a PS-1 point mutation at position G206A. EPS resolved completely after discontinuing the neuroleptic agent and coincided with improved motor speed, set initiation, and verbal fluency. Conclusions Severe neuroleptic sensitivity and associated deficits of cognitive speed occurred in response to a dopaminergic antagonist agent; both responded readily to withdrawal of the offending agent. Patients with PS-1 AD may be at substantially increased risk of neuroleptic-induced EPS. That feature underscores the heterogeneity of the FAD clinical phenotype. PMID:18797263

  7. Phenotypic profile of early-onset familial Alzheimer's disease caused by presenilin-1 E280A mutation.

    PubMed

    Sepulveda-Falla, Diego; Glatzel, Markus; Lopera, Francisco

    2012-01-01

    Presenilin 1 (PS1) mutations are the most common cause of early-onset familial Alzheimer's disease (EOFAD). They show a common phenotypic profile characterized by early age of onset, severe dementia and distinct neurodegeneration. The largest population of EOFAD carries the E280A mutation in PS1 and resides in Antioquia, Colombia, currently comprising around 5,000 individuals. Carriers start showing memory impairment in the third decade of life, followed by progressive impairment of language and other cognitive processes. They reach mild cognitive impairment around 45 and dementia around 50 years of age. There is some phenotypic variability among the carriers of this single PS1 mutation. Some patients present with epilepsy, verbal impairment, and cerebellar ataxia. Neuropathologically, PS1 E280A cases show pronounced brain atrophy, severe amyloid-β pathology, distinct hyperphosphorylated tau-related pathology, and cerebellar damage. The earliest event identified by functional magnetic imaging resonance is hyperactivation within the right anterior hippocampus around 33 years of age. This well-studied population with a clear pre-clinical profile and wide phenotypic variability in age of onset and clinical presentation is ideally suited for clinical trials and to study molecular mechanisms of Alzheimer's disease. PMID:22766738

  8. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase

    PubMed Central

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  9. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase.

    PubMed

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather; Hohmann, Andrea G

    2016-02-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  10. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    PubMed Central

    Barakat, Waleed; Elshazly, Shimaa M.; Mahmoud, Amr A. A.

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive. PMID:26366170

  11. Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor.

    PubMed

    Bertrand-Gaday, Christelle; Pessemesse, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal; Casas, François

    2016-04-01

    Thyroid hormones and Thra gene play a key role in energy expenditure regulation, temperature homeostasis, and mitochondrial function. To decipher the function of the mitochondrial TRα receptor in these phenomena, we used mice lacking specifically the p43 mitochondrial T3 receptor. We found that these animals were hypermetabolic, hyperphagic, and displayed a down setting of the core body temperature. However, p43-/- animals do not present cold intolerance or defect of facultative thermogenesis. In addition, the mitochondrial function of BAT is slightly affected in the absence of p43. Our study, therefore, suggests a complementarity of action between the mitochondrial receptor and other proteins encoded by the Thra gene in the control of basal metabolism, facultative thermogenesis, and determination of the set point of temperature regulation. PMID:26970082

  12. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice.

    PubMed

    Barakat, Waleed; Elshazly, Shimaa M; Mahmoud, Amr A A

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive. PMID:26366170

  13. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells.

    PubMed

    Ushiki, Takashi; Huntington, Nicholas D; Glaser, Stefan P; Kiu, Hiu; Georgiou, Angela; Zhang, Jian-Guo; Metcalf, Donald; Nicola, Nicos A; Roberts, Andrew W; Alexander, Warren S

    2016-01-01

    The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease. PMID:27583437

  14. Effect of Potent γ-Secretase Modulator in Human Neurons Derived From Multiple Presenilin 1–Induced Pluripotent Stem Cell Mutant Carriers

    PubMed Central

    Liu, Qing; Waltz, Shannon; Woodruff, Grace; Ouyang, Joe; Israel, Mason A.; Herrera, Cheryl; Sarsoza, Floyd; Tanzi, Rudolph E.; Koo, Edward H.; Ringman, John M.; Goldstein, Lawrence S. B.; Wagner, Steven L.; Yuan, Shauna H.

    2015-01-01

    Importance Although considerable effort has been expended developing drug candidates for Alzheimer disease, none have yet succeeded owing to the lack of efficacy or to safety concerns. One potential shortcoming of current approaches to Alzheimer disease drug discovery and development is that they rely primarily on transformed cell lines and animal models that substantially overexpress wild-type or mutant proteins. It is possible that drug development failures thus far are caused in part by the limits of these approaches, which do not accurately reveal how drug candidates will behave in naive human neuronal cells. Objective To analyze purified neurons derived from human induced pluripotent stem cells from patients carrying 3 different presenilin 1 (PS1) mutations and nondemented control individuals in the absence of any overexpression. We tested the efficacy of γ-secretase inhibitor and γ-secretase modulator (GSM) in neurons derived from both normal control and 3 PS1 mutations (A246E, H163R, and M146L). Design, Setting, and Participants Adult human skin biopsies were obtained from volunteers at the Alzheimer Disease Research Center, University of California, San Diego. Cell cultures were treated with γ-secretase inhibitor or GSM. Comparisons of total β-amyloid (Aβ) and Aβ peptides 38, 40, and 42 in the media were made between vehicle- vs drug-treated cultures. Main Outcomes and Measures Soluble Aβ levels in the media were measured by enzyme-linked immunosorbent assay. Results As predicted, mutant PS1 neurons exhibited an elevated Aβ42:Aβ40 ratio (P <.05) at the basal state as compared with the nondemented control neurons. Treatment with a potent non–nonsteroidal anti-inflammatory druglike GSM revealed a new biomarker signature that differs from all previous cell types and animals tested. This new signature was the same in both the mutant and control neurons and consisted of a reduction in Aβ42, Aβ40, and Aβ38 and in the Aβ42:Aβ40 ratio, with no

  15. Reduced Viability, Fertility and Fecundity in Mice Lacking the Cajal Body Marker Protein, Coilin

    PubMed Central

    Walker, Michael P.; Tian, Liping; Matera, A. Gregory

    2009-01-01

    Background Coilin is the signature protein of the Cajal body, a conserved nuclear organelle involved in multiple aspects of small ribonucleoprotein (RNP) biogenesis. Coilin is required for Cajal body homeostasis in both plants and animals. Mice lacking coilin are viable when the mutation is crossed to an outbred strain but only partially viable when crossed to inbred lines. Methodology/Principal Findings In order to clarify this issue, we backcrossed the coilin deletion onto the C57BL6/J background for ten generations and then investigated the consequences of coilin removal on overall viability and reproductive success. We conclude that semi-lethal phenotype observed in mixed-background crosses is due to loss of the Coilin gene (or a very tightly-linked locus). Interestingly, coilin knockout embryos die relatively late in gestation, between E13.5 and birth. We show that the maternal contribution of coilin is not important for organismal viability. Importantly, coilin knockout mice display significant fertility and fecundity defects. Mutant males that escape the embryonic lethality display reduced testis size, however, both males and females contribute to the observed reduction in reproductive fitness. Conclusions/Significance The evolutionary conservation of coilin from plants to animals suggests that the protein plays an important role, perhaps coordinating the activities of various RNA-processing machineries. Our observations are consistent with the idea that coilin functions to ensure robust organismal development, especially during periods of rapid growth. PMID:19587784

  16. Premature aging with impaired oxidative stress defense in mice lacking TR4

    PubMed Central

    Lee, Yi-Fen; Liu, Su; Liu, Ning-Chun; Wang, Ruey-Sheng; Chen, Lu-Min; Lin, Wen-Jye; Ting, Huei-Ju; Ho, Hsin-Chiu; Li, Gonghui; Puzas, Edward J.; Wu, Qiao

    2011-01-01

    Early studies suggest that TR4 nuclear receptor is a key transcriptional factor regulating various biological activities, including reproduction, cerebella development, and metabolism. Here we report that mice lacking TR4 (TR4−/−) exhibited increasing genome instability and defective oxidative stress defense, which are associated with premature aging phenotypes. At the cellular level, we observed rapid cellular growth arrest and less resistance to oxidative stress and DNA damage in TR4−/− mouse embryonic fibroblasts (MEFs) in vitro. Restoring TR4 or supplying the antioxidant N-acetyl-l-cysteine (NAC) to TR4−/− MEFs reduced the DNA damage and slowed down cellular growth arrest. Focused qPCR array revealed alteration of gene profiles in the DNA damage response (DDR) and anti-reactive oxygen species (ROS) pathways in TR4−/− MEFs, which further supports the hypothesis that the premature aging in TR4−/− mice might stem from oxidative DNA damage caused by increased oxidative stress or compromised genome integrity. Together, our finding identifies a novel role of TR4 in mediating the interplay between oxidative stress defense and aging. PMID:21521714

  17. Mitochondrial reactive oxygen species in mice lacking superoxide dismutase 2: attenuation via antioxidant treatment.

    PubMed

    Morten, Karl J; Ackrell, Brian A C; Melov, Simon

    2006-02-10

    Mice that lack the mitochondrial form of superoxide dismutase (SOD2) incur severe pathologies and mitochondrial deficiencies, including major depletion of complex II, as a consequence of buildup of endogenous reactive oxygen species (Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A. S., Zastawny, T. H., Dizdaroglu, M., Goodman, S. I., Huang, T. T., Miziorko, H., Epstein, C. J., and Wallace, D. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 846-851 and Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C., and Epstein, C. J. (1995) Nat. Genet. 11, 376-381). These problems can be greatly attenuated or rescued by synthetic antioxidant treatment, such as with the catalytic antioxidant EUK189 (Hinerfeld, D., Traini, M. D., Weinberger, R. P., Cochran, B., Doctrow, S. R., Harry, J., and Melov, S. (2004) J. Neurochem. 88, 657-667). We have used heart mitochondria from sod2 null mice to better understand mitochondrial reactive oxygen species production both in the absence of SOD2 and following in vivo antioxidant treatment. Isolated heart mitochondria from 5-day-old sod2 null animals respiring on the complex II substrate succinate exhibited statistically significant higher levels of mitochondrial O2* (157%, p < 0.01) but significantly less H2O2 (33%, p < 0.001) than wild type littermates. Treatment of sod2 nullizygous mice with EUK189 proportionately increased the levels of complex II and H2O2. Increased production of O2* resulting from complex II normalization had no effect on steady state levels due to the rapid conversion to H2O2, a process presumably aided by the presence of the EUK189, an SOD mimetic. PMID:16326710

  18. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α.

    PubMed

    Lucas, Elizabeth K; Reid, Courtney S; McMeekin, Laura J; Dougherty, Sarah E; Floyd, Candace L; Cowell, Rita M

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α(-/-) mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α(-/-) mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID:25610371

  19. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  20. Lack of p47(phox) in Akita Diabetic Mice Is Associated with Interstitial Pneumonia, Fibrosis, and Oral Inflammation.

    PubMed

    Zamakhchari, Mai F; Sima, Corneliu; Sama, Kishore; Fine, Noah; Glogauer, Michael; Van Dyke, Thomas E; Gyurko, Robert

    2016-03-01

    Excess reactive oxygen species production is central to the development of diabetic complications. The contribution of leukocyte reactive oxygen species produced by the NADPH oxidase to altered inflammatory responses associated with uncontrolled hyperglycemia is poorly understood. To get insight into the role of phagocytic superoxide in the onset of diabetic complications, we used a model of periodontitis in mice with chronic hyperglycemia and lack of leukocyte p47(phox) (Akita/Ncf1) bred from C57BL/6-Ins2(Akita)/J (Akita) and neutrophil cytosolic factor 1 knockout (Ncf1) mice. Akita/Nfc1 mice showed progressive cachexia starting at early age and increased mortality by six months. Their lungs developed infiltrative interstitial lesions that obliterated air spaces as early as 12 weeks when fungal colonization of lungs also was observed. Neutrophils of Akita/Ncf1 mice had normal degranulation and phagocytic efficiency when compared with wild-type mice. Although Akita/Ncf1 mice had increased prevalence of oral infections and more severe periodontitis compared with wild-type mice, bone loss was only marginally higher compared with Akita and Ncf1 null mice. Altogether these results indicate that lack of leukocyte superoxide production in mice with chronic hyperglycemia results in interstitial pneumonia and increased susceptibility to infections. PMID:26747235

  1. Neuropsychological profile of a large kindred with familial Alzheimer's disease caused by the E280A single presenilin-1 mutation.

    PubMed

    Ardila, A; Lopera, F; Rosselli, M; Moreno, S; Madrigal, L; Arango-Lasprilla, J C; Arcos, M; Murcia, C; Arango-Viana, J C; Ossa, J; Goate, A; Kosik, K S

    2000-08-01

    It was hypothesized that subjective memory complaints represent the earliest sign of dementia in carriers of the presenilin-1 (PS1) mutation. A total of 122 subjects (44 males, 78 females) were included in this study. Forty of them were positive for the mutation in the PS1 gene (mutation positive, MP) whereas 82 showed negative results (mutation negative, MN). Subjects were active, functionally normal, even though some of them complained of memory difficulties. Two groups of neuropsychological instruments were administered: (a) The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological test battery (Morris et al., 1989), and (b) some additional neuropsychological tests (Raven Test, Wechsler Memory Scale, Rey-Osterrieth Complex Figure, Boston Naming Test, Naming of Categories, Boston Diagnostic Aphasia Examination, Memory of Three Phrases, Knopman Test, Digit Symbol, and Visual "A" Cancellation Test). Performance in both groups was quite similar. In a secondary analysis, the MP group was subdivided into two subgroups: without and with memory complaints. When comparing both subgroups, a better performance in the first subgroup was found throughout the different subtests. Statistically significant differences were observed in the following test scores: Mini-Mental State Examination, Naming Test (Low Frequency), Memory of Words Test, Recall of Drawings, Wechsler Memory Scale (Logical Memory, Associative Learning, and Total Score), Rey-Osterrieth Complex Figure (Immediate Recall Condition), Boston Diagnostic Aphasia Examination (Complex Ideational Material Subtest), Memory of Three Phrases Test, Serial Verbal Learning (maximum score and Delayed Recall), Knopman Test (First Trial, Second Trial, and Recall after 5 Minutes), Digit Symbol, and Visual "A" Cancellation Test (Additions). Results supported the hypothesis that memory complaints represent the earliest symptom of familial Alzheimer's disease. In addition to the memory difficulties

  2. Gamma-secretase-dependent and -independent effects of presenilin1 on beta-catenin.Tcf-4 transcriptional activity.

    PubMed

    Raurell, Imma; Codina, Montserrat; Casagolda, David; Del Valle, Beatriz; Baulida, Josep; de Herreros, Antonio García; Duñach, Mireia

    2008-01-01

    Presenilin1 (PS1) is a component of the gamma-secretase complex mutated in cases of Familial Alzheimer's disease (FAD). PS1 is synthesized as a 50 kDa peptide subsequently processed to two 29 and 20 kDa subunits that remain associated. Processing of PS1 is inhibited by several mutations detected in FAD patients. PS1 acts as negative modulator of beta-catenin.Tcf-4 transcriptional activity. In this article we show that in murine embryonic fibroblasts (MEFs) the mechanisms of action of the processed and non-processed forms of PS1 on beta-catenin.Tcf-4 transcription are different. Whereas non-processed PS1 inhibits beta-catenin.Tcf-4 activity through a mechanism independent of gamma-secretase and associated with the interaction of this protein with plakoglobin and Tcf-4, the effect of processed PS1 is prevented by gamma-secretase inhibitors, and requires its interaction with E- or N-cadherin and the generation of cytosolic terminal fragments of these two cadherins, which in turn destabilize the beta-catenin transcriptional cofactor CBP. Accordingly, the two forms of PS1 interact differently with E-cadherin or beta-catenin and plakoglobin: whereas processed PS1 binds E-cadherin with high affinity and beta-catenin or plakoglobin weakly, the non-processed form behaves inversely. Moreover, contrarily to processed PS1, that decreases the levels of c-fos RNA, non-processed PS1 inhibits the expression c-myc, a known target of beta-catenin.Tcf-4, and does not block the activity of other transcriptional factors requiring CBP. These results indicate that prevention of PS1 processing in FAD affects the mechanism of repression of the transcriptional activity dependent on beta-catenin. PMID:19114997

  3. Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet

    PubMed Central

    Wu, Shao-Chun; Rau, Cheng-Shyuan; Lu, Tsu-Hsiang; Tzeng, Siou-Ling; Wu, Yi-Chan; Wu, Chia-Jung; Lin, Chia-Wei; Hsieh, Ching-Hua

    2015-01-01

    Background. This study aims to investigate the effect of feeding low-fat diet (LFD) to diet-induced obesity (DIO) mice lacking TLR5 (TLR5−/−), which have a tendency to develop glucose intolerance with increased adiposity, compared to that in C57BL/6 mice. Results. TLR5−/− and C57BL/6 male mice were divided into three subgroups: (1) control, mice were fed a standard AIN-76A (fat: 11.5 kcal%) diet for 12 weeks; (2) DIO, mice were fed a 58 kcal% high-fat diet (HFD) for 12 weeks; and (3) diet, mice were fed a HFD for 8 weeks to induce obesity and then switched to a 10.5 kcal% LFD for 4 weeks. The glucose intolerance in DIO TLR5−/− mice was more significant than that in DIO C57BL/6 mice and was not attenuated by a switch to the LFD. Weight-reduction with LFD had significantly decreased the epididymal fat mass in C57BL/6 mice but not in TLR5−/− mice. In addition, the LFD-fed TLR5−/− mice showed significantly higher expression of ghrelin in the serum and resistin in the epididymal fat than that in C57BL/6 mice. Conclusions. This study demonstrated that TLR5 gene knockout impairs some effects of weight-reduction in DIO. PMID:26681840

  4. Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1.

    PubMed

    Walensky, L D; Shi, Z T; Blackshaw, S; DeVries, A C; Demas, G E; Gascard, P; Nelson, R J; Conboy, J G; Rubin, E M; Snyder, S H; Mohandas, N

    1998-11-19

    The erythrocyte membrane cytoskeletal protein 4.1 (4.1R) is a structural protein that confers stability and flexibility to erythrocytes via interactions with the cytoskeletal proteins spectrin and F-actin and with the band 3 and glycophorin C membrane proteins. Mutations in 4.1R can cause hereditary elliptocytosis, a disease characterized by a loss of the normal discoid morphology of erythrocytes, resulting in hemolytic anemia [1]. Different isoforms of the 4.1 protein have been identified in a wide variety of nonerythroid tissues by immunological methods [2-5]. The variation in molecular weight of these different 4.1 isoforms, which range from 30 to 210 kDa [6], has been attributed to complex alternative splicing of the 4.1R gene [7]. We recently identified two new 4.1 genes: one is generally expressed throughout the body (4. 1G) [8] and the other is expressed in central and peripheral neurons (4.1N) [9]. Here, we examined 4.1R expression by in situ hybridization analysis and found that 4.1R was selectively expressed in hematopoietic tissues and in specific neuronal populations. In the brain, high levels of 4.1R were discretely localized to granule cells in the cerebellum and dentate gyrus. We generated mice that lacked 4.1R expression; these mice had deficits in movement, coordination, balance and learning, in addition to the predicted hematological abnormalities. The neurobehavioral findings are consistent with the distribution of 4.1R in the brain, suggesting that 4.1R performs specific functions in the central nervous system. PMID:9822582

  5. Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3

    PubMed Central

    Yates, Cecelia C.; Whaley, Diana; Hooda, Shveta; Hebda, Patricia A.; Bodnar, Richard J.; Wells, Alan

    2010-01-01

    Wound healing is a complex, orchestrated series of biological events that is controlled by extracellular components that communicate between cell types to re-establish lost tissue. We have found that signaling by ELR-negative CXC chemokines through their common CXCR3 receptor is critical for dermal maturation during the resolving phase. In addition there needs to be complete maturation of the epidermis and regeneration of a delineating basement membrane for proper functioning. The role of this ligand–receptor system appears confounding as one ligand, CXCL4/(PF4), is present during the initial dissolution and two others, CXCL10/(IP-10) and CXCL11/(IP-9/I-TAC), are expressed by keratinocytes in the later regenerative and resolving phases during which the basement membrane is re-established. We examined CXCR3 signaling role in healing using a mouse lacking this receptor, as all three ligands act solely via the common receptor. Reepithelialization was delayed in CXCR3-deficient mice in both full and partial-thickness excisional wounds. Even at 90 days postwounding, the epidermis of these mice appeared less mature with lower levels of E-cadherin and cytokeratin 18. The underlying basement membrane, a product of both dermal fibroblasts and epidermal keratinocytes, was not fully established with persistent diffuse expression of the matrix components laminin 5, collagen IV, and collagen VII throughout the wound bed. These results suggest that CXCR3 and its ligands play an important role in the re-establishment of the basement membrane and epidermis. These studies further establish the emerging signaling network that involves the CXCR3 chemokine receptor and its ligands as a key regulator of wound repair. PMID:19152649

  6. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    PubMed Central

    Zhu, Huiping; Cabrera, Robert M; Wlodarczyk, Bogdan J; Bozinov, Daniel; Wang, Deli; Schwartz, Robert J; Finnell, Richard H

    2007-01-01

    Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs), it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects [1-3]. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα) gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage), heart tube looping (28-somite stage), and outflow track septation (38-somite stage). Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and motility as well as cellular

  7. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  8. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration.

    PubMed

    Ribeiro-Resende, Victor Túlio; Araújo Gomes, Tiago; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  9. Mice Lacking the p43 Mitochondrial T3 Receptor Become Glucose Intolerant and Insulin Resistant during Aging

    PubMed Central

    Bertrand, Christelle; Blanchet, Emilie; Pessemesse, Laurence; Annicotte, Jean Sébastien; Feillet-Coudray, Christine; Chabi, Béatrice; Levin, Jonathan; Fajas, Lluis; Cabello, Gérard; Wrutniak-Cabello, Chantal; Casas, François

    2013-01-01

    Thyroid hormones (TH) play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3) receptor (p43) which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43−/− mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43−/− mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43−/− mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes. PMID:24098680

  10. Spontaneous Lung Dysfunction and Fibrosis in Mice Lacking Connexin 40 and Endothelial Cell Connexin 43

    PubMed Central

    Koval, Michael; Billaud, Marie; Straub, Adam C.; Johnstone, Scott R.; Zarbock, Alexander; Duling, Brian R.; Isakson, Brant E.

    2011-01-01

    Gap junction proteins (connexins) facilitate intercellular communication and serve several roles in regulation of tissue function and remodeling. To examine the physiologic effects of depleting two prominent endothelial connexins, Cx40 and Cx43, transgenic mice were generated by breeding Cx40-deficient mice (Cx40−/−) with a vascular endothelial cell (VEC)-specific Cx43-deficient mouse strain (VEC Cx43−/−) to produce double-connexin knockout mice (VEC Cx43−/−/Cx40−/−). The life span in VEC Cx43−/−/Cx40−/− mice was dramatically shortened, which correlated with severe spontaneous lung abnormalities as the mice aged including increased fibrosis, aberrant alveolar remodeling, and increased lung fibroblast content. Moreover, VEC Cx43−/−/Cx40−/− mice exhibited cardiac hypertrophy and hypertension. Because VEC Cx43−/−/Cx40−/− mice demonstrated phenotypic hallmarks that were remarkably similar to those in mice deficient in caveolin-1, pulmonary caveolin expression was examined. Lungs from VEC Cx43−/−/Cx40−/− mice demonstrated significantly decreased expression of caveolin-1 and caveolin-2. This suggests that expression of caveolin-1 may be linked to expression of Cx40 and endothelial Cx43. Moreover, the phenotype of caveolin-1−/− mice and VEC Cx43−/−/Cx40−/− mice may arise via a common mechanism. PMID:21641379

  11. Lack of stress responses to long-term effects of corticosterone in Caps2 knockout mice.

    PubMed

    Mishima, Yuriko; Shinoda, Yo; Sadakata, Tetsushi; Kojima, Masami; Wakana, Shigeharu; Furuichi, Teiichi

    2015-01-01

    Chronic stress is associated with anxiety and depressive disorders, and can cause weight gain. Ca(2+)-dependent activator protein for secretion 2 (CAPS2) is involved in insulin release. Caps2 knockout (KO) mice exhibit decreased body weight, reduced glucose-induced insulin release, and abnormal psychiatric behaviors. We chronically administered the stress hormone corticosterone (CORT), which induces anxiety/depressive-like behavior and normally increases plasma insulin levels, via the drinking water for 10 weeks, and we examined the stress response in KO mice. Chronic CORT exposure inhibited stress-induced serum CORT elevation in wild-type (WT) mice, but not in KO mice. Poor weight gain in CORT-treated animals was observed until week 6 in WT mice, but persisted for the entire duration of the experiment in KO mice, although there is no difference in drug*genotype interaction. Among KO mice, food consumption was unchanged, while water consumption was higher, over the duration of the experiment in CORT-treated animals, compared with untreated animals. Moreover, serum insulin and leptin levels were increased in CORT-treated WT mice, but not in KO mice. Lastly, both WT and KO mice displayed anxiety/depressive-like behavior after CORT administration. These results suggest that Caps2 KO mice have altered endocrine responses to CORT administration, while maintaining CORT-induced anxiety/depressive-like behavior. PMID:25754523

  12. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia.

    PubMed

    Xu, P X; Adams, J; Peters, H; Brown, M C; Heaney, S; Maas, R

    1999-09-01

    Haploinsufficiency for human EYA1, a homologue of the Drosophila melanogaster gene eyes absent (eya), results in the dominantly inherited disorders branchio-oto-renal (BOR) syndrome and branchio-oto (BO) syndrome, which are characterized by craniofacial abnormalities and hearing loss with (BOR) or without (BO) kidney defects. To understand the developmental pathogenesis of organs affected in these syndromes, we inactivated the gene Eya1 in mice. Eya1 heterozygotes show renal abnormalities and a conductive hearing loss similar to BOR syndrome, whereas Eya1 homozygotes lack ears and kidneys due to defective inductive tissue interactions and apoptotic regression of the organ primordia. Inner ear development in Eya1 homozygotes arrests at the otic vesicle stage and all components of the inner ear and specific cranial sensory ganglia fail to form. In the kidney, Eya1 homozygosity results in an absence of ureteric bud outgrowth and a subsequent failure of metanephric induction. Gdnf expression, which is required to direct ureteric bud outgrowth via activation of the c-ret Rtk (refs 5, 6, 7, 8), is not detected in Eya1-/- metanephric mesenchyme. In Eya1-/- ear and kidney development, Six but not Pax expression is Eya1 dependent, similar to a genetic pathway elucidated in the Drosophila eye imaginal disc. Our results indicate that Eya1 controls critical early inductive signalling events involved in ear and kidney formation and integrate Eya1 into the genetic regulatory cascade controlling kidney formation upstream of Gdnf. In addition, our results suggest that an evolutionarily conserved Pax-Eya-Six regulatory hierarchy is used in mammalian ear and kidney development. PMID:10471511

  13. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors.

    PubMed

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging. PMID:27199738

  14. Early Signs of Pathological Cognitive Aging in Mice Lacking High-Affinity Nicotinic Receptors

    PubMed Central

    Konsolaki, Eleni; Tsakanikas, Panagiotis; Polissidis, Alexia V.; Stamatakis, Antonios; Skaliora, Irini

    2016-01-01

    In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. A deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-), which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioral signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviors, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm the hypothesis that β2-/- animals exhibit age-related cognitive impairments in spatial learning. In addition, they document age-related deficits in other areas, such as recognition memory, burrowing and nesting building, thereby extending the validity of this animal model for the study of pathological aging. Finally, our data reveal deficits in spontaneous behavior and habituation processes that precede the onset of cognitive decline and could therefore be useful as a non-invasive behavioral screen for identifying animals at risk. To our knowledge, this is the first study to perform an extensive behavioral assessment of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioral changes to global dementia due to the combined effect of the neuropathology and aging. PMID:27199738

  15. Multiple Hemopoietic Defects and Lymphoid Hyperplasia in Mice Lacking the Transcriptional Activation Domain of the c-Rel Protein

    PubMed Central

    Carrasco, Daniel; Cheng, Janet; Lewin, Anne; Warr, Glenn; Yang, Hyekyung; Rizzo, Cheryl; Rosas, Fabio; Snapper, Clifford; Bravo, Rodrigo

    1998-01-01

    The c-rel protooncogene encodes a member of the Rel/nuclear factor (NF)-κB family of transcriptional factors. To assess the role of the transcriptional activation domain of c-Rel in vivo, we generated mice expressing a truncated c-Rel (Δc-Rel) that lacks the COOH-terminal region, but retains a functional Rel homology domain. Mice with an homozygous mutation in the c-rel region encoding the COOH terminus of c-Rel (c-relΔCT/ΔCT) display marked defects in proliferative and immune functions. c-relΔCT/ΔCT animals present histopathological alterations of hemopoietic tissues, such as an enlarged spleen due to lymphoid hyperplasia, extramedullary hematopoiesis, and bone marrow hypoplasia. In older c-relΔCT/ΔCT mice, lymphoid hyperplasia was also detected in lymph nodes, liver, lung, and stomach. These animals present a more severe phenotype than mice lacking the entire c-Rel protein. Thus, in c-relΔCT/ΔCT mice, the lack of c-Rel activity is less efficiently compensated by other NF-κB proteins. PMID:9529314

  16. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    PubMed Central

    2011-01-01

    Background Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD. PMID:21854568

  17. Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1.

    PubMed

    Artunc, Ferruh; Amann, Kerstin; Nasir, Omaima; Friedrich, Björn; Sandulache, Diana; Jahovic, Nermina; Risler, Teut; Vallon, Volker; Wulff, Peer; Kuhl, Dietmar; Lang, Florian

    2006-09-01

    Mineralocorticoids stimulate renal tubular Na(+) reabsorption, enhance salt appetite, increase blood pressure, and favor the development of renal fibrosis. The effects of mineralocorticoids on renal tubular Na(+) reabsorption and salt appetite involve the serum- and glucocorticoid-inducible kinase 1 (SGK1). The kinase is highly expressed in fibrosing tissue. The present experiments thus explored the involvement of SGK1 in renal fibrosis. To this end, SGK1-knockout mice (sgk1 (-/-)) and their wild-type littermates (sgk1 (+/+)) were implanted with desoxycorticosterone acetate (DOCA)-release pellets and offered 1% saline as drinking water for 12 weeks. The treatment led to significant increases in fluid and Na(+) intake and urinary output of fluid and Na(+) in sgk1 (+/+) mice, effects blunted in sgk1 (-/-) mice. Blood pressure increased within the first 7 weeks to a similar extent in both genotypes, but within the next 5 weeks, it increased further only in sgk1 (+/+) mice. Creatinine clearance did not change significantly but albuminuria increased dramatically in sgk1 (+/+) mice, an effect significantly blunted in sgk1 (-/-) mice. Histology after 12 weeks treatment revealed marked glomerular sclerosis and tubulointerstitial damage with interstitial fibrosis and inflammation in kidneys from sgk1 (+/+) mice, but not from sgk1 (-/-) mice. In conclusion, a lack of SGK1 protects against DOCA/high-salt-induced albuminuria and renal fibrosis. PMID:16924469

  18. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  19. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  20. The Naturally Occurring Luteinizing Hormone Surge Is Diminished in Mice Lacking Estrogen Receptor Beta in the Ovary1

    PubMed Central

    Jayes, Friederike L.; Burns, Katherine A.; Rodriguez, Karina F.; Kissling, Grace E.; Korach, Kenneth S.

    2013-01-01

    ABSTRACT Female ESR2-null mice (betaERKO) display defects in ovarian function and are subfertile. Follicular maturation is impaired and explains smaller litters, but betaERKO also produce fewer litters, which may be partially due to inadequate ovulatory signals. To test this, the amplitude and timing of the naturally occurring luteinizing hormone (LH) surge was measured in individual intact betaERKO and wild-type (WT) mice. Vaginal cytology was evaluated daily, and blood samples were taken from mice in proestrus. The amplitude of the LH surge was severely blunted in betaERKO mice compared to WT, but pituitary LH levels revealed no differences. The betaERKO mice did not produce a preovulatory estradiol surge. To determine if the smaller LH surges and the reduced number of litters in betaERKO were due to the lack of ESR2 in the hypothalamic-pituitary axis or due to the absence of ESR2 in the ovary, ovaries were transplanted from WT into betaERKO mice and vice versa. The size of the LH surge was reduced only in mice lacking ESR2 within the ovary, and these mice had fewer litters. Fertility and size of the LH surge were rescued in betaERKO mice receiving a WT ovary. These data provide the first experimental evidence that the LH surge is impaired in betaERKO females and may contribute to their reduced fertility. ESR2 is not necessary within the pituitary and hypothalamus for the generation of a normal LH surge and for normal fertility, but ESR2 is essential within the ovary to provide proper signals. PMID:24337314

  1. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration.

    PubMed

    Wang, T; Lawler, A M; Steel, G; Sipila, I; Milam, A H; Valle, D

    1995-10-01

    Deficiency of ornithine-delta-aminotransferase (OAT) in humans causes hyperornithinaemia and gyrate atrophy (GA), a blinding chorioretinal degeneration. Surprisingly, OAT-deficient mice produced by gene targeting exhibit neonatal hypoornithinaemia and lethality, rescuable by short-term arginine supplementation. Post-weaning, these mice develop hyperornithinaemia similar to human GA patients. Subsequent studies in one human GA infant also showed transient hypoornithinaemia. Thus, the OAT reaction plays opposite roles in neonatal and adult mammals. Over several months, OAT-deficient mice develop a retinal degeneration with involvement of photoreceptors and pigment epithelium. OAT-deficient mice appear to be an excellent model of human GA. PMID:7550347

  2. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  3. Lack of the lectin-like domain of thrombomodulin worsens Shiga toxin-associated hemolytic uremic syndrome in mice.

    PubMed

    Zoja, Carlamaria; Locatelli, Monica; Pagani, Chiara; Corna, Daniela; Zanchi, Cristina; Isermann, Berend; Remuzzi, Giuseppe; Conway, Edward M; Noris, Marina

    2012-10-01

    Shiga toxin (Stx)-producing Escherichia coli is a primary cause of diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. The pathophysiology of renal microvascular thrombosis in Stx-HUS is still ill-defined. Based on evidence that abnormalities in thrombomodulin (TM), an anticoagulant endothelial glycoprotein that modulates complement and inflammation, predispose to atypical HUS, we assessed whether impaired TM function may adversely affect evolution of Stx-HUS. Disease was induced by coinjection of Stx2/LPS in wild-type mice (TM(wt/wt)) and mice that lack the lectin-like domain of TM (TM(LeD/LeD)), which is critical for its anti-inflammatory and cytoprotective properties. After Stx2/LPS, TM(LeD/LeD) mice exhibited more severe thrombocytopenia and renal dysfunction than TM(wt/wt) mice. Lack of lectin-like domain of TM resulted in a stronger inflammatory reaction after Stx2/LPS with more neutrophils and monocytes/macrophages infiltrating the kidney, associated with PECAM-1 and chemokine upregulation. After Stx2/LPS, intraglomerular fibrin(ogen) deposits were detected earlier in TM(LeD/LeD) than in TM(wt/wt) mice. More abundant fibrin(ogen) deposits were also found in brain and lungs. Under basal conditions, TM(LeD/LeD) mice exhibited excess glomerular C3 deposits, indicating impaired complement regulation in the kidney that could lead to local accumulation of proinflammatory products. TM(LeD/LeD) mice with HUS had a higher mortality rate than TM(wt/wt) mice. If applicable to humans, these findings raise the possibility that genetic or acquired TM defects might have an impact on the severity of microangiopathic lesions after exposure to Stx-producing E. coli infections and raise the potential for using soluble TM in the treatment of Stx-HUS. PMID:22942429

  4. Differential susceptibity of transgenic mice lacking one or both apolipoprotein alleles to folate and vitamin E deprivation.

    PubMed

    Shea, Thomas B; Ortiz, Daniela; Rogers, Eugene

    2004-06-01

    The E4 allele of apolipoprotein E (ApoE) is associated with neurodegeneration in part due to increased oxidative stress. Transgenic mice lacking ApoE (-/-) represent a model for the consequences of deficiencies in ApoE function. Dietary deficiency in folate and vitamin E has previously been shown to potentiate the impact of ApoE deficiency; ApoE-/- mice deprived of folate and vitamin E for 1 month demonstrated increased oxidative damage in brain tissue and impaired cognitive performance as compared to ApoE+/+ mice. Since individuals homozygous for E4 can demonstrate more increased risk for neurodegeneration and an earlier age of onset than individuals heterozygous for E4, we tested the impact of folate and vitamin E deprivation on ApoE+/- mice. Thiobarbituric acid-reactive substances in brain tissue of ApoE+/- were significantly increased compared to ApoE+/+ mice, but this increase was less than that observed in ApoE-/- mice. By contrast, livers of ApoE+/- and -/- mice displayed an identical increase over that of +/+ mice. ApoE-/- mice, but not +/- or +/+ mice, exhibited impaired cognitive performance in maze trials when deprived of folate and vitamin E. These findings support the notion that homozygous deficiency of ApoE function can be more severe than heterozygous deficiency. They further suggest that the impact of partial deficiency in ApoE function may present a latent risk that may manifest only when compounded by other factors such as dietary deficiency. PMID:15201481

  5. Lack of LCAT reduces the LPS-neutralizing capacity of HDL and enhances LPS-induced inflammation in mice.

    PubMed

    Petropoulou, Peristera-Ioanna; Berbée, Jimmy F P; Theodoropoulos, Vassilios; Hatziri, Aikaterini; Stamou, Panagiota; Karavia, Eleni A; Spyridonidis, Alexandros; Karagiannides, Iordanes; Kypreos, Kyriakos E

    2015-10-01

    HDL has important immunomodulatory properties, including the attenuation of lipopolysaccharide (LPS)-induced inflammatory response. As lecithin-cholesterol acyltransferase (LCAT) is a critical enzyme in the maturation of HDL we investigated whether LCAT-deficient (Lcat(-/-)) mice present an increased LPS-induced inflammatory response. LPS (100μg/kg body weight)-induced cytokine response in Lcat(-/-) mice was markedly enhanced and prolonged compared to wild-type mice. Importantly, reintroducing LCAT expression using adenovirus-mediated gene transfer reverted their phenotype to that of wild-type mice. Ex vivo stimulation of whole blood with LPS (1-100ng/mL) showed a similar enhanced pro-inflammatory phenotype. Further characterization in RAW 264.7 macrophages in vitro showed that serum and HDL, but not chylomicrons, VLDL or the lipid-free protein fraction of Lcat(-/-) mice, had a reduced capacity to attenuate the LPS-induced TNFα response. Analysis of apolipoprotein composition revealed that LCAT-deficient HDL lacks significant amounts of ApoA-I and ApoA-II and is primarily composed of ApoE, while HDL from Apoa1(-/-) mice is highly enriched in ApoE and ApoA-II. ApoA-I-deficiency did not affect the capacity of HDL to neutralize LPS, though Apoa1(-/-) mice showed a pronounced LPS-induced cytokine response. Additional immunophenotyping showed that Lcat(-/-) , but not Apoa1(-/-) mice, have markedly increased circulating monocyte numbers as a result of increased Cd11b(+)Ly6C(med) monocytes, whereas 'pro-inflammatory' Cd11b(+)Ly6C(hi) monocytes were reduced. In line with this observation, peritoneal macrophages of Lcat(-/-) mice showed a markedly dampened LPS-induced TNFα response. We conclude that LCAT-deficiency increases LPS-induced inflammation in mice due to reduced LPS-neutralizing capacity of immature discoidal HDL and increased monocyte number. PMID:26170061

  6. Allergic inflammatory response to short ragweed allergenic extract in HLA-DQ transgenic mice lacking CD4 gene.

    PubMed

    Chapoval, Svetlana P; Iijima, Koji; Marietta, Eric V; Smart, Michele K; Chapoval, Andrei I; Andrews, Amy G; David, Chella S

    2002-01-15

    To investigate the role of HLA-DQ molecules and/or CD4(+) T cells in the pathogenesis of allergic asthma, we generated HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous class II (Abeta(null)) and CD4 genes and challenged them intranasally with short ragweed allergenic extract (SRW). We found that DQ6/CD4(null) mice developed a strong eosinophilic infiltration into the bronchoalveolar lavage and lung tissue, while DQ8/CD4(null) mice were normal. However, neither cytokines nor eosinophil peroxidase in the bronchoalveolar lavage of DQ6/CD4(null) mice was found. In addition, the airway reactivity to methacholine was elevated moderately in DQ6/CD4(null) mice compared with the high response in DQ/CD4(+) counterparts and was only partially augmented by CD4(+) T cell transfer. The DQ6/CD4(null) mice showed Th1/Th2-type cytokines and SRW-specific Abs in the immune sera in contrast to a direct Th2 response observed in DQ6/CD4(+) mice. The proliferative response of spleen mononuclear cells and peribronchial lymph node cells demonstrated that the response to SRW in DQ6/CD4(null) mice was mediated by HLA-DQ-restricted CD4(-)CD8(-)NK1.1(-) T cells. FACS analysis of PBMC and spleen mononuclear cells demonstrated an expansion of double-negative (DN) CD4(-)CD8(-)TCRalphabeta(+) T cells in SRW-treated DQ6/CD4(null) mice. These cells produced IL-4, IL-5, IL-13, and IFN-gamma when stimulated with immobilized anti-CD3. IL-5 ELISPOT assay revealed that DN T cells were the cellular origin of IL-5 in allergen-challenged DQ6/CD4(null) mice. Our study shows a role for HLA-DQ-restricted CD4(+) and DN T cells in the allergic response. PMID:11777987

  7. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders.

    PubMed

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  8. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders

    PubMed Central

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  9. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice.

    PubMed

    Skuljec, Jelena; Cabanski, Maciej; Surdziel, Ewa; Lachmann, Nico; Brennig, Sebastian; Pul, Refik; Jirmo, Adan C; Habener, Anika; Visic, Julia; Dalüge, Kathleen; Hennig, Christian; Moritz, Thomas; Happle, Christine; Hansen, Gesine

    2016-07-01

    Foxp3(+) regulatory T (Treg) cells play a pivotal role in maintaining immunological tolerance. Loss-of-function mutations in the Foxp3 gene result in multiorgan inflammation known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in humans and scurfy (Sf) disease in mice. While the impact of missing Treg cells on adaptive immune cells is well documented, their role in regulation of myeloid cells remains unclear. Here we report that Sf mice exhibit an altered composition of stem and progenitor cells, characterized by increased numbers of myeloid precursors and higher efficiency of macrophage generation ex vivo. The proportion of monocytes/macrophages in the bone marrow, blood, and spleen was significantly elevated in Sf mice, which was accompanied with tissue-specific monocyte expression of homing receptor and phagocytic activity. Sf mice displayed high levels of M-CSF and other inflammatory cytokines, including monocyte-recruiting chemokines. Adoptive transfer of WT CD4(+) cells and in vivo neutralization of M-CSF normalized frequencies of monocyte subsets and their progenitors and reduced high levels of monocyte-related cytokines in Sf mice, while Treg cell transfer to RAG2(-/-) mice had no effect on myelopoiesis and monocyte/macrophage counts. Our findings illustrate that deregulated myelopoiesis in Sf mice is mainly caused by the inflammatory reaction resulting from the lack of Treg cells. PMID:27130185

  10. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    PubMed

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. PMID:25523030

  11. Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter.

    PubMed

    Holmström, Kira M; Pan, Xin; Liu, Julia C; Menazza, Sara; Liu, Jie; Nguyen, Tiffany T; Pan, Haihui; Parks, Randi J; Anderson, Stasia; Noguchi, Audrey; Springer, Danielle; Murphy, Elizabeth; Finkel, Toren

    2015-08-01

    Mitochondrial calcium is thought to play an important role in the regulation of cardiac bioenergetics and function. The entry of calcium into the mitochondrial matrix requires that the divalent cation pass through the inner mitochondrial membrane via a specialized pore known as the mitochondrial calcium uniporter (MCU). Here, we use mice deficient of MCU expression to rigorously assess the role of mitochondrial calcium in cardiac function. Mitochondria isolated from MCU(-/-) mice have reduced matrix calcium levels, impaired calcium uptake and a defect in calcium-stimulated respiration. Nonetheless, we find that the absence of MCU expression does not affect basal cardiac function at either 12 or 20months of age. Moreover, the physiological response of MCU(-/-) mice to isoproterenol challenge or transverse aortic constriction appears similar to control mice. Thus, while mitochondria derived from MCU(-/-) mice have markedly impaired mitochondrial calcium handling, the hearts of these animals surprisingly appear to function relatively normally under basal conditions and during stress. PMID:26057074

  12. Dual task abilities as a possible preclinical marker of Alzheimer's disease in carriers of the E280A presenilin-1 mutation.

    PubMed

    MacPherson, Sarah E; Parra, Mario A; Moreno, Sonia; Lopera, Francisco; Della Sala, Sergio

    2012-03-01

    Previous dual task studies have demonstrated that patients with sporadic Alzheimer's disease (AD) are impaired in their ability to perform two tasks simultaneously compared with healthy controls, despite being able to successfully perform the tasks alone relatively well. Yet, it remains unclear what the earliest clinical manifestation of this dual task coordination deficit is. This study examined dual task abilities in individuals who are at risk of early-onset familial AD due to an E280A presenilin-1 mutation. Thirty-nine carriers of the gene mutation who did not meet the criteria for AD and 29 non-carrier healthy controls were asked to perform digit recall accompanied by a secondary tracking task. Individuals who were carriers of the genetic mutation demonstrated significantly higher dual task costs than healthy non-carriers. Dual task performance was found to be more sensitive to this very early stage of FAD than episodic memory measures. The findings support the notion that a deficit in the coordination mechanism of the central executive may be a pre-clinical marker for the early detection of AD due to the E280A presenilin-1 gene mutation. PMID:22133015

  13. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    PubMed

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. PMID:26603903

  14. Coxsackievirus B 1-induced polymyositis. Lack of disease expression in nu/nu mice.

    PubMed Central

    Ytterberg, S R; Mahowald, M L; Messner, R P

    1987-01-01

    Chronic inflammatory myositis similar to human polymyositis occurs in mice after infection with a strain of Coxsackievirus B 1 (CVB 1). To investigate the role of T cells in the pathogenesis of this disorder, we compared disease expression in T cell-deficient athymic nude (nu/nu) mice and heterozygotes (nu/+) with normal T cell function. Acute infectious myositis occurred in nu/nu and nu/+ mice. Chronic (greater than 21 d postinfection) weakness and myositis, however, developed only in nu/+. Resistance to disease in nu/nu mice was not explained by insusceptibility to infection; the amount of virus lethal for 50% of mice and virus replication were comparable in both groups. Additionally, anti-CVB 1 antibody production was similar in both groups. Reconstitution of infected nu/nu mice with spleen cells from normal mice resulted in disease. These results demonstrate that chronic weakness after infection with this virus is not simply a sequela of acute myonecrosis and suggest that T cells play a pivotal role in the pathogenesis of chronic myositis. Images PMID:3038960

  15. Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine.

    PubMed

    Chen, S C; Mehrad, B; Deng, J C; Vassileva, G; Manfra, D J; Cook, D N; Wiekowski, M T; Zlotnik, A; Standiford, T J; Lira, S A

    2001-03-01

    Lungkine (CXCL15) is a novel CXC chemokine that is highly expressed in the adult mouse lung. To determine the biologic function of Lungkine, we generated Lungkine null mice by targeted gene disruption. These mice did not differ from wild-type mice in their hematocrits or in the relative number of cells in leukocyte populations of peripheral blood or other tissues, including lung and bone marrow. However, Lungkine null mice were more susceptible to Klebsiella pneumonia infection, with a decreased survival and increased lung bacterial burden compared with infected wild-type mice. Histologic analysis of the lung and assessment of leukocytes in the bronchioalveolar lavage revealed that neutrophil numbers were normal in the lung parenchyma, but reduced in the airspace. The production of other neutrophil chemoattractants in the Lungkine null mice did not differ from that in wild-type mice, and neutrophil migration into other tissues was normal. Taken together, these findings demonstrate that Lungkine is an important mediator of neutrophil migration from the lung parenchyma into the airspace. PMID:11207292

  16. Behavioral alterations in mice lacking the gene for tenascin-x.

    PubMed

    Kawakami, Kohei; Matsumoto, Ken-ichi

    2011-01-01

    Tenascin-X (TNX) is the largest member in the tenascin family of large oligomeric glycoproteins of the extracellular matrix (ECM). TNX is expressed in the leptomeningeal trabecula and connective tissue of choroid plexus in the brain as well as in muscular tissues. Interestingly, single nucleotide polymorphism (SNP) analysis in human showed that TNX is significantly associated with schizophrenia. Previously we generated TNX-deficient (TNX-/-) mice by homologous recombination using embryonic stem (ES) cells. In the present study, we analyzed behaviors relevant to affect, learning and memory, and motor control in TNX-/- mice. TNX-/- mice showed increased anxiety in light-dark and open-field tests and superior memory retention in a passive avoidance test. Also, TNX-/- mice displayed higher sensorimotor coordination than did wild-type mice in a rotorod test. However, TNX-/- mice did not differ from wild-type mice in locomotor activity in a home-cage activity test using telemetric monitoring. These findings suggest that TNX has diverse roles including roles in behavioral functions such as anxiety, emotional learning and memory, and sensorimotor ability. PMID:21467652

  17. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass

    PubMed Central

    Farman, H. H.; Windahl, S. H.; Westberg, L.; Isaksson, H.; Egecioglu, E.; Schele, E.; Ryberg, H.; Jansson, J. O.; Tuukkanen, J.; Koskela, A.; Xie, S. K.; Hahner, L.; Zehr, J.; Clegg, D. J.; Lagerquist, M. K.

    2016-01-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα−/−). Female POMC-ERα−/− and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα−/− mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice. PMID:27254004

  18. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice. PMID:27254004

  19. Mice Lacking Inducible Nitric Oxide Synthase Demonstrate Impaired Killing of Porphyromonas gingivalis

    PubMed Central

    Gyurko, Robert; Boustany, Gabriel; Huang, Paul L.; Kantarci, Alpdogan; Van Dyke, Thomas E.; Genco, Caroline A.; Gibson III, Frank C.

    2003-01-01

    Porphyromonas gingivalis is a primary etiological agent of generalized severe periodontitis, and emerging data suggest the importance of reactive oxygen and nitrogen species in periodontal tissue damage, as well as in microbial killing. Since nitric oxide (NO) released from inducible NO synthase (iNOS) has been shown to possess immunomodulatory, cytotoxic, and antibacterial effects in experimental models, we challenged iNOS-deficient (iNOS−/−) mice with P. gingivalis by using a subcutaneous chamber model to study the specific contribution of NO to host defense during P. gingivalis infection. iNOS−/− mice inoculated with P. gingivalis developed skin lesions and chamber rejection with higher frequency and to a greater degree than similarly challenged C57BL/6 wild-type (WT) mice. Chamber fluid from iNOS−/− mice possessed significantly more P. gingivalis than that of WT mice. The immunoglobulin G responses to P. gingivalis in serum was similar in WT and iNOS−/− mice, and the inductions of tumor necrosis factor alpha, interleukin-1β and interleukin-6, and prostaglandin E2 were comparable between the two mouse strains. Although no differences in total leukocyte counts in chamber fluids were observed between iNOS−/− and WT mice, the percentage of dead polymorphonuclear leukocytes (PMNs) was significantly greater in iNOS−/− mouse chamber fluids than that of WT samples. Interestingly, casein-elicited PMNs from iNOS−/− mice released more superoxide than did WT PMNs when stimulated with P. gingivalis. These results indicate that modulation of superoxide levels is a mechanism by which NO influences PMN function and that NO is an important element of the host defense against P. gingivalis. PMID:12933833

  20. Lack of Transcription Factor p53 Exacerbates Elastase-Induced Emphysema in Mice.

    PubMed

    Chrusciel, Sandra; Zysman, Maéva; Caramelle, Philippe; Tiendrebeogo, Arnaud; Baskara, Indoumady; Le Gouvello, Sabine; Chabot, François; Giraudier, Stéphane; Boczkowski, Jorge; Boyer, Laurent

    2016-02-01

    The transcription factor p53 is overexpressed in the lung of patients with emphysema, but it remains unclear if it has a deleterious or protective effect in disease progression. We investigated the role of p53 in the elastase-induced emphysema model and the molecular underlining mechanisms. Wild-type (WT) and p53(-/-) mice were instilled with pancreatic porcine elastase. We quantified emphysema (morphometric analysis), chemokine (C-C motif) ligand 2 (CCL2), and TNF-α in bronchoalveolar lavage (BAL) (ELISA), oxidative stress markers [heme oxygenase 1 (HO1), NAD(P)H dehydrogenase quinone 1 (NQO1), and quantitative RT-PCR], matrix metalloproteinase 12 (MMP12) expression, and macrophage apoptosis (cleaved caspase-3, immunofluorescence). p53 gene expression was up-regulated in the lung of elastase-instilled mice. p53 deletion aggravated elastase-induced emphysema severity, pulmonary inflammation (macrophage and neutrophil numbers and CCL2 and TNF-α levels in BAL), and lung oxidative stress. These findings, except for the increase in CCL2, were reproduced in WT mice transplanted with p53(-/-) bone marrow cells. The increased number of macrophages in p53(-/-) mice was not a consequence of reduced apoptosis or an excess of chemotaxis toward CCL2. Macrophage expression of MMP12 was higher in p53(-/-) mice compared with WT mice after elastase instillation. These findings provide evidence that p53(-/-) mice and WT mice grafted with p53(-/-) bone marrow cells are more prone to developing elastase-induced emphysema, supporting a protective role of p53, and more precisely p53 expressed in macrophages, against emphysema development. The pivotal role played by macrophages in this phenomenon may involve the MMP12-TNF-α pathway. PMID:26106979

  1. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension

    PubMed Central

    Cepura, Cody; Magier, Devora; Siangjong, Lawan; Gauthier, Kathryn M.; Campbell, William B.

    2012-01-01

    In mouse arteries, Alox15 [leukocyte-type 12/15-lipoxygenase (LO)] is assumed to regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids that mediate the endothelium-dependent relaxations to AA and acetylcholine (ACh). We used Alox15−/− mice, made by targeted disruption of the Alox15 gene, to characterize its role in the regulation of blood pressure and vascular tone. Systolic blood pressures did not differ between wild-type (WT) and Alox15−/− mice between 8–12 wk of age, but Alox15−/− mice exhibited resistance toward both NG-nitro-l-arginine-methyl ester (l-NAME)- and deoxycorticosterone acetate (DOCA)/high-salt-induced hypertension. ACh relaxed mesenteric arteries and abdominal aortas of WT and Alox15−/− mice to an identical extent. The LO inhibitor nordihydroguaiaretic acid attenuated the ACh relaxations by 35% in arteries from both WT and Alox15−/− mice. Reverse-phase HPLC analysis of [14C]AA metabolites in aorta and peritoneal macrophages (PM) revealed differences. Unlike PM, aorta tissue did not produce detectable amounts of 15-hydroxyeicosatetraenoic acid. Although Alox15 mRNA was detected in aorta, high-resolution gel electrophoresis with immunodetection revealed no Alox15 protein expression. Unlike aorta, Alox15 protein was detected in PM, intestine, fat, lung, spleen, and skin from WT, but not Alox15−/−, mice. Injection of WT PM, a primary source of Alox15 protein, into Alox15−/− mice abolished their resistance toward l-NAME-induced hypertension. On the other hand, WT mice acquired resistance to l-NAME-induced hypertension after depletion of macrophages by clodronate injection. These studies indicate that Alox15 is involved in development of experimental hypertension by altering macrophage functions but not via synthesis of the vasoactive LO metabolites in mouse arteries. PMID:22467300

  2. Dental and Cranial Pathologies in Mice Lacking the Cl(-) /H(+) -Exchanger ClC-7.

    PubMed

    Wen, Xin; Lacruz, Rodrigo S; Paine, Michael L

    2015-08-01

    ClC-7 is a 2Cl(-) /1H(+) -exchanger expressed at late endosomes and lysosomes, as well as the ruffled border of osteoclasts. ClC-7 deficiencies in mice and humans lead to impaired osteoclast function and therefore osteopetrosis. Failure of tooth eruption is also apparent in ClC-7 mutant animals, and this has been attributed to the osteoclast dysfunction and the subsequent defect in alveolar bone resorptive activity surrounding tooth roots. Ameloblasts also express ClC-7, and this study aims to determine the significance of ClC-7 in enamel formation by examining the dentitions of ClC-7 mutant mice. Micro-CT analysis revealed that the molar teeth of 3-week old ClC-7 mutant mice had no roots, and the incisors were smaller than their age-matched controls. Despite these notable developmental differences, the enamel and dentin densities of the mutant mice were comparable to those of the wild-type littermates. Scanning electron microscopy showed normal enamel crystallite and prismatic organization in the ClC-7 mutant mice, although the enamel was thinner (hypoplastic) than in controls. These results suggested that ClC-7 was not critical to enamel and dentin formation, and the observed tooth defects may be related more to a resulting alveolar bone phenotype. Micro-CT analysis also revealed abnormal features in the calvarial bones of the mutant mice. The cranial sutures in ClC-7 mutant mice remained open compared to the closed sutures seen in the control mice at 3 weeks. These data demonstrate that ClC-7 deficiency impacts the development of the dentition and calvaria, but does not significantly disrupt amelogenesis. PMID:25663454

  3. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor.

    PubMed

    Johansson, B; Halldner, L; Dunwiddie, T V; Masino, S A; Poelchen, W; Giménez-Llort, L; Escorihuela, R M; Fernández-Teruel, A; Wiesenfeld-Hallin, Z; Xu, X J; Hårdemark, A; Betsholtz, C; Herlenius, E; Fredholm, B B

    2001-07-31

    Caffeine is believed to act by blocking adenosine A(1) and A(2A) receptors (A(1)R, A(2A)R), indicating that some A(1) receptors are tonically activated. We generated mice with a targeted disruption of the second coding exon of the A(1)R (A(1)R(-/-)). These animals bred and gained weight normally and had a normal heart rate, blood pressure, and body temperature. In most behavioral tests they were similar to A(1)R(+/+) mice, but A(1)R(-/-) mice showed signs of increased anxiety. Electrophysiological recordings from hippocampal slices revealed that both adenosine-mediated inhibition and theophylline-mediated augmentation of excitatory glutamatergic neurotransmission were abolished in A(1)R(-/-) mice. In A(1)R(+/-) mice the potency of adenosine was halved, as was the number of A(1)R. In A(1)R(-/-) mice, the analgesic effect of intrathecal adenosine was lost, and thermal hyperalgesia was observed, but the analgesic effect of morphine was intact. The decrease in neuronal activity upon hypoxia was reduced both in hippocampal slices and in brainstem, and functional recovery after hypoxia was attenuated. Thus A(1)Rs do not play an essential role during development, and although they significantly influence synaptic activity, they play a nonessential role in normal physiology. However, under pathophysiological conditions, including noxious stimulation and oxygen deficiency, they are important. PMID:11470917

  4. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury.

    PubMed

    Bacich, Dean J; Wozniak, Krystyna M; Lu, X-C May; O'Keefe, Denize S; Callizot, Noelle; Heston, Warren D W; Slusher, Barbara S

    2005-10-01

    Excessive glutamate release is associated with neuronal damage. A new strategy for the treatment of neuronal injury involves inhibition of the neuropeptidase glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked acidic dipeptidase. GCP II is believed to mediate the hydrolysis of N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate, and inhibition of NAAG peptidase activity (by GCP II and other peptidases) is neuroprotective. Mice were generated in which the Folh1 gene encoding GCP II was disrupted (Folh1-/- mice). No overt behavioral differences were apparent between Folh1-/- mice and wild-type littermates, with respect to their overall performance in locomotion, coordination, pain threshold, cognition and psychiatric behavioral paradigms. Morphological analysis of peripheral nerves, however, showed significantly smaller axons (reduced myelin sheaths and axon diameters) in sciatic nerves from Folh1-/- mice. Following sciatic nerve crush, Folh1-/- mice suffered less injury and recovered faster than wild-type littermates. In a model of ischemic injury, the Folh1-/- mice exhibited a significant reduction (p < 0.05) in infarct volume compared with their wild-type littermates when subjected to middle cerebral artery occlusion, a model of stroke. These findings support the hypothesis that GCP II inhibitors may represent a novel treatment for peripheral neuropathies as well as stroke. PMID:16190866

  5. Giant Axon Formation in Mice Lacking Kell, XK, or Kell and XK

    PubMed Central

    Zhu, Xiang; Cho, Eun-Sook; Sha, Quan; Peng, Jianbin; Oksov, Yelena; Kam, Siok Yuen; Ho, Mengfatt; Walker, Ruth H.; Lee, Soohee

    2015-01-01

    McLeod neuroacanthocytosis syndrome (MLS) is a rare X-linked multisystem disease caused by XK gene mutations and characterized by hematological and neurological abnormalities. XK, a putative membrane transporter, is expressed ubiquitously and is covalently linked to Kell, an endothelin-3-converting enzyme (ECE-3). Absence of XK results in reduction of Kell at sites where both proteins are coexpressed. To elucidate the functional roles of XK, Kell, and the XK–Kell complex associated with pathogenesis in MLS, we studied the pathology of the spinal cord, anterior roots, sciatic nerve, and skeletal muscle from knockout mouse models, using Kel−/−, Xk−/−, Kel−/−Xk−/−, and wild-type mice aged 6 to 18 months. A striking finding was that giant axons were frequently associated with paranodal demyelination. The pathology suggests probable anterograde progression from the spinal cord to the sciatic nerve. The neuropathological abnormalities were found in all three genotypes, but were more marked in the double-knockout Kel−/−Xk−/− mice than in either Kel−/− or Xk−/− mice. Skeletal muscles from Xk−/− and Kel−/−Xk−/− mice showed mild abnormalities, but those from Kel−/− mice were similar to the wild type. The more marked neuropathological abnormalities in Kel−/−Xk−/− mice suggest a possible functional association between XK and Kell in nonerythroid tissues. PMID:24405768

  6. Mice lacking the Parkinson's related GPR37/PAEL receptor show non-motor behavioral phenotypes: age and gender effect.

    PubMed

    Mandillo, S; Golini, E; Marazziti, D; Di Pietro, C; Matteoni, R; Tocchini-Valentini, G P

    2013-06-01

    Non-motor symptoms in Parkinson's disease (PD) have been often described at different stages of the disease but they are poorly understood. We observed specific phenotypes related to these symptoms in mice lacking the PD-associated GPR37/PAEL receptor. GPR37 is an orphan G-protein-coupled receptor highly expressed in the mammalian central nervous system. It is a substrate of parkin and it is involved in the pathogenesis of PD. GPR37 interacts with the dopamine transporter (DAT), modulating nigro-striatal dopaminergic signaling and behavioral responses to amphetamine and cocaine. GPR37 knockout (KO) mice are resistant to MPTP and exhibit several motor behavioral abnormalities related to altered dopaminergic system function. To evaluate non-motor behavioral domains, adult and aged, male and female GPR37 KO mice and their wild-type (WT) littermates were analyzed in a series of cross-sectional studies. Aged GPR37 KO female mice showed mild improvements in olfactory function, while anxiety and depression-like behaviors appeared to be significantly increased. A reduction of the startle response to acoustic stimuli was observed only in adult GPR37 KO mice of both genders. Furthermore, HPLC analysis of major neurotransmitter levels revealed gender differences in the striatum, hippocampus and olfactory bulb of mutant mice. The absence of GPR37 receptor could have a neuroprotective effect in an age and gender-dependent manner, and the study of this receptor could be valuable in the search for novel therapeutic targets. PMID:23574697

  7. Loss of Cartilage Structure, Stiffness, and Frictional Properties in Mice Lacking PRG4

    PubMed Central

    Coles, Jeffrey M; Zhang, Ling; Blum, Jason J; Warman, Matthew L; Jay, Gregory D; Guilak, Farshid; Zauscher, Stefan

    2010-01-01

    Objective To assess the role of the glycoprotein PRG4 in joint lubrication and chondroprotection by measuring friction, stiffness, surface topography, and subsurface histology of the hip joints of Prg4−/− and wild-type (WT) mice. Methods Friction and elastic modulus were measured in cartilage from the femoral heads of Prg4−/− and WT mice ages 2, 4, 10, and 16 weeks using atomic force microscopy, and the surface microstructure was imaged. Histologic sections of each femoral head were stained and graded. Results Histologic analysis of the joints of Prg4−/− mice showed an enlarged, fragmented surface layer of variable thickness with Safranin O–positive formations sometimes present, a roughened underlying articular cartilage surface, and a progressive loss of pericellular proteoglycans. Friction was significantly higher on cartilage of Prg4−/− mice at age 16 weeks, but statistically significant differences in friction were not detected at younger ages. The elastic modulus of the cartilage was similar between cartilage surfaces of Prg4−/− and WT mice at young ages, but cartilage of WT mice showed increasing stiffness with age, with significantly higher moduli than cartilage of Prg4−/− mice at older ages. Conclusion Deletion of the gene Prg4 results in significant structural and biomechanical changes in the articular cartilage with age, some of which are consistent with osteoarthritic degeneration. These findings suggest that PRG4 plays a significant role in preserving normal joint structure and function. PMID:20191580

  8. Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice

    PubMed Central

    Corsetti, Patrícia P.; de Almeida, Leonardo A.; Carvalho, Natália B.; Azevedo, Vasco; Silva, Teane M. A.; Teixeira, Henrique C.; Faria, Ana C.; Oliveira, Sergio C.

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  9. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1

    PubMed Central

    Achat-Mendes, Cindy; Lynch, Laurie J.; Sullivan, Katherine A.; Vallender, Eric J.; Miller, Gregory M.

    2011-01-01

    The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that is functionally activated by amphetamine-based psychostimulants, including amphetamine, methamphetamine and MDMA. Previous studies have shown that in transgenic mice lacking the TAAR1 gene (TAAR1 knockout; KO) a single injection of amphetamine can produce enhanced behavioral responses compared to responses evoked in wild-type (WT) mice. Further, the psychostimulant effects of cocaine can be diminished by selective activation of TAAR1. These findings suggest that TAAR1 might be implicated in the rewarding properties of psychostimulants. To investigate the role of TAAR1 in the rewarding effects of drugs of abuse, the psychomotor stimulating effects of amphetamine and methamphetamine and the conditioned rewarding effects of methamphetamine and morphine were compared between WT and TAAR1 KO mice. In locomotor activity studies, both single and repeated exposure to d-amphetamine or methamphetamine generated significantly higher levels of total distance travelled in TAAR1 KO mice compared to WT mice. In conditioned place preference (CPP) studies, TAAR1 KO mice acquired methamphetamine-induced CPP earlier than WT mice and retained CPP longer during extinction training. In orphine-induced CPP, both WT and KO genotypes displayed similar levels of CPP. Results from locomotor activity studies suggest that TAAR1 may have a modulatory role in the behavioral sensitization to amphetamine-based psychostimulants. That methamphetamine- but not morphine-induced CPP was augmented in TAAR1 KO mice suggests a selective role of TAAR1 in the conditioned reinforcing effects of methamphetamine. Collectively, these findings provide support for a regulatory role of TAAR1 in methamphetamine signaling. PMID:22079347

  10. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1.

    PubMed

    Achat-Mendes, Cindy; Lynch, Laurie J; Sullivan, Katherine A; Vallender, Eric J; Miller, Gregory M

    2012-04-01

    The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that is functionally activated by amphetamine-based psychostimulants, including amphetamine, methamphetamine and MDMA. Previous studies have shown that in transgenic mice lacking the TAAR1 gene (TAAR1 knockout; KO) a single injection of amphetamine can produce enhanced behavioral responses compared to responses evoked in wild-type (WT) mice. Further, the psychostimulant effects of cocaine can be diminished by selective activation of TAAR1. These findings suggest that TAAR1 might be implicated in the rewarding properties of psychostimulants. To investigate the role of TAAR1 in the rewarding effects of drugs of abuse, the psychomotor stimulating effects of amphetamine and methamphetamine and the conditioned rewarding effects of methamphetamine and morphine were compared between WT and TAAR1 KO mice. In locomotor activity studies, both single and repeated exposure to d-amphetamine or methamphetamine generated significantly higher levels of total distance traveled in TAAR1 KO mice compared to WT mice. In conditioned place preference (CPP) studies, TAAR1 KO mice acquired methamphetamine-induced CPP earlier than WT mice and retained CPP longer during extinction training. In morphine-induced CPP, both WT and KO genotypes displayed similar levels of CPP. Results from locomotor activity studies suggest that TAAR1 may have a modulatory role in the behavioral sensitization to amphetamine-based psychostimulants. That methamphetamine-but not morphine-induced CPP was augmented in TAAR1 KO mice suggests a selective role of TAAR1 in the conditioned reinforcing effects of methamphetamine. Collectively, these findings provide support for a regulatory role of TAAR1 in methamphetamine signaling. PMID:22079347

  11. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice.

    PubMed

    Corsetti, Patrícia P; de Almeida, Leonardo A; Carvalho, Natália B; Azevedo, Vasco; Silva, Teane M A; Teixeira, Henrique C; Faria, Ana C; Oliveira, Sergio C

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  12. Hepatobiliary cholesterol transport is not impaired in Abca1-null mice lacking HDL

    PubMed Central

    Groen, Albert K.; Bloks, Vincent W.; Bandsma, Robert H.J.; Ottenhoff, Roelof; Chimini, Giovanna; Kuipers, Folkert

    2001-01-01

    The ABC transporter ABCA1 regulates HDL levels and is considered to control the first step of reverse cholesterol transport from the periphery to the liver. To test this concept, we studied the effect of ABCA1 deficiency on hepatic metabolism and hepatobiliary flux of cholesterol in mice. Hepatic lipid contents and biliary secretion rates were determined in Abca1–/–, Abca1+/–, and Abca1+/+ mice with a DBA background that were fed either standard chow or a high-fat, high-cholesterol diet. Hepatic cholesterol and phospholipid contents in Abca1–/– mice were indistinguishable from those in Abca1+/– and Abca1+/+ mice on both diets. In spite of the absence of HDL, biliary secretion rates of cholesterol, bile salts, and phospholipid were unimpaired in Abca1–/– mice. Neither the hepatic expression levels of genes controlling key steps in cholesterol metabolism nor the contribution of de novo synthesis to biliary cholesterol and bile salts were affected by Abca genotype. Finally, fecal excretion of neutral and acidic sterols was similar in all groups. We conclude that plasma HDL levels and ABCA1 activity do not control net cholesterol transport from the periphery via the liver into the bile, indicating that the importance of HDL in reverse cholesterol transport requires re-evaluation. PMID:11560953

  13. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC.

    PubMed

    Sands, A T; Abuin, A; Sanchez, A; Conti, C J; Bradley, A

    1995-09-14

    Compromise of genetic information by mutation may result in the dysregulation of cellular growth control and subsequent tumour formation. Xeroderma pigmentosum (XP) is a rare autosomal disease characterized by hypersensitivity of the skin to sunlight and > 1,000-fold increased risk of skin cancers in sun-exposed parts of the body. Cell fusion studies have revealed eight complementation groups in XP (A-G, and an XP-variant form); group C is one of the most common forms of the disease. We have isolated a mouse homologue of the human gene for XP group C and generated XPC-deficient mice by using embryonic stem cell technology. Mice homozygous for the XPC mutant allele (xpcm1/xpcm1) are viable and do not exhibit an increased susceptibility to spontaneous tumour generation at one year of age. However, xpcm1/xpcm1 mice were found to be highly susceptible to ultraviolet-induced carcinogenesis compared with mice heterozygous for the mutant allele (xpcm1/+) and wild-type controls. Homozygous xpcm1 mutant mice also display a spectrum of ultraviolet-exposure-related pathological skin and eye changes consistent with the human disease xeroderma pigmentosum group C. PMID:7675084

  14. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.

    PubMed

    Mulryan, K; Gitterman, D P; Lewis, C J; Vial, C; Leckie, B J; Cobb, A L; Brown, J E; Conley, E C; Buell, G; Pritchard, C A; Evans, R J

    2000-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, present on many excitable cells including vas deferens smooth muscle cells. A substantial component of the contractile response of the vas deferens to sympathetic nerve stimulation, which propels sperm into the ejaculate, is mediated through P2X receptors. Here we show that male fertility is reduced by approximately 90% in mice with a targeted deletion of the P2X1 receptor gene. Male mice copulate normally--reduced fertility results from a reduction of sperm in the ejaculate and not from sperm dysfunction. Female mice and heterozygote mice are unaffected. In P2X1-receptor-deficient mice, contraction of the vas deferens to sympathetic nerve stimulation is reduced by up to 60% and responses to P2X receptor agonists are abolished. These results show that P2X1 receptors are essential for normal male reproductive function and suggest that the development of selective P2X1 receptor antagonists may provide an effective non-hormonal male contraceptive pill. Also, agents that potentiate the actions of ATP at P2X1 receptors may be useful in the treatment of male infertility. PMID:10638758

  15. Mice Lacking Platelet-Derived Growth Factor D Display a Mild Vascular Phenotype

    PubMed Central

    Muhl, Lars; Ehnman, Monika; Tannenberg, Philip; Lawrence, Anna-Lisa; Betsholtz, Christer; Eriksson, Ulf

    2016-01-01

    Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor β, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice. Here, we present the phenotype of a constitutive Pdgfd knockout mouse model (Pdgfd-/-), carrying a LacZ reporter used to visualize Pdgfd promoter activity. Inactivation of the Pdgfd gene resulted in a mild phenotype in C57BL/6 mice, and the offspring was viable, fertile and generally in good health. We show that Pdgfd reporter gene activity was consistently localized to vascular structures in both postnatal and adult tissues. The expression was predominantly arterial, often localizing to vascular bifurcations. Endothelial cells appeared to be the dominating source for Pdgfd, but reporter gene activity was occasionally also found in subpopulations of mural cells. Tissue-specific analyses of vascular structures revealed that NG2-expressing pericytes of the cardiac vasculature were disorganized in Pdgfd-/- mice. Furthermore, Pdgfd-/- mice also had a slightly elevated blood pressure. In summary, the vascular expression pattern together with morphological changes in NG2-expressing cells, and the increase in blood pressure, support a function for PDGF-D in regulating systemic arterial blood pressure, and suggests a role in maintaining vascular homeostasis. PMID:27032083

  16. Enhanced Interleukin (IL)-13 Responses in Mice Lacking IL-13 Receptor α 2

    PubMed Central

    Wood, Nancy; Whitters, Matthew J.; Jacobson, Bruce A.; Witek, JoAnn; Sypek, Joseph P.; Kasaian, Marion; Eppihimer, Michael J.; Unger, Michelle; Tanaka, Takashi; Goldman, Samuel J.; Collins, Mary; Donaldson, Debra D.; Grusby, Michael J.

    2003-01-01

    Interleukin (IL)-13 has recently been shown to play important and unique roles in asthma, parasite immunity, and tumor recurrence. At least two distinct receptor components, IL-4 receptor (R)α and IL-13Rα1, mediate the diverse actions of IL-13. We have recently described an additional high affinity receptor for IL-13, IL-13Rα2, whose function in IL-13 signaling is unknown. To better appreciate the functional importance of IL-13Rα2, mice deficient in IL-13Rα2 were generated by gene targeting. Serum immunoglobulin E levels were increased in IL-13Rα2−/− mice despite the fact that serum IL-13 was absent and immune interferon γ production increased compared with wild-type mice. IL-13Rα2–deficient mice display increased bone marrow macrophage progenitor frequency and decreased tissue macrophage nitric oxide and IL-12 production in response to lipopolysaccharide. These results are consistent with a phenotype of enhanced IL-13 responsiveness and demonstrate a role for endogenous IL-13 and IL-13Rα2 in regulating immune responses in wild-type mice. PMID:12642602

  17. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptorSarm1(sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model.Sarm1(-/-)mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared toSarm1(+/+)mice. Furthermore, mice lackingSarm1had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function inSarm1(-/-)animals. Finally, usingin vivoproton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism inSarm1(-/-)mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. PMID:26912636

  18. Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1.

    PubMed

    MacManus, J P; Koch, C J; Jian, M; Walker, T; Zurakowski, B

    1999-09-01

    E2F1+/- mice subjected to 2 h middle cerebral artery occlusion developed an infarct of 77.0 +/- 3.2 mm3 (mean +/- s.e.m., n = 15) in the ischemic hemisphere after 24 h reperfusion. A significantly smaller infarct of 58.8 +/- 4.8 mm3 (n = 15; p < 0.01) was found in E2F1-/- animals. Both deficient and normal mice had similar cerebral angioarchitecture and intra-ischemic decreases in regional blood flow. Similar areas of hypoxia in both groups of ischemic animals were demonstrated directly by immunohistochemical detection of nitroimidazole adducts. It was concluded that all animals received the same ischemic insult, yet the subsequent damage was different in the mutant mice. This is the first indication that the E2F1 gene plays a role in ischemic death of post-mitotic neurons. PMID:10511428

  19. Ataxia and Purkinje cell degeneration in mice lacking the CAMTA1 transcription factor.

    PubMed

    Long, Chengzu; Grueter, Chad E; Song, Kunhua; Qin, Song; Qi, Xiaoxia; Kong, Y Megan; Shelton, John M; Richardson, James A; Zhang, Chun-Li; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Members of the calmodulin-binding transcription activator (CAMTA) family of proteins function as calcium-sensitive regulators of gene expression in multicellular organisms ranging from plants to humans. Here, we show that global or nervous system deletion of CAMTA1 in mice causes severe ataxia with Purkinje cell degeneration and cerebellar atrophy, partially resembling the consequences of haploinsufficiency of the human CAMTA1 locus. Gene-expression analysis identified a large collection of neuronal genes that were dysregulated in the brains of CAMTA1-mutant mice, and elucidation of a consensus sequence for binding of CAMTA proteins to DNA revealed the association of CAMTA-binding sites with many of these genes. We conclude that CAMTA1 plays an essential role in the control of Purkinje cell function and survival. CAMTA1-mutant mice provide a model to study the molecular mechanisms of neurodegenerative diseases and for screening potential therapeutic interventions for such disorders. PMID:25049392

  20. 5’-ectonucleotidase knockout mice lack non-REM sleep responses to sleep deprivation

    PubMed Central

    Zielinski, Mark R.; Taishi, Ping; Clinton, James M.; Krueger, James M.

    2012-01-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system (CNS) actions including regulation of cerebral blood flow, inflammation, and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate (ADP) are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5’-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73 knockout (KO) mice compared to C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73 KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains indicating that the CD73 KO mice were capable of sleep responses. Electroencephalographic (EEG) power spectra during NREMS in the 1.0–2.5 Hz frequency range was significantly enhanced after SD in both CD73 KO and WT mice; the increases were significantly greater in the WT mice vs. CD73 KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in both strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73. PMID:22540145

  1. The rewarding properties of MDMA are preserved in mice lacking mu-opioid receptors.

    PubMed

    Robledo, Patricia; Mendizabal, Victoria; Ortuño, Jordi; de la Torre, Rafael; Kieffer, Brigitte L; Maldonado, Rafael

    2004-08-01

    The involvement of mu-opioid receptors in the rewarding properties of MDMA was explored in mu-opioid receptor knockout mice using the conditioning place preference paradigm. The associated release of dopamine in the nucleus accumbens was investigated by in vivo microdialysis. A significant rewarding effect of MDMA (10 mg/kg, i.p.) was observed in both wild-type and mu-opioid receptor knockout mice. MDMA (10 mg/kg, i.p.) also induced similar increases in dopamine and decreases in 3,4-dihydroxyphenylacetic acid and homovanillic acid in the nucleus accumbens dialysates of both wild-type and mu-opioid receptor knockout mice. No significant differences in basal levels of dopamine, 3,4-dihydroxyphenylacetic or homovanillic acids between wild-type and mu-opioid receptor knockout mice were observed. In summary, the present results suggest that, in contrast to what has been reported for other drugs of abuse such as opioids, ethanol, nicotine and Delta(9)-tetrahydrocannabinol, mu-opioid receptors do not play a major role in the rewarding properties of MDMA. These differences could be due to distinct mechanisms controlling dopamine release in the nucleus accumbens and suggest that the effects of MDMA on dopaminergic neurons are independent of micro -opioid receptors. PMID:15255997

  2. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8.

    PubMed

    Trajkovic, Marija; Visser, Theo J; Mittag, Jens; Horn, Sigrun; Lukas, Jan; Darras, Veerle M; Raivich, Genadij; Bauer, Karl; Heuer, Heike

    2007-03-01

    In humans, inactivating mutations in the gene of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8; SLC16A2) lead to severe forms of psychomotor retardation combined with imbalanced thyroid hormone serum levels. The MCT8-null mice described here, however, developed without overt deficits but also exhibited distorted 3,5,3'-triiodothyronine (T3) and thyroxine (T4) serum levels, resulting in increased hepatic activity of type 1 deiodinase (D1). In the mutants' brains, entry of T4 was not affected, but uptake of T3 was diminished. Moreover, the T4 and T3 content in the brain of MCT8-null mice was decreased, the activity of D2 was increased, and D3 activity was decreased, indicating the hypothyroid state of this tissue. In the CNS, analysis of T3 target genes revealed that in the mutants, the neuronal T3 uptake was impaired in an area-specific manner, with strongly elevated thyrotropin-releasing hormone transcript levels in the hypothalamic paraventricular nucleus and slightly decreased RC3 mRNA expression in striatal neurons; however, cerebellar Purkinje cells appeared unaffected, since they did not exhibit dendritic outgrowth defects and responded normally to T3 treatment in vitro. In conclusion, the circulating thyroid hormone levels of MCT8-null mice closely resemble those of humans with MCT8 mutations, yet in the mice, CNS development is only partially affected. PMID:17318265

  3. Mice lack of LRG-47 display the attenuated outcome of infection with Schistosoma japonicum.

    PubMed

    Gao, Yanan; Wu, Jingjiao; Zhang, Meijuan; Hou, Min; Ji, Minjun

    2016-03-01

    Interferon-inducible GTPase LRG-47 (also named immune-related GTPase M, Irgm1) is a member of the p47 GTPase family that has been shown to regulate host resistance to intracellular pathogens. Little knowledge has been known about the role of LRG-47 in host's responses to extracellular pathogens. To investigate possible roles of LRG-47 in the course of Schistosoma japonicum infection, LRG-47-deficient (LRG-47(-/-)) and wild-type (WT) mice were challenged with cercariae of S. japonicum, and the cellular and humoral responses in mice were analyzed. At the acute stage of S. japonicum infection, in contrast to WT mice, LRG-47(-/-) mice showed the significantly decreased egg burden, low schistosome-specific antibody response, and the decreased Th1 and increased Tc1 responses. Additionally, Schistosoma japonicum-specific egg antigen immunization also produced the similar humoral and cellular immune responses as S. japonicum infection. Taken together, these data suggested that the deficiency of LRG-47 might affect host's CD4(+) T cell immune response via the weakening of IFN-γ downstream signaling; however, the specific function of LRG-47 on dealing with extracellular worm needs to be further studied. PMID:26660918

  4. Accelerated tumor progression in mice lacking the ATP receptor P2X7.

    PubMed

    Adinolfi, Elena; Capece, Marina; Franceschini, Alessia; Falzoni, Simonetta; Giuliani, Anna L; Rotondo, Alessandra; Sarti, Alba C; Bonora, Massimo; Syberg, Susanne; Corigliano, Domenica; Pinton, Paolo; Jorgensen, Niklas R; Abelli, Luigi; Emionite, Laura; Raffaghello, Lizzia; Pistoia, Vito; Di Virgilio, Francesco

    2015-02-15

    The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion. PMID:25542861

  5. Impaired Survival of Neural Progenitor Cells in Dentate Gyrus of Adult Mice Lacking FMRP

    PubMed Central

    Lazarov, Orly; Demars, Michael P.; Zhao, Kai Da Tommy; Ali, Haroon M.; Grauzas, Vanessa; Kney, Adam; Larson, John

    2011-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. Individuals affected with the disorder exhibit a deficiency of the fragile X mental retardation protein (FMRP), due to transcriptional silencing of the Fmr1 gene. It is widely accepted that learning deficits in FXS result from impaired synaptic function and/or plasticity in the brain. Interestingly, recent evidence suggests that conditional knockout of Fmr1 in neural progenitor cells in mice impairs hippocampal neurogenesis, which in turn contributes to learning impairments. To examine the nature of the neurogenic impairments and determine whether they impact the morphology of the dentate gyrus, we assessed the extent of neural progenitor cell proliferation, survival, and differentiation in older adult Fmr1 knockout mice. Here we show that the number of fast- proliferating cells in the subgranule layer of the dentate gyrus, as well as the subsequent survival of these cells, are dramatically reduced in Fmr1 knockout mice. In addition, the number of mature neurons in the granule layer of the dentate gyrus of these mice is significantly smaller than in WT littermate controls, suggesting that impaired proliferation and survival of neural progenitor cells compromises the structure of the dentate gyrus. Impaired adult neurogenesis may underlie, at least in part, the learning deficits that characterize fragile X syndrome. PMID:22128095

  6. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  7. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia. PMID:26959115

  8. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    PubMed

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice. PMID:27097450

  9. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53

    PubMed Central

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P.; Casanova, M. Llanos; Paramio, Jesús M.; Bravo, Ana; Ramirez, Angel

    2016-01-01

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia. PMID:26959115

  10. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile

    PubMed Central

    Selvaraj, Vimal; Asano, Atsushi; Page, Jennifer L.; Nelson, Jacquelyn L.; Kothapalli, Kumar S. D.; Foster, James A.; Brenna, J. Thomas; Weiss, Robert S.; Travis, Alexander J.

    2010-01-01

    The male germ cell-specific fatty acid binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9−/− mice were viable and fertile. Phenotypic analysis showed that FABP9−/− mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the “ventral spur” in ~10% of FABP9−/− sperm. However, deficiency of FABP9 neither affected membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9−/− mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function. PMID:20920498

  11. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  12. Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders

    PubMed Central

    Cathomas, F; Stegen, M; Sigrist, H; Schmid, L; Seifritz, E; Gassmann, M; Bettler, B; Pryce, C R

    2015-01-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, is fundamental to brain function and implicated in the pathophysiology of several neuropsychiatric disorders. GABA activates G-protein-coupled GABAB receptors comprising principal GABAB1 and GABAB2 subunits as well as auxiliary KCTD8, 12, 12b and 16 subunits. The KCTD12 gene has been associated with bipolar disorder, major depressive disorder and schizophrenia. Here we compare Kctd12 null mutant (Kctd12−/−) and heterozygous (Kctd12+/−) with wild-type (WT) littermate mice to determine whether lack of or reduced KCTD12 expression leads to phenotypes that, extrapolating to human, could constitute endophenotypes for neuropsychiatric disorders with which KCTD12 is associated. Kctd12−/− mice exhibited increased fear learning but not increased memory of a discrete auditory-conditioned stimulus. Kctd12+/− mice showed increased activity during the inactive (light) phase of the circadian cycle relative to WT and Kctd12−/− mice. Electrophysiological recordings from hippocampal slices, a region of high Kctd12 expression, revealed an increased intrinsic excitability of pyramidal neurons in Kctd12−/− and Kctd12+/− mice. This is the first direct evidence for involvement of KCTD12 in determining phenotypes of emotionality, behavioral activity and neuronal excitability. This study provides empirical support for the polymorphism and expression evidence that KCTD12 confers risk for and is associated with neuropsychiatric disorders. PMID:25689571

  13. Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6

    PubMed Central

    Clark, Daniel D.; Gorman, Michael R.; Hatori, Megumi; Meadows, Jason D.; Panda, Satchidananda; Mellon, Pamela L.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is the central pacemaker for peripheral and organismal circadian rhythms. The development of this hypothalamic structure depends on genetic programs throughout embryogenesis. We have investigated the role of the homeodomain transcription factor Six6 in the development of the SCN. We first showed that Six6 mRNA has circadian regulation in the mouse SCN. We then characterized the behavioral activity patterns of Six6-null mice under various photoperiod manipulations and stained their hypothalami using SCN-specific markers. Six6-null mice display abnormal patterns of circadian behavior indicative of SCN abnormalities. The ability of light exposure to reset rhythms correlates with the presence or absence of optic nerves, but all Six6-null mice show irregular rhythms. In contrast, wild-type mice with crushed optic nerves maintain regular rhythms regardless of light exposure. Using immunohistochemistry for arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), and β-galactosidase, we demonstrated the lack of these SCN markers in all Six6- null mice regardless of the presence of optic nerve or partial circadian rhythms. Therefore, Six6 is required for the normal development of the SCN, and the Six6-null mouse can mount independent, although irregular, circadian rhythms despite the apparent absence of a histochemically defined SCN. PMID:23382588

  14. Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells.

    PubMed

    Gompf, Heinrich S; Fuller, Patrick M; Hattar, Samer; Saper, Clifford B; Lu, Jun

    2015-02-01

    Intrinsically photoreceptive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and convey retinal light inputs to the circadian system via the retinohypothalamic tract (RHT) projection to the suprachiasmatic nucleus (SCN). The principal neurotransmitter of this projection is glutamate, and ipRGCs use the vesicular glutamate transporter 2 (VGLUT2) to package glutamate into synaptic vesicles. However, these neurons contain other potential neurotransmitters, such as pituitary adenylate cyclase activating polypeptide (PACAP). To test the role of glutamate in mediating ipRGC light inputs into the SCN, we crossed mice in which Cre-recombinase expression is driven by the melanopsin promotor (Opn4(Cre/+)) with mice in which the second exon of VGLUT2 is flanked by loxP sites (VGLUT2(fl/fl)), producing ipRGCs that are unable to package glutamate into synaptic vesicles. Such mice had free-running circadian rhythms that did not entrain to a 12:12 light-dark (12:12 LD) cycle, nor did they show a phase delay after a 45-min light pulse administered at circadian time (CT) 14. A small subset of the mice did appear to entrain to the 12:12 LD cycle with a positive phase angle to lights-off; a similar entrainment pattern could be achieved in free-running mice if they were exposed to a 12:12 LD cycle with light of a greater intensity. Glutamate transmission from the ipRGCs is necessary for normal light entrainment of the SCN at moderate (0.35 W/m(2)) light levels, but residual transmission (possibly by PACAP in ipRGCs or by other RGCs) can weakly entrain animals, particularly at very high (6.53 W/m(2)) light levels, although it may be less effective at suppressing locomotor activity (light masking). PMID:25512304

  15. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2)

    PubMed Central

    Hudson, Laurie G.; Newkirk, Kimberly M.; Chandler, Heather L.; Choi, Changsun; Fossey, Stacey L.; Parent, Allison E.; Kusewitt, Donna F.

    2013-01-01

    Background Keratinocytes at wound margins undergo partial epithelial to mesenchymal transition (EMT). Based on previous in vitro and ex vivo findings, Slug (Snai2), a transcriptional regulator of EMT in development, may play an important role in this process. Objectives This study was designed to validate an in vivo role for Slug in wound healing. Methods Excisional wounds in Slug null and wild type mice were examined histologically at 6, 24, 48, and 72 h after wounding; reepithelialization was measured and immunohistochemistry for keratins 8, 10, 14, and 6 and E-cadherin was performed. In 20 Slug null and 20 wild type mice exposed three times weekly to two minimal erythemal doses of UVR, the development of non-healing cutaneous ulcers was documented. Ulcers were examined histologically and by immunohistochemistry. Results The reepithelialization component of excisional wound healing was reduced 1.7-fold and expression of the Slug target genes keratin 8 and E-cadherin was increased at wound margins in Slug null compared to wild type mice. In contrast, no differences in expression of keratins 10 or 14 or in markers of proliferation K6 and Ki-67 were observed. Forty per cent of Slug null mice but no wild type mice developed non-healing cutaneous ulcers in response to chronic UVR. Keratinocytes at ulcer margins expressed high levels of keratin 8 and retained E-cadherin expression, thus resembling excisional wounds. Conclusion Slug is an important modulator of successful wound repair in adult tissue and may be critical for maintaining epidermal integrity in response to chronic injury. PMID:19643582

  16. Normal responses to restraint stress in mice lacking the gene for neuronal nitric oxide synthase.

    PubMed

    Weissman, Ben A; Sottas, Chantal M; Holmes, Michael; Zhou, Ping; Iadecola, Costantino; Hardy, Dianne O; Ge, Ren-Shan; Hardy, Matthew P

    2009-01-01

    The hormonal changes associated with immobilization stress (IMO) include a swift increase in corticosterone (CORT) concentration and a decrease in circulating testosterone (T) levels. There is evidence that the production of the short-lived neuromodulator nitric oxide (NO) is increased during stress in various tissues, including the brain. NO also suppresses the biosynthesis of T. Both the inducible and the neuronal isoforms of NO synthase (iNOS and nNOS, respectively) have been implicated in this suppression, but the evidence has not been conclusive. We used adult wild-type (WT) and nNOS knockout male mice (nNOS-/-) to assess the respective roles of CORT and nNOS-derived NO in stress mediated inhibition of T production. Animals were assigned to either basal control or 3-hour IMO groups. No difference in basal plasma and testicular T levels were observed between WT and nNOS-/-, although testicular weights of mutant mice were slightly lower compared to WT animals. The plasma contents of luteinizing hormone (LH) and CORT in unstressed mice of both genotypes were similar. Exposure to 3 hours of IMO increased plasma CORT and decreased T concentrations in mice of both genotypes. However, comparable levels of plasma LH and testicular nitrite and nitrate (NOx), NO stable metabolites, were detected in control and stressed WT and nNOS-/- mice. Adrenal concentrations of NOx declined after IMO, but the reduction was not statistically significant. These findings implicate CORT rather than NO generated by nNOS in the rapid stress-induced suppression of circulating T. PMID:19304728

  17. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    PubMed Central

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1−/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1−/− mice as compared to wildtype Shank1+/+ littermate controls. Shank1−/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1−/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1−/− mice were unaffected, indicating a failure of Shank1−/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1−/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  18. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation.

    PubMed

    Pacheco-Costa, Rafael; Hassan, Iraj; Reginato, Rejane D; Davis, Hannah M; Bruzzaniti, Angela; Allen, Matthew R; Plotkin, Lilian I

    2014-03-21

    Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37(-/-)) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37(-/-) mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37(-/-) mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37(+/+) littermates. sRANKL/M-CSF treatment of nonadherent Cx37(-/-) bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37(+/+) cell cultures. Further, Cx37(-/-) osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37(-/-) osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37(-/-) mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo. PMID:24509854

  19. High Bone Mass in Mice Lacking Cx37 Because of Defective Osteoclast Differentiation*

    PubMed Central

    Pacheco-Costa, Rafael; Hassan, Iraj; Reginato, Rejane D.; Davis, Hannah M.; Bruzzaniti, Angela; Allen, Matthew R.; Plotkin, Lilian I.

    2014-01-01

    Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37−/−) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37−/− mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37−/− mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37+/+ littermates. sRANKL/M-CSF treatment of nonadherent Cx37−/− bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37+/+ cell cultures. Further, Cx37−/− osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37−/− osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37−/− mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo. PMID:24509854

  20. Severe Defects in Absorptive Ion Transport in Distal Colons of Mice that Lack ClC-2 Channels

    PubMed Central

    Catalán, Marcelo A.; Flores, Carlos A.; González-Begne, Mireya; Zhang, Yan; Sepúlveda, Francisco V.; Melvin, James E.

    2011-01-01

    Background & Aims The fluid secretion model predicts that intestinal obstruction disorders can be alleviated by promoting epithelial Cl− secretion. The cAMP-activated anion channel CFTR mediates Cl−-dependent fluid secretion in the intestine. Although the role of the ClC-2 channel has not been determined in the intestine, this voltage-gated Cl− channel might compensate for the secretory defects observed in patients with cystic fibrosis and other chronic constipation disorders. We investigated whether mice that lack ClC-2 channels (Clcn2−/−) have defects in intestinal ion transport. Methods Immunolocalization and immunoblot analyses were used to determine the cellular localization and the amount of ClC-2 expressed in mouse early (EDC) and late distal colon (LDC). Colon sheets from wildtype and Clcn2−/− littermates were mounted in Ussing chambers to determine transepithelial bioelectrical parameters and Na+, K+ and Cl− flux. Results Expression of ClC-2 was higher in the basolateral membrane of surface cells in the EDC, compared to the LDC, with little expression in crypts. Neither cAMP nor Ca2+-induced secretion of Cl− was affected in the EDC or LDC of Clcn2−/− mice, whereas the amiloride-sensitive short circuit current (ISC) was increased approximately 3-fold in Clcn2−/− EDC, compared to that of control littermates. Conversely, electroneutral Na+, K+ and Cl− absorption were dramatically reduced in colons of Clcn2−/− mice. Conclusions Basolateral ClC-2 channels are required for colonic electroneutral absorption of NaCl and KCl. The increase in the amiloride-sensitive ISC in Clcn2−/− mice revealed a compensatory mechanism that is activated in the colons of mice that lack the ClC-2 channel. PMID:22079595

  1. Ryanodine-mediated conversion of STP to LTP is lacking in synaptopodin-deficient mice.

    PubMed

    Grigoryan, Gayane; Segal, Menahem

    2016-05-01

    In previous studies we and others have found that activation of ryanodine receptors (RyRs) facilitate expression of long-term potentiation (LTP) of reactivity to afferent stimulation in hippocampal slices, with a more pronounced action in the ventral hippocampus. We have also been able to link the involvement of synaptopodin (SP), an actin-binding protein, with neuronal plasticity via its interaction with RyRs. To test this link more directly, we have now compared the ability of ryanodine to convert short-term to LTP in hippocampal slices taken from normal and SP-knockout (SPKO) mice. Indeed, SPKO hippocampus expresses lower concentrations of RyRs and in slices of these mice ryanodine is unable to facilitate conversion of short-term to LTP. These observations link functionally SP with calcium stores. PMID:25772508

  2. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells

    PubMed Central

    Sondhi, Varun; Owen, Bryn M.; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A.; Hughes, Beverly A.; Arlt, Wiebke; Mangelsdorf, David J.

    2016-01-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  3. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells.

    PubMed

    Sondhi, Varun; Owen, Bryn M; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A; Hughes, Beverly A; Arlt, Wiebke; Mangelsdorf, David J; Auchus, Richard J

    2016-04-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5(flox/flox):Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  4. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease.

    PubMed

    Wey, Margaret Chia-Ying; Fernandez, Elizabeth; Martinez, Paul Anthony; Sullivan, Patricia; Goldstein, David S; Strong, Randy

    2012-01-01

    Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD(+) co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1(-/-)×Aldh2(-/-) mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1(-/-)×Aldh2(-/-) mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1(-/-)×Aldh2(-/-) mice may be a useful animal model of PD. PMID:22384032

  5. Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon

    PubMed Central

    Grant, Alanna; Meti, Nicholas; Adye-White, Lauren; Rioux, Veronique

    2016-01-01

    Abstract Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon−/− embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon−/− mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon−/− mice at either age. Moreover, adult Cdon−/− mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon−/− mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry. PMID:27419218

  6. Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon.

    PubMed

    Verwey, Michael; Grant, Alanna; Meti, Nicholas; Adye-White, Lauren; Torres-Berrío, Angelica; Rioux, Veronique; Lévesque, Martin; Charron, Frederic; Flores, Cecilia

    2016-01-01

    Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon(-/-) embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon(-/-) mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon(-/-) mice at either age. Moreover, adult Cdon(-/-) mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon(-/-) mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry. PMID:27419218

  7. Synaptic abnormalities of mice lacking toll-like receptor (TLR)-9.

    PubMed

    Patel, V; Patel, A M; McArdle, J J

    2016-06-01

    Motor, sensory, and autonomic abnormalities are reported for toll-like receptor 9 (TLR9) knock-out (KO) mice. However, a physiological role of TLR9 in the nervous system is largely unknown. Since altered synaptic transmission can contribute to sensory and motor abnormalities, we evaluated neuromuscular junction (NMJ) function and morphology of TLR9 KO mice. Triangularis sterni nerve-muscle preparations were dissected from TLR9 KO and age-matched control mice. Two-electrode voltage clamp of the motor endplate revealed that the amplitude and frequency of miniature end plate currents (mEPCs) for TLR9 KO NMJs were significantly greater than control. In contrast, mean endplate current (EPC, 1Hz) amplitude was equivalent to control. The ratio of mean EPC to mean mEPC amplitude indicated a decline of quantal content (m) for TLR9 KO NMJs. Furthermore, m declined more rapidly than control in response to 50-Hz stimulus trains. A rightward shift of the mEPC amplitude distribution suggested formation of vesicles containing larger amounts of acetylcholine (ACh). Staining with rhodamine α-bungarotoxin revealed a significant decline of endplate size in TLR9 KO mice. This alteration may result from ACh-induced decline of acetylcholine receptor (AChR) expression resulting from increased frequency and amplitude of mEPCs. At the same time, excessive spontaneous vesicular ACh release may initiate retrograde suppression of excitation-secretion coupling. These data suggest a novel role of TLR9 in the development of the NMJ. PMID:26955780

  8. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases

    PubMed Central

    Henderson, Colin J.; Smith, Austin G.; Ure, Jan; Brown, Ken; Bacon, E. Jane; Wolf, C. Roland

    1998-01-01

    The activity of chemical carcinogens is a complex balance between metabolic activation by cytochrome P450 monooxygenases and detoxification by enzymes such as glutathione S-transferase (GST). Regulation of these proteins may have profound effects on carcinogenic activity, although it has proved impossible to ascribe the observed effects to the activity of a single protein. GstP appears to play a very important role in carcinogenesis, although the precise nature of its involvement is unclear. We have deleted the murine GstP gene cluster and established the effects on skin tumorigenesis induced by the polycyclic aromatic hydrocarbon 7,12-dimethylbenz anthracene and the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate. After 20 weeks, a highly significant increase in the number of papillomas was found in the GstP1/P2 null mice [GstP1/P2(−/−) mice, 179 papillomas, mean 9.94 per animal vs. GstP1/P2(+/+) mice, 55 papillomas, mean 2.89 per animal, (P < 0.001)]. This difference in tumor incidence provides direct evidence that a single gene involved in drug metabolism can have a profound effect on tumorigenicity, and demonstrates that GstP may be an important determinant in cancer susceptibility, particularly in diseases where exposure to polycyclic aromatic hydrocarbons is involved, for instance in cigarette smoke-induced lung cancer. PMID:9560266

  9. Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3

    PubMed Central

    Aleman, Tiffany R.; McCaughey, Stuart A.

    2015-01-01

    Laboratory rats and mice prefer some concentrations of tri- and tetrasodium pyrophosphate (Na3HP2O7 and Na4P2O7) to water, but how they detect pyrophosphates is unknown. Here, we assessed whether T1R3 is involved. We found that relative to wild-type littermate controls, Tas1r3 knockout mice had stronger preferences for 5.6–56mM Na3HP2O7 in 2-bottle choice tests, and they licked more 17.8–56mM Na3HP2O7 in brief-access tests. We hypothesize that pyrophosphate taste in the intact mouse involves 2 receptors: T1R3 to produce a hedonically negative signal and an unknown G protein-coupled receptor to produce a hedonically positive signal; in Tas1r3 knockout mice, the hedonically negative signal produced by T1R3 is absent, leading to a heightened avidity for pyrophosphate. PMID:25452580

  10. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo. PMID:23630252

  11. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase

    PubMed Central

    Engelward, Bevin P.; Weeda, Geert; Wyatt, Michael D.; Broekhof, José L. M.; de Wit, Jan; Donker, Ingrid; Allan, James M.; Gold, Barry; Hoeijmakers, Jan H. J.; Samson, Leona D.

    1997-01-01

    3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glycosylase not only for the cytotoxic 3MeA DNA lesion, but also for the mutagenic 1,N6-ethenoadenine (ɛA) and hypoxanthine lesions. Aag appears to be the only 3MeA and hypoxanthine DNA glycosylase in liver, testes, kidney, and lung, and the only ɛA DNA glycosylase in liver, testes, and kidney; another ɛA DNA glycosylase may be expressed in lung. Although alkyladenine DNA glycosylase has the capacity to remove 8-oxoguanine DNA lesions, it does not appear to be the major glycosylase for 8-oxoguanine repair. Fibroblasts derived from Aag −/− mice are alkylation sensitive, indicating that Aag −/− mice may be similarly sensitive. PMID:9371804

  12. Protection against Fatty Liver but Normal Adipogenesis in Mice Lacking Adipose Differentiation-Related Protein†

    PubMed Central

    Chang, Benny Hung-Junn; Li, Lan; Paul, Antoni; Taniguchi, Susumu; Nannegari, Vijayalakshmi; Heird, William C.; Chan, Lawrence

    2006-01-01

    Adipose differentiation-related protein (ADFP; also known as ADRP or adipophilin), is a lipid droplet (LD) protein found in most cells and tissues. ADFP expression is strongly induced in cells with increased lipid load. We have inactivated the Adfp gene in mice to better understand its role in lipid accumulation. The Adfp-deficient mice have unaltered adipose differentiation or lipolysis in vitro or in vivo. Importantly, they display a 60% reduction in hepatic triglyceride (TG) and are resistant to diet-induced fatty liver. To determine the mechanism for the reduced hepatic TG content, we measured hepatic lipogenesis, very-low-density lipoprotein (VLDL) secretion, and lipid uptake and utilization, all of which parameters were shown to be similar between mutant and wild-type mice. The finding of similar VLDL output in the presence of a reduction in total TG in the Adfp-deficient liver is explained by the retention of TG in the microsomes where VLDL is assembled. Given that lipid droplets are thought to form from the outer leaflet of the microsomal membrane, the reduction of TG in the cytosol with concomitant accumulation of TG in the microsome of Adfp−/− cells suggests that ADFP may facilitate the formation of new LDs. In the absence of ADFP, impairment of LD formation is associated with the accumulation of microsomal TG but a reduction in TG in other subcellular compartments. PMID:16428458

  13. Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106.

    PubMed

    Anderson, Douglas M; Cannavino, Jessica; Li, Hui; Anderson, Kelly M; Nelson, Benjamin R; McAnally, John; Bezprozvannaya, Svetlana; Liu, Yun; Lin, Weichun; Liu, Ning; Bassel-Duby, Rhonda; Olson, Eric N

    2016-08-01

    Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis. PMID:27418600

  14. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons.

    PubMed

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric; Mattson, Marc P

    2002-03-19

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-alpha, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-alpha diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  15. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways.

    PubMed

    Hughes, Steven; Rodgers, Jessica; Hickey, Doron; Foster, Russell G; Peirson, Stuart N; Hankins, Mark W

    2016-01-01

    Gnat(-/-), Cnga3(-/-), Opn4(-/-) triple knockout (TKO) mice lack essential components of phototransduction signalling pathways present in rods, cones and photosensitive retinal ganglion cells (pRGCs), and are therefore expected to lack all sensitivity to light. However, a number of studies have shown that light responses persist in these mice. In this study we use multielectrode array (MEA) recordings and light-induced c-fos expression to further characterise the light responses of the TKO retina. Small, but robust electroretinogram type responses are routinely detected during MEA recordings, with properties consistent with rod driven responses. Furthermore, a distinctive pattern of light-induced c-fos expression is evident in the TKO retina, with c-fos expression largely restricted to a small subset of amacrine cells that express disabled-1 (Dab1) but lack expression of glycine transporter-1 (GlyT-1). Collectively these data are consistent with the persistence of a novel light sensing pathway in the TKO retina that originates in rod photoreceptors, potentially a rare subset of rods with distinct functional properties, and which is propagated to an atypical subtype of AII amacrine cells. Furthermore, the minimal responses observed following UV light stimulation suggest only a limited role for the non-visual opsin OPN5 in driving excitatory light responses within the mouse retina. PMID:27301998

  16. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways

    PubMed Central

    Hughes, Steven; Rodgers, Jessica; Hickey, Doron; Foster, Russell G.; Peirson, Stuart N.; Hankins, Mark W.

    2016-01-01

    Gnat−/−, Cnga3−/−, Opn4−/− triple knockout (TKO) mice lack essential components of phototransduction signalling pathways present in rods, cones and photosensitive retinal ganglion cells (pRGCs), and are therefore expected to lack all sensitivity to light. However, a number of studies have shown that light responses persist in these mice. In this study we use multielectrode array (MEA) recordings and light-induced c-fos expression to further characterise the light responses of the TKO retina. Small, but robust electroretinogram type responses are routinely detected during MEA recordings, with properties consistent with rod driven responses. Furthermore, a distinctive pattern of light-induced c-fos expression is evident in the TKO retina, with c-fos expression largely restricted to a small subset of amacrine cells that express disabled-1 (Dab1) but lack expression of glycine transporter-1 (GlyT-1). Collectively these data are consistent with the persistence of a novel light sensing pathway in the TKO retina that originates in rod photoreceptors, potentially a rare subset of rods with distinct functional properties, and which is propagated to an atypical subtype of AII amacrine cells. Furthermore, the minimal responses observed following UV light stimulation suggest only a limited role for the non-visual opsin OPN5 in driving excitatory light responses within the mouse retina. PMID:27301998

  17. Mice lacking brain-type creatine kinase activity show defective thermoregulation

    PubMed Central

    Streijger, Femke; Pluk, Helma; Oerlemans, Frank; Beckers, Gaby; Bianco, Antonio C.; Ribeiro, Miriam O.; Wieringa, Bé; Van der Zee, Catharina E.E.M.

    2010-01-01

    The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0°C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK−−/−− mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK−−/−− mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect. PMID:19419668

  18. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors.

    PubMed

    Reddy, Sandesh D; Younus, Iyan; Clossen, Bryan L; Reddy, Doodipala Samba

    2015-06-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus. PMID:25784648

  19. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1

    PubMed Central

    Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.

    2013-01-01

    LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155

  20. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    PubMed

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  1. Superoxide Mediates Acute Liver Injury in Irradiated Mice Lacking Sirtuin 3

    PubMed Central

    Coleman, Mitchell C.; Olivier, Alicia K.; Jacobus, James A.; Mapuskar, Kranti A.; Mao, Gaowei; Martin, Sean M.; Riley, Dennis P.; Gius, David

    2014-01-01

    Abstract Aims: This study determined whether acute radiation-induced liver injury seen in Sirtuin3−/− mice after exposure to Cs-137 γ-rays was mediated by superoxide anion (O2•−). Results: Male wild-type (WT) and SIRT3−/− mice were given 2×2 Gy whole-body radiation doses separated by 24 h and livers were harvested 20 h after the second dose. Ex vivo measurements in fresh frozen liver sections demonstrated 50% increases in dihydroethidium oxidation from SIRT3−/− animals, relative to WT animals, before irradiation, but this increase was not detected 20 h after radiation exposure. In addition, irradiated livers from SIRT3−/− animals showed significant hydropic degeneration, loss of MitoTracker Green FM staining, increased immunohistochemical staining for 3-nitrotyrosine, loss of Ki67 staining, and increased mitochondrial localization of p53. These parameters of radiation-induced injury were significantly attenuated by an intraperitoneal injection of 2 mg/kg of the highly specific superoxide dismutase mimic, GC4401, 30 min before each fraction. Innovation: Sirtuin 3 (SIRT3) is believed to regulate mitochondrial oxidative metabolism and antioxidant defenses in response to acute radiation-induced liver injury. This work provides strong evidence for the causal role of O2•− in the liver injury process initiated by whole-body irradiation in SIRT3−/− mice. Conclusion: These results support the hypothesis that O2•− mediates acute liver injury in SIRT3−/− animals exposed to whole-body γ-radiation and suggest that GC4401 could be used as a radio-protective compound in vivo. Antioxid. Redox Signal. 20, 1423–1435. PMID:23919724

  2. Fenofibrate unexpectedly induces cardiac hypertrophy in mice lacking MuRF1.

    PubMed

    Parry, Traci L; Desai, Gopal; Schisler, Jonathan C; Li, Luge; Quintana, Megan T; Stanley, Natalie; Lockyer, Pamela; Patterson, Cam; Willis, Monte S

    2016-01-01

    The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1-/- mice have an estimated fivefold increase in PPARα activity, we sought to determine how challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type (MuRF1+/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. In addition to pathological hypertrophy, MuRF1-/- mice had an unexpected differential expression in genes associated with the pleiotropic effects of fenofibrate involved in the extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of fenofibrate treatment, the differentially expressed MuRF1-/- genes most commonly had SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, respectively, of the 111 of the genes >4 and <-4 log fold change; P ≤ .0004). These studies identify MuRF1's unexpected regulation of fenofibrate's pleiotropic effects and bridges, for the first time, MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis. PMID:26764147

  3. Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression.

    PubMed

    Wu, W-L; Lin, Y-W; Min, M-Y; Chen, C-C

    2010-08-01

    Sensing external stimulation is crucial for central processing in the brain and subsequent behavioral expression. Although sensory alteration or deprivation may result in behavioral changes, most studies related to the control of behavior have focused on central mechanisms. Here we created a sensory deficit model of mice lacking acid-sensing ion channel 3 (Asic3(-/-)) to probe behavioral alterations. ASIC3 is predominately distributed in the peripheral nervous system. RT-PCR and immunohistochemistry used to examine the expression of Asic3 in the mouse brain showed near-background mRNA and protein levels of ASIC3 throughout the whole brain, except for the sensory mesencephalic trigeminal nucleus. Consistent with the expression results, Asic3 knockout had no effect on synaptic plasticity of the hippocampus and the behavioral tasks of motor function, learning and memory. In anxiety behavior tasks, Asic3(-/-) mice spent more time in the open arms of an elevated plus maze than did their wild-type littermates. Asic3(-/-) mice also displayed less aggressiveness toward intruders but more stereotypic repetitive behaviors during resident-intruder testing than did wild-type littermates. Therefore, loss of ASIC3 produced behavioral changes in anxiety and aggression in mice, which suggests that ASIC3-dependent sensory activities might relate to the central process of emotion modulation. PMID:20497234

  4. Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue

    PubMed Central

    Godlewski, Grzegorz; Jourdan, Tony; Szanda, Gergő; Tam, Joseph; Resat Cinar; Harvey-White, Judith; Liu, Jie; Mukhopadhyay, Bani; Pacher, Pál; Ming Mo, Fong; Osei-Hyiaman, Douglas; George Kunos

    2015-01-01

    We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3. Mice lacking GPR3 and maintained on normal chow had similar body weights during their first 5 months of life, but gained considerably more weight thereafter and displayed reduced total energy expenditure and lower core body temperature. By the age of 5 months GPR3 KO mice already had lower thermogenic gene expression and uncoupling protein 1 protein level and showed impaired glucose uptake into interscapular brown adipose tissue (iBAT) relative to WT littermates. These molecular deviations in iBAT of GPR3 KO mice preceded measurable differences in body weight and core body temperature at ambient conditions, but were coupled to a failure to maintain thermal homeostasis during acute cold challenge. At the same time, the same cold challenge caused a 17-fold increase in Gpr3 expression in iBAT of WT mice. Thus, GPR3 appears to have a key role in the thermogenic response of iBAT and may represent a new therapeutic target in age-related obesity. PMID:26455425

  5. Mice Lacking the ITIM-Containing Receptor G6b-B Exhibit Macrothrombocytopenia and Aberrant Platelet Function

    PubMed Central

    Mori, Jun; Bem, Danai; Finney, Brenda; Heising, Silke; Gissen, Paul; White, James G.; Berndt, Michael C.; Gardiner, Elizabeth E.; Nieswandt, Bernhard; Douglas, Michael R.; Campbell, Robert D.; Watson, Steve P.; Senis, Yotis A.

    2013-01-01

    Platelets are highly reactive cell fragments that adhere to exposed extracellular matrix (ECM) and prevent excessive blood loss by forming clots. Paradoxically, megakaryocytes, which produce platelets in the bone marrow, remain relatively refractory to the ECM-rich environment of the bone marrow despite having the same repertoire of receptors as platelets. These include the ITAM (immunoreceptor tyrosine–based activation motif)–containing collagen receptor complex, which consists of glycoprotein VI (GPVI) and the Fc receptor γ-chain, and the ITIM (immunoreceptor tyrosine–based inhibition motif)–containing receptor G6b-B. We showed that mice lacking G6b-B exhibited macrothrombocytopenia (reduced platelet numbers and the presence of enlarged platelets) and a susceptibility to bleeding as a result of aberrant platelet production and function. Platelet numbers were markedly reduced in G6b-B–deficient mice compared to those in wild-type mice because of increased platelet turnover. Furthermore, megakaryocytes in G6b-B–deficient mice showed enhanced metalloproteinase production, which led to increased shedding of cell-surface receptors, including GPVI and GPIba. In addition, G6b-B–deficient megakaryocytes exhibited reduced integrin-mediated functions and defective formation of proplatelets, the long filamentous projections from which platelets bud off. Together, these findings establish G6b-B as a major inhibitory receptor regulating megakaryocyte activation, function, and platelet production. PMID:23112346

  6. Age-dependent gait abnormalities in mice lacking the Rnf170 gene linked to human autosomal-dominant sensory ataxia.

    PubMed

    Kim, Youngsoo; Kim, Seong Hun; Kim, Kook Hwan; Chae, Sujin; Kim, Chanki; Kim, Jeongjin; Shin, Hee-Sup; Lee, Myung-Shik; Kim, Daesoo

    2015-12-20

    Really interesting new gene (RING) finger protein 170 (RNF170) is an E3 ubiquitin ligase known to mediate ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate receptors (ITPR1). It has recently been demonstrated that a point mutation of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), which is characterized by an age-dependent increase of walking abnormalities, a rare genetic disorder reported in only two families. Although this mutant allele is known to be dominant, the functional identity thereof has not been clearly established. Here, we generated mice lacking Rnf170 (Rnf170(-/-)) to evaluate the effect of its loss of function in vivo. Remarkably, Rnf170(-/-) mice began to develop gait abnormalities in old age (12 months) in the form of asynchronous stepping between diagonal limb pairs with a fixed step sequence during locomotion, while age-matched wild-type mice showed stable gait patterns using several step sequence repertoires. As reported in ADSA patients, they also showed a reduced sensitivity for proprioception and thermal nociception. Protein blot analysis revealed that the amount of Itpr1 protein was significantly elevated in the cerebellum and spinal cord but intact in the cerebral cortex in Rnf170(-/-) mice. These results suggest that the loss of Rnf170 gene function mediates ADSA-associated phenotypes and this gives insights on the cure of patients with ADSA and other age-dependent walking abnormalities. PMID:26433933

  7. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    PubMed

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  8. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    PubMed Central

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  9. Lack of effect of levallorphan on analgesia induced by intraventricular application of porcine calcitonin in mice.

    PubMed

    Yamamoto, M; Kumagai, F; Tachikawa, S; Maeno, H

    1979-04-15

    Intraventricular administration to mice porcine calcitonin (10 U/kg) as well as of morphine (3 microgram/kg) elevated the threshold pressure of stimuli applied to the base of the tail as assessed by squeaking, struggling or biting, all of which were regarded as manifestations of pain sensation in the animals. Pretreatment with an opiate antagonist, levallorphan (30 mg/kg i.p.) showed no influence upon the analgesic effect of calcitonin, though it completely antagonized the effect of morphine. The results suggested that a peptide hormone, calcitonin, exerted its analgesic action in a manner distinct from the narcotic analgesic. PMID:456419

  10. Growth Retardation, DNA Repair Defects, and Lack of Spermatogenesis in BRCA1-Deficient Mice

    PubMed Central

    Cressman, Victoria L.; Backlund, Dana C.; Avrutskaya, Anna V.; Leadon, Steven A.; Godfrey, Virginia; Koller, Beverly H.

    1999-01-01

    BRCA1 is a nuclear phosphoprotein expressed in a broad spectrum of tissues during cell division. The inheritance of a mutant BRCA1 allele dramatically increases a woman’s lifetime risk for developing both breast and ovarian cancers. A number of mouse lines carrying mutations in the Brca1 gene have been generated, and mice homozygous for these mutations generally die before day 10 of embryonic development. We report here the survival of a small number of mice homozygous for mutations in both the p53 and Brca1 genes. The survival of these mice is likely due to additional unknown mutations or epigenetic effects. Analysis of the Brca1−/− p53−/− animals indicates that BRCA1 is not required for the development of most organ systems. However, these mice are growth retarded, males are infertile due to meiotic failure, and the mammary gland of the female mouse is underdeveloped. Growth deficiency due to loss of BRCA1 was more thoroughly examined in an analysis of primary fibroblast lines obtained from these animals. Like p53−/− fibroblasts, Brca1−/− p53−/− cells proliferate more rapidly than wild-type cells; however, a high level of cellular death in these cultures results in reduced overall growth rates in comparison to p53−/− fibroblasts. Brca1−/− p53−/− fibroblasts are also defective in transcription-coupled repair and display increased sensitivity to DNA-damaging agents. We show, however, that after continued culture, and perhaps accelerated by the loss of BRCA1 repair functions, populations of Brca1−/− p53−/− fibroblasts with increased growth rates can be isolated. The increased survival of BRCA1-deficient fibroblasts in the absence of p53, and with the subsequent accumulation of additional growth-promoting changes, may mimic the events that occur during malignant transformation of BRCA1-deficient epithelia. PMID:10490643