Science.gov

Sample records for mice requires nadph

  1. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice

    PubMed Central

    Nagasu, Hajime; Satoh, Minoru; Kiyokage, Emi; Kidokoro, Kengo; Toida, Kazunori; Channon, Keith M; Kanwar, Yashpal S; Sasaki, Tamaki; Kashihara, Naoki

    2016-01-01

    Increased generation of reactive oxygen species (ROS) is a common denominative pathogenic mechanism underlying vascular and renal complications in diabetes mellitus. Endothelial NAD(P)H oxidase is a major source of vascular ROS, and it has an important role in endothelial dysfunction. We hypothesized that activation of endothelial NAD(P)H oxidase initiates and worsens the progression of diabetic nephropathy, particularly in the development of albuminuria. We used transgenic mice with endothelial-targeted overexpression of the catalytic subunit of NAD(P)H oxidase, Nox2 (NOX2TG). NOX2TG mice were crossed with Akita insulin-dependent diabetic (Akita) mice that develop progressive hyperglycemia. We compared the progression of diabetic nephropathy in Akita versus NOX2TG-Akita mice. NOX2TG-Akita mice and Akita mice developed significant albuminuria above the baseline at 6 and 10 weeks of age, respectively. Compared with Akita mice, NOX2TG-Akita mice exhibited higher levels of NAD(P)H oxidase activity in glomeruli, developed glomerular endothelial perturbations, and attenuated expression of glomerular glycocalyx. Moreover, in contrast to Akita mice, the NOX2TG-Akita mice had numerous endothelial microparticles (blebs), as detected by scanning electron microscopy, and increased glomerular permeability. Furthermore, NOX2TG-Akita mice exhibited distinct phenotypic changes in glomerular mesangial cells expressing α-smooth muscle actin, and in podocytes expressing increased levels of desmin, whereas the glomeruli generated increased levels of ROS. In conclusion, activation of endothelial NAD(P)H oxidase in the presence of hyperglycemia initiated and exacerbated diabetic nephropathy characterized by the development of albuminuria. Moreover, ROS generated in the endothelium compounded glomerular dysfunctions by altering the phenotypes of mesangial cells and compromising the integrity of the podocytes. PMID:26552047

  2. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  3. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice

    PubMed Central

    Murray, Thomas V.A.; Dong, Xuebin; Sawyer, Greta J.; Caldwell, Anna; Halket, John; Sherwood, Roy; Quaglia, Alberto; Dew, Tracy; Anilkumar, Narayana; Burr, Simon; Mistry, Rajesh K.; Martin, Daniel; Schröder, Katrin; Brandes, Ralf P.; Hughes, Robin D.; Shah, Ajay M.; Brewer, Alison C.

    2015-01-01

    Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins. PMID:26472193

  4. NADPH- Diaphorase positive cardiac neurons in the atria of mice. A morphoquantitative study

    PubMed Central

    Maifrino, Laura Beatriz Mesiano; Liberti, Edson Aparecido; Castelucci, Patrícia; De Souza, Romeu Rodrigues

    2006-01-01

    Background The present study was conducted to determine the location, the morphology and distribution of NADPH-diaphorase positive neurons in the cardiac nerve plexus of the atria of mice (ASn). This plexus lies over the muscular layer of the atria, dorsal to the muscle itself, in the connective tissue of the subepicardium. NADPH- diaphorase staining was performed on whole-mount preparations of the atria mice. For descriptive purposes, all data are presented as means ± SEM. Results The majority of the NADPH-diaphorase positive neurons were observed in the ganglia of the plexus. A few single neurons were also observed. The number of NADPH-d positive neurons was 57 ± 4 (ranging from 39 to 79 neurons). The ganglion neurons were located in 3 distinct groups: (1) in the region situated cranial to the pulmonary veins, (2) caudally to the pulmonary veins, and (3) in the atrial groove. The largest group of neurons was located cranially to the pulmonary veins (66.7%). Three morphological types of NADPH-diaphorase neurons could be distinguished on the basis of their shape: unipolar cells, bipolar cells and cells with three processes (multipolar cells). The unipolar neurons predominated (78.9%), whereas the multipolar were encountered less frequently (5,3%). The sizes (area of maximal cell profile) of the neurons ranged from about 90 μm2to about 220 μm2. Morphometrically, the three types of neurons were similar and there were no significant differences in their sizes. The total number of cardiac neurons (obtained by staining the neurons with NADH-diaphorase method) was 530 ± 23. Therefore, the NADPH-diaphorase positive neurons of the heart represent 10% of the number of cardiac neurons stained by NADH. Conclusion The obtained data have shown that the NADPH-d positive neurons in the cardiac plexus of the atria of mice are morphologically different, and therefore, it is possible that the function of the neurons may also be different. PMID:16451738

  5. NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice

    PubMed Central

    Hofstetter, Amelia R.; De La Cruz, Juan A.; Cao, Weiping; Patel, Jenish; Belser, Jessica A.; McCoy, James; Liepkalns, Justine S.; Amoah, Samuel; Cheng, Guangjie; Ranjan, Priya; Diebold, Becky A.; Shieh, Wun-Ju; Zaki, Sherif; Katz, Jacqueline M.; Sambhara, Suryaprakash; Lambeth, J. David; Gangappa, Shivaprakash

    2016-01-01

    The role of the reactive oxygen species-producing NADPH oxidase family of enzymes in the pathology of influenza A virus infection remains enigmatic. Previous reports implicated NADPH oxidase 2 in influenza A virus-induced inflammation. In contrast, NADPH oxidase 1 (Nox1) was reported to decrease inflammation in mice within 7 days post-influenza A virus infection. However, the effect of NADPH oxidase 1 on lethality and adaptive immunity after influenza A virus challenge has not been explored. Here we report improved survival and decreased morbidity in mice with catalytically inactive NADPH oxidase 1 (Nox1*/Y) compared with controls after challenge with A/PR/8/34 influenza A virus. While changes in lung inflammation were not obvious between Nox1*/Y and control mice, we observed alterations in the T cell response to influenza A virus by day 15 post-infection, including increased interleukin-7 receptor-expressing virus-specific CD8+ T cells in lungs and draining lymph nodes of Nox1*/Y, and increased cytokine-producing T cells in lungs and spleen. Furthermore, a greater percentage of conventional and interstitial dendritic cells from Nox1*/Y draining lymph nodes expressed the co-stimulatory ligand CD40 within 6 days post-infection. Results indicate that NADPH oxidase 1 modulates the innate and adaptive cellular immune response to influenza virus infection, while also playing a role in host survival. Results suggest that NADPH oxidase 1 inhibitors may be beneficial as adjunct therapeutics during acute influenza infection. PMID:26910342

  6. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy.

    PubMed

    Zhu, Xinjian; Shen, Kai; Bai, Ying; Zhang, Aifeng; Xia, Zhengrong; Chao, Jie; Yao, Honghong

    2016-05-01

    Growing evidence indicates that alterations in autophagy are present in a variety of neurological disorders, ranging from neurodegenerative diseases to acute neurological insults. Only recently has the role of autophagy in epilepsy started to be recognized. In this study, we used pentylenetetrazole (PTZ) kindling, which provides a model of chronic epilepsy, to investigate the involvement of autophagy in the hippocampus and the possible mechanisms involved. Our western blot results showed that autophagy-related proteins were significantly increased after the mice were fully kindled. In addition, immunofluorescence studies revealed a significant increase in the punctate accumulation of LC3 in the hippocampal CA1 region of fully PTZ-kindled mice. Consistent with the upregulation of ATG proteins and punctate accumulation of LC3 in the hippocampal CA1 region, autophagosomal vacuole formation was observed by an ultrastructural analysis, verifying the presence of a hippocampal autophagic response in PTZ-kindled mice. Increased oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurological diseases, including epilepsy. In this study, we demonstrate that PTZ kindling induced reactive oxygen species (ROS) production and lipid peroxidation, which were accompanied by mitochondrial ultrastructural damage due to the activation of NADPH oxidase. Pharmacological inhibition of NADPH oxidase by apocynin significantly suppressed the oxidative stress and ameliorated the hippocampal autophagy in PTZ-kindled mice. Interestingly, pharmacological induction of autophagy suppressed PTZ-kindling progress and reduced PTZ-kindling-induced oxidative stress while inhibition of autophagy accelerated PTZ kindling progress and increased PTZ-kindling-induced oxidative stress. These results suggest that the oxidative stress induced by NADPH oxidase activation may play a pivotal role in PTZ-kindling process as well as in PTZ kindling-induced hippocampal

  7. Effect of NADPH-oxidase inhibitors in the experimental model of zymosan-induced shock in mice.

    PubMed

    Impellizzeri, Daniela; Mazzon, Emanuela; Di Paola, Rosanna; Paterniti, Irene; Bramanti, Placido; Cuzzocrea, Salvatore

    2011-07-01

    The aim of this study was to investigate the effects of NADPH-oxidase inhibitors, in a mouse model of zymosan. Zymosan-induced shock was induced in mice by administration of zymosan (500 mg/kg, i.p.). The pharmacological treatment was the administration of apocynin (5 mg/kg 10% DMSO i.p.) and diphenylene iodonium chloride (DPI) (1 mg/kg i.v.) 1 h and 6 h after zymosan administration. MOF and systemic inflammation in mice was assessed 18 h after administration of zymosan. NADPH-oxidase inhibitors caused a significant reduction of the (1) peritoneal exudate formation, (2) neutrophil infiltration, (3) multiple organ dysfunction syndrome, (4) nitrotyrosine, (5) poly (ADP-ribose) (PAR), (6) cytokine formation, (7) adhesion molecule expression, (8) nuclear factor (NF-κB) expression and (9) apoptosis induced by zymosan. Moreover, NADPH-oxidase inhibitors treatment significantly reduced the systemic toxicity, the loss in body weight and the mortality caused by zymosan. This study has shown that NADPH-oxidase inhibitors attenuate the degree of zymosan-induced non-septic shock in mice. PMID:21623687

  8. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet

    PubMed Central

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A.

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2−/−/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2−/−/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2′-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX−/−/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  9. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet.

    PubMed

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Grau, Montserrat; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2016-01-01

    The aim of this study was to evaluate the role of NADPH oxidase (NADPHox) in the pathogenesis of oxidative phosphorylation (OXPHOS) dysfunction as found in mice fed a high-fat diet (HFD). C57BL/6J mice were distributed in four groups: WT/SCD: six wild-type (WT) mice fed a standard chow diet (SCD); WT/HFD, six WT mice fed a HFD; NOX2(-/-)/SCD, six NADPHox-deficient mice on a SCD; (4) NOX2(-/-)/HFD, six NADPHox-deficient mice on a HFD. After 32 weeks, we studied the liver for: histology; OXPHOS complex activity; fully assembled OXPHOS complexes and their subunits; gene expression of OXPHOS subunits; oxidative and nitrosative stress; and oxidative DNA damage. In the liver of WT/HFD mice, we found a significant decreased in the activity of all OXPHOS complexes, in fully assembled complexes, in the amount of OXPHOS subunits, and in gene expression of mitochondrial DNA-encoded subunits. 8-hydroxy-2'-deoxyguanosine was only increased in mitochondrial DNA. The liver of NOX(-/-)/HFD mice showed mild steatosis but no non-alcoholic steatohepatitis (NASH) lesions were found. OXPHOS activity, OXPHOS subunits, and assembly of subunits into OXPHOS complexes were normal in these mice. We conclude that this study shows that NADPH deficiency protects mice from developing OXPHOS dysfunction and NASH caused by a HFD. PMID:27173483

  10. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2α activity

    PubMed Central

    Morgan, Deri; Cherny, Vladimir V; Finnegan, Alison; Bollinger, James; Gelb, Michael H; DeCoursey, Thomas E

    2007-01-01

    The prevailing hypothesis that a signalling pathway involving cPLA2α is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA2α as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (Ie) and enhanced proton channel gating identically in the presence or absence of three specific cPLA2α inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF3 (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA2α gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA2α is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised. PMID:17185330

  11. virB-Mediated Survival of Brucella abortus in Mice and Macrophages Is Independent of a Functional Inducible Nitric Oxide Synthase or NADPH Oxidase in Macrophages

    PubMed Central

    Sun, Yao-Hui; den Hartigh, Andreas B.; de Lima Santos, Renato; Adams, L. Garry; Tsolis, Renée M.

    2002-01-01

    The Brucella abortus virB locus is required for establishing chronic infection in the mouse. Using in vitro and in vivo models, we investigated whether virB is involved in evasion of the bactericidal activity of NADPH oxidase and the inducible nitric oxide synthase (iNOS) in macrophages. Elimination of NADPH oxidase or iNOS activity in macrophages in vitro increased recovery of wild-type B. abortus but not recovery of a virB mutant. In mice lacking either NADPH oxidase or iNOS, however, B. abortus infected and persisted to the same extent as it did in congenic C57BL/6 mice up until 60 days postinfection, suggesting that these host defense mechanisms are not critical for limiting bacterial growth in the mouse. A virB mutant did not exhibit increased survival in either of the knockout mouse strains, indicating that this locus does not contribute to evasion of nitrosative or oxidative killing mechanisms in vivo. PMID:12183526

  12. Endotoxin Priming of Neutrophils Requires Endocytosis and NADPH Oxidase-dependent Endosomal Reactive Oxygen Species*

    PubMed Central

    Lamb, Fred S.; Hook, Jessica S.; Hilkin, Brieanna M.; Huber, Jody N.; Volk, A. Paige Davis; Moreland, Jessica G.

    2012-01-01

    NADPH oxidase 2 (Nox2)-generated reactive oxygen species (ROS) are critical for neutrophil (polymorphonuclear leukocyte (PMN)) microbicidal function. Nox2 also plays a role in intracellular signaling, but the site of oxidase assembly is unknown. It has been proposed to occur on secondary granules. We previously demonstrated that intracellular NADPH oxidase-derived ROS production is required for endotoxin priming. We hypothesized that endotoxin drives Nox2 assembly on endosomes. Endotoxin induced ROS generation within an endosomal compartment as quantified by flow cytometry (dihydrorhodamine 123 and Oxyburst Green). Inhibition of endocytosis by the dynamin-II inhibitor Dynasore blocked endocytosis of dextran, intracellular generation of ROS, and priming of PMN by endotoxin. Confocal microscopy demonstrated a ROS-containing endosomal compartment that co-labeled with gp91phox, p40phox, p67phox, and Rab5, but not with the secondary granule marker CD66b. To further characterize this compartment, PMNs were fractionated by nitrogen cavitation and differential centrifugation, followed by free flow electrophoresis. Specific subfractions made superoxide in the presence of NADPH by cell-free assay (cytochrome c). Subfraction content of membrane and cytosolic subunits of Nox2 correlated with ROS production. Following priming, there was a shift in the light membrane subfractions where ROS production was highest. CD66b was not mobilized from the secondary granule compartment. These data demonstrate a novel, nonphagosomal intracellular site for Nox2 assembly. This compartment is endocytic in origin and is required for PMN priming by endotoxin. PMID:22235113

  13. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis.

    PubMed

    Bagaitkar, Juhi; Pech, Nancy K; Ivanov, Stoyan; Austin, Anthony; Zeng, Melody Yue; Pallat, Sabine; Huang, Guangming; Randolph, Gwendalyn J; Dinauer, Mary C

    2015-12-17

    The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response. PMID:26443623

  14. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    PubMed

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver. PMID:25147274

  15. Spontaneous Staphylococcus xylosus Infection in Mice Deficient in NADPH Oxidase and Comparison with Other Laboratory Mouse Strains

    PubMed Central

    Gozalo, Alfonso S; Hoffmann, Victoria J; Brinster, Lauren R; Elkins, William R; Ding, Li; Holland, Steven M

    2010-01-01

    Staphylococcus xylosus typically is described as a nonpathogenic common inhabitant of rodent skin. Reports of S. xylosus as a primary pathogen in human and veterinary medicine are scarce. Here we report 37 cases, affecting 12 strains of laboratory mice, of spontaneous infections in which S. xylosus was isolated and considered to be the primary pathogen contributing to the death or need for euthanasia of the animal. Infection with S. xylosus was the major cause of death or euthanasia in 3 strains of mice deficient in the production of phagocyte superoxide due to defects in NADPH oxidase. NADPH-oxidase–deficient mice (n = 21) were most susceptible to spontaneous S. xylosus infections. The infections were characterized by abscesses and granulomas in soft tissues, with bacterial migration to internal organs (primarily regional lymph nodes and lungs and, to a lesser degree, muscle, bone, and meninges). In contrast, 9 strains of phagocyte-superoxide–producing mice (n = 16) also had S. xylosus infections, but these were largely confined to eyelids, ocular conjunctiva, and skin and rarely involved other tissues or organs. Because exhaustive bacterial culture and isolation may not be performed routinely from mouse abscesses, S. xylosus infections may be underdiagnosed. S. xylosus should be considered in the differential diagnosis in laboratory mice with abscesses and other skin lesions. This report expands the range of mouse strains and tissues and organs susceptible to spontaneous S. xylosus infection and compares the pathology among various mice strains. PMID:20819397

  16. Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice

    PubMed Central

    Bhandarkar, Sulochana S.; Jaconi, Marisa; Fried, Levi E.; Bonner, Michael Y.; Lefkove, Benjamin; Govindarajan, Baskaran; Perry, Betsy N.; Parhar, Ravi; Mackelfresh, Jamie; Sohn, Allie; Stouffs, Michael; Knaus, Ulla; Yancopoulos, George; Reiss, Yvonne; Benest, Andrew V.; Augustin, Hellmut G.; Arbiser, Jack L.

    2009-01-01

    Hemangiomas are the most common type of tumor in infants. As they are endothelial cell–derived neoplasias, their growth can be regulated by the autocrine-acting Tie2 ligand angiopoietin 2 (Ang2). Using an experimental model of human hemangiomas, in which polyoma middle T–transformed brain endothelial (bEnd) cells are grafted subcutaneously into nude mice, we compared hemangioma growth originating from bEnd cells derived from wild-type, Ang2+/–, and Ang2–/– mice. Surprisingly, Ang2-deficient bEnd cells formed endothelial tumors that grew rapidly and were devoid of the typical cavernous architecture of slow-growing Ang2-expressing hemangiomas, while Ang2+/– cells were greatly impaired in their in vivo growth. Gene array analysis identified a strong downregulation of NADPH oxidase 4 (Nox4) in Ang2+/– cells. Correspondingly, lentiviral silencing of Nox4 in an Ang2-sufficient bEnd cell line decreased Ang2 mRNA levels and greatly impaired hemangioma growth in vivo. Using a structure-based approach, we identified fulvenes as what we believe to be a novel class of Nox inhibitors. We therefore produced and began the initial characterization of fulvenes as potential Nox inhibitors, finding that fulvene-5 efficiently inhibited Nox activity in vitro and potently inhibited hemangioma growth in vivo. In conclusion, the present study establishes Nox4 as a critical regulator of hemangioma growth and identifies fulvenes as a potential class of candidate inhibitor to therapeutically interfere with Nox function. PMID:19620773

  17. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  18. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  19. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice.

    PubMed

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P

    2012-05-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms. PMID:22343416

  20. Hepatocyte NADPH Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice

    PubMed Central

    Bettaieb, Ahmed; Jiang, Joy X.; Sasaki, Yu; Chao, Tzu-I; Kiss, Zsofia; Chen, Xiangling; Tian, Jijing; Katsuyama, Masato; Yabe-Nishimura, Chihiro; Xi, Yannan; Szyndralewiez, Cedric; Schröder, Kathrin; Shah, Ajay; Brandes, Ralph P.; Haj, Fawaz G.; Török, Natalie J.

    2015-01-01

    Background & Aims Reactive oxidative species (ROS) are believed to be involved in the progression of non-alcoholic steatohepatitis (NASH). However, little is known about the sources of ROS in hepatocytes or their role in disease progression. We studied the effects of NADPH oxidase 4 (NOX4) in liver tissues from patients with NASH and mice with steatohepatitis. Methods Liver biopsy samples were obtained from 5 patients with NASH, as well as 4 patients with simple steatosis and 5 patients without steatosis (controls) from the University of California, Davis Cancer Center Biorepository. Mice with hepatocyte-specific deletion of NOX4 (NOX4hepKO) and NOX4floxp+/+ C57BL/6 mice (controls) were given fast food diets (supplemented with high-fructose corn syrup) or choline-deficient L-amino acid-defined to induce steatohepatitis, or control diets, for 20 weeks. A separate group of mice were given the NOX4 inhibitor (GKT137831). Liver tissues were collected and immunoblot analyses were performed determine levels of NOX4, markers of inflammation and fibrosis, double-stranded RNA-activated protein kinase (PKR), and phospho-eIF-2alpha kinase (PERK)-mediated stress signaling pathways. We performed hyperinsulinemic-euglycemic clamp studies and immunoprecipitation analyses to determine the oxidation and phosphatase activity of PP1C. Results Levels of NOX4 were increased in patients with NASH, compared with controls. Hepatocyte-specific deletion of NOX4 reduced oxidative stress, lipid peroxidation, and liver fibrosis in mice with diet-induced steatohepatitis. A small molecule inhibitor of NOX4 reduced liver inflammation and fibrosis and increased insulin sensitivity in mice with diet-induced steatohepatitis. In primary hepatocytes, NOX4 reduced the activity of the phosphatase PP1C, prolonging activation of PKR and PERK-mediated stress signaling. Mice with hepatocyte-specific deletion of NOX4 and mice given GKT137831had increased insulin sensitivity. Conclusion NOX4 regulates

  1. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes

    SciTech Connect

    Shvedova, A.A. Kisin, E.R.; Murray, A.R.; Kommineni, C.; Castranova, V.; Fadeel, B.; Kagan, V.E.

    2008-09-01

    Single-walled carbon nanotubes (SWCNT) have been introduced into a large number of new technologies and consumer products. The combination of their exceptional features with very broad applications raised concerns regarding their potential health effects. The prime target for SWCNT toxicity is believed to be the lung where exposure may occur through inhalation, particularly in occupational settings. Our previous work has demonstrated that SWCNT cause robust inflammatory responses in rodents with very early termination of the acute phase and rapid onset of chronic fibrosis. Timely elimination of polymorphonuclear neutrophils (PMNs) through apoptosis and their subsequent clearance by macrophages is a necessary stage in the resolution of pulmonary inflammation whereby NADPH oxidase contributes to control of apoptotic cell death and clearance of PMNs. Thus, we hypothesized that NADPH oxidase may be an important regulator of the transition from the acute inflammation to the chronic fibrotic stage in response to SWCNT. To experimentally address the hypothesis, we employed NADPH oxidase-deficient mice which lack the gp91{sup phox} subunit of the enzymatic complex. We found that NADPH oxidase null mice responded to SWCNT exposure with a marked accumulation of PMNs and elevated levels of apoptotic cells in the lungs, production of pro-inflammatory cytokines, decreased production of the anti-inflammatory and pro-fibrotic cytokine, TGF-{beta}, and significantly lower levels of collagen deposition, as compared to C57BL/6 control mice. These results demonstrate a role for NADPH oxidase-derived reactive oxygen species in determining course of pulmonary response to SWCNT.

  2. NADPH Oxidase Deficient Mice Develop Colitis and Bacteremia upon Infection with Normally Avirulent, TTSS-1- and TTSS-2-Deficient Salmonella Typhimurium

    PubMed Central

    Slack, Emma Marie Caroline; Müller, Andreas J.; Kremer, Marcus; Van Maele, Laurye; Cayet, Delphine; Heikenwalder, Mathias; Sirard, Jean-Claude; Hardt, Wolf-Dietrich

    2013-01-01

    Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn’s disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb−/−) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tmavir; invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb−/− mice are efficiently infected by S.Tmavir and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb−/−Myd88−/− mice indicated that the S.Tmavir-inflicted disease in Cybb−/− mice hinges on CD11c+CX3CR1+ monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tmavir in the mucosal lamina propria. This provides important insights into microbe handling by the large

  3. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium.

    PubMed

    Felmy, Boas; Songhet, Pascal; Slack, Emma Marie Caroline; Müller, Andreas J; Kremer, Marcus; Van Maele, Laurye; Cayet, Delphine; Heikenwalder, Mathias; Sirard, Jean-Claude; Hardt, Wolf-Dietrich

    2013-01-01

    Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn's disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb (-/-)) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tm(avir); invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb (-/-) mice are efficiently infected by S.Tm(avir) and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb (-/-) Myd88 (-/-) mice indicated that the S.Tm(avir)-inflicted disease in Cybb (-/-) mice hinges on CD11c(+)CX3CR1(+) monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tm(avir) in the mucosal lamina propria. This provides important insights into microbe handling by the large

  4. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice.

    PubMed

    Hosseini, Mohsen; Mahfouf, Walid; Serrano-Sanchez, Martin; Raad, Houssam; Harfouche, Ghida; Bonneu, Marc; Claverol, Stephane; Mazurier, Frederic; Rossignol, Rodrigue; Taieb, Alain; Rezvani, Hamid Reza

    2015-04-01

    Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, β-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology. PMID:25437426

  5. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice. PMID:25034404

  6. Loss of functional NADPH oxidase-2 protects against alcohol-induced bone resorption in female p47phox-/- mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In bone, oxidant signaling through NADPH oxidase (NOX)-derived reactive oxygen species (ROS) is an important stimulus for osteoclast differentiation and activity. We have previously demonstrated that chronic alcohol abuse produces bone loss through NOX-dependent mechanisms. In the current study, s...

  7. Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    PubMed Central

    Grimm, Melissa J.; Lewandowski, David C.; Pham, Christine T. N.; Blackwell, Timothy S.; Petraitiene, Ruta; Petraitis, Vidmantas; Walsh, Thomas J.; Urban, Constantin F.; Segal, Brahm H.

    2011-01-01

    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens. PMID:22163282

  8. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice.

    PubMed

    Qiu, Li-Li; Ji, Mu-Huo; Zhang, Hui; Yang, Jiao-Jiao; Sun, Xiao-Ru; Tang, Hui; Wang, Jing; Liu, Wen-Xue; Yang, Jian-Jun

    2016-01-01

    Microglial activation plays a key role in the development of postoperative cognitive dysfunction (POCD). Nox2, one of the main isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the central nervous system, is a predominant source of reactive oxygen species (ROS) overproduction in phagocytes including microglia. We therefore hypothesized that Nox2-induced microglial activation is involved in the development of POCD. Sixteen-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. Behavioral tests were performed at 6 and 7 d post-surgery with open field and fear conditioning tests, respectively. The levels of Nox2, 8-hydroxy-2'-deoxyguanosine (8-OH-dG, a marker of DNA oxidation), CD11b (a marker of microglial activation), interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) were determined in the hippocampus and prefrontal cortex at 1 d and 7 d post-surgery, respectively. For the interventional study, mice were treated with a NADPH oxidase inhibitor apocynin (APO). Our results showed that exploratory laparotomy with isoflurane anesthesia impaired the contextual fear memory, increased expression of Nox2, 8-OH-dG, CD11b, and IL-1β, and down-regulated BDNF expression in the hippocampus at 7 d post-surgery. The surgery-induced microglial activation and neuroinflammation persisted to 7 d after surgery in the hippocampus, but only at 1 d in the prefrontal cortex. Notably, administration with APO could rescue these surgery-induced cognitive impairments and associated brain pathology. Together, our data suggested that Nox2-derived ROS in hippocampal microglia, at least in part, contributes to subsequent neuroinflammation and cognitive impairments induced by surgery in aged mice. PMID:26254234

  9. NAD(P)H oxidase-dependent intracellular and extracellular O2·- production in coronary arterial myocytes from CD38 knockout mice

    PubMed Central

    Xu, Ming; Zhang, Yang; Xia, Min; Li, Xiao-Xue; Ritter, Joseph K; Zhang, Fan; Li, Pin-Lan

    2011-01-01

    Activation of NAD(P)H oxidase has been reported to produce superoxide (O2 ·-) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use NAD(P)H oxidase product, NAD+ or NADP+ to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), which mediates intracellular Ca2+ signaling. The present study was designed to test a hypothesis that CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O2 ·-in mouse coronary arterial myocytes (CAMs). By fluorescent microscopic imaging, we simultaneously monitored extra- and intracellular O2 ·-production in wild-type (CD38+/+) and CD38 knockout (CD38-/-) CAMs in response to oxotremorine (OXO), a muscarinic type 1 (M1) receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O2 ·-production in CAMs. Consistently, the OXO-induced intracellular O2 ·-production was markedly inhibited by CD38 shRNA or CD38 inhibitor nicotinamide in CD38+/+ CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O2 ·- production, whereas Nox1 siRNA attenuated both intracellular and extracellular O2 ·-production in CD38+/+ CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca2+ concentration and restored intracellular O2 ·-production in CD38-/- CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that CD38/cADPR pathway importantly controls Nox4-mediated intracellular O2 ·-production and that CD38-dependent intracellular O2

  10. Olmesartan Inhibits Cardiac Hypertrophy in Mice Overexpressing Renin Independently of Blood Pressure: Its Beneficial Effects on ACE2/Ang(1-7)/Mas Axis and NADPH Oxidase Expression.

    PubMed

    Tanno, Tomohiro; Tomita, Hirofumi; Narita, Ikuyo; Kinjo, Takahiko; Nishizaki, Kimitaka; Ichikawa, Hiroaki; Kimura, Yoshihiro; Tanaka, Makoto; Osanai, Tomohiro; Okumura, Ken

    2016-06-01

    Enhanced renin-angiotensin activity causes hypertension and cardiac hypertrophy. The angiotensin (Ang)-converting enzyme (ACE)2/Ang(1-7)/Mas axis pathway functions against Ang II type 1 receptor (AT1R) signaling. We investigated whether olmesartan (Olm), an AT1R blocker, inhibits cardiac hypertrophy independently of blood pressure, and evaluated the potential mechanisms. The 3- to 4-month-old male mice overexpressing renin in the liver (Ren-Tg) were given Olm (5 mg/kg/d) and hydralazine (Hyd) (3.5 mg/kg/d) orally for 2 months. Systolic blood pressure was higher in the Ren-Tg mice than in wild-type littermates. Olm and Hyd treatments lowered systolic blood pressure to the same degree. However, cardiac hypertrophy, evaluated by echocardiography, heart weight, cross-sectional area of cardiomyocytes, and gene expression, was inhibited by only Olm treatment, but not by Hyd. Olm treatment reversed decreased gene expressions of ACE2 and Mas receptor of Ren-Tg mice and inhibited enhanced NADPH oxidase (Nox)4 expression and reactive oxygen species, whereas Hyd treatment had no influence on them. These findings indicate that Olm treatment inhibits cardiac hypertrophy independently of blood pressure, not only through its original AT1R blockade but partly through enhancement of ACE2/Ang(1-7)/Mas axis and suppression of Nox4 expression. PMID:26886190

  11. Combined NADPH Oxidase 1 and Interleukin 10 Deficiency Induces Chronic Endoplasmic Reticulum Stress and Causes Ulcerative Colitis-Like Disease in Mice

    PubMed Central

    Tréton, Xavier; Pedruzzi, Eric; Guichard, Cécile; Ladeiro, Yannick; Sedghi, Shirin; Vallée, Mélissa; Fernandez, Neike; Bruyère, Emilie; Woerther, Paul-Louis; Ducroc, Robert; Montcuquet, Nicolas; Freund, Jean-Noel; Van Seuningen, Isabelle; Barreau, Frédérick; Marah, Assiya; Hugot, Jean-Pierre; Cazals-Hatem, Dominique; Bouhnik, Yoram; Daniel, Fanny; Ogier-Denis, Eric

    2014-01-01

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC. PMID:25014110

  12. Experimental autoimmune encephalomyelitis and age-related correlations of NADPH oxidase, MMP-9, and cell adhesion molecules: The increased disease severity and blood-brain barrier permeability in middle-aged mice.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Han, Joon-Seung; Kang, Min-Jung; Jung, Byung-Hwa; Kwok, Seung-Ki; Kim, Ho-Youn; Kwon, Oh-Seung

    2015-10-15

    The aim of the present study was to investigate effect of two different ages (6 weeks [6 W] vs. 6 months [6 M]) on blood-brain barrier (BBB) disruption in EAE and evaluate the expression and correlations of NADPH oxidase, MMP-9, ICAM-1, and VCAM-1 following increased age and EAE induction. Higher disease severity was observed in 6 M-EAE than 6 W-EAE. The four factors were significantly elevated and correlated in 6 M-EAE. BBB permeability increased with statistically significant interaction between age and EAE effects. We suggest strong correlations between NADPH oxidase and the other factors play important roles in increased BBB disruption and EAE susceptibility in middle-aged mice. PMID:26439961

  13. Subunit Q Is Required to Stabilize the Large Complex of NADPH Dehydrogenase in Synechocystis sp. Strain PCC 6803.

    PubMed

    Zhao, Jiaohong; Rong, Weiqiong; Gao, Fudan; Ogawa, Teruo; Ma, Weimin

    2015-06-01

    Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1, NdhF1, and NdhP, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, NDH-1-dependent cyclic electron transport around photosystem I, and CO2 uptake. Two mutants sensitive to high light for growth and impaired in cyclic electron transport around photosystem I were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in an open reading frame encoding a product highly homologous to NdhQ, a single-transmembrane small subunit of the NDH-1L complex, identified in Thermosynechococcus elongatus by proteomics strategy. Deletion of ndhQ disassembled about one-half of the NDH-1L to NDH-1M and consequently impaired respiration, but not CO2 uptake. During prolonged incubation of the thylakoid membrane with n-dodecyl-β-D-maltoside at room temperature, the rest of the NDH-1L in ΔndhQ was disassembled completely to NDH-1M and was much faster than in the wild type. In the ndhP-deletion mutant (ΔndhP) background, absence of NdhQ almost completely disassembled the NDH-1L to NDH-1M, similar to the results observed in the ΔndhD1/ΔndhD2 mutant. We therefore conclude that both NdhQ and NdhP are essential to stabilize the NDH-1L complex. PMID:25873552

  14. High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor.

    PubMed Central

    Wu, J Y; Siegel, L M; Kredich, N M

    1991-01-01

    The flavoprotein and hemoprotein components of Escherichia coli B NADPH-sulfite reductase are encoded by cysJ and cysI, respectively. Plasmids containing these two genes overexpressed flavoprotein catalytic activity and apohemoprotein by 13- to 35-fold, but NADPH-sulfite reductase holoenzyme activity was increased only 3-fold. Maximum overexpression of holoenzyme activity was achieved by the inclusion in such plasmids of Salmonella typhimurium cysG, which encodes a uroporphyrinogen III methyltransferase required for the synthesis of siroheme, a cofactor for the hemoprotein. Thus, cofactor deficiency, in this case siroheme, can limit overexpression of a cloned enzyme. Catalytically active holoenzyme accounted for 10% of total soluble protein in a host containing cloned cysJ, cysI, and cysG. A 5.3-kb DNA fragment containing S. typhimurium cysG was sequenced, and the open reading frame corresponding to cysG was identified by subcloning and by identifying plasmid-encoded peptides in maxicells. Comparison with the sequence reported for the E. coli cysG region (J. A. Cole, unpublished data; GenBank sequence ECONIRBC) indicates a gene order of nirB-nirC-cysG in the cloned S. typhimurium fragment. In addition, two open reading frames of unknown identity were found immediately downstream of cysG. One of these contains 11 direct repeats of 33 nucleotides each, which correspond to the consensus amino acid sequence Asp-Asp-Val-Thr-Pro-Pro-Asp-Asp-Ser-Gly-Asp. Images PMID:1987123

  15. NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in Neurospora crassa▿ †

    PubMed Central

    Cano-Domínguez, Nallely; Álvarez-Delfín, Karen; Hansberg, Wilhelm; Aguirre, Jesús

    2008-01-01

    We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans. Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67phox, also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa. Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum, the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth. PMID:18567788

  16. Upregulation of Intermediate-Conductance Ca2+-Activated K+ Channels (KCNN4) in Porcine Coronary Smooth Muscle Requires NADPH Oxidase 5 (NOX5)

    PubMed Central

    Gole, Hope K. A.; Tharp, Darla L.; Bowles, Douglas K.

    2014-01-01

    Aims NADPH oxidase (NOX) is the primary source of reactive oxygen species (ROS) in vascular smooth muscle cells (SMC) and is proposed to play a key role in redox signaling involved in the pathogenesis of cardiovascular disease. Growth factors and cytokines stimulate coronary SMC (CSMC) phenotypic modulation, proliferation, and migration during atherosclerotic plaque development and restenosis. We previously demonstrated that increased expression and activity of intermediate-conductance Ca2+-activated K+ channels (KCNN4) is necessary for CSMC phenotypic modulation and progression of stenotic lesions. Therefore, the purpose of this study was to determine whether NOX is required for KCNN4 upregulation induced by mitogenic growth factors. Methods and Results Dihydroethidium micro-fluorography in porcine CSMCs demonstrated that basic fibroblast growth factor (bFGF) increased superoxide production, which was blocked by the NOX inhibitor apocynin (Apo). Apo also blocked bFGF-induced increases in KCNN4 mRNA levels in both right coronary artery sections and CSMCs. Similarly, immunohistochemistry and whole cell voltage clamp showed bFGF-induced increases in CSMC KCNN4 protein expression and channel activity were abolished by Apo. Treatment with Apo also inhibited bFGF-induced increases in activator protein-1 promoter activity, as measured by luciferase activity assay. qRT-PCR demonstrated porcine coronary smooth muscle expression of NOX1, NOX2, NOX4, and NOX5 isoforms. Knockdown of NOX5 alone prevented both bFGF-induced upregulation of KCNN4 mRNA and CSMC migration. Conclusions Our findings provide novel evidence that NOX5-derived ROS increase functional expression of KCNN4 through activator protein-1, providing another potential link between NOX, CSMC phenotypic modulation, and atherosclerosis. PMID:25144362

  17. Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure.

    PubMed

    Van Kempen, Tracey A; Narayan, Ankita; Waters, Elizabeth M; Marques-Lopes, Jose; Iadecola, Costantino; Glass, Michael J; Pickel, Virginia M; Milner, Teresa A

    2016-08-01

    At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual dimorphism both in the cardiovascular response to the neurohypophyseal hormone arginine vasopressin (AVP) and in the expression of oxidative stress. We examined the relationship between AngII-mediated hypertension and the cellular distribution of the superoxide generating NADPH oxidase (NOX) in AVP-expressing hypothalamic paraventricular nucleus (PVN) neurons in "menopausal" female mice. Dual-labeling immunoelectron microscopy was used to determine whether the subcellular distribution of the organizer/adapter NOX p47(phox) subunit is altered in PVN dendrites following AngII administered (14 days) during the "postmenopausal" stage of accelerated ovarian failure (AOF) in young female mice treated with 4-vinylcyclohexene diepoxide. Slow-pressor AngII elevated blood pressure in AOF females and induced a significant increase in near plasmalemmal p47(phox) and a decrease in cytoplasmic p47(phox) in PVN AVP dendrites. These changes are the opposite of those observed in AngII-induced hypertensive male mice (Coleman et al. [2013] J. Neurosci. 33:4308-4316) and may be ascribed in part to baseline differences between young females and males in the near plasmalemmal p47(phox) on AVP dendrites seen in the present study. These findings highlight fundamental differences in the neural substrates of oxidative stress in the PVN associated with AngII hypertension in postmenopausal females compared with males. J. Comp. Neurol. 524:2251-2265, 2016. © 2015 Wiley Periodicals, Inc. PMID:26659944

  18. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells.

    PubMed

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  19. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  20. Dectin-1 is required for resistance to coccidioidomycosis in mice.

    PubMed

    Viriyakosol, Suganya; Jimenez, Maria del Pilar; Gurney, Michael A; Ashbaugh, Mark E; Fierer, Joshua

    2013-01-01

    -glucan receptor on myeloid cells, is required for resistance to this pathogen. Dectin-1 is part of the innate immune system, and it is needed to direct the acquired immune response toward into a pathway that will lead to macrophage activation. Lungs from infected mice lacking Dectin-1 had lower concentrations of Th1 and Th17 cytokines, two cytokine pathways that are very important for acquired T cell immunity to Coccidioides spp. This is the first demonstration that Dectin-1 is required for host resistance to a dimorphic, primary pathogenic fungus. PMID:23386437

  1. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  2. NADPH-generating systems in bacteria and archaea

    PubMed Central

    Spaans, Sebastiaan K.; Weusthuis, Ruud A.; van der Oost, John; Kengen, Servé W. M.

    2015-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided. PMID:26284036

  3. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  4. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  5. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress.

    PubMed

    Li, Xiaohui; Zhang, Huijuan; Tian, Limei; Huang, Lei; Liu, Shixia; Li, Dayong; Song, Fengming

    2015-01-01

    NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato. PMID:26157450

  6. The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase.

    PubMed Central

    Roman, D G; Dancis, A; Anderson, G J; Klausner, R D

    1993-01-01

    We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease. Images PMID:8321236

  7. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis

    PubMed Central

    Correa-Aragunde, Natalia; Cejudo, Francisco J.; Lamattina, Lorenzo

    2015-01-01

    Background and Aims Auxin is the main phytohormone controlling root development in plants. This study uses pharmacological and genetic approaches to examine the role of auxin and nitric oxide (NO) in the activation of NADPH-dependent thioredoxin reductase (NTR), and the effect that this activity has on root growth responses in Arabidopsis thaliana. Methods Arabidopsis seedlings were treated with auxin with or without the NTR inhibitors auranofin (ANF) and 1-chloro-2, 4-dinitrobenzene (DNCB). NTR activity, lateral root (LR) formation and S-nitrosothiol content were measured in roots. Protein S-nitrosylation was analysed by the biotin switch method in wild-type arabidopsis and in the double mutant ntra ntrb. Key Results The auxin-mediated induction of NTR activity is inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), suggesting that NO is downstream of auxin in this regulatory pathway. The NTR inhibitors ANF and DNCB prevent auxin-mediated activation of NTR and LR formation. Moreover, ANF and DNCB also inhibit auxin-induced DR5 : : GUS and BA3 : : GUS gene expression, suggesting that the auxin signalling pathway is compromised without full NTR activity. Treatment of roots with ANF and DNCB increases total nitrosothiols (SNO) content and protein S-nitrosylation, suggesting a role of the NTR-thioredoxin (Trx)-redox system in protein denitrosylation. In agreement with these results, the level of S-nitrosylated proteins is increased in the arabidopsis double mutant ntra ntrb as compared with the wild-type. Conclusions The results support for the idea that NTR is involved in protein denitrosylation during auxin-mediated root development. The fact that a high NO concentration induces NTR activity suggests that a feedback mechanism to control massive and unregulated protein S-nitrosylation could be operating in plant cells. PMID:26229066

  8. Phagocyte NADPH oxidase and specific immunity.

    PubMed

    Cachat, Julien; Deffert, Christine; Hugues, Stephanie; Krause, Karl-Heinz

    2015-05-01

    The phagocyte NADPH oxidase NOX2 produces reactive oxygen species (ROS) and is a well-known player in host defence. However, there is also increasing evidence for a regulatory role of NOX2 in adaptive immunity. Deficiency in phagocyte NADPH oxidase causes chronic granulomatous disease (CGD) in humans, a condition that can also be studied in CGD mice. Clinical observations in CGD patients suggest a higher susceptibility to autoimmune diseases, in particular lupus, idiopathic thrombocytopenic purpura and rheumatoid arthritis. In mice, a strong correlation exists between a polymorphism in a NOX2 subunit and the development of autoimmune arthritis. NOX2 deficiency in mice also favours lupus development. Both CGD patients and CGD mice exhibit increased levels of immunoglobulins, including autoantibodies. Despite these phenotypes suggesting a role for NOX2 in specific immunity, mechanistic explanations for the typical increase of CGD in autoimmune disease and antibody levels are still preliminary. NOX2-dependent ROS generation is well documented for dendritic cells and B-lymphocytes. It is unclear whether T-lymphocytes produce ROS themselves or whether they are exposed to ROS derived from dendritic cells during the process of antigen presentation. ROS are signalling molecules in virtually any cell type, including T- and B-lymphocytes. However, knowledge about the impact of ROS-dependent signalling on T- and B-lymphocyte phenotype and response is still limited. ROS might contribute to Th1/Th2/Th17 cell fate decisions during T-lymphocyte activation and might enhance immunoglobulin production by B-lymphocytes. In dendritic cells, NOX2-derived ROS might be important for antigen processing and cell activation. PMID:25760962

  9. Interleukin-6 is required for pristane-induced plasma cell hyperplasia in mice.

    PubMed

    Dedera, D A; Urashima, M; Chauhan, D; LeBrun, D P; Bronson, R T; Anderson, K C

    1996-07-01

    Intraperitoneal injection of pristane induces production of interleukin-6 (IL-6) and either plasmacytosis or plasmacytoma in mice, depending upon the genetic background. Pristane does not induce plasmacytoma in IL-6 knockout (IL-6-/-) mice, suggesting that IL-6 is required for this process. In the present study we determined whether IL-6 is also required for pristane-induced hyperplasia of normal plasma cells. Pristane was injected intraperitoneally into IL-6-/- and IL-6 wild-type (IL-6+/+) mice. Overall there were more deaths in IL-6+/+ mice (85%) than in IL-6-/- mice (40%), P = 0.024. Hyperplastic lymph node and spleen weight did not differ (P = 0.82 and P = 0.15, respectively) in IL-6-/- versus IL-6+/+ mice. Lymphocytosis with similar patterns of expression of B-cell (B220) and T-cell (Thy-1) antigens was noted in both IL-6-/- and IL-6+/+ mice. However, morphological studies, dual fluorescent staining for Syn-1 and B220 antigens (syn-1+ B220+ cells), and intracytoplasmic Ig staining revealed plasma cell hyperplasia in lymph node and spleen from IL-6+/+, but not IL-6-/-, mice. These plasma cells from IL-6+/+ mice were polyclonal and unable to induce tumour formation in severe combined immunodeficient mice. These data demonstrate that IL-6 is required for pristane-induced hyperplasia of polyclonal plasma cells in mice. PMID:8757508

  10. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. The obj...

  11. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice

    PubMed Central

    Jackman, KA; Miller, AA; De Silva, TM; Crack, PJ; Drummond, GR; Sobey, CG

    2009-01-01

    Background and purpose: Reactive oxygen species (ROS) derived from Nox2-containing reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity is reportedly detrimental in cerebrovascular disease. However, ROS generation by other Nox isoforms may have a physiological role. No Nox2-selective inhibitors have yet been identified, and thus it is unclear whether isoform non-selective Nox inhibitors would necessarily improve outcome after stroke. We assessed the effect of apocynin on cerebrovascular ROS production and also on outcome following cerebral ischaemia when administered either before ischaemia or after cerebral reperfusion. The involvement of Nox2-containing NADPH oxidase in the effects of apocynin was assessed using Nox2−/− mice. Experimental approach: Transient cerebral ischaemia was induced by 0.5 h middle cerebral artery occlusion followed by 23.5 h reperfusion. Mice received apocynin (2.5 mg·kg−1, i.p.) either 0.5 h before ischaemia or 1 h after reperfusion. In situ superoxide production after cerebral ischaemia-reperfusion was measured in brain sections of wild-type mice at 24 h using dihydroethidium fluorescence. Key results: Treatment with apocynin 0.5 h before ischaemia reduced total infarct volume, neurological impairment and mortality in wild-type but not Nox2−/− mice. Conversely, treatment with apocynin 1 h after initiation of reperfusion had no protective effect. Cerebral ischaemia and reperfusion increased superoxide production in the brain at 24 h, and pretreatment but not posttreatment with apocynin reduced superoxide levels. Conclusions and implications: Apocynin improves outcome following stroke when administered before ischaemia in wild-type but not Nox2−/− mice. PMID:19175604

  12. Dietary Arginine Requirements for Growth Are Dependent on the Rate of Citrulline Production in Mice123

    PubMed Central

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C

    2015-01-01

    Background: In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. Objective: The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. Methods: Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and “de novo” arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. Results: In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P < 0.001) compared to the 8-g arginine/kg diet (0.46 ± 0.03 g/d). ICR mice showed at least a 2-fold greater expression (P < 0.001) of ornithine transcarbamylase (OTC) than BL6 mice, which translated into a greater rate of citrulline (25%) and arginine synthesis (49%, P < 0.002). In Expt. 2, breakpoint analysis showed that the requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. Conclusion: Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice. PMID:25855119

  13. Neither Dectin-2 nor the Mannose Receptor Is Required for Resistance to Coccidioides immitis in Mice

    PubMed Central

    Viriyakosol, Suganya; Jimenez, Maria del Pilar; Saijo, Sinobu

    2014-01-01

    We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1β, which was higher in Dectin-2 KO lungs. Although both Dectin-2−/− and MR−/− myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis. PMID:24379281

  14. Neither dectin-2 nor the mannose receptor is required for resistance to Coccidioides immitis in mice.

    PubMed

    Viriyakosol, Suganya; Jimenez, Maria Del Pilar; Saijo, Sinobu; Fierer, Joshua

    2014-03-01

    We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1β, which was higher in Dectin-2 KO lungs. Although both Dectin-2(-/-) and MR(-/-) myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis. PMID:24379281

  15. Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia

    PubMed Central

    Dvoriantchikova, Galina; Grant, Jeff; Santos, Andrea Rachelle C.; Hernandez, Eleut; Ivanov, Dmitry

    2012-01-01

    Purpose. To study the role of neuronal nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase–dependent reactive oxygen species (ROS) production in retinal ganglion cell (RGC) death after ischemia. Methods. Ischemic injury was induced by unilateral elevation of intraocular pressure via direct corneal cannulation. For in vitro experiments, RGCs isolated by immunopanning from retinas were exposed to oxygen and glucose deprivation (OGD). The expression levels of NAD(P)H oxidase subunits were evaluated by quantitative PCR, immunocytochemistry, and immunohistochemistry. The level of ROS generated was assayed by dihydroethidium. The NAD(P)H oxidase inhibitors were then tested to determine if inhibition of NAD(P)H oxidase altered the production of ROS within the RGCs and promoted cell survival. Results. It was reported that RGCs express catalytic Nox1, Nox2, Nox4, Duox1, as well as regulatory Ncf1/p47phox, Ncf2/p67phox, Cyba/p22phox, Noxo1, and Noxa1 subunits of NAD(P)H oxidases under normal conditions and after ischemia. However, whereas RGCs express only low levels of catalytic Nox2, Nox4, and Duox1, and regulatory Ncf1/p47, Ncf2/p67 subunits, they exhibit significantly higher levels of catalytic subunit Nox1 and the subunits required for optimal activity of Nox1. It was observed that the nonselective NAD(P)H oxidase inhibitors VAS-2870, AEBSF, and the Nox1 NAD(P)H oxidase–specific inhibitor ML-090 decreased the ROS burst stimulated by OGD, which was associated with a decreased level of RGC death. Conclusions. The findings suggest that NAD(P)H oxidase activity in RGCs renders them vulnerable to ischemic death. Importantly, high levels of Nox1 NAD(P)H oxidase subunits in RGCs suggest that this enzyme could be a major source of ROS in RGCs produced by NAD(P)H oxidases. PMID:22467573

  16. tmie Is required for gentamicin uptake by the hair cells of mice.

    PubMed

    Park, Seojin; Lee, Jeong-Han; Cho, Hyun-Ju; Lee, Kyu-yup; Kim, Myoung Ok; Yun, Byung-Wook; Ryoo, ZaeYoung

    2013-04-01

    The circling (cir/cir) mouse is a spontaneous model of deafness due to deletion of a 40-kb genomic region that includes the transmembrane inner ear (tmie) gene. In addition to being deaf, cir/cir mice exhibit abnormal behaviors including circling and hyperactivity. Here we investigated differences between 3-d-old (that is, before hair-cell degeneration) cir/cir and phenotypically normal (+/cir) mice and the reason underlying the degeneration of the inner ear structure of cir/cir mice. To this end, we used gentamicin, gentamicin-Texas red conjugate, and FM1-43 to investigate mechanotransducer channel activity in the hair cells of cir/cir mice; these compounds are presumed to enter hair cells through the mechanotransducer channel. Although the structure of the inner ear of +/cir mice was equivalent to that of cir/cir mice, the hair cells of cir/cir mice (unlike +/cir) did not take up gentamicin, gentamicin-Texas red conjugate, or FM1-43. These findings suggest that hair cells in cir/cir mice demonstrate abnormal maturation and mechanotransduction. In addition, our current results indicate that tmie is required for maturation and maintenance of hair cells. PMID:23582420

  17. Effects of Differing Response-Force Requirements on Food-Maintained Responding in CD-1 Mice

    ERIC Educational Resources Information Center

    Zarcone, Troy J.; Chen, Rong; Fowler, Stephen C.

    2007-01-01

    The effect of force requirements on response effort was examined using outbred (CD-1) mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as threshold responses (i.e., all measured responses). Different force requirements were used to define criterion responses (a subclass of threshold responses) that…

  18. NADPH oxidase 2 plays a role in experimental corneal neovascularization.

    PubMed

    Chan, Elsa C; van Wijngaarden, Peter; Chan, Elsie; Ngo, Darleen; Wang, Jiang-Hui; Peshavariya, Hitesh M; Dusting, Gregory J; Liu, Guei-Sheung

    2016-05-01

    Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans. PMID:26814205

  19. Leptin Is Required for Glucose Homeostasis after Roux-en-Y Gastric Bypass in Mice

    PubMed Central

    Uchida, Aki; Aguirre, Vincent

    2015-01-01

    Background & Aims Leptin, the protein product of the ob gene, increases energy expenditure and reduces food intake, thereby promoting weight reduction. Leptin also regulates glucose homeostasis and hepatic insulin sensitivity via hypothalamic proopiomelanocortin neurons in mice. Roux-en-Y gastric bypass (RYGB) induces weight loss that is substantial and sustained despite reducing plasma leptin levels. In addition, patients who fail to undergo diabetes remission after RYGB are hypoletinemic compared to those who do and to lean controls. We have previously demonstrated that the beneficial effects of RYGB in mice require the melanocortin-4 receptor, a downstream effector of leptin action. Based on these observations, we hypothesized that leptin is required for sustained weight reduction and improved glucose homeostasis observed after RYGB. Methods To investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet. Results RYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance. PMID:26445459

  20. Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis

    PubMed Central

    Kim, Jinoh; Seo, Misun; Kim, Su Kyung; Bae, Yun Soo

    2016-01-01

    It is widely accepted that bacterial infection-mediated inflammation facilitates development of atherosclerosis by activating toll-like receptor (TLR) signaling system. We reasoned that NADPH oxidases (Nox), required for TLR-mediated inflammatory response, are involved in atherogenesis. Here, we show that the activation of Nox4 through TLR5 regulates the inflammation of the endothelium and in atherogenesis. Flagellin-induced interaction between the COOH region of Nox4 and the TIR domain of TLR5 led to H2O2 generation, which in turn promoted the secretion of pro-inflammatory cytokines including IL-8, as well as the expression of ICAM-1 in human aortic endothelial cells (HAECs). Knockdown of the Nox4 in HAECs resulted in attenuated expressions of IL-8 and ICAM-1 leading to a reduction in the adhesion and trans-endothelial migration of monocytes. Challenge of recombinant FliC (rFliC) to the ApoE KO mice with high-fat diet (HFD) resulted in significantly increased atherosclerotic plaque sizes compared to the saline-injected mice. However, an injection of rFliC into the Nox4ApoE DKO mice with HFDs failed to generate atherosclerotic plaque, suggesting that Nox4 deficiency resulted in significant protections against rFliC-mediated atherogenesis. We conclude that TLR5-dependent Nox4 activation and subsequent H2O2 generation play critical roles for the development of atherosclerosis. PMID:27146088

  1. Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis.

    PubMed

    Kim, Jinoh; Seo, Misun; Kim, Su Kyung; Bae, Yun Soo

    2016-01-01

    It is widely accepted that bacterial infection-mediated inflammation facilitates development of atherosclerosis by activating toll-like receptor (TLR) signaling system. We reasoned that NADPH oxidases (Nox), required for TLR-mediated inflammatory response, are involved in atherogenesis. Here, we show that the activation of Nox4 through TLR5 regulates the inflammation of the endothelium and in atherogenesis. Flagellin-induced interaction between the COOH region of Nox4 and the TIR domain of TLR5 led to H2O2 generation, which in turn promoted the secretion of pro-inflammatory cytokines including IL-8, as well as the expression of ICAM-1 in human aortic endothelial cells (HAECs). Knockdown of the Nox4 in HAECs resulted in attenuated expressions of IL-8 and ICAM-1 leading to a reduction in the adhesion and trans-endothelial migration of monocytes. Challenge of recombinant FliC (rFliC) to the ApoE KO mice with high-fat diet (HFD) resulted in significantly increased atherosclerotic plaque sizes compared to the saline-injected mice. However, an injection of rFliC into the Nox4ApoE DKO mice with HFDs failed to generate atherosclerotic plaque, suggesting that Nox4 deficiency resulted in significant protections against rFliC-mediated atherogenesis. We conclude that TLR5-dependent Nox4 activation and subsequent H2O2 generation play critical roles for the development of atherosclerosis. PMID:27146088

  2. The acyl-CoA binding protein is required for normal epidermal barrier function in mice.

    PubMed

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt; Neess, Ditte; Brewer, Jonathan; Hannibal-Bach, Hans Kristian; Helledie, Torben; Fenger, Christina; Due, Marianne; Berzina, Zane; Neubert, Reinhard; Chemnitz, John; Finsen, Bente; Clemmensen, Anders; Wilbertz, Johannes; Saxtorph, Henrik; Knudsen, Jens; Bagatolli, Luis; Mandrup, Susanne

    2012-10-01

    The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP(+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC-FFAs via complex phospholipids in the lamellar bodies. Importantly, we show that ACBP(-/-) mice display a ∼50% increased transepidermal water loss compared with ACBP(+/+) mice. Furthermore, skin and fur sebum monoalkyl diacylglycerol (MADAG) levels are significantly increased, suggesting that ACBP limits MADAG synthesis in sebaceous glands. In summary, our study shows that ACBP is required for production of VLC-FFA for stratum corneum and for maintaining normal epidermal barrier function. PMID:22829653

  3. Crosstalk between mitochondria and NADPH oxidases

    PubMed Central

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain condition may stimulate NADPH oxidases. This crosstalk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions. PMID:21777669

  4. Notchless Is Required for Axial Skeleton Formation in Mice

    PubMed Central

    Beck-Cormier, Sarah; Escande, Marie; Souilhol, Céline; Vandormael-Pournin, Sandrine; Sourice, Sophie; Pilet, Paul; Cohen-Tannoudji, Michel

    2014-01-01

    Maintenance of cell survival is essential for proper embryonic development. In the mouse, Notchless homolog 1 (Drosophila) (Nle1) is instrumental for survival of cells of the inner cell mass upon implantation. Here, we analyze the function of Nle1 after implantation using the Meox2tm1(cre)Sor mouse that expresses the Cre recombinase specifically in the epiblast at E5.5. First, we find that NLE1 function is required in epiblast cells, as Nle1-deficient cells are rapidly eliminated. In this report, we also show that the Meox2Cre transgene is active in specific tissues during organogenesis. In particular, we detect high Cre expression in the vertebral column, ribs, limbs and tailbud. We took advantage of this dynamic expression profile to analyze the effects of inducing mosaic deletion of Nle1 in the embryo. We show that Nle1 deletion in this context, results in severe developmental anomalies leading to lethality at birth. Mutant embryos display multiple developmental defects in particular during axial skeletal formation. We also provide evidence that axial defects are due to an increase in apoptotic cell death in the somite at E9.5. These data demonstrate an essential role for Nle1 during organogenesis and in particular during axial development. PMID:24875805

  5. NADPH Oxidases and Angiotensin II Receptor Signaling

    PubMed Central

    Garrido, Abel Martin; Griendling, Kathy K.

    2010-01-01

    Over the last decade many studies have demonstrated the importance of reactive oxygen species (ROS) production by NADPH oxidases in angiotensin II (Ang II) signaling, as well as a role for ROS in the development of different diseases in which Ang II is a central component. In this review, we summarize the mechanism of activation of NADPH oxidases by Ang II and describe the molecular targets of ROS in Ang II signaling in the vasculature, kidney and brain. We also discuss the effects of genetic manipulation of NADPH oxidase function on the physiology and pathophysiology of the renin angiotensin system. PMID:19059306

  6. Food and oxygen requirements for growing mice and turtles after hypergravitational development.

    PubMed

    Wunder, C C; Dodge, C H; Cook, K M; Moressi, W J

    1977-01-01

    Although development of mice and turtles, both low-payload animals, can be influenced by ambient gravitational intensity, little is known regarding the influence of either their growth or their gravitational history upon life-support requirements. A 25-g male Box Turtle (Terrapene carolina, optimally growing at 30 degrees C and 1 G to double its size in 7 weeks) exhibits daily requirements of oxygen (100 ml) and food (200 mg, dry) which are only 3% of the requirement for a mouse (Swiss Webster, centrifuged at 22 degrees) of comparable size and growth rate. These requirements grow in proportion to the turtle's (body mass)0.9 and to the mouse's (body mass)0.5. After development at hypergravity g (of from 1.5 to 5 G expressed in multiples of the earth's gravity) there is a one-day delay for turtles but an immediate change for mice in these requirements upon return to 1 G. Although both show a decreased oxygen intake, the drop is greater for turtles (equalling g -0.4 of the baseline value, as corrected for body size, after return from 75 days exposure against g-0.08 for mice after 1-13 days exposure); the food intake drops for turtles (varies as g-1) while it rises for mice (varies as g0.6). PMID:11962496

  7. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease

    PubMed Central

    Valencia, Antonio; Sapp, Ellen; Kimm, Jeffrey S.; McClory, Hollis; Reeves, Patrick B.; Alexander, Jonathan; Ansong, Kwadwo A.; Masso, Nicholas; Frosch, Matthew P.; Kegel, Kimberly B.; Li, Xueyi; DiFiglia, Marian

    2013-01-01

    A mutation in the huntingtin (Htt) gene produces mutant Htt and Huntington's disease (HD), a neurodegenerative disorder. HD patients have oxidative damage in the brain, but the causes are unclear. Compared with controls, we found brain levels of NADPH oxidase (NOX) activity, which produces reactive oxygen species (ROS), elevated in human HD postmortem cortex and striatum and highest in striatum of presymptomatic individuals. Synaptosome fractions from cortex and striatum of HD140Q/140Q mice had elevated NOX activity at 3 months of age and a further rise at 6 and 12 months compared with synaptosomes of age-matched wild-type (WT) mice. High NOX activity in primary cortical and striatal neurons of HD140Q/140Q mice correlated with more ROS and neurite swellings. These features and neuronal cell death were markedly reduced by treatment with NOX inhibitors such as diphenyleneiodonium (DPI), apocynin (APO) and VAS2870. The rise in ROS levels in mitochondria of HD140Q/140Q neurons followed the rise in NOX activity and inhibiting only mitochondrial ROS was not neuroprotective. Mutant Htt colocalized at plasma membrane lipid rafts with gp91-phox, a catalytic subunit for the NOX2 isoform. Assembly of NOX2 components at lipid rafts requires activation of Rac1 which was also elevated in HD140Q/140Q neurons. HD140Q/140Q mice bred to gp91-phox knock-out mice had lower NOX activity in the brain and in primary neurons, and neurons had normal ROS levels and significantly improved survival. These findings suggest that increased NOX2 activity at lipid rafts is an early and major source of oxidative stress and cell death in HD140Q/140Q neurons. PMID:23223017

  8. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  9. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation.

    PubMed

    Lévigne, Dominik; Modarressi, Ali; Krause, Karl-Heinz; Pittet-Cuénod, Brigitte

    2016-07-01

    NADPH oxidases (NOX) mediate redox signaling by generating superoxide and/or hydrogen peroxide, which are involved in biosynthetic pathways, e.g. thyroid hormone generation, dityrosine crosslinking, as well as bacterial killing. Data investigating the role of NOX enzymes in cutaneous wound repair is limited and specifically their function in skin myofibroblast expression is unknown. The isoform NOX4 was recently shown to be a pre-requisite for the differentiation of cardiac and pulmonary myofibroblasts. In this study we investigate the role of NOX4 in wound repair using a wound model in NOX4 knockout mice (n=16) and wildtype mice (n=16). Wounds were photographed daily until complete wound closure. Mice were sacrificed at day 3, 7, 14; wound tissue was harvested. NOX4-deficient mice healed significantly slower (22 days, SD=1.9) than wild-type mice (17 days, SD=1.4, p<0.005). However, there was no difference in myofibroblast expression. Strong dityrosine formation was observed, but was significantly weaker in NOX4-/- mice (p<0.05). NOX2, HIF1α and CD31 expression was significantly weaker in NOX4-/- mice (p<0.05). In this study we show for the first time that NOX4 plays a role in cutaneous wound repair. Our data suggests that NOX4 mediates HIF1α expression and neoangiogenesis during wound repair. NOX4 deletion led to a decreased expression of NOX2, implying a role of NOX4 in phagocytic cell recruitment. NOX4 was required for effective wound contraction but not myofibroblast expression. We suggest that myofibroblast contraction in NOX4-deficient mice is less effective in contracting the wound because of insufficient dityrosine-crosslinking of the ECM, providing the first indication for a physiological function of dityrosine crosslinking in higher animals. PMID:27140231

  10. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells.

    PubMed

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W; Quaggin, Susan E; Fantus, I George

    2013-03-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  11. Thioredoxin-interacting Protein Mediates High Glucose-induced Reactive Oxygen Species Generation by Mitochondria and the NADPH Oxidase, Nox4, in Mesangial Cells*

    PubMed Central

    Shah, Anu; Xia, Ling; Goldberg, Howard; Lee, Ken W.; Quaggin, Susan E.; Fantus, I. George

    2013-01-01

    Thioredoxin-interacting protein (TxNIP) is up-regulated by high glucose and is associated with oxidative stress. It has been implicated in hyperglycemia-induced β-cell dysfunction and apoptosis. As high glucose and oxidative stress mediate diabetic nephropathy (DN), the contribution of TxNIP was investigated in renal mesangial cell reactive oxygen species (ROS) generation and collagen synthesis. To determine the role of TxNIP, mouse mesangial cells (MC) cultured from wild-type C3H and TxNIP-deficient Hcb-19 mice were incubated in HG. Confocal microscopy was used to measure total and mitochondrial ROS production (DCF and MitoSOX) and collagen IV. Trx and NADPH oxidase activities were assayed and NADPH oxidase isoforms, Nox2 and Nox4, and antioxidant enzymes were determined by immunoblotting. C3H MC exposed to HG elicited a significant increase in cellular and mitochondrial ROS as well as Nox4 protein expression and NADPH oxidase activation, whereas Hcb-19 MC showed no response. Trx activity was attenuated by HG only in C3H MC. These defects in Hcb-19 MC were not due to increased antioxidant enzymes or scavenging of ROS, but associated with decreased ROS generation. Adenovirus-mediated overexpression of TxNIP in Hcb-19 MC and TxNIP knockdown with siRNA in C3H confirmed the specific role of TxNIP. Collagen IV accumulation in HG was markedly reduced in Hcb-19 cells. TxNIP is a critical component of the HG-ROS signaling pathway, required for the induction of mitochondrial and total cell ROS and the NADPH oxidase isoform, Nox4. TxNIP is a potential target to prevent DN. PMID:23329835

  12. Involvement of NADPH oxidases in suppression of cyclooxygenase-2 promoter-dependent transcriptional activities by sesamol

    PubMed Central

    Shimizu, Satomi; Ishigamori, Rikako; Fujii, Gen; Takahashi, Mami; Onuma, Wakana; Terasaki, Masaru; Yano, Tomohiro; Mutoh, Michihiro

    2015-01-01

    Cyclooxygenase-2 (COX-2) has been shown to play an important role in colon carcinogenesis. Moreover, one of the components of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NADPH oxidase 1 (NOX1), dominantly expressed in the colon, is implicated in the pathogenesis of colon cancer. We have reported that sesamol, one of the lignans in sesame seeds, suppressed COX-2 gene transcriptional activity in human colon cancer cells, and also suppressed intestinal polyp formation in Apc-mutant mice. In the present study, we investigated the involvement of NADPH oxidase in the inhibition of COX-2 transcriptional activity by sesamol. We found that several NADPH oxidase inhibitors, such as apocynin, showed suppressive effects on COX-2 transcriptional activity. Moreover, sesamol significantly suppressed NOX1 mRNA levels in a dose-dependent manner. In addition, we demonstrated that knockdown of NOX1 successfully suppressed COX-2 transcriptional activity. These results suggest that inhibition of NADPH oxidase, especially NOX1, may be involved in the mechanism of the suppression of COX-2 transcriptional activity by sesamol. PMID:25759517

  13. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH

    PubMed Central

    Hao, Meng-Shu; Jensen, Anna M.; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G.

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  14. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH.

    PubMed

    Hao, Meng-Shu; Jensen, Anna M; Boquist, Ann-Sofie; Liu, Yun-Jun; Rasmusson, Allan G

    2015-01-01

    NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene. PMID:26413894

  15. Effects of differing response-force requirements on food-maintained responding in CD-1 mice.

    PubMed

    Zarcone, Troy J; Chen, Rong; Fowler, Stephen C

    2007-11-01

    The effect of force requirements on response effort was examined using outbred (CD-1) mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as threshold responses (i.e., all measured responses). Different force requirements were used to define criterion responses (a subclass of threshold responses) that exceeded the requirement. The reinforcer was sweetened, condensed milk, and it was delivered upon response termination. All mice were exposed to two ascending series of criterion force requirements (2, 4, 8, 16, and 32 g). Increasing the force requirement decreased criterion response rates, but increased threshold response rates. The time-integral of force (area under the force-time curve for individual responses, which is proportional to energy expenditure for each response) increased with the increase in the force requirement. These results conflict with the hypothesis that higher force requirements have aversive qualities and suggest that increased force requirements are more analogous to intermittent schedules of reinforcement. These data suggest that estimations of effort or energy expenditure should be measured independently of the force requirement. Individual differences in responding were found for the CD-1 outbred stock. PMID:18047228

  16. Seasonal energy requirements and thermoregulation of growing pouched mice, Saccostomus campestris (Cricetidae)

    NASA Astrophysics Data System (ADS)

    Ellison, G. T. H.; Skinner, J. D.

    1991-06-01

    Pouched mice ( Saccostomus campestris) were born in captivity during January and March and subsequently maintained under long photoperiod (14 h light: 10 h dark) at 25°C. During their first winter (July) and the following summer (January) the pouched mice were exposed to natural photoperiod in an unheated laboratory for 3 weeks prior to measurement. The pouched mice continued to grow during the study, and were significantly heavier after summer exposure than after winter exposure 6 months earlier. Although this increase in body mass would result in a decline in their surface area to volume ratio there was no significant decline in minimal thermal conductance ( C m) and winter-exposed pouched mice had a relatively lower C m than expected. Meanwhile the smaller, winter-exposed animals displayed a significantly higher capacity for non-shivering thermogenesis, together with higher levels of basal metabolism than summer individuals. These differences were not solely attributable to the contrasting body mass of each group and it is therefore clear that S. campestris can increase thermoregulatory heat production, and modify heat loss following exposure to short photoperiod and cold during their first winter. Despite the significant increase in metabolism, the overall energy requirements of small, winter-exposed animals were significantly lower than those for heavier pouched mice following exposure to summer conditions. These results suggest that growing pouched mice can effectively adapt to lower temperature conditions during their first winter, yet accrue considerable overall savings in total energy requirements as a result of their smaller body mass.

  17. Mammalian COPII coat component SEC24C is required for embryonic development in mice.

    PubMed

    Adams, Elizabeth J; Chen, Xiao-Wei; O'Shea, K Sue; Ginsburg, David

    2014-07-25

    COPII-coated vesicles mediate the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi. SEC24 is the COPII component primarily responsible for recruitment of protein cargoes into nascent vesicles. There are four Sec24 paralogs in mammals, with mice deficient in SEC24A, -B, and -D exhibiting a wide range of phenotypes. We now report the characterization of mice with deficiency in the fourth Sec24 paralog, SEC24C. Although mice haploinsufficient for Sec24c exhibit no apparent abnormalities, homozygous deficiency results in embryonic lethality at approximately embryonic day 7. Tissue-specific deletion of Sec24c in hepatocytes, pancreatic cells, smooth muscle cells, and intestinal epithelial cells results in phenotypically normal mice. Thus, SEC24C is required in early mammalian development but is dispensable in a number of tissues, likely as a result of compensation by other Sec24 paralogs. The embryonic lethality resulting from loss of SEC24C occurs considerably later than the lethality previously observed in SEC24D deficiency; it is clearly distinct from the restricted neural tube phenotype of Sec24b null embryos and the mild hypocholesterolemic phenotype of adult Sec24a null mice. Taken together, these results demonstrate that the four Sec24 paralogs have developed unique functions over the course of vertebrate evolution. PMID:24876386

  18. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice.

    PubMed

    Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun; Gao, Jiangang

    2016-01-01

    Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780

  19. Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH.

    PubMed

    O'Neill, Heidi C; Rancourt, Raymond C; White, Carl W

    2008-02-01

    Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function. Circulating neutrophils were isolated from healthy volunteers and pretreated with LA or diluent. Cells were subsequently activated with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) to induce ROS production. SOD-inhibitable reduction of acetylated cytochrome c demonstrated the PMA-dependent respiratory burst was suppressed by LA. Oxygen consumption also was diminished when PMA-stimulated cells were pretreated with LA. PMN respiratory burst was partially restored by addition of NADPH but not other pyridine nucleotides. LA did not inhibit glucose-6-phosphate dehydrogenase activity of PMN. These data together suggest that the reduction of LA to DHLA using cellular NADPH may limit the capacity of the PMN NADPH oxidase to produce superoxide. Further studies will be required to determine if LA can diminish excessive superoxide produced by PMN and/or alveolar macrophages in IPF or relevant disease models in vivo. PMID:18158760

  20. Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells.

    PubMed

    Zimmerman, Matthew C; Takapoo, Maysam; Jagadeesha, Dammanahalli K; Stanic, Bojana; Banfi, Botond; Bhalla, Ramesh C; Miller, Francis J

    2011-09-01

    Redox-dependent migration and proliferation of vascular smooth muscle cells (SMCs) are central events in the development of vascular proliferative diseases; however, the underlying intracellular signaling mechanisms are not fully understood. We tested the hypothesis that activation of Nox1 NADPH oxidase modulates intracellular calcium ([Ca(2+)](i)) levels. Using cultured SMCs from wild-type and Nox1 null mice, we confirmed that thrombin-dependent generation of reactive oxygen species requires Nox1. Thrombin rapidly increased [Ca(2+)](i), as measured by fura-2 fluorescence ratio imaging, in wild-type but not Nox1 null SMCs. The increase in [Ca(2+)](i) in wild-type SMCs was inhibited by antisense to Nox1 and restored by expression of Nox1 in Nox1 null SMCs. Investigation into potential mechanisms by which Nox1 modulates [Ca(2+)](i) showed that thrombin-induced inositol triphosphate generation and thapsigargin-induced intracellular calcium mobilization were similar in wild-type and Nox1 null SMCs. To examine the effects of Nox1 on Ca(2+) entry, cells were either bathed in Ca(2+)-free medium or exposed to dihydropyridines to block L-type Ca(2+) channel activity. Treatment with nifedipine or removal of extracellular Ca(2+) reduced the thrombin-mediated increase of [Ca(2+)](i) in wild-type SMCs, whereas the response in Nox1 null SMCs was unchanged. Sodium vanadate, an inhibitor of protein tyrosine phosphatases, restored the thrombin-induced increase of [Ca(2+)](i) in Nox1 null SMCs. Migration of SMCs was impaired with deficiency of Nox1 and restored with expression of Nox1 or the addition of sodium vanadate. In summary, we conclude that Nox1 NADPH oxidase modulates Ca(2+) mobilization in SMCs, in part through regulation of Ca(2+) influx, to thereby promote cell migration. PMID:21810651

  1. Quantitation of GABAA receptor inhibition required for quinolone-induced convulsions in mice.

    PubMed

    Tsutomi, Y; Matsubayashi, K; Akahane, K

    1994-11-01

    We quantified the amount of inhibition of gamma-aminobutyric acid (GABA)A receptor binding required for the onset of convulsions induced by ciprofloxacin in combination with biphenylacetic acid (BPAA) in mice. In fasting mice iv ciprofloxacin given 30 min after oral BPAA (50 mg/kg) induced convulsions at doses of 40 mg/kg or above. In contrast, ofloxacin caused no convulsions even at 100 mg/kg, the highest dose tested. When mice received 40 mg/kg of ciprofloxacin or ofloxacin, maximal brain concentrations of each quinolone at 30 min were 0.37 or 1.97 micrograms/g, respectively. These brain concentrations of ciprofloxacin and ofloxacin were not affected by combination with BPAA. In the presence of ciprofloxacin and BPAA (at brain tissue concentrations which induced convulsions), the binding of 3H-muscimol to GABAA receptor sites was inhibited by approximately 30%. Using results from a similar binding study, an impracticable iv dose of ofloxacin (500 mg/kg) was estimated to be required to inhibit GABAA receptor binding by 30%, and therefore to induce similar convulsions to those seen with ciprofloxacin at a dose of 40 mg/kg. These results may indicate that epileptic convulsions occur when ciprofloxacin and BPAA interact with each other to antagonize at least 30% of GABAA receptor binding in mice, and provide evidence for a significant role of GABAA receptor inhibition in the occurrence of quinolone-induced convulsions. PMID:7706169

  2. Effects of differing response-force requirements on food-maintained responding in C57Bl/6J mice.

    PubMed

    Zarcone, Troy J; Chen, Rong; Fowler, Stephen C

    2009-09-01

    The effect of force requirements on response effort was examined using inbred C57BL/6J mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as responses (i.e., all responses above the measurement threshold). Different, higher force requirements were used to define criterion responses (a subclass of all responses) that exceeded the requirement and produced a reinforcer. The reinforcer was sweetened, condensed milk, delivered upon response termination. All mice were exposed to two ascending series of criterion force requirements (2, 4, 8, 16, and 32 g). Increasing the force requirement initially decreased criterion response rates, but criterion response rates recovered with continued exposure, except at the 32-g requirement. Response rates for all measured responses initially increased with increasing force requirements, but then decreased with continued exposure. The second exposure series produced more stable response rate changes than the first series. The time-integral of force (area under the force-time curve for individual responses, which is proportional to energy expenditure for each response) increased with the increase in the force requirement. The C57BL/6J inbred strain generated average force output similar to CD-1 outbred stock mice trained on the same force requirements. C57BL/6J inbred strain mice differed from CD-1 mice in initial response rates (for all responses above threshold) and had lower response rates at the 16 and 32 g requirements resulting in lower total force output. These data show for both mice types that increased force requirements resulted in increased overall responding (all measured responses), which contradicts a punishment interpretation of criterion response decrements. C57BL\\6 inbred mice showed individual differences comparable to the outbred CD-1 stock. C57BL/6 mice did not maintain responding as well at the higher force requirements, which may be due to their small body size and

  3. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    PubMed

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  4. PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice

    PubMed Central

    Garbacz, Wojciech G.; Huang, Jeffrey T. J.; Higgins, Larry G.; Wahli, Walter; Palmer, Colin N. A.

    2015-01-01

    Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ. PMID:26604919

  5. Afadin requirement for cytokine expressions in keratinocytes during chemically induced inflammation in mice

    PubMed Central

    Yoshida, Toshiyuki; Iwata, Takanori; Takai, Yoshimi; Birchmeier, Walter; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Afadin is a filamentous actin-binding protein and a mediator of nectin signaling. Nectins are Ig-like cell adhesion molecules, and the nectin family is composed of four members, nectin-1 to nectin-4. Nectins show homophilic and heterophilic interactions with other nectins or proteins on adjacent cells. Nectin signaling induces formation of cell–cell junctions and is required for the development of epithelial tissues, including skin. This study investigated the role of afadin in epithelial tissue development and established epithelium-specific afadin-deficient (CKO) mice. Although showing no obvious abnormality in the skin development and homeostasis, the mice showed the reduced neutrophil infiltration into the epidermis during chemical-induced inflammation with 12-O-tetradecanoylphorbol 13-acetate (TPA). Immunohistochemical and quantitative real-time PCR analyses showed that the expression levels of cytokines including Cxcl2, Il-1β and Tnf-α were reduced in CKO keratinocytes compared with control keratinocytes during TPA-induced inflammation. Primary-cultured skin keratinocytes from CKO mice also showed reduced expression of these cytokines and weak activation of Rap1 compared with those from control mice after the TPA treatment. These results suggested a remarkable function of afadin, which was able to enhance cytokine expression through Rap1 activation in keratinocytes during inflammation. PMID:25297509

  6. NOS1 induces NADPH oxidases and impairs contraction kinetics in aged murine ventricular myocytes.

    PubMed

    Villmow, Marten; Klöckner, Udo; Heymes, Christophe; Gekle, Michael; Rueckschloss, Uwe

    2015-09-01

    Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of β-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of β-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes. PMID:26173391

  7. Neither the SCN nor the adrenals are required for circadian time-place learning in mice

    PubMed Central

    Papantoniou, Christos; Gerkema, Menno P.; Van Der Zee, Eddy A.

    2014-01-01

    During Time-Place Learning (TPL), animals link biological significant events (e.g. encountering predators, food, mates) with the location and time of occurrence in the environment. This allows animals to anticipate which locations to visit or avoid based on previous experience and knowledge of the current time of day. The TPL task applied in this study consists of three daily sessions in a three-arm maze, with a food reward at the end of each arm. During each session, mice should avoid one specific arm to avoid a foot-shock. We previously demonstrated that, rather than using external cue-based strategies, mice use an internal clock (circadian strategy) for TPL, referred to as circadian TPL (cTPL). It is unknown in which brain region(s) or peripheral organ(s) the consulted clock underlying cTPL resides. Three candidates were examined in this study: (a) the suprachiasmatic nucleus (SCN), a light entrainable oscillator (LEO) and considered the master circadian clock in the brain, (b) the food entrainable oscillator (FEO), entrained by restricted food availability, and (c) the adrenal glands, harboring an important peripheral oscillator. cTPL performance should be affected if the underlying oscillator system is abruptly phase-shifted. Therefore, we first investigated cTPL sensitivity to abrupt light and food shifts. Next we investigated cTPL in SCN-lesioned- and adrenalectomized mice. Abrupt FEO phase-shifts (induced by advancing and delaying feeding time) affected TPL performance in specific test sessions while a LEO phase-shift (induced by a light pulse) more severely affected TPL performance in all three daily test sessions. SCN-lesioned mice showed no TPL deficiencies compared to SHAM-lesioned mice. Moreover, both SHAM- and SCN-lesioned mice showed unaffected cTPL performance when re-tested after bilateral adrenalectomy. We conclude that, although cTPL is sensitive to timing manipulations with light as well as food, neither the SCN nor the adrenals are required for

  8. Perturbation of Human Coronary Artery Endothelial Cell Redox State and NADPH Generation by Methylglyoxal

    PubMed Central

    Davies, Michael J.

    2014-01-01

    Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH). We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC) were incubated with high glucose (25 mM, 24 h, 37°C), or methylglyoxal (MGO), glyoxal, or glycolaldehyde (100–500 µM, 1 h, 37°C), before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05) decreased total thiols (∼35%), further experiments with MGO showed significant losses of GSH (∼40%) and NADPH (∼10%); these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10%) NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE) formed; lower levels of Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis. PMID:24466151

  9. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  10. NdhM Subunit Is Required for the Stability and the Function of NAD(P)H Dehydrogenase Complexes Involved in CO2 Uptake in Synechocystis sp. Strain PCC 6803*

    PubMed Central

    He, Zhihui; Xu, Min; Wu, Yaozong; Lv, Jing; Fu, Pengcheng; Mi, Hualing

    2016-01-01

    The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803. PMID:26703473

  11. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.

    PubMed

    Korth, Hans-Gert; Meier, Ann-Cathérine; Auferkamp, Oliver; Sicking, Willi; de Groot, Herbert; Sustmann, Reiner; Kirsch, Michael

    2012-06-12

    Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket. Ascorbate-mediated Cpd II formation was found to be suppressed by added NADPH in a concentration-dependent manner, for the achievement of complete suppression at a stoichiometric 1:1 NADPH:heme concentration ratio. Cpd I → Cpd II reduction by ascorbate was similarly inhibited by addition of NADH, NADP(+), thio-NADP(+), or NAD(+), though with 0.5-, 0.1-, 0.1-, and 0.01-fold reduced efficiencies, respectively, in agreement with the relative binding affinities of these dinucleotides. Unexpected was the observation that although Cpd II formation is not observed in the presence of NADP(+), the decay of Cpd I is slightly accelerated by ascorbate rather than retarded, leading to direct regeneration of ferricatalase. The experimental findings are supported by molecular mechanics docking computations, which show a similar binding of NADPH, NADP(+), and NADH, but not NAD(+), as found in the X-ray structure of NADPH-loaded human erythrocyte catalase. The computations suggest that two ascorbate molecules may occupy the empty NADPH pocket, preferably binding to the adenine binding site. The biological relevance of these findings is discussed. PMID:22616883

  12. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury

    PubMed Central

    Almyroudis, Nikolaos G.; Grimm, Melissa J.; Davidson, Bruce A.; Röhm, Marc; Urban, Constantin F.; Segal, Brahm H.

    2013-01-01

    Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury. PMID:23459634

  13. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria 1

    PubMed Central

    Rugolo, Michela; Zannoni, Davide

    1992-01-01

    The functional interaction between the externally located NAD(P)H dehydrogenase and the Q-pool acceptor site(s) in Percoll-purified mitochondria from Jerusalem artichoke (Helianthus tuberosus L. cv OB1) mitochondria has been investigated. Oxidation of exogenous NADH is stimulated by ubiquinone (UQ1) with a parallel decrease of the apparent Km for NADH. In the presence of saturating amounts of UQ1 as electron acceptor, the Km (NADH) is not affected by variations of the ionic strength. Conversely, the Km for UQ1 is decreased by the screening effect of negative charges on the outer membrane surface. Under low-ionic strength, the hydroxyflavone platanetin progressively inhibits NADH oxidation with a mean inhibition dose of approximately 3 nanomoles of inhibitor per milligram of protein. Interestingly, under high-ionic strength, oxidation of NADH proceeds through two platanetin binding sites, one of which has a lower affinity for the inhibitor (mean inhibition dose = 20 nanomoles per milligram protein), because it is located near the outer surface of the membrane. This latter site is the one involved in the oxidation of external NADPH and, possibly, also affected by spermine and spermidine. Similarly to NADH, oxidation of NADPH is fully sensitive to micromolar concentrations of free Ca2+ ions; in addition, similar concentrations of the sulfhydryl reagent mersalyl are required to inhibit both NADH and NADPH oxidative activities. The results are interpreted as evidence for the presence of a single nonspecific NAD(P)H dehydrogenase. PMID:16668968

  14. NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation

    PubMed Central

    MacFarlane, P M; Satriotomo, I; Windelborn, J A; Mitchell, G S

    2009-01-01

    Phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is a form of spinal, serotonin-dependent synaptic plasticity that requires reactive oxygen species (ROS) formation. We tested the hypothesis that spinal NADPH oxidase activity is a necessary source of ROS for pLTF. Sixty minutes post-AIH (three 5-min episodes of 11% O2, 5 min intervals), integrated phrenic and hypoglossal (XII) nerve burst amplitudes were increased from baseline, indicative of phrenic and XII LTF. Intrathecal injections (∼C4) of apocynin or diphenyleneiodonium chloride (DPI), two structurally and functionally distinct inhibitors of the NADPH oxidase complex, attenuated phrenic, but not XII, LTF. Immunoblots from soluble (cytosolic) and particulate (membrane) fractions of ventral C4 spinal segments revealed predominantly membrane localization of the NADPH oxidase catalytic subunit, gp91phox, whereas membrane and cytosolic expression were both observed for the regulatory subunits, p47phox and RAC1. Immunohistochemical analysis of fixed tissues revealed these same subunits in presumptive phrenic motoneurons of the C4 ventral horn, but not in neighbouring astrocytes or microglia. Collectively, these data demonstrate that NADPH oxidase subunits localized within presumptive phrenic motoneurons are a major source of ROS necessary for AIH-induced pLTF. Thus, NADPH oxidase activity is a key regulator of spinal synaptic plasticity, and may be a useful pharmaceutical target in developing therapeutic strategies for respiratory insufficiency in patients with, for example, cervical spinal injury. PMID:19237427

  15. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica.

    PubMed Central

    Bruchhaus, I; Richter, S; Tannich, E

    1998-01-01

    The gene encoding a putative NADPH:flavin oxidoreductase of the protozoan parasite Entamoeba histolytica (Eh34) was recombinantly expressed in Escherichia coli. The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein. RecEh34 reveals two different enzymic activities. It catalyses the NADPH-dependent reduction of oxygen to hydrogen peroxide (H2O2), as well as of disulphides such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and cystine. The disulphide reductase but not the H2O2-forming NADPH oxidase activity is inhibitable by sulphydryl-active compounds, indicating that a thiol component is part of the active site for the disulphide reductase activity, whereas for the H2O2-forming NADPH oxidase activity only the flavin is required. Compared with the recombinant protein, similar activities are present in amoebic extracts. Native Eh34 is active in a monomeric as well as in a dimeric state. In contrast to recEh34, no flavin was associated with the native protein. However, both NADPH oxidase as well as DTNB reductase activity were found to be dependent on the addition of FAD or FMN. PMID:9494088

  16. Monocarboxylate Transporter-1 Is Required for Cell Death in Mouse Chondrocytic ATDC5 Cells Exposed to Interleukin-1β via Late Phase Activation of Nuclear Factor κB and Expression of Phagocyte-type NADPH Oxidase*

    PubMed Central

    Yoshimura, Kentaro; Miyamoto, Yoichi; Yasuhara, Rika; Maruyama, Toshifumi; Akiyama, Tomohito; Yamada, Atsushi; Takami, Masamichi; Suzawa, Tetsuo; Tsunawaki, Shoko; Tachikawa, Tetsuhiko; Baba, Kazuyoshi; Kamijo, Ryutaro

    2011-01-01

    Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β. PMID:21372137

  17. Monocarboxylate transporter-1 is required for cell death in mouse chondrocytic ATDC5 cells exposed to interleukin-1beta via late phase activation of nuclear factor kappaB and expression of phagocyte-type NADPH oxidase.

    PubMed

    Yoshimura, Kentaro; Miyamoto, Yoichi; Yasuhara, Rika; Maruyama, Toshifumi; Akiyama, Tomohito; Yamada, Atsushi; Takami, Masamichi; Suzawa, Tetsuo; Tsunawaki, Shoko; Tachikawa, Tetsuhiko; Baba, Kazuyoshi; Kamijo, Ryutaro

    2011-04-29

    Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β. PMID:21372137

  18. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice

    PubMed Central

    Harms, Matthew J.; Ishibashi, Jeff; Wang, Wenshan; Lim, Hee-Woong; Goyama, Susumu; Sato, Tomohiko; Kurokawa, Mineo; Won, Kyoung-Jae; Seale, Patrick

    2014-01-01

    Summary Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16-deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function. PMID:24703692

  19. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana

    PubMed Central

    Ilg, Thomas

    2000-01-01

    Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L.mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host. PMID:10790362

  20. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana.

    PubMed

    Ilg, T

    2000-05-01

    Cell surface lipophosphoglycan (LPG) is commonly regarded as a multifunctional Leishmania virulence factor required for survival and development of these parasites in mammals. In this study, the LPG biosynthesis gene lpg1 was deleted in Leishmania mexicana by targeted gene replacement. The resulting mutants are deficient in LPG synthesis but still display on their surface and secrete phosphoglycan-modified molecules, most likely in the form of proteophosphoglycans, whose expression appears to be up-regulated. LPG-deficient L.mexicana promastigotes show no significant differences to LPG-expressing parasites with respect to attachment to, uptake into and multiplication inside macrophages. Moreover, in Balb/c and C57/BL6 mice, LPG-deficient L.mexicana clones are at least as virulent as the parental wild-type strain and lead to lethal disseminated disease. The results demonstrate that at least L. mexicana does not require LPG for experimental infections of macrophages or mice. Leishmania mexicana LPG is therefore not a virulence factor in the mammalian host. PMID:10790362

  1. Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio.

    PubMed

    Itsumi, M; Inoue, S; Elia, A J; Murakami, K; Sasaki, M; Lind, E F; Brenner, D; Harris, I S; Chio, I I C; Afzal, S; Cairns, R A; Cescon, D W; Elford, A R; Ye, J; Lang, P A; Li, W Y; Wakeham, A; Duncan, G S; Haight, J; You-Ten, A; Snow, B; Yamamoto, K; Ohashi, P S; Mak, T W

    2015-11-01

    Isocitrate dehydrogenase-1 (Idh1) is an important metabolic enzyme that produces NADPH by converting isocitrate to α-ketoglutarate. Idh1 is known to reduce reactive oxygen species (ROS) induced in cells by treatment with lipopolysaccharide (LPS) in vitro. Here, we used Idh1-deficient knockout (Idh1 KO) mice to investigate the role of Idh1 in antioxidant defense in vivo. Idh1 KO mice showed heightened susceptibility to death induced by LPS and exhibited increased serum levels of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The serum of LPS-injected Idh1 KO mice also contained elevated levels of AST, a marker of inflammatory liver damage. Furthermore, after LPS injection, livers of Idh1 KO mice showed histological evidence of elevated oxidative DNA damage compared with livers of wild-type (WT) mice. Idh1 KO livers showed a faster and more pronounced oxidative stress than WT livers. In line with that, Idh1 KO hepatocytes showed higher ROS levels and an increase in the NADP(+)/NADPH ratio when compared with hepatocytes isolated from WT mice. These results suggest that Idh1 has a physiological function in protecting cells from oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Our findings suggest that stimulation of Idh1 activity may be an effective therapeutic strategy for reducing oxidative stress during inflammatory responses, including the early stages of septic shock. PMID:25882048

  2. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase

    PubMed Central

    Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun

    2014-01-01

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287

  3. Bacillus calmette-guerin infection in NADPH oxidase deficiency: defective mycobacterial sequestration and granuloma formation.

    PubMed

    Deffert, Christine; Schäppi, Michela G; Pache, Jean-Claude; Cachat, Julien; Vesin, Dominique; Bisig, Ruth; Ma Mulone, Xiaojuan; Kelkka, Tiina; Holmdahl, Rikard; Garcia, Irene; Olleros, Maria L; Krause, Karl-Heinz

    2014-09-01

    Patients with chronic granulomatous disease (CGD) lack generation of reactive oxygen species (ROS) through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M. bovis BCG was most commonly described (74%). The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and Cybb knock-out mice. In addition, we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter). Wild-type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (∼ 50%). Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild-type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-α, IFN-γ, IL-17 and IL-12) early after BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine production and

  4. NADPH oxidases in the arbuscular mycorrhizal symbiosis.

    PubMed

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-04-01

    Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  5. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice.

    PubMed

    Arechederra, María; Carmona, Rita; González-Nuñez, María; Gutiérrez-Uzquiza, Alvaro; Bragado, Paloma; Cruz-González, Ignacio; Cano, Elena; Guerrero, Carmen; Sánchez, Aránzazu; López-Novoa, José Miguel; Schneider, Michael D; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras, Almudena

    2013-12-01

    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control. PMID:23994610

  6. Oxidative stress, NADPH oxidases, and arteries.

    PubMed

    Sun, Qi-An; Runge, Marschall S; Madamanchi, Nageswara R

    2016-05-10

    Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD. PMID:25649240

  7. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization

    PubMed Central

    Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth

    2014-01-01

    Activation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2′-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b−/− mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.—Wang, H., Jiang, Y., Shi, D., Quilliam, L. A., Chrzanowska-Wodnicka, M., Wittchen, E. S., Li, D. Y., Hartnett, M. E. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization. PMID:24043260

  8. Identification and Characterization of Sclerotinia sclerotiorum NADPH Oxidases▿†

    PubMed Central

    Kim, Hyo-jin; Chen, Changbin; Kabbage, Mehdi; Dickman, Martin B.

    2011-01-01

    Numerous studies have shown both the detrimental and beneficial effects of reactive oxygen species (ROS) in animals, plants, and fungi. These organisms utilize controlled generation of ROS for signaling, pathogenicity, and development. Here, we show that ROS are essential for the pathogenic development of Sclerotinia sclerotiorum, an economically important fungal pathogen with a broad host range. Based on the organism's completed genome sequence, we identified two S. sclerotiorum NADPH oxidases (SsNox1 and SsNox2), which presumably are involved in ROS generation. RNA interference (RNAi) was used to examine the function of SsNox1 and SsNox2. Silencing of SsNox1 expression indicated a central role for this enzyme in both virulence and pathogenic (sclerotial) development, while inactivation of the SsNox2 gene resulted in limited sclerotial development, but the organism remained fully pathogenic. ΔSsnox1 strains had reduced ROS levels, were unable to develop sclerotia, and unexpectedly correlated with significantly reduced oxalate production. These results are in accordance with previous observations indicating that fungal NADPH oxidases are required for pathogenic development and are consistent with the importance of ROS regulation in the successful pathogenesis of S. sclerotiorum. PMID:21890677

  9. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse.

    PubMed

    Kassan, Modar; Ait-Aissa, Karima; Ali, Maha; Trebak, Mohamed; Matrougui, Khalid

    2015-10-01

    We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2. PMID:26036345

  10. Effects of Differing Response-Force Requirements on Food-Maintained Responding in C57BL/6J Mice

    ERIC Educational Resources Information Center

    Zarcone, Troy J.; Chen, Rong; Fowler, Stephen C.

    2009-01-01

    The effect of force requirements on response effort was examined using inbred C57BL/6J mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as responses (i.e., all responses above the measurement threshold). Different, higher force requirements were used to define criterion responses (a subclass of all…

  11. Major Basic Protein from Eosinophils and Myeloperoxidase from Neutrophils Are Required for Protective Immunity to Strongyloides stercoralis in Mice

    PubMed Central

    O'Connell, Amy E.; Hess, Jessica A.; Santiago, Gilberto A.; Nolan, Thomas J.; Lok, James B.; Lee, James J.; Abraham, David

    2011-01-01

    Eosinophils and neutrophils contribute to larval killing during the primary immune response, and neutrophils are effector cells in the secondary response to Strongyloides stercoralis in mice. The objective of this study was to determine the molecular mechanisms used by eosinophils and neutrophils to control infections with S. stercoralis. Using mice deficient in the eosinophil granule products major basic protein (MBP) and eosinophil peroxidase (EPO), it was determined that eosinophils kill the larvae through an MBP-dependent mechanism in the primary immune response if other effector cells are absent. Infecting PHIL mice, which are eosinophil deficient, with S. stercoralis resulted in development of primary and secondary immune responses that were similar to those of wild-type mice, suggesting that eosinophils are not an absolute requirement for larval killing or development of secondary immunity. Treating PHIL mice with a neutrophil-depleting antibody resulted in a significant impairment in larval killing. Naïve and immunized mice with neutrophils deficient in myeloperoxidase (MPO) infected with S. stercoralis had significantly decreased larval killing. It was concluded that there is redundancy in the primary immune response, with eosinophils killing the larvae through an MBP-dependent mechanism and neutrophils killing the worms through an MPO-dependent mechanism. Eosinophils are not required for the development or function of secondary immunity, but MPO from neutrophils is required for protective secondary immunity. PMID:21482685

  12. Serotonin signaling in the brain of adult female mice is required for sexual preference

    PubMed Central

    Zhang, Shasha; Liu, Yan; Rao, Yi

    2013-01-01

    A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female–female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference. PMID:23716677

  13. The life-extending effect of dietary restriction requires Foxo3 in mice.

    PubMed

    Shimokawa, Isao; Komatsu, Toshimitsu; Hayashi, Nobutaka; Kim, Sang-Eun; Kawata, Takuya; Park, Seongjoon; Hayashi, Hiroko; Yamaza, Haruyoshi; Chiba, Takuya; Mori, Ryoichi

    2015-08-01

    Forkhead box O (Foxo) transcription factors may be involved in the salutary effect of dietary restriction (DR). This study examined the role of Foxo3 in lifespan extension and cancer suppression in DR mice. Wild-type (WT) and Foxo3-knockout heterozygous ((+/-) ) and homozygous ((-/-) ) mice were subjected to a 30% DR regimen initiated at 12 weeks of age. Control mice were fed ad libitum (AL) throughout the study. In contrast to WT mice, DR did not significantly extend the lifespan of Foxo3(+/-) or Foxo3(-/-) mice. However, DR reduced the prevalence of tumors at death in WT, Foxo3(+/-) , and Foxo3(-/-) mice. These results indicate the necessity of Foxo3 for lifespan extension but not cancer suppression by DR. The findings in Foxo3(+/-) mice contrast with those in Foxo1(+/-) mice reported previously by our laboratory suggest differential regulation of cancer and lifespan by DR via Foxo1 and Foxo3. PMID:25808402

  14. Positive, But Not Negative Feedback Actions of Estradiol in Adult Female Mice Require Estrogen Receptor α in Kisspeptin Neurons

    PubMed Central

    Dubois, Sharon L.; Acosta-Martínez, Maricedes; DeJoseph, Mary R.; Wolfe, Andrew; Radovick, Sally; Boehm, Ulrich; Urban, Janice H.

    2015-01-01

    Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell–specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both. PMID:25545386

  15. NADPH-dependent generation of a cytosolic dithiol which activates hepatic iodothyronine 5'-deiodinase. Demonstration by alkylation with iodoacetamide.

    PubMed Central

    Das, A K; Hummel, B C; Walfish, P G

    1986-01-01

    We have assessed a previously proposed mechanism mediating 5'-deiodinase activation involving enzymic reduction of disulphides to thiols in non-glutathione cytosolic components of Mr approx. 13,000 (Fraction B) catalysed by NADPH in the presence of other cytosolic components of Mr greater than 60,000 (Fraction A). The extent of Fraction B reduction under various experimental conditions was monitored by determining the amount of 14C incorporated into chromatographically isolated Fractions B and A after their alkylation with iodo[14C]acetamide. Incorporation of 14C into B was found to require the simultaneous presence of NADPH and A, to be directly proportional to the concentration of NADPH added, and to be unaffected by either propylthiouracil or iopanoate. Activation of 5'-deiodinase attainable using B after its partial reduction by various concentrations of NADPH and subsequent alkylation with non-radioactive iodoacetamide was inversely proportional to the previously added concentration of NADPH. Fraction B was stable at 100 degrees C for 5 min, while similar heat treatment of Fraction A or omission of NADPH resulted in a complete loss of 14C incorporation. A greater than 90% reduction in iodo[14C]acetamide incorporation was revealed when 0.2 mM-sodium arsenite was added after enzymic reduction of B, as well as when NADPH was replaced by NADH. Fraction B could be labelled more extensively after reduction non-specifically, with dithiothreitol or NaBH4, but not by GSH. These observations provide strong evidence for the presence in vivo of a cytosolic disulphide (DFBS2) in Fraction B which can be reduced enzymically to a dithiol [DFB(SH)2] by NADPH and cytosolic components in Fraction A. The degree of activation of hepatic 5'-deiodinase correlated with the amount of available (unalkylated) Fraction B. PMID:3814095

  16. NADPH Oxidase Dependent NLRP3 Inflammasome Activation Plays an Important Role in Lung Fibrosis by Multi-Walled Carbon Nanotubes

    PubMed Central

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E.; Xia, Tian

    2015-01-01

    The purpose of this communication is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species (ROS), including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, SWCNTs, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22phox deficient cells. NADPH oxidase is directly involved in lysosome damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22phox deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47phox deficient mice. Moreover, p47phox deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine (NAC) in wild type animals exposed to MWCNTs. PMID:25581126

  17. Endogenous Interleukin-12 Is Not Required for Resolution of Chlamydophila abortus (Chlamydia psittaci Serotype 1) Infection in Mice

    PubMed Central

    Del Río, Laura; Buendía, Antonio J.; Sánchez, Joaquín; Gallego, María C.; Caro, María R.; Ortega, Nieves; Seva, Juan; Pallarés, Francisco J.; Cuello, Francisco; Salinas, Jesús

    2001-01-01

    A Th1 immune response involving gamma interferon (IFN-γ) production is required to eliminate Chlamydophila abortus infections. In this study, the role of interleukin-12 (IL-12) in protecting against C. abortus infection was investigated using IL-12−/− and wild-type (WT) C57BL/6 mice to determine the role of this Th1-promoting cytokine. IL-12−/− mice were able to eliminate the C. abortus infection in a primary infection. However, there was a delay in the clearance of bacteria when IL-12−/− mice were infected with a sublethal dose of C. abortus, the delay being associated with a lower production of IFN-γ. The low level of IFN-γ was essential for survival of IL-12−/− infected mice. Both WT and IL-12−/− mice developed a Th1 immune response against C. abortus infection, since they both produced IFN-γ and immunoglobulin G2a antibody isotype. In addition, when mice were given a secondary infectious challenge with C. abortus, a protective host response which resolved the secondary infection was developed by both WT and IL-12−/− mice. The lack of IL-12 resulted in few infiltrating CD4+ T cells in the liver relative to the number in WT mice, although the number of CD8+ T cells was slightly higher. The more intense Th1 response presented by WT mice may have a pathogenic effect, as the animals showed higher morbidity after the infection. In conclusion, these results suggest that although IL-12 expedites the clearance of C. abortus infection, this cytokine is not essential for the establishment of a protective host response against the infection. PMID:11447154

  18. miR-26a is required for skeletal muscle differentiation and regeneration in mice

    PubMed Central

    Dey, Bijan K.; Gagan, Jeffrey; Yan, Zhen; Dutta, Anindya

    2012-01-01

    Multiple microRNAs are known to be induced during the differentiation of myoblasts to myotubes. Yet, experiments in animals have not provided clear evidence for the requirement of most of these microRNAs in myogenic differentiation in vivo. miR-26a is induced during skeletal muscle differentiation and is predicted to target a well-known inhibitor of differentiation, the transforming growth factor β/bone morphogenetic protein (TGF-β/BMP) signaling pathway. Here we show that exogenous miR-26a promotes differentiation of myoblasts, while inhibition of miR-26a by antisense oligonucleotides or by Tough-Decoys delays differentiation. miR-26a targets the transcription factors Smad1 and Smad4, critical for the TGF-β/BMP pathway, and expression of microRNA-resistant forms of these transcription factors inhibits differentiation. Injection of antagomirs specific to miR-26a into neonatal mice derepressed both Smad expression and activity and consequently inhibited skeletal muscle differentiation. In addition, miR-26a is induced during skeletal muscle regeneration after injury. Inhibiting miR-26a in the tibialis anterior muscles through the injection of adeno-associated virus expressing a Tough-Decoy targeting miR-26a prevents Smad down-regulation and delays regeneration. These findings provide evidence for the requirement of miR-26a for skeletal muscle differentiation and regeneration in vivo. PMID:23028144

  19. Toll-like receptor 4 (TLR4) is required for protective immunity to larval Strongyloides stercoralis in mice.

    PubMed

    Kerepesi, Laura A; Hess, Jessica A; Leon, Ofra; Nolan, Thomas J; Schad, Gerhard A; Abraham, David

    2007-01-01

    TLR4 is important for immunity to various unicellular organisms and has been implicated in the immune responses to helminth parasites. The immune response against helminths is generally Th2-mediated and studies have shown that TLR4 is required for the development of a Th2 response against allergens and helminth antigens in mice. C3H/HeJ mice, which have a point mutation in the Tlr4 gene, were used in this study to determine the role of TLR4 in protective immunity to the nematode Strongyloides stercoralis. It was demonstrated that TLR4 was not required for killing larval S. stercoralis during the innate immune response, but was required for killing the parasites during the adaptive immune response. No differences were seen in the IL-5 and IFN-gamma responses, antibody responses or cell recruitment between wild type and C3H/HeJ mice after immunization. Protective immunity was restored in immunized C3H/HeJ mice by the addition of wild type peritoneal exudate cells in the environment of the larvae. It was therefore concluded that the inability of TLR4-mutant mice to kill larval S. stercoralis during the adaptive immune response is due to a defect in the effector cells recruited to the microenvironment of the larvae. PMID:17196865

  20. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  1. Vitamin E--a selective inhibitor of the NADPH oxidoreductase enzyme system in human granulocytes.

    PubMed Central

    Butterick, C. J.; Baehner, R. L.; Boxer, L. A.; Jersild, R. A.

    1983-01-01

    The cellular sites of H2O2 formation in phagocytizing granulocytes have been identified with cerium chloride. A precipitate was visible in phagosomes and on plasma membranes from intact normal cells in the presence of either 0.71 mM NADH or NADPH. X-ray microanalysis permitted identification of cerium deposition within the phagosomes even in the absence of reduced pyridine nucleotides. Catalase ablated the formation of the reaction product. Intact granulocytes obtained from subjects receiving 1600 units of vitamin E daily for 2 weeks exhibited reaction product in the presence of NADH but not NADPH. Intact cells from subjects treated with vitamin E demonstrated diminished numbers of phagocytic vesicles containing reaction product. During phagocytosis the granulocytes treated with vitamin E consumed oxygen but exhibited significantly reduced rates of hydrogen-peroxide-dependent glucose-1-14C oxidation to 14CO2. Isolated phagocytic vesicles obtained from granulocytes after ingestion of opsonized lipopolysaccharide-paraffin oil droplets contained reaction product when exposed to 0.71 mM NADPH. No reaction product was evident at 0.71 mM NADH but was evident at 2.0 mM NADH. Isolated phagocytic vesicles from the granulocytes of subjects receiving vitamin E exhibited reaction product only in the presence of NADH. These observations suggest that vitamin E interferes with the electron transport chain apparently required for the oxidation of NADPH to form H2O2 in the phagocytizing granulocyte. Images Figure 1 Figure 2 PMID:6614142

  2. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells.

    PubMed

    Collins-Underwood, J Racquel; Zhao, Weiling; Sharpe, Jessica G; Robbins, Mike E

    2008-09-15

    The need to both understand and minimize the side effects of brain irradiation is heightened by the ever-increasing number of patients with brain metastases that require treatment with whole brain irradiation (WBI); some 200,000 cancer patients/year receive partial or WBI. At the present time, there are no successful treatments for radiation-induced brain injury, nor are there any known effective preventive strategies. Data support a role for chronic oxidative stress in radiation-induced late effects. However, the pathogenic mechanism(s) involved remains unknown. One candidate source of reactive oxygen species (ROS) is nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase, which converts molecular oxygen (O(2)) to the superoxide anion (O(2)(-)) on activation. We hypothesize that brain irradiation leads to activation of NADPH oxidase. We report that irradiating rat brain microvascular endothelial cells in vitro leads to increased (i) intracellular ROS generation, (ii) activation of the transcription factor NFkappaB, (iii) expression of ICAM-1 and PAI-1, and (iv) expression of Nox4, p22(phox), and p47(phox). Pharmacologic and genetic inhibition of NADPH oxidase blocked the radiation-mediated upregulation of intracellular ROS, activation of NFkappaB, and upregulation of ICAM-1 and PAI-1. These results suggest that activation of NADPH oxidase may play a role in radiation-induced oxidative stress. PMID:18640264

  3. Insights into the requirement of phosphatidylcholine synthesis for liver function in mice.

    PubMed

    Noga, Anna A; Vance, Dennis E

    2003-10-01

    Phosphatidylcholine (PC) is made in the liver by the CDP-choline pathway and via phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the conversion of phosphatidylethanolamine to PC. Unexpectedly, hepatic apolipoprotein B-100 secretion is inhibited in male, but not female, Pemt-/- mice (Noga, A. A., Y. Zhao, and D. E. Vance. 2002. J. Biol. Chem. 277: 42358-42365; Noga, A. A., and D. E. Vance. 2003. J. Biol. Chem. 278: 21851-21859). To gain further insight into this process, we compared PC metabolism in male and female mice fed chow or a high-fat/high-cholesterol (HF/HC) diet. Immunoblot analyses demonstrated that twice as much PEMT2 was present in livers from female compared with male mice. In contrast, assays of CTP:phosphocholine cytidylyltransferase from livers of Pemt+/+ mice demonstrated more active cytidylyltransferase in male than in female mice. Secretion of PEMT-derived PC into lipoproteins was examined in vivo by injection of mice with [methyl-3H]methionine in the presence of Triton WR1339. The PEMT-derived PC shifts to smaller-sized particles in response to a HF/HC diet, but only in male mice. Secretion of PEMT-derived PC into bile was enhanced in mice fed a HF/HC diet. These results demonstrate that the synthesis and targeting of PC produced by the PEMT pathway in the livers of mice differs in a gender- and diet-specific manner. PMID:12837848

  4. Activation of antibacterial autophagy by NADPH oxidases

    PubMed Central

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Dinauer, Mary C.; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy. PMID:19339495

  5. NADPH oxidases: new actors in thyroid cancer?

    PubMed

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  6. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections.

    PubMed

    Deffert, Christine; Cachat, Julien; Krause, Karl-Heinz

    2014-08-01

    Infection of humans with Mycobacterium tuberculosis remains frequent and may still lead to death. After primary infection, the immune system is often able to control M. tuberculosis infection over a prolonged latency period, but a decrease in immune function (from HIV to immunosenescence) leads to active disease. Available vaccines against tuberculosis are restricted to BCG, a live vaccine with an attenuated strain of M. bovis. Immunodeficiency may not only be associated with an increased risk of tuberculosis, but also with local or disseminated BCG infection. Genetic deficiency in the reactive oxygen species (ROS)-producing phagocyte NADPH oxidase NOX2 is called chronic granulomatous disease (CGD). CGD is among the most common primary immune deficiencies. Here we review our knowledge on the importance of NOX2-derived ROS in mycobacterial infection. A literature review suggests that human CGD patient frequently have an increased susceptibility to BCG and to M. tuberculosis. In vitro studies and experiments with CGD mice are incomplete and yielded - at least in part - contradictory results. Thus, although observations in human CGD patients leave little doubt about the role of NOX2 in the control of mycobacteria, further studies will be necessary to unequivocally define and understand the role of ROS. PMID:24916152

  7. Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection.

    PubMed

    Pircalabioru, Gratiela; Aviello, Gabriella; Kubica, Malgorzata; Zhdanov, Alexander; Paclet, Marie-Helene; Brennan, Lorraine; Hertzberger, Rosanne; Papkovsky, Dmitri; Bourke, Billy; Knaus, Ulla G

    2016-05-11

    NOX/DUOX family of NADPH oxidases are expressed in diverse tissues and are the primary enzymes for the generation of reactive oxygen species (ROS). The intestinal epithelium expresses NOX1, NOX4, and DUOX2, whose functions are not well understood. To address this, we generated mice with complete or epithelium-restricted deficiency in the obligatory NOX dimerization partner Cyba (p22(phox)). We discovered that NOX1 regulates DUOX2 expression in the intestinal epithelium, which magnified the epithelial ROS-deficiency. Unexpectedly, epithelial deficiency of Cyba resulted in protection from C. rodentium and L. monocytogenes infection. Microbiota analysis linked epithelial Cyba deficiency to an enrichment of H2O2-producing bacterial strains in the gut. In particular, elevated levels of lactobacilli physically displaced and attenuated C. rodentium virulence by H2O2-mediated suppression of the virulence-associated LEE pathogenicity island. This transmissible compensatory adaptation relied on environmental factors, an important consideration for prevention and therapy of enteric disease. PMID:27173933

  8. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.

    2012-01-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2Y245X/Y245X mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, co-immunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. PMID:22460705

  9. C9orf72 is required for proper macrophage and microglial function in mice.

    PubMed

    O'Rourke, J G; Bogdanik, L; Yáñez, A; Lall, D; Wolf, A J; Muhammad, A K M G; Ho, R; Carmona, S; Vit, J P; Zarrow, J; Kim, K J; Bell, S; Harms, M B; Miller, T M; Dangler, C A; Underhill, D M; Goodridge, H S; Lutz, C M; Baloh, R H

    2016-03-18

    Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers. PMID:26989253

  10. Deficiency of Rac1 Blocks NADPH Oxidase Activation, Inhibits Endoplasmic Reticulum Stress, and Reduces Myocardial Remodeling in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Li, Jianmin; Zhu, Huaqing; Shen, E; Wan, Li; Arnold, J. Malcolm O.; Peng, Tianqing

    2010-01-01

    OBJECTIVE Our recent study demonstrated that Rac1 and NADPH oxidase activation contributes to cardiomyocyte apoptosis in short-term diabetes. This study was undertaken to investigate if disruption of Rac1 and inhibition of NADPH oxidase would prevent myocardial remodeling in chronic diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by injection of streptozotocin in mice with cardiomyocyte-specific Rac1 knockout and their wild-type littermates. In a separate experiment, wild-type diabetic mice were treated with vehicle or apocynin in drinking water. Myocardial hypertrophy, fibrosis, endoplasmic reticulum (ER) stress, inflammatory response, and myocardial function were investigated after 2 months of diabetes. Isolated adult rat cardiomyocytes were cultured and stimulated with high glucose. RESULTS In diabetic hearts, NADPH oxidase activation, its subunits' expression, and reactive oxygen species production were inhibited by Rac1 knockout or apocynin treatment. Myocardial collagen deposition and cardiomyocyte cross-sectional areas were significantly increased in diabetic mice, which were accompanied by elevated expression of pro-fibrotic genes and hypertrophic genes. Deficiency of Rac1 or apocynin administration reduced myocardial fibrosis and hypertrophy, resulting in improved myocardial function. These effects were associated with a normalization of ER stress markers' expression and inflammatory response in diabetic hearts. In cultured cardiomyocytes, high glucose–induced ER stress was inhibited by blocking Rac1 or NADPH oxidase. CONCLUSIONS Rac1 via NADPH oxidase activation induces myocardial remodeling and dysfunction in diabetic mice. The role of Rac1 signaling may be associated with ER stress and inflammation. Thus, targeting inhibition of Rac1 and NADPH oxidase may be a therapeutic approach for diabetic cardiomyopathy. PMID:20522592

  11. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCγ2 signaling axis in mice

    PubMed Central

    Graham, Daniel B.; Robertson, Charles M.; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M. Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W. Michael; Faccio, Roberta; Coopersmith, Craig M.; Swat, Wojciech

    2007-01-01

    Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C–γ2 (PLC-γ2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-γ2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569

  12. Neutrophil-mediated oxidative burst and host defense are controlled by a Vav-PLCgamma2 signaling axis in mice.

    PubMed

    Graham, Daniel B; Robertson, Charles M; Bautista, Jhoanne; Mascarenhas, Francesca; Diacovo, M Julia; Montgrain, Vivianne; Lam, Siu Kit; Cremasco, Viviana; Dunne, W Michael; Faccio, Roberta; Coopersmith, Craig M; Swat, Wojciech

    2007-11-01

    Oxidative burst, a critical antimicrobial mechanism of neutrophils, involves the rapid generation and release of reactive oxygen intermediates (ROIs) by the NADPH oxidase complex. Genetic mutations in an NADPH oxidase subunit, gp91 (also referred to as NOX2), are associated with chronic granulomatous disease (CGD), which is characterized by recurrent and life-threatening microbial infections. To combat such infections, ROIs are produced by neutrophils after stimulation by integrin-dependent adhesion to the ECM in conjunction with stimulation from inflammatory mediators, or microbial components containing pathogen-associated molecular patterns. In this report, we provide genetic evidence that both the Vav family of Rho GTPase guanine nucleotide exchange factors (GEFs) and phospholipase C-gamma2 (PLC-gamma2) are critical mediators of adhesion-dependent ROI production by neutrophils in mice. We also demonstrated that Vav was critically required for neutrophil-dependent host defense against systemic infection by Staphylococcus aureus and Pseudomonas aeruginosa, 2 common pathogens associated with fatal cases of hospital-acquired pneumonia. We identified a molecular pathway in which Vav GEFs linked integrin-mediated signaling with PLC-gamma2 activation, release of intracellular Ca2+ cations, and generation of diacylglycerol to control assembly of the NADPH oxidase complex and ROI production by neutrophils. Taken together, our data indicate that integrin-dependent signals generated during neutrophil adhesion contribute to the activation of NADPH oxidase by a variety of distinct effector pathways, all of which require Vav. PMID:17932569

  13. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  14. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  15. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia.

    PubMed

    Gujral, Jaspreet S; Hinson, Jack A; Farhood, Anwar; Jaeschke, Hartmut

    2004-07-01

    Neutrophils can cause liver injury during endotoxemia through generation of reactive oxygen species. However, the enzymatic source of the oxidant stress and the nature of the oxidants generated remain unclear. Therefore, we investigated the involvement of NADPH oxidase in the pathophysiology by using the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) in the galactosamine/endotoxin (700 mg/kg Gal:100 microg/kg ET) model of liver injury. In addition, we measured chlorotyrosine as indicator for hypochlorous acid formation by myeloperoxidase. Gal/ET treatment of male C3HeB/FeJ mice resulted in sinusoidal neutrophil accumulation and parenchymal cell apoptosis (14 +/- 3% of cells) at 6 h. At 7 h, 35% of neutrophils had transmigrated. The number of apoptotic cells increased to 25 +/- 2%, and the overall number of dead cells was 48 +/- 3%; many of them showed the characteristic morphology of necrosis. Hepatocytes, which colocalized with extravasated neutrophils, stained positive for chlorotyrosine and 4-hydroxynonenal (4-HNE) protein adducts. In contrast, animals pretreated with DPI (2.5 mg/kg) were protected against liver injury at 7 h (necrosis = 20 +/- 2%). These livers showed little chlorotyrosine or 4-HNE staining, but apoptosis and neutrophil accumulation and extravasation remained unaffected. However, DPI-treated animals showed serious liver injury at 9 h due to sustained apoptosis. The results indicate that NADPH oxidase is responsible for the neutrophil-derived oxidant stress, which includes formation of hypochlorous acid by myeloperoxidase. Thus NADPH oxidase could be a promising therapeutic target to prevent neutrophil-mediated liver injury. However, the long-term benefit of this approach needs to be investigated in models relevant for human liver disease. PMID:15044177

  16. Control of Hepatic Nuclear Superoxide Production by Glucose 6-Phosphate Dehydrogenase and NADPH Oxidase-4*

    PubMed Central

    Spencer, Netanya Y.; Yan, Ziying; Boudreau, Ryan L.; Zhang, Yulong; Luo, Meihui; Li, Qiang; Tian, Xin; Shah, Ajay M.; Davisson, Robin L.; Davidson, Beverly; Banfi, Botond; Engelhardt, John F.

    2011-01-01

    Redox-regulated signal transduction is coordinated by spatially controlled production of reactive oxygen species within subcellular compartments. The nucleus has long been known to produce superoxide (O2⨪); however, the mechanisms that control this function remain largely unknown. We have characterized molecular features of a nuclear superoxide-producing system in the mouse liver. Using electron paramagnetic resonance, we investigated whether several NADPH oxidases (NOX1, 2, and 4) and known activators of NOX (Rac1, Rac2, p22phox, and p47phox) contribute to nuclear O2⨪ production in isolated hepatic nuclei. Our findings demonstrate that NOX4 most significantly contributes to hepatic nuclear O2⨪ production that utilizes NADPH as an electron donor. Although NOX4 protein immunolocalized to both nuclear membranes and intranuclear inclusions, fluorescent detection of NADPH-dependent nuclear O2⨪ predominantly localized to the perinuclear space. Interestingly, NADP+ and G6P also induced nuclear O2⨪ production, suggesting that intranuclear glucose-6-phosphate dehydrogenase (G6PD) can control NOX4 activity through nuclear NADPH production. Using G6PD mutant mice and G6PD shRNA, we confirmed that reductions in nuclear G6PD enzyme decrease the ability of hepatic nuclei to generate O2⨪ in response to NADP+ and G6P. NOX4 and G6PD protein were also observed in overlapping microdomains within the nucleus. These findings provide new insights on the metabolic pathways for substrate regulation of nuclear O2⨪ production by NOX4. PMID:21212270

  17. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.

    PubMed

    Wasylenko, Thomas M; Ahn, Woo Suk; Stephanopoulos, Gregory

    2015-07-01

    Oleaginous microbes represent an attractive means of converting a diverse range of feedstocks into oils that can be transesterified to biodiesel. However, the mechanism of lipid overproduction in these organisms is incompletely understood, hindering the development of strategies for engineering superior biocatalysts for "single-cell oil" production. In particular, it is unclear which pathways are used to generate the large quantities of NADPH required for overproduction of the highly reduced fatty acid species. While early studies implicated malic enzyme as having a key role in production of lipogenic NADPH in oleaginous fungi, several recent reports have cast doubts as to whether malic enzyme may contribute to production of lipogenic NADPH in the model oleaginous yeast Yarrowia lipolytica. To address this problem we have used (13)C-Metabolic Flux Analysis to estimate the metabolic flux distributions during lipid accumulation in two Y. lipolytica strains; a control strain and a previously published engineered strain capable of producing lipids at roughly twice the yield. We observe a dramatic rearrangement of the metabolic flux distribution in the engineered strain which supports lipid overproduction. The NADPH-producing flux through the oxidative Pentose Phosphate Pathway is approximately doubled in the engineered strain in response to the roughly two-fold increase in fatty acid biosynthesis, while the flux through malic enzyme does not differ significantly between the two strains. Moreover, the estimated rate of NADPH production in the oxidative Pentose Phosphate Pathway is in good agreement with the estimated rate of NADPH consumption in fatty acid biosynthesis in both strains. These results suggest the oxidative Pentose Phosphate Pathway is the primary source of lipogenic NADPH in Y. lipolytica. PMID:25747307

  18. A Novel Nontoxic Inhibitor of the Activation of NADPH Oxidase Reduces Reactive Oxygen Species Production in Mouse LungS⃞

    PubMed Central

    Lee, Intae; Dodia, Chandra; Chatterjee, Shampa; Zagorski, John; Mesaros, Clementina; Blair, Ian A.; Feinstein, Sheldon I.; Jain, Mahendra

    2013-01-01

    1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02–0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67–87% of the injected dose for i.t. and 23–42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24–72 hours. Mice treated with MJ33 at 12.5–25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation. PMID:23475902

  19. Vitamin D receptor is required for dietary calcium-induced repression of calbindin-D9k expression in mice.

    PubMed

    Bolt, Merry J G; Cao, Li-Ping; Kong, Juan; Sitrin, Michael D; Li, Yan Chun

    2005-05-01

    Calbindin (CaBP), the vitamin D-dependent calcium-binding protein, is believed to play an important role in intracellular calcium transport. The aim of this study was to investigate the effect of high dietary calcium on the expression of CaBP-D9k and CaBP-D28k in the presence and absence of a functional vitamin D receptor (VDR). Treatment with the HCa-Lac diet containing 2% calcium, 1.5% phosphorus and 20% lactose reversed the hypocalcemia seen in adult VDR-null mice in 3 weeks but did not significantly change the blood ionized calcium in wild-type mice. This dietary treatment dramatically suppressed both the duodenal and the renal CaBP-D9k expression in wild-type mice at both mRNA and protein levels but had little effect on the expression of the same gene in VDR-null mice. Removal of this diet gradually restored the expression of CaBP-D9k to the untreated level in wild-type mice. Only moderate or little change in CaBP-D28k expression was seen in wild-type and VDR-null mice fed with the HCa-Lac diet. The VDR content in the duodenum or kidney of wild-type mice was not altered by the dietary treatment. These results suggest that calcium regulates CaBP-D9k expression by modulating the circulating 1,25-dihydrxyvitamin D(3) level and that VDR is thus required for the dietary calcium-induced suppression of CaBP-D9k expression. Calcium regulation of the CaBP-D9k level may represent an important mechanism by which animals maintain their calcium balance. PMID:15866228

  20. NADPH Oxidases in Chronic Liver Diseases

    PubMed Central

    Jiang, Joy X.; Török, Natalie J.

    2015-01-01

    Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases. PMID:26436133

  1. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  2. LKB1 Is Required for the Development and Maintenance of Stereocilia in Inner Ear Hair Cells in Mice

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Zhang, Tingting; Jin, Yecheng; Li, Huashun

    2015-01-01

    The LKB1 gene, which encodes a serine/threonine kinase, was discovered to play crucial roles in cell differentiation, proliferation, and the establishment of cell polarity. In our study, LKB1 conditional knockout mice (Atoh1-LKB1-/- mice) were generated to investigate LKB1 function in the inner ear. Tests of auditory brainstem response and distortion product otoacoustic emissions revealed significant decreases in the hearing sensitivities of the Atoh1-LKB1-/- mice. In Atoh1-LKB1-/- mice, malformations of hair cell stereocilliary bundles were present as early as postnatal day 1 (P1), a time long before the maturation of the hair cell bundles. In addition, we also observed outer hair cell (OHC) loss starting at P14. The impaired stereocilliary bundles occurred long before the presence of hair cell loss. Stereociliary cytoskeletal structure depends on the core actin-based cytoskeleton and several actin-binding proteins. By Western blot, we examined actin-binding proteins, specifically ERM (ezrin/radixin/moesin) proteins involved in the regulation of the actin cytoskeleton of hair cell stereocilia. Our results revealed that the phosphorylation of ERM proteins (pERM) was significantly decreased in mutant mice. Thus, we propose that the decreased pERM may be a key factor for the impaired stereocillia function, and the damaged stereocillia may induce hair cell loss and hearing impairments. Taken together, our data indicates that LKB1 is required for the development and maintenance of stereocilia in the inner ear. PMID:26274331

  3. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  4. NADPH Oxidase NOX4 Mediates Stellate Cell Activation and Hepatocyte Cell Death during Liver Fibrosis Development

    PubMed Central

    Sancho, Patricia; Mainez, Jèssica; Crosas-Molist, Eva; Roncero, César; Fernández-Rodriguez, Conrado M.; Pinedo, Fernando; Huber, Heidemarie; Eferl, Robert; Mikulits, Wolfgang; Fabregat, Isabel

    2012-01-01

    A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes. PMID:23049784

  5. The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2009-08-18

    Peptidergic mechanisms controlling feeding, metabolism, thermoregulation, and sleep overlap in the hypothalamus. Low ambient temperatures and food restriction induce hypothermic (torpor) bouts and characteristic metabolic and sleep changes in mice. We report that mice lacking the preproghrelin gene, but not those lacking the ghrelin receptor, have impaired abilities to manifest and integrate normal sleep and thermoregulatory responses to metabolic challenges. In response to fasting at 17 degrees C (a subthermoneutral ambient temperature), preproghrelin knockout mice enter hypothermic bouts associated with reduced sleep, culminating in a marked drop in body temperature to near-ambient levels. Prior treatment with obestatin, another preproghrelin gene product, attenuates the hypothermic response of preproghrelin knockout mice. Results suggest that obestatin is a component in the coordinated regulation of metabolism and sleep during torpor. PMID:19666521

  6. Adrenal Development in Mice Requires GATA4 and GATA6 Transcription Factors

    PubMed Central

    Jiménez, Elizabeth; Hatch, Heather M.; Jiang, Tianyu; Morse, Deborah A.; Fox, Shawna C.

    2015-01-01

    The adrenal glands consist of an outer cortex and an inner medulla, and their primary purposes include hormone synthesis and secretion. The adrenal cortex produces a complex array of steroid hormones, whereas the medulla is part of the sympathetic nervous system and produces the catecholamines epinephrine and norepinephrine. In the mouse, GATA binding protein (GATA) 4 and GATA6 transcription factors are coexpressed in several embryonic tissues, including the adrenal cortex. To explore the roles of GATA4 and GATA6 in mouse adrenal development, we conditionally deleted these genes in adrenocortical cells using the Sf1Cre strain of animals. We report here that mice with Sf1Cre-mediated double deletion of Gata4 and Gata6 genes lack identifiable adrenal glands, steroidogenic factor 1-positive cortical cells and steroidogenic gene expression in the adrenal location. The inactivation of the Gata6 gene alone (Sf1Cre;Gata6flox/flox) drastically reduced the adrenal size and corticosterone production in the adult animals. Adrenocortical aplasia is expected to result in the demise of the animal within 2 weeks after birth unless glucocorticoids are provided. In accordance, Sf1Cre;Gata4flox/floxGata6flox/flox females depend on steroid supplementation to survive after weaning. Surprisingly, Sf1Cre;Gata4flox/floxGata6flox/flox males appear to live normal lifespans as vital steroidogenic synthesis shifts to their testes. Our results reveal a requirement for GATA factors in adrenal development and provide a novel tool to characterize the transcriptional network controlling adrenocortical cell fates. PMID:25933105

  7. Sall1, Sall2, and Sall4 Are Required for Neural Tube Closure in Mice

    PubMed Central

    Böhm, Johann; Buck, Anja; Borozdin, Wiktor; Mannan, Ashraf U.; Matysiak-Scholze, Uta; Adham, Ibrahim; Schulz-Schaeffer, Walter; Floss, Thomas; Wurst, Wolfgang; Kohlhase, Jürgen; Barrionuevo, Francisco

    2008-01-01

    Four homologs to the Drosophila homeotic gene spalt (sal) exist in both humans and mice (SALL1 to SALL4/Sall1 to Sall4, respectively). Mutations in both SALL1 and SALL4 result in the autosomal-dominant developmental disorders Townes-Brocks and Okihiro syndrome, respectively. In contrast, no human diseases have been associated with SALL2 to date, and Sall2-deficient mice have shown no apparent abnormal phenotype. We generated mice deficient in Sall2 and, contrary to previous reports, 11% of our Sall2-deficient mice showed background-specific neural tube defects, suggesting that Sall2 has a role in neurogenesis. To investigate whether Sall4 may compensate for the absence of Sall2, we generated compound Sall2 knockout/Sall4 genetrap mutant mice. In these mutants, the incidence of neural tube defects was significantly increased. Furthermore, we found a similar phenotype in compound Sall1/4 mutant mice, and in vitro studies showed that SALL1, SALL2, and SALL4 all co-localized in the nucleus. We therefore suggest a fundamental and redundant function of the Sall proteins in murine neurulation, with the heterozygous loss of a particular SALL protein also possibly compensated in humans during development. PMID:18818376

  8. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients. PMID:26340429

  9. Activation of mouse macrophages causes no change in expression and function of phorbol diesters' receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase.

    PubMed Central

    Berton, G; Cassatella, M; Cabrini, G; Rossi, F

    1985-01-01

    Mouse peritoneal macrophages activated in vivo by the injection of Corynebacterium parvum release larger amounts of superoxide anion (O2-) than macrophages from control mice when stimulated with phorbol myristate acetate (PMA). The biochemical bases for this enhanced response of activated macrophages have been investigated by studying the expression and function of receptors for the stimulant, and the activity of the enzyme NADPH oxidase which is responsible for the production of O2- in leucocytes. Studies of binding of phorbol dibutyrate, an agent closely related to PMA, showed that the affinity constants (Kds) and the number of binding sites were the same in resident and activated peritoneal macrophages. The activity of the NADPH oxidase was, however, different in the two macrophage populations which differ in their capacity to release O2-. NADPH oxidase activity was studied in macrophage monolayers after lysis with deoxycholate. The main features of this activity were as follows: stimulation of macrophages with PMA or zymosan caused an increase in NADPH-dependent O2- production; NADPH oxidase activity in the lysates followed the same dose-response curve for different concentrations of PMA as O2- release by intact macrophages; O2- release by intact macrophages could be fully accounted for by NADPH-dependent O2- production by macrophage lysates; activity was strictly substrate-specific, in that NADH could not substitute for NADPH; after stimulation with PMA or zymosan, NADPH oxidase activity was higher in lysates of C. parvum-activated macrophages than in lysates of resident macrophages; NADPH oxidase activities of activated and resident macrophages differed markedly in their kinetic parameters. The NADPH oxidase of macrophages activated by C. parvum or trehalose dimycolate of mycobacterial origin displayed a five to seven times lower Km compared to the enzyme in resident macrophages. PMID:2981767

  10. NADPH Oxidase-dependent Generation of Lysophosphatidylserine Enhances Clearance of Activated and Dying Neutrophils via G2A*S⃞

    PubMed Central

    Frasch, S. Courtney; Berry, Karin Zemski; Fernandez-Boyanapalli, Ruby; Jin, Hyun-Sun; Leslie, Christina; Henson, Peter M.; Murphy, Robert C.; Bratton, Donna L.

    2008-01-01

    Exofacial phosphatidylserine (PS) is an important ligand mediating apoptotic cell clearance by phagocytes. Oxidation of PS fatty acyl groups (oxPS) during apoptosis reportedly mediates recognition through scavenger receptors. Given the oxidative capacity of the neutrophil NADPH oxidase, we sought to identify oxPS signaling species in stimulated neutrophils. Using mass spectrometry analysis, only trace amounts of previously characterized oxPS species were found. Conversely, 18:1 and 18:0 lysophosphatidylserine (lyso-PS), known bioactive signaling phospholipids, were identified as abundant modified PS species following activation of the neutrophil oxidase. NADPH oxidase inhibitors blocked the production of lyso-PS in vitro, and accordingly, its generation in vivo by activated, murine neutrophils during zymosan-induced peritonitis was absent in mice lacking a functional NADPH oxidase (gp91phox-/-). Treatment of macrophages with lyso-PS enhanced the uptake of apoptotic cells in vitro, an effect that was dependent on signaling via the macrophage G2A receptor. Similarly, endogenously produced lyso-PS also enhanced the G2A-mediated uptake of activated PS-exposing (but non-apoptotic) neutrophils, raising the possibility of non-apoptotic mechanisms for removal of inflammatory cells during resolution. Finally, antibody blockade of G2A signaling in vivo prolonged zymosan-induced neutrophilia in wild-type mice, whereas having no effect in gp91phox-/- mice where lyso-PS are not generated. Taken together, we show that lyso-PS are modified PS species generated following activation of the NADPH oxidase and lyso-PS signaling through the macrophage G2A functions to enhance existing receptor/ligand systems for optimal resolution of neutrophilic inflammation. PMID:18824544

  11. Suppression of Cytosolic NADPH Pool by Thionicotinamide Increases Oxidative Stress and Synergizes with Chemotherapy.

    PubMed

    Tedeschi, Philip M; Lin, HongXia; Gounder, Murugesan; Kerrigan, John E; Abali, Emine Ercikan; Scotto, Kathleen; Bertino, Joseph R

    2015-10-01

    NAD(+) kinase (NADK) is the only known cytosolic enzyme that converts NAD(+) to NADP(+), which is subsequently reduced to NADPH. The demand for NADPH in cancer cells is elevated as reducing equivalents are required for the high levels of nucleotide, protein, and fatty acid synthesis found in proliferating cells as well as for neutralizing high levels of reactive oxygen species (ROS). We determined whether inhibition of NADK activity is a valid anticancer strategy alone and in combination with chemotherapeutic drugs known to induce ROS. In vitro and in vivo inhibition of NADK with either small-hairpin RNA or thionicotinamide inhibited proliferation. Thionicotinamide enhanced the ROS produced by several chemotherapeutic drugs and produced synergistic cell kill. NADK inhibitors alone or in combination with drugs that increase ROS-mediated stress may represent an efficacious antitumor combination and should be explored further. PMID:26219913

  12. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity

    PubMed Central

    Goldberg, Michel; Kellermann, O.; Dimitrova-Nakov, S.; Harichane, Y.; Baudry, A.

    2014-01-01

    In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR) was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO) mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins. Thus, upon mutation, enamel analysis based exclusively on incisor defects would be biased. In view of the functional relationship between enamel structure and tooth morphogenesis, identification of molecular actors involved in amelogenesis requires comparative studies between mice molars and incisors. PMID:25285079

  13. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.

    PubMed

    Ryder, Lauren S; Dagdas, Yasin F; Mentlak, Thomas A; Kershaw, Michael J; Thornton, Christopher R; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J

    2013-02-19

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  14. Trace Eyeblink Conditioning Requires the Hippocampus but Not Autophosphorylation of [alpha]CaMKII in Mice

    ERIC Educational Resources Information Center

    Ohno, Masuo; Tseng, Wilbur; Silva, Alcino J.; Disterhoft, John F.

    2005-01-01

    Little is known about signaling mechanisms underlying temporal associative learning. Here, we show that mice with a targeted point mutation that prevents autophosphorylation of [alpha]CaMKII ([alpha]CaMKII[superscript T286A]) learn trace eyeblink conditioning normally. This forms a sharp contrast to the severely impaired spatial learning in the…

  15. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  16. Congenic Mice Confirm That Collagen X Is Required for Proper Hematopoietic Development

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Corbo, Tina; Jacenko, Olena

    2010-01-01

    The link between endochondral skeletal development and hematopoiesis in the marrow was established in the collagen X transgenic (Tg) and null (KO) mice. Disrupted function of collagen X, a major hypertrophic cartilage matrix protein, resulted in skeletal and hematopoietic defects in endochondrally derived tissues. Manifestation of the disease phenotype was variable, ranging from perinatal lethality in a subset of mice, to altered lymphopoiesis and impaired immunity in the surviving mice. To exclude contribution of strain specific modifiers to this variable manifestation of the skeleto-hematopoietic phenotype, C57Bl/6 and DBA/2J collagen X congenic lines were established. Comparable disease manifestations confirmed that the skeleto-hematopoietic alterations are an inherent outcome of disrupted collagen X function. Further, colony forming cell assays, complete blood count analysis, serum antibody ELISA, and organ outgrowth studies established altered lymphopoiesis in all collagen X Tg and KO mice and implicated opportunistic infection as a contributor to the severe disease phenotype. These data support a model where endochondral ossification-specific collagen X contributes to the establishment of a hematopoietic niche at the chondro-osseous junction. PMID:20209091

  17. NADPH oxidase 4 attenuates cerebral artery changes during the progression of Marfan syndrome.

    PubMed

    Onetti, Yara; Meirelles, Thayna; Dantas, Ana P; Schröder, Katrin; Vila, Elisabet; Egea, Gustavo; Jiménez-Altayó, Francesc

    2016-05-01

    Marfan syndrome (MFS) is a connective tissue disorder that is often associated with the fibrillin-1 (Fbn1) gene mutation and characterized by cardiovascular alterations, predominantly ascending aortic aneurysms. Although neurovascular complications are uncommon in MFS, the improvement in Marfan patients' life expectancy is revealing other secondary alterations, potentially including neurovascular disorders. However, little is known about small-vessel pathophysiology in MFS. MFS is associated with hyperactivated transforming growth factor (TGF)-β signaling, which among numerous other downstream effectors, induces the NADPH oxidase 4 (Nox4) isoform of NADPH oxidase, a strong enzymatic source of H2O2 We hypothesized that MFS induces middle cerebral artery (MCA) alterations and that Nox4 contributes to them. MCA properties from 3-, 6-, or 9-mo-old Marfan (Fbn1(C1039G/+)) mice were compared with those from age/sex-matched wild-type littermates. At 6 mo, Marfan compared with wild-type mice developed higher MCA wall/lumen (wild-type: 0.081 ± 0.004; Marfan: 0.093 ± 0.002; 60 mmHg; P < 0.05), coupled with increased reactive oxygen species production, TGF-β, and Nox4 expression. However, wall stiffness and myogenic autoregulation did not change. To investigate the influence of Nox4 on cerebrovascular properties, we generated Marfan mice with Nox4 deficiency (Nox4(-/-)). Strikingly, Nox4 deletion in Marfan mice aggravated MCA wall thickening (cross-sectional area; Marfan: 6,660 ± 363 μm(2); Marfan Nox4(-/-): 8,795 ± 824 μm(2); 60 mmHg; P < 0.05), accompanied by decreased TGF-β expression and increased collagen deposition and Nox1 expression. These findings provide the first evidence that Nox4 mitigates cerebral artery structural changes in a murine model of MFS. PMID:26945079

  18. CREB Binding Protein (CBP) Activation Is Required for Luteinizing Hormone Beta Expression and Normal Fertility in Mice

    PubMed Central

    Miller, Ryan S.; Wolfe, Andrew; He, Ling; Radovick, Sally

    2012-01-01

    Normal function of the hypothalamic-pituitary-gonadal axis is dependent on gonadotropin-releasing hormone (GNRH)-stimulated synthesis and secretion of luteinizing hormone (LH) from the pituitary gonadotroph. While the transcriptional coactivator CREB binding protein (CBP) is known to interact with Egr-1, the major mediator of GNRH action on the Lhb gene, the role of CBP in Lhb gene expression has yet to be characterized. We show that in the LβT2 gonadotroph cell line, overexpression of CBP augmented the response to GNRH and that knockdown of CBP eliminated GNRH responsiveness. While GNRH-mediated phosphorylation of CBP at Ser436 increased the interaction with Egr-1 on the Lhb promoter, loss of this phosphorylation site eliminated GNRH-mediated Lhb expression in LβT2 cells. In vivo, loss of CBP phosphorylation at Ser436 rendered female mice subfertile. S436A knock-in mice had disrupted estrous cyclicity and reduced responsiveness to GNRH. Our results show that GNRH-mediated phosphorylation of CBP at Ser436 is required for Egr-1 to activate Lhb expression and is a requirement for normal fertility in female mice. As CBP can be phosphorylated by other factors, such as insulin, our studies suggest that CBP may act as a key regulator of Lhb expression in the gonadotroph by integrating homeostatic information with GNRH signaling. PMID:22508984

  19. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice.

    PubMed

    Balkowiec, A; Katz, D M

    1998-07-15

    1. Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. 2. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem-spinal cord preparation from postnatal day (P) 0.5-2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. 3. Loss of one or both bdnf alleles resulted in an approximately 50% depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214% higher in bdnf null (bdnf-/-) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. 4. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  20. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice

    PubMed Central

    Balkowiec, Agnieszka; Katz, David M

    1998-01-01

    Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem–spinal cord preparation from postnatal day (P) 0.5–2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. Loss of one or both bdnf alleles resulted in an approximately 50 % depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214 % higher in bdnf null (bdnf−/−) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  1. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    SciTech Connect

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-04-15

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O{sub 2}{sup {center_dot}}{sup -} generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67{sup phox} siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91{sup phox} knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47{sup phox}, p67{sup phox} and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67{sup phox} siRNA. Exposure of MPMVEC obtained from gp91{sup phox} knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly

  2. Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin.

    PubMed

    Mouzaoui, Souad; Djerdjouri, Bahia; Makhezer, Nesrine; Kroviarski, Yolande; El-Benna, Jamel; Dang, Pham My-Chan

    2014-01-01

    Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg(-1)) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment. PMID:25276054

  3. Tumor Necrosis Factor-α-Induced Colitis Increases NADPH Oxidase 1 Expression, Oxidative Stress, and Neutrophil Recruitment in the Colon: Preventive Effect of Apocynin

    PubMed Central

    Mouzaoui, Souad; Djerdjouri, Bahia; Makhezer, Nesrine; Kroviarski, Yolande; El-Benna, Jamel; Dang, Pham My-Chan

    2014-01-01

    Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg−1) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment. PMID:25276054

  4. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice.

    PubMed

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M; Mehlmann, Lisa M; Seli, Emre

    2012-08-15

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab(-/-) males and Epab(+/-) of both sexes were fertile, Epab(-/-) female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab(-/-) oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab(-/-) germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab(-/-) mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  5. Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice

    PubMed Central

    Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Aydiner, Fulya; Sasson, Isaac; Ilbay, Orkan; Sakkas, Denny; Lowther, Katie M.; Mehlmann, Lisa M.; Seli, Emre

    2014-01-01

    Gene expression during oocyte maturation and early embryogenesis up to zygotic genome activation requires translational activation of maternally-derived mRNAs. EPAB [embryonic poly(A)-binding protein] is the predominant poly(A)-binding protein during this period in Xenopus, mouse and human. In Xenopus oocytes, ePAB stabilizes maternal mRNAs and promotes their translation. To assess the role of EPAB in mammalian reproduction, we generated Epab-knockout mice. Although Epab−/− males and Epab+/− of both sexes were fertile, Epab−/− female mice were infertile, and could not generate embryos or mature oocytes in vivo or in vitro. Epab−/− oocytes failed to achieve translational activation of maternally-stored mRNAs upon stimulation of oocyte maturation, including Ccnb1 (cyclin B1) and Dazl (deleted in azoospermia-like) mRNAs. Microinjection of Epab mRNA into Epab−/− germinal vesicle stage oocytes did not rescue maturation, suggesting that EPAB is also required for earlier stages of oogenesis. In addition, late antral follicles in the ovaries of Epab−/− mice exhibited impaired cumulus expansion, and a 8-fold decrease in ovulation, associated with a significant down-regulation of mRNAs encoding the EGF (epidermal growth factor)-like growth factors Areg (amphiregulin), Ereg (epiregulin) and Btc (betacellulin), and their downstream regulators, Ptgs2 (prostaglandin synthase 2), Has2 (hyaluronan synthase 2) and Tnfaip6 (tumour necrosis factor α-induced protein 6). The findings from the present study indicate that EPAB is necessary for oogenesis, folliculogenesis and female fertility in mice. PMID:22621333

  6. Solubilization and Separation of a Plant Plasma Membrane NADPH-O2- Synthase from Other NAD(P)H Oxidoreductases.

    PubMed Central

    Van Gestelen, P.; Asard, H.; Caubergs, R. J.

    1997-01-01

    Solubilization and ion-exchange chromatography of plasma membrane proteins obtained from bean (Phaseolus vulgaris L.) seedlings resulted in a single NAD(P)H-O2--synthase protein peak. This enzyme showed a high preference toward NADPH as a substrate (reaction rate, 27.4 nmol O2- produced min-1 mg-1 protein), whereas NADH reactions ranged from 0 to maximally 15% of the NADPH reactions. The protein functions as an oxidase and it was clearly resolved from NAD(P)H dehydrogenases identified with commonly used strong oxidants (ferricyanide, cytochrome c, DCIP, and oxaloacetate). The involvement of peroxidases in O2- production is excluded on the basis of potassium-cyanide insensitivity and NADPH specificity. The NADPH oxidase is only moderately stimulated by flavins (1.5-fold with 25 [mu]M flavine adenine dinucleotide and 2.5-fold with 25 [mu]M flavin mononucleotide) and inhibited by 100 [mu]M p-chloromercuribenzenesulfonic acid, 200 [mu]M diphenyleneiodonium, 10 mM quinacrine, 40 mM pyridine, and 20 mM imidazole. The presence of flavins was demonstrated in the O2-synthase fraction, but no b-type cytochromes were detected. The effect of these inhibitors and the detection of flavins and cytochromes in the plant O2- synthase make it possible to compare this enzyme with the NADPH O2- synthase of animal neutrophil cells. PMID:12223822

  7. Nrf2 is required for normal postnatal bone acquisition in mice

    PubMed Central

    Kim, Jung-Hyun; Singhal, Vandana; Biswal, Shyam; Thimmulappa, Rajesh K; DiGirolamo, Douglas J

    2014-01-01

    A large body of literature suggests that bone metabolism is susceptible to the ill effects of reactive species that accumulate in the body and cause cellular dysfunction. One of the body’s front lines in defense against such damage is the transcription factor, Nrf2. This transcription factor regulates a plethora of antioxidant and cellular defense pathways to protect cells from such damage. Despite the breadth of knowledge of both the function of Nrf2 and the effects of reactive species in bone metabolism, the direct role of Nrf2 in skeletal biology has yet to be thoroughly examined. Thus, in the current study, we have examined the role of Nrf2 in postnatal bone metabolism in mice. Mice lacking Nrf2 (Nrf2−/−) exhibited a marked deficit in postnatal bone acquisition, which was most severe at 3 weeks of age when osteoblast numbers were 12-fold less than observed in control animals. While primary osteoblasts from Nrf2−/− mice functioned normally in vitro, the colony forming capacity of bone marrow stromal cells (BMSCs) from these mice was significantly reduced compared to controls. This defect could be rescued through treatment with the radical scavenger N-acetyl cysteine (NAC), suggesting that increased reactive species stress might impair early osteoblastogenesis in BMSCs and lead to the failure of bone acquisition observed in Nrf2−/− animals. Taken together, these studies suggest Nrf2 represents a key pathway in regulating bone metabolism, which may provide future therapeutic targets to treat osteoporosis. PMID:26273528

  8. Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice

    PubMed Central

    Farrés, Jordi; Martín-Caballero, Juan; Martínez, Carlos; Lozano, Juan J.; Llacuna, Laura; Ampurdanés, Coral; Ruiz-Herguido, Cristina; Dantzer, Françoise; Schreiber, Valérie; Villunger, Andreas; Bigas, Anna; Yélamos, José

    2016-01-01

    Hematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2−/− mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation. Cell death after γ-irradiation correlated with an impaired capacity to repair DNA damage in the absence of Parp-2. Upon exposure to sublethal doses of γ-irradiation, Parp-2−/− mice exhibited bone marrow failure that correlated with reduced long-term repopulation potential of irradiated Parp-2−/− HSPC under competitive conditions. In line with a protective role of Parp-2 against irradiation-induced apoptosis, loss of p53 or the pro-apoptotic BH3-only protein Puma restored survival of irradiated Parp-2−/− mice, whereas loss of Noxa had no such effect. Our results show that Parp-2 plays essential roles in the surveillance of genome integrity of HSPC by orchestrating DNA repair and restraining p53-induced and Puma-mediated apoptosis. The data may affect the design of drugs targeting Parp proteins and the improvement of radiotherapy-based therapeutic strategies. PMID:23678004

  9. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  10. Vitamin E--a selective inhibitor of the NADPH oxidoreductase enzyme system in human granulocytes

    SciTech Connect

    Butterick, C.J.; Baehner, R.L.; Boxer, L.A.; Jersild, R.A. Jr.

    1983-09-01

    The cellular sites of H/sub 2/O/sub 2/ formation in phagocytizing granulocytes have been identified with cerium chloride. A precipitate was visible in phagosomes and on plasma membranes from intact normal cells in the presence of either 0.71 mM NADH or NADPH. X-ray microanalysis permitted identification of cerium deposition within the phagosomes even in the absence of reduced pyridine nucleotides. Catalase ablated the formation of the reaction product. Intact granulocytes obtained from subjects receiving 1600 units of vitamin E daily for 2 weeks exhibited reaction product in the presence of NADH but not NADPH. Intact cells from subjects treated with vitamin E demonstrated diminished numbers of phagocytic vesicles containing reaction product. During phagocytosis the granulocytes treated with vitamin E consumed oxygen but exhibited significantly reduced rates of hydrogen-peroxide-dependent glucose-1-/sup 14/C oxidation to /sup 14/CO/sub 2/. Isolated phagocytic vesicles obtained from granulocytes after ingestion of opsonized lipopolysaccharide-paraffin oil droplets contained reaction product when exposed to 0.71 mM NADPH. No reaction product was evident at 0.71 mM NADH but was evident at 2.0 mM NADH. Isolated phagocytic vesicles from the granulocytes of subjects receiving vitamin E exhibited reaction product only in the presence of NADH. These observations suggest that vitamin E interferes with the electron transport chain apparently required for the oxidation of NADPH to form H/sub 2/O/sub 2/ in the phagocytizing granulocyte.

  11. Role of NADPH Oxidases in Liver Fibrosis

    PubMed Central

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon

    2014-01-01

    Abstract Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. Recent Advances: In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. Critical Issues: Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. Future Directions: A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antioxid. Redox Signal. 20, 2854–2872. PMID:24040957

  12. NADPH-diaphorase activity and nitric oxide synthase isoforms in the trophoblast of Calomys callosus

    PubMed Central

    MORAES, NECI; ZAGO, DOUGLAS; GAGIOTI, SONIA; HOSHIDA, MARA SANDRA; BEVILACQUA, ESTELA

    2001-01-01

    The pattern of expression of a variety of placental nitric oxide synthase isoforms has contributed to elucidating the regulatory mechanisms of nitric oxide (NO) synthesis during gestation. The maintenance of vascular tone, attenuation of vasoconstriction, prevention of platelet and leukocyte adhesion to the trophoblast surface, and possible participation in uterine blood flow seem to be the main functions of NO generated at the fetal-maternal interface in humans and mice. Extending this knowledge to other rodent species commonly used as laboratory animals, in this study we focus on NADPH-diaphorase activity and the distribution of nitric oxide synthase isoforms (NOS) in the trophoblast cells of Calomys callosus during different phases of pregnancy. NADPH-diaphorase activity was evaluated cytochemically and the presence of NOS isoforms detected by immunohistochemistry. These techniques were performed on pre- and postimplantation embryos in situ and in vitro, as well as in placentae on d 14 and 18 of pregnancy. Neither NADPH-diaphorase activity nor inducible or endothelial NOS isoforms were found in pre-implanting embryos except after culturing for at least 48 h, when some of the embryonic cells were positive for the diaphorase reaction. On d 6·5 of pregnancy, trophoblast cells showed intense diaphorase activity both in situ and under in vitro conditions. A positive reaction was also found in the different placental trophoblast cells on d 14 and 18 of pregnancy. The inducible NOS (iNOS) isoform, but not the endothelial isoform, was immunodetected in trophoblast cells from the placenta and from postimplantation embryos in situ and under in vitro conditions. These results strongly suggest the production of NO by the iNOS isoform in the trophoblast of Calomys callosus after embryo implantation. The data also emphasise a possible role for the trophoblast in producing and releasing cytotoxic molecules at the fetal-maternal interface. PMID:11327206

  13. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor

    PubMed Central

    Hirano, Kazufumi; Chen, Woei Shin; Chueng, Adeline L.W.; Dunne, Angela A.; Seredenina, Tamara; Filippova, Aleksandra; Ramachandran, Sumitra; Bridges, Angela; Chaudry, Laiq; Pettman, Gary; Allan, Craig; Duncan, Sarah; Lee, Kiew Ching; Lim, Jean; Ma, May Thu; Ong, Agnes B.; Ye, Nicole Y.; Nasir, Shabina; Mulyanidewi, Sri; Aw, Chiu Cheong; Oon, Pamela P.; Liao, Shihua; Li, Dizheng; Johns, Douglas G.; Miller, Neil D.; Davies, Ceri H.; Browne, Edward R.; Matsuoka, Yasuji; Chen, Deborah W.; Jaquet, Vincent

    2015-01-01

    Abstract Aims: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. Results: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. Innovation and Conclusions: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo. Antioxid. Redox Signal. 23, 358–374. PMID:26135714

  14. The brown and brite adipocyte marker Cox7a1 is not required for non-shivering thermogenesis in mice

    PubMed Central

    Maurer, Stefanie F.; Fromme, Tobias; Grossman, Lawrence I.; Hüttemann, Maik; Klingenspor, Martin

    2015-01-01

    The cytochrome c oxidase subunit isoform Cox7a1 is highly abundant in skeletal muscle and heart and influences enzyme activity in these tissues characterised by high oxidative capacity. We identified Cox7a1, well-known as brown adipocyte marker gene, as a cold-responsive protein of brown adipose tissue. We hypothesised a mechanistic relationship between cytochrome c oxidase activity and Cox7a1 protein levels affecting the oxidative capacity of brown adipose tissue and thus non-shivering thermogenesis. We subjected wildtype and Cox7a1 knockout mice to different temperature regimens and tested characteristics of brown adipose tissue activation. Cytochrome c oxidase activity, uncoupling protein 1 expression and maximal norepinephrine-induced heat production were gradually increased during cold-acclimation, but unaffected by Cox7a1 knockout. Moreover, the abundance of uncoupling protein 1 competent brite cells in white adipose tissue was not influenced by presence or absence of Cox7a1. Skin temperature in the interscapular region of neonates was lower in uncoupling protein 1 knockout pups employed as a positive control, but not in Cox7a1 knockout pups. Body mass gain and glucose tolerance did not differ between wildtype and Cox7a1 knockout mice fed with high fat or control diet. We conclude that brown adipose tissue function in mice does not require the presence of Cox7a1. PMID:26635001

  15. Carthami Flos suppresses neutrophilic lung inflammation in mice, for which nuclear factor-erythroid 2-related factor-1 is required.

    PubMed

    Kim, Jeehye; Woo, Juyoun; Lyu, Ji Hyo; Song, Hyuk-Hwan; Jeong, Han-Sol; Ha, Ki-Tae; Choi, Jun-Yong; Han, Chang Woo; Ahn, Kyung-Seop; Oh, Sei-Ryang; Sadikot, Ruxana T; Kim, Kyun Ha; Joo, Myungsoo

    2014-03-15

    Carthami Flos (CF) is used in traditional Asian medicine to treat blood stagnation and its associated diseases in patients. While the underlying mechanism for this effect remains unknown, CF has been reported to activate Nrf2, a transcription factor that is critical in protecting from various inflammatory lung diseases including acute lung injury (ALI). Here, we examined whether CF has a therapeutic effect on lung inflammation and assessed the impact of Nrf2 on the effect of CF using an ALI mouse model. Treatment of bone marrow derived macrophages with standardized aqueous extract of CF (AECF) activated Nrf2, resulting in the expression of Nrf2 dependent genes including GCLC, NQO-1 and HO-1. While intranasal LPS treatment of wild type mice resulted in neutrophilic infiltration and a concomitant expression of pro-inflammatory cytokine genes in the lung, the hallmarks of ALI, an intratracheal spraying of AECF to the lung 2h after LPS treatment suppressed the inflammatory response. By contrast, similar treatment in nrf2(-/-) mice with AECF failed to attenuate the inflammatory response. Thus, our results show that AECF attenuated neutrophilic lung inflammation in mice, which required Nrf2. Since AECF administration abrogates lung inflammation after LPS treatment, we propose CF as a potential therapeutics in the management of ALI. PMID:24252335

  16. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice.

    PubMed

    Yang, Cai-Rong; Lowther, Katie M; Lalioti, Maria D; Seli, Emre

    2016-01-01

    Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos before zygotic genome activation. EPAB is required for translational activation of maternally stored mRNAs in the oocyte and Epab(-/-) female mice are infertile due to impaired oocyte maturation, cumulus expansion, and ovulation. The aim of this study was to characterize the mechanism of follicular somatic cell dysfunction in Epab(-/-) mice. Using a coculture system of oocytectomized cumulus oophorus complexes (OOXs) with denuded oocytes, we found that when wild-type OOXs were cocultured with Epab(-/-) oocytes, or when Epab(-/-) OOXs were cocultured with WT oocytes, cumulus expansion failed to occur in response to epidermal growth factor (EGF). This finding suggests that oocytes and cumulus cells (CCs) from Epab(-/-) mice fail to send and receive the necessary signals required for cumulus expansion. The abnormalities in Epab(-/-) CCs are not due to lower expression of the oocyte-derived factors growth differentiation factor 9 or bone morphogenetic protein 15, because Epab(-/-) oocytes express these proteins at comparable levels with WT. Epab(-/-) granulosa cells (GCs) exhibit decreased levels of phosphorylated MEK1/2, ERK1/2, and p90 ribosomal S6 kinase in response to lutenizing hormone and EGF treatment, as well as decreased phosphorylation of the EGF receptor. In conclusion, EPAB, which is oocyte specific, is required for the ability of CCs and GCs to become responsive to LH and EGF signaling. These results emphasize the importance of oocyte-somatic communication for GC and CC function. PMID:26492470

  17. Activating transcription factor 6α is required for the vasopressin neuron system to maintain water balance under dehydration in male mice.

    PubMed

    Azuma, Yoshinori; Hagiwara, Daisuke; Lu, Wenjun; Morishita, Yoshiaki; Suga, Hidetaka; Goto, Motomitsu; Banno, Ryoichi; Sugimura, Yoshihisa; Oyadomari, Seiichi; Mori, Kazutoshi; Shiota, Akira; Asai, Naoya; Takahashi, Masahide; Oiso, Yutaka; Arima, Hiroshi

    2014-12-01

    Activating transcription factor 6α (ATF6α) is a sensor of endoplasmic reticulum (ER) stress and increases the expression of ER chaperones and molecules related to the ER-associated degradation of unfolded/misfolded proteins. In this study, we used ATF6α knockout (ATF6α(-/-)) mice to clarify the role of ATF6α in the arginine vasopressin (AVP) neuron system. Although urine volumes were not different between ATF6α(-/-) and wild-type (ATF6α(+/+)) mice with access to water ad libitum, they were increased in ATF6α(-/-) mice compared with those in ATF6α(+/+) mice under intermittent water deprivation (WD) and accompanied by less urine AVP in ATF6α(-/-) mice. The mRNA expression of immunoglobulin heavy chain binding protein, an ER chaperone, was significantly increased in the supraoptic nucleus in ATF6α(+/+) but not ATF6α(-/-) mice after WD. Electron microscopic analyses demonstrated that the ER lumen of AVP neurons was more dilated in ATF6α(-/-) mice than in ATF6α(+/+) mice after WD. ATF6α(-/-) mice that were mated with mice possessing a mutation causing familial neurohypophysial diabetes insipidus (FNDI), which is characterized by progressive polyuria and AVP neuronal loss due to the accumulation of mutant AVP precursor in the ER, manifested increased urine volume under intermittent WD. The aggregate formation in the ER of AVP neurons was further impaired in FNDI/ATF6α(-/-) mice compared with that in FNDI mice, and AVP neuronal loss was accelerated in FNDI/ATF6α(-/-) mice under WD. These data suggest that ATF6α is required for the AVP neuron system to maintain water balance under dehydration. PMID:25203138

  18. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease

    PubMed Central

    Vendrov, Aleksandr E.; Vendrov, Kimberly C.; Smith, Alberto; Yuan, Jinling; Sumida, Arihiro; Robidoux, Jacques; Madamanchi, Nageswara R.

    2015-01-01

    Abstract Aims: Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe−/− mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. Results: Both aged (16 months) Apoe−/− and Apoe−/−/p47phox−/− mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox−/− mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe−/− mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. Innovation and Conclusion: These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are

  19. TLR9 expression is required for the development of cigarette smoke-induced emphysema in mice.

    PubMed

    Foronjy, Robert F; Salathe, Matthias A; Dabo, Abdoulaye J; Baumlin, Nathalie; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2016-07-01

    The expression of Toll-like receptor (TLR)-9, a pathogen recognition receptor that recognizes unmethylated CpG sequences in microbial DNA molecules, is linked to the pathogenesis of several lung diseases. TLR9 expression and signaling was investigated in animal and cell models of chronic obstructive pulmonary disease (COPD). We observed enhanced TLR9 expression in mouse lungs following exposure to cigarette smoke. Tlr9(-/-) mice were resistant to cigarette smoke-induced loss of lung function as determined by mean linear intercept, total lung capacity, lung compliance, and tissue elastance analysis. Tlr9 expression also regulated smoke-mediated immune cell recruitment to the lung; apoptosis; expression of granulocyte-colony stimulating factor (G-CSF), the CXCL5 protein, and matrix metalloproteinase-2 (MMP-2); and protein tyrosine phosphatase 1B (PTP1B) activity in the lung. PTP1B, a phosphatase with anti-inflammatory abilities, was identified as binding to TLR9. In vivo delivery of a TLR9 agonist enhanced TLR9 binding to PTP1B, which inactivated PTP1B. Ptp1b(-/-) mice had elevated lung concentrations of G-CSF, CXCL5, and MMP-2, and tissue expression of type-1 interferon following TLR9 agonist administration, compared with wild-type mice. TLR9 responses were further determined in fully differentiated normal human bronchial epithelial (NHBE) cells isolated from nonsmoker, smoker, and COPD donors, and then cultured at air liquid interface. NHBE cells from smokers and patients with COPD expressed more TLR9 and secreted greater levels of G-CSF, IL-6, CXCL5, IL-1β, and MMP-2 upon TLR9 ligand stimulation compared with cells from nonsmoker donors. Although TLR9 combats infection, our results indicate that TLR9 induction can affect lung function by inactivating PTP1B and upregulating expression of proinflammatory cytokines. PMID:27288485

  20. The chemokine receptor CCR2 is not required for successful initiation of labor in mice.

    PubMed

    Menzies, Fiona M; Khan, Abdul H; Higgins, Claire A; Nelson, Scott M; Nibbs, Robert J B

    2012-04-01

    Chemokine-driven neutrophil and monocyte recruitment into the uterus and cervix has been proposed to initiate labor. Chemokines that bind CXCR2 direct neutrophil migration and are induced during labor in humans. The chemokine CCL2, induced in the uterus by endocrine and mechanical signals, has been proposed to drive CCR2-dependent monocyte homing to the uterus to contribute to the initiation of labor. However, no direct evidence indicates that chemokines or their receptors play indispensable roles in labor-associated inflammation, and the impact of leukocyte infiltration on labor is unclear. Here, we have quantified expression of the principal monocyte- and neutrophil-attracting chemokines in the uteri of term pregnant (Day 18) and laboring wild-type mice. None of the neutrophil attractants we assayed were up-regulated with labor. Strikingly, however, Ccl2 was markedly increased, and this was concomitant with increased expression of Ccr2, the myeloid marker Itgam (also known as Cd11b), the monocyte/macrophage marker Emr1 (also known as F4/80). Moreover, in CCR2-deficient mice, this labor-associated increase in Itgam and Emr1 was not seen, consistent with the monocyte-trafficking defects that exist in these animals. Nonetheless, laboring CCR2-deficient and wild-type uteri showed similarly enhanced expression of the myometrial activation markers Gja1 and Oxtr (commonly known as connexin 43 and oxytocin receptor, respectively), and CCR2-deficient mice had gestation lengths, litter sizes, and fetal and placental weights no different from those of their wild-type counterparts. Thus, whereas labor is associated with an inflammatory response in gestational tissues, CCR2-dependent leukocyte recruitment into the mouse uterus is dispensable for the initiation of successful labor. PMID:22278981

  1. B cells are required for sunlight protection of mice from a CNS-targeted autoimmune attack.

    PubMed

    Kok, Lai Fong; Marsh-Wakefield, Felix; Marshall, Jacqueline E; Gillis, Caitlin; Halliday, Gary M; Byrne, Scott N

    2016-09-01

    The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system. PMID:27289166

  2. CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice

    PubMed Central

    McKenzie, Casey W.; Craige, Branch; Kroeger, Tiffany V.; Finn, Rozzy; Wyatt, Todd A.; Sisson, Joseph H.; Pavlik, Jacqueline A.; Strittmatter, Lara; Hendricks, Gregory M.; Witman, George B.; Lee, Lance

    2015-01-01

    Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD. PMID:26224312

  3. DosS Is Required for the Complete Virulence of Mycobacterium tuberculosis in Mice with Classical Granulomatous Lesions

    PubMed Central

    Gautam, Uma S.; McGillivray, Amanda; Mehra, Smriti; Didier, Peter J.; Midkiff, Cecily C.; Kissee, Ryan S.; Golden, Nadia A.; Alvarez, Xavier; Niu, Tianhua; Rengarajan, Jyothi; Sherman, David R.

    2015-01-01

    Mycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model. We compared the phenotype of the Δ-dosR, Δ-dosS, and Δ-dosT mutants to Mtb using C3HeB/FeJ mice, an alternate mouse model where lesions develop hypoxia. C3HeB/FeJ mice were infected via aerosol. The progression of infection was analyzed by tissue bacterial burden and histopathology. A measure of the comparative global immune responses was also analyzed. Although Δ-dosR and Δ-dosT grew comparably to wild-type Mtb, Δ-dosS exhibited a significant defect in bacterial burden and pathology in vivo, accompanied by ablated proinflammatory response. Δ-dosS retained the ability to induce DosR. The Δ-dosS mutant was also attenuated in murine macrophages ex vivo, with evidence of reduced expression of the proinflammatory signature. Our results show that DosS, but not DosR and DosT, is required by Mtb to survive in C3HeB/FeJ mice. The attenuation of Δ-dosS is not due to its inability to induce the DosR regulon, nor is it a result of the accumulation of hypoxia. That the in vivo growth restriction of Δ-dosS could be mimicked ex vivo suggested sensitivity to macrophage oxidative burst. Anoxic caseous centers within tuberculosis lesions eventually progress to cavities. Our results provide greater insight into the molecular mechanisms of Mtb persistence within host lungs. PMID:25322074

  4. DosS Is required for the complete virulence of mycobacterium tuberculosis in mice with classical granulomatous lesions.

    PubMed

    Gautam, Uma S; McGillivray, Amanda; Mehra, Smriti; Didier, Peter J; Midkiff, Cecily C; Kissee, Ryan S; Golden, Nadia A; Alvarez, Xavier; Niu, Tianhua; Rengarajan, Jyothi; Sherman, David R; Kaushal, Deepak

    2015-06-01

    Mycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model. We compared the phenotype of the Δ-dosR, Δ-dosS, and Δ-dosT mutants to Mtb using C3HeB/FeJ mice, an alternate mouse model where lesions develop hypoxia. C3HeB/FeJ mice were infected via aerosol. The progression of infection was analyzed by tissue bacterial burden and histopathology. A measure of the comparative global immune responses was also analyzed. Although Δ-dosR and Δ-dosT grew comparably to wild-type Mtb, Δ-dosS exhibited a significant defect in bacterial burden and pathology in vivo, accompanied by ablated proinflammatory response. Δ-dosS retained the ability to induce DosR. The Δ-dosS mutant was also attenuated in murine macrophages ex vivo, with evidence of reduced expression of the proinflammatory signature. Our results show that DosS, but not DosR and DosT, is required by Mtb to survive in C3HeB/FeJ mice. The attenuation of Δ-dosS is not due to its inability to induce the DosR regulon, nor is it a result of the accumulation of hypoxia. That the in vivo growth restriction of Δ-dosS could be mimicked ex vivo suggested sensitivity to macrophage oxidative burst. Anoxic caseous centers within tuberculosis lesions eventually progress to cavities. Our results provide greater insight into the molecular mechanisms of Mtb persistence within host lungs. PMID:25322074

  5. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang; Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G.

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  6. EmrA1 Membrane Fusion Protein of Francisella tularensis LVS is required for Resistance to Oxidative Stress, Intramacrophage Survival and Virulence in Mice

    PubMed Central

    Ma, Zhuo; Banik, Sukalyani; Rane, Harshita; Mora, Vanessa T.; Rabadi, Seham M.; Doyle, Christopher R.; Thanassi, David G.; Bakshi, Chandra Shekhar; Malik, Meenakshi

    2014-01-01

    Francisella tularensis is a Category A Biodefense agent that causes a fatal human disease known as tularemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defenses to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild type F. tularensis LVS levels either by transcomplementation, inhibition of ROS generation, or infection in NADPH oxidase deficient (gp91Phox−/−) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox−/− mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defense mechanisms of F. tularensis. PMID:24397487

  7. NADPH oxidase mediates synergistic effects of IL-17 and TNF-α on CXCL1 expression by epithelial cells after lung ischemia-reperfusion

    PubMed Central

    Sharma, Ashish K.; Mulloy, Daniel P.; Le, Lamvy T.

    2013-01-01

    Ischemia-reperfusion (I/R) injury leads to increased mortality and morbidity in lung transplant patients. Lung I/R injury involves inflammation contributed by innate immune responses. IL-17 and TNF-α, from iNKT cells and alveolar macrophages, respectively, contribute importantly to lung I/R injury. This study tests the hypothesis that IL-17 and TNF-α synergistically mediate CXCL1 (a potent neutrophil chemokine) production by alveolar type II epithelial (ATII) cells via an NADPH oxidase-dependent mechanism during lung I/R. Using a hilar clamp model, wild-type and p47phox−/− (NADPH oxidase-deficient) mice underwent left lung I/R, with or without recombinant IL-17 and/or TNF-α treatment. Wild-type mice undergoing I/R treated with combined IL-17 and TNF-α had significantly enhanced lung dysfunction, edema, CXCL1 production, and neutrophil infiltration compared with treatment with IL-17 or TNF-α alone. However, p47phox−/− mice had significantly less pulmonary dysfunction, CXCL1 production, and lung injury after I/R that was not enhanced by combined IL-17-TNF-α treatment. Moreover, in an acute in vitro hypoxia-reoxygenation model, murine ATII cells showed a multifold synergistic increase in CXCL1 expression after combined IL-17-TNF-α treatment compared with treatment with either cytokine alone, which was significantly attenuated by an NADPH oxidase inhibitor. Conditioned media transfer from hypoxia-reoxygenation-exposed iNKT cells and macrophages, major sources of IL-17 and TNF-α, respectively, to ATII cells significantly enhanced CXCL1 production, which was blocked by NADPH oxidase inhibitor. These results demonstrate that IL-17 and TNF-α synergistically mediate CXCL1 production by ATII cells after I/R, via an NADPH oxidase-dependent mechanism, to induce neutrophil infiltration and lung I/R injury. PMID:24186876

  8. Dynamin 2–dependent endocytosis is required for normal megakaryocyte development in mice

    PubMed Central

    Bender, Markus; Giannini, Silvia; Grozovsky, Renata; Jönsson, Terese; Christensen, Hilary; Pluthero, Fred G.; Ko, Amy; Mullally, Ann; Kahr, Walter H. A.; Hoffmeister, Karin M.

    2015-01-01

    Dynamins are highly conserved large GTPases (enzymes that hydrolyze guanosine triphosphate) involved in endocytosis and vesicle transport, and mutations in the ubiquitous and housekeeping dynamin 2 (DNM2) have been associated with thrombocytopenia in humans. To determine the role of DNM2 in thrombopoiesis, we generated Dnm2fl/fl Pf4-Cre mice specifically lacking DNM2 in the megakaryocyte (MK) lineage. Dnm2fl/fl Pf4-Cre mice had severe macrothrombocytopenia with moderately accelerated platelet clearance. Dnm2-null bone marrow MKs had altered demarcation membrane system formation in vivo due to defective endocytic pathway, and fetal liver–derived Dnm2-null MKs formed proplatelets poorly in vitro, showing that DNM2-dependent endocytosis plays a major role in MK membrane formation and thrombopoiesis. Endocytosis of the thrombopoietin receptor Mpl was impaired in Dnm2-null platelets, causing constitutive phosphorylation of the tyrosine kinase JAK2 and elevated circulating thrombopoietin levels. MK-specific DNM2 deletion severely disrupted bone marrow homeostasis, as reflected by marked expansion of hematopoietic stem and progenitor cells, MK hyperplasia, myelofibrosis, and consequent extramedullary hematopoiesis and splenomegaly. Taken together, our data demonstrate that unrestrained MK growth and proliferation results in rapid myelofibrosis and establishes a previously unrecognized role for DNM2-dependent endocytosis in megakaryopoiesis, thrombopoiesis, and bone marrow homeostasis. PMID:25468568

  9. Periostin is an extracellular matrix protein required for eruption of incisors in mice

    SciTech Connect

    Kii, Isao; Amizuka, Norio; Minqi, Li; Kitajima, Satoshi; Saga, Yumiko; Kudo, Akira . E-mail: akudo@bio.titech.ac.jp

    2006-04-14

    A characteristic tooth of rodents, the incisor continuously grows throughout life by the constant formation of dentin and enamel. Continuous eruption of the incisor is accompanied with formation of shear zone, in which the periodontal ligament is remodeled. Although the shear zone plays a role in the remodeling, its molecular biological aspect is barely understood. Here, we show that periostin is essential for formation of the shear zone. Periostin {sup -/-} mice showed an eruption disturbance of incisors. Histological observation revealed that deletion of periostin led to disappearance of the shear zone. Electron microscopy revealed that the disappearance of the shear zone resulted from a failure in digestion of collagen fibers in the periostin {sup -/-} mice. Furthermore, immunohistochemical analysis using anti-periostin antibodies demonstrated the restricted localization of periostin protein in the shear zone. Periostin is an extracellular matrix protein, and immunoelectron microscopy showed a close association of periostin with collagen fibrils in vivo. These results suggest that periostin functions in the remodeling of collagen matrix in the shear zone.

  10. Prmt5 is required for germ cell survival during spermatogenesis in mice

    PubMed Central

    Wang, Yanbo; Zhu, Tianxiang; Li, Qiuling; Liu, Chunyi; Han, Feng; Chen, Min; Zhang, Lianjun; Cui, Xiuhong; Qin, Yan; Bao, Shilai; Gao, Fei

    2015-01-01

    During germ cell development, epigenetic modifications undergo extensive remodeling. Abnormal epigenetic modifications usually result in germ cell loss and reproductive defect. Prmt5 (Protein arginine methyltransferase 5) encodes a protein arginine methyltransferase which has been demonstrated to play important roles in germ cell development during embryonic stages. In the present study, we found that Prmt5 was also abundantly expressed in male germ cells after birth. Inactivation of this gene by crossing with Stra8-Cre transgenic mice resulted in germ cell loss during spermatogenesis. Further study revealed that the germ cell development was grossly normal before P10. However, most of the germ cells in Prmt5Δ/f; Stra8-Cre mice were blocked at meiotic stage. The expression of meiosis associated genes was reduced in Prmt5Δ/f; Stra8-Cre testes compared to control testes at P10. γH2AX was detected in sex body of control germ cells at P12, whereas multiple foci were observed in Prmt5-deficient germ cells. Further study revealed that H4R3me2s was virtually absent in germ cells after Prmt5 inactivation. The results of this study indicate that Prmt5 also plays important roles in germ cell development during spermatogenesis. PMID:26072710

  11. Atg7 is required for acrosome biogenesis during spermatogenesis in mice

    PubMed Central

    Wang, Hongna; Wan, Haifeng; Li, Xixia; Liu, Weixiao; Chen, Qi; Wang, Yaqing; Yang, Lin; Tang, Hongmei; Zhang, Xiujun; Duan, Enkui; Zhao, Xiaoyang; Gao, Fei; Li, Wei

    2014-01-01

    The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome. PMID:24853953

  12. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions. PMID:27125069

  13. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte.

    PubMed Central

    Wakeyama, H; Takeshige, K; Takayanagi, R; Minakami, S

    1982-01-01

    A phagocytic vesicle fraction with high NADPH-dependent superoxide-forming activity was obtained in large quantity from pig blood polymorphonuclear leucocytes, phagocytosing oil droplets in the presence of cyanide. The activity of the homogenate of the phagocytosing cells was 40 times that of the resting cells, and 70% of the activity in the homogenate was recovered in the phagocytic vesicle fraction. Essentially all of the superoxide-forming activity was extracted by repeated extraction with a mixture containing deoxycholate and Tween 20. The extract had a superoxide-forming activity of 1 mumol/min per mg of protein with NADPH, and one-fifth of this with NADH, Km values being similar to those of the vesicle fraction (40 microM for NADPH and 400 microM for NADH). A stoichiometric relationship of 1:2 for NADPH oxidation and superoxide formation was obtained, in agreement with the reaction NADPH +2O2 leads to NADP+ + 2O2 -. + H+. The activity of the extract was enhanced 2-fold by the addition of FAD, suggesting that the flavin is a component of the enzyme system. The Km value for FAD was 0.077 microM. The activities in both vesicle fraction and extract were labile even on refrigeration, but could be kept for several months at -70 degrees C. PMID:6293459

  14. NAD kinase levels control the NADPH concentration in human cells.

    PubMed

    Pollak, Nadine; Niere, Marc; Ziegler, Mathias

    2007-11-16

    NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress. PMID:17855339

  15. The Anorexigenic Effect of Serotonin Is Mediated by the Generation of NADPH Oxidase-Dependent ROS

    PubMed Central

    Wang, Li-Na; Yang, Jing; Zeng, Qing-Jie; Cheng, Xiao; Zhang, Zhi-Qi; Wang, Song-Bo; Gao, Ping; Zhu, Xiao-Tong; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2013-01-01

    Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway. PMID:23326391

  16. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.

    PubMed

    Touyz, Rhian M; Mercure, Chantel; He, Ying; Javeshghani, Danesh; Yao, Guoying; Callera, Glaucia E; Yogi, Alvaro; Lochard, Nadheige; Reudelhuber, Timothy L

    2005-04-01

    The gp91phox-containing NADPH oxidase is the major source of reactive oxygen species (ROS) in the cardiovascular system and inactivation of gp91phox has been reported to blunt hypertension and cardiac hypertrophy seen in angiotensin (Ang) II-infused animals. In the current study, we sought to determine the role of gp91phox-derived ROS on cardiovascular outcomes of chronic exposure to Ang II. The gp91phox-deficient mice were crossed with transgenic mice expressing active human renin in the liver (TTRhRen). TTRhRen mice exhibit chronic Ang II-dependent hypertension and frank cardiac hypertrophy by age 10 to 12 weeks. Four genotypes of mice were generated: control, TTRhRen trangenics (TTRhRen), gp91phox-deficient (gp91-), and TTRhRen transgenic gp91phox-deficient (TTRhRen/gp91-). Eight to 10 mice/group were studied. ROS levels were significantly reduced (P<0.05) in the heart and aorta of TTRhRen/gp91- and gp91-mice compared with control counterparts, and this was associated with reduced cardiac, aortic, and renal NADPH oxidase activity (P<0.05). Systolic blood pressure (SBP), cardiac mass, and cardiac fibrosis were increased in TTRhRen versus controls. In contrast to its action on ROS generation, gp91phox inactivation had no effect on development of hypertension or cardiac hypertrophy in TTRhRen mice, although interstitial fibrosis was reduced. Cardiac and renal expression of gp91phox homologues, Nox1 and Nox4, was not different between groups. Thus, although eliminating gp91phox-associated ROS production may be important in cardiovascular consequences in acute insult models, it does not prevent the development of hypertension and cardiac hypertrophy in a model in which the endogenous renin-angiotensin system is chronically upregulated. PMID:15753233

  17. The Role of the NADPH Oxidase NOX2 in Prion Pathogenesis

    PubMed Central

    Sorce, Silvia; Nuvolone, Mario; Keller, Annika; Falsig, Jeppe; Varol, Ahmet; Schwarz, Petra; Bieri, Monika; Budka, Herbert; Aguzzi, Adriano

    2014-01-01

    Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis. PMID:25502554

  18. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase

    PubMed Central

    Joo, Jung Hee; Huh, Jeong-Eun; Lee, Jee Hyun; Park, Doo Ri; Lee, Yoonji; Lee, Seul Gee; Choi, Sun; Lee, Hwa Jeong; Song, Seong-Won; Jeong, Yongmi; Goo, Ja-Il; Choi, Yongseok; Baek, Hye Kyung; Yi, Sun Shin; Park, Soo Jin; Lee, Ji Eun; Ku, Sae Kwang; Lee, Won Jae; Lee, Kee-In; Lee, Soo Young; Bae, Yun Soo

    2016-01-01

    Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis. PMID:26975635

  19. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice.

    PubMed

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A; Genazzani, Armando A; Ribchester, Richard R; Magni, Giulio; Coleman, Michael

    2009-02-23

    The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration. PMID:19237596

  20. WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice

    PubMed Central

    Conforti, Laura; Wilbrey, Anna; Morreale, Giacomo; Janeckova, Lucie; Beirowski, Bogdan; Adalbert, Robert; Mazzola, Francesca; Di Stefano, Michele; Hartley, Robert; Babetto, Elisabetta; Smith, Trevor; Gilley, Jonathan; Billington, Richard A.; Genazzani, Armando A.; Ribchester, Richard R.; Magni, Giulio

    2009-01-01

    The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration. PMID:19237596

  1. Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates.

    PubMed

    Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A

    2015-07-01

    Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders. PMID:24744148

  2. Akirins, highly conserved nuclear proteins, required for NF-κB dependent gene expression in Drosophila and mice

    PubMed Central

    Goto, Akira; Matsushita, Kazufumi; Gesellchen, Viola; Chamy, Laure El; Kuttenkeuler, David; Takeuchi, Osamu; Hoffmann, Jules A.; Akira, Shizuo; Boutros, Michael; Reichhart, Jean-Marc

    2009-01-01

    During a genome-wide RNAi screen, we isolated CG8580 as a gene involved in the innate immune response of Drosophila. CG8580, which we named Akirin, acts in parallel with the NF-κB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved and the human genome contains two homologues, one of which was able to rescue the loss of function phenotype in Drosophila cells. Akirins had a strict nuclear localization. Knockout of both Akirin homologues in mice revealed that one had an essential function downstream of Toll-like receptor, tumor necrosis factor and interleukin 1-β (IL-1β) signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses. PMID:18066067

  3. Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice.

    PubMed

    Goto, Akira; Matsushita, Kazufumi; Gesellchen, Viola; El Chamy, Laure; Kuttenkeuler, David; Takeuchi, Osamu; Hoffmann, Jules A; Akira, Shizuo; Boutros, Michael; Reichhart, Jean-Marc

    2008-01-01

    During a genome-wide screen with RNA-mediated interference, we isolated CG8580 as a gene involved in the innate immune response of Drosophila melanogaster. CG8580, which we called Akirin, encoded a protein that acted in parallel with the NF-kappaB transcription factor downstream of the Imd pathway and was required for defense against Gram-negative bacteria. Akirin is highly conserved, and the human genome contains two homologs, one of which was able to rescue the loss-of-function phenotype in drosophila cells. Akirins were strictly localized to the nucleus. Knockout of both Akirin homologs in mice showed that one had an essential function downstream of the Toll-like receptor, tumor necrosis factor and interleukin (IL)-1beta signaling pathways leading to the production of IL-6. Thus, Akirin is a conserved nuclear factor required for innate immune responses. PMID:18066067

  4. [DISTRIBUTION OF NADPH-DIAPHORASE ACTIVITY IN TREMATODE CERCARIAE].

    PubMed

    Terenina, N B

    2015-01-01

    The presence and distribution of nitric oxide sinthase was studied in cercariae of trematodes from seven families using the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemical method. The positive NADPH-d staining has been observed in nerve fibers in main nerve chords and in fibers running to eyespots (pigmented eyes) as well as in muscles of the oral and ventral suckers. The obtained data support an important role of the NO-signalling in the physiology of trematode cercariae. PMID:27055331

  5. Hippocampal and Cortical Primary Cilia Are Required for Aversive Memory in Mice

    PubMed Central

    Yazdi, S. M. Zaki R.; McNair, Andrew D.; Kippe, Jordyn M.; Croyle, Mandy J.; Kraft, Timothy W.; Yoder, Bradley K.

    2014-01-01

    It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia. PMID:25184295

  6. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice

    PubMed Central

    Tang, Minghui; Wei, Xudong; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Zhang, Shanshan; Wei, Wei; Xia, Zhenbiao; Diaz, Manuel; Akira, Shizuo; Zhang, Jiwang

    2008-01-01

    Transforming growth factor β–activated kinase 1 (TAK1), a member of the MAPKKK family, is a key mediator of proinflammatory and stress signals. Activation of TAK1 by proinflammatory cytokines and T and B cell receptors induces the nuclear localization of nuclear factor κB (NF-κB) and the activation of c-Jun N-terminal kinase (JNK)/AP1 and P38, which play important roles in mediating inflammation, immune responses, T and B cell activation, and epithelial cell survival. Here, we report that TAK1 is critical for the survival of both hematopoietic cells and hepatocytes. Deletion of TAK1 results in bone marrow (BM) and liver failure in mice due to the massive apoptotic death of hematopoietic cells and hepatocytes. Hematopoietic stem cells and progenitors were among those hematopoietic cells affected by TAK1 deletion–induced cell death. This apoptotic cell death is autonomous, as demonstrated by reciprocal BM transplantation. Deletion of TAK1 resulted in the inactivation of both JNK and NF-κB signaling, as well as the down-regulation of expression of prosurvival genes. PMID:18573910

  7. NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

    PubMed Central

    Kim, Mikyung; Han, Chang-ho

    2014-01-01

    Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smokinginduced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and α,β-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and -930A/G polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat

  8. NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells

    PubMed Central

    Park, Il Hwan; Hwang, Hye Mi; Jeon, Byeong Hwa; Kwon, Hyung-Joo; Hoe, Kwang Lae; Kim, Young Myeong; Ryoo, Sungwoo

    2015-01-01

    Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-θ (PKCθ) and protein kinase C-β (PKCβ) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCθ and PKCβ stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox−/− mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated h

  9. The NADPH Metabolic Network Regulates Human αB-crystallin Cardiomyopathy and Reductive Stress in Drosophila melanogaster

    PubMed Central

    Xie, Heng B.; Cammarato, Anthony; Rajasekaran, Namakkal S.; Zhang, Huali; Suggs, Jennifer A.; Lin, Ho-Chen; Bernstein, Sanford I.; Benjamin, Ivor J.; Golic, Kent G.

    2013-01-01

    Dominant mutations in the alpha-B crystallin (CryAB) gene are responsible for a number of inherited human disorders, including cardiomyopathy, skeletal muscle myopathy, and cataracts. The cellular mechanisms of disease pathology for these disorders are not well understood. Among recent advances is that the disease state can be linked to a disturbance in the oxidation/reduction environment of the cell. In a mouse model, cardiomyopathy caused by the dominant CryABR120G missense mutation was suppressed by mutation of the gene that encodes glucose 6-phosphate dehydrogenase (G6PD), one of the cell's primary sources of reducing equivalents in the form of NADPH. Here, we report the development of a Drosophila model for cellular dysfunction caused by this CryAB mutation. With this model, we confirmed the link between G6PD and mutant CryAB pathology by finding that reduction of G6PD expression suppressed the phenotype while overexpression enhanced it. Moreover, we find that expression of mutant CryAB in the Drosophila heart impaired cardiac function and increased heart tube dimensions, similar to the effects produced in mice and humans, and that reduction of G6PD ameliorated these effects. Finally, to determine whether CryAB pathology responds generally to NADPH levels we tested mutants or RNAi-mediated knockdowns of phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (IDH), and malic enzyme (MEN), the other major enzymatic sources of NADPH, and we found that all are capable of suppressing CryABR120G pathology, confirming the link between NADP/H metabolism and CryAB. PMID:23818860

  10. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    PubMed

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase. PMID:15525643

  11. Cardiomyocyte loss is not required for the progression of left ventricular hypertrophy induced by pressure overload in female mice.

    PubMed

    Schipke, Julia; Grimm, Clara; Arnstein, Georg; Kockskämper, Jens; Sedej, Simon; Mühlfeld, Christian

    2016-07-01

    Left ventricular (LV) hypertrophy in response to hypertension and increased afterload frequently progresses to heart failure. It is under debate whether the loss of cardiomyocytes contributes to this transition. To address this question, female C57BL/6 wild-type mice were subjected to transverse aortic constriction (TAC) and developed compensated LV hypertrophy after 1 week, which progressed to heart failure characterized by reduced ejection fraction and pulmonary congestion 4 weeks post-TAC. Quantitative, design-based stereology methods were used to estimate number and mean volume of LV cardiomyocytes. DNA strand breaks were visualized using the TUNEL method 6 weeks post-TAC to quantify the number of apoptotic cell nuclei. The volume of the LV myocardium as well as the cardiomyocyte mean volume increased progressively after TAC. In contrast, the number of LV cardiomyocytes remained constant 1 and 4 weeks post-TAC in comparison to sham-operated mice. Moreover, there was no significant difference in the number of cardiomyocyte nuclei stained for DNA strand breaks at 6 weeks post-TAC. It was concluded that the loss of cardiomyocytes is not required for the transition from compensated hypertrophy to heart failure induced by TAC in the female murine heart. PMID:26990078

  12. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  13. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  14. Importin-α7 Is Required for Enhanced Influenza A Virus Replication in the Alveolar Epithelium and Severe Lung Damage in Mice

    PubMed Central

    Resa-Infante, Patricia; Thieme, René; Ernst, Thomas; Arck, Petra C.; Ittrich, Harald; Reimer, Rudolph

    2014-01-01

    ABSTRACT Influenza A viruses recruit components of the nuclear import pathway to enter the host cell nucleus and promote viral replication. Here, we analyzed the role of the nuclear import factor importin-α7 in H1N1 influenza virus pulmonary tropism by using various ex vivo imaging techniques (magnetic resonance imaging, confocal laser scanning microscopy, and correlative light-electron microscopy). We infected importin-α7 gene-deficient (α7−/−) mice with a recombinant H1N1 influenza virus and compared the in vivo viral kinetics with those in wild-type (WT) mice. In WT mice, influenza virus replication in the bronchial and alveolar epithelium already occurred a few days after infection. Accordingly, extensive mononuclear infiltration and alveolar destruction were present in the lungs of infected WT mice, followed by 100% lethality. Conversely, in α7−/− mice, virus replication was restricted mostly to the bronchial epithelium with marginal alveolar infection, resulting in significantly reduced lung damage and enhanced animal survival. To investigate the host immune response during alveolar virus replication, we studied the role of primary macrophages in virus propagation and clearance. The ability of macrophages to support or clear the virus infection, as well as the host cellular immune responses, did not significantly differ between WT and α7−/− mice. However, cytokine and chemokine responses were generally elevated in WT mice, likely reflective of increased viral replication in the lung. In summary, these data show that a cellular factor, importin-α7, is required for enhanced virus replication in the alveolar epithelium, resulting in elevated cytokine and chemokine levels, extensive mononuclear infiltration, and thus, severe pneumonia and enhanced virulence in mice. IMPORTANCE Influenza A viruses are respiratory pathogens that may cause pneumonia in humans. Viral infection and replication in the alveoli of the respiratory tract are believed to

  15. Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice in vivo

    PubMed Central

    Abbott, Stephen B. G.; Holloway, Benjamin B.; Viar, Kenneth E.; Guyenet, Patrice G.

    2016-01-01

    Catecholaminergic neurons of the rostral ventrolateral medulla (RVLM-CA neurons; C1 neurons) contribute to the sympathetic, parasympathetic and neuroendocrine responses elicited by physical stressors such as hypotension, hypoxia, hypoglycemia, and infection. Most RVLM-CA neurons express vesicular glutamate transporter (VGLUT)2, and may use glutamate as a ionotropic transmitter, but the importance of this mode of transmission in vivo is uncertain. To address this question, we genetically deleted VGLUT2 from dopamine-β-hydroxylase-expressing neurons in mice [DβHCre/0;VGLUT2flox/flox mice (cKO mice)]. We compared the in vivo effects of selectively stimulating RVLM-CA neurons in cKO vs. control mice (DβHCre/0), using channelrhodopsin-2 (ChR2– mCherry) optogenetics. ChR2–mCherry was expressed by similar numbers of rostral ventrolateral medulla (RVLM) neurons in each strain (~400 neurons), with identical selectivity for catecholaminergic neurons (90–99% colocalisation with tyrosine hydroxy-lase). RVLM-CA neurons had similar morphology and axonal projections in DβHCre/0 and cKO mice. Under urethane anesthesia, photostimulation produced a similar pattern of activation of presumptive ChR2-positive RVLM-CA neurons in DβHCre/0 and cKO mice. Photostimulation in conscious mice produced frequency-dependent respiratory activation in DβHCre/0 mice but no effect in cKO mice. Similarly, photostimulation under urethane anesthesia strongly activated efferent vagal nerve activity in DβHCre/0 mice only. Vagal responses were unaffected by α1-adrenoreceptor blockade. In conclusion, two responses evoked by RVLM-CA neuron stimulation in vivo require the expression of VGLUT2 by these neurons, suggesting that the acute autonomic responses driven by RVLM-CA neurons are mediated by glutamate. PMID:24236954

  16. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.

    PubMed

    Bausch, Anne E; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K; Ruth, Peter; Lukowski, Robert

    2015-07-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. PMID:26077685

  17. Cellular Requirements for Systemic Control of Salmonella enterica Serovar Typhimurium Infections in Mice

    PubMed Central

    Bedoui, Sammy

    2014-01-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555–577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95–101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4+ T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  18. Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice.

    PubMed

    Kupz, Andreas; Bedoui, Sammy; Strugnell, Richard A

    2014-12-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  19. The calmodulin-binding transcription activator CAMTA1 is required for long-term memory formation in mice.

    PubMed

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M M; Bengtson, C Peter; Bading, Hilmar

    2016-06-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by calcium/calmodulin signaling in the nucleus. Recent studies have drawn attention to a new family of transcriptional regulators, the so-called calmodulin-binding transcription activator (CAMTA) proteins. CAMTAs are expressed at particularly high levels in the mouse and human brain, and we reasoned that, as calmodulin-binding transcription factors, CAMTAs may regulate the formation of long-term memory by coupling synaptic activity and calcium/calmodulin signaling to memory-related transcriptional responses. This hypothesis is supported by genetic studies that reported a correlation between Camta gene polymorphisms or mutations and cognitive capability in humans. Here, we show that acute knockdown of CAMTA1, but not CAMTA2, in the hippocampus of adult mice results in impaired performance in two memory tests, contextual fear conditioning and object-place recognition test. Short-term memory and neuronal morphology were not affected by CAMTA knockdown. Gene expression profiling in the hippocampus of control and CAMTA knockdown mice revealed a number of putative CAMTA1 target genes related to synaptic transmission and neuronal excitability. Patch clamp recordings in organotypic hippocampal slice cultures provided further evidence for CAMTA1-dependent changes in electrophysiological properties. In summary, our study provides experimental evidence that confirms previous human genetic studies and establishes CAMTA1 as a regulator of long-term memory formation. PMID:27194798

  20. Cell-free NADPH oxidase activation assays: "in vitro veritas".

    PubMed

    Pick, Edgar

    2014-01-01

    The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount

  1. Cytoplasmic Trafficking of Minute Virus of Mice: Low-pH Requirement, Routing to Late Endosomes, and Proteasome Interaction

    PubMed Central

    Ros, Carlos; Burckhardt, Christoph J.; Kempf, Christoph

    2002-01-01

    The cytoplasmic trafficking of the prototype strain of minute virus of mice (MVMp) was investigated by analyzing and quantifying the effect of drugs that reduce or abolish specific cellular functions on the accumulation of viral macromolecules. With this strategy, it was found that a low endosomal pH is required for the infection, since bafilomycin A1 and chloroquine, two pH-interfering drugs, were similarly active against MVMp. Disruption of the endosomal network by brefeldin A interfered with MVMp infection, indicating that viral particles are routed farther than the early endocytic compartment. Pulse experiments with endosome-interfering drugs showed that the bulk of MVMp particles remained in the endosomal compartment for several hours before its release to the cytosol. Drugs that block the activity of the proteasome by different mechanisms, such as MG132, lactacystin, and epoxomicin, all strongly blocked MVMp infection. Pulse experiments with the proteasome inhibitor MG132 indicated that MVMp interacts with cellular proteasomes after endosomal escape. The chymotrypsin-like but not the trypsin-like activity of the proteasome is required for the infection, since the chymotrypsin inhibitors N-tosyl-l-phenylalanine chloromethyl ketone and aclarubicin were both effective in blocking MVMp infection. However, the trypsin inhibitor Nα-p-tosyl-l-lysine chloromethyl ketone had no effect. These results suggest that the ubiquitin-proteasome pathway plays an essential role in the MVMp life cycle, probably assisting at the stages of capsid disassembly and/or nuclear translocation. PMID:12438589

  2. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.

    PubMed

    Yang, Yisheng; Wilson, Megan J

    2015-01-01

    Lhx9 is a member of the LIM-homeodomain gene family necessary for the correct development of many organs including gonads, limbs, heart and the nervous system. In the context of limb development, Lhx9 has been implicated as an integrator for Fibroblast growth factor (FGF) and Sonic hedgehog (Shh) signalling required for proximal-distal (PD) and anterior-posterior (AP) development of the limb. Three splice variants of the Lhx9 transcript are expressed during development, two of which are predicted to act in a dominant negative fashion, competing with the DNA binding version of Lhx9 for binding to cofactors via the LIM-domain. We examined the expression pattern for the three alternative splice forms of Lhx9; Lhx9α, Lhx9β and Lhx9c during early limb development. We have found that of the three Lhx9 isoforms, only Lhx9α and Lhx9c (intact homeodomain) are expressed during early limb development, each with their own distinct expression pattern. Additionally we determined that Lhx9 expression overlaps with FGF10 expression in the developing limb bud mesenchyme. Limb bud explant cultures, in the presence of signalling pathway inhibitors, also indicated that Lhx9 mRNA expression in the limb bud was dependent on FGF signalling. PMID:26220830

  3. Mesodermal Tbx1 is required for patterning the proximal mandible in mice

    PubMed Central

    Aggarwal, Vimla S.; Carpenter, Courtney; Freyer, Laina; Liao, Jun; Petti, Marilena; Morrow, Bernice E.

    2010-01-01

    Defects in the lower jaw, or mandible, occur commonly either as isolated malformations or in association with genetic syndromes. Understanding its formation and genetic pathways required for shaping its structure in mammalian model organisms will shed light into the pathogenesis of malformations in humans. The lower jaw is derived from the mandibular process of the first pharyngeal arch (MdPA1) during embryogenesis. Integral to the development of the mandible, is the signaling interplay between Fgf8 and Bmp4 in the rostral ectoderm and their downstream effector genes in the underlying neural crest derived mesenchyme. The non-neural crest MdPA1 core mesoderm is needed to form muscles of mastication, but its role in patterning the mandible is unknown. Here, we show that mesoderm specific deletion of Tbx1, a T- box transcription factor and gene for velo-cardio-facial/DiGeorge syndrome, results in defects in formation of the proximal mandible by shifting expression of Fgf8, Bmp4 and their downstream effector genes in mouse embryos at E10.5. This occurs without significant changes in cell proliferation or apoptosis at the same stage. Our results elucidate a new function for the non-neural crest core mesoderm and specifically, mesodermal Tbx1, in shaping the lower jaw. PMID:20501333

  4. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction

    PubMed Central

    Somasuntharam, Inthirai; Boopathy, Archana V.; Khan, Raffay S.; Martinez, Mario D.; Brown, Milton E.; Murthy, Niren; Davis, Michael E.

    2013-01-01

    Myocardial infarction (MI) is the most common cause of heart failure (HF), the leading cause of death in the developed world. Oxidative stress due to excessive production of reactive oxygen species (ROS) plays a key role in the pathogenesis of cardiac remodeling leading to HF. NADPH oxidase with Nox2 as the catalytic subunit is a major source for cardiac ROS production. Nox2-NADPH expression is significantly increased in the infarcted myocardium, primarily in neutrophils, macrophages and myocytes. Moreover, mice lacking the Nox2 gene are protected from ischemic injury, implicating Nox2 as a potential therapeutic target. RNAi-mediated gene silencing holds great promise as a therapeutic owing to its high specificity and potency. However, in vivo delivery hurdles have limited its effective clinical use. Here, we demonstrate acid-degradable polyketal particles as delivery vehicles for Nox2-siRNA to the post-MI heart. In vitro, Nox2-siRNA particles are effectively taken up by macrophages and significantly knockdown Nox2 expression and activity. Following in vivo intramyocardial injection in experimental mice models of MI, Nox2-siRNA particles prevent upregulation of Nox2 and significantly recovered cardiac function. This study highlights the potential of polyketals as siRNA delivery vehicles to the MI heart and represents a viable therapeutic approach for targeting oxidative stress. PMID:23856052

  5. FcγR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome

    PubMed Central

    Tian, Wei; Li, Xing Jun; Stull, Natalie D.; Ming, Wenyu; Suh, Chang-Il; Bissonnette, Sarah A.; Yaffe, Michael B.; Grinstein, Sergio; Atkinson, Simon J.

    2008-01-01

    The phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b558 and cytosolic p67phox, p47phox, and p40phox subunits that undergo membrane translocation upon cellular activation. The function of p40phox, which binds p67phox in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40phox and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40phox in FcγR-induced oxidase activation, we used immunofluorescence and real-time imaging of FcγR-induced phagocytosis. YFP-tagged p67phox and p40phox translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67phox and p47phox accumulation on nascent and internalized phagosomes did not require p40phox or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40phox PI3P-binding domain or wortmannin. Translocation of p40phox to nascent phagosomes required binding to p67phox but not PI3P, although the loss of PI3P binding reduced p40phox retention after phagosome internalization. We conclude that p40phox functions primarily to regulate FcγR-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization. PMID:18711001

  6. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  7. Uncoupling Protein 1 and Sarcolipin Are Required to Maintain Optimal Thermogenesis, and Loss of Both Systems Compromises Survival of Mice under Cold Stress*

    PubMed Central

    Rowland, Leslie A.; Bal, Naresh C.; Kozak, Leslie P.; Periasamy, Muthu

    2015-01-01

    The importance of brown adipose tissue as a site of nonshivering thermogenesis has been well documented. Emerging studies suggest that skeletal muscle is also an important site of thermogenesis especially when brown adipose tissue function is lacking. We recently showed that sarcolipin (SLN), an uncoupler of the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump, could contribute to heat production in skeletal muscle. In this study, we sought to understand how loss of UCP1 or SLN is compensated during cold exposure and whether they are both necessary for thermogenesis. Toward this goal, we generated a UCP1;SLN double knock-out (DKO) mouse model and challenged the single and DKO mice to acute and long-term cold exposures. Results from this study show that there is up-regulation of SLN expression in UCP1-KO mice, and loss of SLN is compensated by increased expression of UCP1 and browning of white adipose tissue. We found that the DKO mice were viable when reared at thermoneutrality. When challenged to acute cold, the DKO were extremely cold-sensitive and became hypothermic. Paradoxically, the DKO mice were able to survive gradual cold challenge, but these mice lost significant weight and depleted their fat stores, despite having higher caloric intake. These studies suggest that UCP1 and SLN are required to maintain optimal thermogenesis and that loss of both systems compromises survival of mice under cold stress. PMID:25825499

  8. A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase

    PubMed Central

    Ibrahim, Ahmed S.; Elshafey, Sally; Sellak, Hassan; Hussein, Khaled A.; El-Sherbiny, Mohamed; Abdelsaid, Mohammed; Rizk, Nasser; Beasley, Selina; Tawfik, Amany M.; Smith, Sylvia B.; Al-Shabrawey, Mohamed

    2015-01-01

    Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism. PMID:25598081

  9. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    PubMed

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  10. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.

    PubMed

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne; Elbim, Carole

    2005-01-01

    Phagocytes such as neutrophils and monocytes play an essential role in host defenses against microbial pathogens. Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, the hydroxyl radical, and hypochlorous acid, together with microbicidal peptides and proteases, constitute their antimicrobial arsenal. The enzyme responsible for superoxide anion production and, consequently, ROS generation, is called NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of cytosolic proteins (p47phox, p67phox, p40phox, and rac1/2) and membrane proteins (p22phox and gp91phox, which form cytochrome b558) which assemble at membrane sites upon cell activation. The importance of this enzyme in host defenses is illustrated by a life-threatening genetic disorder called chronic granulomatous disease in which the phagocyte enzyme is dysfunctional, leading to life-threatening bacterial and fungal infections. Also, because ROS can damage surrounding tissues, their production, and thus NADPH oxidase activation, must be tightly regulated. This review describes the structure and activation of the neutrophil NADPH enzyme complex. PMID:15995580

  11. Epithelial-to-Mesenchymal Transition in Podocytes Mediated by Activation of NADPH Oxidase in Hyperhomocysteinemia

    PubMed Central

    Zhang, Chun; Xia, Min; Boini, Krishna M.; Li, Cai-Xia; Abais, Justine M.; Li, Xiao-Xue; Laperle, Laura A.; Li, Pin-Lan

    2012-01-01

    The present study tested the hypothesis that hyperhomocysteinemia (hHcys) induces podocytes to undergo epithelial-to-mesenchymal transition (EMT) through the activation of NADPH oxidase (Nox). It was found that increased homocysteine (Hcys) level suppressed the expression of slit diaphragm-associated proteins, P-cadherin and zonula occludens-1 (ZO-1) in conditionally immortalized mouse podocytes, indicating the loss of their epithelial features. Meanwhile, Hcys remarkably increased the abundance of mesenchymal markers, such as fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA). These phenotype changes in podocytes induced by Hcys were accompanied by enhanced superoxide (O2.−) production, which was substantially suppressed by inhibition of Nox activity. Functionally, Hcys significantly enhanced the permeability of the podocyte monolayer coupled with increased EMT, and this EMT-related increase in cell permeability could be restored by Nox inhibitors. In mice lacking gp91phox (gp91−/−), an essential Nox subunit gene, hHcys-enhanced podocyte EMT and consequent glomerular injury were examined. In wild-type (gp91+/+) mice, hHcys induced by a folate-free (FF) diet markedly enhanced expression of mesenchymal markers (FSP-1 and α-SMA) but decreased expression of epithelial markers of podocytes in glomeruli, which were not observed in gp91−/− mouse glomeruli. Podocyte injury, glomerular sclerotic pathology, and marked albuminuria observed in gp91+/+ mice with hHcys were all significantly attenuated in gp91−/− mice. These results suggest that hHcys induces EMT of podocytes through activation of Nox, which represents a novel mechanism of hHcys-associated podocyte injury. PMID:21647593

  12. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2010-03-01

    An impairment of glucose-stimulated insulin secretion--reflecting decreased glucokinase expression--and a moderate decrease in beta cell mass attributable to increased apoptosis, constitute the key features of beta cell failure in type 2 diabetes. Oxidative stress, provoked by prolonged exposure to excessive levels of glucose and/or fatty acids (glucolipotoxicity), appears to be a key mediator of these defects. Oxidant-provoked JNK activation induces nuclear export of the PDX-1 transcription factor, required for expression of glucokinase and other beta cell proteins. Conversely, increases in cAMP induced by incretin hormones promote the nuclear importation of PDX-1, counteracting the diabetogenic impact of oxidant stress; this may explain the utility of measures that slow dietary carbohydrate absorption for diabetes prevention. The ability of oxidative stress to boost apoptosis in beta cells is poorly understood, but may also entail JNK activation. Recent work establishes a phagocyte-type NADPH oxidase as the chief source of glucotoxicity-mediated oxidative stress in beta cells. Since bilirubin is now known to function physiologically as an inhibitor of NADPH oxidase, and phycocyanobilin (PCB) derived from spirulina likewise can inhibit this enzyme complex, supplemental PCB may have utility in the prevention and control of diabetes, and Gilbert syndrome, associated with chronically elevated free bilirubin, may be associated with decreased diabetes risk. PMID:19576699

  13. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells.

    PubMed

    Aguilar, Edenil C; Santos, Lana Claudinez Dos; Leonel, Alda J; de Oliveira, Jamil Silvano; Santos, Elândia Aparecida; Navia-Pelaez, Juliana M; da Silva, Josiane Fernandes; Mendes, Bárbara Pinheiro; Capettini, Luciano S A; Teixeira, Lilian G; Lemos, Virginia S; Alvarez-Leite, Jacqueline I

    2016-08-01

    Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site. PMID:27261536

  14. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice.

    PubMed

    Das, Debamitra; Zalewski, Jenna K; Mohan, Swarna; Plageman, Timothy F; VanDemark, Andrew P; Hildebrand, Jeffrey D

    2014-01-01

    Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes. PMID:25171888

  15. Perfluorooctanoic acid (PFOA)-induced liver lesions in two strains of mice following developmental exposures: PPARα is not required

    PubMed Central

    Filgo, Adam J.; Quist, Erin M.; Hoenerhoff, Mark J.; Brix, Amy E.; Kissling, Grace E.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoate acid (PFOA) is a ubiquitous pollutant that causes liver toxicity in rodents, a process believed to be dependent on peroxisome proliferation activated receptor alpha (PPARα) activation. Differences between humans and rodents have made the human relevance of some health effects caused by PFOA controversial. We analyzed liver toxicity at 18 months following gestational PFOA exposure in CD-1 and 129/Sv strains of mice and compared PFOA-induced effects between strains and in wild type (WT) and PPARα-knockout (KO) 129/Sv mice. Pregnant mice were exposed daily to doses (0.01–5mg/kg/BW) of PFOA from gestation days 1–17. The female offspring were necropsied at 18 months and liver sections underwent a full pathology review. Hepatocellular adenomas formed in PFOA-exposed PPARα-KO 129/Sv and CD-1 mice, and were absent in untreated controls from those groups and WT 129/Sv. Hepatocellular hypertrophy was significantly increased by PFOA exposure in CD-1 and an increased severity was found in WT 129/Sv mice. PFOA significantly increased non-neoplastic liver lesions in PPARα-KO mice (hepatocyte hypertrophy, bile duct hyperplasia and hematopoietic cell proliferation). Low dose gestational exposures to PFOA induced latent PPARα independent liver toxicity that was observed in aged mice. Evidence of liver toxicity in PPARα-KO mice warrants further investigation into PPARα independent pathways. PMID:25398757

  16. CD44 and TGFbeta1 synergise to induce expression of a functional NADPH oxidase in promyelocytic cells.

    PubMed

    Basoni, Caroline; Reuzeau, Edith; Croft, Daniel; Génot, Elisabeth; Kramer, Ijsbrand M

    2006-05-01

    Bone marrow stromal cells produce large amounts of extracellular matrix and cytokines. Amongst them, hyaluronan, a glycosaminoglycan and ligand for the cell surface molecule CD44, and TGFbeta1, a cytokine particularly important in monocyte differentiation. We have studied in vitro the role of hyaluronan and TGFbeta1 in the differentiation process of U937 monocytic progenitor cells. We provide evidence that, in the presence of whole blood-derived serum, the addition of hyaluronan is sufficient to induce the expression of NADPH-oxidase components but not of other monocytic markers (CD14, CD11b, and VLA-4). In the presence of plasma-derived serum, besides hyaluronan, the additional presence of TGFbeta1 was required for the expression of all of the components of the NADPH oxidase. We further show that hyaluronan mediates its effect through CD44. We conclude that cell matrix factors act cooperatively with cytokines to induce the expression of the components of the NADPH-oxidase in monocytic progenitor cells. PMID:16554035

  17. Intact immune defenses are required for mice to resist the ts-4 vaccine strain of Toxoplasma gondii.

    PubMed Central

    Sayles, P C; Johnson, L L

    1996-01-01

    The ts-4 strain of Toxoplasma gondii is a temperature-sensitive mutant that fails to grow at 40 degrees C in vitro. Unlike mildly virulent cyst-forming strains, which can cause fatal chronic infections in certain mouse strains, ts-4 has been widely used to vaccinate mice against virulent T. gondii and is a valuable tool with which to investigate mechanisms of acquired resistance to this parasite. In this report, the basis for the avirulence of ts-4 is analyzed. It is shown that ts-4 is able to persist long-term in vivo in mildly immunocompromised mice, which rules out an intrinsic growth defect as a reason for avirulence. ts-4 does not induce body temperatures in mice as high as that needed to kill it in vitro. Moreover, the mild fevers elicited in resistant B6 mice are also seen in susceptible C57BL/6 scid/scid mice. However, ts-4 elicits strong preimmune defenses, dependent on gamma interferon, which are needed by mice to survive acute infection. Furthermore, CD4+ and CD8+ T-cell-dependent acquired immunity is essential for long-term survival of ts-4-infected mice. PMID:8757838

  18. Site requirements and kinetics of immune-dependent elimination of intravascularly administered lung stage schistosomula in mice immunized with highly irradiated cercariae of Schistosoma mansoni

    SciTech Connect

    Mangold, B.L.; Dean, D.A.; Coulson, P.S.; Wilson, R.A.

    1986-03-01

    Experiments were performed to compare the migration and survival of 75Se-labeled schistosomes, introduced by percutaneous cercarial exposure or by intravascular administration of 7-day-old lung stage schistosomula, in control and irradiated cercaria-immunized mice. Schistosomula were intravascularly introduced into the lungs, systemic organs and liver by injection via the femoral vein (FV), left ventricle (LV), and superior mesenteric vein (SMV), respectively. The fate of challenge larvae was examined by autoradiography of host tissues and by recovery of adult worms. It was found that both normal and immune elimination were site-dependent. In control mice 45%-60% of cercarial penetrants and lung schistosomula injected into the FV and LV were recoverable as adult worms, while a significantly greater number (70%-85%) were recoverable when lung schistosomula were injected into the SMV. In immunized mice, parasites introduced as either cercariae or FV-injected schistosomula were both highly sensitive to immune elimination. LV-injected schistosomula were also sensitive but to a slightly lesser degree. In contrast, schistosomula placed directly in the liver by SMV injection were totally insensitive to immune elimination. It was concluded that elimination of schistosomula in irradiated cercaria-immunized mice occurs in the lungs and/or in the systemic organs, but not in the liver. Also, it was concluded that immune elimination is not a rapid process, since more than 7 days were required after intravascular challenge for the development of demonstrable differences between control and immunized mice.

  19. NOX2β: A Novel Splice Variant of NOX2 That Regulates NADPH Oxidase Activity in Macrophages

    PubMed Central

    Guida, Elizabeth; King, Paul T.; Sobey, Christopher G.; Drummond, Grant R.

    2012-01-01

    Nox2 oxidase is one isoform in a family of seven NADPH oxidases that generate reactive oxygen species (ROS) and thereby contribute to physiological and pathological processes including host defense, redox signaling and oxidative tissue damage. While alternative mRNA splicing has been shown to influence the activity of several Nox-family proteins, functionally relevant splice variants of Nox2 have not previously been identified. We immunoscreened several mouse tissues and cells for the presence of truncated Nox2 proteins and identified a 30 kDa protein in lung, spleen and macrophages. RT-PCR analysis of mRNA from primary and immortalised (RAW264.7) mouse macrophages, and from human alveolar macrophages, identified a truncated Nox2 transcript which, upon sequence analysis, was found to be a product of the ‘exon skipping’ mode of alternative splicing, lacking exons 4–10 of the Nox2 gene. The predicted protein is comparable in size to that identified by immunoscreening and contains two transmembrane helices and an extended cytosolic C-terminus with binding sites for NADPH and the Nox organiser protein p47phox. Importantly, selective siRNA-mediated knockdown of the transcript reduced expression of the 30 kDa protein in macrophages, and suppressed phorbol ester-stimulated ROS production by 50%. We thus provide the first evidence that Nox2 undergoes alternative mRNA splicing to yield a 30 kDa protein – herein termed Nox2β – that regulates NADPH oxidase activity in macrophages from mice and humans. The discovery of Nox2β paves the way for future examination of its role in physiological and pathological processes. PMID:23118986

  20. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803.

    PubMed

    Choi, Yun-Nam; Park, Jong Moon

    2016-08-01

    This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions. PMID:26951740

  1. Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats.

    PubMed

    Orriss, Isabel R; Hajjawi, Mark O R; Huesa, Carmen; MacRae, Vicky E; Arnett, Timothy R

    2014-11-01

    The in vitro culture of calvarial osteoblasts from neonatal rodents remains an important method for studying the regulation of bone formation. The widespread use of transgenic mice has created a particular need for a reliable, simple method that allows the differentiation and bone‑forming activity of murine osteoblasts to be studied. In the present study, we established such a method and identified key differences in optimal culture conditions between mouse and rat osteoblasts. Cells isolated from neonatal rodent calvariae by collagenase digestion were cultured for 14‑28 days before staining for tissue non-specific alkaline phosphatase (TNAP) and bone mineralisation (alizarin red). The reliable differentiation of mouse osteoblasts, resulting in abundant TNAP expression and the formation of mineralised 'trabecular‑shaped' bone nodules, occurred only following culture in α minimum essential medium (αMEM) and took 21‑28 days. Dexamethasone (10 nM) inhibited bone mineralisation in the mouse osteoblasts. By contrast, TNAP expression and bone formation by rat osteoblasts were observed following culture in both αMEM and Dulbecco's modified Eagle's medium (DMEM) after approximately 14 days (although ~3‑fold more effectively in αMEM) and was strongly dependent on dexamethasone. Both the mouse and rat osteoblasts required ascorbate (50 µg/ml) for osteogenic differentiation and β‑glycerophosphate (2 mM) for mineralisation. The rat and mouse osteoblasts showed similar sensitivity to the well‑established inhibitors of mineralisation, inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP; 1‑100 µM). The high efficiency of osteogenic differentiation observed following culture in αMEM, compared with culture in DMEM possibly reflects the richer formulation of the former. These findings offer a reliable technique for inducing mouse osteoblasts to form bone in vitro and a more effective method for culturing bone‑forming rat osteoblasts. PMID:25200658

  2. SMAD Signaling Is Required for Structural Integrity of the Female Reproductive Tract and Uterine Function During Early Pregnancy in Mice.

    PubMed

    Rodriguez, Amanda; Tripurani, Swamy K; Burton, Jason C; Clementi, Caterina; Larina, Irina; Pangas, Stephanie A

    2016-08-01

    Pregnancy is a complex physiological process tightly controlled by the interplay among hormones, morphogens, transcription factors, and signaling pathways. Although recent studies using genetically engineered mouse models have revealed that ligands and receptors of transforming growth factor beta (TGFbeta) and bone morphogenetic protein (BMP) signaling pathways are essential for multiple reproductive events during pregnancy, the functional role of SMAD transcription factors, which serve as the canonical signaling platform for the TGFbeta/BMP pathways, in the oviduct and uterus is undefined. Here, we used a mouse model containing triple conditional deletion of the BMP receptor signaling Smads (Smad1 and Smad5) and Smad4, the central mediator of both TGFbeta and BMP signaling, to investigate the role of the SMADs in reproductive tract structure and function in cells from the Amhr2 lineage. Unlike the respective single- or double-knockouts, female Smad1(flox/flox) Smad5(flox/flox) Smad4(flox/flox) Amhr2(cre/+)conditional knockout (i.e., Smad1/5/4-Amhr2-cre KO) mice are sterile. We discovered that Smad1/5/4-Amhr2-cre KO females have malformed oviducts that subsequently develop oviductal diverticuli. These oviducts showed dysregulation of multiple genes essential for oviduct and smooth muscle development. In addition, uteri from Smad1/5/4-Amhr2-cre KO females exhibit multiple defects in stroma, epithelium, and smooth muscle layers and fail to assemble a closed uterine lumen upon embryo implantation, with defective uterine decidualization that led to pregnancy loss at early to mid-gestation. Taken together, our study uncovers a new role for the SMAD transcription factors in maintaining the structural and functional integrity of oviduct and uterus, required for establishment and maintenance of pregnancy. PMID:27335065

  3. Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice.

    PubMed

    Zalcman, Gisela; Federman, Noel; de la Fuente, Verónica; Romano, Arturo

    2015-03-01

    Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation. PMID:25576790

  4. The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice.

    PubMed

    Maître, Blandine; Magnenat, Stéphanie; Heim, Véronique; Ravanat, Catherine; Evans, Richard J; de la Salle, Henri; Gachet, Christian; Hechler, Béatrice

    2015-01-15

    Extracellular ATP is becoming increasingly recognized as an important regulator of inflammation. However, the known repertoire of P2 receptor subtypes responsible for the proinflammatory effects of ATP is sparse. We looked at whether the P2X1 receptor, an ATP-gated cation channel present on platelets, neutrophils, and macrophages, participates in the acute systemic inflammation provoked by LPS. Compared with wild-type (WT) mice, P2X1(-/-) mice displayed strongly diminished pathological responses, with dampened neutrophil accumulation in the lungs, less tissue damage, reduced activation of coagulation, and resistance to LPS-induced death. P2X1 receptor deficiency also was associated with a marked reduction in plasma levels of the main proinflammatory cytokines and chemokines induced by LPS. Interestingly, macrophages and neutrophils isolated from WT and P2X1(-/-) mice produced similar levels of proinflammatory cytokines when stimulated with LPS in vitro. Intravital microscopy revealed a defect in LPS-induced neutrophil emigration from cremaster venules into the tissues of P2X1(-/-) mice. Using adoptive transfer of immunofluorescently labeled neutrophils from WT and P2X1(-/-) mice into WT mice, we demonstrate that the absence of the P2X1 receptor on neutrophils was responsible for this defect. This study reveals a major role for the P2X1 receptor in LPS-induced lethal endotoxemia through its critical involvement in neutrophil emigration from venules. PMID:25480563

  5. Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding.

    PubMed

    Chung, Hae-Won; Tu, Shiao-Chun

    2012-06-19

    Vibrio harveyi NADPH-FMN oxidoreductase (FRP) catalyzes flavin reduction by NADPH. In comparing amino acid sequence and crystal structure with Escherichia coli NfsA, residues N134, R225, R133, K167, and R15 were targeted for investigation of their possible roles in the binding and utilization of the NADPH substrate. By mutation of each of these five residues to an alanine, steady-state rate analyses showed that the variants K167A and R15A had apparently greatly increased K(m,NADPH) and reduced k(cat)/K(m,NADPH), whereas little or much more modest changes were found for the other variants. The deuterium isotope effects (D)(V/K) for (4R)-[4-(2)H]-NADPH were markedly increased to 6.3 and 7.4 for K167A and R15A, respectively, indicating that the rate constants for NADPH and NADP(+) dissociation were greatly enhanced relative to the hydride transfer steps. Also, anaerobic stopped-flow analyses revealed that the equilibrium dissociation constant for NADPH binding (K(d)) to be 2.5-3.9 and 1.1 mM for K167A and R15A, respectively, much higher than the 0.4 μM K(d) for the native FRP, whereas the k(cat) of these two variants were similar to that of the wild-type enzyme. Moreover, the K167 to alanine mutation led to even a slight increase in k(cat)/K(m) for NADH. These results, taken together, provide a strong support to the conclusion that K167 and R15 each was critical in the binding of NADPH by FRP. Such a functional role may also exist for other FRP homologous proteins. PMID:22650604

  6. Glutathione attenuates ethanol-induced alveolar macrophage oxidative stress and dysfunction by downregulating NADPH oxidases.

    PubMed

    Yeligar, Samantha M; Harris, Frank L; Hart, C Michael; Brown, Lou Ann S

    2014-03-01

    Chronic alcohol abuse increases lung oxidative stress and susceptibility to respiratory infections by impairing alveolar macrophage (AM) function. NADPH oxidases (Nox) are major sources of reactive oxygen species in AMs. We hypothesized that treatment with the critical antioxidant glutathione (GSH) attenuates chronic alcohol-induced oxidative stress by downregulating Noxes and restores AM phagocytic function. Bronchoalveolar lavage (BAL) fluid and AMs were isolated from male C57BL/6J mice (8-10 wk) treated ± ethanol in drinking water (20% wt/vol, 12 wk) ± orally gavaged GSH in methylcellulose vehicle (300 mg x kg(-1) x day(-1), during week 12). MH-S cells, a mouse AM cell line, were treated ± ethanol (0.08%, 3 days) ± GSH (500 μM, 3 days or last 1 day of ethanol). BAL and AMs were also isolated from ethanol-fed and control mice ± inoculated airway Klebsiella pneumoniae (200 colony-forming units, 28 h) ± orally gavaged GSH (300 mg/kg, 24 h). GSH levels (HPLC), Nox mRNA (quantitative RT-PCR) and protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol decreased GSH levels, increased Nox expression and activity, enhanced oxidative stress, impaired phagocytic function in AMs in vivo and in vitro, and exacerbated K. pneumonia-induced oxidative stress. Although how oral GSH restored GSH pools in ethanol-fed mice is unknown, oral GSH treatments abrogated the detrimental effects of chronic alcohol exposure and improved AM function. These studies provide GSH as a novel therapeutic approach for attenuating alcohol-induced derangements in AM Nox expression, oxidative stress, dysfunction, and risk for pneumonia. PMID:24441868

  7. NADPH:Quinone Oxidoreductase 1 Regulates Host Susceptibility to Ozone via Isoprostane Generation*

    PubMed Central

    Kummarapurugu, Apparao B.; Fischer, Bernard M.; Zheng, Shuo; Milne, Ginger L.; Ghio, Andrew J.; Potts-Kant, Erin N.; Foster, W. Michael; Soderblom, Erik J.; Dubois, Laura G.; Moseley, M. Arthur; Thompson, J. Will; Voynow, Judith A.

    2013-01-01

    NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A2-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D2- and E2-isoprostanes, the precursors of J2- and A2-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A2-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A2-isoprostane covalently modified the active Cys179 domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A2-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A2-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone. PMID:23275341

  8. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    SciTech Connect

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  9. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass

    PubMed Central

    Sun, Jinlong; Ming, Leiguo; Shang, Fengqing; Shen, Lijuan; Chen, Jihua; Jin, Yan

    2015-01-01

    Because of the reduced potential for osteogenesis in aging bone marrow stromal cells, the balance of bone metabolism becomes disrupted, leading to various bone diseases. An increase in reactive oxygen species has been determined to be one of the key factors that accelerates the aging process in BMSCs. In these cells, increased expression of NADPH oxidases is the major source of ROS. In the current study, we suppressed the expression of NOX using apocynin, an effective antioxidant and free radical scavenger, and the results showed that aging BMSCs exhibited an enhanced potential for osteogenesis. The expression of potential key targets influencing this reversal was evaluated using qRT-PCR, and the expression of p53 was shown to be reduced with the suppression of NOX. We speculate that this may be one of the major reasons for the reversal of the aging process. We also examined the effect of apocynin in vivo, and the results showed that in SAMP6 mice, bone mineral density and total bone volume were increased after 3 months of apocynin treatment. In conclusion, our results demonstrate that in aging BMSCs, suppression of NADPH oxidase by apocynin partially reverses the aging process and enhances osteogenic potential. PMID:26686764

  10. Ciliary neurotrophic factor is not required for terminal sprouting and compensatory reinnervation of neuromuscular synapses: Re-evaluation of CNTF null mice

    PubMed Central

    Wright, Megan C.; Son, Young-Jin

    2007-01-01

    Loss of synaptic activity or innervation induces sprouting of intact motor nerve terminals that adds or restores nerve-muscle connectivity. Ciliary neurotrophic factor (CNTF) and terminal Schwann cells (tSCs) have been implicated as molecular and cellular mediators of the compensatory process. We wondered if the previously reported lack of terminal sprouting in CNTF null mice was due to abnormal reactivity of tSCs. To this end, we examined nerve terminal and tSC responses in CNTF null mice using experimental systems that elicited extensive sprouting in wildtype mice. Contrary to the previous report, we found that motor nerve terminals in the null mice sprout extensively in response to major sprouting-stimuli such as exogenously applied CNTF per se, botulinum toxin-elicited paralysis, and partial denervation by L4 spinal root transection. In addition, the number, length and growth patterns of terminal sprouts, and the extent of reinnervation by terminal or nodal sprouts, were similar in wildtype and null mice. tSCs in the null mice were also reactive to the sprouting-stimuli, elaborating cellular processes that accompanied terminal sprouts or guided reinnervation of denervated muscle fibers. Lastly, CNTF was absent in quiescent tSCs in intact, wildtype muscles and little if any was detected in reactive tSCs in denervated muscles. Thus, CNTF is not required for induction of nerve terminal sprouting, for reactivation of tSCs, and for compensatory reinnervation after nerve injury. We interpret these results to support the notion that compensatory sprouting in adult muscles is induced primarily by contact-mediated mechanisms, rather than by diffusible factors. PMID:17445802

  11. The full expression of the ity phenotype in ityr mice requires C3 activation by Salmonella lipopolysaccharide.

    PubMed Central

    Nishikawa, F; Yoshikawa, S; Harada, H; Kita, M; Kita, E

    1998-01-01

    Our previous study has shown that the rapid and sufficient activation of complement by Salmonella lipopolysaccharide occurs in genetically resistant (Ityr) A/J mice. To assess whether the level of complement activation by a virulent strain of Salmonella typhimurium regulates the level of murine natural resistance, we compared levels of serum complement activation by S. typhimurium and kinetics of serum-opsonized S. typhimurium grown in macrophages using several strains of resistant (Ityr) and susceptible (Itys) mice. Itys macrophages killed intracellular S. typhimurium to the same extent as did Ityr macrophages when the pathogen was opsonized with Ityr serum. Opsonization of S. typhimurium with Itys serum reduced intracellular killing activity in Ityr macrophages to the same level as seen with Itys macrophages. Incubation of S. typhimurium with 25% Mg2+ EGTA (5 mm MgCl2-3 mm ethylene glycol-bis (beta-aminotheyl either)-N,N,N',N'-tetraacetic acid)-chelated Ityr serum resulted in higher levels of C3 deposition onto the surface of this bacteria, C3b generation and also C3 consumption, compared with that with Mg2+ EGTA-chelated Itys serum. Opsonization of S. typhimurium with A/J serum prior to infection increased early resistance in Itys mice. Infection with a virulent strain of S. typhimurium induced the expression of interleukin-10 (IL-10) mRNA at higher levels in C57BL/6 mice than in A/J mice. However, opsonization of S. typhimurium with A/J serum decreased bacterial growth in the spleen of C57BL/6 mice to the same level as observed for A/J mice in association with decreased expression levels of IL-10 mRNA. Moreover, administration of anti-C3 antibodies reduced the resistance of A/J mice in association with a decrease in serum levels of C3. These results indicate that the high level of complement activation via the alternative pathway in Ityr serum by a virulent strain of S. typhimurium reduces the virulence of this pathogen, which may contribute to the full

  12. Genes Required for the Fitness of Salmonella enterica Serovar Typhimurium during Infection of Immunodeficient gp91-/- phox Mice.

    PubMed

    Grant, Andrew J; Oshota, Olusegun; Chaudhuri, Roy R; Mayho, Matthew; Peters, Sarah E; Clare, Simon; Maskell, Duncan J; Mastroeni, Pietro

    2016-04-01

    Salmonella entericacauses systemic diseases (typhoid and paratyphoid fever), nontyphoidal septicemia (NTS), and gastroenteritis in humans and other animals worldwide. An important but underrecognized emerging infectious disease problem in sub-Saharan Africa is NTS in children and immunocompromised adults. A current goal is to identifySalmonellamutants that are not pathogenic in the absence of key components of the immune system such as might be found in immunocompromised hosts. Such attenuated strains have the potential to be used as live vaccines. We have used transposon-directed insertion site sequencing (TraDIS) to screen mutants ofSalmonella entericaserovar Typhimurium for their ability to infect and grow in the tissues of wild-type and immunodeficient mice. This was to identify bacterial genes that might be deleted for the development of live attenuated vaccines that would be safer to use in situations and/or geographical areas where immunodeficiencies are prevalent. The relative fitness of each of 9,356 transposon mutants, representing mutations in 3,139 different genes, was determined ingp91(-/-)phoxmice. Mutations in certain genes led to reduced fitness in both wild-type and mutant mice. To validate these results, these genes were mutated by allelic replacement, and resultant mutants were retested for fitness in the mice. A defined deletion mutant ofcysEwas attenuated in C57BL/6 wild-type mice and immunodeficientgp91(-/-)phoxmice and was effective as a live vaccine in wild-type mice. PMID:26787719

  13. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice

    PubMed Central

    Nai, Antonella; Rubio, Aude; Campanella, Alessandro; Gourbeyre, Ophélie; Artuso, Irene; Bordini, Jessica; Gineste, Aurélie; Latour, Chloé; Besson-Fournier, Céline; Lin, Herbert Y.; Coppin, Hélène; Roth, Marie-Paule; Camaschella, Clara; Silvestri, Laura

    2016-01-01

    Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein–mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling. PMID:26755707

  14. Protective Response to Leishmania major in BALB/c Mice Requires Antigen Processing in the Absence of DM1

    PubMed Central

    Kamala, Tirumalai; Nanda, Navreet K.

    2009-01-01

    Protection from the parasite Leishmania major is mediated by CD4 T cells. BALB/c mice are susceptible to L. major and show a nonprotective immunodominant CD4 T cell response to Leishmania homolog of activated receptor for c-kinase (LACK) 158–173. Host genes that underlie BALB/c susceptibility to L. major infections are poorly defined. DM, a nonclassical MHC class II molecule, due to its peptide editing properties has been shown to 1) edit the repertoire of peptides displayed by APC, and 2) focus the display of epitopes by APC to the immunodominant ones. We tested the hypothesis that deficiency of DM, by causing presentation of a different array of epitopes by infected APC than that presented by DM-sufficient APC, may change the course of L. major infection in the susceptible BALB/c mice. We show herein that unlike their susceptible wild-type counterparts, BALB/c mice deficient in DM are protected from infections with L. major. Furthermore, DM-deficient mice fail to display the immunodominant LACK 158–173 on infected APC. In its place, infected DM−/− hosts show elicitation of CD4 T cells specific for newer epitopes not presented by wild-type L. major-infected APC. Protection of BALB/c DM−/− mice is dependent on IFN-γ. DM is thus a host susceptibility gene in BALB/c mice, and Ag processing in the absence of DM results in elicitation of a protective T cell response against L. major infections. This report suggests a novel mechanism to trigger host resistance against pathogens. PMID:19342667

  15. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.

    PubMed

    Nai, Antonella; Rubio, Aude; Campanella, Alessandro; Gourbeyre, Ophélie; Artuso, Irene; Bordini, Jessica; Gineste, Aurélie; Latour, Chloé; Besson-Fournier, Céline; Lin, Herbert Y; Coppin, Hélène; Roth, Marie-Paule; Camaschella, Clara; Silvestri, Laura; Meynard, Delphine

    2016-05-12

    Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling. PMID:26755707

  16. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes

    SciTech Connect

    Misra, H.P.; Gorsky, L.D.

    1981-10-10

    Since there exists some controversy in the literature as to whether paraquat augments microsomal lipid peroxidation via superoxide anion (O/sub 2//sup -/), the role of paraquat and active oxygen species in NADPH-dependent lung microsomal lipid peroxidation was investigated. Incubation of buffered aerobic mixture of bovine lung microsome and NADPH, in the presence or absence of exogenously added iron, resulted in a progressive formation of lipid peroxides whose accumulation could be followed at 535 nm as malondialdehyde. Paraquat strongly inhibited this lipid peroxidation, Thus, malondialydehyde formation was 50% inhibited by 4 X 10/sup -5/ M paraquat in the reaction mixture. The malondialdehyde color development by lipid peroxides was not affected by this concentration of paraquat. Lipid peroxidation was also strongly inhibited by singlet oxygen scavengers, e.g. dimethylfuran and diphenylfuran, and by catalase. Hydroxyl radical scavengers, e.g. mannitol, benzoate, and ethanol, had little effect in malondialydehyde production. Superoxide dismutase, which removes O/sub 2//sup -/ efficiently, did not inhibit malondialdehyde production by lung microsomes and rather enhanced its formation. A scheme in which paraquat and active O/sub 2/ species may be involved with microsomal lipid peroxidation is presented.

  17. Roles of ATP and NADPH in formation of the fe-s cluster of spinach ferredoxin.

    PubMed

    Takahashi, Y; Mitsui, A; Fujita, Y; Matsubara, H

    1991-01-01

    Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [(35)S]cysteine, in which [(35)S]sulfide and iron are incorporated into Fd to build up the (35)S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [(35)S]sulfide or iron, or in Fe-S cluster formation itself. [(35)S]Sulfide was liberated from [(35)S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [(35)S]cysteine occurred before the formation of the (35)S-labeled Fe-S cluster, and the amount of radioactivity in [(35)S]sulfide was greater than that in (35)S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na(2)S) inhibited competitively formation of the (35)S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [(35)S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster

  18. Identification of the NAD(P)H binding site of eukaryotic UDP-galactopyranose mutase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Solano, Luis M; Oppenheimer, Michelle; Robinson, Reeder M; Ellerbrock, Jacob F; Sobrado, Pablo; Tanner, John J

    2012-10-31

    UDP-galactopyranose mutase (UGM) plays an essential role in galactofuranose biosynthesis in microorganisms by catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The enzyme has gained attention recently as a promising target for the design of new antifungal, antitrypanosomal, and antileishmanial agents. Here we report the first crystal structure of UGM complexed with its redox partner NAD(P)H. Kinetic protein crystallography was used to obtain structures of oxidized Aspergillus fumigatus UGM (AfUGM) complexed with NADPH and NADH, as well as reduced AfUGM after dissociation of NADP(+). NAD(P)H binds with the nicotinamide near the FAD isoalloxazine and the ADP moiety extending toward the mobile 200s active site flap. The nicotinamide riboside binding site overlaps that of the substrate galactopyranose moiety, and thus NADPH and substrate binding are mutually exclusive. On the other hand, the pockets for the adenine of NADPH and uracil of the substrate are distinct and separated by only 6 Å, which raises the possibility of designing novel inhibitors that bind both sites. All 12 residues that contact NADP(H) are conserved among eukaryotic UGMs. Residues that form the AMP pocket are absent in bacterial UGMs, which suggests that eukaryotic and bacterial UGMs have different NADP(H) binding sites. The structures address the longstanding question of how UGM binds NAD(P)H and provide new opportunities for drug discovery. PMID:23036087

  19. Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers.

    PubMed Central

    Menting, J G; Cornish, E; Scopes, R K

    1994-01-01

    NADPH-cytochrome c reductase was solubilized from the microsomal fraction of Petunia hybrida flowers by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate detergent and purified by adenosine 2',5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. Two proteins with molecular sizes of 75 and 81 kD were detected in the purified preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis showed that both purified proteins cross-reacted with two different monoclonal antibodies raised against P. hybrida NADPH-cytochrome c reductase and rabbit anti-Jerusalem artichoke NADPH-cytochrome P450 reductase antibodies. Only one 84-kD protein was detected by western blot analysis of fresh microsomal extracts. Amino acid sequence analysis of tryptic peptides revealed significant similarity to the NADPH binding region of plant and animal NADPH-cytochrome P450 reductases and Bacillus megaterium cytochrome P450:NADPH-cytochrome P450 reductase. The pH optimum for reduction of ferricytochrome c was 7.4 and the Km values for the binding of NADPH and ferricytochrome c were 9.2 and 2.8 microM, respectively. We believe that the purified enzyme is a P. hybrida NADPH-cytochrome P450 reductase (EC 1.6.2.4). PMID:7991686

  20. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage.

    PubMed

    Liu, Ling; Shah, Supriya; Fan, Jing; Park, Junyoung O; Wellen, Kathryn E; Rabinowitz, Joshua D

    2016-05-01

    The critical cellular hydride donor NADPH is produced through various means, including the oxidative pentose phosphate pathway (oxPPP), folate metabolism and malic enzyme. In growing cells, it is efficient to produce NADPH via the oxPPP and folate metabolism, which also make nucleotide precursors. In nonproliferating adipocytes, a metabolic cycle involving malic enzyme holds the potential to make both NADPH and two-carbon units for fat synthesis. Recently developed deuterium ((2)H) tracer methods have enabled direct measurement of NADPH production by the oxPPP and folate metabolism. Here we enable tracking of NADPH production by malic enzyme with [2,2,3,3-(2)H]dimethyl-succinate and [4-(2)H]glucose. Using these tracers, we show that most NADPH in differentiating 3T3-L1 mouse adipocytes is made by malic enzyme. The associated metabolic cycle is disrupted by hypoxia, which switches the main adipocyte NADPH source to the oxPPP. Thus, (2)H-labeled tracers enable dissection of NADPH production routes across cell types and environmental conditions. PMID:26999781

  1. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase.

    PubMed

    Gaetani, Gian F; Ferraris, Anna M; Sanna, Paola; Kirkman, Henry N

    2005-02-01

    Many catalases have the shared property of containing bound NADPH and being susceptible to inactivation by their own substrate, H2O2. The presence of additional (unbound) NADPH effectively prevents bovine liver and human erythrocytic catalase from becoming compound II, the reversibly inactivated state of catalase, and NADP+ is known to be generated in the process. The function of the bound NADPH, which is tightly bound in bovine liver catalase, has been unknown. The present study with bovine liver catalase and [14C]NADPH and [14C]NADH revealed that unbound NADPH or NADH are substrates for an internal reductase and transhydrogenase reaction respectively; the unbound NADPH or NADH cause tightly bound NADP+ to become NADPH without becoming tightly bound themselves. This and other results provide insight into the function of tightly bound NADPH. PMID:15456401

  2. Cdc42-Dependent Activation of NADPH Oxidase Is Involved in Ethanol-Induced Neuronal Oxidative Stress

    PubMed Central

    Wang, Xin; Ke, Zunji; Chen, Gang; Xu, Mei; Bower, Kimberly A.; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    It has been suggested that excessive reactive oxygen species (ROS) and oxidative stress play an important role in ethanol-induced damage to both the developing and mature central nervous system (CNS). The mechanisms underlying ethanol-induced neuronal ROS, however, remain unclear. In this study, we investigated the role of NADPH oxidase (NOX) in ethanol-induced ROS generation. We demonstrated that ethanol activated NOX and inhibition of NOX reduced ethanol-promoted ROS generation. Ethanol significantly increased the expression of p47phox and p67phox, the essential subunits for NOX activation in cultured neuronal cells and the cerebral cortex of infant mice. Ethanol caused serine phosphorylation and membrane translocation of p47phox and p67phox, which were prerequisites for NOX assembly and activation. Knocking down p47phox with the small interfering RNA was sufficient to attenuate ethanol-induced ROS production and ameliorate ethanol-mediated oxidative damage, which is indicated by a decrease in protein oxidation and lipid peroxidation. Ethanol activated cell division cycle 42 (Cdc42) and overexpression of a dominant negative (DN) Cdc42 abrogate ethanol-induced NOX activation and ROS generation. These results suggest that Cdc42-dependent NOX activation mediates ethanol-induced oxidative damages to neurons. PMID:22662267

  3. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein*

    PubMed Central

    Prior, Kim-Kristin; Wittig, Ilka; Leisegang, Matthias S.; Groenendyk, Jody; Weissmann, Norbert; Michalak, Marek; Jansen-Dürr, Pidder; Shah, Ajay M.; Brandes, Ralf P.

    2016-01-01

    Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum. PMID:26861875

  4. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Mann, Zoe F.; Gale, Jonathan E.; Ziegler, Mathias; Bain, Angus J.; Szabadkai, Gyorgy; Duchen, Michael R.

    2014-05-01

    NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.

  5. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

    PubMed Central

    Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

    2014-01-01

    Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair. PMID:24669283

  6. Ebselen and congeners inhibit NADPH-oxidase 2 (Nox2)-dependent superoxide generation by interrupting the binding of regulatory subunits

    PubMed Central

    Smith, Susan M.E.; Min, Jaeki; Ganesh, Thota; Diebold, Becky; Kawahara, Tsukasa; Zhu, Yerun; McCoy, James; Sun, Aiming; Snyder, James P.; Fu, Haian; Du, Yuhong; Lewis, Iestyn; Lambeth, J. David

    2012-01-01

    Summary NADPH-oxidases are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits. PMID:22726689

  7. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  8. NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.

    PubMed

    Ahn, Bumsoo; Beharry, Adam W; Frye, Gregory S; Judge, Andrew R; Ferreira, Leonardo F

    2015-09-01

    Patients with chronic heart failure (CHF) have dyspnea and exercise intolerance, which are caused in part by diaphragm abnormalities. Oxidants impair diaphragm contractile function, and CHF increases diaphragm oxidants. However, the specific source of oxidants and its relevance to diaphragm abnormalities in CHF is unclear. The p47(phox)-dependent Nox2 isoform of NAD(P)H oxidase is a putative source of diaphragm oxidants. Thus, we conducted our study with the goal of determining the effects of CHF on the diaphragm levels of Nox2 complex subunits and test the hypothesis that p47(phox) knockout prevents diaphragm contractile dysfunction elicited by CHF. CHF caused a two- to sixfold increase (P < 0.05) in diaphragm mRNA and protein levels of several Nox2 subunits, with p47(phox) being upregulated and hyperphosphorylated. CHF increased diaphragm extracellular oxidant emission in wild-type but not p47(phox) knockout mice. Diaphragm isometric force, shortening velocity, and peak power were decreased by 20-50% in CHF wild-type mice (P < 0.05), whereas p47(phox) knockout mice were protected from impairments in diaphragm contractile function elicited by CHF. Our experiments show that p47(phox) is upregulated and involved in the increased oxidants and contractile dysfunction in CHF diaphragm. These findings suggest that a p47(phox)-dependent NAD(P)H oxidase mediates the increase in diaphragm oxidants and contractile dysfunction in CHF. PMID:26209274

  9. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.

    PubMed Central

    Corpas, F J; Barroso, J B; Sandalio, L M; Distefano, S; Palma, J M; Lupiáñez, J A; Del Río, L A

    1998-01-01

    The presence of the two NADP-dependent dehydrogenases of the pentose phosphate pathway has been investigated in plant peroxisomes from pea (Pisum sativum L.) leaves. Both enzymes, glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44), were present in the matrix of leaf peroxisomes, and their kinetic properties were studied. G6PDH and 6PGDH showed a typical Michaelis-Menten kinetic saturation curve, and had specific activities of 12.4 and 29.6 mU/mg protein, respectively. The Km values of G6PDH and 6PGDH for glucose 6-phosphate and for 6-phosphogluconate were 107.3 and 10.2 microM, respectively. Dithiothreitol did not inhibit G6PDH activity. By isoelectric focusing of peroxisomal matrices, the G6PDH activity was resolved into three isoforms with isoelectric points of 5.55, 5.30 and 4.85. The isoelectric point of peroxisomal 6PGDH was 5.10. Immunoblot analyses of peroxisomal matrix with an antibody against yeast G6PDH revealed a single cross-reactive band of 56 kDa. Post-embedment, EM immunogold labelling of G6PDH confirmed that this enzyme was localized in the peroxisomal matrices, the thylakoid membrane and matrix of chloroplasts, and the cytosol. The presence of the two oxidative enzymes of the pentose phosphate pathway in plant peroxisomes implies that these organelles have the capacity to reduce NADP+ to NADPH for its re-utilization in the peroxisomal metabolism. NADPH is particularly required for the ascorbate-glutathione cycle, which has been recently demonstrated in plant peroxisomes [Jiménez, Hernández, del Río and Sevilla (1997) Plant Physiol. 114, 275-284] and represents an important antioxidant protection system against H2O2 generated in peroxisomes. PMID:9480890

  10. NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses.

    PubMed

    Padgett, Lindsey E; Tse, Hubert M

    2016-09-01

    Originally recognized for their direct induced toxicity as a component of the innate immune response, reactive oxygen species (ROS) can profoundly modulate T cell adaptive immune responses. Efficient T cell activation requires: signal 1, consisting of an antigenic peptide-MHC complex binding with the TCR; signal 2, the interaction of costimulatory molecules on T cells and APCs; and signal 3, the generation of innate immune-derived ROS and proinflammatory cytokines. This third signal, in particular, has proven essential in generating productive and long-lasting immune responses. Our laboratory previously demonstrated profound Ag-specific hyporesponsiveness in the absence of NADPH oxidase-derived superoxide. To further examine the consequences of ROS deficiency on Ag-specific T cell responses, our laboratory generated the OT-II.Ncf1(m1J) mouse, possessing superoxide-deficient T cells recognizing the nominal Ag OVA323-339 In this study, we demonstrate that OT-II.Ncf1(m1J) CD4 T cells displayed a severe reduction in Th1 T cell responses, in addition to blunted IL-12R expression and severely attenuated proinflammatory chemokine ligands. Conversely, IFN-γ synthesis and IL-12R synthesis were rescued by the addition of exogenous superoxide via the paramagnetic superoxide donor potassium dioxide or superoxide-sufficient dendritic cells. Ultimately, these data highlight the importance of NADPH oxidase-derived ROS in providing a third signal for adaptive immune maturation by modulating the IL-12/IL-12R pathway and the novelty of the OT-II.Ncf1(m1J) mouse model to determine the role of redox-dependent signaling on effector responses. Thus, targeting ROS represents a promising therapeutic strategy in dampening Ag-specific T cell responses and T cell-mediated autoimmune diseases, such as type 1 diabetes. PMID:27474077

  11. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  12. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione.

    PubMed

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R; Hetman, Michal

    2016-08-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10(-8) M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  13. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production.

    PubMed

    Peng, Hwei-Ming; Im, Sang-Choul; Pearl, Naw May; Turcu, Adina F; Rege, Juilee; Waskell, Lucy; Auchus, Richard J

    2016-08-01

    Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products. PMID:27426448

  14. Smad3 is required for the survival of proliferative intermediate progenitor cells in the dentate gyrus of adult mice

    PubMed Central

    2013-01-01

    Background New neurons are continuously being generated in the adult hippocampus, a phenomenon that is regulated by external stimuli, such as learning, memory, exercise, environment or stress. However, the molecular mechanisms underlying neuron production and how they are integrated into existing circuits under such physiological conditions remain unclear. Indeed, the intracellular modulators that transduce the extracellular signals are not yet fully understood. Results We show that Smad3, an intracellular molecule involved in the transforming growth factor (TGF)-β signaling cascade, is strongly expressed by granule cells in the dentate gyrus (DG) of adult mice, although the loss of Smad3 in null mutant mice does not affect their survival. Smad3 is also expressed by adult progenitor cells in the subgranular zone (SGZ) and more specifically, it is first expressed by Type 2 cells (intermediate progenitor cells). Its expression persists through the distinct cell stages towards that of the mature neuron. Interestingly, proliferative intermediate progenitor cells die in Smad3 deficiency, which is associated with a large decrease in the production of newborn neurons in Smad3 deficient mice. Smad3 signaling appears to influence adult neurogenesis fulfilling distinct roles in the rostral and mid-caudal regions of the DG. In rostral areas, Smad3 deficiency increases proliferation and promotes the cell cycle exit of undifferentiated progenitor cells. By contrast, Smad3 deficiency impairs the survival of newborn neurons in the mid-caudal region of the DG at early proliferative stages, activating apoptosis of intermediate progenitor cells. Furthermore, long-term potentiation (LTP) after high frequency stimulation (HFS) to the medial perforant path (MPP) was abolished in the DG of Smad3-deficient mice. Conclusions These data show that endogenous Smad3 signaling is central to neurogenesis and LTP induction in the adult DG, these being two forms of hippocampal brain plasticity

  15. Requirement for CD4+ T Lymphocytes in Host Resistance against Cryptococcus neoformans in the Central Nervous System of Immunized Mice

    PubMed Central

    Buchanan, Kent L.; Doyle, Hester A.

    2000-01-01

    The importance of cell-mediated immunity (CMI) and CD4+ T lymphocytes in host resistance against Cryptococcus neoformans is well documented and is exemplified by the high susceptibility to progressive infection with this pathogen of AIDS patients with reduced CD4+ T-cell numbers. Although much has been learned about the role of CMI in the clearance of C. neoformans from the lungs and other internal organs, less is known about the protective mechanisms in the brain, the organ most frequently involved with a fatal outcome of cryptococcosis. We hypothesized that host resistance mechanisms against C. neoformans in the central nervous system (CNS) were similar to those outside the CNS (i.e., gamma interferon [IFN-γ], CD4+ T cells, and others). To test this hypothesis, we used a murine model of cryptococcal meningitis whereby cryptococci are introduced directly into the CNS. In experiments where mice were immunized to mount an anticryptococcal CMI response, our results indicate that immunization induced protective mechanisms that could be detected in the CNS by inhibition of the growth of viable yeast cells. Flow cytometric analyses of leukocytes in brain and spinal cord homogenates revealed that T lymphocytes, macrophages, and neutrophils accumulated in C. neoformans-infected brains of immune mice. In vivo depletion of CD4+ T cells, but not CD8+ T cells, resulted in significantly reduced leukocyte accumulation in the brains of immune mice. Furthermore, depletion of CD4+ T cells or neutralization of IFN-γ exacerbated CNS infection in immune mice, suggesting a critical role for CMI mechanisms in acquired protection in the CNS. PMID:10639404

  16. Death effector domain-containing protein (DEDD) is required for uterine decidualization during early pregnancy in mice.

    PubMed

    Mori, Mayumi; Kitazume, Miwako; Ose, Rui; Kurokawa, Jun; Koga, Kaori; Osuga, Yutaka; Arai, Satoko; Miyazaki, Toru

    2011-01-01

    During intrauterine life, the mammalian embryo survives via its physical connection to the mother. The uterine decidua, which differentiates from stromal cells after implantation in a process known as decidualization, plays essential roles in supporting embryonic growth before establishment of the placenta. Here we show that female mice lacking death effector domain-containing protein (DEDD) are infertile owing to unsuccessful decidualization. In uteri of Dedd-/- mice, development of the decidual zone and the surrounding edema after embryonic implantation was defective. This was subsequently accompanied by disintegration of implantation site structure, leading to embryonic death before placentation. Polyploidization, a hallmark of mature decidual cells, was attenuated in DEDD-deficient cells during decidualization. Such inefficient decidualization appeared to be caused by decreased Akt levels, since polyploidization was restored in DEDD-deficient decidual cells by overexpression of Akt. In addition, we showed that DEDD associates with and stabilizes cyclin D3, an important element in polyploidization, and that overexpression of cyclin D3 in DEDD-deficient cells improved polyploidization. These results indicate that DEDD is indispensable for the establishment of an adequate uterine environment to support early pregnancy in mice. PMID:21135503

  17. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    PubMed Central

    Prata, Cecilia; Vieceli Dalla Sega, Francesco; Piperno, Roberto; Hrelia, Silvana

    2015-01-01

    Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI. PMID:25918580

  18. NADPH Oxidase: A Potential Target for Treatment of Stroke

    PubMed Central

    Zhang, Li; Wu, Jie; Duan, Xiaochun; Tian, Xiaodi; Shen, Haitao; Sun, Qing; Chen, Gang

    2016-01-01

    Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. PMID:26941888

  19. A subset of N-substituted phenothiazines inhibits NADPH oxidases.

    PubMed

    Seredenina, Tamara; Chiriano, Gianpaolo; Filippova, Aleksandra; Nayernia, Zeynab; Mahiout, Zahia; Fioraso-Cartier, Laetitia; Plastre, Olivier; Scapozza, Leonardo; Krause, Karl-Heinz; Jaquet, Vincent

    2015-09-01

    NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed. Two phenothiazines without N-substitution, including ML171, did not inhibit NOX enzymes, but showed assay interference. Introduction of an aliphatic amine chain on the N atom of the phenothiazine B ring (promazine) conferred inhibitory activity toward NOX2, NOX4, and NOX5 but not NOX1 and NOX3. Addition of an electron-attracting substituent in position 2 of the C ring extended the inhibitory activity to NOX1 and NOX3, with thioridazine being the most potent inhibitor. In contrast, the presence of a methylsulfoxide group at the same position (mesoridazine) entirely abolished NOX-inhibitory activity. A cell-free NOX2 assay suggested that inhibition by N-substituted phenothiazines was not due to competition with NADPH. A functional implication of NOX-inhibitory activity of thioridazine was demonstrated by its ability to block redox-dependent myofibroblast differentiation. Our results demonstrate that NOX-inhibitory activity is not a common feature of all antipsychotic phenothiazines and that substitution on the B-ring nitrogen is crucial for the activity, whereas that on the second position of the C ring modulates it. Our findings contribute to a better understanding of NOX pharmacology and might pave the path to discovery of more potent and selective NOX inhibitors. PMID:26013584

  20. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor.

    PubMed

    Petrônio, Maicon S; Zeraik, Maria Luiza; Fonseca, Luiz Marcos da; Ximenes, Valdecir F

    2013-01-01

    Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M-1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin. PMID:23455672

  1. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation

    PubMed Central

    Eugeni Piller, Lucia; Besagni, Céline; Ksas, Brigitte; Rumeau, Dominique; Bréhélin, Claire; Glauser, Gaétan; Kessler, Felix; Havaux, Michel

    2011-01-01

    Lipid droplets are ubiquitous cellular structures in eukaryotes and are required for lipid metabolism. Little is currently known about plant lipid droplets other than oil bodies. Here, we define dual roles for chloroplast lipid droplets (plastoglobules) in energy and prenylquinone metabolism. The prenylquinones—plastoquinone, plastochromanol-8, phylloquinone (vitamin K1), and tocopherol (vitamin E)—are partly stored in plastoglobules. This work shows that NAD(P)H dehydrogenase C1 (NDC1) (At5g08740), a type II NAD(P)H quinone oxidoreductase, associates with plastoglobules. NDC1 reduces a plastoquinone analog in vitro and affects the overall redox state of the total plastoquinone pool in vivo by reducing the plastoquinone reservoir of plastoglobules. Finally, NDC1 is required for normal plastochromanol-8 accumulation and is essential for vitamin K1 production. PMID:21844348

  2. Helicobacter pylori rocF Is Required for Arginase Activity and Acid Protection In Vitro but Is Not Essential for Colonization of Mice or for Urease Activity

    PubMed Central

    McGee, David J.; Radcliff, Fiona J.; Mendz, George L.; Ferrero, Richard L.; Mobley, Harry L. T.

    1999-01-01

    Arginase of the Helicobacter pylori urea cycle hydrolyzes l-arginine to l-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urease and urease is known to be required for colonization of animal models by the bacterium. The H. pylori gene hp1399, which is orthologous to the Bacillus subtilis rocF gene encoding arginase, was cloned, and isogenic allelic exchange mutants of three H. pylori strains were made by using two different constructs: 236-2 and rocF::aphA3. In contrast to wild-type (WT) strains, all rocF mutants were devoid of arginase activity and had diminished serine dehydratase activity, an enzyme activity which generates ammonium. Compared with WT strain 26695 of H. pylori, the rocF::aphA3 mutant was ∼1,000-fold more sensitive to acid exposure. The acid sensitivity of the rocF::aphA3 mutant was not reversed by the addition of l-arginine, in contrast to the WT, and yielded a ∼10,000-fold difference in viability. Urease activity was similar in both strains and both survived acid exposure equally well when exogenous urea was added, indicating that rocF is not required for urease activity in vitro. Finally, H. pylori mouse-adapted strain SS1 and the 236-2 rocF isogenic mutant colonized mice equally well: 8 of 9 versus 9 of 11 mice, respectively. However, the rocF::aphA3 mutant of strain SS1 had moderately reduced colonization (4 of 10 mice). The geometric mean levels of H. pylori recovered from these mice (in log10 CFU) were 6.1, 5.5, and 4.1, respectively. Thus, H. pylori rocF is required for arginase activity and is crucial for acid protection in vitro but is not essential for in vivo colonization of mice or for urease activity. PMID:10572136

  3. Electron transfer reactions in the NADPH oxidase system of neutrophils--involvement of an NADPH-cytochrome c reductase in the oxidase system.

    PubMed

    Fujii, H; Kakinuma, K

    1991-11-12

    Membrane-bound NADPH oxidase of pig blood neutrophils was solubilized with heptylthioglucoside in a high yield. The solubilized preparation from myristate-stimulated cells (sample S) showed high O2- generating activity, and the preparation from resting cells (sample R) had no activity, but the two samples had equal amounts of flavins and cytochrome b-558 (cyt b-558). The electron transfer reactions to exogenous cytochrome c (cyt c) or cyt b-558 in samples S and R were examined. Under anaerobic conditions, NADPH-dependent cyt c reductase activity appeared higher in sample S than in sample R, and the addition of FMN and FAD greatly enhanced the reductase activity of sample S, but not that of sample R. No marked difference between the reductase activities of samples S and R was seen with NADH. Photoreduction of the NADPH oxidase system was examined in the absence of NADPH under anaerobic conditions by monitoring the reduction rates of exogenous cyt c using a flashlight with cut-off filters between 400 and 500 nm. Cyt c reduction was much higher in sample S than in sample R on photoexcitation at about 450 nm. Photoreduction was carried out with a band-pass filter for selective irradiation at 450 nm. Marked reduction of exogenous cyt c was observed only in sample S: the small reduction of cyt c by sample R was independent of the light wavelength and was equal to the blank level. In contrast, no difference in the reduction of cyt b-558 by the two samples was found by either NADPH or photoreduction. Under aerobic conditions, no direct reduction of either cyt c or cyt b-558 was observed. These results suggest that an NADPH-cyt c reductase (a membrane-bound flavoprotein) is involved in the NADPH oxidase system of stimulated neutrophils. PMID:1659905

  4. Nitric oxide synthase in rat brain: age comparisons quantitated with NADPH-diaphorase histochemistry.

    PubMed

    Kuo, H; Hengemihle, J; Ingram, D K

    1997-05-01

    We examined age-related differences in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) containing neurons and neuropil in the striatum and hippocampus of male Fischer 344 rats at 6, 12, and 26 mo of age. NADPH-d staining is considered to be a marker for neurons and neuronal processes containing nitric oxide synthase. Rat brains were processed for NADPH-d histochemistry and analyzed morphometrically using computerized image analysis. The following NADPH-d histochemical parameters were examined: neuronal density, neuronal size, and neuropil staining optical density of selected regions. In the striatum, significant age-related declines were observed in NADPH-d-positive neuronal density and in neuropil staining, while neuronal size increased between 6 and 12 mo and then declined between 12 and 26 mo. In the hippocampus no significant age-related changes were noted in NADPH-d-positive neuronal density or size, or in the optical density of the molecular layer of the hippocampal dentate gyrus. Thus, age differences in NADPH-d histochemistry appear to be regionally specific in the Fischer 344 rat. PMID:9158548

  5. Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues

    NASA Astrophysics Data System (ADS)

    Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.

    1991-09-01

    NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.

  6. Diarrhea and Colitis in Mice Require the Salmonella Pathogenicity Island 2-Encoded Secretion Function but Not SifA or Spv Effectors

    PubMed Central

    Okamoto, Sharon; Banerjee, Ananya; Guiney, Donald G.

    2012-01-01

    We investigated the roles of Salmonella pathogenicity island 2 (SPI-2) and two SPI-2 effectors in Salmonella colitis and diarrhea in genetically resistant BALB/c.D2Slc11a1 congenic mice with the wild-type Nramp1 locus. Wild-type Salmonella enterica serovar Typhimurium 14028s caused a pan-colitis, and the infected mice developed frank diarrhea with a doubling of the fecal water content. An ssaV mutant caused only a 26% increase in fecal water content, without producing the pathological changes of colitis, and it did not cause weight loss over a 1-week period of observation. However, two SPI-2 effector mutants, the spvB and sifA mutants, and a double spvB sifA mutant caused diarrhea and colitis, even though the sifA mutant was sensitive to killing by bone marrow-derived macrophages from BALB/c.D2 mice and was severely impaired in extraintestinal growth but not in growth in the cecum. These results demonstrate that systemic S. enterica infection and diarrhea/colitis are distinct pathogenic processes and that only the former requires spvB and sifA. PMID:22778101

  7. Analysis of HSD3B7 knockout mice reveals that a 3α-hydroxyl stereochemistry is required for bile acid function

    PubMed Central

    Shea, Heidi C.; Head, Daphne D.; Setchell, Kenneth D. R.; Russell, David W.

    2007-01-01

    Primary bile acids are synthesized from cholesterol in the liver and thereafter are secreted into the bile and small intestine. Gut flora modify primary bile acids to produce secondary bile acids leading to a chemically diverse bile acid pool that is circulated between the small intestine and liver. A majority of primary and secondary bile acids in higher vertebrates have a 3α-hydroxyl group. Here, we characterize a line of knockout mice that cannot epimerize the 3β-hydroxyl group of cholesterol and as a consequence synthesize a bile acid pool in which 3β-hydroxylated bile acids predominate. This alteration causes death in 90% of newborn mice and decreases the absorption of dietary cholesterol in surviving adults. Negative feedback regulation of bile acid synthesis mediated by the farnesoid X receptor (FXR) is disrupted in the mutant mice. We conclude that the correct stereochemistry of a single hydroxyl group at carbon 3 in bile acids is required to maintain their physiologic and regulatory functions in mammals. PMID:17601774

  8. Action Potentials are required for nitric oxide dependent LTP in CA1 neurons of adult GluR1 knockout and Wild-type mice

    PubMed Central

    Phillips, Keith G.; Hardingham, Neil R.; Fox, Kevin

    2009-01-01

    Neocortical LTP consists of both pre- and postsynaptic components that rely on nitric oxide (NO) and GluR1 respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (> 8 week old) GluR1 knockout mice was almost entirely NO-dependent and involved both the α splice variant of NO synthase-1 (αNOS-1) and the NO synthase-3 (NOS-3) isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice, and made up approximately 50% of the potentiation 2 hours post-tetanus. Theta-burst stimulation reliably produced postsynaptic spikes including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knockout mice and also blocked the NO-component of LTP in wild-types. We conclude that theta-burst stimulation is particularly well suited to producing the somatic postsynaptic spikes required for NO-dependent LTP. PMID:19109486

  9. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.

    PubMed

    Miyata, Haruhiko; Castaneda, Julio M; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M

    2016-07-12

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  10. ERα Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy123

    PubMed Central

    Cikla, Ulas; Chanana, Vishal; Kintner, Douglas B.; Eickhoff, Jens; Marquez, Stephanie; Covert, Lucia; Otles, Arel; Ferrazzano, Peter; Vemuganti, Raghu; Levine, Jon E.

    2016-01-01

    Abstract Male neonate brains are more susceptible to the effects of perinatal asphyxia resulting in hypoxia and ischemia (HI)-related brain injury. The relative resistance of female neonatal brains to adverse consequences of HI suggests that there are sex-specific mechanisms that afford females greater neuroprotection and/or facilitates recovery post-HI. We hypothesized that HI preferentially induces estrogen receptor α (ERα) expression in female neonatal hippocampi and that ERα is coupled to Src family kinase (SFK) activation that in turn augments phosphorylation of the TrkB and thereby results in decreased apoptosis. After inducing the Vannucci’s HI model on P9 (C57BL/6J) mice, female and male ERα wild-type (ERα+/+) or ERα null mutant (ERα−/−) mice received vehicle control or the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF). Hippocampi were collected for analysis of mRNA of ERα and BDNF, protein levels of ERα, p-TrkB, p-src, and cleaved caspase 3 (c-caspase-3) post-HI. Our results demonstrate that: (1) HI differentially induces ERα expression in the hippocampus of the female versus male neonate, (2) src and TrkB phosphorylation post-HI is greater in females than in males after 7,8-DHF therapy, (3) src and TrkB phosphorylation post-HI depend on the presence of ERα, and (4) TrkB agonist therapy decreases the c-caspase-3 only in ERα+/+ female mice hippocampus. Together, these observations provide evidence that female-specific induction of ERα expression confers neuroprotection with TrkB agonist therapy via SFK activation and account for improved functional outcomes in female neonates post-HI. PMID:26839918

  11. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

    PubMed Central

    Miyata, Haruhiko; Castaneda, Julio M.; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R.; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L.; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M.; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M.

    2016-01-01

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201–12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract–enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the “gold standard” to determine whether a gene’s function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  12. Ehd4 is required to attain normal pre-pubertal testis size but dispensable for fertility in male mice

    PubMed Central

    George, Manju; Rainey, Mark A.; Naramura, Mayumi; Ying, GuoGuang; Harms, Don W.; Vitaterna, Martha H.; Doglio, Lynn; Crawford, Susan E.; Hess, Rex A.; Band, Vimla; Band, Hamid

    2010-01-01

    The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulates endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of post-mitotic and post-meiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function. PMID:20213691

  13. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    PubMed

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi. PMID:24407906

  14. A Fluorescently Tagged C-Terminal Fragment of p47phox Detects NADPH Oxidase Dynamics during Phagocytosis

    PubMed Central

    Li, Xing Jun; Tian, Wei; Stull, Natalie D.; Grinstein, Sergio; Atkinson, Simon

    2009-01-01

    The assembly of cytosolic p47phox and p67phox with flavocytochrome b558 at the membrane is crucial for activating the leukocyte NADPH oxidase that generates superoxide for microbial killing. p47phox and p67phox are linked via a high-affinity, tail-to-tail interaction involving a proline-rich region (PRR) and a C-terminal SH3 domain (SH3b), respectively, in their C-termini. This interaction mediates p67phox translocation in neutrophils, but is not required for oxidase activity in model systems. Here we examined phagocytosis-induced NADPH oxidase assembly, showing the sequential recruitment of YFP-tagged p67phox to the phagosomal cup, and, after phagosome internalization, a probe for PI(3)P followed by a YFP-tagged fragment derived from the p47phox PRR. This fragment was recruited in a flavocytochrome b558-dependent, p67phox-specific, and PI(3)P-independent manner. These findings indicate that p47PRR fragment probes the status of the p67phox SH3b domain and suggest that the p47phox/p67phox tail-to-tail interaction is disrupted after oxidase assembly such that the p67phox-SH3b domain becomes accessible. Superoxide generation was sustained within phagosomes, indicating that this change does not correlate with loss of enzyme activity. This study defines a sequence of events during phagocytosis-induced NADPH oxidase assembly and provides experimental evidence that intermolecular interactions within this complex are dynamic and modulated after assembly on phagosomes. PMID:19129478

  15. A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice.

    PubMed

    Little, J L; Serzhanova, V; Izumchenko, E; Egleston, B L; Parise, E; Klein-Szanto, A J; Loudon, G; Shubina, M; Seo, S; Kurokawa, M; Ochs, M F; Golemis, E A

    2014-01-23

    Overexpression of the NEDD9/HEF1/Cas-L scaffolding protein is frequent, and drives invasion and metastasis in breast, head and neck, colorectal, melanoma, lung and other types of cancer. We have examined the consequences of genetic ablation of Nedd9 in the MMTV-HER2/ERBB2/neu mouse mammary tumor model. Unexpectedly, we found that only a limited effect on metastasis in MMTV-neu;Nedd9(-/-) mice compared with MMTV-neu;Nedd9(+/+) mice, but instead a dramatic reduction in tumor incidence (18 versus 80%), and a significantly increased latency until tumor appearance. Orthotopic reinjection and tail-vein injection of cells arising from tumors, coupled with in vivo analysis, indicated tumors arising in MMTV-neu;Nedd9(-/-) mice had undergone mutational selection that overcame the initial requirement for Nedd9. To better understand the defects in early tumor growth, we compared mammary progenitor cell pools from MMTV-neu;Nedd9(-/-) versus MMTV-neu;Nedd9(+/+) mice. The MMTV-neu;Nedd9(-/-) genotype selectively reduced both the number and colony-forming potential of mammary luminal epithelial progenitor cells, while not affecting basal epithelial progenitors. MMTV-neu;Nedd9(-/-) mammospheres had striking defects in morphology and cell polarity. All of these defects were seen predominantly in the context of the HER2/neu oncogene, and were not associated with randomization of the plane of mitotic division, but rather with depressed expression the cell attachment protein FAK, accompanied by increased sensitivity to small molecule inhibitors of FAK and SRC. Surprisingly, in spite of these significant differences, only minimal changes were observed in the gene expression profile of Nedd9(-/-) mice, indicating critical Nedd9-dependent differences in cell growth properties were mediated via post-transcriptional regulation of cell signaling. Coupled with emerging data indicating a role for NEDD9 in progenitor cell populations during the morphogenesis of other tissues, these results

  16. Elementary Flux Mode Analysis Revealed Cyclization Pathway as a Powerful Way for NADPH Regeneration of Central Carbon Metabolism

    PubMed Central

    Shen, Tie; Zheng, Meijuan; Zhou, Wenwei; Du, Honglin; Fan, Yadong; Wang, Yongkang; Zhang, Zhengdong; Xu, Shengsheng; Liu, Zhijie; Wen, Han; Xie, Xiaoyao

    2015-01-01

    NADPH regeneration capacity is attracting growing research attention due to its important role in resisting oxidative stress. Besides, NADPH availability has been regarded as a limiting factor in production of industrially valuable compounds. The central carbon metabolism carries the carbon skeleton flux supporting the operation of NADPH-regenerating enzyme and offers flexibility in coping with NADPH demand for varied intracellular environment. To acquire an insightful understanding of its NADPH regeneration capacity, the elementary mode method was employed to compute all elementary flux modes (EFMs) of a network representative of central carbon metabolism. Based on the metabolic flux distributions of these modes, a cluster analysis of EFMs with high NADPH regeneration rate was conducted using the self-organizing map clustering algorithm. The clustering results were used to study the relationship between the flux of total NADPH regeneration and the flux in each NADPH producing enzyme. The results identified several reaction combinations supporting high NADPH regeneration, which are proven to be feasible in cells via thermodynamic analysis and coincident with a great deal of previous experimental report. Meanwhile, the reaction combinations showed some common characteristics: there were one or two decarboxylation oxidation reactions in the combinations that produced NADPH and the combination constitution included certain gluconeogenesis pathways. These findings suggested cyclization pathways as a powerful way for NADPH regeneration capacity of bacterial central carbon metabolism. PMID:26086807

  17. Helicobacter pylori Does Not Require Lewis X or Lewis Y Expression To Colonize C3H/HeJ mice

    PubMed Central

    Takata, Tohru; El-Omar, Emad; Camorlinga, Margarita; Thompson, Stuart A.; Minohara, Yutaka; Ernst, Peter B.; Blaser, Martin J.

    2002-01-01

    Helicobacter pylori strains frequently express Lewis X (Lex) and/or Ley on their cell surfaces as constituents of the O antigens of their lipopolysaccharide molecules. To assess the effect of Lex and Ley expression on the ability of H. pylori to colonize the mouse stomach and to adhere to epithelial cells, isogenic mutants were created in which fucT1 alone or fucT1 and fucT2, which encode the fucosyl transferases necessary for Lex and Ley expression, were deleted. C3H/HeJ mice were experimentally challenged with either wild-type 26695 H. pylori or its isogenic mutants. All strains, whether passaged in the laboratory or recovered after mouse passage, colonized the mice well and without consistent differences. During colonization by the mutants, there was no reversion to wild type. Similarly, adherence to AGS and KatoIII cells was unaffected by the mutations. Together, these findings indicate that Le expression is not necessary for mouse gastric colonization or for H. pylori adherence to epithelial cells. PMID:12011000

  18. The E2 Ubiquitin-conjugating Enzyme UBE2J1 Is Required for Spermiogenesis in Mice*

    PubMed Central

    Koenig, Paul-Albert; Nicholls, Peter K.; Schmidt, Florian I.; Hagiwara, Masatoshi; Maruyama, Takeshi; Frydman, Galit H.; Watson, Nicki; Page, David C.; Ploegh, Hidde L.

    2014-01-01

    ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1−/− mice have reduced viability and fail to thrive early after birth. Male Ube2j1−/− mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1−/− elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control. PMID:25320092

  19. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice.

    PubMed

    Koenig, Paul-Albert; Nicholls, Peter K; Schmidt, Florian I; Hagiwara, Masatoshi; Maruyama, Takeshi; Frydman, Galit H; Watson, Nicki; Page, David C; Ploegh, Hidde L

    2014-12-12

    ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control. PMID:25320092

  20. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  1. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.

    PubMed Central

    Meier, B; Cross, A R; Hancock, J T; Kaup, F J; Jones, O T

    1991-01-01

    Human fibroblasts have the capacity to release superoxide radicals upon stimulation of an electron transport system similar to the NADPH oxidase of leukocytes. Two components of the NADPH oxidase system, (1) a flavoprotein of 45 kDa which binds diphenylene iodonium (a compound described as a specific inhibitor of the leukocyte NADPH oxidase), and (2) a low-potential cytochrome b, are present in fibroblast membranes. Fibroblasts exhibit these compounds at lower concentrations than do polymorphonuclear leukocytes or B-lymphocytes. The superoxide-generating system is rather uniformly associated with the outer cell membrane, as shown by light and electron microscopy. Superoxide release upon stimulation with various agents was prevented by the addition of micromolar concentrations of diphenylene iodonium, making an NADPH oxidase a likely source. Images Fig. 4. PMID:1850240

  2. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  3. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice.

    PubMed

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  4. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis. PMID:26117319

  5. Neuroprotection from Retinal Ischemia/Reperfusion Injury by NOX2 NADPH Oxidase Deletion

    PubMed Central

    Yokota, Harumasa; Narayanan, Subhadra P.; Zhang, Wenbo; Liu, Hua; Rojas, Modesto; Xu, Zhimin; Lemtalsi, Tahira; Nagaoka, Taiji; Yoshida, Akitoshi; Brooks, Steven E.; Caldwell, Robert W.

    2011-01-01

    Purpose. The aim of this study was to determine whether NOX2, one of the homologs of NADPH oxidase, plays a role in neuronal cell death during retinal ischemia. Methods. Ischemia reperfusion (I/R) injury was generated in C57/BL6 and NOX2−/− mice by increasing the intraocular pressure (IOP) to 110 mm Hg for 40 minutes followed by reperfusion. Quantitative PCR and Western blot analysis were performed to measure NOX2 expression. Reactive oxygen species (ROS) formation was assessed by dihydroethidium imaging of superoxide formation and Western blot analysis for tyrosine nitration. TUNEL assay was performed to determine cell death at 3 days after I/R. Survival of neurons within the ganglion cell layer (GCL) was assessed at 7 days after I/R by confocal morphometric imaging of retinal wholemounts immunostained with NeuN antibody. Activation of mitogen-activated protein kinases and nuclear factor κB (NF-κΒ) was measured by Western blot analysis. Results. NOX2 mRNA and protein and ROS were significantly increased in wild-type I/R retinas. This effect was associated with a 60% decrease in the number of GCL neurons and a 10-fold increase in TUNEL-positive cells compared with the fellow sham control eyes. Phosphorylation of ERK and NF-κB was significantly increased in wild-type I/R retinas. Each of these effects was markedly attenuated in the NOX2−/− retina (P < 0.01). Conclusions. These data demonstrate that the deletion of NOX2 can reduce I/R-induced cell death and preserve retinal GCL neurons after I/R injury. The neuronal cell injury caused by I/R is associated with the activation of ERK and NF-κB signaling mechanisms. PMID:21917939

  6. Time-resolved spectroscopy of endogenous NAD(P)H in Gluconobacter oxydans

    NASA Astrophysics Data System (ADS)

    Horilova, J.; Kromkova, K.; Bucko, M.; Illesova, A.; Vikartovska, A.; Stefuca, V.; Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    The genus Gluconobacter is frequently used for biotechnological and/or nanotechnological applications. We studied endogenous fluorescence of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), indicator of the oxidative metabolic state in mammalian cells, in Gluconobacter oxydans (G. oxydans). Time-resolved measurements (excitation by 375nm pulsed diode laser) were employed to record the bacterial fluorescence intensity, as well as its modifications by metabolic modulation. Results were gathered on fresh bacteria, on de-frozen ones, as well as on bacteria encapsulated in alginate beads. NAD(P)H fluorescence increased linearly with the concentration of bacteria. Freezing, which has little effect on the viability of bacteria or the concentration-dependent fluorescence rise, affected the temperature-dependence of NAD(P)H fluorescence. Sodium cyanide (10 mM) provoked significant rise in the NAD(P)H fluorescence, while dinitrophenol (200 μM) induced its decrease, confirming the bacterial NAD(P)H fluorescence sensitivity to modulators of electron transport chain. Gathered results demonstrate that endogenous NAD(P)H fluorescence can be successfully recorded in the bacterial strain G. oxydans using time-resolved measurements.

  7. Regulation of NADPH Oxidase in Vascular Endothelium: The Role of Phospholipases, Protein Kinases, and Cytoskeletal Proteins

    PubMed Central

    Pendyala, Srikanth; Usatyuk, Peter V.; Gorshkova, Irina A.; Garcia, Joe G.N.

    2009-01-01

    The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47phox, p67phox, and Rac1) and membrane-associated components (Noxes and p22phox). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase–derived ROS in the pathobiology of lung diseases. Antioxid. Redox Signal. 11, 841–860. PMID:18828698

  8. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  9. Inhibition of NADPH oxidase by glucosylceramide confers chemoresistance

    PubMed Central

    Barth, Brian M; Gustafson, Sally J; Young, Megan M; Fox, Todd E; Shanmugavelandy, Sriram S; Kaiser, James M; Cabot, Myles C; Kuhn, Thomas B

    2010-01-01

    The bioactive sphingolipid ceramide induces oxidative stress by disrupting mitochondrial function and stimulating NADPH oxidase (NOX) activity, both implicated in cell death mechanisms. Many anticancer chemotherapeutics (anthracyclines, Vinca alkaloids, paclitaxel and fenretinide), as well as physiological stimuli such as tumor necrosis factor α (TNFα), stimulate ceramide accumulation and increase oxidative stress in malignant cells. Consequently, ceramide metabolism in malignant cells and, in particular the upregulation of glucosylceramide synthase (GCS), has gained considerable interest in contributing to chemoresistance. We hypothesized that increases in GCS activity and thus glucosylceramide, the product of GCS activity, represents an important resistance mechanism in glioblastoma. In our study, we determined that increased GCS activity effectively blocked reactive oxygen species formation by NOX. We further showed, in both glioblastoma and neuroblastoma cells that glucosylceramide directly interfered with NOX assembly, hence delineating a direct resistance mechanism. Collectively, our findings indicated that pharmacological or molecular targeting of GCS, using non-toxic nanoliposome delivery systems, successfully augmented NOX activity, and improved the efficacy of known chemotherapeutic agents. PMID:20935456

  10. NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206.

    PubMed

    Donini, Marta; Zenaro, Elena; Tamassia, Nicola; Dusi, Stefano

    2007-05-01

    Human monocyte-derived DC express the enzyme NADPH oxidase, responsible for ROS production. We show that Candida albicans did not activate NADPH oxidase in DC, and was poorly killed by these cells. However, Candida-killing activity increased upon DC stimulation with the NADPH oxidase activator PMA and was further enhanced by DC treatment with IFN-alpha or IFN-gamma. This fungicidal activity took place at high DC-to-Candida ratio, but decreased at low DC-to-yeast ratio, when Candida inhibited the NADPH oxidase by contrasting the assembly of the enzyme on DC plasma membrane. The NADPH oxidase inhibitor diphenyliodonium chloride abrogated the PMA-dependent DC candidacidal capacity. Engagement of beta-glucan receptor dectin-1 induced NADPH oxidase activation in DC that was depressed by mannose-binding receptor CD206 co-stimulation. Candida was internalized by DC through mannose-binding receptors, but not through dectin-1, thus explaining why Candida did not elicit NADPH oxidase activity. Our results indicate that NADPH oxidase is involved in DC Candida-killing activity, which is increased by IFN. However, Candida escapes the oxidative damage by inhibiting NADPH oxidase and by entering DC through receptors not involved in NADPH oxidase activation. PMID:17407098

  11. Peripheral indoleamine 2,3-dioxygenase1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice

    PubMed Central

    Zhou, Wenjun; Dantzer, Robert; Budac, David P.; Walker, Adam K.; Mao-Ying, Qi-Liang; Lee, Anna W.; Heijnen, Cobi J.; Kavelaars, Annemieke

    2015-01-01

    Chronic pain frequently co-occurs with major depressive disorder but the mechanisms are poorly understood. We investigated the contribution of indoleamine-2,3-dioxygenase-1 (IDO1), a rate-limiting enzyme in the conversion of tryptophan to neurotoxic metabolites to this comorbidity using the spared nerve injury (SNI) model of neuropathic pain in mice. SNI resulted in unilateral mechanical allodynia, reduced social interaction, and increased immobility in the forced swim test without changes in locomotor activity. These findings indicate SNI-induced pain and comorbid depression-like behavior. These behavioral responses were accompanied by increases in plasma kynurenine/tryptophan ratios and increased expression of Ido1 and Il1b mRNA in the liver. Interestingly, SNI did not induce detectable changes in spinal cord or brain Ido1 mRNA levels after SNI. SNI was associated with spinal cord inflammatory activity as evidenced by increased Il1b mRNA expression. The SNI-induced increase of liver Ido1and Il1b mRNA was abrogated by intrathecal administration of the IL-1 inhibitor IL-1RA. Intrathecal IL-1RA also inhibited both mechanical allodynia and depression-like behavior. We also show that Ido1 is required for the development of depression-like behavior because Ido1-/- mice do not develop increased immobility in the forced swim test or decreased social exploration in response to SNI. Mechanical allodynia was similar in WT and Ido1-/- mice. In conclusion, our findings show for the first time that neuropathic pain is associated with an increase of Ido1 in liver, but not brain, downstream of spinal cord IL-1β signaling and that Ido1 mediates co-morbid depression. Moreover, comorbidity of neuropathic pain and depression are only partially mediated by a common mechanism because mechanical hyperalgesia develops independently of Ido1. PMID:25637485

  12. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  13. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-01

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  14. MHC Class I Expression by Donor Hematopoietic Stem Cells Is Required to Prevent NK Cell Attack in Allogeneic, but Not Syngeneic Recipient Mice

    PubMed Central

    Hirata, Yuichi; Li, Hao-Wei; Takahashi, Kazuko; Ishii, Hiroshi; Sykes, Megan; Fujisaki, Joji

    2015-01-01

    NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs. PMID:26544200

  15. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin.

    PubMed

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2016-03-01

    The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidase, are known to play an imperative role in the pathogenesis of hyperoxaluria-induced nephrolithiasis. The present study was designed to investigate the protective effect of a combinatorial therapy based on the attenuation of oxidative stress with antioxidant (N-acetyl cysteine), and NADPH oxidase inhibitor (apocynin), that might be required to effectively eliminate hyperoxaluric manifestations. Hyperoxaluria was induced in male Wistar rats by administering 0.4% ethylene glycol with 1% ammonium chloride in drinking water for 9days. Hyperoxaluria accentuated renal oxidative stress in terms of increased ROS production and lipid peroxidation. Mitochondrial dysfunction, a central deleterious event in renal stone crystallization, was evident by decreased activities of electron transport chain complex I, II and IV, augmented mitochondrial ROS, reduced GSH/GSSG ratio, which resulted in the mitochondrial permeability transition pore (mPTP) opening as indicated by increased mitochondrial swelling in hyperoxaluric rats. Furthermore, NADPH oxidase activity was significantly increased, with raised expression of NOX1, NOX2, NOX4, p38MAPK and MnSOD, in the renal tissue of hyperoxaluric rats compared to control. However, combinatorial therapy with N-acetyl cysteine (50mg/kg/day) and apocynin (200mg/kg/day), intraperitoneally, significantly improved renal functions in hyperoxaluric rats and considerably ameliorated mitochondrial dysfunction. NAC with apocynin was also found to be effective in reducing the redundant activity of NADPH oxidase in renal tissue of hyperoxaluric rats. Hence, our investigation provides novel mechanistic insights that combinatorial approaches using targeted modulators of ROS offer therapeutic benefits in hyperoxaluria-induced nephrolithiasis. PMID:26779823

  16. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation.

    PubMed

    Arai, Yasuyuki; Nishinaka, Yoko; Arai, Toshiyuki; Morita, Makiko; Mizugishi, Kiyomi; Adachi, Souichi; Takaori-Kondo, Akifumi; Watanabe, Tomohiro; Yamashita, Kouhei

    2014-01-10

    Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement. In this study, we investigated the effect of uric acid (UA) on NET formation. UA, a well-known ROS scavenger, was found to suppress Nox-dependent ROS release in a dose-dependent manner. Low concentrations of UA significantly inhibited Nox-dependent NET formation. However, high concentrations of UA unexpectedly induced, rather than inhibited, NET formation. NETs were directly induced by UA alone in a Nox-independent manner, as revealed by experiments using control neutrophils treated with ROS inhibitors or neutrophils of patients with chronic granulomatous disease who have a congenital defect in ROS production. Furthermore, we found that UA-induced NET formation was partially mediated by NF-κB activation. Our study is the first to demonstrate the novel function of UA in NET formation and may provide insight into the management of patients with hyperuricemia. PMID:24326071

  17. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana.

    PubMed

    Adachi, Hiroaki; Nakano, Takaaki; Miyagawa, Noriko; Ishihama, Nobuaki; Yoshioka, Miki; Katou, Yuri; Yaeno, Takashi; Shirasu, Ken; Yoshioka, Hirofumi

    2015-09-01

    Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB. PMID:26373453

  18. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)

    PubMed Central

    Shi, Li; Zhang, Jiao; Shen, Guangmao; Xu, Zhifeng; Wei, Peng; Zhang, Yichao; Xu, Qiang; He, Lin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are involved in metabolic resistance to insecticides and require NADPH cytochrome P450 reductase (CPR) to transfer electrons when they catalyze oxidation reactions. The carmine spider mite, Tetranychus cinnabarinus is an important pest mite of crop and vegetable plants worldwide, and its resistance to acaricides has quickly developed. However, the role of CPR on the formation of acaricide-resistance in T. cinnabarinus is still unclear. In this study, a full-length cDNA encoding CPR was cloned and characterized from T. cinnabarinus (designated TcCPR). TcCPR expression was detectable in all developmental stages of T. cinnabarinus, but it’s much lower in eggs. TcCPR was up-regulated and more inducible with fenpropathrin treatment in the fenpropathrin-resistant (FeR) strain compared with the susceptible SS strain. Feeding of double-strand RNA was effective in silencing the transcription of TcCPR in T. cinnabarinus, which resulted in decreasing the activity of P450s and increasing the susceptibility to fenpropathrin in the FeR strain but not in the susceptible strain. The current results provide first evidence that the down-regulation of TcCPR contributed to an increase of the susceptibility to fenpropathrin in resistant mites. TcCPR could be considered as a novel target for the development of new pesticides. PMID:26493678

  19. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    ERIC Educational Resources Information Center

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  20. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD+–NADPH in-situ regeneration using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background Candida parapsilosis CCTCC M203011 catalyzes the stereoinversion of (R)-1-phenyl-1,2-ethanediol (PED) through oxidation and reduction. Its NAD+-linked (R)-carbonyl reductase (RCR) catalyzes the oxidization of (R)-PED to 2-hydroxyacetophenone (HAP), and its NADPH-dependent (S)-carbonyl reductase (SCR) catalyzes the reduction of HAP to (S)-PED. The reactions require NAD+ and NADPH as cofactors. However, even if NAD+ and NADPH are added, the biotransformation of (S)-PED from the (R)-enantiomer by an Escherichia coli strain co-expressing RCR and SCR is slow and gives low yields, probably as a result of insufficient or imbalanced redox cofactors. To prepare (S)-PED from the (R)-enantiomer in one-step efficiently, plus redox cofactor regeneration, we introduced pyridine nucleotide transhydrogenases (PNTs) from E. coli to the metabolic pathway of (S)-PED. Results The PNTs were successfully introduced into the E. coli strain RSAB. Most of the PNT activities occurred in the cell membrane of E. coli. The introduction of PNTs increased intracellular NAD+ and NADH concentrations and decreased the NADPH pool without affecting the total nucleotide concentration and cell growth properties. The presence of PNTs increased the NADH/NAD+ ratio slightly and reduced the NADPH/NADP+ ratio about two-fold; the ratio of NADPH/NADP+ to NADH/NAD+ was reduced from 36 to 17. So, the PNTs rebalanced the cofactor pathways: the rate of RCR was increased, while the rate of SCR was decreased. When the ratio of NAD+/NADPH was 3.0 or higher, the RSAB strain produced (S)-PED with the highest optical purity, 97.4%, and a yield of 95.2% at 6 h. The introduction of PNTs stimulated increases of 51.5% and 80.6%, respectively, in optical purity and yield, and simultaneously reduced the reaction time seven-fold. Conclusions In this work, PNTs were introduced into E. coli to rebalance the cofactor pools within the engineered (S)-PED pathways. The efficient one-step production of (S)-PED plus NAD+–NADPH

  1. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase.

    PubMed

    DeCoursey, Thomas E

    2016-09-01

    One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come. PMID:27558336

  2. The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice

    PubMed Central

    Reviriego-Mendoza, Marta M; Santy, Lorraine C

    2015-01-01

    The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage. The molecular aspects of kidney injury and repair are still uncertain. Hepatocyte growth factor (HGF) promotes recovery of the injured kidney by inducing survival and migration of tubular epithelial cells to repopulate bare tubule areas. HGF-stimulated kidney epithelial cell migration requires the activation of ADP-ribosylation factor 6 (Arf6) and Rac1 via the cytohesin family of Arf-guanine-nucleotide exchange factors (GEFs), in vitro. We used an ischemia and reperfusion injury (IRI) mouse model to analyze the effects of modulating this signaling pathway on kidney recovery. We treated IRI mice with either HGF, the cytohesin inhibitor SecinH3, or a combination of both. As previously reported, HGF treatment promoted rapid improvement of kidney function as evidenced by creatinine (Cre) and blood urea nitrogen (BUN) levels. In contrast, simultaneous treatment with SecinH3 and HGF blocks the ability of HGF to promote kidney recovery. Immunohistochemistry showed that HGF treatment promoted recovery of tubule structure, and had enhanced levels of active, GTP-bound Arf6 and GTP-Rac1. SecinH3 treatment, however, caused a dramatic decrease in GTP-Arf6 and GTP-Rac1 levels when compared to kidney sections from HGF-treated IRI mice. Additionally, SecinH3 counteracted the renal reparative effects of HGF. Our results support the conclusion that cytohesin function is required for HGF-stimulated renal IRI repair. PMID:26116550

  3. Peripheral, but not central, GLP-1 receptor signaling is required for improvement in glucose tolerance after Roux-en-Y gastric bypass in mice.

    PubMed

    Carmody, Jill S; Muñoz, Rodrigo; Yin, Huali; Kaplan, Lee M

    2016-05-15

    Roux-en-Y gastric bypass (RYGB) causes profound weight loss and remission of diabetes by influencing metabolic physiology, yet the mechanisms behind these clinical improvements remain undefined. After RYGB, levels of glucagon-like peptide-1 (GLP-1), a hormone that enhances insulin secretion and promotes satiation, are substantially elevated. Because GLP-1 signals in both the periphery and the brain to influence energy balance and glucose regulation, we aimed to determine the relative requirements of these systems to weight loss and improved glucose tolerance following RYGB surgery in mice. By pharmacologically blocking peripheral or central GLP-1R signaling, we examined whether GLP-1 action is necessary for the metabolic improvements observed after RYGB. Diet-induced obese mice underwent RYGB or sham operation and were implanted with osmotic pumps delivering the GLP-1R antagonist exendin-(9-39) (2 pmol·kg(-1)·min(-1) peripherally; 0.5 pmol·kg(-1)·min(-1) centrally) for up to 10 wk. Blockade of peripheral GLP-1R signaling partially reversed the improvement in glucose tolerance after RYGB. In contrast, fasting glucose and insulin sensitivity, as well as body weight, were unaffected by GLP-1R antagonism. Central GLP-1R signaling did not appear to be required for any of the metabolic improvements seen after this operation. Collectively, these results suggest a detectable but only modest role for GLP-1 in mediating the effects of RYGB and that this role is limited to its well-described action on glucose regulation. PMID:27026085

  4. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  5. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion

    NASA Technical Reports Server (NTRS)

    Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.; Jo, Hanjoong

    2003-01-01

    Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.

  6. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  7. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    PubMed

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  8. Generation of Transgenic Mice

    PubMed Central

    Cho, Andrew; Haruyama, Naoto; Kulkarni, Ashok B.

    2009-01-01

    This unit describes detailed step-by-step protocols, reagents, and equipment required for successful generation of transgenic mice using pronuclear injection. The experimental methods and practical tips given here will help guide beginners in understanding what is required and what to avoid in these standard protocols for efficiently generating transgenic mice. PMID:19283729

  9. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques

    PubMed Central

    Quesada, I.M.; Lucero, A.; Amaya, C.; Meijles, D.N.; Cifuentes, M.E.; Pagano, P.J.; Castro, C.

    2016-01-01

    Background A variety of NADPH oxidase (Nox) isoforms including Noxs 1, 2, 4 and 5 catalyze the formation of reactive oxygen species (ROS) in the vascular wall. The Nox2 isoform complex has arguably received the greatest attention in the progression of atherogenesis in animal models. Thus, in the current study we postulated that specific Nox2 oxidase inhibition could reverse or attenuate atherosclerosis in mice fed a high-fat diet. Methods We evaluated the effect of isoform-selective Nox2 assembly inhibitor on the progression and vascularization of atheromatous plaques. Apolipoprotein E-deficient mice (ApoE−/−) were fed a high fat diet for two months and treated over 15 days with Nox2ds-tat or control sequence (scrambled); 10 mg/ kg/day, i.p. Mice were sacrificed and superoxide production in arterial tissue was detected by cytochrome C reduction assay and dihydroethidium staining. Plaque development was evaluated and the angiogenic markers VEGF, HIF1-α and visfatin were quantified by real time qRT-PCR. MMP-9 protein release and gelatinolytic activity was determined as a marker for vascularization. Results Nox2ds-tat inhibited Nox-derived superoxide determined by cytochrome C in carotid arteries ( 2.3±0.1vs1.7±0.1O2•-nmol/min∗mg protein; P < 0.01) and caused a significant regression in atherosclerotic plaques in aorta (66 ± 6 μm2 vs 37 ± 1 μm2; scrmb vs. Nox2ds-tat; P < 0.001). Increased VEGF, HIF-1α, MMP-9 and visfatin expression in arterial tissue in response to high-fat diet were significantly attenuated by Nox2ds-tat which in turn impaired both MMP-9 protein expression and activity. Conclusion Given these results, it is quite evident that selective Nox inhibitors can reverse vascular pathology arising with atherosclerosis. PMID:26298737

  10. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    PubMed Central

    Masoud, Rawand; Bizouarn, Tania; Houée-Levin, Chantal

    2014-01-01

    The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS). In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA). It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA), however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase. PMID:25462061

  11. Structural analysis of NADPH depleted bovine liver catalase and its inhibitor complexes.

    PubMed

    Sugadev, Ragumani; Ponnuswamy, M N; Sekar, K

    2011-01-01

    To study the functional role of NADPH during mammalian catalase inhibition, the X-ray crystal structures of NADPH-depleted bovine liver catalase and its inhibitor complexes, cyanide and azide, determined at 2.8Å resolution. From the complex structures it is observed that subunits with and without an inhibitor/catalytic water molecule are linked by N-terminal domain swapping. Comparing mammalian- and fungal- catalases, we speculate that NADPH-depleted mammalian catalases may function as a domain-swapped dimer of dimers, especially during inactivation by inhibitors like cyanide and azide. We further speculate that in mammalian catalases the N-terminal hinge-loop region and α-helix is the structural element that senses NADPH binding. Although the above arguments are speculative and need further verification, as a whole our studies have opened up a new possibility, viz. that mammalian catalase acts as a domain-swapped dimer of dimers, especially during inhibitor binding. To generalize this concept to the formation of the inactive state in mammalian catalases in the absence of tightly bound NADPH molecules needs further exploration. The present study adds one more intriguing fact to the existing mysteries of mammalian catalases. PMID:21968615

  12. NADPH oxidase of guinea-pig macrophages catalyses the reduction of ubiquinone-1 under anaerobic conditions.

    PubMed Central

    Murakami, M; Nakamura, M; Minakami, S

    1986-01-01

    The stimulation-specific NADPH-dependent reduction of ubiquinone-1 (Q-1) in guinea-pig macrophages was studied. The activity was due neither to any modified product of the phagocytosis-specific NADPH oxidase nor to non-specific diaphorases of the cells, since the activity was measured in sonicated or detergent-disrupted cells by subtracting the activity in the resting cells from that in cells activated by phorbol 12-myristate 13-acetate. The activity was not mediated by superoxide anions, since strict anaerobic conditions were employed. The anaerobic reduction of Q-1 was NADPH-specific, like superoxide formation under aerobic conditions, and its maximal velocity was also essentially the same as that of superoxide formation. The oxidase does not directly reduce Q-1 under aerobic conditions [Nakamura, Murakami, Umei & Minakami (1985) FEBS Lett. 186, 215-218], and the electron transfer from NADPH to cytochrome c by the oxidase under aerobic conditions was not enhanced by the addition of Q-1. The observations indicate that the phagocytosis-specific NADPH oxidase reduces Q-1 and that oxygen competes with the reduction of Q-1. Q-1 seems to accept electrons not from the intermediary electron carriers of the oxidase but from the terminal oxygen-reducing site of the enzyme. PMID:3026322

  13. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. PMID:26470683

  14. NADPH Oxidase Biology and the Regulation of Tyrosine Kinase Receptor Signaling and Cancer Drug Cytotoxicity

    PubMed Central

    Paletta-Silva, Rafael; Rocco-Machado, Nathália; Meyer-Fernandes, José Roberto

    2013-01-01

    The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP−) to oxygen to make O2•−. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice. PMID:23434665

  15. Localization of NADPH Oxidase in Sympathetic and Sensory Ganglion Neurons and Perivascular Nerve Fibers

    PubMed Central

    Cao, Xian; Demel, Stacie L.; Quinn, Mark T.; Galligan, James J.; Kreulen, David L.

    2009-01-01

    Superoxide anion (O2−•) production was previously reported to be increased in celiac ganglia (CG) during DOCA-salt hypertension, possibly via activation of the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. This suggested a role for neuronal NADPH oxidase in autonomic neurovascular control. However, the expression and localization of NADPH oxidase in the peripheral neurons is not fully known. The purpose of this study was to examine the subcellular localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. In rat CG, p22phox and neuropeptide Y (NPY) were colocalized in all neurons. P22phox was also localized to dorsal root ganglia (DRG) neurons that contain calcitonin gene related peptide (CGRP). In mesenteric arteries, p22phox and p47phox were colocalized with NPY or CGRP in perivascular nerve terminals. A similar pattern of nerve terminal staining of p22phox and p47phox was also found in cultured CG neurons and nerve growth factor (NGF)-differentiated PC12 cells. These data demonstrate a previously uncharacterized localization of NADPH oxidase in perivascular nerve fibers. The presence of a O2−• – generating enzyme in close vicinity to the sites of neurotransmitter handling in the nerve fibers suggests the possibility of novel redox-mediated mechanisms in peripheral neurovascular control. PMID:19716351

  16. ERRγ Is Not Required for Skeletal Development but Is a RUNX2-Dependent Negative Regulator of Postnatal Bone Formation in Male Mice

    PubMed Central

    Cardelli, Marco; Aubin, Jane E.

    2014-01-01

    To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/− males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/− versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/− but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner. PMID:25313644

  17. ERRγ is not required for skeletal development but is a RUNX2-dependent negative regulator of postnatal bone formation in male mice.

    PubMed

    Cardelli, Marco; Aubin, Jane E

    2014-01-01

    To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/- males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/- versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/- but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner. PMID:25313644

  18. Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice

    PubMed Central

    Tupal, Srinivasan; Huang, Wei-Hsiang; Picardo, Maria Cristina D; Ling, Guang-Yi; Del Negro, Christopher A; Zoghbi, Huda Y; Gray, Paul A

    2014-01-01

    All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.001 PMID:24842997

  19. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice

    PubMed Central

    Randall, Victoria; McCue, Karen; Roberts, Catherine; Kyriakopoulou, Vanessa; Beddow, Sarah; Barrett, Angela N.; Vitelli, Francesca; Prescott, Katrina; Shaw-Smith, Charles; Devriendt, Koen; Bosman, Erika; Steffes, Georg; Steel, Karen P.; Simrick, Subreena; Basson, M. Albert; Illingworth, Elizabeth; Scambler, Peter J.

    2009-01-01

    Aortic arch artery patterning defects account for approximately 20% of congenital cardiovascular malformations and are observed frequently in velocardiofacial syndrome (VCFS). In the current study, we screened for chromosome rearrangements in patients suspected of VCFS, but who lacked a 22q11 deletion or TBX1 mutation. One individual displayed hemizygous CHD7, which encodes a chromodomain protein. CHD7 haploinsufficiency is the major cause of coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, and ear anomalies/deafness (CHARGE) syndrome, but this patient lacked the major diagnostic features of coloboma and choanal atresia. Because a subset of CHARGE cases also display 22q11 deletions, we explored the embryological relationship between CHARGE and VCSF using mouse models. The hallmark of Tbx1 haploinsufficiency is hypo/aplasia of the fourth pharyngeal arch artery (PAA) at E10.5. Identical malformations were observed in Chd7 heterozygotes, with resulting aortic arch interruption at later stages. Other than Tbx1, Chd7 is the only gene reported to affect fourth PAA development by haploinsufficiency. Moreover, Tbx1+/–;Chd7+/– double heterozygotes demonstrated a synergistic interaction during fourth PAA, thymus, and ear morphogenesis. We could not rescue PAA morphogenesis by restoring neural crest Chd7 expression. Rather, biallelic expression of Chd7 and Tbx1 in the pharyngeal ectoderm was required for normal PAA development. PMID:19855134

  20. Persistence of the bacterial pathogen Granulibacter bethesdensis in Chronic Granulomatous Disease monocytes and macrophages lacking a functional NADPH oxidase1

    PubMed Central

    Chu, Jessica; Song, Helen H.; Zarember, Kol A.; Mills, Teresa A.; Gallin, John I.

    2013-01-01

    Granulibacter bethesdensis is a Gram-negative pathogen in patients with Chronic Granulomatous Disease (CGD), a deficiency in the phagocyte NADPH oxidase. Repeated isolation of genetically identical strains from the same patient over years, and prolonged waxing and waning seropositivity in some subjects, raises the possibility of long-term persistence. G. bethesdensis resists killing by serum, CGD polymorphonuclear leukocytes (PMN), and antimicrobial peptides, indicating resistance to non-oxidative killing mechanisms. While G. bethesdensis extends the survival of PMN, persistent intracellular bacterial survival might rely on longer-lived macrophages and their precursor monocytes. Therefore, we examined phagocytic killing by primary human monocytes and monocyte-derived macrophages (MDM). Cells from both normal and CGD subjects internalized G. bethesdensis similarly. G. bethesdensis stimulated superoxide production in normal monocytes, but to a lesser degree than in normal PMN. Normal but not CGD monocytes and MDM killed G. bethesdensis and required in vitro treatment with interferon-γ (IFN-γ) to maintain this killing effect. Although in vitro IFN-γ did not enhance G. bethesdensis killing in CGD monocytes, it restricted growth in proportion to CGD PMN residual superoxide production, providing a potential method to identify patients responsive to IFN-γ therapy. In IFN-γ-treated CGD MDM, G. bethesdensis persisted for the duration of the study (7 days) without decreasing viability of the host cells. These results indicate that G. bethesdensis is highly resistant to oxygen-independent microbicides of myeloid cells, requires an intact NADPH oxidase for clearance, and can persist long-term in CGD mononuclear phagocytes, likely relating to the persistence of this microorganism in infected CGD patients. PMID:23956436

  1. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Marsh, Richard J.; Duchen, Michael R.; Bain, Angus J.

    2013-08-01

    In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water-glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers-Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  2. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1. PMID:27110861

  3. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.

    PubMed

    Siedler, Solvej; Bringer, Stephanie; Polen, Tino; Bott, Michael

    2014-10-01

    An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB  h(-1)  gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1)  gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1)  gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol

  4. Identification of trkH, Encoding a Potassium Uptake Protein Required for Francisella tularensis Systemic Dissemination in Mice

    PubMed Central

    Alkhuder, Khaled; Meibom, Karin L.; Dubail, Iharilalao; Dupuis, Marion; Charbit, Alain

    2010-01-01

    Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. During its infectious cycle, F. tularensis is not only exposed to the intracellular environment of macrophages but also resides transiently in extracellular compartments, in particular during its systemic dissemination. The screening of a bank of F. tularensis LVS transposon insertion mutants on chemically defined medium (CDM) led us to identify a gene, designated trkH, encoding a homolog of the potassium uptake permease TrkH. Inactivation of trkH impaired bacterial growth in CDM. Normal growth of the mutant was only restored when CDM was supplemented with potassium at high concentration. Strikingly, although not required for intracellular survival in cell culture models, TrkH appeared to be essential for bacterial virulence in the mouse. In vivo kinetics of bacterial dissemination revealed a severe defect of multiplication of the trkH mutant in the blood of infected animals. The trkH mutant also showed impaired growth in blood ex vivo. Genome sequence analyses suggest that the Trk system constitutes the unique functional active potassium transporter in both tularensis and holarctica subspecies. Hence, the impaired survival of the trkH mutant in vivo is likely to be due to its inability to survive in the low potassium environment (1–5 mM range) of the blood. This work unravels thus the importance of potassium acquisition in the extracellular phase of the F. tularensis infectious cycle. More generally, potassium could constitute an important mineral nutrient involved in other diseases linked to systemic dissemination of bacterial pathogens. PMID:20126460

  5. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    SciTech Connect

    Kirkensgaard, Kristine G.; Hägglund, Per; Finnie, Christine; Svensson, Birte; Henriksen, Anette

    2009-09-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R{sub cryst} of 19.0% and an R{sub free} of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation.

  6. A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Rahaman, Khandoker Asiqur; Kang, Min-Jung; Jung, Byung-Hwa; Kwon, Oh-Seung

    2016-04-01

    Myelin oligodendrocyte glycoprotein peptide fragment 35-55 (MOG35-55) is a major autoantigen inducing experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis that is characterized by blood-brain barrier (BBB) disruption. Various experimental approaches have employed MOG35-55 in vivo; however, in vitro BBB models using MOG35-55 are rarely reported. We investigated MOG35-55 exposure effects with complete Freund's adjuvant (CFA) and pertussis toxin (PTX) on brain endothelial cells and elucidated the relationships among NADPH oxidase, MMP-9, ICAM-1, and VCAM-1. These 4 factors significantly increased in MOG35-55+CFA+PTX-exposed endothelial cells compared with the control cells. NADPH oxidase inhibition using apocynin reduced MMP-9 activity, ICAM-1, and VCAM-1. MMP-9 inhibitor I decreased expression of ICAM-1 and VCAM-1, and both anti-ICAM-1 and anti-VCAM-1 inhibited MMP-9 activity. Inhibitions of MMP-9, ICAM-1, and VCAM-1 did not change NADPH oxidase activity. Although inhibition of these 4 factors decreased BBB permeability in cells, inhibition of NADPH oxidase exhibited the highest decrease among these. NADPH oxidase directly influenced MMP-9, ICAM-1, and VCAM-1, but not vice versa. MMP-9 and the cell adhesion molecules reversibly affected each other. In conclusion, NADPH oxidase-derived superoxide elevated expression of MMP-9, ICAM-1, and VCAM-1, and these interactions can finally result in increases of BBB permeability in MOG35-55+CFA+PTX-exposed endothelial cells. PMID:26928315

  7. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update.

    PubMed

    Wan, Cheng; Su, Hua; Zhang, Chun

    2016-01-01

    Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies. PMID:27597884

  8. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update

    PubMed Central

    Su, Hua

    2016-01-01

    Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies. PMID:27597884

  9. Antibody response is required for protection from Theiler's virus-induced encephalitis in C57BL/6 mice in the absence of CD8{sup +} T cells

    SciTech Connect

    Kang, B.-S.; Palma, Joann P.; Lyman, Michael A.; Dal Canto, Mauro; Kim, Byung S. . E-mail: bskim@northwestern.edu

    2005-09-15

    Intracerebral infection of susceptible mice with Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelinating disease and this system serves as a relevant infectious model for human multiple sclerosis. It was previously shown that {beta}{sub 2}M-deficient C57BL/6 mice lacking functional CD8{sup +} T cells display increased viral persistence and enhanced susceptibility to TMEV-induced demyelination, and yet the majority of mice are free of clinical signs. To understand the mechanisms involved in this general resistance of C57BL/6 mice in the absence of CTL responses, mice ({mu}MT) deficient in the B-cell compartment lacking membrane IgM molecules were treated with anti-CD8 antibody and then infected with TMEV. Although little difference in the proliferative responses of peripheral T cells to UV-inactivated TMEV and the resistance to demyelinating disease was observed between virus-infected {mu}MT and control B6 mice, the levels of CD4{sup +} T cells were higher in the CNS of {mu}MT mice. However, after treatment with anti-CD8 antibody, 100% of the mice displayed clinical gray matter disease and prolonged viral persistence in {mu}MT mice, while only 10% of B6 mice showed clinical symptoms and very low viral persistence. Transfusion of sera from TMEV-infected B6 mice into anti-CD8 antibody-treated {mu}MT mice partially restored resistance to virus-induced encephalitis. These results indicate that the early anti-viral antibody response is also important in the protection from TMEV-induced encephalitis particularly in the absence of CD8{sup +} T cells.

  10. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction

    PubMed Central

    Zhang, Jinrui; Pierick, Angela ten; van Rossum, Harmen M.; Maleki Seifar, Reza; Ras, Cor; Daran, Jean-Marc; Heijnen, Joseph J.; Aljoscha Wahl, S.

    2015-01-01

    Eukaryotic metabolism is organised in complex networks of enzyme catalysed reactions which are distributed over different organelles. To quantify the compartmentalised reactions, quantitative measurements of relevant physiological variables in different compartments are needed, especially of cofactors. NADP(H) are critical components in cellular redox metabolism. Currently, available metabolite measurement methods allow whole cell measurements. Here a metabolite sensor based on a fast equilibrium reaction is introduced to monitor the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae: . The cytosolic NADPH/NADP ratio was determined by measuring the shikimate and dehydroshikimate concentrations (by GC-MS/MS). The cytosolic NADPH/NADP ratio was determined under batch and chemostat (aerobic, glucose-limited, D = 0.1 h−1) conditions, to be 22.0 ± 2.6 and 15.6 ± 0.6, respectively. These ratios were much higher than the whole cell NADPH/NADP ratio (1.05 ± 0.08). In response to a glucose pulse, the cytosolic NADPH/NADP ratio first increased very rapidly and restored the steady state ratio after 3 minutes. In contrast to this dynamic observation, the whole cell NADPH/NADP ratio remained nearly constant. The novel cytosol NADPH/NADP measurements provide new insights into the thermodynamic driving forces for NADP(H)-dependent reactions, like amino acid synthesis, product pathways like fatty acid production or the mevalonate pathway. PMID:26243542

  11. ISOLATION AND CHARACTERIZATION OF THE ALKANE-INDUCIBLE NADPH-CYTOCHROME P-450 OXIDOREDUCTASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    The gene coding for the Candida tropicalis NADPH-cytochrome P-450 oxidoreductase (CPR, NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was isolated by immunoscreening of a C. tropicalis gtll expression library and colony hybridization of a C. tropicalis genomic library. he C. ...

  12. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.

    PubMed

    Abdelwahab, Heba; Robinson, Reeder; Rodriguez, Pedro; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-09-15

    l-lysine (l-Lys) N(6)-monooxygenase (NbtG), from Nocardia farcinica, is a flavin-dependent enzyme that catalyzes the hydroxylation of l-Lys in the presence of oxygen and NAD(P)H in the biosynthetic pathway of the siderophore nocobactin. NbtG displays only a 3-fold preference for NADPH over NADH, different from well-characterized related enzymes, which are highly selective for NADPH. The structure of NbtG with bound NAD(P)(+) or l-Lys is currently not available. Herein, we present a mutagenesis study targeting M239, R301, and E216. These amino acids are conserved and located in either the NAD(P)H binding domain or the l-Lys binding pocket. M239R resulted in high production of hydrogen peroxide and little hydroxylation with no change in coenzyme selectivity. R301A caused a 300-fold decrease on kcat/Km value with NADPH but no change with NADH. E216Q increased the Km value for l-Lys by 30-fold with very little change on the kcat value or in the binding of NAD(P)H. These results suggest that R301 plays a major role in NADPH selectivity by interacting with the 2'-phosphate of the adenine-ribose moiety of NADPH, while E216 plays a role in l-Lys binding. PMID:27503802

  13. A COUPLED MICROSOMAL-ACTIVATING/EMBRYO CULTURE SYSTEM: TOXICITY OF REDUCED BETA-NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (NADPH)

    EPA Science Inventory

    An NADPH-dependent microsomal-activating system has been coupled to a rat embryo culture in vitro. No embryonic morphological abnormalities or decrease in final yolk sac or embryo DNA and protein contents occurred when 0.2 mM NADPH was used in this coupled system. In contrast, 1....

  14. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Dhar, Deepanshi; Panigrahi, Gati K.; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P.; Oberlies, Nicholas H.; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  15. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model

    PubMed Central

    Harraz, Maged M.; Marden, Jennifer J.; Zhou, Weihong; Zhang, Yulong; Williams, Aislinn; Sharov, Victor S.; Nelson, Kathryn; Luo, Meihui; Paulson, Henry; Schöneich, Christian; Engelhardt, John F.

    2008-01-01

    Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase–1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O2•–) to H2O2. Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase–dependent (Nox-dependent) O2•– production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H2O2 uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O2•– production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets. PMID:18219391

  16. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity.

    PubMed

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Dhar, Deepanshi; Panigrahi, Gati K; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P; Oberlies, Nicholas H; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1-5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47(phox)). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  17. Listeriolysin O suppresses Phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection

    PubMed Central

    Lam, Grace Y.; Fattouh, Ramzi; Muise, Aleixo M.; Grinstein, Sergio; Higgins, Darren E.; Brumell, John H.

    2012-01-01

    Summary The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allows L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. PMID:22177565

  18. Acid Sphingomyelinase Gene Deficiency Ameliorates the Hyperhomocysteinemia-Induced Glomerular Injury in Mice

    PubMed Central

    Boini, Krishna M.; Xia, Min; Li, Caixia; Zhang, Chun; Payne, Lori P.; Abais, Justine M.; Poklis, Justin L.; Hylemon, Philip B.; Li, Pin-Lan

    2011-01-01

    Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm−/−) and wild-type (Asm+/+) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm+/+ mice compared with that from Asm−/− or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm+/+ mice but not in those from Asm−/− and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase–associated local oxidative stress during hHcys. PMID:21893018

  19. Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2Akita diabetic mice

    PubMed Central

    Fujita, Hiroki; Fujishima, Hiromi; Morii, Tsukasa; Sakamoto, Takuya; Komatsu, Koga; Hosoba, Mihoko; Narita, Takuma; Takahashi, Keiko; Takahashi, Takamune; Yamada, Yuichiro

    2012-01-01

    Renal superoxide excess, which is induced by an imbalance of the superoxide-producing enzyme NAD(P)H oxidase and the superoxide-scavenging enzyme superoxide dismutase (SOD) under hyperglycemia, increases oxidative stress and contributes to the development of diabetic nephropathy. In this study, we treated non-obese and hypoinsulinemic C57BL/6-Ins2Akita (C57BL/6-Akita) diabetic mice with telmisartan (5 mg kg−1 per day), an angiotensin II type 1 receptor blocker, or amlodipine (5 mg kg−1 per day), a calcium channel blocker, for 4 weeks and compared the effects of these two anti-hypertensive drugs on renal NAD(P)H oxidase, SOD and transcription factor Nrf2 (NF-E2-related factor 2), which is known to upregulate several antioxidant enzymes including SOD. Vehicle-treated C57BL/6-Akita mice exhibited higher renal NAD(P)H oxidase and lower renal SOD activity with increased levels of renal superoxide than the C57BL/6-wild-type non-diabetic mice. Interestingly, telmisartan treatment not only reduced NAD(P)H oxidase activity but also enhanced SOD activity in C57BL/6-Akita mouse kidneys, leading to a reduction of renal superoxide levels. Furthermore, telmisartan-treated C57BL/6-Akita mice increased the renal protein expression of SOD and Nrf2. In parallel with the reduction of renal superoxide levels, a reduction of urinary albumin levels and a normalization of elevated glomerular filtration rate were observed in telmisartan-treated C57BL/6-Akita mice. In contrast, treatment with amlodipine failed to modulate renal NAD(P)H oxidase, SOD and Nrf2. Finally, treatment of C57BL/6-Akita mice with apocynin, an NAD(P)H oxidase inhibitor, also increased the renal protein expression of SOD and Nrf2. Collectively, our data suggest that NAD(P)H oxidase negatively regulates renal SOD, possibly by downregulation of Nrf2, and that telmisartan could upregulate renal SOD by the suppression of NAD(P)H oxidase and subsequent upregulation of Nrf2, leading to the amelioration of

  20. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity.

    PubMed

    Morales, Jorge; Kadota, Yasuhiro; Zipfel, Cyril; Molina, Antonio; Torres, Miguel-Angel

    2016-03-01

    Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions. Transgenic Arabidopsis plants with RbohD and RbohF promoter fusions to β-glucuronidase and Luciferase reporter genes were generated. Analysis of these plants revealed a differential expression pattern for RbohD and RbohF throughout plant development and during immune responses. RbohD and RbohF gene expression was differentially modulated by pathogen-associated molecular patterns. Histochemical stains and in vivo expression analysis showed a correlation between the level of RbohD and RbohF promoter activity, H2O2 accumulation and the amount of cell death in response to the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Plectosphaerella cucumerina. A promoter-swap strategy revealed that the promoter region of RbohD was required to drive production of ROS by this gene in response to pathogens. Moreover, RbohD promoter was activated during Arabidopsis interaction with a non-virulent P. cucumerina isolate, and susceptibility tests with the double mutant rbohD rbohF uncovered a new function for these oxidases in basal resistance. Altogether, our results suggest that differential spatio-temporal expression of the Rboh genes contributes to fine-tune RBOH/NADPH oxidase-dependent ROS production and signaling in Arabidopsis immunity. PMID:26798024

  1. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  2. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions. PMID:27238232

  3. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.

    PubMed

    Douda, David Nobuhiro; Khan, Meraj A; Grasemann, Hartmut; Palaniyar, Nades

    2015-03-01

    Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed "NETosis" is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis. PMID:25730848

  4. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx

    PubMed Central

    Douda, David Nobuhiro; Khan, Meraj A.; Grasemann, Hartmut; Palaniyar, Nades

    2015-01-01

    Neutrophils cast neutrophil extracellular traps (NETs) to defend the host against invading pathogens. Although effective against microbial pathogens, a growing body of literature now suggests that NETs have negative impacts on many inflammatory and autoimmune diseases. Identifying mechanisms that regulate the process termed “NETosis” is important for treating these diseases. Although two major types of NETosis have been described to date, mechanisms regulating these forms of cell death are not clearly established. NADPH oxidase 2 (NOX2) generates large amounts of reactive oxygen species (ROS), which is essential for NOX-dependent NETosis. However, major regulators of NOX-independent NETosis are largely unknown. Here we show that calcium activated NOX-independent NETosis is fast and mediated by a calcium-activated small conductance potassium (SK) channel member SK3 and mitochondrial ROS. Although mitochondrial ROS is needed for NOX-independent NETosis, it is not important for NOX-dependent NETosis. We further demonstrate that the activation of the calcium-activated potassium channel is sufficient to induce NOX-independent NETosis. Unlike NOX-dependent NETosis, NOX-independent NETosis is accompanied by a substantially lower level of activation of ERK and moderate level of activation of Akt, whereas the activation of p38 is similar in both pathways. ERK activation is essential for the NOX-dependent pathway, whereas its activation is not essential for the NOX-independent pathway. Despite the differential activation, both NOX-dependent and -independent NETosis require Akt activity. Collectively, this study highlights key differences in these two major NETosis pathways and provides an insight into previously unknown mechanisms for NOX-independent NETosis. PMID:25730848

  5. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans.

    PubMed

    Segal, Anthony W

    2016-05-01

    The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion. PMID:27249799

  6. The NADPH oxidase inhibitor imipramine-blue in the treatment of Burkitt lymphoma.

    PubMed

    Klingenberg, Marcel; Becker, Jürgen; Eberth, Sonja; Kube, Dieter; Wilting, Jörg

    2014-04-01

    Burkitt lymphoma is a rare malignancy arising from B cells. Current chemotherapeutic regimens achieve excellent overall survival rates in children, but less impressive rates in adults. There are cases with poor outcome caused by toxic effects of the therapy, tumor lysis syndrome, or metastatic spread of lymphomas to the central nervous system. Modulators of reactive oxygen species are currently discussed as potential drugs for the treatment of cancer. The NADPH oxidase 4 inhibitor imipramine-blue might satisfy the aforementioned requirements, and was studied here. We used MTT assay, crystal violet assay, and thymidine 3H-incorporation assay to analyze the effects of imipramine-blue on Burkitt lymphoma (BL2, BL2B95, BL30B95, BL41B95), neuroblastoma (KELLY, SH-SY5Y, SMS-KAN), cervix carcinoma (HeLa), breast cancer (MDA-MB231), angiosarcoma (AS-M), human embryonic kidney (HEK293WT), and nonmalignant (FLP1) cell lines. The effects of imipramine-blue on BL2B95 cells in vivo were investigated in xenografts on the chick chorioallantoic membrane (CAM). We report that imipramine-blue is a potent growth inhibitor for several cancer cell lines in vitro with IC(50) values comparable to those of doxorubicin (0.16-7.7 μmol/L). Tumor size of BL2B95 cells inoculated in the CAM was reduced significantly (P < 0.05) after treatment with 10 μmol/L imipramine-blue. Lymphogenic dissemination of BL2B95 and the formation of blood and lymphatic vessels in experimental tumors were not affected. We show that imipramine-blue can be used to decrease the viability of cancer cell lines in vitro and in vivo. Imipramine-blue reduces the size of experimental Burkitt lymphoma significantly but does not affect the dissemination of BL2B95 cells, angiogenesis, and lymphangiogenesis. PMID:24482381

  7. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans

    PubMed Central

    2016-01-01

    The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion. PMID:27249799

  8. Rotenone Activates Phagocyte NADPH Oxidase through Binding to Its Membrane Subunit gp91phox

    PubMed Central

    Zhou, Hui; Zhang, Feng; Chen, Shih-heng; Zhang, Dan; Wilson, Belinda; Hong, Jau-shyong; Gao, Hui-Ming

    2011-01-01

    Rotenone, a widely used pesticide, reproduces Parkinsonism in rodents and associates with increased risk for Parkinson’s disease. We previously reported rotenone increased superoxide production through stimulating microglial phagocyte NADPH oxidase (PHOX). The present study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91phox, the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91phox. Functional studies showed both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91phox/p22phox) and cytosolic subunits (p67phox and p47phox). Rotenone-elicited extracellular superoxide release in p47phox-deficient macrophages suggested rotenone enabled to activate PHOX through a p47phox-independent mechanism. Increased membrane translocation of p67phox, elevated binding of p67phox to rotenone-treated membrane fractions, and co-immunoprecipitation of p67phox and gp91phox in rotenone-treated wild-type and p47phox-deficient macrophages indicated p67phox played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91phox. Rac1, a Rho-like small GTPase, enhanced p67phox-gp91phox interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91phox; such an interaction triggered membrane translocation of p67phox, leading to PHOX activation and superoxide production. PMID:22094225

  9. The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice.

    PubMed

    Katona, Laura I

    2015-11-01

    Borrelia burgdorferi is the causative agent of Lyme disease. In B. burgdorferi, RpoS controls the expression of virulence genes needed for mammalian infection. The Fur homologue BosR regulates the transcription of rpoS and therefore BosR determines, albeit indirectly, the infection status of the spirochaete. Transcription of rpoS in B. burgdorferi is complex: rpoS can be transcribed either from an RpoD-dependent promoter to yield a long transcript or from an RpoN-dependent promoter to yield a short transcript. This study shows that BosR repressed synthesis of the long transcript while at the same time activating synthesis of the short transcript. How BosR does this is unclear. To address this, spirochaetes were engineered to express either BosR or the naturally occurring variant BosRR39K. Mice became infected by the spirochaetes expressing BosR but not by the spirochaetes expressing BosRR39K. Furthermore, the spirochaetes expressing BosR activated rpoS transcription during growth in culture whereas the spirochaetes expressing BosRR39K did not. Thus, BosR's activation of rpoS transcription somehow involves Arg39. This arginine is highly conserved in other FUR proteins and therefore other FUR proteins may also require this arginine to function. PMID:26318670

  10. The developmental activation of the chicken lysozyme locus in transgenic mice requires the interaction of a subset of enhancer elements with the promoter.

    PubMed Central

    Huber, M C; Jägle, U; Krüger, G; Bonifer, C

    1997-01-01

    The complete chicken lysozyme locus is expressed in a position independent fashion in macrophages of transgenic mice and forms the identical chromatin structure as observed with the endogenous gene in chicken cells. Individual lysozyme cis -regulatory elements reorganize their chromatin structure at different developmental stages. Accordingly, their activities are developmentally regulated, indicating a differential role of these elements in locus activation. We have shown previously that a subset of enhancer elements and the promoter are sufficient to activate transcription of the chicken lysozyme gene at the correct developmental stage. Here, we analyzed to which grade the developmentally controlled chromatin reorganizing capacity of cis -regulatory elements in the 5'-region of the chicken lysozyme locus is dependent on promoter elements, and we examined whether the lysozyme locus carries a dominant chromatin reorganizing element. To this end we generated transgenic mouse lines carrying constructs with a deletion of the lysozyme promoter. Expression of the transgene in macrophages is abolished, however, the chromatin reorganizing ability of the cis -regulatory elements is differentially impaired. Some cis -elements require the interaction with the promoter to stabilize transcription factor complexes detectable as DNase I hypersensitive sites in chromatin, whereas other elements reorganize their chromatin structure autonomously. PMID:9224598

  11. IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice.

    PubMed

    Thibault, Donna L; Chu, Alvina D; Graham, Kareem L; Balboni, Imelda; Lee, Lowen Y; Kohlmoos, Cassidy; Landrigan, Angela; Higgins, John P; Tibshirani, Robert; Utz, Paul J

    2008-04-01

    A hallmark of SLE is the production of high-titer, high-affinity, isotype-switched IgG autoantibodies directed against nucleic acid-associated antigens. Several studies have established a role for both type I IFN (IFN-I) and the activation of TLRs by nucleic acid-associated autoantigens in the pathogenesis of this disease. Here, we demonstrate that 2 IFN-I signaling molecules, IFN regulatory factor 9 (IRF9) and STAT1, were required for the production of IgG autoantibodies in the pristane-induced mouse model of SLE. In addition, levels of IgM autoantibodies were increased in pristane-treated Irf9 -/- mice, suggesting that IRF9 plays a role in isotype switching in response to self antigens. Upregulation of TLR7 by IFN-alpha was greatly reduced in Irf9 -/- and Stat1 -/- B cells. Irf9 -/- B cells were incapable of being activated through TLR7, and Stat1 -/- B cells were impaired in activation through both TLR7 and TLR9. These data may reveal a novel role for IFN-I signaling molecules in both TLR-specific B cell responses and production of IgG autoantibodies directed against nucleic acid-associated autoantigens. Our results suggest that IFN-I is upstream of TLR signaling in the activation of autoreactive B cells in SLE. PMID:18340381

  12. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism.

    PubMed

    Yang, Ting; Peleli, Maria; Zollbrecht, Christa; Giulietti, Alessia; Terrando, Niccolo; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-06-01

    Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2(∙-)) as part of the innate host defense system, but exaggerated and sustained O2(∙-) generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2(∙-) and peroxynitrite (ONOO(-)) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2(∙-) and ONOO(-) production in macrophages, which was significantly reduced by nitrite (10µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2(∙-) generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response. PMID:25724690

  13. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis

    PubMed Central

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-01-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well-documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system is unclear. This study aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. We found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron-glia cultures. Results showed that sub-micromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR) deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, we found that sub-micromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (−) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism. PMID:25740080

  14. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis.

    PubMed

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-06-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system (CNS) is unclear. This article aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. It was found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron/glia cultures. Results showed that submicromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR)-deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, It was found that submicromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (-) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism. PMID:25740080

  15. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  16. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous in vitro data suggest that ethanol (EtOH) activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) in osteoblasts leading to accumulation of reactive oxygen species (ROS). This might be a mechanism underlying inhibition of bone formation and increased bone resorption obse...

  17. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants.

    PubMed Central

    Benveniste, I; Lesot, A; Hasenfratz, M P; Durst, F

    1989-01-01

    Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals. Images Fig. 5. PMID:2499315

  18. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    SciTech Connect

    Pan, Xiaowei; Zhang, Hongmei; Gao, Yu; Li, Mei; Chang, Wenrui

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  19. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase

    PubMed Central

    Trepout, Sylvain; Wien, Frank; Marco, Sergio

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development. PMID:26714308

  20. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats.

    PubMed

    Genovese, Tiziana; Mazzon, Emanuela; Paterniti, Irene; Esposito, Emanuela; Bramanti, Placido; Cuzzocrea, Salvatore

    2011-02-01

    NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. The aim of this study is identifying apocynin as a critical modulator of NADPH oxidase and elucidating its role as a neuroprotectant in an experimental model of brain ischemia in rat. Treatment of apocynin 5min before of reperfusion attenuated cerebral ischemia in rats. Administration of apocynin showed marked reduction in infarct size compared with that of control rats. Medial carotid artery occlusion (MCAo)-induced cerebral ischemia was also associated with an increase in, nitrotyrosine formation, as well as IL-1β expression, IκB degradation and ICAM expression in ischemic regions. These expressions were markedly inhibited by the treatment of apocynin. We also demonstrated that apocynin reduces levels of apoptosis (TUNEL, Bax and Bcl-2 expression) resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. This new understanding of apocynin induced adaptation to ischemic stress and inflammation could suggest novel avenues for clinical intervention during ischemic and inflammatory diseases. PMID:21138737

  1. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems

    PubMed Central

    Song, Ping; Zou, Ming-Hui

    2012-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases due to increased production or decreased scavenging, which have been considered as common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase. PMID:22357101

  2. NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality

    PubMed Central

    Brothers, Kimberly M.; Gratacap, Remi L.; Barker, Sarah E.; Newman, Zachary R.; Norum, Ashley; Wheeler, Robert T.

    2013-01-01

    Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. PMID:24098114

  3. Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGAT(-/-) mice.

    PubMed

    Stockebrand, Malte; Nejad, Ali Sasani; Neu, Axel; Kharbanda, Kusum K; Sauter, Kathrin; Schillemeit, Stefan; Isbrandt, Dirk; Choe, Chi-Un

    2016-08-01

    Skeletal muscles require energy either at constant low (e.g., standing and posture) or immediate high rates (e.g., exercise). To fulfill these requirements, myocytes utilize the phosphocreatine (PCr)/creatine (Cr) system as a fast energy buffer and shuttle. We have generated mice lacking L-arginine:glycine amidino transferase (AGAT), the first enzyme of creatine biosynthesis. These AGAT(-/-) (d/d) mice are devoid of the PCr/Cr system and reveal severely altered oxidative phosphorylation. In addition, they exhibit complete resistance to diet-induced obesity, which is associated with a chronic activation of AMP-activated protein kinase in muscle and white adipose tissue. The underlying metabolic rearrangements have not yet been further analyzed. Here, we performed gene expression analysis in skeletal muscle and a serum amino acid profile of d/d mice revealing transcriptomic and metabolic alterations in pyruvate and glucose pathways. Differential pyruvate tolerance tests demonstrated preferential conversion of pyruvate to alanine, which was supported by increased protein levels of enzymes involved in pyruvate and alanine metabolism. Pyruvate tolerance tests suggested severely impaired hepatic gluconeogenesis despite increased availability of pyruvate and alanine. Furthermore, enzymes of serine production and one-carbon metabolism were significantly up-regulated in d/d mice, indicating increased de novo formation of one-carbon units from carbohydrate metabolism linked to NAD(P)H production. Besides the well-established function of the PCr/Cr system in energy metabolism, our transcriptomic and metabolic analyses suggest that it plays a pivotal role in systemic one-carbon metabolism, oxidation/reduction, and biosynthetic processes. Therefore, the PCr/Cr system is not only an energy buffer and shuttle, but also a crucial component involved in numerous systemic metabolic processes. PMID:26940723

  4. Cytochrome P4501A1 Is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin

    PubMed Central

    Kopf, Phillip G.; Scott, Jason A.; Agbor, Larry N.; Boberg, Jason R.; Elased, Khalid M.; Huwe, Janice K.; Walker, Mary K.

    2010-01-01

    National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10–14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension. PMID:20634294

  5. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas. PMID:18416183

  6. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  7. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.

    PubMed

    Chin, Jonathan W; Cirino, Patrick C

    2011-01-01

    Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG. PMID:21344680

  8. Decline in NAD(P)H autofluorescence precedes apoptotic cell death from chemotherapy

    NASA Astrophysics Data System (ADS)

    Toms, Steven A.; Muhammad, Osman; Jackson, Heather; Lin, Wei-Chiang

    2005-11-01

    OBJECTIVE: Optical spectroscopic tools exist that allow open surgical and minimally invasive assays of intrinsic tissue optics. Optical detection of cellular and tissue viability may offer a minimally invasive way to assess tumor responsiveness to chemotherapies. We report on an optical spectroscopic change that precedes apoptotic cell death and appears related to NAD(P)H autofluorescence. METHODS: The cell lines SW 480 and U87-MG were grown in culture and treated with cisplatin 100 μg/ml and tamoxifen 10 μM, respectively. Fluorescence spectroscopy at 355 nm excitation and 460 nm emission were collected. MTS assays were used to determine cell viability. Cell lysates were analyzed for NAD(P)H concentrations by mass spectroscopy. RESULTS: Autoflourescence at 355 nm excitation and 460 nm emission declines markedly despite normalization for cell number and total protein concentration after treatment with tamoxifen or cisplatin. The autofluorescence drop precedes the loss of cell viability as measured by MTS assay. For example, the relative viability of the U87-MG cell treated with tamoxifen at hours 0, 8, 12 and 24 of treatment was 100 +/- 6, 85 +/- 6, 53 +/- 9 and 0 +/- 3. The relative fluorescence at the same time points were 100 +/- 2, 57 +/- 6, 47 +/- 3, and 0 +/- 1. TUNNEL assays confirm that cell death is via apoptosis. The key cellular fluorophore at these wavelengths is NAD(P)H. Mass spectroscopic analysis of cell lysates at these time points reveals a drop in NAD(P)H concentrations that is parallel to the loss of fluorescence signal. CONCLUSIONS: NAD(P)H autofluoresence decline precedes apoptotic cell death. This may allow the design of minimally invasive spectroscopic tools to monitor chemotherapeutic response.

  9. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  10. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.

    PubMed Central

    Hillar, A; Nicholls, P; Switala, J; Loewen, P C

    1994-01-01

    1. NADPH binds to bovine catalase and to yeast catalases A and T, but not to Escherichia coli catalase HPII. The association was demonstrated using chromatography and fluorimetry. Bound NADPH fluoresces in a similar way to NADPH in solution. 2. Bound NADPH protects bovine and yeast catalases against forming inactive peroxide compound II either via endogenous reductant action or by ferrocyanide reduction during catalytic activity in the presence of slowly generated peroxide. 3. Bound NADPH reduces neither compound I nor compound II of catalase. It apparently reacts with an intermediate formed during the decay of compound I to compound II; this postulated intermediate is an immediate precursor of stable compound II either when the latter is formed by endogenous reductants or when ferrocyanide is used. It represents therefore a new type of hydrogen donor that is not included in the original classification of Keilin and Nicholls [Keilin, D. and Nicholls, P. (1958) Biochim. Biophys. Acta 29, 302-307] 4. A model for NADPH action is presented in which concerted reduction of the ferryl iron and of a neighbouring protein free radical is responsible for the observed NADPH effects. The roles of migrant radical species in mammalian and yeast catalases are compared with similar events in metmyoglobin and cytochrome c peroxidase reactions with peroxides. Images Figure 1 PMID:8002960

  11. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors

    PubMed Central

    Meng, Hengkai; Liu, Pi; Sun, Hongbing; Cai, Zhen; Zhou, Jie; Lin, Jianping; Li, Yin

    2016-01-01

    Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computational analysis resulted in a modified enzyme designated as d-LDH*. The Kcat/Km of the purified d-LDH* on NADPH increased approximately 184-fold while the Kcat/Km on NADH also significantly increased, showing for the first time that a rationally engineered d-LDH could exhibit comparable activity on both NADPH and NADH. Further kinetic analysis revealed that the enhanced affinity with NADH or NADPH and the significant increased Kcat of d-LDH* resulted in the significant increase of d-LDH* activity on both NADPH and NADH. This study thus demonstrated that the cofactor specificity of dehydrogenase can be broadened by using targeted engineering approach, and the engineered enzyme can efficiently function in NADH-rich, or NADPH-rich, or NADH and NADPH-rich environment. PMID:27109778

  12. Tumour necrosis factor and interferon-γ are required in host resistance against virulent Rhodococcus equi infection in mice: cytokine production depends on the virulence levels of R. equi

    PubMed Central

    Kasuga-Aoki, H; Takai, S; Sasaki, Y; Tsubaki, S; Madarame, H; Nakane, A

    1999-01-01

    Rhodococcus equi is a facultative intracellular bacterial pathogen that causes pneumonia in foals and immunosuppressed humans. There are at least three virulence levels of R. equi and these pathogenicities are associated, in mice, with the presence of virulence plasmids. This study focused on cytokine secretion, in mice, in the course of a primary infection with sublethal doses of R. equi strains of different virulence levels (virulent, intermediately virulent and avirulent). Tumour necrosis factor (TNF) and interferon-γ (IFN-γ), but not interleukin-4 (IL-4) and interleukin-10 (IL-10), were induced endogenously in mice in relation to the multiplication and clearance of virulent and intermediately virulent strains of R. equi. These cytokines were not detected in mice infected with avirulent R. equi. Deaths occurred among mice treated with monoclonal antibodies (mAbs) against either TNF or IFN-γ prior to sublethal dose infection with virulent and intermediately virulent strains of R. equi, but not with avirulent R. equi. These results suggested that cytokine production depended largely on the virulence levels of R. equi: TNF and IFN-γ were required early during infection with virulent R. equi to limit replication and clearance of bacteria within the organs, but they were not necessary for limiting infection with avirulent R. equi. PMID:10233686

  13. Inductive effects of rifapentine on mice hepatic mixed function oxidase system.

    PubMed

    Liu, D Y; Wang, Y S

    1990-03-01

    Rifapentine (R773, DL473) is a long-acting antituberculous drug used in China. In our experiments we have found some manifestations of induction of hepatic mixed function oxidase system in mice following pretreatment with rifapentine or phenobarbital. Both rifapentine and phenobarbital significantly increased the rate of antipyrine and pentobarbital metabolism in vivo. They also increased liver weight, the content of liver microsomal protein and cytochrome P-450, the activity of NADPH-cytochrome C reductase and NADPH oxidase. SDS-polyacylamide gel electrophoresis showed that the relative proportions of some polypeptide bands in mice microsomal fraction were significantly changed following rifapentine or phenobarbital pretreatment. The results indicate that rifapentine, like phenobarbital, is a potent inducer of hepatic mixed function oxidase system in mice and that it should be used carefully in clinical therapy, when combined with other drugs. PMID:2319833

  14. Developmental onset of bilirubin-induced neurotoxicity involves Toll-like receptor 2-dependent signaling in humanized UDP-glucuronosyltransferase1 mice.

    PubMed

    Yueh, Mei-Fei; Chen, Shujuan; Nguyen, Nghia; Tukey, Robert H

    2014-02-21

    Biological and signaling events that connect developmentally induced hyperbilirubinemia to bilirubin-induced neurological dysfunction (BIND) and CNS toxicity in humans are poorly understood. In mammals, UDP-glucuronosyltransferase 1A1 (UGT1A1) is the sole enzyme responsible for bilirubin glucuronidation, a rate-limiting step necessary for bilirubin metabolism and clearance. Humanized mice that express the entire UGT1 locus (hUGT1) and the UGT1A1 gene, develop neonatal hyperbilirubinemia, with 8-10% of hUGT1 mice succumbing to CNS damage, a phenotype that is presented by uncontrollable seizures. We demonstrate that neuroinflammation and reactive gliosis are prominent features of bilirubin brain toxicity, and a disturbed redox status resulting from activation of NADPH oxidase is an important contributing mechanism found in BIND. Using knock-out mice and primary brain cells, we connect a key pattern recognition receptor, Toll-like receptor 2 (TLR2), to hyperbilirubinemia-induced signaling. We illustrate a requirement for TLR2 signaling in regulating gliosis, proinflammatory mediators, and oxidative stress when neonatal mice encounter severe hyperbilirubinemia. TLR2-mediated gliosis strongly correlates with pronounced neuroinflammation in the CNS with up-regulation of TNFα, IL-1β, and IL-6, creating a pro-inflammatory CNS environment. Gene expression and immunohistochemistry staining show that hUGT1/Tlr2(-/-) mice fail to activate glial cells, proinflammatory cytokines, and stress response genes. In addition, bilirubin-induced apoptosis was significantly enhanced by blocking TLR2 signaling indicating its anti-apoptotic property. Consequently, a higher neonatal death rate (57.1%) in hUGT1/Tlr2(-/-) mice was observed when compared with hUGT1 mice (8.7%). These results suggest that TLR2 signaling and microglia neuroinflammation are linked to a repair and/or protection mode against BIND. PMID:24403077

  15. Toll-like Receptor 3 Is Required for Development of Retinopathy Caused by Impaired All-trans-retinal Clearance in Mice*

    PubMed Central

    Shiose, Satomi; Chen, Yu; Okano, Kiichiro; Roy, Sanhita; Kohno, Hideo; Tang, Johnny; Pearlman, Eric; Maeda, Tadao; Palczewski, Krzysztof; Maeda, Akiko

    2011-01-01

    Chronic inflammation is an important component that contributes to many age-related neurodegenerative diseases, including macular degeneration. Here, we report a role for toll-like receptor 3 (TLR3) in cone-rod dystrophy (CORD) of mice lacking ATP-binding cassette transporter 4 (ABCA4) and retinol dehydrogenase 8 (RDH8), proteins critical for all-trans-retinal clearance in the retina. Increased expression of toll-like receptor-signaling elements and inflammatory changes were observed in Rdh8−/−Abca4−/− eyes by RNA expression analysis. Unlike 3-month-old Rdh8−/−Abca4−/− mice that developed CORD, 6-month-old Tlr3−/−Rdh8−/−Abca4−/− mice did not evidence an abnormal retinal phenotype. Light-induced retinal degeneration in Tlr3−/−Rdh8−/−Abca4−/− mice was milder than that in Rdh8−/−Abca4−/− mice, and a 2-fold increased TLR3 expression was detected in light-illuminated retinas of Rdh8−/−Abca4−/− mice compared with nonilluminated retinas. Poly(I-C), a TLR3 ligand, caused caspase-8-independent cellular apoptosis. Whereas poly(I-C) induced retinal cell death in Rdh8−/−Abca4−/− and WT mice both in vivo and ex vivo, this was not seen in mice lacking Tlr3. Far fewer invasive macrophage/microglial cells in the subretinal space and weaker activation of Muller glial cells were exhibited by Tlr3−/−Rdh8−/− Abca4−/− mice compared with Rdh8−/−Abca4−/− mice at 3 and 6 months of age, indicating that loss of TLR3 inhibits local inflammation in the retina. Both poly(I-C) and endogenous products emanating from dying/dead retinal cells induced NF-κB and IRF3 activation. These findings demonstrate that endogenous products from degenerating retina stimulate TLR3 that causes cellular apoptosis and retinal inflammation and that loss of TLR3 protects mice from CORD. PMID:21383019

  16. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice1

    PubMed Central

    Hua, Zhaolin; Gross, Andrew J.; Lamagna, Chrystelle; Ramos-Hernández, Natalia M.; Scapini, Patrizia; Ji, Ming; Shao, Haitao; Lowell, Clifford A.; Hou, Baidong; DeFranco, Anthony L.

    2014-01-01

    The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn−/− mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR signaling pathways have been implicated in the production of anti-nuclear antibodies in SLE and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn−/− mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear antibodies, as well as the deposition of these antibodies in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn−/− mice were completely abolished by selective deletion of Myd88 in B cells and the autoantibody production and glomerulonepritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease of the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn−/− mice may depend on GC responses. Consistent with this view, IgG anti-nuclear antibodies were absent if T cells were deleted (TCRβ−/− TCRδ−/− mice) or if T cells were unable to contribute to GC responses due to mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn−/− mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model whereby DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn−/− mice. PMID:24379120

  17. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or "all that you did and did not want to know about Nox inhibitory peptides".

    PubMed

    Dahan, Iris; Pick, Edgar

    2012-07-01

    Phagocytes utilize reactive oxygen species (ROS) to kill pathogenic microorganisms. The source of ROS is an enzymatic complex (the NADPH oxidase), comprising a membrane-associated heterodimer (flavocytochrome b (558)), consisting of subunits Nox2 and p22(phox), and four cytosolic components (p47(phox), p67(phox), p40(phox), and Rac). The primordial ROS (superoxide) is generated by the reduction of molecular oxygen by NADPH via redox centers located on Nox2. This process is activated by the translocation of the cytosolic components to the membrane and their assembly with Nox2. Membrane translocation is preceded by interactions among cytosolic components. A number of proteins structurally and functionally related to Nox2 have been discovered in many cells (the Nox family) and these have pleiotropic functions related to the production of ROS. An intense search is underway to design therapeutic means to modulate Nox-dependent overproduction of ROS, associated with diseases. Among drug candidates, a central position is held by synthetic peptides reflecting domains in oxidase components involved in NADPH oxidase assembly. Peptides, corresponding to domains in Nox2, p22(phox), p47(phox), and Rac, found to be oxidase activation inhibitory in vitro, are reviewed. Usually, peptides are inhibitory only when added preceding assembly of the complex. Although competition with intact components seems most likely, less obvious mechanisms are, sometimes, at work. The use of peptides as inhibitory drugs in vivo requires the development of methods to assure cell penetration, resistance to degradation, and avoidance of toxicity, and modest successes have been achieved. The greatest challenge remains the discovery of peptide inhibitors acting specifically on individual Nox isoforms. PMID:22562603

  18. Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-H gamma 1 transgenic mice.

    PubMed

    Gärdby, E; Lane, P; Lycke, N Y

    1998-07-01

    The block in the CD80/CD86-CD28/CTLA-4 pathway in CTLA4-H gamma 1 transgenic (Tg) mice results in strongly impaired systemic IgG immunity and failure to develop germinal center reactions. By contrast, here we report that mucosal immunity and IgA B cell differentiation are not affected by this block. We found abundant germinal centers and evidence of IgA switch differentiation in Peyer's patches, normal total IgA levels, and normal numbers of IgA-labeling cells in the gut mucosa. The distribution of B-1 and B-2 cells and the relative contribution of B-1 cells to the total IgA B cells were similar in Tg and wild-type mice. Despite this, oral immunizations with keyhole limpet hemocyanin plus cholera toxin adjuvant failed to stimulate Ag-specific mucosal IgA responses in CTLA4-H gamma 1 Tg mice. This was not due to a lack of adjuvant activity of cholera toxin in Tg mice, nor was this secondary to an inability to take up Ag from the gut lumen. Rather, CD4+ T cells stimulated by oral immunization in Tg mice appeared to be inappropriately primed, as evidenced by a significantly reduced level of CD40 ligand and CD44 expression and an increased expression of CD95 compared to those in wild-type mice. This study reveals a paradox in the regulation of mucosal IgA responses. PMID:9647206

  19. The Pseudomonas aeruginosa rhlG Gene Encodes an NADPH-Dependent β-Ketoacyl Reductase Which Is Specifically Involved in Rhamnolipid Synthesis

    PubMed Central

    Campos-García, Jesús; Caro, Alma Delia; Nájera, Rebeca; Miller-Maier, Raina M.; Al-Tahhan, Ragheb A.; Soberón-Chávez, Gloria

    1998-01-01

    A Pseudomonas aeruginosa gene homologous to the fabG gene, which encodes the NADPH-dependent β-ketoacyl-acyl carrier protein (ACP) reductase required for fatty acid synthesis, was identified. The insertional mutation of this fabG homolog (herein called rhlG) produced no apparent effect on the growth rate and total lipid content of P. aeruginosa cells, but the production of rhamnolipids was completely abrogated. These results suggest that the synthetic pathway for the fatty acid moiety of rhamnolipids is separate from the general fatty acid synthetic pathway, starting with a specific ketoacyl reduction step catalyzed by the RhlG protein. In addition, the synthesis of poly-β-hydroxyalkanoate (PHA) is delayed in this mutant, suggesting that RhlG participates in PHA synthesis, although it is not the only reductase involved in this pathway. Traits regulated by the quorum-sensing response, other than rhamnolipid production, including production of proteases, pyocyanine, and the autoinducer butanoyl-homoserine lactone (PAI-2), were not affected by the rhlG mutation. We conclude that the P. aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase absolutely required for the synthesis of the β-hydroxy acid moiety of rhamnolipids and that it has a minor role in PHA production. Expression of rhlG mRNA under different culture conditions is consistent with this conclusion. PMID:9721281

  20. Increased anxiety in corticotropin-releasing factor type 2 receptor-null mice requires recent acute stress exposure and is associated with dysregulated serotonergic activity in limbic brain areas

    PubMed Central

    2014-01-01

    Background Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. Results CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls. Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT1A receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. Conclusions These results suggest that CRFR2 are required for proper functionality of 5-HT1A receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT

  1. Ultrastructural localization of NADPH diaphorase and nitric oxide synthase in the neuropils of the snail CNS.

    PubMed

    Nacsa, Kálmán; Elekes, Károly; Serfőző, Zoltán

    2015-08-01

    Comparative studies on the nervous system revealed that nitric oxide (NO) retains its function through the evolution. In vertebrates NO can act in different ways: it is released solely or as a co-transmitter, released from presynaptic or postsynaptic site, spreads as a volumetric signal or targets synaptic proteins. In invertebrates, however, the possible sites of NO release have not yet been identified. Therefore, in the present study, the subcellular distribution of the NO synthase (NOS) was examined in the central nervous system (CNS) of two gastropod species, the terrestrial snail, Helix pomatia and the pond snail, Lymnaea stagnalis, which are model species in comparative neurobiology. For the visualization of NOS NADPH-diaphorase histochemistry and an immunohistochemical procedure using a universal anti-NOS antibody were applied. At light microscopic level both techniques labeled identical structures in sensory tracts ramifying in the neuropils of central ganglia and cell bodies of the Lymnaea and Helix CNS. At ultrastructural level NADPH-d reactive/NOS-immunoreactive materials were localized on the nuclear envelope and membrane segments of the rough and smooth endoplasmic reticulum, as well as the cell membrane and axolemma of positive perikarya. NADPH-d reactive and NOS-immunoreactive varicosities connected to neighboring neurons with both unspecialized and specialized synaptic contacts. In the varicosities, the majority of the NADPH-d reactive/NOS-immunoreactive membrane segments were detected in round and pleomorph agranular vesicles of small size (50-200 nm). However, only a small portion (16%) of the vesicles displayed the NADPH-d reactivity/NOS-immunoreactivity. No evidence for the postsynaptic location of NOS was found. Our results suggest that the localization of NADPH-diaphorase and NOS is identical in the snail nervous system. In contrast to vertebrates, however, NO seems to act exclusively in an anterograde way possibly released from membrane

  2. Genes Required for the Fitness of Salmonella enterica Serovar Typhimurium during Infection of Immunodeficient gp91−/− phox Mice

    PubMed Central

    Oshota, Olusegun; Chaudhuri, Roy R.; Mayho, Matthew; Peters, Sarah E.; Clare, Simon; Maskell, Duncan J.; Mastroeni, Pietro

    2016-01-01

    Salmonella enterica causes systemic diseases (typhoid and paratyphoid fever), nontyphoidal septicemia (NTS), and gastroenteritis in humans and other animals worldwide. An important but underrecognized emerging infectious disease problem in sub-Saharan Africa is NTS in children and immunocompromised adults. A current goal is to identify Salmonella mutants that are not pathogenic in the absence of key components of the immune system such as might be found in immunocompromised hosts. Such attenuated strains have the potential to be used as live vaccines. We have used transposon-directed insertion site sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their ability to infect and grow in the tissues of wild-type and immunodeficient mice. This was to identify bacterial genes that might be deleted for the development of live attenuated vaccines that would be safer to use in situations and/or geographical areas where immunodeficiencies are prevalent. The relative fitness of each of 9,356 transposon mutants, representing mutations in 3,139 different genes, was determined in gp91−/− phox mice. Mutations in certain genes led to reduced fitness in both wild-type and mutant mice. To validate these results, these genes were mutated by allelic replacement, and resultant mutants were retested for fitness in the mice. A defined deletion mutant of cysE was attenuated in C57BL/6 wild-type mice and immunodeficient gp91−/− phox mice and was effective as a live vaccine in wild-type mice. PMID:26787719

  3. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice.

    PubMed

    Liou, Jiin-Tarng; Lee, Chiou-Mei; Lin, Yi-Chiao; Chen, Chun-Yu; Liao, Chia-Chih; Lee, Hung-Chen; Day, Yuan-Ji

    2013-10-01

    Growing evidence suggests that leukocyte extravasation is initiated by the interaction of selectins with their ligands; as well as an essential role for P-selectin in the initial recruitment of inflammatory cells to sites of inflammation. In this study, P-selectin-deficient (P-sel-/-) mice were used to test the hypothesis that lack of P-selectin would attenuate the recruitment of inflammatory cells to the site of inflammation, thereby modulating pain in a murine chronic neuropathic pain model. Nociceptive sensitization and the microenvironment of the peripheral injury site were studied in wild-type (P-sel+/+) and P-selectin-deficient (P-sel-/-) mice after partial sciatic nerve ligation (PSNL). Variables measured included myeloperoxidase (MPO) activity, several inflammatory cell infiltration profiles, cytokines, and endogenous opioid peptide expression in damaged nerves. Results indicate that behavioral hypersensitivity, MPO activity, and infiltration of neutrophils and macrophages were attenuated in P-sel-/- mice after PSNL. Proinflammatory cytokines, tumor necrosis factor α, and interleukin (IL)-6, were reduced in damaged nerves following PSNL; however, several antiinflammatory cytokines - IL-1Ra, IL-4, and IL-10 - were significantly increased in P-sel-/- mice. In addition, endogenous opioid peptides mRNA was significantly lower in P-sel-/- mice compared with P-sel +/+ mice. The current results demonstrated that the absence of P-selectin in mice leads to an altered microenvironment that attenuated behavioral hypersensitivity. The specific role of P-selectin could have been a result of decreased neutrophils, as well as the accumulation of macrophages at the site of injury, which may subsequently modulate the inflammatory cytokine expression and impact behavioral hypersensitivity within the injured nerve. PMID:23831400

  4. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.

    PubMed

    Ronchi, Juliana A; Figueira, Tiago R; Ravagnani, Felipe G; Oliveira, Helena C F; Vercesi, Anibal E; Castilho, Roger F

    2013-10-01

    NADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix. A spontaneous Nnt mutation in C57BL/6J (B6J-Nnt(MUT)) mice arose nearly 3 decades ago but was only discovered in 2005. Here, we characterize the consequences of the Nnt mutation on the mitochondrial redox functions of B6J-Nnt(MUT) mice. Liver mitochondria were isolated both from an Nnt wild-type C57BL/6 substrain (B6JUnib-Nnt(W)) and from B6J-Nnt(MUT) mice. The functional evaluation of respiring mitochondria revealed major redox alterations in B6J-Nnt(MUT) mice, including an absence of transhydrogenation between NAD and NADP, higher rates of H2O2 release, the spontaneous oxidation of NADPH, the poor ability to metabolize organic peroxide, and a higher susceptibility to undergo Ca(2+)-induced mitochondrial permeability transition. In addition, the mitochondria of B6J-Nnt(MUT) mice exhibited increased oxidized/reduced glutathione ratios as compared to B6JUnib-Nnt(W) mice. Nonetheless, the maximal activity of NADP-dependent isocitrate dehydrogenase, which is a coexisting source of mitochondrial NADPH, was similar between both groups. Altogether, our data suggest that NNT functions as a high-capacity source of mitochondrial NADPH and that its functional loss due to the Nnt mutation results in mitochondrial redox abnormalities, most notably a poor ability to sustain NADP and glutathione in their reduced states. In light of these alterations, the potential drawbacks of using B6J-Nnt(MUT) mice in biomedical research should not be overlooked. PMID:23747984

  5. NADPH Oxidases in Heart Failure: Poachers or Gamekeepers?

    PubMed Central

    Zhang, Min; Perino, Alessia; Ghigo, Alessandra; Hirsch, Emilio

    2013-01-01

    Abstract Significance: Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. Recent Advances: Two Nox isoforms, Nox2 and Nox4, are expressed in the heart. Studies using gene-modified mice deficient in Nox2 activity indicate that Nox2 activation contributes to angiotensin II–induced cardiomyocyte hypertrophy, atrial fibrillation, and the development of interstitial fibrosis but may also positively modulate physiological excitation-contraction coupling. Nox2 contributes to myocyte death under stress situations and plays important roles in postmyocardial infarction remodeling, in part by modulating matrix metalloprotease activity. In contrast to Nox2, Nox4 is constitutively active at a low level and induces protective effects in the heart under chronic stress, for example, by maintaining myocardial capillary density. However, high levels of Nox4 could have detrimental effects. Critical Issues: The effects of Nox proteins during the development of heart failure likely depend upon the isoform, activation level, and cellular distribution, and may include beneficial as well as detrimental effects. More needs to be learnt about the precise regulation of abundance and biochemical activity of these proteins in the heart as well as the downstream signaling pathways that they regulate. Future Directions: The development of specific approaches to target individual Nox isoforms and/or specific cell types may be important for the achievement of therapeutic efficacy in heart failure. Antioxid. Redox Signal. 18, 1024–1041. PMID:22747566

  6. Tissue Inhibitor Of Matrix Metalloproteinase-1 Is Required for High-Fat Diet-Induced Glucose Intolerance and Hepatic Steatosis in Mice

    PubMed Central

    Myrmel, Lene Secher; Petersen, Rasmus Koefoed; Hansen, Jakob Bondo; Tastesen, Hanne Sørup; Mandrup-Poulsen, Thomas; Brünner, Nils; Kristiansen, Karsten

    2015-01-01

    Background Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null mice. Methods Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR. Results TKO mice gained less weight and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation. Conclusion Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target. PMID:26168159

  7. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala. PMID:23242419

  8. Early life stress in male mice induces superoxide production and endothelial dysfunction in adulthood.

    PubMed

    Ho, Dao H; Burch, Mariah L; Musall, Benjamin; Musall, Jacqueline B; Hyndman, Kelly A; Pollock, Jennifer S

    2016-05-01

    Early life stress (ELS) is a risk for cardiovascular disease in adulthood although very little mechanistic insight is available. Because oxidative stress and endothelial dysfunction are major contributors to cardiovascular risk, we hypothesized that ELS induces endothelial dysfunction in adult male mice via increased superoxide production. Studies employed a mouse model of ELS, maternal separation with early weaning (MSEW), in which litters were separated from the dam for 4 h/day [postnatal days (PD) 2-5] and 8 h/day (PD6-16), and weaned at PD17. Control litters remained undisturbed until weaning at PD21. When compared with control mice, thoracic aortic rings from adult male MSEW mice displayed significant endothelial dysfunction that was reversed by the superoxide scavenger, polyethylene glycol-superoxide dismutase (PEG-SOD). PEG-SOD-inhibitable superoxide production by aortae from MSEW mice was significantly greater than observed in control aortae, although unaffected by nitric oxide synthase inhibition, suggesting that uncoupled nitric oxide synthase was not responsible for the accelerated superoxide production. Aortic SOD expression, plasma SOD activity, and total antioxidant activity were similar in MSEW and control mice, indicating unaltered antioxidant capacity in MSEW mice. Increased expression of the NADPH oxidase subunits, NOX2 and NOX4, was evident in the aortae of MSEW mice. Moreover, endothelial dysfunction and superoxide production in MSEW mice was reversed with the NADPH oxidase inhibitor, apocynin, indicating increased NADPH oxidase-dependent superoxide production and endothelial dysfunction. The finding that MSEW induces superoxide production and endothelial dysfunction in adult mice may provide a mechanistic link between ELS and adult cardiovascular disease risk. PMID:26921433

  9. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. PMID:117798

  10. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  11. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells

    PubMed Central

    Lewis, Caroline A.; Parker, Seth J.; Fiske, Brian P.; McCloskey, Douglas; Gui, Dan Y.; Green, Courtney R.; Vokes, Natalie I.; Feist, Adam M.; Heiden, Matthew G. Vander; Metallo, Christian M.

    2014-01-01

    Summary Eukaryotic cells compartmentalize biochemical processes in different organelles, often relying on metabolic cycles to shuttle reducing equivalents across intracellular membranes. NADPH serves as the electron carrier for the maintenance of redox homeostasis and reductive biosynthesis, with separate cytosolic and mitochondrial pools providing reducing power in each respective location. This cellular organization is critical for numerous functions but complicates analysis of metabolic pathways using available methods. Here we develop an approach to resolve NADP(H)-dependent pathways present within both the cytosol and the mitochondria. By tracing hydrogen in compartmentalized reactions that use NADPH as a cofactor, including the production of 2-hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, we can observe metabolic pathway activity in these distinct cellular compartments. Using this system we determine the direction of serine/glycine interconversion within the mitochondria and cytosol, highlighting the ability of this approach to resolve compartmentalized reactions in intact cells. PMID:24882210

  12. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses☆

    PubMed Central

    Jiang, Fan; Liu, Guei-Sheung; Dusting, Gregory J.; Chan, Elsa C.

    2014-01-01

    Uncontrolled fibrosis in organs like heart, kidney, liver and lung is detrimental and may lead to end-stage organ failure. Currently there is no effective treatment for fibrotic disorders. Transforming growth factor (TGF)-β has a fundamental role in orchestrating the process of fibrogenesis; however, interventions directly targeting TGF-β would have undesired systemic side effects due to the multiple physiological functions of TGF-β. Further characterization of the downstream signaling pathway(s) involved in TGF-β-mediated fibrosis may lead to discovery of novel treatment strategies for fibrotic disorders. Accumulating evidence suggests that Nox4 NADPH oxidase may be an important downstream effector in mediating TGF-β-induced fibrosis, while NADPH oxidase-dependent redox signaling may in turn regulate TGF-β/Smad signaling in a feed-forward manner. It is proposed that pharmacological inhibition of the Nox4 function may represent a novel approach in treatment of fibrotic disorders. PMID:24494202

  13. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress. PMID:21651898

  14. Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

    PubMed Central

    Gorin, Yves; Wauquier, Fabien

    2015-01-01

    Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted. PMID:25824546

  15. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells

    PubMed Central

    Lin, Chih-Chung; Yang, Chien-Chung; Cho, Rou-Ling; Wang, Chen-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with

  16. Involvement of protein kinase D in Fc gamma-receptor activation of the NADPH oxidase in neutrophils.

    PubMed Central

    Davidson-Moncada, Jan K; Lopez-Lluch, Guillermo; Segal, Anthony W; Dekker, Lodewijk V

    2002-01-01

    Protein kinases involved in the activation of the NADPH oxidase by Fc gamma receptors in neutrophils were studied. Of three different protein kinase C (PKC) inhibitors, Gö 6976 inhibited the NADPH oxidase completely, whereas bisindolylmaleimide I and Ro 31-8220 caused a 70-80% inhibition. Thus a Gö 6976-sensitive, bisindolylmaleimide I/Ro 31-8220-insensitive component contributes to NADPH oxidase activation induced by Fc gamma receptors. Down-regulation of PKC isotypes resulted in inhibition of Fc gamma-receptor-activated NADPH oxidase, but a down-regulation-insensitive component was still present. This component was sensitive to Gö 6976, but insensitive to Ro 31-8220. It has been shown previously that protein kinase D/PKC-mu (PKD) shows this same pharmacology in vitro. We show that PKD is present in neutrophils and that, in contrast with PKC isotypes, PKD is not down-regulated. Therefore PKD may participate in NADPH oxidase activation. To obtain direct evidence for this we adopted an antisense approach. Antisense PKD inhibited NADPH oxidase induced by Fc gamma-receptor stimulation by 50% and the Ro 31-8220-insensitive component in the activation was inhibited by antisense PKD. In vitro kinase assays showed that PKD is activated by presenting IgG-opsonized particles to neutrophils. Furthermore, PKD localizes to the area of particle intake in the cell and phosphorylates two of the three cytosolic components of the NADPH oxidase, p40(phox) and p47(phox). Taken together, these data indicate that Fc gamma receptors engage PKD in the regulation of the NADPH oxidase. PMID:11903052

  17. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones.

    PubMed

    Munnamalai, Vidhya; Weaver, Cory J; Weisheit, Corinne E; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T; Suter, Daniel M

    2014-08-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones. PMID:24702317

  18. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart

    PubMed Central

    Reyes, Levy A.; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J.; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L.

    2015-01-01

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP+, coincided with formation of 2’-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes. PMID:26297248

  19. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases

    PubMed Central

    Nauseef, William M.

    2013-01-01

    BACKGROUND The recent recognition that isoforms of the cellular NADPH-dependent oxidases, collectively known as the NOX protein family, participate in a wide range of physiologic and pathophysiologic processes in both the animal and plant kingdoms has stimulated interest in the identification, localization, and quantitation of their products in biological settings. Although several tools for reassuring oxidants released extracellularly are available, the specificity and selectivity of the methods for reliable analysis of intracellular oxidants have not matched the enthusiasm for studying NOX proteins. SCOPE OF REVIEW Focusing exclusively on superoxide anion and hydrogen peroxide produced by NOX proteins, this review describes the ideal probe for analysis of O2· and H2O2 generated extracellularly and intracellularly by NOX proteins. An overview of the components, organization, and topology of NOX proteins provides a rationale for applying specific probes for use and a context in which to interpret results and thereby construct plausible models linking NOX-derived oxidants to biological responses. The merits and shortcomings of methods currently in use to assess NOX activity are highlighted, and those assays that provide quantitation of superoxide or H2O2 are contrasted with those intended to examine spatial and temporal aspects of NOX activity. MAJOR CONCLUSIONS Although interest in measuring the extracellular and intracellular products of the NOX protein family is great, robust analytical probes are limited. Several reliable methods for measurement of extracellular O2· and H2O2 by NOX proteins are available. Chemiluminescent probes for both extracellular and intracellular O2· and H2O2 detection have shortcomings that limit their use Options for quantitation of intracellular O2· and H2O2 are very limited However, non-redox sensitive probes and genetically encoded reporters promise to provide spatial and temporal detection of O2· and H2O2 GENERAL SIGNIFICANCE

  20. Structures of Iridoid Synthase from Cantharanthus roseus with Bound NAD(+) , NADPH, or NAD(+) /10-Oxogeranial: Reaction Mechanisms.

    PubMed

    Hu, Yumei; Liu, Weidong; Malwal, Satish R; Zheng, Yingying; Feng, Xinxin; Ko, Tzu-Ping; Chen, Chun-Chi; Xu, Zhongxia; Liu, Meixia; Han, Xu; Gao, Jian; Oldfield, Eric; Guo, Rey-Ting

    2015-12-14

    Structures of the iridoid synthase nepetalactol synthase in the presence of NAD(+) , NADPH or NAD(+) /10-oxogeranial were solved. The 10-oxogeranial substrate binds in a transoid-O1-C3 conformation and can be reduced by hydride addition to form the byproduct S-10-oxo-citronellal. Tyr178 Oζ is positioned 2.5 Å from the substrate O1 and provides the second proton required for reaction. Nepetalactol product formation requires rotation about C1-C2 to form the cisoid isomer, leading to formation of the cis-enolate, together with rotation about C4-C5, which enables cyclization and lactol production. The structure is similar to that of progesterone-5β-reductase, with almost identical positioning of NADP, Lys146(147), Tyr178(179), and F342(343), but only Tyr178 and Phe342 appear to be essential for activity. The transoid 10-oxogeranial structure also serves as a model for β-face hydride attack in progesterone 5β-reductases and is of general interest in the context of asymmetric synthesis. PMID:26768532

  1. Reactive Oxygen Species and Angiogenesis: NADPH Oxidase as Target for Cancer Therapy

    PubMed Central

    Ushio-Fukai, Masuko; Nakamura, Yoshimasa

    2009-01-01

    Angiogenesis is essential for tumor growth, metastasis, arteriosclerosis as well as embryonic development and wound healing. Its process is dependent on cell proliferation, migration and capillary tube formation in endothelia cells (ECs). High levels of reactive oxygen species (ROS) such as superoxide and H2O2 are observed in various cancer cells. Accumulating evidence suggests that ROS function as signaling molecules to mediate various growth-related responses including angiogenesis. ROS-dependent angiogenesis can be regulated by endogenous antioxidant enzymes such as SOD and thioredoxin. Vascular endothelial growth factor (VEGF), one of the major angiogenesis factor, is induced in growing tumors and stimulates EC proliferation and migration primarily through the VEGF receptor type2 (VEGFR2, Flk1/KDR). Major source of ROS in ECs is a NADPH oxidase which consists of Nox1, Nox2, Nox4, Nox5, p22phox, p47phox and the small G protein Rac1. NADPH oxidase is activated by various growth factors including VEGF and angiopoietin-1 as well as hypoxia and ischemia, and ROS derived from this oxidase are involved in VEGFR2 autophosphorylation, and diverse redox signaling pathways leading to induction of transcription factors and genes involved in angiogenesis. Dietary antioxidants appear to be effective for treatment of tumor angiogenesis. The aim of this review is to provide an overview of the recent progress on role of ROS derived from NADPH oxidase and redox signaling events involved in angiogenesis. Understanding these mechanisms may provide insight into the NADPH oxidase and redox signaling components as potential therapeutic targets for tumor angiogenesis. PMID:18406051

  2. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    PubMed Central

    Altenhöfer, Sebastian; Radermacher, Kim A.; Kleikers, Pamela W.M.; Wingler, Kirstin

    2015-01-01

    Abstract Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427. PMID:24383718

  3. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells.

    PubMed

    Prasad, Ram; Kappes, John C; Katiyar, Santosh K

    2016-02-16

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  4. Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells

    PubMed Central

    Prasad, Ram; Kappes, John C.; Katiyar, Santosh K.

    2016-01-01

    Overexpression of NADPH oxidase 1 (Nox1) in melanoma cells is often associated with increased migration/metastasis rate. To develop effective treatment options, we have examined the effect of honokiol, a phytochemical from Magnolia plant, on the migratory potential of human melanoma cell lines (A375, Hs294t, SK-Mel119 and SK-Mel28) and assessed whether Nox1 is the target. Using an in vitro cell migration assay, we observed that treatment of different melanoma cell lines with honokiol for 24 h resulted in a dose-dependent inhibition of cell migration that was associated with reduction in Nox1 expression and reduced levels of oxidative stress. Treatment of cells with N-acetyl-L-cysteine, an anti-oxidant, also inhibited the migration of melanoma cells. Treatment of cells with diphenyleneiodonium chloride, an inhibitor of Nox1, significantly decreased the migration ability of Hs294t and SK-Mel28 cells. Further, we examined the effect of honokiol on the levels of core proteins (p22phox and p47phox) of the NADPH oxidase complex. Treatment of Hs294t and SK-Mel28 cells with honokiol resulted in accumulation of the cytosolic p47phox protein and decreased levels of the membrane-bound p22phox protein, thus blocking their interaction and inhibiting Nox1 activation. Our in vivo bioluminescence imaging data indicate that oral administration of honokiol inhibited the migration/extravasation and growth of intravenously injected melanoma cells in internal body organs, such as liver, lung and kidney in nude mice, and that this was associated with an inhibitory effect on Nox1 activity in these internal organs/tissues. PMID:26760964

  5. Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models

    PubMed Central

    Kröller-Schön, Swenja; Steven, Sebastian; Kossmann, Sabine; Scholz, Alexander; Daub, Steffen; Oelze, Matthias; Xia, Ning; Hausding, Michael; Mikhed, Yuliya; Zinßius, Elena; Mader, Michael; Stamm, Paul; Treiber, Nicolai; Scharffetter-Kochanek, Karin; Li, Huige; Schulz, Eberhard; Wenzel, Philip; Münzel, Thomas

    2014-01-01

    Abstract Aims: Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction. Results: NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kinase cSrc, Nox itself, or an intracellular calcium chelator and was absent in leukocytes with p47phox deficiency (regulates Nox2) or with cyclophilin D deficiency (regulates mPTP). In contrast, the crosstalk in leukocytes was amplified by mitochondrial superoxide dismutase (type 2) (MnSOD+/−) deficiency. In vivo, increases in blood pressure, degree of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) dysregulation/uncoupling (e.g., eNOS S-glutathionylation) or Nox activity, p47phox phosphorylation in response to angiotensin-II (AT-II) in vivo treatment, or the aging process were more pronounced in MnSOD+/− mice as compared with untreated controls and improved by mPTP inhibition by cyclophilin D deficiency or sanglifehrin A therapy. Innovation: These results provide new mechanistic insights into what extent mtROS trigger Nox activation in phagocytes and cardiovascular tissue, leading to endothelial dysfunction. Conclusions: Our data show that mtROS trigger the activation of phagocytic and cardiovascular NADPH oxidases, which may have fundamental implications for immune cell activation and development of AT-II-induced hypertension. Antioxid. Redox Signal. 20, 247–266. PMID:23845067

  6. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.

    PubMed

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-10-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. PMID:21605929

  7. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

    PubMed Central

    Gan, Xiaoliang; Xing, Dandan; Su, Guangjie; Li, Shun; Luo, Chenfang; Irwin, Michael G.; Xia, Zhengyuan; Li, Haobo; Hei, Ziqing

    2015-01-01

    Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation. PMID:26246867

  8. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  9. The NADPH- and iron-dependent lipid peroxidation in human placental microsomes.

    PubMed

    Milczarek, Ryszard; Sokolowska, Ewa; Hallmann, Anna; Klimek, Jerzy

    2007-01-01

    In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) - a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and alpha-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM. PMID:16896536

  10. Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production

    PubMed Central

    Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe

    2015-01-01

    Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029

  11. Autophagy Protein Rubicon Mediates Phagocytic NADPH Oxidase Activation in Response to Microbial Infection or TLR Stimulation

    PubMed Central

    Yang, Chul-Su; Lee, Jong-Soo; Rodgers, Mary; Min, Chan-Ki; Lee, June-Yong; Kim, Hee Jin; Lee, Kwang-Hoon; Kim, Chul-Joong; Oh, Byungha; Zandi, Ebrahim; Yue, Zhenyu; Kramnik, Igor; Liang, Chengyu; Jung, Jae U.

    2013-01-01

    Summary Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection. PMID:22423966

  12. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis

    PubMed Central

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo

    2016-01-01

    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression. PMID:26887636

  13. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  14. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  15. In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories.

    PubMed

    Lakshmanan, Meiyappan; Yu, Kai; Koduru, Lokanand; Lee, Dong-Yup

    2015-10-01

    Optimizing the overall NADPH turnover is one of the key challenges in various value-added biochemical syntheses. In this work, we first analyzed the NADPH regeneration potentials of common cell factories, including Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, and Pichia pastoris across multiple environmental conditions and determined E. coli and glycerol as the best microbial chassis and most suitable carbon source, respectively. In addition, we identified optimal cofactor specificity engineering (CSE) enzyme targets, whose cofactors when switched from NAD(H) to NADP(H) improve the overall NADP(H) turnover. Among several enzyme targets, glyceraldehyde-3-phosphate dehydrogenase was recognized as a global candidate since its CSE improved the NADP(H) regeneration under most of the conditions examined. Finally, by analyzing the protein structures of all CSE enzyme targets via homology modeling, we established that the replacement of conserved glutamate or aspartate with serine in the loop region could change the cofactor dependence from NAD(H) to NADP(H). PMID:26254041

  16. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones

    PubMed Central

    Munnamalai, Vidhya; Weaver, Cory J.; Weisheit, Corinne E.; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T.; Suter, Daniel M.

    2014-01-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NOX2-type NADPH oxidase complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91phox localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40phox. p40phox itself exhibited co-localization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91phox and p40phox with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in co-localization of p40phox with NOX2/gp91phox at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. PMID:24702317

  17. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  18. Physiology-based kinetic modeling of neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence transients.

    PubMed

    Berndt, Nikolaus; Kann, Oliver; Holzhütter, Hermann-Georg

    2015-09-01

    Imaging of the cellular fluorescence of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the few metabolic readouts that enable noninvasive and time-resolved monitoring of the functional status of mitochondria in neuronal tissues. Stimulation-induced transient changes in NAD(P)H fluorescence intensity frequently display a biphasic characteristic that is influenced by various molecular processes, e.g., intracellular calcium dynamics, tricarboxylic acid cycle activity, the malate-aspartate shuttle, the glycerol-3-phosphate shuttle, oxygen supply or adenosine triphosphate (ATP) demand. To evaluate the relative impact of these processes, we developed and validated a detailed physiologic mathematical model of the energy metabolism of neuronal cells and used the model to simulate metabolic changes of single cells and tissue slices under different settings of stimulus-induced activity and varying nutritional supply of glucose, pyruvate or lactate. Notably, all experimentally determined NAD(P)H responses could be reproduced with one and the same generic cellular model. Our computations reveal that (1) cells with quite different metabolic status may generate almost identical NAD(P)H responses and (2) cells of the same type may quite differently contribute to aggregate NAD(P)H responses recorded in brain slices, depending on the spatial location within the tissue. Our computational approach reconciles different and sometimes even controversial experimental findings and improves our mechanistic understanding of the metabolic changes underlying live-cell NAD(P)H fluorescence transients. PMID:25899300

  19. NADPH diaphorase and nitric oxide synthase in the corpus cardiacum-corpus allatum of the cockroach Diploptera punctata.

    PubMed

    Skinner, J R; Ren, M; Chan, K K; Stay, B

    2000-01-01

    Juvenile hormone synthesis by corpora allata is regulated partly by allatostatin containing nerves from the brain that innervate the corpora cardiaca and the corpora allata. To investigate whether NO also participates in the regulation of juvenile hormone synthesis, antibody against NO synthase and the histochemical test for NADPH diaphorase activity, a marker for NO synthase, were applied to the corpora cardiaca-corpora allata of Diploptera punctata. Strong NADPH diaphorase activity occurred in corpus allatum cells but not in nerve fibers in the corpora allata or corpora cardiaca. In contrast, NO immunoreactivity occurred in nerves in the corpora cardiaca but not within the corpora allata. NO and allatostatin were not colocalized. NO synthase and NADPH diaphorase activity were localized in similar areas of the subesophageal ganglion and cells in the pars intercerebralis of the brain. Positive correlation of the quantity of NADPH diaphorase activity with juvenile hormone synthesis during the gonadotrophic cycle and lack of such correlation in subesophageal ganglia suggest that NADPH diaphorase activity reflects the necessity of NADPH in the pathway of juvenile hormone synthesis. These data suggest that NO is unlikely to play a significant role in the regulation of the corpora allata. PMID:18088916

  20. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    PubMed

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage. PMID:27435854

  1. Enhanced antibody production in mice to the malaria antigen AMA1 by CPG 7909 requires physical association of CpG and antigen

    PubMed Central

    Mullen, Gregory E. D.; Aebig, Joan A.; Dobrescu, Gelu; Rausch, Kelly; Lambert, Lynn; Long, Carole A.; Miles, Aaron P.; Saul, Allan

    2007-01-01

    CpG oligodeoxynucleotides are potent immunostimulants. In this study, CPG 7909 was formulated with the recombinant Plasmodium falciparum protein AMA1-C1 adsorbed to Alhydrogel (aluminum hydroxide) and used to immunize mice. Mice receiving free CPG 7909 in a separate same site injection to the AMA1-C1/Alhydrogel had the same antibody responses as mice receiving AMA1-C1/Alhydrogel alone. For mice immunized with CPG 7909 bound to the AMA1-C1/Alhydrogel formulation, there was a bell shaped CPG 7909 dose response curve with the highest antibody response co-incident with the concentration of CPG 7909 that saturated binding to the Alhydrogel. At a higher CPG 7909 dose where 74% was unbound, there was no enhancement of response over AMA1-C1/Alhydrogel alone. Our results suggest that the adjuvant effects of CpGs are optimal when adsorbed to Alhydrogel and highlight the need for careful characterization of the vaccine formulation. PMID:17566616

  2. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo.

    PubMed Central

    Williams, Z; Hertogs, C F; Pluznik, D H

    1983-01-01

    Injection of lipopolysaccharide (LPS) into mice was followed by a rapid elevation of colony-stimulating factor (CSF) in the serum. A second, challenging injection of LPS given 3 to 4 days later failed to induce elevated levels of CSF in the serum. Such mice tolerant to LPS were used as an experimental tool to identify the CSF-producing cells which respond to LPS. We observed that generation of LPS-induced CSF in mice tolerant to LPS could be restored by an intraperitoneal injection of spleen cells 24 h before the challenging injection of LPS. Depletion of the adherent cells from the spleen cells reduced the ability of the splenic lymphocytes to restore the capacity of the mice tolerant to LPS to generate serum CSF. Reconstitution of the splenic lymphocytes with 5% thioglycolate-elicited peritoneal macrophages, however, reestablished the restorative capacity of these cells, whereas almost no restoration was observed after direct injection of elicited peritoneal macrophages. These data suggest that the spleen cells are active in generating CSF, provided that macrophages are present and can interact with the splenic lymphocytes to generate LPS-induced CSF in the serum. PMID:6602767

  3. ACAT2 and ABCG5/G8 are both required for efficient cholesterol absorption in mice: evidence from thoracic lymph duct cannulation[S

    PubMed Central

    Nguyen, Tam M.; Sawyer, Janet K.; Kelley, Kathryn L.; Davis, Matthew A.; Kent, Carol R.; Rudel, Lawrence L.

    2012-01-01

    The metabolic fate of newly absorbed cholesterol and phytosterol is orchestrated through adenosine triphosphate-binding cassette transporter G5 and G8 heterodimer (G5G8), and acyl CoA:cholesterol acyltransferase 2 (ACAT2). We hypothesized that intestinal G5G8 limits sterol absorption by reducing substrate availability for ACAT2 esterification and have attempted to define the roles of these two factors using gene deletion studies in mice. Male ACAT2−/−, G5G8−/−, ACAT2−/−G5G8−/− (DKO), and wild-type (WT) control mice were fed a diet with 20% of energy as palm oil and 0.2% (w/w) cholesterol. Sterol absorption efficiency was directly measured by monitoring the appearance of [3H]sitosterol and [14C]cholesterol tracers in lymph after thoracic lymph duct cannulation. The average percentage (± SEM) absorption of [14C]cholesterol after 8 h of lymph collection was 40.55 ± 0.76%, 19.41 ± 1.52%, 32.13 ± 1.60%, and 21.27 ± 1.35% for WT, ACAT2−/−, G5G8−/−, and DKO mice, respectively. [3H]sitosterol absorption was <2% in WT and ACAT2−/− mice, whereas it was up to 6.8% in G5G8−/− and DKO mice. G5G8−/− mice also produced chylomicrons with ∼70% less cholesterol ester mass than WT mice. In contrast to expectations, the data demonstrated that the absence of G5G8 led to decreased intestinal cholesterol esterification and reduced cholesterol transport efficiency. Intestinal G5G8 appeared to limit the absorption of phytosterols; ACAT2 more efficiently esterified cholesterol than phytosterols. The data indicate that handling of sterols by the intestine involves both G5G8 and ACAT2 but that an additional factor (possibly Niemann-Pick C1-like 1) may be key in determining absorption efficiency. PMID:22669916

  4. Molecular Interface of S100A8 with Cytochrome b558 and NADPH Oxidase Activation

    PubMed Central

    Berthier, Sylvie; Hograindleur, Marc-André; Paclet, Marie-Hélène; Polack, Benoît; Morel, Françoise

    2012-01-01

    S100A8 and S100A9 are two calcium binding Myeloid Related Proteins, and important mediators of inflammatory diseases. They were recently introduced as partners for phagocyte NADPH oxidase regulation. However, the precise mechanism of their interaction remains elusive. We had for aim (i) to evaluate the impact of S100 proteins on NADPH oxidase activity; (ii) to characterize molecular interaction of either S100A8, S100A9, or S100A8/S100A9 heterocomplex with cytochrome b558; and (iii) to determine the S100A8 consensus site involved in cytochrome b558/S100 interface. Recombinant full length or S100A9-A8 truncated chimera proteins and ExoS-S100 fusion proteins were expressed in E. coli and in P. aeruginosa respectively. Our results showed that S100A8 is the