Science.gov

Sample records for micelle environments investigated

  1. Basic investigations on LCV micelle gel

    NASA Astrophysics Data System (ADS)

    Ebenezer, S. B.; Rafic, M. K.; Ravindran, P. B.

    2013-06-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  2. Structural investigation of diglycerol polyisostearate reverse micelles in organic solvents.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Oyama, Keiichi; Matsuzawa, Makoto; Aramaki, Kenji

    2009-09-24

    The structure of glycerol-based reverse micelles in the surfactant/oil binary system without external water addition has been investigated using a small-angle X-ray scattering technique, and different tunable parameters for the structure control of reverse micelles are determined. The scattering data were evaluated by the generalized indirect Fourier transformation (GIFT) method and complemented by model fitting. It was found that diglycerol polyisostearates (abbreviated as (iso-C18)nG2, n=2-4, where n represents the number of isosterate chains per surfactant molecule) form reverse micelles in a variety of organic solvents such as cyclohexane, n-decane, and n-hexadecane without the addition of water from outside, and their structure (shape and size) depends on solvent properties (alkyl chain length), tail architecture of the surfactant, temperature, and added water. Small globular types of micelles were observed in the (iso-C18)2G2/cyclohexane system at 25 degrees C. The micellar size and the aggregation number were increased with increasing the alkyl chain length of the oils resulting in elongated ellipsoidal prolate or rodlike type micelles in the (iso-C18)2G2/hexadecane system. This structural evolution is caused by the different penetration tendency depending on the chain length of oils to the lipophilic chain of the surfactant. At fixed oil, composition, and temperature, the tail architecture of the surfactant played a crucial role in the micellar structure. The micellar size and, hence, the aggregation number decreased monotonically with increasing number of isostearate chain per surfactant molecule due to the voluminous lipophilic part of the surfactant. Composition could not modulate the structure of micelles but led to strong repulsive interactions among the micelles due to reduced osmotic compressibility of the system at higher concentrations. Increasing temperature decreased the micellar size, while the cross-section structure remains essentially the

  3. Predicting proton titration in cationic micelle and bilayer environments

    SciTech Connect

    Morrow, Brian H.; Shen, Jana K.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  4. Predicting proton titration in cationic micelle and bilayer environments

    NASA Astrophysics Data System (ADS)

    Morrow, Brian H.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-08-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa's in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  5. Micelle dynamic simulation and physicochemical characterization of biorelevant media to reflect gastrointestinal environment in fasted and fed states.

    PubMed

    Xie, XiaoYu; Cardot, Jean-Michel; Garrait, Ghislain; Thery, Vincent; El-Hajji, Mohamed; Beyssac, Eric

    2014-10-01

    The characterization of biorelevant media simulating the upper part of the gastrointestinal tract in the fasted and fed states was investigated by classical determination of physicochemical parameters such as pH, osmolality, surface tension and results were compared to in vivo physiological data. Incorporation of fatty material, in order to better simulate the influence of high fat meal was also performed. Stability and characterization of this medium was studied and compared to classical FeSSIF. Micelle characterization and computer dynamic simulation were performed in order to understand the interaction between lecithin and taurocholate and possible interactions between mixed micelle and drugs. The addition of NaTc, lecithin, and/or fatty materials has no influence on pH and osmolality, whereas the presence of fatty material modifies the surface tension. Values of FaSSIF and FeSSIF are in accordance with in vivo parameters and the presence of micelles can simulate the gastrointestinal environment. Modelization of micelles by computer simulation led to a model of mixed micelles in which structures of NaTc interact either by their hydrophilic or hydrophobic phase to give a bilayer stable model in which the lecithin molecule can insert its long carbon chain. The micelle structure is stable and can enhance dissolution of hydrophobic molecules by hydrophobic interaction with the numerous hydrophobic spaces available in the multilayer hydrophilic/hydrophobic layer. PMID:24954150

  6. Radiochromic leuco dye micelle hydrogels: I. Initial investigation

    NASA Astrophysics Data System (ADS)

    Jordan, Kevin; Avvakumov, Nikita

    2009-11-01

    This investigation reports the use of surfactants and colorless leuco triarylmethane dyes to form a new class of radiochromic micelle hydrogels for three-dimensional (3D) water-equivalent dosimetry. Gelatin gel samples with several surfactants and leuco dyes were prepared and evaluated for optical transparency, dose sensitivity and diffusion rates. The addition of Triton X-100, a non-ionic surfactant, at levels exceeding the critical micelle concentration provides a transparent hydrogel in which the water insoluble leuco Malachite Green (LMG) can dissolve. During irradiation, the LMG dye precursor converts to Malachite Green (MG+). The most sensitive reported LMG gel formulation contains 0.3 mM LMG leuco dye, 16 mM trichloroacetic acid, 7 mM Triton X-100 and 4% w/w gelatin. A diffusion coefficient of 0.14 mm2 h-1 was determined for MG+ in this gel by fitting the time-dependent degradation of the transmission profile after irradiating half of the sample. The diffusion rate was three times lower than the standard radiochromic ferrous xylenol-orange (FX) gel. The primary feature of this 3D hydrogel is that it introduces transparent, radiochromic, micelle hydrogels. The radiochromic response to dose is instantaneous and images are stable for several hours. A dosimetric characterization revealed that the dose response is reproducible to within 10% over five separate batches and independent of both energy and dose rate. Uniform pre-irradiation of samples to 5 Gy provided a subsequent near linear response to greater than 110 Gy. LMG gels when read with a fast optical CT scanner can provide full 3D dose distributions in less than 30 min post-irradiation. LMG micelle gels scanned with a 633 nm light source are a promising system for quantitative water- or tissue-equivalent 3D dose verification in the 5-100 Gy dose range. These gels are useful for the scanning of larger volume dosimeters (i.e. >15 cm diameter) since they are easily prepared with inexpensive ingredients, are

  7. [Investigation on the spectral characteristics and existing state of a substituted 3H-indole molecular probe in triton X-100 reverse micelle].

    PubMed

    Luo, Jun-jian; Li, Jian; Shen, Xing-hai; Gao, Hong-cheng

    2005-02-01

    The interactions between a fluorescent molecular probe, i. e., [2-(p-hexylamino) phenyl-3, 3-dimethyl-5-ethoxycarbonyl-3H-indole] methyldioctadecylammonium iodide (A) and Triton X-100/heptane/hexanol/water reverse micelle have been investigated by spectroscopy. Micropolarity of the environment, fluorescence anisotropy parameter and the pH effect of A in Triton X-100 reverse micelle were determined. Furthermore, the state of water in reverse micellar systems was studied by FTIR. According to the above experimental results, some information on the structure of Triton X-100 reverse micelle was obtained and the probable site of A in this system was discussed. PMID:15852849

  8. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    PubMed Central

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  9. Investigation of water-containing inverted micelles by fluorescence polarization determination of size and internal fluidity

    SciTech Connect

    Keh, E.; Valeur, B.

    1981-02-01

    Water-containing inverted micelles of sodium di(2-ethylhexyl) sulfosuccinate (AOT) have been investigated by fluorescence polarization using fluorescent hydrophilic probes localized in the aqueous core of the micelles. Measurements of the stationary polarization in two apolar solvents of different viscosity but of the same chemical nature permit rapid determination of both micellar hydrodynamic volume and water pool fluidity as a function of water content up to (H/sub 2/O)/(AOT) = 11. The characteristics of AOT micelles appear to be unchanged in the n-alkane series from hexane to dodecane and slightly affected in various apolar solvents. Solvents of high polarizability such as benzene, toluene, and carbon tetrachloride penetrate into the amphiphile layer, presumably up to the water core boundary. No significant effect of sodium chloride was observed up to a concentration of 0.4 M. The inverse micelle size is independent of surfactant concentration below 0.3 M.

  10. Physicochemical investigation of acrylamide solubilization in sodium bis(2-ethylhexyl)sulfosuccinate and lecithin reversed micelles.

    PubMed

    Calandra, P; Giordano, C; Ruggirello, A; Turco Liveri, V

    2004-09-01

    The state of acrylamide confined within dry sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and lecithin reversed micelles dispersed in CCl(4) has been investigated by FTIR and (1)H NMR spectroscopy. Measurements have been performed at 25 degrees C as a function of the acrylamide-to-surfactant molar ratio (R) at a fixed surfactant concentration (0.1 mol kg(-1)). The analysis of experimental data, corroborated by the results of SAXS measurements, is consistent with the hypothesis that acrylamide is quite uniformly distributed among reversed micelles mainly located in proximity to the surfactant head-group region and that its presence induces significant unidimensional growth of micellar aggregates. Moreover, the confinement of acrylamide within reversed micelles involves some changes of the typical H-bonded structure of pure solid acrylamide attributable to the establishment of system-specific acrylamide/surfactant head group interactions. Preliminary experiments showed that, by exposure to X-rays, the polymerization of acrylamide can be induced in the confined space of dry AOT and lecithin reversed micelles. PMID:15276058

  11. Investigating Your Environment.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    The goal of this interdisciplinary curriculum is to enable students to make informed and responsible decisions about natural resources management by promoting an understanding of natural, social, and economic environments and the student's role in affecting all three. The included investigations utilize processes and techniques that help people…

  12. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  13. Spectroscopic investigation of interactions of new potential anticancer drugs with DNA and non-ionic micelles.

    PubMed

    Mazzoli, Alessandra; Spalletti, Anna; Carlotti, Benedetta; Emiliani, Carla; Fortuna, Cosimo G; Urbanelli, Lorena; Tarpani, Luigi; Germani, Raimondo

    2015-01-29

    Photophysical properties of some azinium iodides in aqueous solution of nanostructured systems as DNA and nonionic micelles were investigated using steady-state and ultrafast time-resolved spectroscopy. Spectrophotometric and fluorimetric titrations of the investigated compounds with salmon testes DNA supplied evidence of a good interaction between the salts and DNA with binding constants of 10(4)-10(6) M(-1), making them interesting for pharmaceutical applications. The interaction with DNA also changes the photobehavior of the compounds, increasing the radiative deactivation pathway to the detriment of internal conversion and slowing down the excited state dynamics. The interaction of the azinium salts with the nonionic surfactant Triton X-100 from premicellar to postmicellar concentration was studied by spectrophotometric and fluorimetric titrations evidencing the ability of the micelles to associate the studied salts in their hydrophobic portion and to release them in the presence of DNA, acting as promising drug carriers. Also transient absorption spectroscopy with femtosecond resolution demonstrated the insertion of the investigated compounds into micellar aggregates. Preliminary measurements by confocal fluorescence microscopy on MCF-7 cells in the presence of the studied azinium salts showed that they are able to cross the cellular membrane and that their cytotoxicity can be expressed through interaction with DNA (RNA). In fact, they showed a significant fluorescence signal in all cell compartments, particularly (for 2 and 3) into punctuate structures within the nuclei compatible with a localization into the nucleoli. PMID:25545705

  14. Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis.

    PubMed

    Beswick, V; Guerois, R; Cordier-Ochsenbein, F; Coïc, Y M; Tam, H D; Tostain, J; Noël, J P; Sanson, A; Neumann, J M

    1999-01-01

    To further examine to what extent a dodecyl-phosphocholine (DPC) micelle mimics a phosphatidylcholine bilayer environment, we performed 13C, 2H, and 31P NMR relaxation measurements. Our data show that the dynamic behavior of DPC phosphocholine groups at low temperature (12 degrees C) corresponds to that of a phosphatidylcholine interface at high temperature (51 degrees C). In the presence of helical peptides, a PMP1 fragment, or an annexin fragment, the DPC local dynamics are not affected whereas the DPC aggregation number is increased to match an appropriate area/volume ratio for accommodating the bound peptides. We also show that quantitative measurements of paramagnetic relaxation enhancements induced by small amounts of spin-labeled phospholipids on peptide proton signals provide a meaningful insight on the location of both PMP1 and annexin fragments in DPC micelles. The paramagnetic contributions to the relaxation were extracted from intra-residue cross-peaks of NOESY spectra for both peptides. The location of each peptide in the micelles was found consistent with the corresponding relaxation data. As illustrated by the study of the PMP1 fragment, paramagnetic relaxation data also allow us to supply the missing medium-range NOEs and therefore to complete a standard conformational analysis of peptides in micelles. PMID:9933923

  15. Investigation of ultrafiltration rejection of surfactant micelles by dynamic light scattering

    SciTech Connect

    Singh, R.

    1996-05-01

    The absence of nonionic surfactant micelles in ultrafiltration membrane (molecular weight cut-off = 10,000) permeates is verified with the aid of a dynamic light-scattering (DLS) technique. DLS is also used to determine the hydrodynamic radii of micelles at concentrations above the critical micelle concentration. An empirical relationship between the micelle diameter, diffusion coefficient, and a pseudomolecular weight is plotted. The relationship can be used to screen high molecular weight cut-off membranes for surfactant-based UF applications.

  16. Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering.

    PubMed

    Revillod, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François

    2005-03-24

    We report the use of the nonlinear optical technique of hyper-Rayleigh scattering to investigate the interaction of the cationic probe molecule crystal violet with micelles of sodium dodecyl sulfate. An absolute value of (847 +/- 80) x 10(-30) esu is measured at the fundamental wavelength of 870 nm for the molecular hyperpolarizability of crystal violet free in pure aqueous solutions. In aqueous solutions of sodium dodecyl sulfate, above and below the critical micelle concentration, the measured hyperpolarizability of crystal violet is weaker than in the solution free of sodium dodecyl sulfate. From the comparison with linear optical photoabsorption spectroscopy data, this difference is attributed to electrostatic interactions between the cationic crystal violet molecules and the negatively charged sodium dodecyl sulfate surfactant molecules present in excess. Polarization resolved hyper-Rayleigh scattering measurements are then performed to show that, below and above the critical micelle concentration, crystal violet molecules also undergo symmetry changes upon interaction with sodium dodecyl sulfate. Above the critical micelle concentration, the minimum fraction of micelles interacting with at least one CV molecule is estimated. For instance, for a crystal violet aqueous concentration of 150 microM, this fraction is larger than 7%. PMID:16863205

  17. Effect of the constrained environment on the interactions between the surfactant and different polar solvents encapsulated within AOT reverse micelles.

    PubMed

    Durantini, Andrés M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2009-08-24

    Herein, we report a study of the interactions between different nonaqueous polar solvents, namely, ethylene glycol (EG), propylene glycol (PG), glycerol (GY), dimethylformamide (DMF), and dimethylacetamide (DMA), and the polar heads of sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) in nonaqueous AOT/n-heptane reverse micelles. The goal of our study is to gain insights into the unique reverse-micelle microenvironment created upon encapsulation of these polar solvents. For the first time, the study is focused on determining which regions of the AOT molecular structure are involved in the interactions with the polar solvents. We use FTIR spectroscopy--a noninvasive technique--to follow the changes in the AOT C=O band and the symmetric and asymmetric SO(3)(-) vibration modes upon increasing the content of polar solvents in the micelles. The results show that GY interacts through H bonds with the SO(3)(-) group, thereby removing the Na(+) counterions from the interface remaining in the polar core of the micelles. PG and EG interact through H bonds, mainly with the C=O group of AOT, penetrating into the oil side of the interface. Thus, they interact weakly with the Na(+) counterion, which seems to be close to the AOT sulfonate group. Finally, DMF and DMA, encapsulated inside the reverse micelles, interact neither with the C=O nor with the SO(3)(-) groups, but their weakly bulk-associated structure is broken because of the interactions with Na(+). We suggest that DMF and DMA can complex the Na(+) ions through their carbonyl and nitrogen groups. Hence, our results do not only give insights into how the constrained environment affects the bulk properties of polar solvents encapsulated within reverse micelles but--more importantly--they also help us to answer the tricky question about which regions of the AOT moiety are involved in the interactions with the polar solvents. We believe that our results show a clear picture of the interactions present at the nonaqueous reverse-micelle

  18. Geokinetic environment investigations

    NASA Astrophysics Data System (ADS)

    Hartnett, E. B.; Carleen, E. D.; Blaney, J. I.

    1981-03-01

    This report covers the development and implementation of special concepts, techniques and instrumentation for the collection, analysis and application of geokinetic data. The Geokinetic Data Acquisition System (GDAS) was modified, maintained and operationally deployed to various sites designated by AFGL. Tests were conducted at the Defense Nuclear Agency (DNA) CASINO Facility in Maryland; Central Inertial Guidance Test Facility (CIGTF), Holloman AFB, N.M.; Space Transportation System (STS) Launch Complex, Vandenberg AFB, Ca. and the SAC Wing V Minuteman Complex at Cheyenne, Wy. The CASINO data contributed to SAMSO's MX/TGG Advanced Development Bridge II Program for radiation hardening of third generation hardware. The CIGTF investigation supported USAF requirements for highly precise azimuth reference. The Hill AFB the performance of a minuteman III missile guidance system in an engineering silo. The STS program at Vandenberg AFB was to assist in determining the nature of a Titan III-D pressure load. The SAC Wing V deployment was to investigate plateau/valley basin geologic characteristics in respect to motion response.

  19. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    NASA Astrophysics Data System (ADS)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  20. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery.

    PubMed

    Wang, Yan; Li, Qiu Yu; Liu, Xu Bo; Zhang, Can Yang; Wu, Zhi Min; Guo, Xin Dong

    2015-11-25

    The microstructures of doxorubicin-loaded micelles prepared from block polymers His(x)Lys10 (x = 0, 5, 10) conjugated with docosahexaenoic acid (DHA) are investigated under different pH conditions, using dissipative particle dynamics (DPD) simulations. The conformation of micelles and the DOX distributions in micelles were obviously influenced by pH values and the length of the histidine segment. At pH >6.0, the micelles self-assembled from the polymers were dense and compact. The drugs were entrapped well within the micellar core. The particle size increases as the histidine length increases. With the decrease of pH value to be lower than 6.0, there was no distinct difference for the micelles self-assembled from the polymer without histidine residues. However, the micelles prepared from the polymers with histidine residues shows a structural transformation from dense to swollen conformation, leading to an increased particle size from 10.3 to 14.5 DPD units for DHD-His10Lys10 micelles. This structural transformation of micelles can accelerate the DOX release from micelles under lower pH conditions. The in vitro drug release from micelles is accelerated by the decrease of pH value from 7.4 (physiological environment) to 5.0 (lysosomal environment). The integration of simulation and experiments might be a valuable method for the optimization and design of biomaterials for drug delivery with desired properties. PMID:26539742

  1. Photophysical properties of amphiphilic ruthenium(II) complexes in micelles.

    PubMed

    Rajkumar, Eswaran; Mareeswaran, Paulpandian Muthu; Rajagopal, Seenivasan

    2014-09-01

    Amphiphilic ruthenium(II) complexes II–IV were synthesized and their photophysical properties were investigated in the presence of anionic (SDS), cationic (CTAB) and neutral (Triton X-100) micelles. The absorption and emission spectral data in the presence of micelles show that these Ru(II) complexes are incorporated in the micelles. There are two types of interaction between complexes I–IV and the micelles: hydrophobic and electrostatic. In the case of cationic micelles (CTAB), the hydrophobic interactions are predominant over electrostatic repulsion for the binding of cationic complexes II–IV with CTAB. In the case of anionic micelles (SDS), electrostatic interactions seem to be important in the binding of II–IV to SDS. Hydrophobic interactions play a dominant role in the binding of II–IV to the neutral micelles, Triton X-100. Based on the steady state and luminescence experiments, the enhancement of luminescence intensity and lifetime in the presence of micelles is due to the protection of the complexes from exposure to water in this environment. PMID:24976590

  2. Structural investigation of nonionic fluorinated micelles by SANS in relation to mesoporous silica materials.

    PubMed

    Michaux, Florentin; Blin, Jean-Luc; Teixeira, José; Stébé, Marie José

    2012-01-12

    In an attempt to answer the question if there is dependence between the pore ordering of the mesoporous silica, obtained through the cooperative template mechanism, and the shape of the micellar aggregates of the surfactant solutions, the micellar structures of two nonionic fluorinated surfactant based-systems are studied by SANS. By fitting the experimental spectra with theoretical models, the structural evolution of the molecular aggregates can be described, and some important parameters can be obtained, such as the water and eventually oil penetration into the surfactant film, the aggregation number, the area per polar head of the surfactant, and the surfactant chain conformations. We have shown that for the C(8)F(17)C(2)H(4)(OC(2)H(4))(9)OH system, the micelles are prolate spheroids. The increase of the surfactant concentration in water does not change the characteristics of the interfacial film, but the aggregation number raises and the particles become more elongated. By contrast, the experimental curves of C(7)F(15)C(2)H(4)(OC(2)H(4))(8)OH cannot be fitted considering a small particle model. However, progressive incorporation of fluorocarbon induces a change of size and shape of the globules, which become smaller and more and more spherical. Regarding the material mesopore ordering, it appears that the micelles that lead to hexagonal mesoporous silica materials are described with a model of quasi-spherical globules. On the contrary, when large micelles are found, only wormhole-like structures are obtained. PMID:22145934

  3. Spectrophotometric investigation of the binding of vitamin E to water-containing reversed micelles.

    PubMed

    Avellone, G; Bongiorno, D; Ceraulo, L; Ferrugia, M; Turco Liveri, V

    2002-03-01

    The distribution constants of vitamin E partitioned between apolar organic phase and water-containing reversed micelles of sodium bis (2-ethylhexyl) sulfosuccinate (AOT), didodecyldimethylammonium bromide (DDAB), soybean phosphatidylcholine (lecithin) and tetraethylene glycol monododecyl ether (C12E4) have been evaluated by a spectrophotometric method. The results suggest that in the presence of domains from apolar organic solvent to surfactant and to water, vitamin E is partitioned between the micellar palisade layer and the organic solvent and also that its binding strength to reversed micelles depends mainly by specific interactions between the head group of vitamin E and that of the surfactant. Moreover, in addition to the advantageous interactions between vitamin E and water, the dependence of the distribution constants upon the molar ratio R (R=[water]/[surfactant]) indicates a competition between water and vitamin E for the binding sites at the water/surfactant interface. The biological implications of the preferential location and confinement of vitamin E in water-containing reversed micelles are discussed. PMID:11839455

  4. Opportunities for improving the performance of LCV micelle gel dosimeters: I. Preliminary investigation

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2015-01-01

    The effects of the various components of leuco crystal violet (LCV) micelle gels on dose sensitivity and initial colour are tested. Dose sensitivity and gel turbidity are influenced by tri-chloro acetic acid (TCAA) concentration, with the highest dose sensitivity obtained at ~21.5 mM. Increasing Triton x-100 (Txl00) concentration improved dose sensitivity but, unfortunately, increased initial colour of the gel. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The effects of chlorinated species on dose sensitivity are tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate (TCMPH). TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. A new gel containing CTAB as the surfactant and TCE gives improved dose sensitivity compared to previous LCV micelle gels.

  5. Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy.

    PubMed

    Gharibi, H; Javadian, S; Sohrabi, B; Behjatmanesh, R

    2005-05-01

    Pulsed field gradient NMR spectroscopy was used to determine the partitioning of surfactant between monomeric and micellar forms in a mixed CTAB (hexadecyltetramethylammonium bromide) and Triton X-100 [p-(1,1,3-tetramethylbutyl)polyoxyethylene] system. In addition, potentiometric and surface tension measurements were used to determine the free concentration of ionic surfactant and the critical micelle concentration (CMC) of mixtures of n-alkyltrimethylammonium bromide (C(n)TAB, n=12, 14, 16, 18) and Triton X-100. Regular solution theory cannot describe the behavior of the activity coefficient and the excess Gibbs free energy of mixtures of ionic and nonionic surfactants. To overcome these shortcomings, we developed a new model that combines Van Laar expressions and the theory of nonrandom mixing in mixed micelles. The Van Laar expressions contain an additional parameter, rho, which reflects differences in the size of the components of the mixture. Nonrandom mixing theory was introduced to describe nonrandom mixing in mixed micelles. This effect was modeled by a packing parameter, P*. The proposed model provided a good description of the behavior of binary surfactant mixtures. The results indicated that head group size and packing constraints are important contributors to nonideal surfactant behavior. In addition, the results showed that as the chain length of the C(n)TAB molecule in C(n)TAB/Triton X-100 mixtures was increased, the head group size parameter remained constant, but the interaction and packing parameters increased. Increase of the temperature caused an increase in the interaction parameter beta and a decrease in the packing parameter (P*). PMID:15797433

  6. Mixed micelles of sodium cholate and sodium dodecylsulphate 1:1 binary mixture at different temperatures--experimental and theoretical investigations.

    PubMed

    Jójárt, Balázs; Poša, Mihalj; Fiser, Béla; Szőri, Milán; Farkaš, Zita; Viskolcz, Béla

    2014-01-01

    Micellisation process for sodium dodecyl sulphate and sodium cholate in 1∶1 molar ratio was investigated in a combined approach, including several experimental methods and coarse grained molecular dynamics simulation. The critical micelle concentration (cmc) of mixed micelle was determined by spectrofluorimetric and surface tension measurements in the temperature range of 0-50°C and the values obtained agreed with each other within the statistical error of the measurements. In range of 0-25°C the cmc values obtained are temperature independent while cmc values were increased at higher temperature, which can be explained by the intensive motion of the monomers due to increased temperature. The evidence of existing synergistic effect among different constituent units of the micelle is indicated clearly by the interaction parameter (β1,2) calculated from cmc values according to Rubingh. As the results of the conductivity measurements showed the negative surface charges of the SDS-NaCA micelle are not neutralized by counterions. Applying a 10 µs long coarse-grained molecular dynamics simulation for system including 30-30 SDS and CA (with appropriate number of Na+ cations and water molecules) we obtained semi-quantitative agreement with the experimental results. Spontaneous aggregation of the surfactant molecules was obtained and the key steps of the micelle formation are identified: First a stable SDS core was formed and thereafter due to the entering CA molecules the size of the micelle increased and the SDS content decreased. In addition the size distribution and composition as well as the shape and structure of micelles are also discussed. PMID:25004142

  7. Mixed Micelles of Sodium Cholate and Sodium Dodecylsulphate 1:1 Binary Mixture at Different Temperatures – Experimental and Theoretical Investigations

    PubMed Central

    Jójárt, Balázs; Poša, Mihalj; Fiser, Béla; Szőri, Milán; Farkaš, Zita; Viskolcz, Béla

    2014-01-01

    Micellisation process for sodium dodecyl sulphate and sodium cholate in 1∶1 molar ratio was investigated in a combined approach, including several experimental methods and coarse grained molecular dynamics simulation. The critical micelle concentration (cmc) of mixed micelle was determined by spectrofluorimetric and surface tension measurements in the temperature range of 0–50°C and the values obtained agreed with each other within the statistical error of the measurements. In range of 0–25°C the cmc values obtained are temperature independent while cmc values were increased at higher temperature, which can be explained by the intensive motion of the monomers due to increased temperature. The evidence of existing synergistic effect among different constituent units of the micelle is indicated clearly by the interaction parameter (β1,2) calculated from cmc values according to Rubingh. As the results of the conductivity measurements showed the negative surface charges of the SDS-NaCA micelle are not neutralized by counterions. Applying a 10 µs long coarse-grained molecular dynamics simulation for system including 30-30 SDS and CA (with appropriate number of Na+ cations and water molecules) we obtained semi-quantitative agreement with the experimental results. Spontaneous aggregation of the surfactant molecules was obtained and the key steps of the micelle formation are identified: First a stable SDS core was formed and thereafter due to the entering CA molecules the size of the micelle increased and the SDS content decreased. In addition the size distribution and composition as well as the shape and structure of micelles are also discussed. PMID:25004142

  8. How does bile salt penetration affect the self-assembled architecture of pluronic P123 micelles?--light scattering and spectroscopic investigations.

    PubMed

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2015-08-14

    The triblock copolymer of the type (PEO)20-(PPO)70-(PEO)20 (P123) forms a mixed supramolecular aggregate with different bile salts, sodium deoxycholate (NaDC) and sodium taurocholate (NaTC), having different hydrophobicity. These mixed micellar systems have been investigated through dynamic light scattering (DLS) and other various spectroscopic techniques. DLS measurements reveal that the bile salts penetrate into the core-corona region of the P123 micelle and further addition of bile salts causes formation of a new supramolecular aggregate. Further CONTIN analysis confirms existence of two types of complexes at higher molar ratios of bile salt-P123 (>1 : 3). Due to the bile salt penetration, the polarity of the core-corona region of bile salt-P123 mixed micelle increases which results in red shift in the absorption and emission spectra of coumarin 153 (C153) and coumarin 480 (C480). The rotational diffusion of the hydrophobic probe C153 and a hydrophilic probe C480 has been investigated in these bile salt-P123 mixed systems and for both the probes a decrease in the average reorientation time has been observed. The reason behind this decrease in the average reorientation time is the increase in both polarity and hydration of the core-corona region in these mixed micelles. Moreover, these bile salt-P123 mixed micelles are characterized by fluorescence correlation spectroscopy (FCS) techniques. As hydrophobic solute 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) resides in the core region of the bile salt-P123 mixed micelles, the translational diffusion of DCM becomes faster in these mixed micelles compared to that in pure P123 micelle. However, for cationic probe rhodamine 6G perchlorate (R6G), a totally opposite trend in the translational diffusion coefficients has been observed. Both anisotropy and FCS measurements confirm that bile salts affect the core region of the P123 micelle more than the corona region. Besides, all these

  9. TR-ESR Investigation on Reaction of Vitamin C with Excited Triplet of 9,10-phenanthrenequinone in Reversed Micelle Solutions

    NASA Astrophysics Data System (ADS)

    Xu, Xin-sheng; Shi, Lei; Liu, Yi; Ji, Xue-han; Cui, Zhi-feng

    2011-04-01

    Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3PAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3PAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol ·s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG-H2O reversed micelle solutions, 3PAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3PAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3PAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As.- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3PAQ* from VC.

  10. The crowded environment of a reverse micelle induces the formation of β-strand seed structures for nucleating amyloid fibril formation.

    PubMed

    Yeung, Priscilla S-W; Axelsen, Paul H

    2012-04-11

    A hallmark of Alzheimer's disease is the accumulation of insoluble fibrils in the brain composed of amyloid beta (Aβ) proteins with parallel in-register cross-β-sheet structure. It has been suggested that the aggregation of monomeric Aβ proteins into fibrils is promoted by "seeds" that form within compartments of the brain that have limited solvent due to macromolecular crowding. To characterize these seeds, a crowded macromolecular environment was mimicked by encapsulating Aβ40 monomers into reverse micelles. Fourier-transform infrared spectroscopy revealed that monomeric Aβ proteins form extended β-strands in reverse micelles, while an analogue with a scrambled sequence does not. This is a remarkable finding, because the formation of extended β-strands by monomeric Aβ proteins suggests a plausible mechanism whereby the formation of amyloid fibrils may be nucleated in the human brain. PMID:22448820

  11. Energy degradation pathways and binding sites environment of micelle bound ruthenium(II) photosensitizers

    SciTech Connect

    Dressick, W.J.; Cline, J. III; Demas, J.N.; DeGraff, B.A.

    1986-11-26

    A series of ..cap alpha..-diimine Ru(II) sensitizers were studied in aqueous, alcohol, and sodium lauryl sulfate (NaLS) micellar solutions. The emission efficiency, lifetime, and spectra change dramatically on micellization. From the temperature dependence of the excited-state lifetime and luminescence quantum efficiencies, coupled with spectral fitting, they interpret these changes and elucidate the environment of the micellized sensitizer. The increased efficiencies and lifetimes on micellization arise from decreased rates of deactivation via the photoactive d-d state and by a decrease in other intramolecular nonradiative paths. Radiationless decay theory permits semiquantitative calculation of nonradiative rate constants. A model describing the binding site and local solvent environment for the sensitizers is proposed. Implications of the results for solar energy conversion schemes are described.

  12. Mixed micelles of Triton X-100, sodium dodecyl dioxyethylene sulfate, and synperonic l61 investigated by NOESY and diffusion ordered NMR spectroscopy.

    PubMed

    Denkova, Pavletta S; Van Lokeren, Luk; Willem, Rudolph

    2009-05-14

    Mixed micelles formed from nonionic surfactant Triton X-100 (TX100), anionic surfactant sodium dodecyl dioxyethylene sulfate (SDP2S), and triblock copolymer Synperonic L61 (SL61) were investigated by 1H NMR spectroscopy. The size and shape of the aggregates were determined by diffusion ordered NMR spectroscopy (DOSY), while 2D nuclear Overhauser enhanced spectroscopy (NOESY) NMR was used to study the mutual spatial arrangement of the surfactant molecules in the aggregated state. An average micellar hydrodynamic radius of 3.6 nm, slightly increasing upon increasing TX100 molar fraction, was found for the mixed systems without additives. Addition of SL61 to the mixed micellar systems results in a slight increase of micellar radii. In the presence of AlCl3, an increase of TX100/SDP2S micellar sizes from 4 to 10 nm was found when increasing the SDP2S molar fraction. The mixed TX100/SDP2S micelles in the presence of both AlCl3 and polymer SL61 are almost spherical, with a radius of 4.5 nm. 2D NOESY data reveal that, as the individual TX100 micelles, mixed TX100/SDP2S and TX100/SDP2S/SL61/AlCl3 micelles also have a multilayer structure, with partially overlapping internal and external layers of TX100 molecules. In these mixed micelles, the SDP2S molecules are located at the level of the external layer of TX100 molecules, whereas the SL61 polymer is partially incorporated inside of the micellar core. PMID:19385612

  13. Ultrafast dynamics of water in cationic micelles

    NASA Astrophysics Data System (ADS)

    Dokter, Adriaan M.; Woutersen, Sander; Bakker, Huib J.

    2007-03-01

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D2O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.

  14. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.

    PubMed

    Zheng, Guanyu; Selvam, Ammaiyappan; Wong, Jonathan W C

    2012-11-01

    The effect of oil-swollen micelles formed with nonionic surfactant polyoxyethylene sorbitan monooleate (Tween 80), cosurfactant 1-pentanol, and linseed oil on the solubilization and desorption of organochlorine pesticides (OCPs) including DDT and γ-HCH from both loam soil and clay soil were investigated. Results showed that the solubilizing capacities of oil-swollen micelles were dependent on the critical micelle concentration (CMC) of Tween 80. Once the concentrations of oil-swollen micelles exceeded the CMC of Tween 80, the oil-swollen micelles exhibited much higher solubilizing capacity than empty Tween 80 micelles for the two OCPs. Desorption tests revealed that oil-swollen micelles could successfully enhance desorption of OCPs from both loam soil and clay soil. However, compared with the efficiencies achieved by empty Tween 80 micelles, oil-swollen micelles exhibited their superiority to desorb OCPs only in loam soil-water system while was less effective in clay soil-water system. Distribution of Tween 80, 1-pentanol and linseed oil in soil-water system revealed that the difference in the sorption behavior of linseed oil onto the two soils is responsible for the different effects of oil-swollen micelles on the desorption of OCPs in loam soil and clay soil systems. Therefore, oil-swollen micelles formed with nonionic surfactant Tween 80 are better candidates over empty micelle counterparts to desorb OCPs from soil with relatively lower sorption capacity for oil fraction, which may consequently enhance the availability of OCPs in soil environment during remediation processes of contaminated soil. PMID:22998366

  15. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  16. Using Ants to Investigate the Environment

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2005-01-01

    The best place for students to begin to understand complex environmental relationships is in their own back yards. Doing investigations of ants allows students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenance, and increase their understanding of the environment and their…

  17. Investigating Your Environment--Intermountain Region.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    This resource notebook contains over 100 activities in which students investigate different aspects of the environment. The activities are presented in 21 sections covering the following environmental topics and issues: (1) soil; (2) water; (3) forests; (4) plant relationships; (5) wildlife; (6)measurement; (7) urban communities; (8) deserts; (9)…

  18. The Effect of Hydrophilic and Hydrophobic Structure of Amphiphilic Polymeric Micelles on Their Transportation in Rats.

    PubMed

    Deng, Feiyang; Yu, Chao; Zhang, Hua; Dai, Wenbing; He, Bing; Zheng, Ying; Wang, Xueqing; Zhang, Qiang

    2016-01-01

    In the previous study, we have clarified how the hydrophilic and hydrophobic structures of amphiphilic polymers impact the transport of their micelles (PEEP-PCL, PEG-PCL and PEG-DSPE micelles) in epithelial MDCK cells (Biomaterials 2013, 34: 6284-6298). In this study, we attempt to clarify the behavior of the three micelles in rats. Coumarin-6 loaded micelles were injected into different sections of intestine of rats and observed by confocal laser scanning microscope (CLSM) or orally administrated and conducted pharmacokinetic study. All of the three kinds of micelles were able to cross the intestinal epithelial cells and enter blood circulation. The PEEP-PCL micelles demonstrated the fastest distribution mainly in duodenum, while the PEGDSPE micelles showed the longest distribution with the highest proportion in ileum of the three. No significant difference was observed among the pharmacokinetic parameters of the three micelles. The results were consistent in the two analysis methods mentioned above, yet there were some differences between in vivo and in vitro results reported previously. It might be the distinction between the environments in MDCK model and intestine that led to the discrepancy. The hydrophobicity of nanoparticles could both enhance uptake and hinder the transport across the mucus. However, there was no intact mucus in MDCK model, which preferred hydrophobic nanoparticles. PEEP was the most hydrophilic material constructing the micelles in the study and its uptake would be increased in rats compared to that in MDCK model, while DSPE was more hydrophobic than the others and MDCK model would be more ideal for its uptake. Considering the inconsistency of the results in the two models, whether the methods researchers were generally using at present were reasonable needs further investigation. PMID:26201346

  19. Kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system investigated by stopped-flow temperature jump.

    PubMed

    Zhang, Jingyan; Liu, Shiyong

    2011-07-21

    The kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system consisting of sodium dodecyl sulfate (SDS) and dodecyltriethylammonium bromide (DEAB) were investigated by the stopped-flow temperature jump technique, which can achieve T-jumps within ∼2-3 ms. SDS/DEAB aqueous mixtures ([SDS]/[DEAB] = 2/1, 10 mM) undergo microstructural transitions from cylindrical micelles to vesicles when heated above 33 °C. Upon T-jumps from 20 °C to final temperatures in the range of 25-31 °C, relaxation processes associated with negative amplitudes can be ascribed to the dilution-induced structural rearrangement of cylindrical micelles and to the dissolution of non-equilibrium mixed aggregates. In the final temperature range of 33-43 °C the obtained dynamic traces can be fitted by single exponential functions, revealing one relaxation time (τ) in the range of 82-440 s, which decreases with increasing temperature. This may be ascribed to the transformation of floppy bilayer structures into precursor vesicles followed by further growth into final equilibrium vesicles via the exchange and insertion/expulsion of surfactant monomers. In the final temperature range of 45-55 °C, vesicles are predominant. Here T-jump relaxations revealed a distinctly different kinetic behavior. All dynamic traces can only be fitted with double exponential functions, yielding two relaxation times (τ(1) and τ(2)), exhibiting a considerable decrease with increasing final temperatures. The fast process (τ(1)∼ 5.2-28.5 s) should be assigned to the formation of non-equilibrium precursor vesicles, and the slow process (τ(2)∼ 188-694 s) should be ascribed to their further growth into final equilibrium vesicles via the fusion/fission of precursor vesicles. In contrast, the reverse vesicle-to-micelle transition process induced by a negative T-jump from elevated temperatures to 20 °C occurs quite fast and almost completes within the stopped-flow dead time (∼2-3 ms

  20. Proton transfer in ionic and neutral reverse micelles.

    PubMed

    Lawler, Christian; Fayer, Michael D

    2015-05-14

    Proton-transfer kinetics in both ionic and neutral reverse micelles were studied by time-correlated single-photon counting investigations of the fluorescent photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS). Orientational dynamics of dissolved probe molecules in the water pools of the reverse micelles were also investigated by time-dependent fluorescence anisotropy measurements of MPTS, the methoxy derivative of HPTS. These experiments were compared to the same experiments in bulk water. It was found that in ionic reverse micelles (surfactant Aerosol OT, AOT), orientational motion (fluorescence anisotropy decay) of MPTS was relatively unhindered, consistent with MPTS being located in the water core of the reverse micelle away from the water-surfactant interface. In nonionic reverse micelles (surfactant Igepal CO-520, Igepal), however, orientational anisotropy displayed a slow multiexponential decay consistent with wobbling-in-a-cone behavior, indicating MPTS is located at the water-surfactant interface. HPTS proton transfer in ionic reverse micelles followed kinetics qualitatively like those in bulk water, albeit slower, with the long-time power law time dependence associated with recombination of the proton with the dissociated photoacid, suggesting a modified diffusion-controlled process. However, the power law exponents in the ionic reverse micelles are smaller (∼ -0.55) than that in bulk water (-1.1). In neutral reverse micelles, proton-transfer kinetics did not show discernible power law behavior and were best represented by a two-component model with one relatively waterlike population and a population with a faster fluorescence lifetime and negligible proton transfer. We explain the Igepal results on the basis of close association between the probe and the neutral water-surfactant interface, with the probe experiencing a distribution of more and less waterlike environments. In addition, the observation in bulk water of a power law t(-1.1) for diffusion

  1. Bactericidal block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  2. Association of chlorophyll with inverted micelles of dodecylpyridinium iodide in toluene

    SciTech Connect

    Seely, G.R.; Ma, X.C.; Nieman, R.A.; Gust, D. )

    1990-02-22

    Dodecylpyridinium iodide forms inverted micelles in water-containing toluene at concentrations higher than 10{sup {minus}4} M, as it reportedly does in other nonpolar solvents. Micelle formation is characterized by changes in the charge-transfer absorption band, and in the chemical shifts of protons, especially those on or near the pyridinium group. The micelles associate with chlorophyll a, also dissolved in the toluene, as evidenced by large changes in the chemical shift of some of the surfactant and the chlorophyll resonances. The fluorescence quantum yield of chlorophyll is little reduced by the presence of 10{sup {minus}3} M 2,2{prime}-dithiobis(5-nitropyridine), a quencher which is soluble in toluene and probably associates weakly with the micelles, but is strongly reduced by the presence of the bis(tetramethylammonium) salt of 5,5{prime}-dithiobis(2-nitrobenzoic acid), which is solubilized only in the presence of the inverted micelles, and furthermore forms a complex with chlorophyll. These cationic inverted micelles constitute a new environment for the pursuit of chlorophyll model system investigations.

  3. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  4. Micelle Structure and Hydrophobic Hydration.

    PubMed

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  5. Investigative Science Learning Environment: Motivation and Outcomes

    NASA Astrophysics Data System (ADS)

    Etkina, Eugenia

    2007-04-01

    The National Science Foundation's ``Shaping the Future 1996'' warns that: ``the national work force is changing dramatically, as high-paying but relatively unskilled factory jobs disappear in the face of foreign competition and technological advances; consequently the educational needs of the prospective work force are now vastly different.'' This report and many others indicate that science education should place much more emphasis on helping students acquire the process abilities used in the practice of science, abilities such as model building, designing experiments, analyzing real world problems, justifying assumptions, evaluating work, and communicating. This presentation will illustrate how Investigative Science Learning Environment used in introductory physics courses helps achieve these goals in large and small college classrooms and describe the results in terms of student learning of these abilities and of physics content.

  6. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier.

    PubMed

    Wu, De-Qun; Lu, Bo; Chang, Cong; Chen, Chang-Sheng; Wang, Tao; Zhang, Yuan-Yuan; Cheng, Si-Xue; Jiang, Xue-Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-03-01

    Galactosylated and fluorescein isothiocyanate (FITC) labeled polycaprolactone-g-dextran (Gal-PCL-g-Dex-FITC) polymers were synthesized. The grafted polymers can self-assemble into stable micelles in aqueous medium and in serum. Transmission electron microscopy (TEM) images showed that the self-assembled micelles were regularly spherical in shape. Micelle size determined by size analysis was around 120 nm. The anti-inflammation drug prednisone acetate as a model drug was loaded in the polymeric micelles, and the in vitro drug release was investigated. The galactosylated micelles could be selectively recognized by HepG2 cells and subsequently accumulate in HepG2 cells. The in vivo study demonstrated the relative uptake of the micelles by liver is much higher than the other tissues, indicating that the galactosylated micelles have great potential as a liver targeting drug carrier. PMID:19100617

  7. SISGR: Water dynamics in heterogeneous and confined environments: Salt solutions, reverse micelles, and lipid multi-bilayers

    SciTech Connect

    Skinner, James

    2013-11-05

    Our goal is to understand the structure and dynamics of water, in its different phases, at the interfaces between these phases, and in confined and heterogeneous environments. To this end, linear and nonlinear vibrational spectroscopy is playing a very important role. We have developed techniques for calculating spectroscopic observables, and then used our results to analyze and interpret experiment.

  8. Musk Oxen and Micelles

    NASA Astrophysics Data System (ADS)

    Hill, John W.

    1996-09-01

    Musk oxen behavior provides an analogy to micelle formation by amphipathic substances. Mature male musk oxen protect their young and females from wolves by forming a protective circle around them. The males stand with their tails to the inside and their heads facing outward. Amphipathic substances such as soap form micelles. The hydrophobic hydrocarbon tails of the soap are turned to the inside of the micelle and the hydrophilic carboxylate heads are on the outside at the interface with the polar water molecules.

  9. An Investigation of Person-Environment Congruence

    ERIC Educational Resources Information Center

    McMurray, Marissa Johnstun

    2013-01-01

    This study tested a hypothesis derived from Holland's (1997) theory of personality and environment that congruence between person and environment would influence satisfaction with doctoral training environments and career certainty. Doctoral students' (N = 292) vocational interests were measured using questions from the Interest Item Pool, and…

  10. Generation of a Chiral Giant Micelle.

    PubMed

    Ito, Thiago H; Salles, Airton G; Priebe, Jacks P; Miranda, Paulo C M L; Morgon, Nelson H; Danino, Dganit; Mancini, Giovanna; Sabadini, Edvaldo

    2016-08-23

    Over the past few years, chiral supramolecular assemblies have been successfully used for recognition, sensing and enantioselective transformations. Several approaches are available to control chirality of discrete assemblies (e.g., cages and capsules), but few are efficient in assuring chirality for micellar aggregates. Optically active amino acid-derived surfactants are commonly used to generate chiral spherical micelles. To circumvent this limitation, we benefited from the uniaxial growth of spherical micelles into long cylindrical micelles usually called wormlike or giant micelles, upon the addition of cosolutes. This paper describes the unprecedented formation of chiral giant micelles in aqueous solutions of cetyltrimethylammonium bromide (CTAB) upon increasing addition of enantiopure sodium salt of 1,1'-bi-2-naphthol (Na-binaphtholate) as a cosolute. Depending on the concentrations of CTAB and Na-binaphtholate, chiral gel-like systems are obtained. The transition from spherical to giant micellar structures was probed using rheology, cryo-transmission electron microscopy, polarimetry, and electronic circular dichroism (CD). CD can be effectively used to monitor the incorporation of Na-binaphtholate into the micelle palisade as well as to determine its transition to giant micellar structures. Our approach expands the scope for chirality induction in micellar aggregates bringing the possibility to generate "smart" chiral systems and an alternative asymmetric chiral environment to perform enantioselective transformations. PMID:27499127

  11. Mars Scout: Micromissions to Investigate Martian Environments

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Ori, G. G.; Grin, E. A.; Sims, M. H.; Marinangeli, L.; McKay, C.; Marshall, J.; Thomas, H.; Rabbette, M.; Landheim, R.

    2000-01-01

    Environments can be local, regional, or global. They can include one or more geological, morphological, climatological, and biological types. An environment also represents all the interactions that take place in the identified boundaries. Current planned missions to Mars in the Surveyor Program assume a good knowledge of the Martian environment that we do not have because it cannot be obtained only from orbit. There is a missing step between orbital data and the complex Surveyor missions to be landed that needs to be filled. The Ames/IRSPS Scout Mission Concept originally proposed in February 1999 filled this gap by landing a series of small (less than 10 kgs. each) scout missions. The Mars Environment Scout Mission Concept is being developed to explore the possibility of sending a series of small, simple, and inexpensive stations to the surface of Mars. The objective(s) would be to document either: (a) the environmental diversity of Mars, (b) a specific Martian environment, and/or (c) a region of interest. This type of mission will provide critical information about environments that is currently not available, and could also be used as precursors helping the design, preparation, and planning of more complex future missions to come.

  12. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  13. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    PubMed

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks. PMID:26251976

  14. Preparation and evaluation of inhalable itraconazole chitosan based polymeric micelles

    PubMed Central

    2012-01-01

    Background This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA). Methods Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger. Results The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF) varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process. Conclusions In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation. PMID:23351398

  15. Structural changes in block copolymer micelles induced by cosolvent mixtures

    SciTech Connect

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.; Epps, III, Thomas H.

    2012-11-26

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.

  16. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles. PMID:21932853

  17. Cellular uptake and trafficking of polydiacetylene micelles

    NASA Astrophysics Data System (ADS)

    Gravel, Edmond; Thézé, Benoit; Jacques, Isabelle; Anilkumar, Parambath; Gombert, Karine; Ducongé, Frédéric; Doris, Eric

    2013-02-01

    Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells.Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells. Electronic supplementary information (ESI) available: Detailed synthetic procedures and supplementary figures. See DOI: 10.1039/c2nr34149b

  18. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery.

    PubMed

    Yang, Qinglai; Tan, Lianjiang; He, Changyu; Liu, Bingya; Xu, Yuhong; Zhu, Zhenggang; Shao, Zhifeng; Gong, Bing; Shen, Yu-Mei

    2015-04-01

    Redox-responsive micelles self-assembled from dynamic covalent block copolymers with double disulfide linkage in the backbone have been developed successfully. The amphiphilic block copolymers PEG-PLA associated with complementary H-bonding sequences can self-assemble into spherical micelles in aqueous media with sizes from 34 nm to 107 nm with different molar mass of PEG and PLA. Moreover, in vitro drug release analyses indicate that reductive environment can result in triggered drug release profiles. The glutathione (GSH) mediated intracellular drug delivery was investigated against HeLa human cervical carcinoma cell line. Flow cytometry and fluorescence microscopy measurements demonstrated that the micelles exhibited faster drug release in glutathione monoester (GSH-OEt) pretreated HeLa cells than that in the nonpretreated cells. Cytotoxicity assay of DOX-loaded micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated HeLa cells than that of the nonpretreated ones. These reduction-responsive, biodegradable and biocompatibility micelles could provide a favorable platform to construct excellent drug delivery systems for cancer therapy. PMID:25662913

  19. Mesoscopic simulation studies on the formation mechanism of drug loaded polymeric micelles.

    PubMed

    Wang, Yan; Zhu, Dan Dan; Zhou, Jian; Wang, Qi Lei; Zhang, Can Yang; Liu, Yue Jin; Wu, Zhi Min; Guo, Xin Dong

    2015-12-01

    In this work, the formation of polymeric micelles as drug delivery vehicles in an aqueous environment is investigated by dissipative particle dynamics (DPD) simulations. Doxorubicin (DOX) is selected as the model drug, whereas docosahexaenoic acid (DHA) conjugated His10Lys10 (DHA-His10Lys10) as the drug carrier. It is shown from DPD simulation that drug molecules and DHA-His10Lys10 molecules could aggregate and form micelles under a defined composition recipe; drug molecules are homogeneously distributed inside the carrier matrix, on whose surface the stabilizer lysine segments are absorbed. Under different compositions of drug and water, aggregate morphologies of polymeric micelles are observed as spherical, columnar, and lamellar structures. We finally proposed the formation mechanism of drug loaded polymeric micelles and apply it in practice by analyzing the simulated phenomena. All the results can effectively guide the experimental preparation of drug delivery system with desired properties or explore a novel polymeric micelle with high performance. PMID:26454543

  20. Colloidal Wormlike Micelles with Highly Ferromagnetic Properties.

    PubMed

    Zhao, Wenrong; Dong, Shuli; Hao, Jingcheng

    2015-10-20

    For the first time, a new fabrication method for manipulating the ferromagnetic property of molecular magnets by forming wormlike micelles in magnetic-ionic-liquid (mag-IL) complexes is reported. The ferromagnetism of the mag-IL complexes was enhanced 4-fold because of the formation of wormlike micelles, presenting new evidence for the essence of magnetism generation at a molecular level. Characteristics such as morphology and magnetic properties of the wormlike micelle gel were investigated in detail by cryogenic transmission electron microscopy (Cryo-TEM), rheological measurements, circular dichroism (CD), FT-IR spectra, and the superconducting quantum interference device method (SQUID). An explanation of ferromagnetism elevation from the view of the molecular (ionic) distribution is also given. For the changes of magnetic properties (ferromagnetism elevation) in the wormlike micelle systems, the ability of CTAFe in magnetizing AzoNa4 (or AzoH4) can be ascribed to an interplay of the magnetic [FeCl3Br](-) ions both in the Stern layer and in the cores of the wormlike micelles. Formation of colloidal aggregates, i.e., wormlike micelles, provides a new strategy to tune the magnetic properties of novel molecular magnets. PMID:26411638

  1. Polymeric Micelles for Acyclovir Drug Delivery

    PubMed Central

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ε-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200 nm and the CMCs of ACV-PCLMPEG and ACV-PCL-chitosan were 2.0 mg L−1 and 6.6 mg L−1, respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. PMID:25193154

  2. Preparation and Characterization of Lipophilic Doxorubicin Pro-drug Micelles.

    PubMed

    Li, Feng; Snow-Davis, Candace; Du, Chengan; Bondarev, Mikhail L; Saulsbury, Marilyn D; Heyliger, Simone O

    2016-01-01

    Micelles have been successfully used for the delivery of anticancer drugs. Amphiphilic polymers form core-shell structured micelles in an aqueous environment through self-assembly. The hydrophobic core of micelles functions as a drug reservoir and encapsulates hydrophobic drugs. The hydrophilic shell prevents the aggregation of micelles and also prolongs their systemic circulation in vivo. In this protocol, we describe a method to synthesize a doxorubicin lipophilic pro-drug, doxorubicin-palmitic acid (DOX-PA), which will enhance drug loading into micelles. A pH-sensitive hydrazone linker was used to conjugate doxorubicin with the lipid, which facilitates the release of free doxorubicin inside cancer cells. Synthesized DOX-PA was purified with a silica gel column using dichloromethane/methanol as the eluent. Purified DOX-PA was analyzed with thin layer chromatography (TLC) and (1)H-Nuclear Magnetic Resonance Spectroscopy ((1)H-NMR). A film dispersion method was used to prepare DOX-PA loaded DSPE-PEG micelles. In addition, several methods for characterizing micelle formulations are described, including determination of DOX-PA concentration and encapsulation efficiency, measurement of particle size and distribution, and assessment of in vitro anticancer activities. This protocol provides useful information regarding the preparation and characterization of drug-loaded micelles and thus will facilitate the research and development of novel micelle-based cancer nanomedicines. PMID:27584689

  3. Complex coacervate core micelles.

    PubMed

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized. PMID:19038373

  4. Investigation of the micropolarity in reverse micelles of nonionic poly(ethylene oxide) surfactants using 4-nitropyridine-N-oxide as absorption probe.

    PubMed

    Bandula, Rodica; Vasilescu, Marilena; Lemmetyinen, Helge

    2005-07-15

    The micropolarities of the reverse micelle (RM) interior of nonionic poly(ethylene oxide) surfactants of the alkyl ether type (poly(ethylene oxide)[4] lauryl ether (C12E4, Brij 30)), alkyl-aryl ethers (poly(ethylene oxide)[4] nonylphenyl ether (C9PhiE4), poly(ethylene oxide)[5] nonylphenyl ether (C9PhiE5), and poly(ethylene oxide)[5] octylphenyl ether (C8PhiE5)), and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics P123, F127) were investigated as a function of the water content by applying the absorption probe technique, using 4-nitropyridine-N-oxide (NP) as a probe. The change in the micellar aggregate micropolarity in different solvents (cyclohexane, decane, n-butanol, and n-butyl acetate) at various water contents has been investigated. The research was focused on the determination of the effects of surfactant structure and solvent type on the hydration degrees of the PEO chains in the region at the core limit, where the NP probe was located. All results regarding the polarities in RM and PEO/water calibration mixtures have been expressed in terms of Kosower's Z values, using the linear dependence of E(NP) on Kosower's Z. The PPO/butanol mixtures have also been used for RM in butanol as a reference system. The data revealed that local polarity in RM is dependent on the surfactant type, block copolymer composition, solvent nature, and water content. At the same water content, the results clearly indicate a lower hydration degree of triblock copolymers, as compared to the surfactants of the alkyl ether and alkyl-aryl ether type, but for P123 and F127 Pluronics in n-butanol the hydration is higher owing to the behavior of butanol as cosurfactant and to its hydration. PMID:15925636

  5. Giant rodlike reversed micelles

    SciTech Connect

    Yu, Z.J.; Neuman, R.D. )

    1994-05-04

    Herein we report that sodium bis(2-ethylhexyl)phosphate, which is similar in structure to the classical surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT), forms very large rodlike reversed micelles and that their size can be even much larger if water is removed from the apolar solution. We further suggest that long-range electrostatic interactions are the primary driving force for the formation of giant reversed micelles. 19 refs., 3 figs.

  6. Using Ants To Investigate the Environment.

    ERIC Educational Resources Information Center

    Hagevik, Rita A.

    2003-01-01

    Describes three inquiry-based activities designed for students to begin to understand complex environmental relationships in their own backyard. Includes investigations of ants, which allow students to establish a baseline survey of ant fauna, test the importance of ants in nutrient cycling and soil structure maintenances, and increase student…

  7. Investigating Our Environment. Science: Grade 6.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    Intended mainly for use in the intermediate grades, this document provides demonstrations, field trips and laboratory experiences designed to help students investigate the role that people play in problems associated with environmental quality, pollution, and ecology in general. The book was developed as an alternative program to the regular sixth…

  8. Diclofenac/biodegradable polymer micelles for ocular applications

    NASA Astrophysics Data System (ADS)

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-07-01

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml-1). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC0-24 h than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  9. Dynamic light scattering of cutinase in AOT reverse micelles.

    PubMed

    Melo, E P; Fojan, P; Cabral, J M; Petersen, S B

    2000-08-01

    The fungal lipolytic enzyme cutinase, incorporated into sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles has been investigated using dynamic light scattering. The reversed micelles form spontaneously when water is added to a solution of sodium bis-(2ethylhexyl) sulfosuccinate in isooctane. When an enzyme is previously dissolved in the water before its addition to the organic phase, the enzyme will be incorporated into the micelles. Enzyme encapsulation in reversed micelles can be advantageous namely to the conversion of water insoluble substrates and to carry out synthesis reactions. However protein unfolding occurs in several systems as for cutinase in sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles. Dynamic light scattering measurements of sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles with and without cutinase were taken at different water to surfactant ratios. The results indicate that cutinase was attached to the micellar wall and that might cause cutinase unfolding. The interactions between cutinase and the bis-(2ethylhexyl) sulfosuccinate interface are probably the driving force for cutinase unfolding at room temperature. Twenty-four hours after encapsulation, when cutinase is unfolded, a bimodal distribution was clearly observed. The radii of reversed micelles with unfolded cutinase were determined and found to be considerable larger than the radii of the empty reversed micelles. The majority of the reversed micelles were empty (90-96% of mass) and the remainder (4-10%) containing unfolded cutinase were larger by 26-89 A. PMID:10930568

  10. Decision investigation and support environment (DISE)

    NASA Astrophysics Data System (ADS)

    VonPlinsky, Michael J.; Johnson, Pete; Crowder, Ed

    2001-09-01

    The "Decision Integration and Support Environment" (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision process. FTI has developed two BNs to model these processes, incorporating aircraft, target, and overall mission priorities from the Air Operations Center (OAC) and the mission planners/command staff. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR Sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosectued, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process, including factors such as: * Fuel Level - amount of fuel in aircraft * Type of Weapon - available weapons on board aircraft * Probability of Survival - depends on the type of TST, time criticality and other factors * Potential Collateral Damage - amount of damage incurred on TST surroundings * Time Criticality of TST - how "critical" it is to attack the target depending on its launch status * Time to Target - aircraft's distance (in minutes) from the TST * Current Mission Priority - priority of the mission to which the aircraft is currently assigned * TST Mission Priority - determined when the target is originally nominated * Possible Reassignment - represents whether it is even possible to reassign the aircraft * Aircraft Re-tasking Availability - represents any factor not taken into account by the model, including commander override.

  11. Investigation on the structure of water/AOT/IPM/alcohols reverse micelles by conductivity, dynamic light scattering, and small angle X-ray scattering.

    PubMed

    Zhang, Xiaoguang; Chen, Yingjun; Liu, Jiexiang; Zhao, Chuanzhuang; Zhang, Haijiao

    2012-03-29

    We have systematically investigated the effect of alcohols (ethanol, propanol, butanol, and pentanol) on the structure of the water/AOT/IPM system using conductivity, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) techniques. The results show that no percolation phenomenon is observed in the water/AOT/IPM system, whereas the addition of ethanol (propanol and butanol) induces apparently percolation. The threshold water content (W(p)) depends closely on the alcohol type and concentration. The effect of alcohols on the conductance behavior is discussed from the physical properties of alcohols, the interfacial flexibility, and the attractive interactions between droplets. The hydrodynamic diameter of droplets (d(H)) obtained from DLS increases markedly with the increase in water content (W(0)); however, it decreases gradually with increasing alcohol chain length and concentration. SAXS measurements display distinctly the shoulder, the low hump peaks, and the heavy tail phenomenon in the pair distance distribution function p(r) profile, which rely strongly on the alcohol species and its concentration. The gyration radius (R(g)) increases with increasing W(0), and decreases with the increase of alcohol chain length and concentration. Schematic diagram of the conductance mechanism of water/AOT/IPM/alcohol systems is primarily depicted. Three different phases of the discrete droplets, the oligomers, and the isolated ellipsoidal droplets existed in the different W(0) ranges correspond to three different stages in the conductivity-W(0) curve. Coupling the structure characteristics of reverse micelles obtained from DLS and SAXS techniques with conductivity could be greatly helpful to deeply understand the percolation mechanism of water/AOT/IPM/alcohols systems. PMID:22380931

  12. Do the physical properties of water in mixed reverse micelles follow a synergistic effect: a spectroscopic investigation.

    PubMed

    Das, Arindam; Patra, Animesh; Mitra, Rajib Kumar

    2013-04-01

    In this contribution we have tried to investigate whether the mechanical properties of the reverse micellar (RM) interface dictate the physical properties of entrapped water molecules in the RM waterpool. We choose AOT/Igepal-520/cyclohexane (Cy) mixed RM as a model system which exhibits synergistic water solubilization behavior as a function of interfacial stoichiometry. Such a phenomenon associates systematic modification of the interface curvature. Dynamic light scattering (DLS) studies reveal linear increase in the droplet size and aggregation number of the RMs with increasing XIgepal (mole fraction of Igepal in the surfactant mixture). FTIR study in the 3000-3800 cm(-1) region identifies that the relative population of the surface-bound water molecules is higher in AOT RM compared to that in Igepal RM, and in mixed systems it also follows a linear trend with XIgepal. Water relaxation dynamics as probed by time-resolved fluorescence spectroscopy using Coumarin-500 also reveals an overall linear trend with no characteristic feature around the solubilization inflation point. Our study clearly identifies that the physical properties of water in RM are mostly governed by the interfacial stoichiometry and water content, and merely bares any dependence on the mechanical properties of the interface. PMID:23472857

  13. Molecular Exchange in Ordered Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  14. Chirality-mediated polypeptide micelles for regulated drug delivery.

    PubMed

    Ding, Jianxun; Li, Chen; Zhang, Ying; Xu, Weiguo; Wang, Jincheng; Chen, Xuesi

    2015-01-01

    Two kinds of triblock poly(ethylene glycol)-polyleucine (PEG-PLeu) copolymers were synthesized through the ring-opening polymerization of L-Leu N-carboxyanhydride (NCA), or equivalent D-Leu NCA and L-Leu NCA with amino-terminated PEG as a macroinitiator. The amphiphilic copolymers spontaneously self-assembled into spherical micellar aggregations in an aqueous environment. The micelle with a racemic polypeptide core exhibited smaller critical micelle concentration and diameter compared to those with a levorotatory polypeptide core. A model anthracycline antineoplastic agent, i.e., doxorubicin (DOX), was loaded into micelles through nanoprecipitation, and the PEG-P(D,L-Leu) micelle exhibited higher drug-loading efficacy than that with a P(L-Leu) core-this difference was attributed to the flexible and compact P(L-Leu) core. Sustained in vitro DOX release from micelles with both levorotatory and racemic polypeptide cores was observed, and the DOX-loaded PEG-P(D,L-Leu) micelle exhibited a slower release rate. More interestingly, DOX-loaded micelles exhibited chirality-mediated antitumor efficacy in vitro and in vivo, which are all better than that of free DOX. Furthermore, both enhanced tumor inhibition and excellent security in vivo were confirmed by histopathological or in situ cell apoptosis analyses. Therefore, DOX-loaded PEG-PLeu micelles appear to be an interesting nanoscale polymeric formulation for promising malignancy chemotherapy. PMID:25278445

  15. Electron solvation in aqueous reverse micelles: Equilibrium properties

    NASA Astrophysics Data System (ADS)

    Laria, Daniel; Kapral, Raymond

    2002-10-01

    Microscopic aspects of electron solvation in aqueous reverse micelles are investigated using molecular dynamics simulation techniques. Two micelle sizes, with water/surfactant ratios of 3 and 7.5, are examined. The electron is treated quantum mechanically using Feynman path integral methods while the water, surfactant head groups, and counter ions are treated classically. Through computations of the free energy as a function of the radial distance, the electron is found to be preferentially solvated in the interior of the micelle in the "bulk" water pool. For small micelles, the presence of the electron leads to a depletion of water in the central region of the micelle and thus strongly disrupts the water equilibrium structure. Contact and solvent-separated ion pairs between the electron and Na+ counter ions are found to play an important role in the equilibrium structure. For the two micelle sizes investigated, the most stable solvation structures correspond to contact ion pairs. The localization of the electronic charge distribution is found to increase with micelle size, signaling more efficient solvation in larger micelles.

  16. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    PubMed

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers. PMID:25494810

  17. Reverse micelles in supercritical fluids. (2) Fluorescence and absorption spectral probes of adjustable aggregation in the two-phase region

    SciTech Connect

    Yazdi, P.; McFann, G.J.; Fox, M.A.; Johnston, K.P. )

    1990-09-06

    The properties of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelles and microemulsions in supercritical fluid (SCF) ethane, liquid propane, and other alkanes are reported. The microscopic environment inside the reverse micelles was investigated with the absorption probe pyridine N-oxide and the fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). The microscopic behavior is related directly to a macroscopic property, the water-to-surfactant ratio W{sub o}. In the one-phase region, a reverse micelle in a SCF is much like that in a liquid solvent. However, in the two-phase region, both the microscopic and macroscopic properties may be adjusted with pressure in ethane and propane, because of changes in the partitioning of the components between the phases.

  18. Dielectric Analysis for the Spherical and Rodlike Micelle Aggregates Formed from a Gemini Surfactant: Driving Forces of Micellization and Stability of Micelles.

    PubMed

    Wang, Shanshan; Zhao, Kongshuang

    2016-08-01

    The self-aggregation behavior of Gemini surfactant 12-2-12 (ethanediyl-1,2-bis(dimethyldodecylammonium bromide)) in water was investigated by dielectric relaxation spectroscopy (DRS) over a frequency range from 40 Hz to 110 MHz. Dielectric determination shows that well-defined spherical micelles formed when the concentration of the surfactant was above a critical micelle concentration CMC1 of 3 mM and rodlike micelles formed above CMC2, 16 mM. The formation mechanism of the spherical micelles and their transition mechanism to clubbed micelles were proposed by calculating the degree of counterion binding of the micelles. The interactions between the head groups and the hydrophobic chains of the surfactant led to the formation of the micelles, whereas the transition is mainly attributed to the interaction among the hydrophobic chains. By analyzing the dielectric relaxation observed at about 10(7) Hz based on the interface polarization theory, the permittivity and conductivity of micelle aggregates (spherical and clubbed) and volume fraction of micelles were calculated theoretically as well as the electrical properties of the solution medium. Furthermore, we also calculated the electrokinetic parameters of the micelle particle surface, surface conductivity, surface charge density, and zeta potential, using the relaxation parameters and phase parameters. On the basis of these results, the balance of forces controlling morphological transitions, interfacial electrokinetic properties, and the stability of the micelle aggregates was discussed. PMID:27396495

  19. Effect of confinement on excited-state proton transfer of firefly's chromophore D-luciferin in AOT reverse micelles.

    PubMed

    Kuchlyan, Jagannath; Banik, Debasis; Kundu, Niloy; Ghosh, Surajit; Banerjee, Chiranjib; Sarkar, Nilmoni

    2014-03-27

    Excited-state intermolecular proton transfer of D-luciferin in reverse micelles has been investigated using steady-state and time-resolved fluorescence spectroscopy measurement. The different polar cores have been chosen for the study of proton transfer dynamics in aerosol-OT (AOT) reverse micelles. It is shown that aqueous reverse micelle is the suitable environment for the photoprotolytic reaction of D-luciferin. The neutral form of the chromophore is present both in ground and excited state at W0 = 0. The proton transfer in nanometer size water pool of water/AOT/n-heptane begins at W0 = 8 and increases with increasing W0 values. However, the intermolecular excited-state proton transfer (ESPT) of D-luciferin is inhibited in nonaquous reverse micelles with DMF and DMSO as a polar core. Thus, the requirement of ESPT of D-luciferin to take place in reverse micelles consists of polar protic solvent like water as a polar core. PMID:24624892

  20. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  1. Water equivalence of micelle gels for x-ray beams

    NASA Astrophysics Data System (ADS)

    Gorjiara, T.; Hill, R.; Kuncic, Z.; Bosi, S.; Baldock, C.

    2013-06-01

    Micelle gel is a radiochromic hydrogel with the potential to be used as a three dimensional (3D) radiation dosimeter. Since an ideal dosimeter should present water equivalent properties, in this study the water equivalence of two formulations of micelle gel has been investigated by calculating electron density, effective atomic number, fractional interaction probabilities, mass attenuation coefficient. The depth doses for kilovoltage and megavoltage x-ray beams have also modelled using Monte Carlo code. Based on the results of this work, micelle gels can be considered as water equivalent dosimeters.

  2. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  3. Integrated site investigation procedure for environment protection toward sustainable development

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Roslan, R.; Baharuddin, I. N. Z.

    2013-06-01

    The spatial configuration of cities and their relationship to the urban environment has recently been the subject of empirical, theoretical and policy research. An awareness of environmental issues can assist policy makers, planners, developers and others to recognize the constraints imposed upon development due the physical environment especially in areas, which are susceptible to erosion, flooding and landslide. This paper highlights the key requirements for considering an assessment to protect our urban environment by incorporating three main factor i.e. policy practice, planning process and engineering investigation. Base on this three main factor the framework of the assessment is carried out. The assessment can be divided into three different categories, namely as investigation for planning, investigation for urban development and specialized investigation and mitigation. The minimum requirements for the planning and urban development investigation are listed. These guidelines suggest the level at which the various types of investigation should be carried out as well as the range of application, the scope and methodology to be used for different investigation. It is hoped that this procedure will provide guidance in the establishment and protection of urban ecosystem toward sustainable development.

  4. Ultrasonic transformation of micelle structures: effect of frequency and power.

    PubMed

    Yusof, Nor Saadah Mohd; Ashokkumar, Muthupandian

    2015-05-01

    A comprehensive investigation on the effect of ultrasonic frequency and power on the structural transformation of CTABr/NaSal micelles has been carried out. Sonication of this micelle system at various ultrasonic frequencies and power resulted in the formation and separation of two types of micelles. High viscoelastic threadlike micelles of ∼ 2 nm in diameter and several μm in length and tubular micelles possessing a viscosity slightly above that of water with ∼ 30-50 nm diameter and few hundred nm length. The structural transformation of micelles was induced by the shear forces generated during acoustic cavitation. At a fixed acoustic power of 40 W, the structural transformation was found to decrease from 211 to 647 kHz frequency due to the decreasing shear forces generated, as evidenced by rheological measurements and cryo-TEM images. At 355 kHz, an increase in the structural transformation was observed with an increase in acoustic power. These findings provide a knowledge base that could be useful for the manipulation of viscosity of micelles that may have applications in oil industry. PMID:25465878

  5. [Optimization and in vitro characterization of resveratrol-loaded poloxamer 403/407 mixed micelles].

    PubMed

    Li, Jin-feng; Gao, Ming-yue; Wang, Hui-min; Liu, Qiao-yu; Mao, Shi-rui

    2015-08-01

    The objectives of this study are to prepare resveratrol loaded mixed micelles composed of poloxamer 403 and poloxamer 407, and optimize the formulation in order to achieve higher drug solubility and sustained drug release. Firstly, a thin-film hydration method was utilized to prepare the micelles. By using drug-loading, encapsulation yield and particle size of the micelles as criteria, influence of three variables, namely poloxamer 407 mass fraction, amount of water and feeding of resveratrol, on the quality of the micelles was optimized with a central composite design method. Steady fluorescence measurement was carried out to evaluate the critical micelle concentration of the carriers. Micelle stability upon dilution with simulated gastric fluid and simulated intestinal fluid was investigated. The in vitro release of resveratrol from the mixed micelles was monitored by dialysis method. It was observed that the particle size of the optimized micelle formulation was 24 nm, with drug-loading 11.78%, and encapsulation yield 82.51%. The mixed micelles increased the solubility of resveratrol for about 197 times. Moreover, the mixed micelles had a low critical micelle concentration of 0.05 mg · mL(-1) in water and no apparent changes in particle size and drug content were observed upon micelles dilution, indicating improved kinetic stability. Resveratrol was released from the micelles in a controlled manner for over 20 h, and the release process can be well described by Higuchi equation. Therefore, resveratrol-loaded poloxamer 403/407 mixed micelles could improve the solubility of resveratrol significantly and sustained drug release behavior can be achieved. PMID:26669007

  6. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    PubMed

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. PMID:25828659

  7. Iron Oxide Nanoparticle-Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging and Magnetic Resonance Imaging

    PubMed Central

    Starmans, Lucas W. E.; Burdinski, Dirk; Haex, Nicole P. M.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Background Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. Methods and Results IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. Conclusions The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for

  8. Synthesis and Biological Properties of Porphyrin-Containing Polymeric Micelles with Different Sizes.

    PubMed

    Zhang, Jialiang; Zhang, Zhengkui; Yu, Bo; Wang, Chen; Wu, Wei; Jiang, Xiqun

    2016-03-01

    To understand the size effect of polymeric micelles on their biological properties, such as cellular uptake, biodistribution, tumor accumulation, and so on, we prepared a series of doxorubicin (DOX)-loaded protoporphyrin (PP)-poly(ε-caprolactone) (PCL)-poly(ethylene glycol) (PEG) micelles with different diameters (40, 70, 100, and 130 nm). The incorporation of the protoporphyrin moiety enhanced the stability of the micelles and provided luminescent capability that is useful in the investigation of the cellular uptake of the micelles by fluorescence imaging. The biodistributions of the micelles in mice bearing tumors were evaluated by near-infrared fluorescence imaging and DOX concentration measurements in different tissues. The in vitro and in vivo investigations demonstrated the pronounced dependence of the cellular uptake, biodistribution, and antitumor effectiveness of the micelles on their size. PMID:26894502

  9. Reverse micelles directed synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides and investigation of their crystal structure and morphology

    SciTech Connect

    Matejova, Lenka; Vales, Vaclav; Fajgar, Radek; Matej, Zdenek; Holy, Vaclav; Solcova, Olga

    2013-02-15

    The synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi{sub 2}O{sub 6} crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO{sub 2} and anatase TiO{sub 2} for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO{sub 2} anatase, rutile and cubic CeO{sub 2} appear. In these mixtures TiO{sub 2} rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character. - Graphical abstract: The phase composition of Ti90--Ce10 and Ti50--Ce50 oxide mixtures as a function of annealing temperature. The amount of the amorphous phase was estimated and attributed to TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Ti/Ce oxides were prepared using reverse micelles of Triton X-114. Black-Right-Pointing-Pointer Crystallization of TiO{sub 2}, CeO{sub 2} or CeTi{sub 2}O{sub 6} depends on Ti:Ce molar ratio. Black-Right-Pointing-Pointer Amorphous phase attributed to TiO{sub 2} was identified. Black-Right-Pointing-Pointer Metal oxides surface area is influenced by the character of present carbon impurities.

  10. Investigation of expert system design approaches for electronic design environments

    NASA Astrophysics Data System (ADS)

    Poppens, Susan A.

    1987-12-01

    Various schemes were investigated that are available for the design effort of electronic systems. The information is to be incorporated into a knowledge base to determine approaches for a particular design. Various design methodologies are to be investigated for their appropriateness and application in the aforesaid design environment. The second phase is to focus on the knowledge base gathered in the design effort for electronic design. This knowledge base is to be incorporated into a rule based expert system which can be utilized by the design engineer in the design/development of functional specifications.

  11. Rheology of giant micelles

    NASA Astrophysics Data System (ADS)

    Cates, M. E.; Fielding, S. M.

    2006-12-01

    Giant micelles are elongated, polymer-like objects created by the self-assembly of amphiphilic molecules (such as detergents) in solution. Giant micelles are typically flexible, and can become highly entangled even at modest concentrations. The resulting viscoelastic solutions show fascinating flow behaviour (rheology) which we address theoretically in this article at two levels. First, we summarize advances in understanding linear viscoelastic spectra and steady-state nonlinear flows, based on microscopic constitutive models that combine the physics of polymer entanglement with the reversible kinetics of self-assembly. Such models were first introduced two decades ago, and since then have been shown to explain robustly several distinctive features of the rheology in the strongly entangled regime, including extreme shear thinning. We then turn to more complex rheological phenomena, particularly involving spatial heterogeneity, spontaneous oscillation, instability and chaos. Recent understanding of these complex flows is based largely on grossly simplified models which capture in outline just a few pertinent microscopic features, such as coupling between stresses and other order parameters such as concentration. The role of ‘structural memory’ (the dependence of structural parameters such as the micellar length distribution on the flow history) in explaining these highly nonlinear phenomena is addressed. Structural memory also plays an intriguing role in the little-understood shear thickening regime, which occurs in a concentration regime close to but below the onset of strong entanglement, and which is marked by a shear-induced transformation from an inviscid to a gelatinous state.

  12. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer.

    PubMed

    Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-08-01

    In this study, a novel redox-sensitive micellar system constructed from a hyaluronic acid-based amphiphilic conjugate (HA-ss-(OA-g-bPEI), HSOP) was successfully developed for tumor-targeted co-delivery of paclitaxel (PTX) and AURKA specific siRNA (si-AURKA). HSOP exhibited excellent loading capacities for both PTX and siRNA with adjustable dosing ratios and desirable redox-sensitivity independently verified by morphological changes of micelles alongside in vitro release of both drugs in different reducing environments. Moreover, flow cytometry and confocal microscopy analysis confirmed that HSOP micelles were capable of simultaneously delivering PTX and siRNA into MDA-MB-231 breast cancer cells via HA-receptor mediated endocytosis followed by rapid transport of cargoes into the cytosol. Successful delivery and transport amplified the synergistic effects between the drugs while leading to substantially greater antitumor efficacy when compared with single drug-loaded micelles and non-sensitive co-loaded micelles. In vivo investigation demonstrated that HSOP micelles could effectively accumulate in tumor sites and possessed the greatest antitumor efficacy over non-sensitive co-delivery control and redox-sensitive single-drug controls. These findings indicated that redox-sensitive HSOP co-delivery system holds great promise for combined drug/gene treatment for targeted cancer therapy. PMID:25996409

  13. Toward rational design of protein detergent complexes: determinants of mixed micelles that are critical for the in vitro stabilization of a G-protein coupled receptor.

    PubMed

    O'Malley, Michelle A; Helgeson, Matthew E; Wagner, Norman J; Robinson, Anne S

    2011-10-19

    Although reconstitution of membrane proteins within protein detergent complexes is often used to enable their structural or biophysical characterization, it is unclear how one should rationally choose the appropriate micellar environment to preserve native protein folding. Here, we investigated model mixed micelles consisting of a nonionic glucosylated alkane surfactant from the maltoside and thiomaltoside families, bile salt surfactant, and the steryl derivative cholesteryl hemisuccinate. We correlated several key attributes of these micelles with the in vitro ligand-binding activity of hA(2)aR in these systems. Through small-angle neutron scattering and radioligand-binding analysis, we found several key aspects of mixed micellar systems that preserve the activity of hA(2)aR, including a critical amount of cholesteryl hemisuccinate per micelle, and an optimal hydrophobic thickness of the micelle that is analogous to the thickness of native mammalian bilayers. These features are closely linked to the headgroup chemistry of the surfactant and the hydrocarbon chain length, which influence both the morphology and composition of resulting micelles. This study should serve as a general guide for selecting the appropriate mixed surfactant systems to stabilize membrane proteins for biophysical analysis. PMID:22004748

  14. Morphology and local organization of water-containing (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide reverse micelles dispersed in toluene.

    PubMed

    Longo, Alessandro; Giannici, Francesco; Portale, Giuseppe; Banerjee, Dipanjan; Calandra, Pietro; Turco Liveri, Vincenzo

    2014-08-28

    The structure of (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) reverse micelles, at various water-to-surfactant molar ratio (Rw, Rw = [water]/[DMEB]) and DMEB concentrations, has been investigated by small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure spectroscopy (EXAFS). SAXS data of dry reverse micelles are consistent with a model of spherical hydrophilic core surrounded by DMEB alkyl chains whose polydispersity decreases significantly with surfactant concentration. By adding water, a sphere to cylinder transition occurs leading to a one-dimensional growth of reverse micellar cores with Rw and surfactant concentration. The observed behavior was taken as an indication that water molecules are confined in the core of DMEB reverse micelles, quite uniformly distributed among them and mainly located among surfactant head groups. EXAFS data allow to focus within the hydrophilic micellar core to solve the short range local environment around the Br(-) counterion and to follow its changing with surfactant concentration and Rw. Analysis of Fourier transform of the EXAFS spectra indicates the existence of a local order nearby the bromide ions; pointing toward a quite structured hydrophilic core of DMEB reverse micelles. However, as a consequence of the fluid nature of reverse micelles, such local order is lower than that found in the lamellar structure of solid DMEB. Water confinement within the reverse micellar cores induces an increase of the local disorder suggesting an enhancement of the micellar core dynamics. PMID:25173042

  15. Morphology and local organization of water-containing (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide reverse micelles dispersed in toluene

    NASA Astrophysics Data System (ADS)

    Longo, Alessandro; Giannici, Francesco; Portale, Giuseppe; Banerjee, Dipanjan; Calandra, Pietro; Liveri, Vincenzo Turco

    2014-08-01

    The structure of (1R,2S)-dodecyl(2-hydroxy-1-methyl-2-phenylethyl)dimethylammonium bromide (DMEB) reverse micelles, at various water-to-surfactant molar ratio (Rw, Rw = [water]/[DMEB]) and DMEB concentrations, has been investigated by small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure spectroscopy (EXAFS). SAXS data of dry reverse micelles are consistent with a model of spherical hydrophilic core surrounded by DMEB alkyl chains whose polydispersity decreases significantly with surfactant concentration. By adding water, a sphere to cylinder transition occurs leading to a one-dimensional growth of reverse micellar cores with Rw and surfactant concentration. The observed behavior was taken as an indication that water molecules are confined in the core of DMEB reverse micelles, quite uniformly distributed among them and mainly located among surfactant head groups. EXAFS data allow to focus within the hydrophilic micellar core to solve the short range local environment around the Br- counterion and to follow its changing with surfactant concentration and Rw. Analysis of Fourier transform of the EXAFS spectra indicates the existence of a local order nearby the bromide ions; pointing toward a quite structured hydrophilic core of DMEB reverse micelles. However, as a consequence of the fluid nature of reverse micelles, such local order is lower than that found in the lamellar structure of solid DMEB. Water confinement within the reverse micellar cores induces an increase of the local disorder suggesting an enhancement of the micellar core dynamics.

  16. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  17. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  18. Design and synthesis of pH-sensitive polymeric micelles for oral delivery of poorly water-soluble drugs.

    PubMed

    Yang, Xiaolan; Fan, Rongrong; Wang, Wenlong; Wang, Jiexin; Le, Yuan

    2016-09-01

    pH-sensitive polymer poly (polylactide-co-methacrylic acid)-b-poly (acrylic acid) was synthesized using atom transfer radical polymerization and ring-opening polymerization and characterized by gel permeation chromatography and (1)H NMR. The polymers can self-assemble to form micelles in aqueous medium, which respond rapidly to pH change within the gastrointestinal relevant pH range. Critical micelle concentrations and pH response behavior of the polymeric micelle were investigated. Water-insoluble drug nifedipine was loaded and the drug-loading content can be controlled by tuning the composition of the polymers. The in vitro release studies indicate pH sensitivity enabled rapid drug release at the environment of simulated intestinal fluid (pH 7.36), the cumulative released amount of NFD reached more than 80% within 24 h, while only 35% in the simulated gastric fluid (pH 1.35). All the results showed that the pH-sensitive P(PLAMA-co-MAA)-b-PAA micelle may be a prospective candidate as oral drug delivery carrier for hydrophobic drugs with controlled release behavior. PMID:27342342

  19. Comparative Fluorescence Resonance Energy-Transfer Study in Pluronic Triblock Copolymer Micelle and Niosome Composed of Biological Component Cholesterol: An Investigation of Effect of Cholesterol and Sucrose on the FRET Parameters.

    PubMed

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-01-14

    The formation of pluronic triblock copolymer (F127)-cholesterol-based niosome and its interaction with sugar (sucrose) molecules have been investigated. The morphology of F127-cholesterol -based niosome in the presence of sucrose has been successfully demonstrated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. The DLS profiles and TEM images clearly suggest that the size of the niosome aggregates increases significantly in the presence of sucrose. In addition to structural characterization, a detailed comparative fluorescence resonance energy transfer (FRET) study has been carried out in these F127-containing aggregates, involving coumarin 153 (C153) as donor (D) and rhodamine 6G (R6G) as an acceptor (A) to monitor the dynamic heterogeneity of the systems. Besides, time-resolved anisotropy and fluorescence correlation spectroscopy measurements have been carried out to monitor the rotational and lateral diffusion motion in these F127-cholesterol-based aggregates using C153 and R6G, respectively. During the course of FRET study, we have observed multiple time constants of FRET inside the F127-cholesterol-based niosomes in contrast with the F127 micelle. This corresponds to the presence of more than one preferential donor-acceptor (D-A) distance in niosomes than in F127 micelle. FRET has also been successfully used to probe the effect of sucrose on the morphology of F127-cholesterol-based niosome. In the presence of sucrose, the time constant of FRET further increases as the D-A distances increase in sucrose-decorated niosome. Finally, the excitation-wavelength-dependent FRET studies have indicated that as the excitation of donor molecules varies from 408 to 440 nm the contribution of the faster rise component of the acceptor enhances considerably, which clearly establishes the dynamics heterogeneity of both systems. Our findings also indicate that FRET is completely intravesicular in nature in these block copolymer

  20. Preparation and characterization of magnetic thermosensitive fluorouracil micelles.

    PubMed

    Zhang, Min; Jin, Xueqin; Gou, Guojing

    2016-06-01

    In this study, we synthesized P(NIPAM-co-DMAM)-b-PLA polymers with free radical polymerization and ring-opening addition polymerization, and immediately assembled 'dextran magnetic layered double hydroxide fluorouracil' (DMF) magnetic particles into the core of the amphiphilic polymer micelles with synchronous hydration and dialysis, to generate a magnetic thermosensitive fluorouracil drug delivery system. The basic properties of the micelle particles, such as the core-shell-type structure, size, and zeta potential, were studied with (1)H-NMR, FTIR, TEM, TGA, laser nanoparticle size analysis, and other characterization techniques. The thermosensitivity of the micelles was investigated by measuring parameters such as the lower critical solution temperature (LCST) and the relationship between the particle size variation and temperature. The drug release curves for the micelles at different temperatures were constructed with a dialysis method. The LCST of the triblock polymers was 42 °C. The particle sizes of the blank micelles and DMF-loaded micelles were 493.6 ± 1.8 nm and 464.9 ± 4.1 nm, respectively, at 25 °C. When the temperature was higher than LSCT, a contraction phase change in the micelle structure occurred, a significant characteristic of the core-shell-type structure, and reversible phase transition phenomena. The release behavior of the drug-loaded micelles showed obvious variations with temperature. Therefore, the magnetic thermosensitive fluorouracil drug delivery system has a good magnetic response and excellent temperature controlled release characteristics, so it can be used as a drug delivery system in magnetically and thermally targeted chemotherapy for tumors. PMID:26948946

  1. Rheology and phase behavior of dense casein micelle dispersions

    NASA Astrophysics Data System (ADS)

    Bouchoux, A.; Debbou, B.; Gésan-Guiziou, G.; Famelart, M.-H.; Doublier, J.-L.; Cabane, B.

    2009-10-01

    Casein micelle dispersions have been concentrated through osmotic stress and examined through rheological experiments. In conditions where the casein micelles are separated from each other, i.e., below random-close packing, the dispersions have exactly the flow and dynamic properties of the polydisperse hard-sphere fluid, demonstrating that the micelles interact only through excluded volume effects in this regime. These interactions cause the viscosity and the elastic modulus to increase by three orders of magnitude approaching the concentration of random-close packing estimated at Cmax≈178 g/l. Above Cmax, the dispersions progressively turn into "gels" (i.e., soft solids) as C increases, with elastic moduli G' that are nearly frequency independent. In this second regime, the micelles deform and/or deswell as C increases, and the resistance to deformation results from the formation of bonds between micelles combined with the intrinsic mechanical resistance of the micelles. The variation in G' with C is then very similar to that observed with concentrated emulsions where the resistance to deformation originates from a set of membranes that separate the droplets. As in the case of emulsions, the G' values at high frequency are also nearly identical to the osmotic pressures required to compress the casein dispersions. The rheology of sodium caseinate dispersions in which the caseins are not structured into micelles is also reported. Such dispersions have the behavior of associative polymer solutions at all the concentrations investigated, further confirming the importance of structure in determining the rheological properties of casein micelle systems.

  2. Investigation of high voltage spacecraft system interactions with plasma environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Berkopec, F. D.; Purvis, C. K.; Grier, N.; Staskus, J.

    1978-01-01

    The exposure of high voltage spacecraft systems to the charged particle environment of space can produce interactions that will influence system operation. An experimental investigation of these interactions has been undertaken for insulator and conductor test surfaces biased up to plus or minus 1 kV in a simulated low earth orbit charged particle environment. It has been found that these interactions are controlled by the insulator surfaces surrounding the biased conductors. For positive applied voltages the electron current collection can be enhanced by the insulators. For negative applied voltages the insulator surface confines the voltage to the conductor region; this can cause arcing. Understanding these interactions and the technology to control their impact on system operation is essential to the design of solar cell arrays for ion drive propulsion applications that use direct drive power processing.

  3. Application of air remote sensing in investigation of engineering environment

    SciTech Connect

    Kejie, L.

    1996-11-01

    Engineering environment is a research field with broad scope in which air remote sensing can play an important role. Longtan Reservoir is located in a mountainous region with high ridges and deep canyons. Air remote sensing technique was used to evaluate engineering environment of the reservoir area. Various types of land use were interpreted and mapped on a scale of 1:10000 by using infrared color orthophoto, and selecting training samples, meanwhile types and dimensions of slumps and landslides were recognized and measured within the reservoir area. Furthermore an evaluation and regionalization of slope stability of reservoir bank were carried out. Finally a precision over 90% was given for the results of this investigation by field sampling checking. 3 refs., 1 fig., 2 tabs.

  4. Experimental investigation of turbulent mixing in post-explosion environment

    NASA Astrophysics Data System (ADS)

    Smith, Josh; Hargather, Michael

    2015-11-01

    Experiments are performed to investigate the turbulent mixing of product gases and the ambient environment in a post-explosion environment. The experiments are performed in a specially constructed shock tunnel where thermite-enhanced explosions are set off. The explosives are detonated at one end of the tunnel, producing a one-dimensional shock wave and product gas expansion which moves toward the open end of the tunnel. Optical diagnostics are applied to study the shock wave motion and the turbulent mixing of the gases after the detonation. Results are presented for schlieren, shadowgraph, and interferometry imaging of the expanding gases with simultaneous pressure measurements. An imaging spectrometer is used to identify the motion of product gas species. Results show varying shock speed with thermite mass and the identification of turbulent mixing regions.

  5. Formation of catalysts in inverse micelles

    SciTech Connect

    Wilcoxon, J.P.; Baughmann, R.J.; Williamson, R.L.

    1990-01-01

    We report formation of several small colloidal metal catatlysts in inverted micelle (oil-continuous) systems. These materials have demonstrated catalytic activity in situ (i.e. unsupported). The range of solvents possible in this process is large, including all saturated hydrocarbons, cyclic hydrocarbons (e.g. cyclohexane) and aromatics (e.g. toluene, xylene). Three classes of micelle system were investigated, nonionic, anionic, and cationic. Nonionic types allow precise size control but in general do not act as strong stabilizing agents at high temperatures. Cationics can be chosen to provide this permanent stability, providing both charge and steric stabilization. Metal systems formed include Rh, Ni, NiB, MoO{sub 2}, Pd, Au and Ag and alloys. Selected examples are given. 4 figs.

  6. Activation of lignin peroxidase in organic media by reversed micelles.

    PubMed

    Kimura, Masayuki; Michizoe, Junji; Oakazaki, Shin-Ya; Furusaki, Shintaro; Goto, Masahiro; Tanaka, Hiroo; Wariishi, Hiroyuki

    2004-11-20

    Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media. PMID:15459910

  7. Characterizing generated charged inverse micelles with transient current measurements.

    PubMed

    Strubbe, Filip; Prasad, Manoj; Beunis, Filip

    2015-02-01

    We investigate the generation of charged inverse micelles in nonpolar surfactant solutions relevant for applications such as electronic ink displays and liquid toners. When a voltage is applied across a thin layer of a nonpolar surfactant solution between planar electrodes, the generation of charged inverse micelles leads to a generation current. From current measurements it appears that such charged inverse micelles generated in the presence of an electric field behave differently compared to those present in equilibrium in the absence of a field. To examine the origin of this difference, transient current measurements in which the applied voltage is suddenly increased are used to measure the mobility and the amount of generated charged inverse micelles. The mobility and the corresponding hydrodynamic size are found to be similar to those of charged inverse micelles present in equilibrium, which indicates that other properties determine their different behavior. The amplitude and shape of the transient currents measured as a function of the surfactant concentration confirm that the charged inverse micelles are generated by bulk disproportionation. A theoretical model based on bulk disproportionation with simulations and analytical approximations is developed to analyze the experimental transient currents. PMID:25580883

  8. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  9. Time-resolved SANS studies on block copolymer micelles with varying core-solvent interactions

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Marquez, Maria; Robertson, Megan

    The self-assembly of block copolymer micelles occurs through a relaxation process dominated by the exchange of individual polymer chains. The objective of this work is to probe the single chain exchange of block copolymer micelles with varying core-solvent interactions, utilizing time-resolved neutron scattering (TR-SANS). The interactions between the core-forming polymer and the solvent has many implications for the micelle structure, including the aggregation number, micelle size, and interfacial tension. However, few studies have investigated the effect of the core polymer-solvent interactions on the dynamics of micelle formation. We will focus our study on poly(epsilon-caprolactone-block-ethylene oxide) block copolymers forming micelle structures in mixtures of water and tetrahydrofuran (THF). It was observed that changing the THF concentration, which varies the degree of repulsion between the core and solvent, greatly influences the single chain exchange rate in this system.

  10. Development of the simple and sensitive method for lipoxygenase assay in AOT/isooctane reversed micelles.

    PubMed

    Park, Kyung Min; Kim, Yu Na; Choi, Seung Jun; Chang, Pahn-Shick

    2013-06-01

    In this study, we investigated the possibility of reversed micelles, widely used as an enzyme reactor for lipases, for the determination of lipoxygenase activity. Although it is rapid and simple, reversed micelles have some limitations, such as interference by UV-absorbing materials and surfactant. Lipoxygenase activity in the reversed micelles was determined by reading the absorbance of the lipid hydroperoxidation product (conjugated diene) at 234 nm. Among surfactants and organic media, AOT and isooctane were most effective for the dioxygenation of linoleic acid in reversed micelles. The strong absorbance of AOT in the UV region is a major obstacle for the direct application of the AOT/isooctane reversed micelles to lipoxygenase activity determination. To prevent interference by AOT, we added an AOT removal step in the procedure for lipoxygenase activity determination in reversed micelles. The lipoxygenase activity was dependent on water content, and maximum activity was obtained at an R-value of 10. PMID:23411168

  11. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  12. Investigation of crystal growth from solutions. [in zero gravity environments

    NASA Technical Reports Server (NTRS)

    Miyagawa, I.

    1974-01-01

    The quality was investigated of a crystal of Rochelle salt grown from a solution placed in the zero-gravity environment of Skylab 4. The crystal has the following unique features: (1) the typical cavity is a long tube extending along the c-axis, the average length being 4mm, compared to 0.1mm that is the average size for earth-grown crystals; and (2) the crystal consists of several single crystals, the axes of which are parallel to each other. A preliminary measurement was made on the ferroelectric hysteresis curve of this Rochelle salt crystal.

  13. Interaction of 6-methoxyquinoline with anionic sodium dodecylsulfate micelles: Photophysics and rotational relaxation dynamics at different pH

    NASA Astrophysics Data System (ADS)

    Varma, Y. Tej; Pant, Debi D.

    2016-04-01

    Interactions of different species of 6-methoxyquinoline (6MQ) with anionic micelles have been studied at different pre-micellar, micellar and post-micellar concentrations using steady state, time resolved fluorescence and fluorescence anisotropy techniques. The sensitivity of fluorescence of 6MQ to change in its local environment was used to probe sodium dodecylsulfate (SDS) micelles. At post-micellar concentrations of SDS, the observed blue shift in the fluorescence spectrum and increase in quantum yield are attributed to the incorporation of solute molecule to micelles. 6MQ has been found to bind to the surface of the anionic micelles instead of penetrating inside the core of micelles. The binding constant (Kb) calculated for 6MQ revealed that the electrostatic forces mediate charged probe-micelle association, whereas, hydrophobic interaction allowed neutral 6MQ to associate with SDS micelles. The charged 6MQ gets inserted deeper into the micelle surface than its neutral form. The fluorescence anisotropy decay of 6MQ in SDS micelles studied at different pH allowed determination of restriction of motion of the fluorophore. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET(30), average fluorescence decay time, radiative and non-radiative rate constants, and rotational relaxation time. The micro-environment around the fluorophore reveals that the photophysics of 6MQ is very sensitive to the microenvironment of SDS and probe molecules reside at the water-micelle interface.

  14. Interaction of 6-methoxyquinoline with anionic sodium dodecylsulfate micelles: Photophysics and rotational relaxation dynamics at different pH.

    PubMed

    Varma, Y Tej; Pant, Debi D

    2016-04-01

    Interactions of different species of 6-methoxyquinoline (6MQ) with anionic micelles have been studied at different pre-micellar, micellar and post-micellar concentrations using steady state, time resolved fluorescence and fluorescence anisotropy techniques. The sensitivity of fluorescence of 6MQ to change in its local environment was used to probe sodium dodecylsulfate (SDS) micelles. At post-micellar concentrations of SDS, the observed blue shift in the fluorescence spectrum and increase in quantum yield are attributed to the incorporation of solute molecule to micelles. 6MQ has been found to bind to the surface of the anionic micelles instead of penetrating inside the core of micelles. The binding constant (Kb) calculated for 6MQ revealed that the electrostatic forces mediate charged probe-micelle association, whereas, hydrophobic interaction allowed neutral 6MQ to associate with SDS micelles. The charged 6MQ gets inserted deeper into the micelle surface than its neutral form. The fluorescence anisotropy decay of 6MQ in SDS micelles studied at different pH allowed determination of restriction of motion of the fluorophore. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET(30), average fluorescence decay time, radiative and non-radiative rate constants, and rotational relaxation time. The micro-environment around the fluorophore reveals that the photophysics of 6MQ is very sensitive to the microenvironment of SDS and probe molecules reside at the water-micelle interface. PMID:26775098

  15. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles. PMID:27018258

  16. Fabrication of novel coumarin derivative functionalized polypseudorotaxane micelles for drug delivery

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Li, Yuan; Wang, Gang; He, Bin; Gu, Zhongwei

    2012-12-01

    The fabrication and drug delivery of novel polypseudorotaxane micelles with small molecule coumarin derivative as hydrophobic segment were reported. 7-Carboxymethoxy coumarin was immobilized on the terminal hydroxyl groups of poly(ethylene glycol) (PEG). The modified PEG chains were threaded in α-cyclodextrins (α-CDs) to form polypseudorotaxanes. The polypseudorotaxanes self-assembled into supramolecular micelles driven by hydrophobic interaction and polypseudorotaxane crystallization. Anti-tumor drug doxorubicin (DOX) was trapped in the micelles. The structure, morphology, drug release profile and cytotoxicity of the micelles were investigated. The in vitro anti-tumor studies including cellular uptake and inhibition efficiency were performed on mice cancer cell lines of TC1 lung cancer cells and B16 melanoma cells. The results revealed that the 7-carboxymethoxy coumarin modified PEG could thread into the cavity of α-CDs to form necklace-like polypseudorotaxanes. The polypseudorotaxanes self-assembled into spherical micelles with the mean size of 30 nanometers, and the size was increased to about 80 nanometers after the drug was loaded. The drug loading content of the micelles was decreased with increasing the chain length of PEG. The sustaining release of DOX could last for 32 hours. The polypseudorotaxane micelles were non-toxic to both TC1 and B16 cells. The IC50 of the DOX loaded polypseudorotaxane micelles with PEG2k was lower than that of micelles with PEG4k or PEG6k both in TC1 and B16 cells.

  17. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    SciTech Connect

    Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2010-10-08

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  18. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  19. Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly and Small Molecule Encapsulation

    PubMed Central

    2016-01-01

    Block copolymer micelles have been prepared with a dithiomaleimide (DTM) fluorophore located in either the core or shell. Poly(triethylene glycol acrylate)-b-poly(tert-butyl acrylate) (P(TEGA)-b-P(tBA)) was synthesized by RAFT polymerization, with a DTM-functional acrylate monomer copolymerized into either the core forming P(tBA) block or the shell forming P(TEGA) block. Self-assembly by direct dissolution afforded spherical micelles with Rh of ca. 35 nm. Core-labeled micelles (CLMs) displayed bright emission (Φf = 17%) due to good protection of the fluorophore, whereas shell-labeled micelles (SLMs) had lower efficiency emission due to collisional quenching in the solvated corona. The transition from micelles to polymer unimers upon dilution could be detected by measuring the emission intensity of the solutions. For the core-labeled micelles, the fluorescence lifetime was also responsive to the supramolecular state, the lifetime being significantly longer for the micelles (τAv,I = 19 ns) than for the polymer unimers (τAv,I = 9 ns). The core-labeled micelles could also self-report on the presence of a fluorescent hydrophobic guest molecule (Nile Red) as a result of Förster resonance energy transfer (FRET) between the DTM fluorophore and the guest. The sensitivity of the DTM fluorophore to its environment therefore provides a simple handle to obtain detailed structural information for the labeled polymer micelles. A case will also be made for the application superiority of core-labeled micelles over shell-labeled micelles for the DTM fluorophore. PMID:27065494

  20. Synthesis and characterization of pH-sensitive poly(itaconic acid)-poly(ethylene glycol)-folate-poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release.

    PubMed

    Sun, Yuan; Li, Yapeng; Nan, Shuli; Zhang, Liangzi; Huang, Hailong; Wang, Jingyuan

    2015-11-15

    pH responsive intracellular tumor targeting is increasingly investigated as a pathway to trigger the release of anti-tumor drugs once the drug carrier reached the unique acidic environment of the solid tumors or after the drug carrier has been taken up by cells, resulting in the localization of the micelles in the acidic endosomes and lysosomes. Poly(itaconic acid)-poly(ethylene glycol)-folate-poly(l-histidine) (PIA-PEG-FA-PHIS) was synthesized as a carrier for tumor-targeted drug delivery. The micelles were internalized by receptor-mediated endocytosis, and the combination of active targeting and triggered release resulted in apparent cytotoxicity and antitumor activity. The MTT assay showed DOX-loaded micelles had higher and obvious cytotoxicity against Hela cells at pH 5.0 than that at pH 7.4. Cellular uptake experiments revealed that these pH-responsive PIA-PEG-FA-PHIS micelles were taken up in great amounts by receptor-mediated endocytosis and delivered to lysosomes, triggering release of DOX into the cytoplasm. These indicated that the PIA-PEG-FA-PHIS micelles could be a promising drug delivery system with preeminent stability for targeting the hydrophobic drugs to cancer cells and releasing DOX in to the cells by sensing the acidic environment of the endosomes for cancer therapy. PMID:26210102

  1. Oxidative refolding of reduced, denatured lysozyme in AOT reverse micelles.

    PubMed

    Fan, Jun-Bao; Chen, Jie; Liang, Yi

    2008-06-01

    The refolding kinetics of the reduced, denatured hen egg white lysozyme in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-isooctane-water reverse micelles at different water-to-surfactant molar ratios has been investigated by fluorescence spectroscopy and UV spectroscopy. The oxidative refolding of the confined lysozyme is biphasic in AOT reverse micelles. When the water-to-surfactant molar ratio (omega 0) is 12.6, the relative activity of encapsulated lysozyme after refolding for 24 h in AOT reverse micelles increases 46% compared with that in bulk water. Furthermore, aggregation of lysozyme at a higher concentration (0.2 mM) in AOT reverse micelles at omega 0 of 6.3 or 12.6 is not observed; in contrast, the oxidative refolding of lysozyme in bulk water must be at a lower protein concentration (5 microM) in order to avoid a serious aggregation of the protein. For comparison, we have also investigated the effect of AOT on lysozyme activity and found that the residual activity of lysozyme decreases with increasing the concentration of AOT from 1 to 5 mM. When AOT concentration is larger than 2 mM, lysozyme is almost completely inactivated by AOT and most of lysozyme activity is lost. Together, our data demonstrate that AOT reverse micelles with suitable water-to-surfactant molar ratios are favorable to the oxidative refolding of reduced, denatured lysozyme at a higher concentration, compared with bulk water. PMID:18377920

  2. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  3. Investigations on 4x4 polymer couplers for airborne environment

    NASA Astrophysics Data System (ADS)

    Klotzbuecher, Thomas; Sprzagala, M.; Koch, Anne; Teubner, Ulrich

    2004-09-01

    Due to the potential of high data rates up to several Gb/s, low electromagnetic interference sensitivity and weight reduction capabilities, in future, optical data transmission will become standard in airplanes. The requirements on the necessary optical components that have to be operated in airborne environment in general are extremely high. In addition, airframe manufacturers are interested in low cost components. An example for such an optical component is a star coupler for data distribution, in particular, a device made on base of polymers. The applicability of such 4x4 polymer star couplers under extreme environmental conditions was investigated. The investigations were made at temperatures from -40 to +80 °C and up to 98 % humidity. Different types of housings were tested (polymer, metal, ceramic). It was found that housing of the polymer couplers is required necessarily, since non-housed components exhibit a large insertion loss increase of up to 0.5 dB during temperature variation. Best results were achieved with metal or ceramic housings exhibiting a maximum insertion loss increase of approximately 0.1 dB. However, due to a large difference of thermal expansion coefficients of filling and housing material, respectively, ceramic housings mechanically failed (crack formation) and thus metal housings are first choice. The results were also compared to those achieved for commercial 4x4 multimode couplers made of glass and based on fused bi-conical taper technology.

  4. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    The results of the investigation were presented at a Astrobiology Institute General Meeting. Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions.

  5. Preparation and Characterization of Individual and Multi-drug Loaded Physically Entrapped Polymeric Micelles.

    PubMed

    Rao, Deepa A; Nguyen, Duc X; Mishra, Gyan P; Doddapaneni, Bhuvana Shyam; Alani, Adam W G

    2015-01-01

    Amphiphilic block copolymers like polyethyleneglycol-block-polylactic acid (PEG-b-PLA) can self-assemble into micelles above their critical micellar concentration forming hydrophobic cores surrounded by hydrophilic shells in aqueous environments. The core of these micelles can be utilized to load hydrophobic, poorly water soluble drugs like docetaxel (DTX) and everolimus (EVR). Systematic characterization of the micelle structure and drug loading capabilities are important before in vitro and in vivo studies can be conducted. The goal of the protocol described herein is to provide the necessary characterization steps to achieve standardized micellar products. DTX and EVR have intrinsic solubilities of 1.9 and 9.6 µg/ml respectively Preparation of these micelles can be achieved through solvent casting which increases the aqueous solubility of DTX and EVR to 1.86 and 1.85 mg/ml, respectively. Drug stability in micelles evaluated at room temperature over 48 hr indicates that 97% or more of the drugs are retained in solution. Micelle size was assessed using dynamic light scattering and indicated that the size of these micelles was below 50 nm and depended on the molecular weight of the polymer. Drug release from the micelles was assessed using dialysis under sink conditions at pH 7.4 at 37 (o)C over 48 hr. Curve fitting results indicate that drug release is driven by a first order process indicating that it is diffusion driven. PMID:26382662

  6. Branching mechanisms in surfactant micelles

    NASA Astrophysics Data System (ADS)

    Dhakal, Subas; Sureshkumar, Radhakrishna

    The mechanisms of branch formation in surfactant micelles of cetyltrimethylammonium chloride (CTAC) in presence of sodium salicylate (NaSal) counter ions in water are studied using molecular dynamics simulations. The curvature energy associated with the formation of micelle branches and the effect of branching on the solution viscosity are quantified. Highly curved surfaces are energetically stabilized by a higher density of binding counter ions near the branch points. Simulations show that micellar branches result in a significant reduction in the solution viscosity as observed in experiments [Dhakal & Sureshkumar, J. Chem. Phys. 143, 024905 (2015)]. This reduction in viscosity has long been attributed to the sliding motion of micelle branches across the main chain. However, to date, such dynamics of micelle branches have never been visualized in either experiments or simulations. Here, we explicitly illustrate and quantify, for the first time, how branches slide along the micelle contour to facilitate stress relaxation. We acknowledged the computational resources provided by XSEDE which is supported by NSF Grant Number OCI-1053575 and the financial support by National Science Foundation under Grants 1049489 and 1049454.

  7. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals.

    PubMed

    Bachhav, Y G; Mondon, K; Kalia, Y N; Gurny, R; Möller, M

    2011-07-30

    Efficient topical drug administration for the treatment of superficial fungal infections would deliver the therapeutic agent to the target compartment and reduce the risk of systemic side effects. However, the physicochemical properties of the commonly used azole antifungals make their formulation a considerable challenge. The objective of the present investigation was to develop aqueous micelle solutions of clotrimazole (CLZ), econazole nitrate (ECZ) and fluconazole (FLZ) using novel amphiphilic methoxy-poly(ethylene glycol)-hexyl substituted polylactide (MPEG-hexPLA) block copolymers. The CLZ, ECZ and FLZ formulations were characterized with respect to drug loading and micelle size. The optimal drug formulation was selected for skin transport studies that were performed using full thickness porcine and human skin. Penetration pathways and micellar distribution in the skin were visualized using fluorescein loaded micelles and confocal laser scanning microscopy. The hydrodynamic diameters of the azole loaded micelles were between 70 and 165nm and the corresponding number weighted diameters (d(n)) were 30 to 40nm. Somewhat surprisingly, the lowest loading efficiency (<20%) was observed for CLZ (the most hydrophobic of the three azoles tested); in contrast, under the same conditions, ECZ was incorporated with an efficiency of 98.3% in MPEG-dihexPLA micelles. Based on the characterization data and preliminary transport experiments, ECZ loaded MPEG-dihexPLA micelles (concentration 1.3mg/mL; d(n)<40nm) were selected for further study. ECZ delivery was compared to that from Pevaryl® cream (1% w/w ECZ), a marketed liposomal formulation for topical application. ECZ deposition in porcine skin following 6h application using the MPEG-dihexPLA micelles was >13-fold higher than that from Pevaryl® cream (22.8±3.8 and 1.7±0.6μg/cm(2), respectively). A significant enhancement was also observed with human skin; the amounts of ECZ deposited were 11.3±1.6 and 1.5±0.4μg/cm(2

  8. In vitro degradation behavior of poly(lactide)-poly(ethylene glycol) block copolymer micelles in aqueous solution.

    PubMed

    Yang, Liu; El Ghzaoui, Abdeslam; Li, Suming

    2010-11-15

    Self-assembling micelles were prepared from polylactide-poly(ethylene glycol) (PLA-PEG) block copolymer by using two different methods: direct dissolution and dialysis. The in vitro degradation properties of the micelles were investigated at 37°C and monitored by using various techniques. During the investigated degradation time, the size of micelles by dialysis remains stable, while that of micelles by direct dissolution first increases, followed by a collapse of micellar structure. The composition of PLA-PEG copolymers greatly affects the degradation of micelles. Micelles with longer hydrophobic PLA blocks exhibit less size changes due to more compact structure. On the other hand, the structural integrity of L/D mixed micelles is preserved for longer time than that of single micelles, in agreement with the stereocomplexation effect between L-PLA and D-PLA blocks. As degradation proceeds, the average molar mass of copolymer decreases and the distribution becomes wider, especially for micelles by dialysis and L/D mixed micelles with a more compact structure. Additionally, the PEG content in the copolymer chains increases during degradation, leading to a decrease of glass transition and crystallization temperature of the copolymers. However, the residual LA fragments produced by degradation disfavors the crystallization of PEG blocks, thus resulting in the decrease of melting temperature and melting enthalpy. PMID:20816736

  9. Fluorescence dynamics of green fluorescent protein in AOT reversed micelles.

    PubMed

    Uskova, M A; Borst, J W; Hink, M A; van Hoek, A; Schots, A; Klyachko, N L; Visser, A J

    2000-09-15

    We have used the enhanced green fluorescent protein (EGFP) to investigate the properties of surfactant-entrapped water pools in organic solvents (reversed micelles) with steady-state and time-resolved fluorescence methods. The surfactant used was sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and the organic solvents were isooctane and (the more viscous) dodecane, respectively. The water content of the water pools could be controlled through the parameter w0, which is the water-to-surfactant molar ratio. With steady-state fluorescence, it was observed that subtle fluorescence changes could be noted in reversed micelles of different water contents. EGFP can be used as a pH-indicator of the water droplets in reversed micelles. Time-resolved fluorescence methods also revealed subtle changes in fluorescence decay times when the results in bulk water were compared with those in reversed micelles. The average fluorescence lifetimes of EGFP scaled with the relative fluorescence intensities. Time-resolved fluorescence anisotropy of EGFP in aqueous solution and reversed micelles yielded single rotational correlation times. Geometrical considerations could assign the observed correlation times to dehydrated protein at low w0 and internal EGFP rotation within the droplet at the highest w0. PMID:11036971

  10. Archival legacy investigations of circumstellar environments: overview and first results

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Pueyo, Laurent; Hagan, J. Brendan; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John; Golimowski, David; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian; Soummer, Rémi

    2014-08-01

    We are currently conducting a comprehensive and consistent re-processing of archival HST-NICMOS coronagraphic surveys using advanced PSF subtraction methods, entitled the Archival Legacy Investigations of Circumstellar Environments program (ALICE, HST/AR 12652). This virtual campaign of about 400 targets has already produced numerous new detections of previously unidentified point sources and circumstellar structures. We present five newly spatially resolved debris disks revealed in scattered light by our analysis of the archival data. These images provide new views of material around young solar-type stars at ages corresponding to the period of terrestrial planet formation in our solar system. We have also detected several new candidate substellar companions, for which there are ongoing followup campaigns (HST/WFC3 and VLT/SINFONI in ADI mode). Since the methods developed as part of ALICE are directly applicable to future missions (JWST, AFTA coronagraph) we emphasize the importance of devising optimal PSF subtraction methods for upcoming coronagraphic imaging missions. We describe efforts in defining direct imaging high-level science products (HLSP) standards that can be applicable to other coronagraphic campaigns, including ground-based (e.g., Gemini Planet Imager), and future space instruments (e.g., JWST). ALICE will deliver a first release of HLSPs to the community through the MAST archive at STScI in 2014.

  11. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  12. Investigation of building energy autonomy in the sahelian environment

    NASA Astrophysics Data System (ADS)

    Coulibaly, O.; Ouedraogo, A.; Kuznik, F.; Baillis, D.; Koulidiati, J.

    2012-02-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m2/year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  13. Experimental investigation of magnetic mineral formation in hydrocarbon environments

    NASA Astrophysics Data System (ADS)

    Abubakar, Rabiu; Muxworthy, Adrian; Sephton, Mark; Fraser, Alastair

    2013-04-01

    Experimental investigation of magnetic mineral formation in hydrocarbon environments Rabiu Abubakar, Adrian Muxworthy, Mark Septhon and Alastair Fraser Dept. of Earth Science and Engineering, Imperial College London Magnetic anomalies have been observed over oil fields from aeromagnetic surveys. These anomalies have been linked with the presence of hydrocarbons and that has generated a lot of interest over possible application of magnetism in the exploration of oil and gas but there has also been debate over the origin of the magnetic minerals causing the magnetic anomaly. Our approach was to generate crude oil in the lab using three source rocks from the Wessex Basin, England, which is a hydrocarbon province. The source rocks were the Kimmeridge Clay, Oxford Clay and the Blue Lias. The source rocks were powered and pyrolysed in a high pressure vessel. The crude oil was then extracted and the magnetic signal of the remaining pyrolysate measured. We discovered a significant contrast in the magnetic hysteresis and thermomagnetic properties between the pyrolysate and the unpyrolysed (immature) source rocks. We will present the preliminary results, which indicate that magnetic minerals were generated as a result of heat and therefore related linked to maturation of the source rocks

  14. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer

    PubMed Central

    Jeong, Young-Il; Kim, Do Hyung; Chung, Chung-Wook; Yoo, Jin-Ju; Choi, Kyung Ha; Kim, Cy Hyun; Ha, Seung Hee; Kang, Dae Hwan

    2011-01-01

    Background Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer. Methods We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content. Results During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin. Conclusion DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting. PMID:21796244

  15. Results of microbiological Investigations of Orbital Station MIR Environment

    NASA Astrophysics Data System (ADS)

    Novikova, N.

    15-year experience of orbital station MIR service demonstrated that specifically modified space vehicle environment allows to consider spaceship habitats as a certain ecological niche of microbial community development and functioning, which was formed from the organisms of different physiological and taxonomical groups. As a result of on-board experiments and revision of interior and equipment more than 234 microorganisms were identified. They were represented by technophylic specia, which cause material damage, as well as potential pathogens (bacteria, actinomyces spp, fungi), which capable to grow on artificial substrates. Resident colonization of interior and equipment of space habitat by bacterial and fungal associations, taking place during long-term microbiota exposure on cosmophysic, physic-chemical and biological factors, which is accompanied by appearance of technological and medical risks, capable to provide significant influence on safety of humans and reliability of space equipment. These risks are due to such processes: biodestruction of synthetic and organic polymeres, biocorrosion of metals, biofoulding of surfaces (biofilms), formation of obturation in vital activity support system, occurrence of biodisturbances resulting in devise and equipment failure, occurrence and development of supertolerants and other variants with unpredictable attributes, which are expressed as a result of phenotypical and genotypical modifications. Based on the information from results of in-flight and laboratory microbiological investigations, the following suppositions can be made to characterize evolution of the microbial community aboard long-operating space vehicle: - environment of a long-operating piloted space vehicle may be a peculiar kind of ecological niche for development and reproduction of bacilli and fungi belonging to particular species, - bacteriofungal associations primarily reside on decorative-finish and structural materials of space interior and

  16. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  17. Characteristic of core materials in polymeric micelles effect on their micellar properties studied by experimental and dpd simulation methods.

    PubMed

    Cheng, Furong; Guan, Xuewa; Cao, Huan; Su, Ting; Cao, Jun; Chen, Yuanwei; Cai, Mengtan; He, Bin; Gu, Zhongwei; Luo, Xianglin

    2015-08-15

    Polymeric micelles are one important class of nanoparticles for anticancer drug delivery, but the impact of hydrophobic segments on drug encapsulation and release is unclear, which deters the rationalization of drug encapsulation into polymeric micelles. This paper focused on studying the correlation between the characteristics of hydrophobic segments and encapsulation of structurally different drugs (DOX and β-carotene). Poly(ϵ-caprolactone) (PCL) or poly(l-lactide) (PLLA) were used as hydrophobic segments to synthesize micelle-forming amphiphilic block copolymers with the hydrophilic methoxy-poly(ethylene glycol) (mPEG). Both blank and drug loaded micelles were spherical in shape with sizes lower than 50 nm. PCL-based micelles exhibited higher drug loading capacity than their PLLA-based counterparts. Higher encapsulation efficiency of β-carotene was achieved compared with DOX. In addition, both doxorubicin and β-carotene were released much faster from PCL-based polymeric micelles. Dissipative particle dynamics (DPD) simulation revealed that the two drugs tended to aggregate in the core of the PCL-based micelles but disperse in the core of PLLA based micelles. In vitro cytotoxicity investigation of DOX loaded micelles demonstrated that a faster drug release warranted a more efficient cancer-killing effect. This research could serve as a guideline for the rational design of polymeric micelles for drug delivery. PMID:26196277

  18. Investigating the Marine Environment and Its Resources, Part II.

    ERIC Educational Resources Information Center

    Lien, Violetta F.

    This is the second of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of changes in the human and marine environment, human needs, marine resources, living marine resources, marine transportation, marine energy…

  19. Investigating the Marine Environment and Its Resources, Part I.

    ERIC Educational Resources Information Center

    Lien, Violetta F.

    This is the first of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of geography of the Gulf of Mexico, geology, physical characteristics of the marine environment, marine ecology, and ocean/land interaction.…

  20. Teaching Materials for Environmental Education. Investigating Your Environment.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    The environment lesson plans in this packet are designed to take an in-depth look at different components of the environment. The plans were developed with the assistance of specialists in educational processes and educators, students, and resource-agency people for whom they are designed. They have been field-tested in environmental education…

  1. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1998-01-01

    Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the hydrothermal bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM system by GC- MS, while in the FeFeO system the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable systems and theoretical predictions.

  2. Micelle structural studies on oil solubilization by a small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Seong, Baek Seok; Ikram, Abarrul

    2009-02-01

    A small-angle neutron scattering (SANS) technique was applied to reveal the micelle structural changes. The micelle structural changes of 0.3 M sodium dodecyl sulfate (SDS) concentration by addition of various oil, i.e. n-hexane, n-octane, and n-decane up to 60% (v/v) have been investigated. It was found that the size, aggregation number and the structures of the micelles changed exhibiting that the effective charge on the micelle decreases with an addition of oil. There was a small increase in minor axis of micelle while the correlation peak shifted to a lower momentum transfer Q and then to higher Q by a further oil addition.

  3. DNA polymerase beta reveals enhanced activity and processivity in reverse micelles.

    PubMed

    Anarbaev, Rashid O; Rogozina, Anastasia L; Lavrik, Olga I

    2009-04-01

    Water is essential for the stability and functions of proteins and DNA. Reverse micelles are simple model systems where the structure and dynamics of water are controlled. We have estimated the size of complex reverse micelles by light scattering technique and examined the local microenvironment using fluorescein as molecular probe. The micelle size and water polarity inside reverse micelles depend on water volume fraction. We have investigated the different hydration and confinement effects on activity, processivity, and stability of mammalian DNA polymerase beta in reverse micelles. The enzyme displays high processivity on primed single-stranded M13mp19 DNA with maximal activity at 10% of water content. The processivity and activity of DNA polymerase strongly depend on the protein concentration. The enzyme reveals also the enhanced stability in the presence of template-primer and at high protein concentration. The data provide direct evidence for strong influence of microenvironment on DNA polymerase activity. PMID:19138815

  4. Controlled hydrophobic functionalization of natural fibers through self-assembly of amphiphilic diblock copolymer micelles.

    PubMed

    Aarne, Niko; Laine, Janne; Hänninen, Tuomas; Rantanen, Ville; Seitsonen, Jani; Ruokolainen, Janne; Kontturi, Eero

    2013-07-01

    The functionalization of natural fibers is an important task that has recently received considerable attention. We investigated the formation of a hydrophobic layer from amphiphilic diblock copolymer micelles [polystyrene-block-poly(N-methyl-4-vinyl pyridinium iodide)] on natural fibers and on a model surface (mica). A series of micelles were prepared. The micelles were characterized by using cryoscopic TEM and light scattering, and their hydrophobization capability was studied through contact angle measurements, water adsorption, and Raman imaging. Mild heat treatment (130 °C) was used to increase the hydrophobization capability of the micelles. The results showed that the micelles could not hydrophobize a model surface, but could render the natural fibers water repellent both with and without heat treatment. This effect was systematically studied by varying the composition of the constituent blocks. The results showed that the micelle size (and the molecular weight of the constituent diblock copolymers) was the most important parameter, whereas the cationic (hydrophilic) part played only a minor role. We hypothesized that the hydrophobization effect could be attributed to a combination of the micelle size and the shrinkage of the natural fibers upon drying. The shrinking caused the roughness to increase on the fiber surface, which resulted in a rearrangement of the self- assembled layer in the wet state. Consequently, the fibers became hydrophobic through the roughness effects at multiple length scales. Mild heat treatment melted the micelle core and decreased the minimum size necessary for hydrophobization. PMID:23687082

  5. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

    PubMed Central

    Li, Jingguo; Li, Zhanrong; Zhou, Tianyang; Zhang, Junjie; Xia, Huiyun; Li, Heng; He, Jijun; He, Siyu; Wang, Liya

    2015-01-01

    Purpose The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. Methods The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. Results The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. Conclusion Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications. PMID:26451109

  6. Dissipative particle dynamics simulation study of poly(2-oxazoline)-based multicompartment micelle nanoreactor.

    PubMed

    Chun, Byeong Jae; Fisher, Christina Clare; Jang, Seung Soon

    2016-02-17

    We investigate multicompartment micelles consisting of poly(2-oxazoline)-based triblock copolymers for nanoreactor applications, using the DPD simulation method to characterize the internal structure of the micelles and the distribution of reactant. The DPD simulation parameters are determined from the Flory-Huggins interaction parameter (χFH). From the snapshots of the micellar structures and radial distribution function of polymer blocks, it is clearly presented that the micelle is multicompartmental. In addition, by implementing the DPD simulations in the presence of reactants, it is found that Reac-C4 and Reac-OPh are associate well with the hydrophilic shell of the micelle, whereas the other two reactants, Reac-Ph and Reac-Cl, are not incorporated into the micelle. From our DPD simulations, we confirm that the miscibility (solubility) of reactant with the micelle has a strong correlation with the rate of hydrolysis kinetic resolution. Utilizing accurate methods evaluating accurate χFH parameters for molecular interactions in micelle system, this DPD simulation can have a great potential to predict the structures of micelles consisting of designed multiblock copolymers for useful reactions. PMID:26853511

  7. Amphiphile micelle structures in the protic ionic liquid ethylammonium nitrate and water.

    PubMed

    Chen, Zhengfei; Greaves, Tamar L; Caruso, Rachel A; Drummond, Calum J

    2015-01-01

    Micelles formed by amphiphiles in a protic ionic liquid (PIL), ethylammonium nitrate (EAN), were investigated using synchrotron small-angle X-ray scattering and contrasted with those that formed in water. The amphiphiles studied were cationic hexadecyltrimethylammonium chloride (CTAC) and hexadecylpyridinium bromide (HDPB) and nonionic poly(oxyethylene) (10) oleyl ether (Brij 97) and Pluronic ethylene oxide-propylene oxide-ethylene oxide block copolymer (P123). The scattering patterns were analyzed using spherical, core-shell, and cylindrical scattering models. The apparent micelle shape and size of the surfactants and the block copolymer in the PIL have been reported. At low amphiphile concentrations (<10 wt %) spherical micelles were preferentially formed for all the amphiphiles in EAN. The micelles formed by the two cationic amphiphiles in EAN and water were similar, though different scattering models were required predominantly due to the ionic nature of EAN. The two nonionic amphiphiles formed micelles with similar core radii in water and in EAN. However, the micelle shells composed of ethylene oxide groups fitted to a significantly thicker layer in water compared to EAN. At high concentrations (>10 wt %) in EAN and water, there was a preference for cylindrical micelles for CTAC, HDPB, and Brij 97; however, the P123 micelles remained spherical. PMID:25490177

  8. Compression-Induced Fusion of Glassy Core Polymer Micelles at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Chang; Won, You-Yeon

    The surface mechanical and morphological properties of glassy core polymer micelles at the air-water interface were investigated. Asymmetric PS-PEG and PtBMA-PEG block copolymers with PEG weight fractions larger than 0.5 were formulated in the form of aqueous micelles and spread onto water. Compressed films of PS-PEG and PtBMA-PEG micelles reach high dynamic surface pressures. On the detailed level, however, PS-PEG and PtBMA-PEG micelles exhibit different surface pressure-area profiles. The PtBMA-PEG isotherm shows a transition to a plateau around a surface pressure of 24 mN/m, which is attributed to the PtBMA block as it forms a continuous film; this interpretation is supported by the fact that the surface pressure at the plateau transition is identical to the value of the spreading coefficient for PtBMA. This presents evidence that the core domains of PtBMA-PEG micelles melt and merge into a film when the micellar monolayer is laterally compressed. Such behavior was not observed with PS-PEG micelles. We suspect that under lateral compression, PtBMA-PEG micelles undergo fusion into a continuous film because PtBMA has the natural tendency to spread on the water surface, whereas PS-PEG micelles does not because the dewetting tendency of PS preventing formation of a uniform layer.

  9. Equilibrium and Kinetics of Block Copolymers Micelles

    NASA Astrophysics Data System (ADS)

    Mysona, Joshua; Morse, David

    Both equilibrium properties of micelles, such as the critical micelle concentration (CMC), and dynamical properties such as the micelle lifetime are difficult to study in simulations because of the slow dynamics of the processes by which micelles are created and destroyed. We first discuss a method of precisely identifying the CMC in a simple model of block copolymer micelles in a homopolymer matrix, which makes use of thermodynamic integration to compute the free energy of formation. We then examine the free energy barriers to competing mechanisms for creating and destroying micelles, which could occur predominantly either by a step-wise process involving insertion and extraction of single molecules or by fission and fusion of entire micelles.

  10. Mars Scout: An Astrobiology Micromission to Investigate Martian Environments

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Ori, G. G.; Grin, E. A.; Marinangeli, L.; McKay, C. P.; Marshall, J.; Thomas, H. J.; Rabette, M.; Sims, M.; Landheim, R.

    2000-01-01

    The Mars Scout Mission Concept explores the possibility of sending a series of small, simple, and cheap stations at the surface of Mars which will provide the critical information about environments that are missing today.

  11. Synthesis and Self-Aggregation of Poly(2-ethyl-2-oxazoline)-Based Photocleavable Block Copolymer: Micelle, Compound Micelle, Reverse Micelle, and Dye Encapsulation/Release.

    PubMed

    Jana, Somdeb; Saha, Anupam; Paira, Tapas K; Mandal, Tarun K

    2016-02-01

    We report on the synthesis of photocleavable poly(2-ethyl-2-oxazoline)-block-poly(2-nitrobenzyl acrylate) (PEtOx-b-PNBA) block copolymers (BCPs) with varying compositions via combination of microwave-assisted cationic ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP) using α-bromoisobutyryl bromide as an orthogonal initiator. The amphiphilic nature of this BCP causes them to self-assemble into primary micelles in THF/H2O, which further undergo secondary aggregation into nanostructured compound micelles as established through DLS, FESEM, and TEM. Upon UV irradiation (λ = 350 nm), the photocleavage of the PNBA block of the PEtOx-b-PNBA BCP takes place, and that leads to the formation of the doubly hydrophilic poly(2-ethyl-2-oxazoline)-b-poly(acrylic acid) (PEtOx-b-PAA) BCP causing the rupture of compound micelles as confirmed by spectroscopic and microscopic techniques. Encapsulation of a model hydrophobic guest molecule, nile red (NR), into the photocleavable BCP micellar core in aqueous solution and its UV-induced release is also investigated by fluorescence emission measurements. PEtOx-b-PNBA BCP amphiphiles are also shown to self-assemble into spherical nanostructures (∼90 nm) in dichloromethane as established by DLS and TEM analysis. These are referred to as reverse micelles and are able to encapsulate anionic hydrophilic dye, Eosin B, and facilitate its solubilization in organic media. PMID:26735171

  12. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-01-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug. PMID:20671795

  13. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  14. Modulation of excited-state proton-transfer reactions of 7-hydroxy-4-methylcoumarin in ionic and nonionic reverse micelles.

    PubMed

    Choudhury, Sharmistha Dutta; Pal, Haridas

    2009-05-14

    The prototropic behavior of the dye, 7-hydroxy-4-methylcoumarin (7H4MC), has been studied in cationic benzyldimethylhexadecylammonium chloride (BDHC) and nonionic poly(oxyethylene)(tetramethylbutyl)phenyl ether (TritonX-100, TX-100) reverse micelles using ground-state absorption and steady-state and time-resolved fluorescence measurements. The results have been compared with the previous results in the anionic sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. Although the probe dye, 7H4MC, is indicated to reside in the interfacial region in all of the reverse micelles studied, significant differences have been observed in the evolution of the different prototropic species. In BDHC reverse micelles, the anionic form is favored over the tautomeric form at the higher w0 values, which is contrary to the observation in AOT reverse micelles where both of these forms are almost equally produced. The higher propensity for the formation of the anionic form in BDHC reverse micelles has been explained on the basis of the additional electrostatic stabilization of the anionic species in the cationic BDHC reverse micelles compared to that in the anionic AOT reverse micelles. On the other hand, in TX-100 reverse micelles, the anionic form is not very evident, but interestingly, the tautomer form begins to appear beyond w0=2. The appearance of the tautomeric species apparently coincides with the formation of the water pool in the TX-100 reverse micelles. However, due to the more restricted nature of the water molecules within this reverse micelle (mostly dispersed around the oxyethylene chains), deprotonation of the 7H4MC dye and the consequential stabilization of the anionic form are considerably reduced. The results clearly reveal that the aqueous environment in the vicinity of the probe is quite different for the reverse micelles considered, and these differences largely modulate the prototropic processes of the excited dye. PMID:19374362

  15. pH-Responsive Poly(ethylene glycol)/Poly(L-lactide) Supramolecular Micelles Based on Host-Guest Interaction.

    PubMed

    Zhang, Zhe; Lv, Qiang; Gao, Xiaoye; Chen, Li; Cao, Yue; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2015-04-29

    pH-responsive supramolecular amphiphilic micelles based on benzimidazole-terminated poly(ethylene glycol) (PEG-BM) and β-cyclodextrin-modified poly(L-lactide) (CD-PLLA) were developed by exploiting the host-guest interaction between benzimidazole (BM) and β-cyclodextrin (β-CD). The dissociation of the supramolecular micelles was triggered in acidic environments. An antineoplastic drug, doxorubicin (DOX), was loaded into the supramolecular micelles as a model drug. The release of DOX from the supramolecular micelles was clearly accelerated as the pH was reduced from 7.4 to 5.5. The DOX-loaded PEG-BM/CD-PLLA supramolecular micelles displayed an enhanced intracellular drug-release rate in HepG2 cells compared to the pH-insensitive DOX-loaded PEG-b-PLLA counterpart. After intravenous injection into nude mice bearing HepG2 xenografts by the tail vein, the DOX-loaded supramolecular micelles exhibited significantly higher tumor inhibition efficacy and reduced systemic toxicity compared to free DOX. Furthermore, the DOX-loaded supramolecular micelles showed a blood clearance rate markedly lower than that of free DOX and comparable to that of the DOX-loaded PEG-b-PLLA micelles after intravenous injection into rats. Therefore, the pH-responsive PEG-BM/CD-PLLA supramolecular micelles hold potential as a smart nanocarrier for anticancer drug delivery. PMID:25856564

  16. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system

    PubMed Central

    Xie, Yi-Ting; Du, Yong-Zhong; Yuan, Hong; Hu, Fu-Qiang

    2012-01-01

    Purpose Therapy for central nervous system disease is mainly restricted by the blood–brain barrier. A drug-delivery system is an effective approach to overcome this barrier. In this research, the potential of polymeric micelles for brain-targeting drug delivery was studied. Methods Stearic acid–grafted chitosan (CS-SA) was synthesized by hydrophobic modification of chitosan with stearic acid. The physicochemical characteristics of CS-SA micelles were investigated. bEnd.3 cells were chosen as model cells to evaluate the internalization ability and cytotoxicity of CS-SA micelles in vitro. Doxorubicin (DOX), as a model drug, was physically encapsulated in CS-SA micelles. The in vivo brain-targeting ability of CS-SA micelles was qualitatively and quantitatively studied by in vivo imaging and high-performance liquid chromatography analysis, respectively. The therapeutic effect of DOX-loaded micelles in vitro was performed on glioma C6 cells. Results The critical micelle concentration of CS-SA micelles with 26.9% ± 1.08% amino substitute degree was 65 μg/mL. The diameter and surface potential of synthesized CS-SA micelles in aqueous solution was 22 ± 0.98 nm and 36.4 ± 0.71 mV, respectively. CS-SA micelles presented excellent cellular uptake ability on bEnd.3 cells, the IC50 of which was 237.6 ± 6.61 μg/mL. DOX-loaded micelles exhibited slow drug-release behavior, with a cumulative release up to 72% within 48 hours in vitro. The cytotoxicity of DOX-loaded CS-SA micelles against C6 was 2.664 ± 0.036 μg/mL, compared with 0.181 ± 0.066 μg/mL of DOX · HCl. In vivo imaging results indicated that CS-SA was able to transport rapidly across the blood–brain barrier and into the brain. A maximum DOX distribution in brain of 1.01%/g was observed 15 minutes after administration and maintained above 0.45%/g within 1 hour. Meanwhile, free DOX · HCl was not detected in brain. In other major tissues, DOX-loaded micelles were mainly distributed into lung, liver, and

  17. Micelle hydrogels for three-dimensional dose verification

    NASA Astrophysics Data System (ADS)

    Babic, S.; Battista, J.; Jordan, K.

    2009-05-01

    Gelatin hydrogels form a transparent and colourless matrix for polymerization or chromic reactions initiated by absorption of ionizing radiation. Generally, hydrogel chemistries have been limited to water soluble reactants. Work to adapt a water insoluble colourless leuco dye to coloured dye conversion reaction in hydrogels, led to the idea that micelles (i.e. tiny aggregates of surfactant molecules) may provide the necessary polar and nonpolar hybrid environment. Both leucomalachite green and leuco crystal violet radiochromic gels have been developed as three-dimensional (3-D) radiochromic dosimeters for optical computed tomography (CT) scanners. It has been found that the post-irradiation diffusion rates strongly correlate with the solubility of the leuco dyes. Since the crystal violet dye is more soluble in the micelle than in the surrounding water, the dose distribution degrades at the slower rate of micelle diffusion, thus yielding stable images of dose. A dosimetric characterization of leucomalachite green and leuco crystal violet gels, respectively, reveals that tissue equivalent micelle hydrogels are promising dosimeters for radiation therapy 3-D dose verification.

  18. Reduction-Triggered Breakable Micelles of Amphiphilic Polyamide Amine-g-Polyethylene Glycol for Methotrexate Delivery

    PubMed Central

    Huang, Yihang; Liu, Jun; Cui, Yani; Li, Huanan; Sun, Yong; Fan, Yujiang; Zhang, Xingdong

    2014-01-01

    Reduction-triggered breakable polymeric micelles incorporated with MTX were prepared using amphiphilic PAA-g-PEG copolymers having S–S bonds in the backbone. The micelles were spherical with diameters less than 70 nm. The micelles could encapsulate the hydrophobic MTX in the hydrophobic core. The drug loading content and drug loading efficiency of the micelles were highly dependent on the copolymer chemical structure, ranging from 2.9 to 7.5% and 31.9 to 82.5%, respectively. Both the drug loading content and drug loading efficiency increased along with more hydrophobic segments in the copolymers. In normal circumstance, these micelles were capable of keeping stable and hold most of the MTX in the core, stabilizing the incorporated MTX through the π-π stacking with the phenyl groups in the backbone of the copolymers. In reductive environments that mimicked the intracellular compartments, the entire MTX payload could be quickly released due to the reduction-triggered breakage of the micelles. These micelles showed good antiproliferative activity against several cancer cell lines, including KB, 4T-1 and HepG2, especially within the low drug concentration scope. PMID:24895626

  19. An Activatable Theranostic Nanomedicine Platform Based on Self-Quenchable Indocyanine Green-Encapsulated Polymeric Micelles.

    PubMed

    Liu, Lanxia; Ma, Guilei; Zhang, Chao; Wang, Hai; Sun, Hongfan; Wang, Chun; Song, Cunxian; Kong, Deling

    2016-06-01

    Self-quenchable indocyanine green (ICG)-encapsulated micelles with folic acid (FA)-targeting specificity (FA-ICG-micelles) were developed for biologically activatable photodynamic theranostics. FA-ICG-micelles were successfully prepared using the thin-film hydration method, which allows ICG to be encapsulated with a high drug loading that induces an efficient ICG-based quenched state. FA-ICG-micelles are initially in the "OFF" state with no fluorescence signal or phototoxicity, but they become highly fluorescent and phototoxic in cellular degradative environments. Importantly, via folate receptor-mediated endocytosis, the FA targeting of FA-ICG-micelles enhanced intracellular uptake and photodynamic therapy (PDT) efficacy. Systematic administration of FA-ICG-micelles to folate receptor-positive tumor-bearing mice elicited prolonged blood circulation, enhanced tumor accumulation and improved therapeutic efficiency compared to free ICG. Therefore, based on the FA-targeted specificity and switchable photoactivity, FA-ICG-micelles have potential for photodynamic theranostics in cancer. PMID:27319216

  20. Some Speculation about the Investigation of Person-Environment Transactions.

    ERIC Educational Resources Information Center

    Holland, John L.

    1987-01-01

    Speculates about the outcomes of person-environment research and suggests how more successful research might be planned. Focuses on congruence effects and the value of meta-analysis. Suggests careful use of theory; attention to both environmental and personal assessment; identification of potent personal, environmental, and theoretical variables;…

  1. Investigating Elementary School Students' Perceptions about Environment through Their Drawings

    ERIC Educational Resources Information Center

    Ozsoy, Sibel

    2012-01-01

    The purpose of this study is to determine elementary school students' perceptions about environment through their drawings. The study was carried out during the spring semester of 2010-2011 academic year. A total of 429 elementary school students, including 68 fourth grade, 78 fifth grade, 97 sixth grade, 85 seventh grade, 101 eighth grade,…

  2. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  3. Structure of diglycerol polyisostearate nonionic surfactant micelles in nonpolar oil hexadecane: a SAXS study.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Oyama, Keiichi; Matsuzawa, Makoto; Aramaki, Kenji

    2010-01-01

    Using a small-angle X-ray scattering technique, shape and size, and internal structure of diglycerol polyisostearate nonionic surfactant micelles in nonpolar oil n-hexadecane (HD) were investigated at 25 degrees C. Furthermore, the effect of added water on the structure of host reverse micelles was also investigated. The scattering data were evaluated by the generalized indirect Fourier transformation (GIFT) method and model fittings. It was found that diglycerol polyisostearate (abbreviated as (iso-C18)nG2, where n=2-4 represent the number of isostearate chain per surfactant molecule) spontaneously form reverse micelles in HD at 25 degrees C and their geometry (shape and size, and internal structure) could flexibly be controlled by a small change in the lipophilic tail architecture of the surfactant, temperature, and water addition. Increasing number of isostearate chain per surfactant molecule decreases the micelles size favoring prolate-to-sphere type transition. This phenomenon could be best understood due to voluminous lipophilic part of the surfactant. Increasing temperature decreases the size of the reverse micelles due to enhanced inter-penetration of the surfactant chain and the oil and also due to dominant hydrophobic character of the surfactant at higher temperatures. In the studies of effect of added water on the structure of micelles, it was found that the reverse micelles swell with water causing two dimensional micellar growths. PMID:20513967

  4. Investigation of human-robot interface performance in household environments

    NASA Astrophysics Data System (ADS)

    Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.

    2016-05-01

    Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.

  5. Investigating Factors Affecting Group Processes in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Hazari, Sunil; Thompson, Sandra

    2015-01-01

    With the widespread popularity of distance learning, there is a need to investigate elements of online courses that continue to pose significant challenges for educators. One of the challenges relates to creating and managing group projects. This study investigated business students' perceptions of group work in online classes. The constructs…

  6. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy. PMID:25974198

  7. Nanostructured Oxygen Sensor - Using Micelles to Incorporate a Hydrophobic Platinum Porphyrin

    PubMed Central

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Youngbull, Cody; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment. PMID:22457758

  8. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload. PMID:26486348

  9. Formation of micelles in homopolymer-copolymer mixtures

    NASA Astrophysics Data System (ADS)

    Müller, Marcus; Cavallo, Anna; Binder, Kurt

    2007-03-01

    Using Monte Carlo (MC) simulations of the bond fluctuation model and self-consistent field (SCF) calculations, we study the formation of micelles in a mixture of homopolymers and asymmetric AB-diblock copolymers with composition, fA=1/8. We work in the semi--grandcanonical ensemble, i.e., we fix the monomer density and incompatibility, χN˜100, and control the composition of the mixture via the exchange chemical potential, δμ between the copolymer and homopolymer solvent. The MC simulation comprises moves that allow homopolymers to mutate into AB-diblock copolymers and vice versa. These moves are very efficient in equilibrating the configurations. We accurately locate the critical micelle concentration, study the micellar size distribution and characterize the shape of the micelles by the tensor of gyration and radial density profiles. The simulation results are quantitatively compared to predictions of the SCF theory in the grandcanonical ensemble without adjustable parameter. Only in the limit of high molecular weight the simulation results gradually approach the theoretical predictions. The structure and phase behavior of mixed micelles is investigated by SCF calculations.

  10. Vibrational energy relaxation of water in Aerosol OT reverse micelle

    NASA Astrophysics Data System (ADS)

    Pang, Yoonsoo; Deak, John; Dlott, Dana

    2005-03-01

    An IR-Raman technique with mid-IR pump and anti-Stokes Raman probe is used to investigate reverse micelle mixture of Aerosol OT, water, and carbon tetrachloride, where polar water phase and nonpolar oil phase is separated by a monolayer of surfactant molecules. Anti-Stokes Raman scattering is only dependent on the population of vibrationally excited states, thus time-dependent population changes of parent/daughter vibrations can be monitored with this technique. Vibrational energy from nanodroplet of water is transferred to the surfactant head group in 1.8 ps and then out to solvent in 10 ps. Vibrational energy directly pumped into the surfactant tail group results in a slower 20-40 ps energy transfer to solvent. This energy transfer cannot be explained by ordinary heat transfer, but the specific vibrational energy relaxation pathway such as sulfonate stretch of surfactant molecules should be used. We can change the water-to-solvent energy transfer rate by adopting different size of reverse micelles or changing pump frequency over the broad OH stretch mode of water due to hydrogen bond network. Water molecules confined in nanometer scale reverse micelles have very different properties from bulk water and we have found many differences between the vibrational dynamics of water in these reverse micelles and those of bulk water.

  11. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    PubMed

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  12. Investigating Your Environment: Teaching Materials for Environmental Education. October 1978 Edition.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Included are seven lesson plans for secondary school students: (1) soil investigations; (2) water investigations; (3) forest investigations; (4) investigating some animals and their environment; (5) a land use simulation; (6) investigating the human community; and (7) developing environmental investigations. Each lesson plan has seven components:…

  13. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    SciTech Connect

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  14. Micelle-templated composite quantum dots for super-resolution imaging.

    PubMed

    Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O

    2014-05-16

    Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging. PMID:24762566

  15. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma.

    PubMed

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 ((188)Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of (188)Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined (188)Re-Dox micelles group had significantly longer survival compared with the control, (188)ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with (188)Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, (188)Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  16. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation.

    PubMed

    Saadat, Ebrahim; Shakor, Naeeme; Gholami, Mehdi; Dorkoosh, Farid A

    2015-07-15

    A novel triamcinolone loaded polymeric micelle was synthesized based on hyaluronic acid and phospholipid for articular delivery. The newly developed micelle was characterized for physicochemical properties including size, zeta potential, differential scanning calorimetry (DSC) analysis and also morphology by means of transmission electron microscopy. The biocompatibility of micelle was explored by histopathological experiment in rat model. Also biological fate of micelle was investigated in rat by means of real time in vivo imaging system. Triamcinolone loaded micelle was in the size range of 186 nm with negative zeta potential charge. Micelles were spherical in shape with core shell like structure. Triamcinolone was released from micelle during 76 h with almost low burst effect. DSC analysis showed the conversion of crystalline triamcinolone from its crystalline state. Histopathological analysis showed no evidence of tissue damage or phagocytic accumulation in knee joint of rat. The real time in vivo imaging analysis suggested at least three days retention time of micellar system in knee joint post injection. PMID:25956051

  17. Thermodynamic parameters and counterion binding to the micelle in binary anionic surfactant systems.

    PubMed

    Maneedaeng, Atthaphon; Haller, Kenneth J; Grady, Brian P; Flood, Adrian E

    2011-04-15

    Competitive counterion binding of sodium and calcium to micelles, and mixed micellization have been investigated in the systems sodium dodecylsulfate (NaDS)/sodium decylsulfate (NaDeS) and NaDS/sodium 4-octylbenzenesulfonate (NaOBS) in order to accurately model the activity of the relevant species in solution. The critical micelle concentration (CMC) and equilibrium micelle compositions of mixtures of these anionic surfactants, which is necessary for determining fractional counterion binding measurements, is thermodynamically modeled by regular solution theory. The mixed micelle is ideal (the regular solution parameter β(M)=0) for the NaDS/NaOBS system, while the mixed micelle for NaDS/NaDeS has β(M)=-1.05 indicating a slight synergistic interaction. Counterion binding of sodium to the micelle is influenced by the calcium ion concentration, and vice versa. However, the total degree of counterion binding is essentially constant at approximately 0.65 charge negation at the micelle's surface. The counterion binding coefficients can be quantitatively modeled using a simple equilibrium model relating concentrations of bound and unbound counterions. PMID:21292278

  18. Enzyme activity and structural dynamics linked to micelle formation: a fluorescence anisotropy and ESR study.

    PubMed

    Chin, Michael; Somasundaran, Ponisseril

    2014-01-01

    Activities of the enzymes, protease subtilisin and horse radish peroxidase (HRP) have been increased 50 and 40%, respectively, in the presence of the nonionic surfactant, alkyl polyglucoside, compared with the activities in buffer alone. This enzyme hyperactivity reaches a peak at 3.0 mm of surfactant. Investigation into the structure of surfactant aggregates indicates "giant" micelle superstructures at this range of surfactant concentration of 1.7 μm in diameter--dramatically decreasing to 60 and 70 nm at higher surfactant concentrations, while surface tension measurements indicate two critical micelle concentration inflection points at 0.2 and 5.0 mm, which suggests transitions in micelle structure with respect to concentration. Furthermore, electron spin resonance (ESR) indicates that the micelles in first critical micelle concentration regime are loosely packed relative to the second aggregate phase. We hypothesize that this loose packing results in diminished hydration shell repulsion between the micelles, leading to the large, micrometer-sized aggregates. We further hypothesize that it is the interaction with these loosely packed micelles that affects the flexibility of the HRP and protease enzyme structure. Time-resolved fluorescence anisotropy of subtilisin in Brij-30 indicates increasing flexibility of catalytic active site with surfactant concentration. This is correlated with an increase in enzymatic activity. PMID:24303849

  19. Measurement and Control of pH in the Aqueous Interior of Reverse Micelles

    PubMed Central

    2015-01-01

    The encapsulation of proteins and nucleic acids within the nanoscale water core of reverse micelles has been used for over 3 decades as a vehicle for a wide range of investigations including enzymology, the physical chemistry of confined spaces, protein and nucleic acid structural biology, and drug development and delivery. Unfortunately, the static and dynamical aspects of the distribution of water in solutions of reverse micelles complicate the measurement and interpretation of fundamental parameters such as pH. This is a severe disadvantage in the context of (bio)chemical reactions and protein structure and function, which are generally highly sensitive to pH. There is a need to more fully characterize and control the effective pH of the reverse micelle water core. The buffering effect of titratable head groups of the reverse micelle surfactants is found to often be the dominant variable defining the pH of the water core. Methods for measuring the pH of the reverse micelle aqueous interior using one-dimensional 1H and two-dimensional heteronuclear NMR spectroscopy are described. Strategies for setting the effective pH of the reverse micelle water core are demonstrated. The exquisite sensitivity of encapsulated proteins to the surfactant, water content, and pH of the reverse micelle is also addressed. These results highlight the importance of assessing the structural fidelity of the encapsulated protein using multidimensional NMR before embarking upon a detailed structural and biophysical characterization. PMID:24506449

  20. Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids.

    PubMed

    Lu, Hongxu; Utama, Robert H; Kitiyotsawat, Uraiphan; Babiuch, Krzysztof; Jiang, Yanyan; Stenzel, Martina H

    2015-07-01

    Many attempts have been made in the application of multicellular tumor spheroids (MCTS) as a 3D tumor model to investigate their biological responses upon introduction of polymeric micelles as nanocarriers for therapeutic applications. However, the micelle penetration pathways in MCTS are not yet known. In this study, micelles (uncrosslinked, UCM) were prepared by self-assembly of block copolymer poly(N-(2-hydroxypropyl) methacrylamide-co-methacrylic acid)-block-poly(methyl methacrylate) (P(HPMA-co-MAA)-b-PMMA). Subsequently, the shells were crosslinked to form relatively stable micelles (CKM). Both UCM and CKM penetrated deeper and delivered more doxorubicin (DOX) into MCTS than the diffusion of the free DOX. Additionally, CKM revealed higher delivery efficiency than UCM. The inhibition of caveolae-mediated endocytosis, by Filipin treatment, decreased the uptake and penetration of the micelles into MCTS. Treatment with Exo1, an exocytosis inhibitor, produced the same effect. Furthermore, movement of the micelles through the extracellular matrices (ECM), as modelled using collagen micro-spheroids, appeared to be limited to the peripheral layer of the collagen spheroids. Those results indicate that penetration of P(HPMA-co-MAA)-b-PMMA micelles depended more on transcellular transport than on diffusion through ECM between the cells. DOX-loaded CKM inhibited MCTS growth more than their UCM counterpart, due to possible cessation of endocytosis and exocytosis in the apoptotic peripheral cells, caused by faster release of DOX from UCM. PMID:26221942

  1. Characterization of Cetyltrimethylammonium Bromide/Hexanol Reverse Micelles by Experimentally Benchmarked Molecular Dynamics Simulations.

    PubMed

    Fuglestad, Brian; Gupta, Kushol; Wand, A Joshua; Sharp, Kim A

    2016-02-23

    Encapsulation of small molecules, proteins, and other macromolecules within the protective water core of reverse micelles is emerging as a powerful strategy for a variety of applications. The cationic surfactant cetyltrimethylammonium bromide (CTAB) in combination with hexanol as a cosurfactant is particularly useful in the context of solution NMR spectroscopy of encapsulated proteins. Small-angle X-ray and neutron scattering is employed to investigate the internal structure of the CTAB/hexanol reverse micelle particle under conditions appropriate for high-resolution NMR spectroscopy. The scattering profiles are used to benchmark extensive molecular dynamics simulations of this reverse micelle system and indicate that the parameters used in these simulations recapitulate experimental results. Scattering profiles and simulations indicate formation of homogeneous solutions of small approximately spherical reverse micelle particles at a water loading of 20 composed of ∼150 CTAB and 240 hexanol molecules. The 3000 waters comprising the reverse micelle core show a gradient of translational diffusion that reaches that of bulk water at the center. Rotational diffusion is slowed relative to bulk throughout the water core, with the greatest slowing near the CTAB headgroups. The 5 Å thick interfacial region of the micelle consists of overlapping layers of Br(-) enriched water, CTAB headgroups, and hexanol hydroxyl groups, containing about one-third of the total water. This study employs well-parametrized MD simulations, X-ray and neutron scattering, and electrostatic theory to illuminate fundamental properties of CTAB/hexanol reverse micelle size, shape, partitioning, and water behavior. PMID:26840651

  2. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 (188Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  3. UVES Investigates the Environment of a Very Remote Galaxy

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Surplus of Intergalactic Material May Be Young Supercluster Summary Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies ( MS 1512+36 ) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass". Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter . Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope . The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All

  4. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery.

    PubMed

    Liu, Gong-Yan; Li, Min; Zhu, Cong-Shan; Jin, Qiao; Zhang, Zong-Cai; Ji, Jian

    2014-09-01

    A novel amphiphilic copolymer, poly (ethylene glycol)-graft-polyethyleneimine/amide (PEG-g-PEI/amide), is synthesized by grafting PEG and1,2-cis-Cyclohexanedicarboxylic anhydride onto the PEI. PEGylated polymeric micelles can be assembled from the amphiphilic copolymers with well-defined nano-sizes, and anti-cancer drugs are successfully loaded into micelle core formed by the amide. The amides with neighboring carboxylic acid groups exhibit pH-dependent hydrolysis and can reversibly shield the cationic charge of amine groups on the PEI, giving the micelles a charge-conversion property from negative to positive in acidic tumor tissue environment. Meanwhile, the cleavage of amide bonds at acidic pH also results in the disassembly of the micelle and pH-responsive drug release. These micelles are promising drug delivery systems due to their smart properties: PEGylation, suitable size, charge-conversion, and simultaneous pH-sensitive drug release. PMID:24866398

  5. Fluid mechanics and solidification investigations in low-gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.

    1980-01-01

    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  6. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  7. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells.

    PubMed

    Aydin, Omer; Youssef, Ibrahim; Yuksel Durmaz, Yasemin; Tiruchinapally, Gopinath; ElSayed, Mohamed E H

    2016-04-01

    We report the synthesis of an amphiphilic triblock copolymer composed of a hydrophilic poly(ethylene glycol) (PEG) block, a central poly(acrylic acid) (PAA) block, and a hydrophobic poly(methyl methacrylate) (PMMA) block using atom transfer radical polymerization technique. We examined the self-assembly of PEG-b-PAA-b-PMMA copolymers in aqueous solutions forming nanosized micelles and their ability to encapsulate hydrophobic guest molecules such as Nile Red (NR) dye and cabazitaxel (CTX, an anticancer drug). We used 2,2β'-(propane-2,2-diylbis(oxy))-diethanamine to react with the carboxylic acid groups of the central PAA block forming acid-labile, shell cross-linked micelles (SCLM). We investigated the loading efficiency and release of different guest molecules from non-cross-linked micelles (NSCLM) and shell cross-linked micelles (SCLM) prepared by reacting 50% (SCLM-50) and 100% (SCLM-100) of the carboxylic acid groups in the PAA in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions as a function of time. We examined the uptake of NR-loaded NSCLM, SCLM-50, and SCLM-100 micelles into PC-3 and C4-2B prostate cancer cells and the effect of different micelle compositions on membrane fluidity of both cell lines. We also investigated the effect of CTX-loaded NSCLM, SCLM-50, and SCLM-100 micelles on the viability of PC-3 and C4-2B cancer cells compared to free CTX as a function of drug concentration. Results show that PEG-b-PAA-b-PMMA polymers form micelles at concentrations ≥11 μg/mL with an average size of 40-50 nm. CTX was encapsulated in PEG-b-PAA-b-PMMA micelles with 55% loading efficiency in NSCLM. In vitro release studies showed that 30% and 85% of the loaded CTX was released from SCLM-50 micelles in physiologic (pH 7.4) and acidic (pH 5.0) buffer solutions over 30 h, confirming micelles' sensitivity to solution pH. Results show uptake of NSCLM and SCLM into prostate cancer cells delivering their chemotherapeutic cargo, which triggered efficient cancer

  8. A study of the thermodynamic properties of surfactant mixtures: Mixed micelle formation and mixed surfactant adsorption

    SciTech Connect

    Lopata, J.J.

    1992-12-31

    The volumetric mixing in anionic/nonionic, cationic/nonionic, and anionic/cationic mixed micelles was determined by examining the total surfactant apparent molar volumes at total surfactant concentrations much greater than the mixture critical micelle concentration. The mixed surfactant systems investigated were: sodium dodecyl sulfate and a polyethoxylated nonylphenol, at 0.15 M NaCl and with no added NaCl; cetyl pyridinium chloride and polyethoxylated nonylphenol, at 0.03 M NaCl; and sodium dodecyl sulfate and dodecyl pyridinium chloride, at 0.15 M NaCl. The results of this study suggest that the electrostatic interactions in the mixed micelles do no significantly effect the molar volume of the mixed micelle. Therefore, the micelle hydrophobic core dominates the volumetric mixing in mixed micelles. The adsorption of sodium dodecyl sulfate and a polyethoxylated nonylphenol and well defined mixtures thereof was measured on gamma alumina. A pseudo-phase separation model to describe mixed anionic/nonionic admicelle (adsorbed surfactant aggregate) formation was developed. In this model, regular solution theory was used to describe the anionic/nonionic surfactant interactions in the mixed admicelle and a patch-wise adsorption model was used to describe surfactant adsorption on a heterogeneous surface. Regular solution theory was tested on specific homogeneous surface patches by examining constant total surfactant adsorption levels. For the adsorption of binary surfactant mixtures adsorbing at total equilibrium concentrations above the mixture critical micelle concentration, simultaneous solution of the pseudo-phase separation models for mixed admicelle and mixed micelle formation predicts that the surfactant compositions in the monomer, micelle, and admicelle pseudo-phases are constant at a constant total adsorption level.

  9. A biophysical characterization of the interaction of a hepatitis C virus membranotropic peptide with micelles.

    PubMed

    Alves, N S; Mendes, Y S; Souza, T L F; Bianconi, M L; Silva, J L; Gomes, A M O; Oliveira, A C

    2016-04-01

    Membrane fusion is a highly regulated process that allows enveloped viruses to enter cells and replicate. Viral glycoproteins trigger membrane fusion by means of internal sequences known as fusion peptides. The hepatitis C virus (HCV) genome encodes the envelope glycoproteins E1 and E2, but their specific roles in the fusion step and the localization of the fusion peptide remain uncharacterized. Here, we studied the biophysics of the interactions between the glycoprotein E2 peptide HCV421-445 and four different micellar systems providing ionic, non-ionic and zwitterionic surfaces to investigate the importance of electrostatic interactions for peptide-membrane binding. Circular dichroism, fluorescence spectroscopy and calorimetry were used to characterize peptide-micelle interactions and structural changes. Fluorescence quenching showed that HCV421-445 interacts with SDS or CTAB ionic, n-OGP non-ionic and DPC zwitterionic micelles. The indole ring of Trp seems to anchor the peptide in micelles. Trp residues seem to be more deeply inserted in ionic and non-ionic micelles where peptide interactions are more stable than with DPC zwitterionic micelles. The interaction with zwitterionic micelles appears to occur at the surface. Both interaction types are exothermic because of peptide-micelle interactions and a gain of secondary structure in the helical conformation. HCV421-445 interacts with detergent monomers and micelles. Peptide-micelle interaction is pH-independent. HCV421-445 interacts with membranes, promoting aggregation and coalescence of vesicles with content leakage, suggesting that HCV421-445 may participate in membrane fusion. This structural characterization contributes to our understanding of the molecular process that promotes fusion, which is important in the further development of new antiviral therapies. PMID:26773352

  10. Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant

    PubMed Central

    Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu

    2014-01-01

    The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131

  11. Workshop on Radar Investigations of Planetary and Terrestrial Environments

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.

  12. Ultrafast energy transfer in water-AOT reverse micelles.

    PubMed

    Cringus, Dan; Bakulin, Artem; Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S; Wiersma, Douwe A

    2007-12-27

    A spectroscopic investigation of the vibrational dynamics of water in a geometrically confined environment is presented. Reverse micelles of the ternary microemulsion H2O/AOT/n-octane (AOT = bis-2-ethylhexyl sulfosuccinate or aerosol-OT) with diameters ranging from 1 to 10 nm are used as a model system for nanoscopic water droplets surrounded by a soft-matter boundary. Femtosecond nonlinear infrared spectroscopy in the OH-stretching region of H2O fully confirms the core/shell model, in which the entrapped water molecules partition onto two molecular subensembles: a bulk-like water core and a hydration layer near the ionic surfactant headgroups. These two distinct water species display different relaxation kinetics, as they do not exchange vibrational energy. The observed spectrotemporal ultrafast response exhibits a local character, indicating that the spatial confinement influences approximately one molecular layer located near the water-amphiphile boundary. The core of the encapsulated water droplet is similar in its spectroscopic properties to the bulk phase of liquid water, i.e., it does not display any true confinement effects such as droplet-size-dependent vibrational lifetimes or rotational correlation times. Unlike in bulk water, no intermolecular transfer of OH-stretching quanta occurs among the interfacial water molecules or from the hydration shell to the bulk-like core, indicating that the hydrogen bond network near the H2O/AOT interface is strongly disrupted. PMID:18047308

  13. The Distribution of Solubilized Molecules among Micelles.

    ERIC Educational Resources Information Center

    Miller, Dennis J.

    1978-01-01

    Conflicting views have been put forward on the derivation of the distribution of solubilized molecules among micelles. This stems from failure to consider the arrangement of the solubilized molecules in the micelles. In the treatment presented enthalpy effects are ignored as they are not amenable to a simple general theory. (Author/BB)

  14. Investigation of mechanisms of gas hydrates accumulation in permafrost environments

    NASA Astrophysics Data System (ADS)

    Chuvilin, E. M.

    2012-12-01

    The feature of permafrost sediments is capability to accumulate a quantity of natural gases foremost methane with low admixture of carbon dioxide. In consequence of natural and climatic changes, formation of favorable thermobaric conditions for transformation of intra-permafrost gas accumulations from free state into gas hydrate is possible. In consideration of high gas-saturation of frozen sediments, the active processes of hydrate formation in permafrost during the transgression of arctic seas or under continental glaciations can be expected. A special experimental technique was elaborated to perform physical modeling of hydrate formation conditions in cryogenic ice-containing sediments. The experiments were carried out under constant negative temperatures in interval from -2 oC to -9 oC. Methane (99.98%) was used as hydrate-former gas. During the experiments the kinetics of gas consumption in porous media was investigated and also part of porous water turned into hydrate and hydrate- saturation of sediment samples were estimated. Experiments show that hydrate formation in gas saturated sediments occurs actively not only in freezing sediments (above 0 oC) but also in frozen sediments (below 0 oC). Intensity of hydrate formation in frozen sediments depends on such factors as ice-saturation, thermobaric conditions and gas composition. Experimental data shows that after attenuation of hydrate formation in frozen sediments the considerable activization of hydrate accumulation processes during the increasing of temperature above 0 oC can occur. That leads to the thawing of porous ice, which does not turn into hydrate, and attendant this process structural-textural changes result in appearance of new gas-water contacts. As a result there is second hydrate formation on background of thawing of ice. Based on analysis of geological data and experimental researches possible geological models of gas hydrates formation in shallow permafrost under the sea transgression and

  15. Amphiphilic Copolymeric Micelles for Doxorubicin and Curcumin Co-Delivery to Reverse Multidrug Resistance in Breast Cancer.

    PubMed

    Lv, Li; Qiu, Kaifeng; Yu, Xiaoxia; Chen, Chuxiong; Qin, Fengchao; Shi, Yonghui; Ou, Jiebin; Zhang, Tao; Zhu, Hua; Wu, Junyan; Liu, Chunxia; Li, Guocheng

    2016-05-01

    Development of multidrug resistance against chemotherapeutic drugs is one of the major obstacles to successful cancer therapy in the clinic. Thus far, amphiphilic polymeric micelles and chemosensitizers have been used to overcome multidrug resistance in cancer. The goals of this study were to prepare poly(ethylene glycol)-bock-poly(lactide) (PEG(2k)-PLA(5k)) micelles for co-delivery of the chemotherapeutic drug doxorubicin (DOX) with a chemosensitizer curcumin (CUR), investigate the potential of the dual drug-loaded micelles ((DOX+CUR)-Micelles) to reverse multidrug resistance, and explore the underlying mechanisms. (DOX + CUR)-Micelles were prepared using an emulsion solvent evaporation method. The cellular uptake, drug efflux, down-regulation of P-glycoprotein expression and inhibition of ATP activity of (DOX+ CUR)-Micelles were studied in drug-resistant MCF-7/ADR cells. In vitro analyses demonstrated that (DOX + CUR)-Micelles were superior to free DOX, free drug combination (DOX + CUR), and DOX-loaded micelles in inhibiting proliferation of MCF-7/ADR cells. This effect of (DOX + CUR)-Micelles was partially attributable to their highest cellular uptake, lowest efflux rate of DOX, and strongest effects on down-regulation of P-glycoprotein and inhibition of ATP activity. Additionally, (DOX+CUR)-Micelles showed increased tumor accumulation and strong inhibitory effect on tumor growth in the xenograft model of drug-resistant MCF-7/ADR cells compared to that of other drug formulations. These results indicate that (DOX + CUR)-Micelles display potential for application in the therapy of drug-resistant breast carcinoma. PMID:27305819

  16. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release

    PubMed Central

    Sun, Huanli; Cheng, Ru; Deng, Chao

    2014-01-01

    Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980

  17. Role of membrane lipids in peptide hormone function: binding of enkephalins to micelles.

    PubMed Central

    Deber, C M; Behnam, B A

    1984-01-01

    In the course of their biological function, peptide hormones must be transferred from an aqueous phase to the lipid-rich environment of their membrane-bound receptor proteins. We have investigated the possible influence of phospholipids in this process, using 360-MHz 1H and 90-MHz 13C NMR spectroscopy to examine the association of the opioid peptides [Met]- and [Leu]enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) with phospholipid micelles. Binding of peptides to lipid was monitored in NMR spectra by selective chemical shift movements (e.g., the Phe aromatic ring protons) and residue-specific line broadening (e.g., of Met/Leu carbonyl- and alpha-carbon resonances). Results established that the zwitterionic hormones associate hydrophobically both with a neutral lipid (lysophosphatidylcholine) and (also electrostatically) with a negative lipid (lysophosphatidylglycerol). An association constant of Ka = 3.7 X 10(1) M-1 was calculated for the hydrophobic binding of enkephalin to lysophosphatidylcholine. NMR data suggested that enkephalin binds to the lipid with Met/Leu, Phe, and likely Tyr side-chain substituents associated with nonpolar interior regions of the micelle, whereas the COOH-terminal carboxylate moiety of the peptide is located in the surface of the lipid particle. An "attraction-interaction" model is proposed for hormone-lipid association wherein negative lipids attract the hormone electrostatically, while site-specific hydrophobic contacts facilitate its entry, concentration, and orientation into the lipid phase. PMID:6320173

  18. UVES Investigates the Environment of a Very Remote Galaxy

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Surplus of Intergalactic Material May Be Young Supercluster Summary Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies ( MS 1512+36 ) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass". Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter . Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope . The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All

  19. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  20. Multifunctional polymeric micelles for delivery of drugs and siRNA.

    PubMed

    Jhaveri, Aditi M; Torchilin, Vladimir P

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to "smart," multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  1. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  2. Regulation of charged reverse micelles on particle charging in nonpolar media.

    PubMed

    Cao, Huiying; Lu, Naiyan; Ding, Baiyong; Qi, Ming

    2013-08-01

    By considering the mechanism of preferential adsorption, we systemically investigated the charging behavior of spherical particles in nonpolar media by the regulation of charged inverse micelles. Using the nonlinear Poisson-Boltzmann equation, we simulated the effects of micelle concentrations, particle concentrations, and particle sizes on the surface potential of spheres at the thermodynamic equilibrium of the system. As a result, we found two different micelle concentration-dependent regions for the surface potential of spheres which can be explained in terms of the mechanism of preferential adsorption and the electrostatic properties of charged reverse micelles between the particle surface and the double layer. Additionally, similar results were observed in an experiment for studying zeta potential of colloidal particles dispersed in AOT (sodium di-2-ethylhexyl sulfosuccinate)-dodecane solution. PMID:23770915

  3. Stimulus-responsive polymeric micelles for the light-triggered release of drugs.

    PubMed

    Wang, Bin; Chen, Kefu; Yang, Rendang; Yang, Fei; Liu, Jin

    2014-03-15

    Ethyl cellulose macroinitiator was firstly synthesized by direct acylation of ethyl cellulose with 2-bromopropionyl bromide in a room temperature. And a light-responsive triblock copolymer of ethyl cellulose-g-poly(2-hydroxyethyl methacrylate)-g-poly(spiropyran ether methacrylate) (EC-g-PHEMA-g-PSPMA) was prepared by atom transfer radial polymerization. The amphiphilic structure of the copolymer enabled it to aggregate into spherical micelles in aqueous solution with an average diameter of 100 nm. The micelles exhibited light-responsive performance because of the SPMA monomer. The hydrophobic side chain of PSPMA became hydrophilic under UV light, which decreased the average size of the micelles. Additionally, the diameters of the micelles can be recovered when subsequently irradiated with visible light. The loading and light-triggered release profiles of model drugs were also investigated, and results showed that the release behavior can be controlled by changing the light wavelength. PMID:24528761

  4. Simple model for the growth behaviour of mixed lecithin-bile salt micelles.

    PubMed

    Madenci, Dilek; Salonen, Anniina; Schurtenberger, Peter; Pedersen, Jan Skov; Egelhaaf, Stefan U

    2011-02-28

    Mixed lecithin-bile salt micelles are known to have a cylindrical or worm-like structure. We investigated their shape, length, flexibility and cross-sectional structure using small-angle neutron scattering (SANS). A broad range of sample compositions was studied varying both the total amphiphile concentration and the molar ratio of bile salt (sodium taurochenodeoxycholate, NaTCDC) to lecithin (egg yolk phosphatidylcholine, EYL). The length of the micelles was quantitatively linked to the micellar composition by introducing a simple model. The model takes into account the partitioning of lecithin and bile salt between the bulk, cylindrical parts and the end caps of the micelles. The model also sheds light on the organization of the micelles, both in their cylindrical regions and end caps. PMID:21135948

  5. Multicompartmental Microcapsules from Star Copolymer Micelles

    SciTech Connect

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  6. Structure, dynamics, and insertion of a chloroplast targeting peptide in mixed micelles.

    PubMed

    Wienk, H L; Wechselberger, R W; Czisch, M; de Kruijff, B

    2000-07-18

    Nuclear-encoded, chloroplast-destined proteins are synthesized with transit sequences that contain all information to get them inside the organelle. Different proteins are imported via a general protein import machinery, but their transit sequences do not share amino acid homology. It has been suggested that interactions between transit sequence and chloroplast envelope membrane lipids give rise to recognizable, structural motifs. In this study a detailed investigation of the structural, dynamical, and topological features of an isolated transit peptide associated with mixed micelles is described. The structure of the preferredoxin transit peptide in these micelles was studied by circular dichroism (CD) and multidimensional NMR techniques. CD experiments indicated that the peptide, which is unstructured in aqueous solution, obtained helical structure in the presence of the micelles. By NMR it is shown that the micelles introduced ill-defined helical structures in the transit peptide. Heteronuclear relaxation experiments showed that the whole peptide backbone is very flexible. The least dynamic segments are two N- and C-terminal helical regions flanking an unstructured proline-rich amino acid stretch. Finally, the insertion of the peptide backbone in the hydrophobic interior of the micelle was investigated by use of hydrophobic spin-labels. The combined data result in a model of the transit peptide structure, backbone dynamics, and insertion upon its interaction with mixed micelles. PMID:10889029

  7. Disruption of reverse micelles and release of trapped ribonuclease A photochemically induced by Malachite Green leuconitrile derivative.

    PubMed

    Uda, Ryoko M; Nishikawa, Tsuyoshi; Morita, Yoshitsugu

    2011-03-15

    Photoinduced disruption of a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelle is triggered by a Malachite Green leuconitrile derivative (MGL). UV irradiation of MGL solubilized in an AOT-water-chloroform mixture creates a cationic surfactant that interacts electrostatically with the anionic AOT. We investigated the disruption of the reverse micelle by using proton nuclear magnetic resonance spectroscopy and found that UV irradiation of MGL decreases the number of water molecules solubilized in the interior of the AOT reverse micelles. Furthermore, the photoinduced disruption of the reverse micelle is shown to release ribonuclease A, which is trapped in the water in the interior of the AOT reverse micelle. This photoinduced release may offer a desirable transport system of biopolymers. PMID:21237464

  8. Reduction-Sensitive Polymeric Micelles Based on Docetaxel-Polymer Conjugates Via Disulfide Linker for Efficient Cancer Therapy.

    PubMed

    Guo, Yuanyuan; Zhang, Pei; Zhao, Qingyun; Wang, Kaiming; Luan, Yuxia

    2016-03-01

    In this article, the low-molecular weight biodegradable methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide) (PP) is chosen as polymeric skeleton to be conjugated with docetaxel (DTX) by disulfide bond (PP-SS-DTX) to construct the reduction-sensitive drug delivery system. The conjugates are synthesized via three steps and are further employed to physically load free DTX to develop the PP-SS-DTX/DTX micelles which exhibit many merits including high drug loading content, good stability, and stimuli-sensitive release of drugs. The hydrodynamic diameter of PP-SS-DTX/DTX micelles determined by DLS is 112.3 nm. The hemolysis assay reveals the good blood compatibility of PP-SS-DTX/DTX micelles. In order to investigate the reductive sensitivity of PP-SS-DTX/DTX micelles, dithiothreitol (DTT) is added into the release medium and a programmed drug release mode is observed in the conjugated micelles. In vitro cytotoxity assay shows that the PP-SS-DTX/DTX micelles are more cytotoxic than that of free DTX solution for both MCF-7 and B16F10 cancer cells. In addition, the PP-SS-DTX/DTX micelles also show a higher cellular uptake rate than that of free DTX. Hence, the prepared reduction-sensitive PP-SS-DTX/DTX micelles are effective on inhibiting cancer cells compared with the free DTX which would be a promising carrier in cancer therapy. PMID:26647779

  9. pH-Responsive Hyaluronic Acid-Based Mixed Micelles for the Hepatoma-Targeting Delivery of Doxorubicin

    PubMed Central

    Wu, Jing-Liang; Tian, Gui-Xiang; Yu, Wen-Jing; Jia, Guang-Tao; Sun, Tong-Yi; Gao, Zhi-Qin

    2016-01-01

    The tumor targetability and stimulus responsivity of drug delivery systems are crucial in cancer diagnosis and treatment. In this study, hepatoma-targeting mixed micelles composed of a hyaluronic acid–glycyrrhetinic acid conjugate and a hyaluronic acid-l-histidine conjugate (HA–GA/HA–His) were prepared through ultrasonic dispersion. The formation and characterization of the mixed micelles were confirmed via 1H-NMR, particle size, and ζ potential measurements. The in vitro cellular uptake of the micelles was evaluated using human liver carcinoma (HepG2) cells. The antitumor effect of doxorubicin (DOX)-loaded micelles was investigated in vitro and in vivo. Results indicated that the DOX-loaded HA–GA/HA–His micelles showed a pH-dependent controlled release and were remarkably absorbed by HepG2 cells. Compared with free DOX, the DOX-loaded HA–GA/HA–His micelles showed a higher cytotoxicity to HepG2 cells. Moreover, the micelles effectively inhibited tumor growth in H22 cell-bearing mice. These results suggest that the HA–GA/HA–His mixed micelles are a good candidate for drug delivery in the prevention and treatment of hepatocarcinoma. PMID:27043540

  10. Investigating the effectiveness of the surfactant dioctyl sodium sulfosuccinate to disperse oil in a changing marine environment

    NASA Astrophysics Data System (ADS)

    Steffy, David A.; Nichols, Alfred C.; Kiplagat, George

    2011-12-01

    We investigated the surfactant dioctyl sodium sulfosuccinate (DOSS) and its delivery system Corexit 9500A, used to disperse oil released during the Gulf of Mexico spill during the summer of 2010. DOSS is an organic sulfonic acid salt that acts as a synthetic detergent and disrupts the interfacial tension between the salt water and crude oil phases. The disruption reaches a maximum at or above the critical micelle concentration (CMC). The CMC for the surfactant was determined to be 0.17% solution in deionized water at a pH of 7.2 and a temperature of 21.1 °C (70°F). The CMC is lower in salt water, at 0.125% solution. This has been identified as a "salting out" effect (Somasundaran, 2006). The CMC of DOSS in both saline and deionized water occurred at lower-percent solutions at higher temperatures. The surface tension versus concentration plots can be modeled using a power equation, with correlation coefficients consistently over 0.94. Surface tension versus concentration plots are scalable to fit the desired temperature by the function f(x) = (1/1+Xα), where α =T1/T2. Tests measured the stability of the DOSS micelles when exposed to a continuous UVA radiation. This photodegradation is directly related to the duration of exposure.

  11. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which

  12. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  13. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  14. Dynamic Processes in Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika

    2013-03-01

    Diblock copolymers, which form micelle structures in selective solvents, offer advantages of robustness and tunability of micelle characteristics as compared to small molecule surfactants. Diblock copolymer micelles in water have been a subject of great interest in drug delivery applications based on their high loading capacity and targeted drug delivery. The aim of this work is to understand the dynamic processes which underlie the self-assembly of diblock copolymer micelle systems which have a semi-crystalline core. Due to the large size of the molecules, the self-assembly of block copolymer micelles occurs on significantly longer time scales than small molecule analogues. The present work focuses on amphiphilic diblock copolymers containing blocks of poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic, semi-crystalline polymer), which spontaneously self-assemble into spherical micelles in water. A variety of experimental techniques are used to probe the kinetic processes relevant to micelle self-assembly, including time-resolved neutron scattering, dynamic light scattering, pulsed field gradient nuclear magnetic resonance, and fluorescence resonance energy transfer experiments.

  15. Micelle structure in a deep eutectic solvent: a small-angle scattering study.

    PubMed

    Sanchez-Fernandez, A; Edler, K J; Arnold, T; Heenan, R K; Porcar, L; Terrill, N J; Terry, A E; Jackson, A J

    2016-05-18

    In recent years many studies into green solvents have been undertaken and deep eutectic solvents (DES) have emerged as sustainable and green alternatives to conventional solvents since they may be formed from cheap non-toxic organic precursors. In this study we examine amphiphile behaviour in these novel media to test our understanding of amphiphile self-assembly within environments that have an intermediate polarity between polar and non-polar extremes. We have built on our recently published results to present a more detailed structural characterisation of micelles of sodium dodecylsulfate (SDS) within the eutectic mixture of choline chloride and urea. Here we show that SDS adopts an unusual cylindrical aggregate morphology, unlike that seen in water and other polar solvents. A new morphology transition to shorter aggregates was found with increasing concentration. The self-assembly of SDS was also investigated in the presence of water; which promotes the formation of shorter aggregates. PMID:27157993

  16. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.18 ± 0.08 Å).

  17. [Construction of biotin-modified polymeric micelles for pancreatic cancer targeted photodynamic therapy].

    PubMed

    Deng, Chun-yue; Long, Ying-ying; Liu, Sha; Chen, Zhang-bao; Li, Chong

    2015-08-01

    In this study, we explored the feasibility of biotin-mediated modified polymeric micelles for pancreatic cancer targeted photodynamic therapy. Poly (ethylene glycol)-distearoyl phosphatidyl ethanolamine (mPEG2000-DSPE) served as the drug-loaded material, biotin-poly(ethylene glycol)-distearoyl phosphatidyl ethanolamine (Biotin-PEG3400-DSPE) as the functional material and the polymeric micelles were prepared by a thin-film hydration method. The targeting capability of micelles was investigated by cell uptake assay in vitro and fluorescence imaging in vivo and the amounts of Biotin-PEG-DSPE were optimized accordingly. Hypocrellin B (HB), a novel photosensitizer was then encapsulated in biotinylated polymeric micelles and the anti-tumor efficacy was evaluated systemically in vitro and in vivo. The results showed that micelles with 5 mol % Biotin-PEG-DSPE demonstrated the best targeting capability than those with 20 mol % or 0.5 mol % of corresponding materials. This formulation has a small particle size [mean diameter of (36.74 ± 2.16) nm] with a homogeneous distribution and high encapsulation efficiency (80.06 ± 0.19) %. The following pharmacodynamics assays showed that the biotinylated micelles significantly enhanced the cytotoxicity of HB against tumor cells in vitro and inhibited tumor growth in vivo, suggesting a promising potential of this formulation for treatment of pancreatic cancer, especially those poorly permeable, or insensitive to radiotherapy and chemotherapy. PMID:26669006

  18. Splitting of Surface-Immobilized Multicompartment Micelles into Clusters upon Charge Inversion.

    PubMed

    Dewald, Inna; Gensel, Julia; Betthausen, Eva; Borisov, Oleg V; Müller, Axel H E; Schacher, Felix H; Fery, Andreas

    2016-05-24

    We investigate a morphological transition of surface-immobilized triblock terpolymer micelles: the splitting into well-defined clusters of satellite micelles upon pH changes. The multicompartment micelles are formed in aqueous solution of ABC triblock terpolymers consisting of a hydrophobic polybutadiene block, a weak polyanionic poly(methacrylic acid) block, and a weak polycationic poly(2-(dimethylamino)ethyl methacrylate) block. They are subsequently immobilized on silicon wafer surfaces by dip-coating. The splitting process is triggered by a pH change to strongly basic pH, which goes along with a charge reversal of the micelles. We find that the aggregation number of the submicelles is well-defined and that larger micelles have a tendency to split into a larger number of submicelles. Furthermore, there is a clear preference for clusters consisting of doublets and triplets of submicelles. The morphology of surface-immobilized clusters can be "quenched" by returning to the original pH. Thus, such well-defined micellar clusters can be stabilized and are available as colloidal building blocks for the formation of hierarchical surface structures. We discuss the underlying physicochemical principles of the splitting process considering changes in charge and total free energy of the micelles upon pH change. PMID:27101441

  19. Influence of surfactant structure on reverse micelle size and charge for nonpolar electrophoretic inks.

    PubMed

    Parent, Mary E; Yang, Jun; Jeon, Yoocharn; Toney, Michael F; Zhou, Zhang-Lin; Henze, Dick

    2011-10-01

    Electrophoretic inks, which are suspensions of colorant particles that are controllably concentrated and dispersed by applied electric fields, are the leading commercial technology for high-quality reflective displays. Extending the state of the art for high-fidelity color in these displays requires improved understanding and control of the colloidal systems. In these inks, reverse micelles in nonpolar media play key roles in media and particle charging. Here we investigate the effect of surfactant structure on reverse micelle size and charging properties by synthesizing different surfactants with variations in polyamine polar head groups. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) were used to determine the micelle core plus shell size and micelle hydrodynamic radius, respectively. The results from SAXS agreed with DLS and showed that increasing polyamines in the surfactant head increased the micelle size. The hydrodynamic radius was also calculated on the basis of transient current measurements and agreed well with the DLS results. The transient current technique further determined that increasing polyamines increased the charge stabilization capability of the micelles and that an analogous commercial surfactant OLOA 11000 made for a lower concentration of charge-generating ions in solution. Formulating magenta inks with the various surfactants showed that the absence of amine in the surfactant head was detrimental to particle stabilization and device performance. PMID:21863832

  20. Recent advances in polymeric micelles for anti-cancer drug delivery.

    PubMed

    Biswas, Swati; Kumari, Preeti; Lakhani, Prit Manish; Ghosh, Balaram

    2016-02-15

    Block co-polymeric micelles receive increased attention due to their ability to load therapeutics, deliver the cargo to the site of action, improve the pharmacokinetic of the loaded drug and reduce off-target cytotoxicity. While polymeric micelles can be developed with improved drug loading capabilities by modulating hydrophobicity and hydrophilicity of the micelle forming block co-polymers, they can also be successfully cancer targeted by surface modifying with tumor-homing ligands. However, maintenance of the integrity of the self-assembled system in the circulation and disassembly for drug release at the site of drug action remain a challenge. Therefore, stimuli-responsive polymeric micelles for on demand drug delivery with minimal off-target effect has been developed and extensively investigated to assess their sensitivity. This review focuses on discussing various polymeric micelles currently utilized for the delivery of chemotherapeutic drugs. Designs of various stimuli-sensitive micelles that are able to control drug release in response to specific stimuli, either endogenous or exogenous have been delineated. PMID:26747018

  1. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  2. Structure of block copolymer micelles in the presence of co-solvents

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis

    2015-03-01

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  3. Worm-like micelles of CTAB and sodium salicylate under turbulent flow.

    PubMed

    Rodrigues, Roberta K; da Silva, Marcelo A; Sabadini, Edvaldo

    2008-12-16

    Polymers with high molecular weight and worm-like micelles are drag-reducing agents under turbulent flow. However, in contrast to the polymeric systems, the worm-like micelles do not undergo mechanical degradation due to the turbulence, because their macromolecular structure can be spontaneously restored. This very favorable property, together with their drag-reduction capability, offer the possibility to use such worm-like micelles in heating and cooling systems to recirculate water while expending less energy. The formation, growth, and stability of worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were investigated using the self-fluorescence of salicylate ions and the ability of the giant micelles to promote hydrodynamic drag reduction under turbulent flow. The turbulence in solutions of CTAB-Sal was produced within the double-gap cell of a rotational rheometer. Detailed diagrams were obtained for different ratios of Sal and CTAB, which revealed transitions associated with the thermal stability of giant micelles under turbulent flow. PMID:19053646

  4. A molecular dynamics study of the breathing and deforming modes of the spherical ionic SDS and nonionic C12E8 micelles.

    PubMed

    Wang, Lin; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-01-21

    In order to investigate shape of the micelles and its thermal fluctuations, molecular dynamics calculations have been performed for spherical ionic sodium dodecyl sulfate (SDS) and nonionic octaethyleneglycol monododecyl ether (C12E8) micelles. New statistical functions suitable for extracting the fluctuations of the shape of the spherical micelles were defined using spherical harmonics and Legendre polynomials. The breathing and deforming modes of the SDS and C12E8 micelles were analyzed in detail based on these new functions. The elastic nature of the micelle core was also discussed. The present analysis gives a new molecular picture that the micelle shape is a superposition of the various kinds of breathing and deforming modes, and each mode has a specific relaxation time of the shape fluctuation. PMID:26801043

  5. A molecular dynamics study of the breathing and deforming modes of the spherical ionic SDS and nonionic C12E8 micelles

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-01-01

    In order to investigate shape of the micelles and its thermal fluctuations, molecular dynamics calculations have been performed for spherical ionic sodium dodecyl sulfate (SDS) and nonionic octaethyleneglycol monododecyl ether (C12E8) micelles. New statistical functions suitable for extracting the fluctuations of the shape of the spherical micelles were defined using spherical harmonics and Legendre polynomials. The breathing and deforming modes of the SDS and C12E8 micelles were analyzed in detail based on these new functions. The elastic nature of the micelle core was also discussed. The present analysis gives a new molecular picture that the micelle shape is a superposition of the various kinds of breathing and deforming modes, and each mode has a specific relaxation time of the shape fluctuation.

  6. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy.

    PubMed

    Liu, Xiaodong; Yang, Guangbao; Zhang, Lifen; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin

    2016-08-18

    The multifunctional nano-micelle platform holds great promise to enhance the accuracy and efficiency of cancer diagnosis and therapy. In this work, an amphiphilic poly[(poly(ethylene glycol) methyl ether methacrylate)-co-(3-aminopropyl methacrylate)]-block-poly(methyl methacrylate) (P(PEGMA-co-APMA)-b-PMMA) block copolymer was synthesized by successive RAFT polymerizations and subsequent chemical modification. Then the multifunctional micelles with high solubility in physiological environments were developed by a self-assembly and crosslinking processes. The photosensitizer segment, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP), serves as a tetra-functional cross-linker, photodynamic agent, fluorescence indicator, as well as magnetic resonance (MR) contrast agent after labelling with manganese ions (Mn(2+)), while IR825 simultaneously locating in the interior of the fabricated micelles contributed to the photoacoustic (PA) imaging ability and the photothermal effect. The prepared nanoparticles show great stability in a physiological environment with uniform morphology and diameters of around 80 nm as disclosed by stability investigation, TEM and DLS analysis. IR825@P(PEGMA-co-APMA)-b-PMMA@TCPP/Mn nanoparticles displayed high in vivo tumor uptake with a long blood circulation half-life (∼3.64 h) by the EPR effect after intravenous (i.v.) injection, as revealed by fluorescence, MR and PA imaging models. In vivo anti-tumor effects were achieved via a combined photothermal and photodynamic therapy without noticeable dark toxicity, and this strategy was able to induce a remarkably improved synergistic therapeutic effect to both superficial and deep regions of tumors under mild conditions compared with either single photothermal or photodynamic mechanisms. PMID:27503666

  7. An Empirical Investigation of the Dimensionality of the Physical Literacy Environment in Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Dynia, Jaclyn M.; Schachter, Rachel E.; Piasta, Shayne B.; Justice, Laura M.; O'Connell, Ann A.; Yeager Pelatti, Christina

    2016-01-01

    This study investigated the dimensionality of the physical literacy environment of early childhood education classrooms. Data on the classroom physical literacy environment were collected from 245 classrooms using the Classroom Literacy Observation Profile. A combination of confirmatory and exploratory factor analysis was used to identify five…

  8. Student-Centred Learning Environments: An Investigation into Student Teachers' Instructional Preferences and Approaches to Learning

    ERIC Educational Resources Information Center

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne

    2016-01-01

    The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…

  9. An Investigation of Some Features of the Psychosocial Learning Environment in Some Nigerian Secondary Schools.

    ERIC Educational Resources Information Center

    Akindehin, Folajimi

    1993-01-01

    Investigated features of the classroom- and school-level psychological learning environments in some secondary schools in Ondo State, Nigeria. It was found that age of a school has no effect on classroom- and school-level psychosocial learning environments. The presumed superiority of old schools over new schools in the provision of favorable…

  10. Shell-cross-linked micelles containing cationic polymers synthesized via the RAFT process: toward a more biocompatible gene delivery system.

    PubMed

    Zhang, Ling; Nguyen, T L Uyen; Bernard, Julien; Davis, Thomas P; Barner-Kowollik, Christopher; Stenzel, Martina H

    2007-09-01

    Block copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(polyethylene glycol methacrylate) (PDMAEMA-b-P(PEGMA)) were prepared via reversible addition fragmentation chain transfer polymerization (RAFT). The polymerization was found to proceed with the expected living behavior resulting in block copolymers with varying block sizes of low polydispersity (PDI <1.3). The resulting block copolymer was self-assembled in an aqueous environment, leading to the formation of pH-responsive micelles. Further stabilization of the micellar system was performed in water using ethylene glycol dimethacrylate and the RAFT process to cross-link the shell. The cross-linked micelle was found to have properties significantly different from those of the uncross-linked block copolymer micelle. While a distinct critical micelle concentration (CMC) was observed using block copolymers, the CMC was absent in the cross-linked system. In addition, a better stability against disintegration was observed when altering the ionic strength such as the absence of changes of the hydrodynamic diameter with increasing NaCl concentration. Both cross-linked and uncross-linked micelles displayed good binding ability for genes. However, the cross-linked system exhibited a slightly superior tendency to bind oligonucleotides. Cytotoxicity tests confirmed a significant improvement of the biocompatibility of the synthesized cross-linked micelle compared to that of the highly toxic PDMAEMA. The cross-linked micelles were taken up by cells without causing any signs of cell damage, while the PDMAEMA homopolymer clearly led to cell death. PMID:17691844

  11. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  12. Micelles as Soil and Water Decontamination Agents.

    PubMed

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali

    2016-05-25

    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment. PMID:27136750

  13. Solute partitioning in aqueous surfactant assemblies: comparison of hydrophobic-hydrophilic interactions in micelles, alcohol-swollen micelles, microemulsions, and synthetic vesicles

    SciTech Connect

    Russell, J.C.; Whitten, D.G.

    1982-11-03

    The structures of anionic assemblies including sodium lauryl sulfate (SLS) micelles, alcohol-swollen SLS micelles, microemulsions, and vesicles of a mixture of dipalmitoyllecithin and dicetyl phosphate are investigated by using the ground-state complexation of a hydrophilic quencher (methyl viologen) with several hydrophobic fluorescent probes, including surfactant stilbenes and 1,4-diphenylbutadiene. In SLS micelles this complexation can be decreased nearly an order of magnitude by addition of 1-heptanol, indicating that the structure of the micelle can be adjusted from the highly open structure of the pure micelle to a much more closed structure in which hydrophobic solubilizates can be sequestered from hydrophilic reagents bound to the surface. The fluorescence quenching process in anionic vesicles is strongly dependent on temperature; at low temperatures quenching occurs, while at higher temperatures addition of methyl viologen appears to increase the stilbene fluorescence, indicating that the dicationic quencher binds to the vesicle surface, increasing the order of the system. These results indicate that the degree of organization of surfactant systems can be adjusted by simple changes in composition. 33 references.

  14. Negative adsorption due to electrostatic exclusion of micelles.

    PubMed

    Somasundaran, P; Ananthapadmanabhan, K P; Deo, Puspendu

    2005-10-15

    Interactions of surfactants with solid substrates are important in the controlling of processes such as flotation, coating, flocculation and sedimentation. These interactions usually lead to adsorption on solids, but can also result in an exclusion of the reagents with dire consequences. In this work electrostatic exclusion of negatively charged dodecylbenzene sulfonate micelles from quartz/water, Bio-Sil/water and alumina/water interfaces has been investigated as a function of pH and ionic strength. Measurable negative adsorption of these surfactants from similarly charged solid/liquid interface was observed in the micellar region. In the case of porous samples with large surface area, comparison of pore size with the micelle size is necessary to avoid any erroneous conclusions regarding the role of electrostatic exclusion in a given system. A theoretical model for the electrostatic exclusion of micelles is developed and used to calculate the adsorption of negatively charged dodecylbenzene sulfonate on negatively charged quartz (pH 7), silica (Bio-Sil A, pH 3) and alumina (pH 11) in the micellar concentration region. The micellar exclusion values calculated using the model are in excellent agreement with the experimental results. PMID:16153903

  15. Multicompartment Core Micelles of Triblock Terpolymers in Organic Media

    SciTech Connect

    Schacher, Felix; Walther, Andreas; Ruppel, Markus A; Drechsler, Markus; Muller, Axel

    2009-01-01

    The formation of multicompartment micelles featuring a spheres on sphere core morphology in acetone as a selective solvent is presented. The polymers investigated are ABC triblock terpolymers, polybutadieneb-poly(2-vinyl pyridine)-b-poly(tert-butyl methacrylate) (BVT), which were synthesized via living sequential anionic polymerization in THF. Two polymers with different block lengths of the methacrylate moiety were studied with respect to the formation of multicompartmental aggregates. The micelles were analyzed by static and dynamic light scattering as well as by transmission electron microscopy. Cross-linking of the polybutadiene compartment could be accomplished via two different methods, cold vulcanization and with photopolymerization after the addition of a multifunctional acrylate. In both cases, the multicompartmental character of the micellar core is fully preserved, and the micelles could be transformed into core-stabilized nanoparticles. The successful cross-linking of the polybutadiene core is indicated by 1H NMR and by the transfer of the aggregates into nonselective solvents such as THF or dioxane.

  16. Interplay between micelle formation and waterlike phase transitions

    NASA Astrophysics Data System (ADS)

    Heinzelmann, G.; Figueiredo, W.; Girardi, M.

    2010-02-01

    A lattice model for amphiphilic aggregation in the presence of a structured waterlike solvent is studied through Monte Carlo simulations. We investigate the interplay between the micelle formation and the solvent phase transition in two different regions of temperature-density phase diagram of pure water. A second order phase transition between the gaseous (G) and high density liquid (HDL) phases that occurs at very high temperatures, and a first order phase transition between the low density liquid (LDL) and (HDL) phases that takes place at lower temperatures. In both cases, we find the aggregate size distribution curve and the critical micellar concentration as a function of the solvent density across the transitions. We show that micelle formation drives the LDL-HDL first order phase transition to lower solvent densities, while the transition G-HDL is driven to higher densities, which can be explained by the markedly different degrees of micellization in both cases. The diffusion coefficient of surfactants was also calculated in the LDL and HDL phases, changing abruptly its behavior due to the restructuring of waterlike solvent when we cross the first order LDL-HDL phase transition. To understand such behavior, we calculate the solvent density and the number of hydrogen bonds per water molecule close to micelles. The curves of the interfacial solvent density and the number of hydrogen bonds per water molecule in the first hydration signal a local phase change of the interfacial water, clarifying the diffusion mechanism of free surfactants in the solvent.

  17. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation.

    PubMed

    Gibot, Laure; Lemelle, Arnaud; Till, Ugo; Moukarzel, Béatrice; Mingotaud, Anne-Françoise; Pimienta, Véronique; Saint-Aguet, Pascale; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Chassenieux, Christophe; Vicendo, Patricia

    2014-04-14

    Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems. PMID:24552313

  18. Correlating proton transfer dynamics to probe location in confined environments.

    PubMed

    Sedgwick, Myles; Cole, Richard L; Rithner, Christopher D; Crans, Debbie C; Levinger, Nancy E

    2012-07-25

    The dramatic impact of differing environments on proton transfer dynamics of the photoacid HPTS prompted us to investigate these systems with two highly complementary methods: ultrafast time-resolved transient absorption and two-dimensional NMR spectroscopies. Both ultrafast time-resolved transient absorption spectroscopy and time-resolved anisotropy decays demonstrate the proton transfer dynamics depend intimately on the specific reverse micellar system. For w(0) = 10 reverse micelles formed with anionic AOT surfactant, the HPTS proton transfer dynamics are similar to dynamics in bulk aqueous solution, and the corresponding (1)H 2D NOESY NMR spectra display no cross peaks between HPTS and AOT consistent with the HPTS residing well hydrated by water in the interior of the reverse micelle water pool. In contrast, ultrafast transient absorption experiments show no evidence for HPTS photoinduced proton transfer reaction in reverse micelles formed with the cationic CTAB surfactant. In CTAB reverse micelles, clear cross peaks between HPTS and CTAB in the 2D NMR spectra show that HPTS embeds in the interface. These results indicate that the environment strongly impacts the proton transfer reaction and that complementary experimental techniques develop understanding of how location critically affects molecular responses. PMID:22765228

  19. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes.

    PubMed

    Latronico, Tiziana; Depalo, Nicoletta; Valente, Gianpiero; Fanizza, Elisabetta; Laquintana, Valentino; Denora, Nunzio; Fasano, Anna; Striccoli, Marinella; Colella, Matilde; Agostiano, Angela; Curri, M Lucia; Liuzzi, Grazia Maria

    2016-01-01

    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo

  20. Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes

    PubMed Central

    Valente, Gianpiero; Fanizza, Elisabetta; Laquintana, Valentino; Denora, Nunzio; Fasano, Anna; Striccoli, Marinella; Colella, Matilde; Agostiano, Angela; Curri, M. Lucia; Liuzzi, Grazia Maria

    2016-01-01

    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo

  1. A study of the synergistic effect of folate-decorated polymeric micelles incorporating Hydroxycamptothecin with radiotherapy on xenografted human cervical carcinoma.

    PubMed

    You, Hong; Fu, ShaoZhi; Qin, XingHu; Yu, YanXin; Yang, Bo; Zhang, GuangPeng; Sun, XiaoYang; Feng, Yue; Chen, Yue; Wu, JingBo

    2016-04-01

    In this study, Hydroxycamptothecin (HCPT)-loaded micelles were formed in water by the self-assembly of folate (FA)-decorated amphiphilic block copolymer, methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL), and achieved a hydrodynamic diameter about of 132 nm. HCPT release from the micelles exhibited no initial burst but showed a sustained release profile. The cytotoxicity and targeting ability of FA conjugated polymeric micelles was investigated by using methylthiazoletetrazolium (MTT) and fluorescence microscopy. We found that FA-conjugated micelles had superior cytotoxicity against HeLa cells compared to non-conjugated micelles, and that they exerted this effect by folate receptor (FR)-mediated endocytosis. In addition, HeLa cells were xenografted into nude mice and subjected to radiotherapy (RT) and/or HCPT-loaded micelle treatment. The antitumor efficacy was detected by analysis of tumor growth delay (TGD) and median survival time. Micro fluorine-18-deoxyglucose PET/computed tomography ((18)F-FDG PET/CT) was performed to assess early tumor response to HCPT-loaded micelles in combination with RT. Analysis of cell cycle redistribution, apoptosis and expression of histone H2AX phosphorylation (λ-H2AX) was used to evaluate the mechanism by which HCPT loaded micelles led to radiosensitization. Taken together, the results showed that HCPT-loaded FA decorated micelles efficiently sensitized xenografts in mice to RT, and induced G2/M phase arrest, apoptosis and expression of λ-H2AX. PMID:26752212

  2. FTIR study of horseradish peroxidase in reverse micelles.

    PubMed

    Chen, J; Xia, C; Niu, J; Li, S

    2001-04-20

    Fourier transform infrared (FTIR) method was used to study the secondary structures of horseradish peroxidase (HRP) in aqueous solution and in reverse micelles for the first time. Results indicated that the structure of HRP in sodium bis(2-ethylhexy)sulfosuccinate (AOT) reverse micelles was close to that in aqueous solution. In cetyltrimethylammonium bromide (CTAB) and sodium dodecylfate (SDS) reverse micelles the position of some bands changed. Results indicated that the secondary structure had a close relationship with the surfactant species of the reverse micelles. Among the three types of reverse micelles, the system of AOT reverse micelles was probably the most beneficial reaction media to HRP. PMID:11302746

  3. Water-induced micelle formation of block copoly(oxyethylene-oxypropylene-oxyethylene) in o-xylene

    SciTech Connect

    Wu, Guangwei; Zhou, Zukang; Chu, B. )

    1993-04-12

    Static and dynamic light scattering, viscometry, NMR, and vapor pressure osmometry techniques have been employed to study the water-induced micellization behavior of poly(oxyethylene-oxypropylene-oxyethylene) block copolymer, Pluronic L64, in o-xylene solution. Results show that Pluronic L64 does not form polymolecular micelles in the absence of water or in the presence of a small amount of water (molar ratio water/EO < 0.15). Micelles, consisting of a PPO shell and a PEO and H[sub 2]O core, are formed when the water to EO molar ratio (Z) in the micelle is greater than 0.2. For Z < 1.3, spherical micelles with an average hydrodynamic radius R[sub h] of ca. 9.2 nm are formed, with R[sub h] almost independent of Z. For Z > 1.3, both the aggregation number and the hydrodynamic radius become dependent on the Z value, then the micelle shape could be nonspherical. As experimentally evidenced by NMR spectra, the solubilized water can be classified into bound water and free water. Most likely, water is not evenly distributed in the core, as the environments of EO units at different positions in the block copolymer are not identical.

  4. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. PMID:25002267

  5. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-Suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 825-834, 2016. PMID:26743660

  6. Intrinsic parameters for the structure control of nonionic reverse micelles in styrene: SAXS and rheometry studies.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Aramaki, Kenji

    2011-05-17

    Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS. PMID:21488609

  7. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-01

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy. PMID:26458054

  8. Zwitterionic-Modified Starch-Based Stealth Micelles for Prolonging Circulation Time and Reducing Macrophage Response.

    PubMed

    Ye, Lei; Zhang, Yabin; Yang, Boguang; Zhou, Xin; Li, Junjie; Qin, Zhihui; Dong, Dianyu; Cui, Yuanlu; Yao, Fanglian

    2016-02-01

    Over the last few decades, nanoparticles have been emerging as useful means to improve the therapeutic efficacy of drug delivery and medical diagnoses. However, the heterogeneity and complexity of blood as a medium is a fundamental problem; large amounts of protein can be adsorbed onto the surface of nanoparticles and cause their rapid clearance before reaching their target sites, resulting in the failure of drug delivery. To overcome this challenge, we present a rationally designed starch derivative (SB-ST-OC) with both a superhydrophilic moiety of zwitterionic sulfobetaine (SB) and a hydrophobic segment of octane (OC) as functional groups, which can self-assemble into "stealth" micelles (SSO micelles). The superhydrophilic SB kept the micelles stable against aggregation in complex media and imbued them with "stealth" properties, eventually extending their circulation time in blood. In stability and hemolysis tests the SSO micelles showed excellent protein resistance properties and hemocompatibility. Moreover, a phagocytosis test and cytokine secretion assay confirmed that the SSO micelles had less potential to trigger the activation of macrophages and were more suitable as a drug delivery candidate in vivo. On the basis of these results, doxorubicin (DOX), a hydrophobic drug, was used to investigate the potential application of this novel starch derivative in vivo. The results of the pharmacokinetic study showed that the values of the plasma area under the concentration curve (AUC) and elimination half-life (T1/2) of the SSO micelles were higher than those of micelles without SB modifications. In conclusion, the combination of excellent protein resistance, lower macrophage activation, and longer circulation time in vivo makes this synthesized novel starch derivative a promising candidate as a hydrophobic drug carrier for long-term circulation in vivo. PMID:26835968

  9. Higher order structure of proteins solubilized in AOT reverse micelles.

    PubMed

    Naoe, Kazumitsu; Noda, Kazuki; Kawagoe, Mikio; Imai, Masanao

    2004-11-15

    The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0

  10. Folate-conjugated polymer micelles for active targeting to cancer cells: preparation, in vitro evaluation of targeting ability and cytotoxicity

    NASA Astrophysics Data System (ADS)

    You, Jian; Li, Xin; de Cui, Fu; Du, Yong-Zhong; Yuan, Hong; Hu, Fu qiang

    2008-01-01

    To obtain an active-targeting carrier to cancer cells, folate-conjugated stearic acid grafted chitosan oligosaccharide (Fa-CSOSA) was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The substitution degree is 22.1%. The critical micelle concentrations (CMCs) of Fa-CSOSA were 0.017 and 0.0074 mg ml-1 in distilled water and PBS (pH 7.4), respectively. The average volume size range of Fa-CSOSA micelles was 60-120 nm. The targeting ability of Fa-CSOSA micelles was investigated against two kinds of cell lines (A549 and Hela), which have different amounts of folate receptors in their surface. The results indicated that Fa-CSOSA micelles presented a targeting ability to the cells (Hela) with a higher expression of folate receptor during a short-time incubation (<6 h). As incubation proceeded, the special spatial structure of the micelles gradually plays a main role in cellular internalization of the micelles. Good internalization of the micelles into both Hela and A549 cells was shown. Then, paclitaxel (PTX) was encapsulated into the micelles, and the content of PTX in the micelles was about 4.8% (w/w). The average volume size range of PTX-loaded micelles was 150-340 nm. Furthermore, the anti-tumor efficacy in vitro was investigated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The IC50 of Taxol (a clinical formulation containing PTX) on A549 and Hela cells was 7.0 and 11.0 µg ml-1, respectively. The cytotoxicity of PTX-loaded micelles was improved sharply (IC50 on A549: 0.32 µg ml-1 IC50 on Hela: 0.268 µg ml-1). This is attributed to the increased intracellular delivery of the drug. The Fa-CSOSA micelles that are presented may be a promising active-targeting carrier candidate via folate mediation.