Science.gov

Sample records for micelle-based drug delivery

  1. Thermo/pH Dual Responsive Mixed-Shell Polymeric Micelles Based on the Complementary Multiple Hydrogen Bonds for Drug Delivery.

    PubMed

    Wu, Qiuhua; Tang, Xiuping; Liu, Xue; Hou, Yu; Li, He; Yang, Chen; Yi, Jie; Song, Ximing; Zhang, Guolin

    2016-01-01

    Thermo/pH dual responsive mixed-shell polymeric micelles based on multiple hydrogen bonding were prepared by self-assembly of diaminotriazine-terminated poly(?-caprolactone) (DAT-PCL), uracil-terminated methoxy poly(ethylene glycol) (MPEG-U), and uracil-terminated poly(N-vinylcaprolactam) (PNVCL-U) at room temperature. PCL acted as the core and MPEG/PNVCL as the mixed shell. Increasing the temperature, PNVCL collapsed and enclosed the PCL core, while MPEG penetrated through the PNVCL shell, thereby leading to the formation of MPEG channels on the micelles surface. The low cytotoxicity of the mixed micelles was confirmed by an MTT assay against BGC-823 cells. Studies on the in vitro drug release showed that a much faster release rate was observed at pH?5.0 compared to physiological pH, owing to the dissociation of hydrogen bonds. Therefore, the mixed-shell polymeric micelles would be very promising candidates in drug delivery systems. PMID:26377387

  2. pH-sensitive micelles based on acid-labile pluronic F68-curcumin conjugates for improved tumor intracellular drug delivery.

    PubMed

    Fang, Xiao-Bin; Zhang, Jin-Ming; Xie, Xi; Liu, Di; He, Cheng-Wei; Wan, Jian-Bo; Chen, Mei-Wan

    2016-04-11

    Curcumin (Cur) is a highly pleiotropic anticancer agent that inhibits cell proliferation and induces apoptosis in cancer cells. A variety of nano-systems constituted by polymer-drug conjugates have been designed to overcome its shortages on water solubility, chemical instability, and poor bioavailability. However, most of them suffer from ineffective release of Cur in cancer cells in vivo. This work developed a novel flexible acid-responsive micelle formulation by covalently conjugating Cur on the hydrophilic terminals of pluronic F68 chains via cis-aconitic anhydride linkers. The synthesized F68-Cis-Cur conjugates can readily precipitate to form homogeneous micelles with average size about 100nm in aqueous solution. In acid environments, F68-Cis-Cur conjugates would break down and subsequently release Cur rapidly, for the reason of pH-sensitive cleavage of cis-aconitic anhydride linkers. In vitro anticancer activity tests demonstrated that F68-Cis-Cur micelles induced higher cytotoxicity against both A2780 and SMMC 7721 cells than free Cur. It provided a larger decrease of mitochondrion membrane potential and induced cellular apoptosis. F68-Cis-Cur micelles remarkably increased cellular uptake of Cur than free Cur through caveolae-mediated endocytosis in an energy-dependent manner. This study demonstrates F68-Cis-Cur conjugation as a promising tool for improving intracellular drug delivery in cancer therapy. PMID:26784981

  3. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    PubMed Central

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(?-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. PMID:25364250

  4. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery.

    PubMed

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(?-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation-deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. PMID:25364250

  5. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery.

    PubMed

    Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2016-01-01

    Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency. PMID:26676863

  6. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging.

    PubMed

    Guo, Jintang; Hong, Hao; Chen, Guojun; Shi, Sixiang; Nayak, Tapas R; Theuer, Charles P; Barnhart, Todd E; Cai, Weibo; Gong, Shaoqin

    2014-12-24

    Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for (64)Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG). The doxorubicin (DOX)-loaded unimolecular micelles showed a pH-dependent drug release profile and a uniform size distribution. A significantly higher cellular uptake of TRC105-conjugated micelles was observed in CD105-positive human umbilical vein endothelial cells (HUVEC) than nontargeted micelles due to CD105-mediated endocytosis. In contrast, similar and extremely low cellular uptake of both targeted and nontargeted micelles was observed in MCF-7 human breast cancer cells (CD105-negative). The difference between the in vivo tumor accumulation of (64)Cu-labeled TRC105-conjugated micelles and that of nontargeted micelles was studied in 4T1 murine breast tumor-bearing mice, by serial positron emission tomography (PET) imaging and validated by biodistribution studies. These multifunctional unimolecular micelles offer pH-responsive drug release, noninvasive PET imaging capability, together with both passive and active tumor-targeting abilities, thus making them a desirable nanoplatform for cancer theranostics. PMID:24628452

  7. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging

    PubMed Central

    2015-01-01

    Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for 64Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(l-lactide)-poly(ethylene glycol) (PLLA-PEG). The doxorubicin (DOX)-loaded unimolecular micelles showed a pH-dependent drug release profile and a uniform size distribution. A significantly higher cellular uptake of TRC105-conjugated micelles was observed in CD105-positive human umbilical vein endothelial cells (HUVEC) than nontargeted micelles due to CD105-mediated endocytosis. In contrast, similar and extremely low cellular uptake of both targeted and nontargeted micelles was observed in MCF-7 human breast cancer cells (CD105-negative). The difference between the in vivo tumor accumulation of 64Cu-labeled TRC105-conjugated micelles and that of nontargeted micelles was studied in 4T1 murine breast tumor-bearing mice, by serial positron emission tomography (PET) imaging and validated by biodistribution studies. These multifunctional unimolecular micelles offer pH-responsive drug release, noninvasive PET imaging capability, together with both passive and active tumor-targeting abilities, thus making them a desirable nanoplatform for cancer theranostics. PMID:24628452

  8. Micelle-Based Adjuvants for Subunit Vaccine Delivery

    PubMed Central

    Trimaille, Thomas; Verrier, Bernard

    2015-01-01

    In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery. PMID:26426060

  9. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel.

    PubMed

    Li, Jing; Yin, Tingjie; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-04-10

    Tumor-targeted drug delivery and microenvironment-responsive drug release are attractive strategies in cancer treatment. Our previous study demonstrated that redox-sensitive micelles based on hyaluronic acid-deoxycholic acid (HA-ss-DOCA) conjugates exhibited excellent drug-loading capacities (34.1%) for paclitaxel (PTX) and rapid drug release in response to reducing agent, glutathione. In the present study, the physicochemical and biological properties of PTX-loaded HA-ss-DOCA (PTX-HA-ss-DOCA) micelles were investigated further. The micelles have an average size of about 120 nm and a zeta potential of about -36 mV. Transmission electron microscopy and wide-angle X-ray diffraction analysis demonstrated redox-sensitive degradation of micelles in the presence of glutathione. Moreover, the encapsulated payload was effectively released from HA-ss-DOCA micelles into cytoplasm and then rapidly transported into nuclei. In vitro cytotoxicity and cell apoptosis assay further revealed that HA significantly improved the tumor-specific drug delivery of HA-ss-DOCA micelles via receptor-mediated endocytosis, while efficient intracellular drug release and transportation lead to marked inhibition of tumor cell growth, as compared to Taxol(®) and insensitive micelles. More importantly, PTX-HA-ss-DOCA micelles demonstrated superior in vivo antitumor activity compared with Taxol(®) and insensitive control, and decreased systemic toxicity. Herein we present data which provide valuable insight into the design and development of tumor-specific drug delivery systems. PMID:25655715

  10. pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery.

    PubMed

    Woraphatphadung, Thisirak; Sajomsang, Warayuth; Gonil, Pattarapond; Treetong, Alongkot; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2016-01-30

    The amphiphilic chitosan derivatives, N-naphthyl-N,O-succinyl chitosan (NSCS), N-octyl-N-O-succinyl chitosan (OSCS) and N-benzyl-N,O-succinyl chitosan (BSCS), were synthesized. Meloxicam (MX) was loaded into polymeric micelles (PMs), and the effects of hydrophobic moieties of the inner core segment on the loading efficiency, stability of MX-loaded PMs, cytotoxicity, drug release, and porcine small intestine permeation were investigated. Among the hydrophobic cores, the N-octyl moiety revealed the highest MX loading efficiency and most stable MX-loaded PMs compared to the other hydrophobic cores. All PMs were spherically shaped (size 213-282nm) and had low toxicity against Caco-2 cells. The release of MX from PMs was found to be dependent on both hydrophobic cores and hydrophilic shells. In acidic medium at 0-2h, low cumulative MX release was obtained in the MX-loaded OSCS PMs compared to MX-loaded NSCS PMs and MX-loaded BSCS PMs as well as MX free drug. However, when the pH was increased to 6.8, the MX release significantly increased in all MX-loaded PMs. Furthermore, the intestinal permeation rates of MX from all MX-loaded PMs were not significantly different. These results suggest that MX was successfully incorporated into the PMs at high efficiency and good stability by optimizing the hydrophobic moieties of the inner core segments. PMID:26657271

  11. Transdermal drug delivery

    PubMed Central

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  12. Transdermal drug delivery.

    PubMed

    Prausnitz, Mark R; Langer, Robert

    2008-11-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine. PMID:18997767

  13. Intracochlear Drug Delivery Systems

    PubMed Central

    Borenstein, Jeffrey T.

    2011-01-01

    Introduction Advances in molecular biology and in the basic understanding of the mechanisms associated with sensorineural hearing loss and other diseases of the inner ear, are paving the way towards new approaches for treatments for millions of patients. However, the cochlea is a particularly challenging target for drug therapy, and new technologies will be required to provide safe and efficacious delivery of these compounds. Emerging delivery systems based on microfluidic technologies are showing promise as a means for direct intracochlear delivery. Ultimately, these systems may serve as a means for extended delivery of regenerative compounds to restore hearing in patients suffering from a host of auditory diseases. Areas covered in this review Recent progress in the development of drug delivery systems capable of direct intracochlear delivery is reviewed, including passive systems such as osmotic pumps, active microfluidic devices, and systems combined with currently available devices such as cochlear implants. The aim of this article is to provide a concise review of intracochlear drug delivery systems currently under development, and ultimately capable of being combined with emerging therapeutic compounds for the treatment of inner ear diseases. Expert Opinion Safe and efficacious treatment of auditory diseases will require the development of microscale delivery devices, capable of extended operation and direct application to the inner ear. These advances will require miniaturization and integration of multiple functions, including drug storage, delivery, power management and sensing, ultimately enabling closed-loop control and timed-sequence delivery devices for treatment of these diseases. PMID:21615213

  14. Applications of polymer micelles for imaging and drug delivery.

    PubMed

    Movassaghian, Sara; Merkel, Olivia M; Torchilin, Vladimir P

    2015-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers, are widely considered as convenient nano-carriers for a variety of applications, such as diagnostic imaging, and drug and gene delivery. They have demonstrated a variety of favorable properties including biocompatibility, longevity, high stability in vitro and in vivo, capacity to effectively solubilize a variety of poorly soluble drugs, changing the release profile of the incorporated pharmaceutical agents, and the ability to accumulate in the target zone based on the enhanced permeability and retention effect. Moreover, additional functions can be imparted to the micelle-based delivery systems by engineering their surface for specific applications. Various targeting ligands can be attached for cell or intracellular accumulation at a site of interest. Also, the chelation or incorporation of imaging moieties into the micelle structure enables in vivo biodistribution studies. Moreover, pH-, thermo-, ultrasound-, enzyme- and light-sensitive block-copolymers allow for controlled micelle dissociation and triggered drug release in response to the pathological environment-specific stimuli and/or externally applied signals. The combination of these approaches can further improve specificity and efficacy of micelle-based drug delivery to promote the development of smart multifunctional micelles. PMID:25683687

  15. PECTIN IN CONTROLLED DRUG DELIVERY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlled drug delivery remains a research focus for public health to enhance patient compliance, drug efficiency and to reduce the side effects of drugs. Pectin, an edible plant polysaccharide, has shown potential for the construction of drug delivery systems for site-specific drug delivery. Sev...

  16. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  17. Mucoadhesive drug delivery systems

    PubMed Central

    Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.

    2011-01-01

    Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958

  18. Organogels in drug delivery.

    PubMed

    Murdan, Sudaxshina

    2005-05-01

    In the last decade, interest in physical organogels has grown rapidly with the discovery and synthesis of a very large number of diverse molecules, which can gel organic solvents at low concentrations. The gelator molecules immobilise large volumes of liquid following their self-assembly into a variety of aggregates such as rods, tubules, fibres and platelets. The many interesting properties of these gels, such as their thermoreversibility, have led to much excitement over their industrial applications. However, only a few organogels are currently being studied as drug/vaccine delivery vehicles as most of the existing organogels are composed of pharmaceutically unacceptable organic liquids and/or unacceptable/untested gelators. In this paper a brief overview of organogels is presented, followed by a more in-depth review of the gels that have been investigated for drug and/or vaccine delivery. These include microemulsion-based gels and lecithin gels (studied for transdermal delivery), sorbitan monostearate organogels and amphiphilogels (studied as vaccine adjuvants and for oral and transdermal drug delivery, respectively), gels composed of alanine derivatives (investigated as in situ forming gels) and Eudragit organogels (studied as a matrix for suppositories). Finally, pluronic lecithin organogels, descendents of lecithin gels but which are not really organogels, are briefly discussed for their interesting history, their root and the wide interest in these systems. PMID:16296770

  19. Nanotopography applications in drug delivery.

    PubMed

    Walsh, Laura A; Allen, Jessica L; Desai, Tejal A

    2015-12-01

    Refinement of micro- and nanofabrication in the semiconductor field has led to innovations in biomedical technologies. Nanotopography, in particular, shows great potential in facilitating drug delivery. The flexibility of fabrication techniques has created a diverse array of topographies that have been developed for drug delivery applications. Nanowires and nanostraws deliver drug cytosolically for in vitro and ex vivo applications. In vivo drug delivery is limited by the barrier function of the epithelium. Nanowires on microspheres increase adhesion and residence time for oral drug delivery, while also increasing permeability of the epithelium. Low aspect ratio nanocolumns increase paracellular permeability, and in conjunction with microneedles increase transdermal drug delivery of biologics in vivo. In summary, nanotopography is a versatile tool for drug delivery. It can deliver directly to cells or be used for in vivo delivery across epithelial barriers. This editorial highlights the application of nanotopography in the field of drug delivery. PMID:26512871

  20. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  1. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  2. Emerging Frontiers in Drug Delivery.

    PubMed

    Tibbitt, Mark W; Dahlman, James E; Langer, Robert

    2016-01-27

    Medicine relies on the use of pharmacologically active agents (drugs) to manage and treat disease. However, drugs are not inherently effective; the benefit of a drug is directly related to the manner by which it is administered or delivered. Drug delivery can affect drug pharmacokinetics, absorption, distribution, metabolism, duration of therapeutic effect, excretion, and toxicity. As new therapeutics (e.g., biologics) are being developed, there is an accompanying need for improved chemistries and materials to deliver them to the target site in the body, at a therapeutic concentration, and for the required period of time. In this Perspective, we provide an historical overview of drug delivery and controlled release followed by highlights of four emerging areas in the field of drug delivery: systemic RNA delivery, drug delivery for localized therapy, oral drug delivery systems, and biologic drug delivery systems. In each case, we present the barriers to effective drug delivery as well as chemical and materials advances that are enabling the field to overcome these hurdles for clinical impact. PMID:26741786

  3. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  4. Advanced drug delivery in motion.

    PubMed

    Mastrobattista, Enrico

    2013-09-15

    After 50 years of research on advanced drug delivery systems the time has come to critically reflect upon the past achievements. Despite some successes, many hurdles still need to be overcome before we can quantitatively deliver therapeutically relevant amounts of drug molecules to any desired location within the human body. In this commentary, I give my opinion on how to improve the current generation of nanocarriers for drug delivery. In addition, I speculate on which direction the drug delivery field should be going in order to fulfill the "magic bullet" dream in the long run. PMID:23665006

  5. Bioresponsive matrices in drug delivery

    PubMed Central

    2010-01-01

    For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli. PMID:21114841

  6. Nanoencapsulation for drug delivery

    PubMed Central

    Kumari, Avnesh; Singla, Rubbel; Guliani, Anika; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of drug/small molecules in nanocarriers (NCs) is a very promising approach for development of nanomedicine. Modern drug encapsulation methods allow efficient loading of drug molecules inside the NCs thereby reducing systemic toxicity associated with drugs. Targeting of NCs can enhance the accumulation of nanonencapsulated drug at the diseased site. This article focussed on the synthesis methods, drug loading, drug release mechanism and cellular response of nanoencapsulated drugs on liposomes, micelles, carbon nanotubes, dendrimers, and magnetic NCs. Also the uses of these various NCs have been highlighted in the field of nanotechnology. PMID:26417260

  7. Drug Delivery Systems for Platinum Drugs

    NASA Astrophysics Data System (ADS)

    Huynh, Vien T.; Scarano, Wei; Stenzel, Martina H.

    2013-09-01

    Since the discovery of cisplatin, drugs based on platinum, have made a significant impact on the treatment of various cancers. The administration of platinum drugs is however accompanied by significant side effects. This chapter discusses the types of drug delivery systems that have been developed in order to enable the targeted delivery while maintaining controlled temporal supply of the drug. The sizes of carriers range from nanometer to micrometer sized particles. The most common types of drug carriers are micelles, liposomes, nanoparticles, and dendrimers, but also a few microspheres have been developed. Most striking aspect of the delivery of platinum drugs is the possibility of physical encapsulation but also the binding of the drug to the polymer carrier coordinate covalent bond. Since platinum drugs have typically two permanent and two leaving ligands, the polymer can be part of either ligand. As the leaving ligand, the platinum drug is released often as cisplatin. If the polymer provides the functionality for the permanent ligand, a new macromolecular drug has been formed. In addition to the attachment of pt(II) drugs, recent offorts are devoted to the conjugation via the Pt((IV) prodrug.

  8. Ultrasonic drug delivery in Oncology.

    PubMed

    Udroiu, Ion

    2015-01-01

    Ultrasound-assisted drug delivery is an emerging technique that has the advantage of being non-invasive, efficiently and specifically targeted and controllable. While systemic drugs often show detrimental side effects, their ultrasound-triggered local release at the selected tissue may improve safety and specifity of therapy. An increasing amount of animal and preclinical studies demonstrates how ultrasound can also be used for increasing the efficacy of chemotherapeutic drug release to solid tumors. In particular, this technique may be functional to reach uniform delivery of chemotherapeutic agents throughout tumors, which is naturally restricted by their abnormal vascularization and interstitial pressure. This review deals with the physical mechanisms of ultrasound, the different kinds of drug carriers (microbubbles, liposomes and micelles) and the biological phenomena useful for cancer treatment (hyperthermia, sonoporation, enhanced extravasation, sonophoresis and blood-brain barrier disruption), showing how much ultrasonic drug delivery is a promising method in the oncological field. PMID:26011326

  9. PH responsive polypeptide based polymeric micelles for anticancer drug delivery.

    PubMed

    Zhao, Dongping; Li, Bingqiang; Han, Jiaming; Yang, Yue; Zhang, Xinchen; Wu, Guolin

    2015-09-01

    A pH-responsive polymeric micelle based on poly(aspartamide) derivative was explored as an efficient acid-triggered anticancer drug delivery system. Poly(?,?-l-asparthydrazide) (PAHy) was prepared by aminolysis reaction of polysuccinimide with hydrazine hydrate. Poly(ethylene glycol) and aliphatic chain (C18) were conjugated onto PAHy to afford an amphiphilic copolymer with acid-liable hydrazone bonds. The structure of the resulting copolymer and its self-assembled micelles were confirmed by (1) H NMR, FTIR, DLS, and TEM. Furthermore, doxorubicin (DOX) was loaded into the polymeric micelles via the hydrophobic interaction between the C18 group and DOX molecules, and the ?-? staking between the hydrazone conjugated DOX and free DOX molecules. Results showed that the DOX loaded nanoparticle (NP) was relatively stable under physiological conditions, while the DOX was quickly released in response to acidity due to the shedding of mPEG shells and dissociating of C18 segments because of the pH-cleavage of intermediate hydrazone bonds. In addition, the DOX loaded micelles presented a high cytotoxic activity against tumor cells in vitro. This pH responsive NP has appeared highly promising for the targeted intracellular delivery of hydrophobic chemotherapeutics in cancer therapy. PMID:25689362

  10. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  11. Preparation, characterization, and in vitro drug release behavior of glutathione-sensitive long-circulation micelles based on polyethylene glycol prodrug.

    PubMed

    Shi, Liyan; Ding, Kaikai; Sun, Xin; Zhang, Ling; Zeng, Tian; Yin, Yihua; Zheng, Hua

    2016-04-01

    In this paper, a kind of glutathione-sensitive polymeric micelles was prepared through assembling in aqueous solution of an amphiphilic polymeric prodrug which was synthesized by linkage of 6-mercaptopurine (6-MP) and polyethylene glycol monomethyl ether using propiolic acid as a connecting arm. The glutathione (GSH)-sensitive strategy is based on a Michael addition-elimination reaction, that is the amphiphilic polymeric prodrug which contains α, β-unsaturated carbonyl group acts as a Michael acceptor to receive the attack of nucleophile - glutathione, and undergoes elimination reaction to release the original drug. Transmission electron microscope observation showed that the polymeric micelles (PMs) had a spherical-like morphology with a mean diameter of 28 ± 3.2 nm. The dynamic light scattering investigation data exhibited that the size and distribution changes of PMs are negligible after being placed for 15 days. In vitro drug release study indicated that only less than 13% of 6-MP was released from the micelles under GSH stimulation at micromolar level, while 34.5, 53.7, and 77.8% accumulative release rates were achieved under GSH stimulation at millimolar level (1, 2 and 10 mM), respectively. The cell inhibition rate of PM solution against HL-60 cells carried out by MTT method reached 85%. The cellular uptake and the intracellular drug release of PMs in HL-60 cells were observed through determining the intracellular 6-MP content by UV-vis spectrophotometer. In vitro macrophage uptake study showed a low phagocytosis rate, indicating the long-circulation ability of the PMs. PMID:26764973

  12. Microfabricated injectable drug delivery system

    DOEpatents

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  13. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-01-26

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery. PMID:26580477

  14. Nanothermodynamics mediates drug delivery.

    PubMed

    Stefi, Aikaterina L; Sarantopoulou, Evangelia; Kollia, Zoe; Spyropoulos-Antonakakis, Nikolaos; Bourkoula, Athanasia; Petrou, Panagiota S; Kakabakos, Sotirios; Soras, Georgios; Trohopoulos, Panagiotis N; Nizamutdinov, Alexey S; Semashko, Vadim V; Cefalas, Alkiviadis Constantinos

    2015-01-01

    The efficiency of penetration of nanodrugs through cell membranes imposes further complexity due to nanothermodynamic and entropic potentials at interfaces. Action of nanodrugs is effective after cell membrane penetration. Contrary to diffusion of water diluted common molecular drugs, nanosize imposes an increasing transport complexity at boundaries and interfaces (e.g., cell membrane). Indeed, tiny dimensional systems brought the concept of "nanothermodynamic potential," which is proportional to the number of nanoentities in a macroscopic system, from either the presence of surface and edge effects at the boundaries of nanoentities or the restriction of the translational and rotational degrees of freedom of molecules within them. The core element of nanothermodynamic theory is based on the assumption that the contribution of a nanosize ensemble to the free energy of a macroscopic system has its origin at the excess interaction energy between the nanostructured entities. As the size of a system is increasing, the contribution of the nanothermodynamic potential to the free energy of the system becomes negligible. Furthermore, concentration gradients at boundaries, morphological distribution of nanoentities, and restriction of the translational motion from trapping sites are the source of strong entropic potentials at the interfaces. It is evident therefore that nanothermodynamic and entropic potentials either prevent or allow enhanced concentration very close to interfaces and thus strongly modulate nanoparticle penetration within the intracellular region. In this work, it is shown that nano-sized polynuclear iron (III)-hydroxide in sucrose nanoparticles have a nonuniform concentration around the cell membrane of macrophages in vivo, compared to uniform concentration at hydrophobic prototype surfaces. The difference is attributed to the presence of entropic and nanothermodynamic potentials at interfaces. PMID:25416996

  15. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  16. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems. Ultrasound parameters are optimized to achieve maximum cell internalization of molecules and increased nanoparticle delivery to a cell layer on a coverslip. In-vivo studies demonstrate the possibility of using a lower dose of paclitaxel to slow tumor growth rates, increase doxorubicin concentration in tumor tissue, and enhance tumor delivery of fluorescent molecules through treatments that combine nanoparticles with ultrasound and microbubbles.

  17. Optimizing gastrointestinal delivery of drugs.

    PubMed

    Wilding, I R; Davis, S S; O'Hagan, D T

    1994-06-01

    There is currently a great deal of effort being aimed at achieving effective delivery of novel therapeutic drugs, such as peptides, by the oral route. Opportunities have been identified which could lead to more convenient delivery systems for this class of drug. It is likely that a polypeptide given unprotected into the gastrointestinal environment will be degraded significantly. However, it is well known that small quantities of dietary proteins can be absorbed, even though these may have little or no physiological effect. It is felt that the colon may provide an advantageous absorption site for peptides. As a consequence there has been considerable interest, not only in the development of colonic delivery systems, but also in the establishment of strategies designed to maximize peptide absorption from the colon. Traditionally, vaccine research has been concerned with producing systemic immunity by parenteral immunization. However, the gradual acceptance of the importance of IgA in protecting mucosal surfaces against infection from numerous pathogenic organisms has led to an increased interest in oral immunization. Because of the existence of the CMIS, oral immunization induces secretory immunity in both the genital and respiratory tracts. Therefore, oral immunization offers the possibility for development of easily administered vaccines that will be effective in prevention against important respiratory and genital tract infections. The recent advances in recombinant DNA technology and the development of antigen delivery systems have given rise to optimism that several new and improved oral vaccines may be available by the next millennium. PMID:7949458

  18. Opportunities in respiratory drug delivery.

    PubMed

    Pritchard, John N; Giles, Rachael D

    2014-12-01

    A wide range of asthma and chronic obstructive pulmonary disease products are soon to be released onto the inhaled therapies market and differentiation between these devices will help them to gain market share over their competitors. Current legislation is directing healthcare towards being more efficient and cost-effective in order to continually provide quality care despite the challenges of aging populations and fewer resources. Devices and drugs that can be differentiated by producing improved patient outcomes would, therefore, be likely to win market share. In this perspective article, the current and potential opportunities for the successful delivery and differentiation of new inhaled drug products are discussed. PMID:25531928

  19. Food, physiology and drug delivery.

    PubMed

    Varum, F J O; Hatton, G B; Basit, A W

    2013-12-01

    Gastrointestinal physiology is dynamic and complex at the best of times, and a multitude of known variables can affect the overall bioavailability of drugs delivered via the oral route. Yet while the influences of food and beverage intake as just two of these variables on oral drug delivery have been extensively documented in the wider literature, specific information on their effects remains sporadic, and is not so much contextually reviewed. Food co-ingestion with oral dosage forms can mediate several changes to drug bioavailability, yet the precise mechanisms underlying this have yet to be fully elucidated. Likewise, the often detrimental effects of alcohol (ethanol) on dosage form performance have been widely observed experimentally, but knowledge of which has only moderately impacted on clinical practice. Here, we attempt to piece together the available subject matter relating to the influences of both solid and liquid foodstuffs on the gastrointestinal milieu and the implications for oral drug delivery, with particular emphasis on the behaviour of modified-release dosage forms, formulation robustness and drug absorption. Providing better insight into these influences, and exemplifying cases where formulations have been developed or modified to circumvent their associated problems, can help to appropriately direct the design of future in vitro digestive modelling systems as well as oral dosage forms resilient to these effects. Moreover, this will help to better our understanding of the impact of food and alcohol intake on normal gut behaviour and function. PMID:23612358

  20. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension. Superhydrophobicity is shown to be enhanced with further increases in PGC-C18 content and surface roughness (a decrease in fiber size). We demonstrate the utility of superhydrophobicity as a method for drug delivery. When the camptothecin derivatives SN-38 and CPT-11 are encapsulated within electrospun meshes, changes in air layer stability (due to changes in PGC-C18 content) dictate the rate of drug release by controlling the rate in which water can permeate into the porous 3D electrospun structure. Drug release can be tuned from 2 weeks to >10 weeks from 300 mum meshes, and meshes effectively kill a variety of cancer cell lines (lung, colon, breast) when utilized in a cytotoxicity assay. After determining that air could be used to control the rate of drug release, superhydrophobic 3D materials are explored for three applications. First, meshes are considered as a potential combination reinforcement-drug delivery device for use in resectable colorectal cancer. Second, removal of the air layer in superhydrophobic meshes is used as a method to trigger drug release. The pressure generated from high-intensity focused ultrasound (0.75-4.25 MPa) can remove the air layer spatially and temporally, allowing drug release to be controlled with application of a sufficient treatment. Third, "connective" electrosprayed coatings are deposited on chemically distinct material surfaces, which are both three-dimensional and mechanically robust. In summary, superhydrophobic 3D materials are fabricated and characterized, and are utilized as drug delivery devices. Controlled air removal from these materials offers an entirely new strategy for drug delivery, and is promising for the applications considered in this work as well as many others.

  1. Thermosensitive polymers for drug delivery

    SciTech Connect

    Gutowska, A.; Kim, Sung Wan

    1996-12-31

    Thermosensitive polymers (TSP) demonstrating temperature-dependent temperature-dependent swelling in water have been extensively studied in recent years. Their molecular and physical properties have been tailored for a variety of biomedical and engineering uses. This presentation will discuss TSP based on poly(N-isopropylacrylamide) and its crosslinked networks modified with hydrophobic or hydrophilic components by copolymerization blending and formation of interpenetrating polymer networks (IPNs). TSP designed for three different areas of drug delivery will be presented. First, heparin releasing temperature-sensitive polymers for the prevention of surface induced thrombosis will be presented as an example of a local macromolecular delivery from a surface of a medical device. Second, a new oral delivery device based on a novel mechanical squeezing concept, utilizing specific swelling-deswelling characteristics of temperature- and temperature/pH-sensitive hydrogels will be described. These hydrogels were synthesized to exhibit a controlled swelling-deswelling kinetics, hence a variety of release profiles may be generated: a delayed, a zero-order or an {open_quotes}on-off{close_quotes} release profile. Finally, thermally reversible polymeric gels as an extracellular matrix for the entrapment of pancreatic islet cells in biohybrid artificial pancreas for insulin delivery will be discussed.

  2. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. PMID:26501994

  3. Ocular drug delivery systems: An overview

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    2014-01-01

    The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed. PMID:25590022

  4. Nanoparticle mediated non-covalent drug delivery?

    PubMed Central

    Doane, Tennyson; Burda, Clemens

    2013-01-01

    The use of nanoparticles (NPs) for enhanced drug delivery has been heavily explored during the last decade. Within the field, it is has become increasingly apparent that the physical properties of the particles themselves dictate their efficacy, and the relevant non-covalent chemistry at the NP interface also influences how drugs are immobilized and delivered. In this review, we reflect on the physical chemistry of NP mediated drug delivery (and more specifically, non-covalent drug delivery) at the three main experimental stages of drug loading, NP–drug conjugate transport, and the resulting cellular drug delivery. Through a critical evaluation of advances in drug delivery within the last decade, an outlook for biomedical applications of nanoscale transport vectors will be presented. PMID:22664231

  5. Nanoparticle mediated non-covalent drug delivery.

    PubMed

    Doane, Tennyson; Burda, Clemens

    2013-05-01

    The use of nanoparticles (NPs) for enhanced drug delivery has been heavily explored during the last decade. Within the field, it is has become increasingly apparent that the physical properties of the particles themselves dictate their efficacy, and the relevant non-covalent chemistry at the NP interface also influences how drugs are immobilized and delivered. In this review, we reflect on the physical chemistry of NP mediated drug delivery (and more specifically, non-covalent drug delivery) at the three main experimental stages of drug loading, NP-drug conjugate transport, and the resulting cellular drug delivery. Through a critical evaluation of advances in drug delivery within the last decade, an outlook for biomedical applications of nanoscale transport vectors will be presented. PMID:22664231

  6. Advances in colonic drug delivery.

    PubMed

    Basit, Abdul W

    2005-01-01

    Targeting drugs and delivery systems to the colonic region of the gastrointestinal tract has received considerable interest in recent years. Scientific endeavour in this area has been driven by the need to better treat local disorders of the colon such as inflammatory bowel disease (ulcerative colitis and Crohn's disease), irritable bowel syndrome and carcinoma. The colon is also receiving significant attention as a portal for the entry of drugs into the systemic circulation. A variety of delivery strategies and systems have been proposed for colonic targeting. These generally rely on the exploitation of one or more of the following gastrointestinal features for their functionality: pH, transit time, pressure or microflora. Coated systems that utilise the pH differential in the gastrointestinal tract and prodrugs that rely on colonic bacteria for release have been commercialised. Both approaches have their own inherent limitations. Many systems in development have progressed no further than the bench, while others are expensive or complex to manufacture, or lack the desired site-specificity. The universal polysaccharide systems appear to be the most promising because of their practicality and exploitation of the most distinctive property of the colon, abundant microflora. PMID:16162022

  7. Ungual and transungual drug delivery.

    PubMed

    Shivakumar, H N; Juluri, Abhishek; Desai, B G; Murthy, S Narasimha

    2012-08-01

    Topical therapy is desirable in treatment of nail diseases like onychomycosis (fungal infection of nail) and psoriasis. The topical treatment avoids the adverse effects associated with systemic therapy, thereby enhancing the patient compliance and reducing the treatment cost. However the effectiveness of the topical therapies has been limited due to the poor permeability of the nail plate to topically applied therapeutic agents. Research over the past one decade has been focused on improving the transungual permeability by means of chemical treatment, penetration enhancers, mechanical and physical methods. The present review is an attempt to discuss the different physical and chemical methods employed to increase the permeability of the nail plate. Minimally invasive electrically mediated techniques such as iontophoresis have gained success in facilitating the transungual delivery of actives. In addition drug transport across the nail plate has been improved by filing the dorsal surface of the nail plate prior to application of topical formulation. But attempts to improve the trans-nail permeation using transdermal chemical enhancers have failed so far. Attempts are on to search suitable physical enhancement techniques and chemical transungual enhancers in view to maximize the drug delivery across the nail plate. PMID:22149347

  8. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  9. Physically facilitating drug-delivery systems

    PubMed Central

    Rodriguez-Devora, Jorge I; Ambure, Sunny; Shi, Zhi-Dong; Yuan, Yuyu; Sun, Wei; Xu, Tao

    2012-01-01

    Facilitated/modulated drug-delivery systems have emerged as a possible solution for delivery of drugs of interest to pre-allocated sites at predetermined doses for predefined periods of time. Over the past decade, the use of different physical methods and mechanisms to mediate drug release and delivery has grown significantly. This emerging area of research has important implications for development of new therapeutic drugs for efficient treatments. This review aims to introduce and describe different modalities of physically facilitating drug-delivery systems that are currently in use for cancer and other diseases therapy. In particular, delivery methods based on ultrasound, electrical, magnetic and photo modulations are highlighted. Current uses and areas of improvement for these different physically facilitating drug-delivery systems are discussed. Furthermore, the main advantages and drawbacks of these technologies reviewed are compared. The review ends with a speculative viewpoint of how research is expected to evolve in the upcoming years. PMID:22485192

  10. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases. PMID:24325540

  11. Polymers for Colon Targeted Drug Delivery

    PubMed Central

    Rajpurohit, H.; Sharma, P.; Sharma, S.; Bhandari, A.

    2010-01-01

    The colon targeted drug delivery has a number of important implications in the field of pharmacotherapy. Oral colon targeted drug delivery systems have recently gained importance for delivering a variety of therapeutic agents for both local and systemic administration. Targeting of drugs to the colon via oral administration protect the drug from degradation or release in the stomach and small intestine. It also ensures abrupt or controlled release of the drug in the proximal colon. Various drug delivery systems have been designed that deliver the drug quantitatively to the colon and then trigger the release of drug. This review will cover different types of polymers which can be used in formulation of colon targeted drug delivery systems. PMID:21969739

  12. Breathable Medicine: Pulmonary Mode of Drug Delivery.

    PubMed

    Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Sridhar, Radhakrishnan; Tay, Samuel Sam Wah; Ramakrishna, Seeram; Kumar, Srinivasan Dinesh

    2015-04-01

    Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific diseases. Pulmonary drug delivery is a non-invasive route for local and systemic therapies together with more patient convenience, compliance and is a needleless system. In this review, we addressed the vaccine delivery via non- or minimally invasive routes. Polymeric nanoparticles are preferred for use in the pulmonary delivery devices owing to a prolonged retention in lungs. Small site for absorption, mucociliary clearance, short residence time and low bioavailability are some of the limitations in pulmonary drug delivery have been resolved by generating micro- and nano-sized aerosol particles. We have classified the breathable medicine on the basis of available devices for inhalation and also prominent diseases treated through pulmonary mode of drug delivery. Owing to increasing toxicity of pharmacological drugs, the use of natural medicines has been rapidly gaining importance recently. The review article describes breathability of medicines or the pulmonary mode of drug delivery system and their drug release profile, absorption, distribution and efficacy to cure asthma and diabetes. PMID:26353470

  13. Magnetic Resonance-Guided Drug Delivery.

    PubMed

    Mikhail, Andrew S; Partanen, Ari; Yarmolenko, Pavel; Venkatesan, Aradhana M; Wood, Bradford J

    2015-11-01

    The use of clinical imaging modalities for the guidance of targeted drug delivery systems, known as image-guided drug delivery (IGDD), has emerged as a promising strategy for enhancing antitumor efficacy. MR imaging is particularly well suited for IGDD applications because of its ability to acquire images and quantitative measurements with high spatiotemporal resolution. The goal of IGDD strategies is to improve treatment outcomes by facilitating planning, real-time guidance, and personalization of pharmacologic interventions. This article reviews basic principles of targeted drug delivery and highlights the current status, emerging applications, and future paradigms of MR-guided drug delivery. PMID:26499281

  14. Orotransmucosal drug delivery systems: a review.

    PubMed

    Madhav, N V Satheesh; Shakya, Ashok K; Shakya, Pragati; Singh, Kuldeep

    2009-11-16

    Oral mucosal drug delivery is an alternative method of systemic drug delivery that offers several advantages over both injectable and enteral methods and also enhances drug bioavailability because the mucosal surfaces are usually rich in blood supply, providing the means for rapid drug transport to the systemic circulation and avoiding, in most cases, degradation by first-pass hepatic metabolism. The systems contact with the absorption surface resulting in a better absorption, and also prolong residence time at the site of application to permit once or twice daily dosing. For some drugs, this results in rapid onset of action via a more comfortable and convenient delivery route than the intravenous route. Not all drugs, however, can be administered through the oral mucosa because of the characteristics of the oral mucosa and the physicochemical properties of the drug. Although many drugs have been evaluated for oral transmucosal delivery, few are commercially available. The clinical need for oral transmucosal delivery of a drug must be high enough to offset the high costs associated with developing this type of product. Transmucosal products are a relatively new drug delivery strategy. Transmucosal drug delivery promises four times the absorption rate of skin. Drugs considered for oral transmucosal delivery are limited to existing products, and until there is a change in the selection and development process for new drugs, candidates for oral transmucosal delivery will be limited. The present papers intend to overview a wide range of orotransmucosal routes being potentially useful for transmucosal drug delivery and remind us of the success achieved with these systems and the latest advancement in the field. PMID:19665039

  15. Recent Advances in Topical Ocular Drug Delivery.

    PubMed

    Yellepeddi, Venkata Kashyap; Palakurthi, Srinath

    2016-03-01

    Topical ocular drug delivery has been considered to be an ideal route of administration for treatment of ocular diseases related to the anterior segment of the eye. However, topical ocular delivery is a challenging task because of barriers such as nasolacrimal drainage, corneal epithelium, blood-ocular barriers, and metabolism in the eye. Approaches to improve ocular bioavailability include physical approaches such as formulations of drugs as solutions (Zymaxid(™)), suspensions (Zigran(®)), gels (Akten(®)) and chemical approaches such as prodrugs (Xalatan(™)), chemical delivery systems, and soft drugs. The purpose of this review article is to summarize recent advances in topical drug delivery to the anterior segment of the eye. Functional transporters in the corneal epithelium were also discussed as they provide prospects in topical ocular delivery. In addition to conventional delivery systems, novel delivery systems involving nanocarriers were also investigated for topical ocular delivery. Furthermore, due to increased interest, gene therapy applications of topical ocular delivery of genes to the anterior segment of the eye were also discussed. Research in topical ocular delivery is active for more than 50 years and proven to be advantageous for the treatment of many ocular diseases. However, there is scope for innovation in topical drug delivery to develop delivery systems with a high patient safety profile and compliance for effective clinical usefulness. PMID:26666398

  16. Drug delivery systems: An updated review

    PubMed Central

    Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K

    2012-01-01

    Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. For the treatment of human diseases, nasal and pulmonary routes of drug delivery are gaining increasing importance. These routes provide promising alternatives to parenteral drug delivery particularly for peptide and protein therapeutics. For this purpose, several drug delivery systems have been formulated and are being investigated for nasal and pulmonary delivery. These include liposomes, proliposomes, microspheres, gels, prodrugs, cyclodextrins, among others. Nanoparticles composed of biodegradable polymers show assurance in fulfilling the stringent requirements placed on these delivery systems, such as ability to be transferred into an aerosol, stability against forces generated during aerosolization, biocompatibility, targeting of specific sites or cell populations in the lung, release of the drug in a predetermined manner, and degradation within an acceptable period of time. PMID:23071954

  17. Colloidal carriers for ophthalmic drug delivery.

    PubMed

    Mainardes, Rubiana Mara; Urban, Maria Cristina Cocenza; Cinto, Priscila Oliveira; Khalil, Najeh Maissar; Chaud, Marco Vinícius; Evangelista, Raul Cesar; Gremiao, Maria Palmira Daflon

    2005-05-01

    To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery. PMID:15857294

  18. Targeted Drug Delivery in Pancreatic Cancer

    PubMed Central

    Yu, Xianjun; Zhang, Yuqing; Chen, Changyi; Yao, Qizhi; Li, Min

    2009-01-01

    Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor and antibody has been a success in recent pre-clinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer, and provides important information on potential therapeutic targets for pancreatic cancer treatment. PMID:19853645

  19. Permeation enhancer strategies in transdermal drug delivery.

    PubMed

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-02-01

    Today, ?74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system. PMID:25006687

  20. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-03-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed. PMID:26061298

  1. Prodrug Strategies in Ocular Drug Delivery

    PubMed Central

    Barot, Megha; Bagui, Mahuya; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal ofintereSt to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery. PMID:22530907

  2. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  3. Ultrasound-mediated micellar drug delivery.

    PubMed

    Rapoport, Natalya

    2012-01-01

    During the last decade, nanomedicine has emerged as a new field of medicine that utilises nanoscale materials for delivery of drugs, genes and imaging agents. The efficiency of drug delivery may be enhanced by the application of directed energy, which provides for drug targeting and enhanced intracellular uptake. In this paper, we present a review of recent advances in the ultrasound-mediated drug delivery with the emphasis on polymeric micelles as tumour-targeted drug carriers. This new modality of drug targeting to tumours is based on the drug encapsulation in polymeric micelles followed by a localised release at the tumour site triggered by focused ultrasound. The rationale behind this approach is that drug encapsulation in micelles decreases systemic concentration of free drug and provides for a passive drug targeting to tumours via the enhanced permeability and retention (EPR) effect, therefore reducing unwanted drug interactions with healthy tissues. Ultrasound affects micellar drug delivery on various levels. Mild hyperthermia induced by ultrasound may enhance micelle extravasation into tumour tissue; mechanical action of ultrasound results in drug release from micelles and enhances the intracellular uptake of both released and encapsulated drug. In addition, polymeric micelles sensitise multidrug resistant (MDR) cells to the action of drugs. PMID:22621738

  4. Intravenous drug delivery in neonates: lessons learnt.

    PubMed

    Sherwin, Catherine M T; Medlicott, Natalie J; Reith, David M; Broadbent, Roland S

    2014-06-01

    Intravenous drug administration presents a series of challenges that relate to the pathophysiology of the neonate and intravenous infusion systems in neonates. These challenges arise from slow intravenous flow rates, small drug volume, dead space volume and limitations on the flush volume in neonates. While there is a reasonable understanding of newborn pharmacokinetics, an appreciation of the substantial delay and variability in the rate of drug delivery from the intravenous line is often lacking. This can lead to difficulties in accurately determining the pharmacokinetic and pharmacodynamic relationship of drugs in the smallest patients. The physical variables that affect the passage of drugs through neonatal lines need to be further explored in order to improve our understanding of their impact on the delivery of drugs by this route in neonates. Through careful investigation, the underlying causes of delayed drug delivery may be identified and administration protocols can then be modified to ensure predictable, appropriate drug input kinetics. PMID:24482352

  5. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  6. Polymeric nanoparticles for a drug delivery system.

    PubMed

    Grottkau, Brian E; Cai, Xiaoxiao; Wang, Jing; Yang, Xingmei; Lin, Yunfeng

    2013-10-01

    In recent years, nanotechnology research has made great strides in the area of pharmacy, especially for drug delivery systems. Polymeric nanoparticles provide significant stability in anti-neoplastic drug research and have demonstrated the ability to solve the problems of therapeutic efficacy and diagnostic sensitivity. In this review, we describe the specific advantages of polymeric nanoparticles and their applications for a drug delivery system. The latest research on PHA-based polymeric nanoparticles and PLGA is also discussed. PMID:24016112

  7. Nanomedicine and drug delivery: a mini review

    NASA Astrophysics Data System (ADS)

    Mirza, Agha Zeeshan; Siddiqui, Farhan Ahmed

    2014-02-01

    The field of nanotechnology now has pivotal roles in electronics, biology and medicine. Its application can be appraised, as it involves the materials to be designed at atomic and molecular level. Due to the advantage of their size, nanospheres have been shown to be robust drug delivery systems and may be useful for encapsulating drugs and enabling more precise targeting with a controlled release. In this review specifically, we highlight the recent advances of this technology for medicine and drug delivery systems.

  8. Smart Polymers in Nasal Drug Delivery.

    PubMed

    Chonkar, Ankita; Nayak, Usha; Udupa, N

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  9. Smart Polymers in Nasal Drug Delivery

    PubMed Central

    Chonkar, Ankita; Nayak, Usha; Udupa, N.

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  10. Nanotechnology-based drug delivery systems.

    PubMed

    Suri, Sarabjeet Singh; Fenniri, Hicham; Singh, Baljit

    2007-01-01

    Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA) and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF) receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression. PMID:18053152

  11. Tumor-Targeted Drug Delivery with Aptamers

    PubMed Central

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2011-01-01

    Cancer is one of the leading causes of death around the world. Tumor-targeted drug delivery is one of the major areas in cancer research. Aptamers exhibit many desirable properties for tumor-targeted drug delivery, such as ease of selection and synthesis, high binding affinity and specificity, low immunogenicity, and versatile synthetic accessibility. Over the last several years, aptamers have quickly become a new class of targeting ligands for drug delivery applications. In this review, we will discuss in detail about aptamer-based delivery of chemotherapy drugs (e.g. doxorubicin, docetaxel, daunorubicin, and cisplatin), toxins (e.g. gelonin and various photodynamic therapy agents), and a variety of small interfering RNAs. Although the results are promising which warrants enthusiasm for aptamer-based drug delivery, tumor homing of aptamer-based conjugates after systemic injection has only been achieved in one report. Much remains to be done before aptamer-based drug delivery can reach clinical trials and eventually the day-to-day management of cancer patients. Therefore, future directions and challenges in aptamer-based drug delivery are also discussed. PMID:21838687

  12. PLGA: a unique polymer for drug delivery.

    PubMed

    Kapoor, Deepak N; Bhatia, Amit; Kaur, Ripandeep; Sharma, Ruchi; Kaur, Gurvinder; Dhawan, Sanju

    2015-01-01

    Biodegradable polymers have played an important role in the delivery of drugs in a controlled and targeted manner. Polylactic-co-glycolic acid (PLGA) is one of the extensively researched synthetic biodegradable polymers due to its favorable properties. It is also known as a 'Smart Polymer' due to its stimuli sensitive behavior. A wide range of PLGA-based drug delivery systems have been reported for the treatment or diagnosis of various diseases and disorders. The present review provides an overview of the chemistry, physicochemical properties, biodegradation behavior, evaluation parameters and applications of PLGA in drug delivery. Different drug-polymer combinations developed into drug delivery or carrier systems are enumerated and discussed. PMID:25565440

  13. Noncovalent intracellular drug delivery of hydrophobic drugs on Au NPs.

    PubMed

    Doane, Tennyson; Burda, Clemens

    2013-01-01

    The successful delivery of hydrophobic drugs to cellular targets continues to present challenges to the pharmaceutical industry. The advances made by nanotechnology have generated new avenues for selectively loading, delivering, and targeting these drugs to their biological targets without compromising efficacy. Here, we describe how gold nanoparticles (Au NPs) functionalized with polyethylene glycol (PEG) can be evaluated for the delivery of hydrophobic drugs in aqueous systems. Specifically, we describe Au NP synthesis, ligand exchange, and delivery evaluation at-the-bench for screening of potential drug candidates. PMID:23918343

  14. Perspectives on transdermal ultrasound mediated drug delivery

    PubMed Central

    Smith, Nadine Barrie

    2007-01-01

    The use of needles for multiple injection of drugs, such as insulin for diabetes, can be painful. As a result, prescribed drug noncompliance can result in severe medical complications. Several noninvasive methods exist for transdermal drug delivery. These include chemical mediation using liposomes and chemical enhancers or physical mechanisms such as microneedles, iontophoresis, electroporation, and ultrasound. Ultrasound enhanced transdermal drug delivery offers advantages over traditional drug delivery methods which are often invasive and painful. A broad review of the transdermal ultrasound drug delivery literature has shown that this technology offers promising potential for noninvasive drug administration. From a clinical perspective, few drugs, proteins or peptides have been successfully administered transdermally because of the low skin permeability to these relatively large molecules, although much work is underway to resolve this problem. The proposed mechanism of ultrasound has been suggested to be the result of cavitation, which is discussed along with the bioeffects from therapeutic ultrasound. For low frequencies, potential transducers which can be used for drug delivery are discussed, along with cautions regarding ultrasound safety versus efficacy. PMID:18203426

  15. Recent advances in ophthalmic drug delivery

    PubMed Central

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL

    2011-01-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  16. Recent advances in ophthalmic drug delivery.

    PubMed

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent H L

    2010-09-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert (-6 months), Retisert (-3 years) and Iluvien (-3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  17. Brain tumor-targeted drug delivery strategies

    PubMed Central

    Wei, Xiaoli; Chen, Xishan; Ying, Man; Lu, Weiyue

    2014-01-01

    Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges. PMID:26579383

  18. Inner Ear Drug Delivery for Auditory Applications

    PubMed Central

    Swan, Erin E. Leary; Mescher, Mark J.; Sewell, William F.; Tao, Sarah L.; Borenstein, Jeffrey T.

    2008-01-01

    Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored. PMID:18848590

  19. Synthetic micro/nanomotors in drug delivery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Wang, Joseph

    2014-08-01

    Nanomachines offer considerable promise for the treatment of diseases. The ability of man-made nanomotors to rapidly deliver therapeutic payloads to their target destination represents a novel nanomedicine approach. Synthetic nanomotors, based on a multitude of propulsion mechanisms, have been developed over the past decade toward diverse biomedical applications. In this review article, we journey from the use of chemically powered drug-delivery nanovehicles to externally actuated (fuel-free) drug-delivery nanomachine platforms, and conclude with future prospects and challenges for such practical propelling drug-delivery systems. As future micro/nanomachines become more powerful and functional, these tiny devices are expected to perform more demanding biomedical tasks and benefit different drug delivery applications.

  20. Synthetic micro/nanomotors in drug delivery.

    PubMed

    Gao, Wei; Wang, Joseph

    2014-09-21

    Nanomachines offer considerable promise for the treatment of diseases. The ability of man-made nanomotors to rapidly deliver therapeutic payloads to their target destination represents a novel nanomedicine approach. Synthetic nanomotors, based on a multitude of propulsion mechanisms, have been developed over the past decade toward diverse biomedical applications. In this review article, we journey from the use of chemically powered drug-delivery nanovehicles to externally actuated (fuel-free) drug-delivery nanomachine platforms, and conclude with future prospects and challenges for such practical propelling drug-delivery systems. As future micro/nanomachines become more powerful and functional, these tiny devices are expected to perform more demanding biomedical tasks and benefit different drug delivery applications. PMID:25096021

  1. Chitosan Microspheres in Novel Drug Delivery Systems

    PubMed Central

    Mitra, Analava; Dey, Baishakhi

    2011-01-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems. PMID:22707817

  2. Supercritical fluid technology for enhanced drug delivery.

    PubMed

    Pathak, Pankaj; Meziani, Mohammed J; Sun, Ya-Ping

    2005-07-01

    The rapid advances in the development of formulation and delivery systems based on micron-sized and nanoscale drug particles will create significant benefits to the pharmaceutical industry. Complementary to traditional methods, supercritical fluid techniques have found many useful, and sometimes unique, applications in the production and processing of drug particles. In this article background information is provided on a variety of supercritical fluid techniques relevant to drug formulation and delivery, recent advances and novel applications are highlighted, and the successful development of a new supercritical fluid rapid expansion technique for producing exclusively nanoscale drug particles will be discussed. Challenges and opportunities for further development and future applications are also reviewed. PMID:16296799

  3. Progress in antiretroviral drug delivery using nanotechnology

    PubMed Central

    Mallipeddi, Rama; Rohan, Lisa Cencia

    2010-01-01

    There are currently a number of antiretroviral drugs that have been approved by the Food and Drug Administration for use in the treatment of human immunodeficiency virus (HIV). More recently, antiretrovirals are being evaluated in the clinic for prevention of HIV infection. Due to the challenging nature of treatment and prevention of this disease, the use of nanocarriers to achieve more efficient delivery of antiretroviral drugs has been studied. Various forms of nanocarriers, such as nanoparticles (polymeric, inorganic, and solid lipid), liposomes, polymeric micelles, dendrimers, cyclodextrins, and cell-based nanoformulations have been studied for delivery of drugs intended for HIV prevention or therapy. The aim of this review is to provide a summary of the application of nanocarrier systems to the delivery of anti-HIV drugs, specifically antiretrovirals. For anti-HIV drugs to be effective, adequate distribution to specific sites in the body must be achieved, and effective drug concentrations must be maintained at those sites for the required period of time. Nanocarriers provide a means to overcome cellular and anatomical barriers to drug delivery. Their application in the area of HIV prevention and therapy may lead to the development of more effective drug products for combating this pandemic disease. PMID:20957115

  4. Microneedles for drug and vaccine delivery

    PubMed Central

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  5. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  6. Intelligent, self-powered, drug delivery systems

    NASA Astrophysics Data System (ADS)

    Patra, Debabrata; Sengupta, Samudra; Duan, Wentao; Zhang, Hua; Pavlick, Ryan; Sen, Ayusman

    2013-01-01

    Self-propelled nano/micromotors and pumps are considered to be next generation drug delivery systems since the carriers can either propel themselves (``motor''-based drug delivery) or be delivered (``pump''-based drug delivery) to the target in response to specific biomarkers. Recently, there has been significant advancement towards developing nano/microtransporters into proof-of-concept tools for biomedical applications. This review encompasses the progress made to date on the design of synthetic nano/micromotors and pumps with respect to transportation and delivery of cargo at specific locations. Looking ahead, it is possible to imagine a day when intelligent machines navigate through the human body and perform challenging tasks.

  7. Intelligent, self-powered, drug delivery systems.

    PubMed

    Patra, Debabrata; Sengupta, Samudra; Duan, Wentao; Zhang, Hua; Pavlick, Ryan; Sen, Ayusman

    2013-02-21

    Self-propelled nano/micromotors and pumps are considered to be next generation drug delivery systems since the carriers can either propel themselves ("motor"-based drug delivery) or be delivered ("pump"-based drug delivery) to the target in response to specific biomarkers. Recently, there has been significant advancement towards developing nano/microtransporters into proof-of-concept tools for biomedical applications. This review encompasses the progress made to date on the design of synthetic nano/micromotors and pumps with respect to transportation and delivery of cargo at specific locations. Looking ahead, it is possible to imagine a day when intelligent machines navigate through the human body and perform challenging tasks. PMID:23166050

  8. Novel drug delivery systems for glaucoma

    PubMed Central

    Lavik, E; Kuehn, M H; Kwon, Y H

    2011-01-01

    Reduction of intraocular pressure (IOP) by pharmaceutical or surgical means has long been the standard treatment for glaucoma. A number of excellent drugs are available that are effective in reducing IOP. These drugs are typically applied as eye drops. However, patient adherence can be poor, thus reducing the clinical efficacy of the drugs. Several novel delivery systems designed to address the issue of adherence and to ensure consistent reduction of IOP are currently under development. These delivery systems include contact lenses-releasing glaucoma medications, injectables such as biodegradable micro- and nanoparticles, and surgically implanted systems. These new technologies are aimed at increasing clinical efficacy by offering multiple delivery options and are capable of managing IOP for several months. There is also a desire to have complementary neuroprotective approaches for those who continue to show progression, despite IOP reduction. Many potential neuroprotective agents are not suitable for traditional oral or drop formulations. Their potential is dependent on developing suitable delivery systems that can provide the drugs in a sustained, local manner to the retina and optic nerve. Drug delivery systems have the potential to improve patient adherence, reduce side effects, increase efficacy, and ultimately, preserve sight for glaucoma patients. In this review, we discuss benefits and limitations of the current systems of delivery and application, as well as those on the horizon. PMID:21475311

  9. Implication of nanofibers in oral drug delivery.

    PubMed

    Kapahi, Himani; Khan, Nikhat Mansoor; Bhardwaj, Ankur; Mishra, Neeraj

    2015-01-01

    Nanofibers has gained significant prominence in recent years due to its wide applications in medicinal pharmacy, textile, tissue engineering and in various drug delivery system. In oral drug delivery system (DDS), nanofibers can be delivered as Nanofiber scaffolds, electrosponge nanofibers as oral fast delivery system, multilayered nanofiber loaded mashes, surface modified cross-linked electrospun nanofibers. Nanofibers are of 50- 1000 nm size fibres having large surface area, high porosity, small pore size, low density. Various approaches for formulation of nanofibers are molecular assembly, thermally induced phase separation, electrospining. Most commonly used by using electrospining polymer nanofibres with different range can be produced collective usage of electro spinning with pharmaceutical polymers offers novel tactics for developing drug delivery system (DDS). Different polymers used in preparation of nanofibers include biodegradable hydrophilic polymers, hydrophobic polymers and amphiphilic polymers. Electrospun nanofibers are often used to load insoluble drugs for enhancing their dissolution properties due to their high surface area per unit mass. Besides the water insoluble drugs freely water soluble sodium can also spun into the fibers. The most commonly polymers used for nanofibers are gelatin, dextran, nylon, polystyrene, polyacrylonitrile, polycarbonate, polyimides, poly vinyl alchol, polybenzimidazole. Delivery systems reviewed rely on temporal control, changes in pH along the GIT, the action of local enzymes to trigger drug release, and changes in intraluminal pressure. Dissolution of enteric polymer coatings due to a change in local pH and reduction of azo-bonds to release an active agent are both used in commercially marketed products. In vitro and in vivo studies have demonstrated that the release rates of drugs from these nanofiber formulations are enhanced compared to those from original drug substance. This review is focused on the different type of polymers used, different used in the preparation of nanofibers, cytotoxicity studies and application of nanofiber by using oral drug delivery. PMID:25732659

  10. Refilling drug delivery depots through the blood

    PubMed Central

    Brudno, Yevgeny; Silva, Eduardo A.; Kearney, Cathal J.; Lewin, Sarah A.; Miller, Alex; Martinick, Kathleen D.; Aizenberg, Michael; Mooney, David J.

    2014-01-01

    Local drug delivery depots have significant clinical utility, but there is currently no noninvasive technique to refill these systems once their payload is exhausted. Inspired by the ability of nanotherapeutics to target specific tissues, we hypothesized that blood-borne drug payloads could be modified to home to and refill hydrogel drug delivery systems. To address this possibility, hydrogels were modified with oligodeoxynucleotides (ODNs) that provide a target for drug payloads in the form of free alginate strands carrying complementary ODNs. Coupling ODNs to alginate strands led to specific binding to complementary-ODN–carrying alginate gels in vitro and to injected gels in vivo. When coupled to a drug payload, sequence-targeted refilling of a delivery depot consisting of intratumor hydrogels completely abrogated tumor growth. These results suggest a new paradigm for nanotherapeutic drug delivery, and this concept is expected to have applications in refilling drug depots in cancer therapy, wound healing, and drug-eluting vascular grafts and stents. PMID:25139997

  11. A wireless actuating drug delivery system

    NASA Astrophysics Data System (ADS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s-1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  12. Lipid-Based Drug Delivery Systems

    PubMed Central

    Shrestha, Hina; Bala, Rajni; Arora, Sandeep

    2014-01-01

    The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery. PMID:26556202

  13. A cyclically actuated electrolytic drug delivery device.

    PubMed

    Yi, Ying; Buttner, Ulrich; Foulds, Ian G

    2015-09-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 ?g min(-1) was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. PMID:26198777

  14. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  15. Microfabrication Technologies for Oral Drug Delivery

    PubMed Central

    Sant, Shilpa; Tao, Sarah L.; Fisher, Omar; Xu, Qiaobing; Peppas, Nicholas A.; Khademhosseini, Ali

    2012-01-01

    Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy. PMID:22166590

  16. Liposome-like Nanostructures for Drug Delivery

    PubMed Central

    Gao, Weiwei; Hu, Che-Ming J.; Fang, Ronnie H.; Zhang, Liangfang

    2013-01-01

    Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare. PMID:24392221

  17. Computational Amphiphilic Materials for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Thota, Naresh; Jiang, Jianwen

    2015-10-01

    Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  18. Recent advances in controlled pulmonary drug delivery.

    PubMed

    Liang, Zhenglin; Ni, Rui; Zhou, Jieyu; Mao, Shirui

    2015-03-01

    Characterized by large surface area, high vascularization and thin blood-alveolar barrier, drug delivery by the pulmonary route has benefits over other administration routes. However, to date most of the marketed inhalable products are short-acting formulations that require the patient to inhale several times every day, thus reducing patient compliance. Controlled pulmonary drug delivery is a promising system but the formidable airway clearance mechanisms need to be avoided. This review mainly introduces the barriers impeding the development of controlled pulmonary drug delivery and strategies used to overcome them. We believe that large porous particles, swellable microparticles and porous nanoparticle-aggregate-based particles are the most promising carriers to control drug release in the lung. PMID:25281854

  19. Oral drug delivery research in Europe.

    PubMed

    Mrsny, Randall J

    2012-07-20

    The oral delivery of drugs is considered by decision-makers in the pharmaceutical industry to be the most appealing route of administration. This belief has led to the identification of many very successful drugs, but also to the downfall of some promising therapeutics that failed to meet criteria required for sufficient oral bioavailability. Efforts to correct these deficiencies have led to a plethora of creative strategies to overcome the physical, chemical, and biological barriers that limit the efficient and consistent delivery of drugs that are not readily absorbed following oral administration. The goal of this perspective is to describe these barriers to oral drug delivery in relation to some of the work currently being undertaken by the community of European scientists. This perspective is not intended to be inclusive and the author apologizes in advance to the many scientists working in Europe whose recent work was not included. PMID:22342473

  20. Biodegradable polymeric nanoparticles based drug delivery systems.

    PubMed

    Kumari, Avnesh; Yadav, Sudesh Kumar; Yadav, Subhash C

    2010-01-01

    Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to its grand bioavailability, better encapsulation, control release and less toxic properties. Various nanoparticulate systems, general synthesis and encapsulation process, control release and improvement of therapeutic value of nanoencapsulated drugs are covered in this review. We have highlighted the impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates. PMID:19782542

  1. Inhaled nano- and microparticles for drug delivery

    PubMed Central

    El-Sherbiny, Ibrahim M.; El-Baz, Nancy M.; Yacoub, Magdi H.

    2015-01-01

    The 21st century has seen a paradigm shift to inhaled therapy, for both systemic and local drug delivery, due to the lung's favourable properties of a large surface area and high permeability. Pulmonary drug delivery possesses many advantages, including non-invasive route of administration, low metabolic activity, control environment for systemic absorption and avoids first bypass metabolism. However, because the lung is one of the major ports of entry, it has multiple clearance mechanisms, which prevent foreign particles from entering the body. Although these clearance mechanisms maintain the sterility of the lung, clearance mechanisms can also act as barriers to the therapeutic effectiveness of inhaled drugs. This effectiveness is also influenced by the deposition site and delivered dose. Particulate-based drug delivery systems have emerged as an innovative and promising alternative to conventional inhaled drugs to circumvent pulmonary clearance mechanisms and provide enhanced therapeutic efficiency and controlled drug release. The principle of multiple pulmonary clearance mechanisms is reviewed, including mucociliary, alveolar macrophages, absorptive, and metabolic degradation. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems. PMID:26779496

  2. Ultrasonic Drug Delivery – A General Review

    PubMed Central

    Pitt, William G.; Husseini, Ghaleb A.; Staples, Bryant J.

    2006-01-01

    Ultrasound (US) has an ever-increasing role in the delivery of therapeutic agents including genetic material, proteins, and chemotherapeutic agents. Cavitating gas bodies such as microbubbles are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilize cell membranes and disrupt the vesicles that carry drugs. Thus the presence of microbubbles enormously enhances delivery of genetic material, proteins and smaller chemical agents. Delivery of genetic material is greatly enhanced by ultrasound in the presence of microbubbles. Attaching the DNA directly to the microbubbles or to gas-containing liposomes enhances gene uptake even further. US-enhanced gene delivery has been studied in various tissues including cardiac, vascular, skeletal muscle, tumor and even fetal tissue. US-enhanced delivery of proteins has found most application in transdermal delivery of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; it also makes the cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has upon cells and drug-carrying vesicles. PMID:16296719

  3. Drug delivery by red blood cells.

    PubMed

    Biagiotti, Sara; Paoletti, Maria Filomena; Fraternale, Alessandra; Rossi, Luigia; Magnani, Mauro

    2011-08-01

    Drug delivery is a growing field of interdisciplinary activities that combine the use of new materials with the biochemical properties of selected drugs, with the aim of improving their therapeutic action and reducing their toxicity. In few cases, proper medical devices have been also realized to implement new drug delivery modalities. In this article, we have summarized available information and our experience on the use of autologous Red Blood Cells as carriers for drugs to be released within the vascular system. This is not a comprehensive review, but it focuses on the mechanisms that are available to distribute drugs in circulation by carrier red blood cells and provide illustrative examples on how this is currently obtained. We have not included a summary of clinical data collected in recent years using this technology but simply provided proper references for the interested readers. Finally, a special attention is devoted to the possibility of entrapping, into autologous red blood cells, recombinant drug-binding proteins. This new strategy is opening the way at a new modality to influence the vascular distribution of drugs by realizing a dynamic circulating container (the engineered red cell) capable of reversible binding and transportation of one or more drugs of interest selected on the bases of the red cell entrapped target proteins. This new modality is not yet fully developed and explored but will certainly provide a technical solution to the problem of stabilizing drug concentration in circulation improving drug efficacy and reducing drug toxicity. PMID:21766411

  4. Functional Cyclodextrin Polyrotaxanes for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Yui, Nobuhiko; Katoono, Ryo; Yamashita, Atsushi

    The mobility of cyclodextrins (CDs) threaded onto a linear polymeric chain and the dethreading of the CDs from the chain are the most fascinating features seen in polyrotaxanes. These structural characteristics are very promising for their possible applications in drug delivery. Enhanced multivalent interaction between ligand-receptor systems by using ligand-conjugated polyrotaxanes would be just one of the excellent properties related to the CD mobility. Gene delivery using cytocleavable polyrotaxanes is a more practical but highly crucial issue in drug delivery. Complexation of the polyrotaxanes with DNA and its intracellular DNA release ingeniously utilizes both CD mobility and polyrotaxane dissociation to achieve effective gene delivery. Such a supramolecular approach using CD-containing polyrotaxanes is expected to exploit a new paradigm of biomaterials.

  5. Drug Delivery Strategies of Chemical CDK Inhibitors.

    PubMed

    Alvira, Daniel; Mondragón, Laura

    2016-01-01

    The pharmacological use of new therapeutics is often limited by a safe and effective drug-delivery system. In this sense, new chemical CDK inhibitors are not an exception. Nanotechnology may be able to solve some of the main problems limiting cancer treatments such as more specific delivery of therapeutics and reduction of toxic secondary effects. It provides new delivery systems able to specifically target cancer cells and release the active molecules in a controlled fashion. Specifically, silica mesoporous supports (SMPS) have emerged as an alternative for more classical drug delivery systems based on polymers. In this chapter, we describe the synthesis of a SMPS containing the CDK inhibitor roscovitine as cargo molecule and the protocols for confirmation of the proper cargo release of the nanoparticles in cell culture employing cell viability, cellular internalization, and cell death induction studies. PMID:26231714

  6. Liposomes as delivery systems for antineoplastic drugs

    NASA Astrophysics Data System (ADS)

    Medina, Luis Alberto

    2014-11-01

    Liposome drug formulations are defined as pharmaceutical products containing active drug substances encapsulated within the lipid bilayer or in the interior aqueous space of the liposomes. The main importance of this drug delivery system is based on its drastic reduction in systemic dose and concomitant systemic toxicity that in comparison with the free drug, results in an improvement of patient compliance and in a more effective treatment. There are several therapeutic drugs that are potential candidates to be encapsulated into liposomes; particular interest has been focused in therapeutic and antineoplastic drugs, which are characterized for its low therapeutic index and high systemic toxicity. The use of liposomes as drug carriers has been extensively justified and the importance of the development of different formulations or techniques to encapsulate therapeutic drugs has an enormous value in benefit of patients affected by neoplastic diseases.

  7. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  8. Trojan Microparticles for Drug Delivery

    PubMed Central

    Anton, Nicolas; Jakhmola, Anshuman; Vandamme, Thierry F.

    2012-01-01

    During the last decade, the US Food and Drug Administration (FDA) have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco) which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal), the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review. PMID:24300177

  9. Nanoparticles in the ocular drug delivery

    PubMed Central

    Zhou, Hong-Yan; Hao, Ji-Long; Wang, Shuang; Zheng, Yu; Zhang, Wen-Song

    2013-01-01

    Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases. PMID:23826539

  10. Liposomal drug delivery systems: an update review.

    PubMed

    Samad, Abdus; Sultana, Y; Aqil, M

    2007-10-01

    The discovery of liposome or lipid vesicle emerged from self forming enclosed lipid bi-layer upon hydration; liposome drug delivery systems have played a significant role in formulation of potent drug to improve therapeutics. Recently the liposome formulations are targeted to reduce toxicity and increase accumulation at the target site. There are several new methods of liposome preparation based on lipid drug interaction and liposome disposition mechanism including the inhibition of rapid clearance of liposome by controlling particle size, charge and surface hydration. Most clinical applications of liposomal drug delivery are targeting to tissue with or without expression of target recognition molecules on lipid membrane. The liposomes are characterized with respect to physical, chemical and biological parameters. The sizing of liposome is also critical parameter which helps characterize the liposome which is usually performed by sequential extrusion at relatively low pressure through polycarbonate membrane (PCM). This mode of drug delivery lends more safety and efficacy to administration of several classes of drugs like antiviral, antifungal, antimicrobial, vaccines, anti-tubercular drugs and gene therapeutics. Present applications of the liposomes are in the immunology, dermatology, vaccine adjuvant, eye disorders, brain targeting, infective disease and in tumour therapy. The new developments in this field are the specific binding properties of a drug-carrying liposome to a target cell such as a tumor cell and specific molecules in the body (antibodies, proteins, peptides etc.); stealth liposomes which are especially being used as carriers for hydrophilic (water soluble) anticancer drugs like doxorubicin, mitoxantrone; and bisphosphonate-liposome mediated depletion of macrophages. This review would be a help to the researchers working in the area of liposomal drug delivery. PMID:17979650

  11. Current perspectives on intrathecal drug delivery

    PubMed Central

    Bottros, Michael M; Christo, Paul J

    2014-01-01

    Advances in intrathecal analgesia and intrathecal drug delivery systems have allowed for a range of medications to be used in the control of pain and spasticity. This technique allows for reduced medication doses that can decrease the side effects typically associated with oral or parenteral drug delivery. Recent expert panel consensus guidelines have provided care paths in the treatment of nociceptive, neuropathic, and mixed pain syndromes. While the data for pain relief, adverse effect reduction, and cost-effectiveness with cancer pain control are compelling, the evidence is less clear for noncancer pain, other than spasticity. Physicians should be aware of mechanical, pharmacological, surgical, and patient-specific complications, including possible granuloma formation. Newer intrathecal drug delivery systems may allow for better safety and quality of life outcomes. PMID:25395870

  12. Barriers to drug delivery in solid tumors

    PubMed Central

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  13. Local Drug Delivery to Prevent Restenosis

    PubMed Central

    Seedial, Stephen M.; Ghosh, Soumojit; Saunders, R. Scott; Suwanabol, Pasithorn A.; Shi, Xudong; Liu, Bo; Kent, K. Craig

    2013-01-01

    Introduction Despite significant advances in vascular biology, bioengineering and pharmacology, restenosis remains a limitation to the overall efficacy of vascular reconstructions, both percutaneous and open. Although the pathophysiology of intimal hyperplasia is complex, a number of drugs and/or molecular tools have been identified that can prevent restenosis. Moreover, the focal nature of this process lends itself to treatment with local drug administration. In this article we provide a broad overview of current and future techniques for local drug delivery that have been developed to prevent restenosis following vascular intervention. Methods A systematic electronic literature search using PubMed was performed for all accessible published articles through September 2012. In an effort to remain current, additional searches were performed for abstracts presented at relevant societal meetings, filed patents, clinical trials and funded NIH awards. Results The efficacy of local drug delivery has been demonstrated in the coronary circulation with the current clinical use of drug-eluting stents (DES). Until recently, however, DES were not found to be efficacious in the peripheral circulation. Further pursuit of intraluminal devices has led to the development of balloon-based technologies with a recent surge in trials involving drug-eluting balloons. Early data appears encouraging, particularly for treatment of lesions in the superficial femoral artery, with several devices having recently received the CE mark in Europe. Investigators have also explored periadventitial application of biomaterials containing anti-restenotic drugs, an approach that could be particularly useful for surgical bypass or endarterectomy. In the past systemic drug delivery has been unsuccessful, however, there has been recent exploration of intravenous delivery of drugs designed specifically to target injured or reconstructed arteries. Our review revealed a multitude of additional interesting strategies including more than 65 new patents issued over the past two years for approaches to local drug delivery focused on preventing restenosis. Conclusion Restenosis following intraluminal or open vascular reconstruction remains an important clinical problem. Success in the coronary circulation has not translated into solutions for the peripheral arteries. However, our review of the literature reveals a number of promising approaches including drug-eluting balloons, periadventitial drug delivery as well as targeted systemic therapies. These innovations as well as others suggest that the future is bright and a solution for preventing restenosis in peripheral vessels will soon be at hand. PMID:23601595

  14. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed. PMID:19819318

  15. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  16. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  17. Pulmonary drug delivery: medicines for inhalation.

    PubMed

    Henning, Andreas; Hein, Stephanie; Schneider, Marc; Bur, Michael; Lehr, Claus-Michael

    2010-01-01

    Mankind has inhaled substances for medical and other reasons for thousands of years, notably resulting in the cultural manifestations of tobacco and opium smoking. Over the course of time concepts of pulmonary application, including inhalation devices and drug formulations, have been and still are being continuously developed. State of the art instruments even allow for individualized drug application by adaptation of the inhalation procedure to the breathing pattern of the patient. Pulmonary drug delivery offers promising advantages in comparison to "classical" drug administration via the oral or transcutaneous routes, which is also reflected by an increasing interest and number of marketed products for inhalation therapy. However, the lungs' efficient clearance mechanisms still limit the benefit of many therapeutic concepts. In consequence the objective of current research and development in pulmonary drug delivery is to overcome and to control drug clearance from the intended target site. Here, several of the most auspicious future drug delivery concepts are presented and discussed in order to give the reader an insight into this emerging field of medicine. PMID:20217530

  18. Emollient foam in topical drug delivery.

    PubMed

    Tamarkin, Dov; Friedman, Doron; Shemer, Avner

    2006-11-01

    Foams offer an innovative and more convenient means of topical drug delivery. The successful introduction of hydroalcoholic foams paved the way for the development of a new generation of foam products that provide skin barrier build-up and hydration. Such foams, designated as emollient foams consist of oil-in-water or water-in-oil emulsions with necessary excipients, such as non-ionic surfactants, gelling agents and foam adjuvants. Emollient foams can carry a broad variety of topical drugs, including water-soluble, oil-soluble and suspended active agents. This paper reviews emollient foam compositions and their physicochemical properties. It further accounts for the usability and functional advantages of emollient foam as a vehicle of topical drugs, including: i) improved usability, which affects treatment, compliance and, consequently, improves therapeutic results; ii) safety; iii) controllable drug delivery; iv) skin barrier build-up and hydration; and v) enhanced clinical efficacy. PMID:17076601

  19. Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery.

    PubMed

    Mebarek, Naila; Aubert-Pouëssel, Anne; Gérardin, Corine; Vicente, Rita; Devoisselle, Jean-Marie; Bégu, Sylvie

    2013-10-01

    Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. PMID:23792466

  20. pH-Responsive Poly(ethylene glycol)/Poly(L-lactide) Supramolecular Micelles Based on Host-Guest Interaction.

    PubMed

    Zhang, Zhe; Lv, Qiang; Gao, Xiaoye; Chen, Li; Cao, Yue; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2015-04-29

    pH-responsive supramolecular amphiphilic micelles based on benzimidazole-terminated poly(ethylene glycol) (PEG-BM) and β-cyclodextrin-modified poly(L-lactide) (CD-PLLA) were developed by exploiting the host-guest interaction between benzimidazole (BM) and β-cyclodextrin (β-CD). The dissociation of the supramolecular micelles was triggered in acidic environments. An antineoplastic drug, doxorubicin (DOX), was loaded into the supramolecular micelles as a model drug. The release of DOX from the supramolecular micelles was clearly accelerated as the pH was reduced from 7.4 to 5.5. The DOX-loaded PEG-BM/CD-PLLA supramolecular micelles displayed an enhanced intracellular drug-release rate in HepG2 cells compared to the pH-insensitive DOX-loaded PEG-b-PLLA counterpart. After intravenous injection into nude mice bearing HepG2 xenografts by the tail vein, the DOX-loaded supramolecular micelles exhibited significantly higher tumor inhibition efficacy and reduced systemic toxicity compared to free DOX. Furthermore, the DOX-loaded supramolecular micelles showed a blood clearance rate markedly lower than that of free DOX and comparable to that of the DOX-loaded PEG-b-PLLA micelles after intravenous injection into rats. Therefore, the pH-responsive PEG-BM/CD-PLLA supramolecular micelles hold potential as a smart nanocarrier for anticancer drug delivery. PMID:25856564

  1. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  2. Elastin-like polypeptides in drug delivery.

    PubMed

    Rodríguez-Cabello, José Carlos; Arias, Francisco Javier; Rodrigo, Matilde Alonso; Girotti, Alessandra

    2016-02-01

    The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented. PMID:26705126

  3. Recent Perspectives in Ocular Drug Delivery

    PubMed Central

    Gaudana, Ripal; Jwala, J.; Boddu, Sai H. S.; Mitra, Ashim K.

    2015-01-01

    Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders. PMID:18758924

  4. Strategies for antimicrobial drug delivery to biofilm.

    PubMed

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties such as silver nanoparticles and microemulsions. PMID:25189862

  5. Isolation of drug delivery from drug effect: Problems of optimizing drug delivery parameters1

    PubMed Central

    Ali, Mir J.; Navalitloha, Yot; Vavra, Michael W.; Kang, Eric W.-Y.; Itskovich, Andrea C.; Molnar, Peter; Levy, Robert M.; Groothuis, Dennis R.

    2006-01-01

    A recurring question in the treatment of malignant brain tumors has been whether treatment failure is due to inadequate delivery or ineffective drugs. To isolate these issues, we tested a paradigm in which the “therapeutic” agent was a toxin about which there could be no question of efficacy, provided it was delivered in adequate amounts; we used 10% formalin. We infused 10% formalin into 5- to 8-mm subcutaneous RG-2 and D54-MG gliomas at increasing rates until we achieved 100% tumor cell kill. In RG-2 gliomas, infusions of 10 ?l/h × 7 days, and 2, 4, 6, and 8 ?l/min × 2 h failed to kill tumors, although growth was delayed, while infusion rates of 12 ?l/min × 60 min and 48 ?l/min × 15 min produced 100% tumor kill. In D54-MG tumors, infusions of 4, 8, and 24 ?l/min produced 100% tumor kill. 14C-Formalin autoradiographs showed a heterogeneous distribution after infusions of 2 ?l/min × 2 h, whereas infusions of 48 ?l/min × 15 min showed a homogeneous distribution within the tumor, but more than 95% of tissue radioactivity was found in tissue surrounding tumor. Drug delivery remains a major issue in brain tumor treatment: Distribution inhomogeneity, rapid efflux, and consequent treatment failures are likely due to high interstitial fluid pressure. Because the infusion rates being used in the treatment of human brain tumors are low and the tumors are larger, treatment failures can be expected on the basis of inadequate drug delivery alone, regardless of the effectiveness of the drug. PMID:16533759

  6. New Approaches to Targeted Drug Delivery

    NASA Astrophysics Data System (ADS)

    Cooper, James; Oliver, William; Fologea, Daniel

    2013-03-01

    For targeted drug delivery, one of the primary drawbacks lies with the inability to design a delivery system that can be loaded with a variety of drugs and biomolecules. Motivated by this challenge, we will present data showing 400 nm liposomes loaded via the novel method of lysenin pores. These pores are approximately 3 nm in diameter and can be closed with divalent and trivalent ions in addition to charged polymers. This new method allows for the controllable passage of large biomolecules such as DNA and protein without the inherent problems common to active and passive loading methods. We will show proof-of-concept results of this method using fluorescent calcein as a drug simulator. Furthermore, data demonstrating current attempts at loading DNA will also be presented.

  7. Fluorescence optical imaging in anticancer drug delivery.

    PubMed

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. PMID:26892751

  8. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  9. A Molecular Communications Model for Drug Delivery.

    PubMed

    Femminella, Mauro; Reali, Gianluca; Vasilakos, Athanasios V

    2015-12-01

    This paper considers the scenario of a targeted drug delivery system, which consists of deploying a number of biological nanomachines close to a biological target (e.g., a tumor), able to deliver drug molecules in the diseased area. Suitably located transmitters are designed to release a continuous flow of drug molecules in the surrounding environment, where they diffuse and reach the target. These molecules are received when they chemically react with compliant receptors deployed on the receiver surface. In these conditions, if the release rate is relatively high and the drug absorption time is significant, congestion may happen, essentially at the receiver site. This phenomenon limits the drug absorption rate and makes the signal transmission ineffective, with an undesired diffusion of drug molecules elsewhere in the body. The original contribution of this paper consists of a theoretical analysis of the causes of congestion in diffusion-based molecular communications. For this purpose, it is proposed a reception model consisting of a set of pure loss queuing systems. The proposed model exhibits an excellent agreement with the results of a simulation campaign made by using the Biological and Nano-Scale communication simulator version 2 (BiNS2), a well-known simulator for molecular communications, whose reliability has been assessed through in vitro experiments. The obtained results can be used in rate control algorithms to optimally determine the optimal release rate of molecules in drug delivery applications. PMID:26529770

  10. Recent advances in small molecule drug delivery.

    PubMed

    Kidane, Argaw; Bhatt, Padmanabh P

    2005-08-01

    The majority of new drugs, and new drug products, being developed and marketed by the pharmaceutical industry are small molecules. Oral administration remains the most common route of delivering such drugs, typically in the form of immediate-release tablets or capsules. While the immediate-release dosage forms dominate the market today, more specialized and rationalized products incorporating the concepts of drug delivery are being developed to overcome the physicochemical, physiological and pharmacological challenges inherent with the drugs, and to improve the treatment regimens for the patients. Today, these specialized concepts are increasingly being applied to first-generation products and not just products intended for the life cycle management of the franchise. PMID:16006179

  11. Proteases in cancer drug delivery.

    PubMed

    Vandooren, Jennifer; Opdenakker, Ghislain; Loadman, Paul M; Edwards, Dylan R

    2016-02-01

    Whereas protease inhibitors have been developed successfully against hypertension and viral infections, they have failed thus far as cancer drugs. With advances in cancer profiling we now better understand that the tumor "degradome" (i.e. the repertoire of proteases and their natural inhibitors and interaction partners) forms a complex network in which specific nodes determine the global outcome of manipulation of the protease web. However, knowing which proteases are active in the tumor micro-environment, we may tackle cancers with the use of Protease-Activated Prodrugs (PAPs). Here we exemplify this concept for metallo-, cysteine and serine proteases. PAPs not only exist as small molecular adducts, containing a cleavable substrate sequence and a latent prodrug, they are presently also manufactured as various types of nanoparticles. Although the emphasis of this review is on PAPs for treatment, it is clear that protease activatable probes and nanoparticles are also powerful tools for imaging purposes, including tumor diagnosis and staging, as well as visualization of tumor imaging during microsurgical resections. PMID:26756735

  12. Image-guided drug delivery: preclinical applications and clinical translation.

    PubMed

    Ojha, Tarun; Rizzo, Larissa; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2015-08-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy. Clinically, it holds significant potential for preselecting patients. In this editorial, we briefly summarize the main principles of image-guided drug delivery, and we describe its potential for facilitating, furthering and personalizing nanomedicine treatments. PMID:26083469

  13. A New Brain Drug Delivery Strategy: Focused Ultrasound-Enhanced Intranasal Drug Delivery

    PubMed Central

    Chen, Hong; Chen, Cherry C.; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E.

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases. PMID:25279463

  14. Electrically-assisted transdermal drug delivery.

    PubMed

    Riviere, J E; Heit, M C

    1997-06-01

    Electrically-assisted transdermal delivery (EATDD) is the facilitated transport of compounds across the skin using an electromotive force. It has been extensively explored as a potential means for delivering peptides and other hydrophilic, acid-labile or orally unstable products of biotechnology. The predominant mechanism for delivery is iontophoresis, although electroosmosis and electroporation have also been investigated. The focus of this review is to put these different mechanisms in perspective and relate them to the drug and skin model system being investigated. PMID:9210183

  15. Multiscale modeling of transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a homogenization procedure is performed over a model unit cell of the heterogeneous SC, resulting in effective diffusion parameters. These effective parameters are the macroscopic diffusion coefficients for the homogeneous medium that is "equivalent" to the heterogeneous SC, and thus can be used in finite element simulations of the macroscopic diffusion process.

  16. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload. PMID:26486348

  17. Drug Delivery Nanoparticles in Skin Cancers

    PubMed Central

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  18. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24??M in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  19. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting. PMID:26587994

  20. Intracarotid Delivery of Drugs: The Potential and the Pitfalls

    PubMed Central

    Joshi, Shailendra; Meyers, Phillip M.; Ornstein, Eugene

    2014-01-01

    The major efforts to selectively deliver drugs to the brain in the last decade have relied on smart molecular techniques to penetrate the blood brain barrier while intraarterial drug delivery has drawn relatively little attention. In the last decade there have been rapid advances in endovascular techniques. Modern endovascular procedures can permit highly targeted drug delivery by intracarotid route. Intracarotid drug delivery can be the primary route of drug delivery or it could be used to facilitate the delivery of smart-neuropharmaceuticals. There have been few attempts to systematically understand the kinetics of intracarotid drugs. Anecdotal data suggests that intracarotid drug delivery is effective in the treatment of cerebral vasospasm, thromboembolic strokes, and neoplasms. Neuroanesthesiologists are frequently involved in the care of such high-risk patients. Therefore, it is necessary to understand the applications of intracarotid drug delivery and the unusual kinetics of intracarotid drugs. PMID:18719453

  1. Transdermal drug delivery: from micro to nano

    NASA Astrophysics Data System (ADS)

    Pegoraro, Carla; MacNeil, Sheila; Battaglia, Giuseppe

    2012-03-01

    Delivery across skin offers many advantages compared to oral or intravenous routes of drug administration. Skin however is highly impermeable to most molecules on the basis of size, hydrophilicity, lipophilicity and charge. For this reason it is often necessary to temporarily alter the barrier properties of skin for effective administration. This can be done by applying chemical enhancers, which alter the lipid structure of the top layer of skin (the stratum corneum, SC), by applying external forces such as electric currents and ultrasounds, by bypassing the stratum corneum via minimally invasive microneedles or by using nano-delivery vehicles that can cross and deliver their payload to the deeper layers of skin. Here we present a critical summary of the latest technologies used to increase transdermal delivery.

  2. Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery.

    PubMed

    Jin, Qiao; Chen, Yangjun; Wang, Yin; Ji, Jian

    2014-12-01

    Nanomaterials self-assembled from amphiphilic functional copolymers have emerged as safe and efficient nanocarriers for delivery of therapeutics. Surface engineering of the nanocarriers is extremely important for the design of drug delivery systems. Bioinspired zwitterions are considered as novel nonfouling materials to construct biocompatible and bioinert nanocarriers. As an alternative to poly(ethylene glycol) (PEG), zwitterions exhibit some unique properties that PEG do not have. In this review, we highlight recent progress of the design of drug nanocarriers using a zwitterionic strategy. The possible mechanism of stealth properties of zwitterions was proposed. The advantages of zwitterionic drug nanocarriers deriving from phosphorylcholine (PC), carboxybetaine (CB), and sulfobetaine (SB) are also discussed. PMID:25092584

  3. Nanotechnology Approaches for Ocular Drug Delivery

    PubMed Central

    Xu, Qingguo; Kambhampati, Siva P.; Kannan, Rangaramanujam M.

    2013-01-01

    Blindness is a major health concern worldwide that has a powerful impact on afflicted individuals and their families, and is associated with enormous socio-economical consequences. The Middle East is heavily impacted by blindness, and the problem there is augmented by an increasing incidence of diabetes in the population. An appropriate drug/gene delivery system that can sustain and deliver therapeutics to the target tissues and cells is a key need for ocular therapies. The application of nanotechnology in medicine is undergoing rapid progress, and the recent developments in nanomedicine-based therapeutic approaches may bring significant benefits to address the leading causes of blindness associated with cataract, glaucoma, diabetic retinopathy and retinal degeneration. In this brief review, we highlight some promising nanomedicine-based therapeutic approaches for drug and gene delivery to the anterior and posterior segments. PMID:23580849

  4. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  5. Caged Protein Nanoparticles for Drug Delivery

    PubMed Central

    Molino, Nicholas M.; Wang, Szu-Wen

    2014-01-01

    Caged protein nanoparticles possess many desirable features for drug delivery, such as ideal sizes for endocytosis, non-toxic biodegradability, and the ability to functionalize at three distinct interfaces (external, internal, and inter-subunit) using the tools of protein engineering. Researchers have harnessed these attributes by covalently and non-covalently loading therapeutic molecules through mechanisms that facilitate release within specific microenvironments. Effective delivery depends on several factors, including specific targeting, cell uptake, release kinetics, and systemic clearance. The innate ability of the immune system to recognize and respond to proteins has recently been exploited to deliver therapeutic compounds with these platforms for immunomodulation. The diversity of drugs, loading/release mechanisms, therapeutic targets, and therapeutic efficacy are discussed in this review. PMID:24832078

  6. Inhalation drug delivery devices: technology update

    PubMed Central

    Ibrahim, Mariam; Verma, Rahul; Garcia-Contreras, Lucila

    2015-01-01

    The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided. PMID:25709510

  7. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  8. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  9. Microneedle Coating Techniques for Transdermal Drug Delivery.

    PubMed

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  10. Local Inner Ear Drug Delivery and Pharmacokinetics

    PubMed Central

    Salt, Alec N.; Plontke, Stefan K.R.

    2008-01-01

    Summary A number of drugs are in widespread clinical use for the treatment of inner ear disorders by applying them directly to the inner ear. Many new substances and drug delivery systems specific to the inner ear are under development, and in some cases are undergoing evaluations in animal experiments and in clinical studies. The pharmacokinetics of drugs in the inner ear, however, is not well defined and the field is plagued by technical problems in obtaining pure samples of the inner ear fluids for analysis. Nevertheless, a basic understanding of the mechanisms of drug dispersal in the inner ear has emerged that facilitates the design and interpretation of future pharmacokinetic studies. PMID:16214674

  11. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  12. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  13. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  14. Advanced drug delivery approaches against periodontitis.

    PubMed

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-02-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis. PMID:25005586

  15. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines. PMID:26418537

  16. Protein and Peptide Drug Delivery: Oral Approaches

    PubMed Central

    Shaji, Jessy; Patole, V.

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery. PMID:20046732

  17. A model of axonal transport drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey

    2012-04-01

    In this paper a model of targeted drug delivery by means of active (motor-driven) axonal transport is developed. The model is motivated by recent experimental research by Filler et al. (A.G. Filler, G.T. Whiteside, M. Bacon, M. Frederickson, F.A. Howe, M.D. Rabinowitz, A.J. Sokoloff, T.W. Deacon, C. Abell, R. Munglani, J.R. Griffiths, B.A. Bell, A.M.L. Lever, Tri-partite complex for axonal transport drug delivery achieves pharmacological effect, Bmc Neuroscience 11 (2010) 8) that reported synthesis and pharmacological efficiency tests of a tri-partite complex designed for axonal transport drug delivery. The developed model accounts for two populations of pharmaceutical agent complexes (PACs): PACs that are transported retrogradely by dynein motors and PACs that are accumulated in the axon at the Nodes of Ranvier. The transitions between these two populations of PACs are described by first-order reactions. An analytical solution of the coupled system of transient equations describing conservations of these two populations of PACs is obtained by using Laplace transform. Numerical results for various combinations of parameter values are presented and their physical significance is discussed.

  18. Controlled Ocular Drug Delivery with Nanomicelles

    PubMed Central

    Vaishya, Ravi D.; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K.

    2014-01-01

    Many vision threatening ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and proliferative vitreoretinopathy may result in blindness. Ocular drug delivery specifically to the intraocular tissues remains a challenging task due to the presence of various physiological barriers. Nonetheless, recent advancements in the field of nanomicelle based novel drug delivery system could fulfil these unmet needs. Nanomicelles consists of amphiphilic molecules that self-assemble in aqueous media to form organized supramolecular structures. Micelles can be prepared in various sizes (10 to 1000nm) and shapes depending on the molecular weights of the core and corona forming blocks. Nanomicelles have been an attractive carriers for their potential to solubilize hydrophobic molecules in aqueous solution. In addition, small size in nanometer range and highly modifiable surface properties have been reported to be advantageous in ocular drug delivery. In the present review various factors influencing rationale design of nanomicelles formulation and disposition are discussed along with case studies. Despite the progress in the field, influence of various properties of nanomicelles such as size, shape, surface charge, rigidity of structure on ocular disposition need to be studied in further details to develop an efficient nanocarrier system. PMID:24888969

  19. Ultrasound-mediated nail drug delivery system.

    PubMed

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative. PMID:22124008

  20. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  1. Protein-Based Nanomedicine Platforms for Drug Delivery

    SciTech Connect

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein based drug delivery system.

  2. Mucoadhesive vs. mucopenetrating particulate drug delivery.

    PubMed

    Netsomboon, Kesinee; Bernkop-Schnürch, Andreas

    2016-01-01

    Mucus layer is a hydrophilic absorption barrier found in various regions of the body. The use of particulate delivery systems showed potential in drug delivery to mucosal membranes by either prolonging drug residence time at the absorption or target membrane or promoting permeation of particles across mucus gel layer to directly reach underlying epithelium. Mucoadhesive particles (MAP) are advantageous for delivering drug molecules to various mucosal membranes including eyes, oral cavity, bladder and vagina by prolonging drug residence time on those membranes. In contrast, a broader particle distribution and deeper penetration of the mucus gel layer are accomplished by mucopenetrating particles (MPP) especially in the gastrointestinal tract. Based on the available literature in particular dealing with in vivo results none of both systems (MAP and MPP) seems to be advantageous over the other. The choice of system primarily depends on the therapeutic target and peculiar properties of the target mucosa including thickness of the mucus gel layer, mucus turnover rate and water movement within the mucus. Future trends are heading in the direction of combining both systems to one i.e. mucoadhesive and mucopenetrating properties on the same particles. PMID:26598207

  3. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  4. Stimuli-responsive nanocarriers for drug delivery

    NASA Astrophysics Data System (ADS)

    Mura, Simona; Nicolas, Julien; Couvreur, Patrick

    2013-11-01

    Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).

  5. Antibody-drug conjugates: targeted drug delivery for cancer.

    PubMed

    Alley, Stephen C; Okeley, Nicole M; Senter, Peter D

    2010-08-01

    The antibody-drug conjugate field has made significant progress recently owing to careful optimization of several parameters, including mAb specificity, drug potency, linker technology, and the stoichiometry and placement of conjugated drugs. The underlying reason for this has been obtained in pre-clinical biodistribution and pharmacokinetics studies showing that targeted delivery leads to high intratumoral free drug concentrations, while non-target tissues are largely spared from chemotherapeutic exposure. Recent developments in the field have led to an increase in the number of ADCs being tested clinically, with 3 in late stage clinical trials: brentuximab vedotin (also referred to as SGN-35) for Hodgkin lymphoma; Trastuzumab-DM1 for breast cancer; and Inotuzumab ozogamicin for non-Hodgkin lymphoma. This review highlights the recent pre-clinical and clinical advances that have been made. PMID:20643572

  6. Advanced drug delivery systems for antithrombotic agents

    PubMed Central

    Greineder, Colin F.; Howard, Melissa D.; Carnemolla, Ronald; Cines, Douglas B.

    2013-01-01

    Despite continued achievements in antithrombotic pharmacotherapy, difficulties remain in managing patients at high risk for both thrombosis and hemorrhage. Utility of antithrombotic agents (ATAs) in these settings is restricted by inadequate pharmacokinetics and narrow therapeutic indices. Use of advanced drug delivery systems (ADDSs) may help to circumvent these problems. Various nanocarriers, affinity ligands, and polymer coatings provide ADDSs that have the potential to help optimize ATA pharmacokinetics, target drug delivery to sites of thrombosis, and sense pathologic changes in the vascular microenvironment, such as altered hemodynamic forces, expression of inflammatory markers, and structural differences between mature hemostatic and growing pathological clots. Delivery of ATAs using biomimetic synthetic carriers, host blood cells, and recombinant fusion proteins that are activated preferentially at sites of thrombus development has shown promising outcomes in preclinical models. Further development and translation of ADDSs that spare hemostatic fibrin clots hold promise for extending the utility of ATAs in the management of acute thrombotic disorders through rapid, transient, and targeted thromboprophylaxis. If the potential benefit of this technology is to be realized, a systematic and concerted effort is required to develop clinical trials and translate the use of ADDSs to the clinical arena. PMID:23798715

  7. Drug accumulation by means of noninvasive magnetic drug delivery system

    NASA Astrophysics Data System (ADS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  8. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  9. Topical Drug Delivery for Chronic Rhinosinusitis

    PubMed Central

    Liang, Jonathan; Lane, Andrew P.

    2013-01-01

    Chronic rhinosinusitis is a multifactorial disorder that may be heterogeneous in presentation and clinical course. While the introduction of endoscopic sinus surgery revolutionized surgical management and has led to significantly improved patient outcomes, medical therapy remains the foundation of long-term care of chronic rhinosinusitis, particularly in surgically recalcitrant cases. A variety of devices and pharmaceutical agents have been developed to apply topical medical therapy to the sinuses, taking advantage of the access provided by endoscopic surgery. The goal of topical therapy is to address the inflammation, infection, and mucociliary dysfunction that underlies the disease. Major factors that impact success include the patient’s sinus anatomy and the dynamics of the delivery device. Despite a growing number of topical treatment options, the evidence-based literature to support their use is limited. In this article, we comprehensively review current delivery methods and the available topical agents. We also discuss biotechnological advances that promise enhanced delivery in the future, and evolving pharmacotherapeutical compounds that may be added to rhinologist’s armamentarium. A complete understand of topical drug delivery is increasingly essential to the management of chronic rhinosinusitis when traditional forms of medical therapy and surgery have failed. PMID:23525506

  10. Polymeric Nanoparticle Technologies for Oral Drug Delivery

    PubMed Central

    Pridgen, Eric M.; Alexis, Frank; Farokhzad, Omid C.

    2014-01-01

    Biologics are being increasingly used for the treatment of many diseases. These treatments typically require repeated doses administered by injection. Alternate routes of administration, particularly oral, are considered favorable because of improved convenience and compliance by patients, but physiological barriers such as extreme pH, enzyme degradation, and poor intestinal epithelium permeability limit absorption. Encapsulating biologics in drug delivery systems such as polymeric nanoparticles (NPs) prevents inactivation and degradation caused by low pH and enzymes of the gastrointestinal (GI) tract. However, transport across the intestinal epithelium remains the most critical barrier to overcome for efficient oral delivery. This review focuses on recent advances in polymeric NPs being developed to overcome transport barriers and their potential for translation into clinical use. PMID:24981782

  11. Recent advances in nanotechnology based drug delivery to the brain

    PubMed Central

    Lin, Li-Na; Song, Lei; Liu, Fang-Fang; Sha, Jin-Xiu

    2010-01-01

    Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release. PMID:20700653

  12. Micro- and nano-fabricated implantable drug-delivery systems

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2013-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted. PMID:23323562

  13. Aptamer-functionalized nanoparticles for drug delivery.

    PubMed

    Liu, Bo; Zhang, Jiani; Liao, Jie; Liu, Jun; Chen, Ke; Tong, Guoxiang; Yuan, Peng; Liu, Zhenxu; Pu, Ying; Liu, Huixia

    2014-11-01

    Aptamers are artificial single-stranded DNA or RNA sequences, usually 20-60 bases long, that fold into secondary and tertiary structures, which enables their binding to a wide range of targets, including amino acids, drugs, proteins or even entire cells, with high affinity and specificity. Generally synthesized through an in vitro selection and amplification process known as the SELEX (systematic evolution of ligands by exponential enrichment), selected aptamers have dissociation constants ranging from nanomolar to picomolar level. Nanotechnology is the manipulation of matter on an atomic and molecular scale, generally in the 1-100 nm dimension range. The many unique physicochemical properties of nanoparticles include their ultra-small size, large surface area-to-mass ratio, and high reactivity, making them different from bulk materials and overcoming some of the limitations found in traditional therapeutic and diagnostic agents. By combining both technologies, aptamer-conjugated nanoparticles offer new opportunities for applications in biomedicine, including early diagnosis and drug delivery. This review summarizes the recent developments in aptamer-mediated drug delivery for therapeutics based on aptamer conjugation with a variety of nanoparticles. PMID:26000380

  14. In situ forming polymeric drug delivery systems.

    PubMed

    Madan, M; Bajaj, A; Lewis, S; Udupa, N; Baig, J A

    2009-05-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  15. In Situ Forming Polymeric Drug Delivery Systems

    PubMed Central

    Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.

    2009-01-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  16. Advancement in integrin facilitated drug delivery.

    PubMed

    Arosio, Daniela; Casagrande, Cesare

    2016-02-01

    The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents. PMID:26686830

  17. Adenovirus Dodecahedron, as a Drug Delivery Vector

    PubMed Central

    Zochowska, Monika; Paca, Agnieszka; Schoehn, Guy; Andrieu, Jean-Pierre; Chroboczek, Jadwiga; Dublet, Bernard; Szolajska, Ewa

    2009-01-01

    Background Bleomycin (BLM) is an anticancer antibiotic used in many cancer regimens. Its utility is limited by systemic toxicity and dose-dependent pneumonitis able to progress to lung fibrosis. The latter can affect up to nearly 50% of the total patient population, out of which 3% will die. We propose to improve BLM delivery by tethering it to an efficient delivery vector. Adenovirus (Ad) dodecahedron base (DB) is a particulate vector composed of 12 copies of a pentameric viral protein responsible for virus penetration. The vector efficiently penetrates the plasma membrane, is liberated in the cytoplasm and has a propensity to concentrate around the nucleus; up to 300000 particles can be observed in one cell in vitro. Principal Findings Dodecahedron (Dd) structure is preserved at up to about 50°C at pH 7–8 and during dialysis, freezing and drying in the speed-vac in the presence of 150 mM ammonium sulfate, as well as during lyophilization in the presence of cryoprotectants. The vector is also stable in human serum for 2 h at 37°C. We prepared a Dd-BLM conjugate which upon penetration induced death of transformed cells. Similarly to free bleomycin, Dd-BLM caused dsDNA breaks. Significantly, effective cytotoxic concentration of BLM delivered with Dd was 100 times lower than that of free bleomycin. Conclusions/Significance Stability studies show that Dds can be conveniently stored and transported, and can potentially be used for therapeutic purposes under various climates. Successful BLM delivery by Ad Dds demonstrates that the use of virus like particle (VLP) results in significantly improved drug bioavailability. These experiments open new vistas for delivery of non-permeant labile drugs. PMID:19440379

  18. Thermo-responsive systems for controlled drug delivery.

    PubMed

    Bikram, Malavosklish; West, Jennifer L

    2008-10-01

    Controlled drug delivery systems represent advanced systems that can be tightly modulated by stimuli in order to treat diseases in which sustained drug release is undesirable. Among the many different stimuli-sensitive delivery systems, temperature-sensitive drug delivery systems offer great potential over their counterparts due to their versatility in design, tunability of phase transition temperatures, passive targeting ability and in situ phase transitions. Thus, thermosensitive drug delivery systems can overcome many of the hurdles of conventional drug delivery systems in order to increase drug efficacies, drug targeting and decrease drug toxicities. In an effort to further control existing temperature-responsive systems, current innovative applications have combined temperature with other stimuli such as pH and light. The result has been the development of highly sophisticated systems, which demonstrate exquisite control over drug release and represent huge advances in biomedical research. PMID:18817514

  19. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  20. Pulmonary drug delivery by powder aerosols.

    PubMed

    Yang, Michael Yifei; Chan, John Gar Yan; Chan, Hak-Kim

    2014-11-10

    The efficacy of pharmaceutical aerosols relates to its deposition in the clinically relevant regions of the lungs, which can be assessed by in vivo lung deposition studies. Dry powder formulations are popular as devices are portable and aerosolisation does not require a propellant. Over the years, key advancements in dry powder formulation, device design and our understanding on the mechanics of inhaled pharmaceutical aerosol have opened up new opportunities in treatment of diseases through pulmonary drug delivery. This review covers these advancements and future directions for inhaled dry powder aerosols. PMID:24818765

  1. Dendrimer based nanotherapeutics for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Kambhampati, Siva Pramodh

    PAMAM dendrimers are a class of well-defined, hyperbranched polymeric nanocarriers that are being investigated for ocular drug and gene delivery. Their favorable properties such as small size, multivalency and water solubility can provide significant opportunities for many biologically unstable drugs and allows potentially favorable ocular biodistribution. This work exploits hydroxyl terminated dendrimers (G4-OH) as drug/gene delivery vehicles that can target retinal microglia and pigment epithelium via systemic delivery with improved efficacy at much lower concentrations without any side effects. Two different drugs Triamcinolone acetonide (TA) and N-Acetyl Cysteine (NAC) conjugated to G4-OH dendrimers showed tailorable sustained release in physiological relevant solutions and were evaluated in-vitro and in-vivo. Dendrimer-TA conjugates enhanced the solubility of TA and were 100 fold more effective at lower concentrations than free TA in its anti-inflammatory activity in activated microglia and in suppressing VEGF production in hypoxic RPE cells. Dendrimers targeted activated microglia/macrophages and RPE and retained for a period of 21 days in I/R mice model. The relative retention of intravitreal and intravenous dendrimers was comparable, if a 30-fold intravenous dose is used; suggesting intravenous route targeting retinal diseases are possible with dendrimers. D-NAC when injected intravenously attenuated retinal and choroidal inflammation, significantly reduced (˜73%) CNV growth at early stage of AMD in rat model of CNV. A combination therapy of D-NAC + D-TA significantly suppressed microglial activation and promoted CNV regression in late stages of AMD without causing side-effects. G4-OH was modified with linker having minimal amine groups and incorporation of TA as a nuclear localization enhancer resulted in compact gene vectors with favorable safety profile and achieved high levels of transgene expression in hard to transfect human retinal pigment epithelial cells (hRPE). Prepared dendrimer-gene complexes were non-toxic and achieved significant cell uptake and safe delivery of gene in to the nucleus. Further, polyethylene glycol (PEG) surface coating enhanced colloidal stability in physiological relevant solutions without affecting its transfection efficacy.

  2. Transdermal iontophoretic drug delivery: advances and challenges.

    PubMed

    Ita, Kevin

    2016-06-01

    The stratum corneum continues to pose considerable impediment to transdermal drug delivery. One of the effective ways of circumventing this challenge is through the use of iontophoresis. Iontophoresis uses low-level current to drive charged compounds across the skin. This review discusses progress made in the field of iontophoretic transport of small and large molecules. The major obstacles are also touched upon and advances made in the last few decades described. A number of iontophoretic systems approved for clinical use by regulatory authorities is also discussed. PMID:26406291

  3. Silk fibroin nanoparticle as a novel drug delivery system.

    PubMed

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Shokrgozar, Mohammad Ali; Atyabi, Fatemeh; Hosseinkhani, Hossein

    2015-05-28

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Nanocarrier-based drug delivery systems, in particular nanoparticles, have generated great excitement in the field of drug delivery since they provide new opportunities to overcome the limitations of conventional delivery methods with regards to the drugs. Silk fibroin (SF) is a naturally occurring protein polymer with several unique properties that make it a suitable material for incorporation into a variety of drug delivery vehicles capable of delivering a range of therapeutic agents. SF matrices have been shown to successfully deliver anticancer drugs, small molecules, and biomolecules. This review will provide an in-depth discussion of the development of SF nanoparticle-based drug delivery systems. PMID:25797561

  4. Drug delivery systems. 1. site-specific drug delivery using liposomes as carriers.

    PubMed

    Ranade, V V

    1989-08-01

    Drug delivery systems, offering controlled delivery of biologically active agents, are rapidly gaining importance in pharmaceutical research and development. To achieve controlled drug delivery, i.e., the administration of drugs so that optimal amount reaches the target site to cure or control the disease state, increasingly sophisticated systems containing different carriers have been developed. Macromolecules represent one of the carriers involved, and they have taken on a significantly prominent role in various modes of administration of therapeutic agents. Among macromolecules, for example, synthetic copolymers, polysaccharides, liposomes, polyanions and antibodies, as drug carriers, liposomes have proved most effective for diseases affecting the reticuloendothelial system and blood cells in particular. Liposomes, which are vesicles consisting of one or more concentrically ordered assemblies of phospholipids bilayers, range in size from a nanometer to several micrometers. Phospholipids such as egg phosphatidylcholine, phosphatidylserine, synthetic dipalmitoyl-DL-alpha-phosphatidylcholine or phosphatidylinositol, have been used in conjunction with cholesterol and positively or negatively charged amphiphiles such as stearylamine or phosphatidic acid. Alteration of surface charge has been shown to enhance drug incorporation and also influence drug release. Because of the multifold characteristics as drug carriers, liposomes have been investigated extensively as carriers of anticancer agents for the past several years. Liposomal entrapments include a variety of pharmacologically active compounds such as antimalarial, antiviral, anti-inflammatory and anti-fungal agents as well as antibiotics, prostaglandins, steroids and bronchodilators to name a few. The liposomal entrapment has been shown to have considerable effect on the pharmacokinetics and tissue distribution of administered drugs. Despite the potential value of liposomes as unique carriers, the major obstacles are the first order targeting of a systemically given liposomes, physical stability and manufacture of the liposomal products and these problems still remain to be overcome. Drug delivery systems evolving in the 1980s have become increasingly dependent on fundamental cell-biology and receptor-mediated endocytotic mechanisms. Drug delivery systems during the 1990s may take advantage of the specificity of receptor-mediated uptake mechanisms as well as polymer chemistry and cell-biology in order to introduce more precise and efficient target-specific delivery systems that are based especially on the liposome technology. PMID:2674208

  5. Mucoadhesive nanoparticulate systems for peptide drug delivery.

    PubMed

    Takeuchi, H; Yamamoto, H; Kawashima, Y

    2001-03-23

    This chapter describes the preparation of and methods for evaluating mucoadhesive nanoparticulate systems, including liposomes and polymeric nanoparticles. Mucoadhesive ability is conferred on the particulate systems by coating their surface with mucoadhesive polymers such as chitosan and Carbopol. The feasibility of this surface modification was confirmed by measuring the zeta potential. Several methods of evaluating the mucoadhesive properties of particulate systems have been reported in the literature. We have also developed some novel evaluation procedures including a particle counting method using a Coulter counter for polymer-coated liposomes. The mucoadhesive properties of the polymer-coated liposomes and polymeric nanoparticles were confirmed by means of these mucoadhesion tests. In applying these mucoadhesive nanoparticles to the oral and pulmonary administration of peptide drugs, more effective and prolonged action was observed in comparison with non-coated systems, thereby confirming the usefulness of mucoadhesive nanoparticulate systems for the delivery of peptide drugs. PMID:11251244

  6. Importance of novel drug delivery systems in herbal medicines

    PubMed Central

    Devi, V. Kusum; Jain, Nimisha; Valli, Kusum S.

    2010-01-01

    Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. Our country has a vast knowledge base of Ayurveda whose potential is only being realized in the recent years. However, the drug delivery system used for administering the herbal medicine to the patient is traditional and out-of-date, resulting in reduced efficacy of the drug. If the novel drug delivery technology is applied in herbal medicine, it may help in increasing the efficacy and reducing the side effects of various herbal compounds and herbs. This is the basic idea behind incorporating novel method of drug delivery in herbal medicines. Thus it is important to integrate novel drug delivery system and Indian Ayurvedic medicines to combat more serious diseases. For a long time herbal medicines were not considered for development as novel formulations owing to lack of scientific justification and processing difficulties, such as standardization, extraction and identification of individual drug components in complex polyherbal systems. However, modern phytopharmaceutical research can solve the scientific needs (such as determination of pharmacokinetics, mechanism of action, site of action, accurate dose required etc.) of herbal medicines to be incorporated in novel drug delivery system, such as nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, solid lipid nanoparticles and so on. This article summarizes various drug delivery technologies, which can be used for herbal actives together with some examples. PMID:22228938

  7. Implantable microchip: the futuristic controlled drug delivery system.

    PubMed

    Sutradhar, Kumar Bishwajit; Sumi, Chandra Datta

    2016-01-01

    There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized. PMID:24758139

  8. Antibody Drug Conjugate bioinformatics: drug delivery through the letterbox.

    PubMed

    Vlachakis, Dimitrios; Kossida, Sophia

    2013-01-01

    Antibodies appear to be the first line of defence in the adaptive immune response of vertebrates and thereby are involved in a multitude of biochemical mechanisms, such as regulation of infection, autoimmunity, and cancer. It goes without saying that a full understanding of antibody function is required for the development of novel antibody-interacting drugs. These drugs are the Antibody Drug Conjugates (ADCs), which are a new type of targeted therapy, used for example for cancer. They consist of an antibody (or antibody fragment such as a single-chain variable fragment [scFv]) linked to a payload drug (often cytotoxic). Because of the targeting, the side effects should be lower and give a wider therapeutic window. Overall, the underlying principle of ADCs is to discern the delivery of a drug that is cytotoxic to a target that is cancerous, hoping to increase the antitumoural potency of the original drug by reducing adverse effects and side effects, such as toxicity of the cancer target. This is a pioneering field that employs state-of-the-art computational and molecular biology methods in the fight against cancer using ADCs. PMID:23853668

  9. Ultrasound-Propelled Nanocups for Drug Delivery.

    PubMed

    Kwan, James J; Myers, Rachel; Coviello, Christian M; Graham, Susan M; Shah, Apurva R; Stride, Eleanor; Carlisle, Robert C; Coussios, Constantin C

    2015-10-21

    Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications. PMID:26296985

  10. Ultrasound-Propelled Nanocups for Drug Delivery

    PubMed Central

    Kwan, James J; Myers, Rachel; Coviello, Christian M; Graham, Susan M; Shah, Apurva R; Stride, Eleanor; Carlisle, Robert C; Coussios, Constantin C

    2015-01-01

    Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications. PMID:26296985

  11. Convection-enhanced drug delivery for gliomas

    PubMed Central

    Healy, Andrew T.; Vogelbaum, Michael A.

    2015-01-01

    In spite of aggressive multi-modality treatments, patients diagnosed with anaplastic astrocytoma and glioblastoma continue to display poor median survival. The success of our current conventional and targeted chemotherapies are largely hindered by systemic- and neurotoxicity, as well as poor central nervous system (CNS) penetration. Interstitial drug administration via convection-enhanced delivery (CED) is an alternative that potentially overcomes systemic toxicities and CNS delivery issues by directly bypassing the blood–brain barrier (BBB). This novel approach not only allows for directed administration, but also allows for newer, tumor-selective agents, which would normally be excluded from the CNS due to molecular size alone. To date, randomized trials of CED therapy have yet to definitely show survival advantage as compared with today's standard of care, however, early studies appear to have been limited by “first generation” delivery techniques. Taking into consideration lessons learned from early trials along with decades of research, newer CED technologies and therapeutic agents are emerging, which are reviewed herein. PMID:25722934

  12. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  13. Challenges in modelling nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.

    2016-01-01

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar.

  14. Fibronectin-targeted drug delivery in cancer.

    PubMed

    Kumra, Heena; Reinhardt, Dieter P

    2016-02-01

    Fibronectin is an extracellular matrix protein with pivotal physiological and pathological functions in development and adulthood. Alternative splicing of the precursor mRNA, produced from the single copy fibronectin gene, occurs at three sites coding for the EDA, EDB and IIICS domains. Fibronectin isoforms comprising the EDA or EDB domains are known as oncofetal forms due to their developmental importance and their re-expression in tumors, contrasting with restricted presence in normal adult tissues. These isoforms are also recognized as important markers of angiogenesis, a crucial physiological process in development and required by tumor cells in cancer progression. Attributed to this feature, EDA and EDB domains have been extensively used for the targeted delivery of cytokines, cytotoxic agents, chemotherapy drugs and radioisotopes to fibronectin-expressing tumors to exert therapeutic effects on primary cancers and metastatic lesions. In addition to drug delivery, the EDA and EDB domains of fibronectin have also been utilized to develop imaging strategies for tumor tissues. Furthermore, EDA and EDB based vaccines seem to be promising for the treatment and prevention of certain cancer types. In this review, we will summarize recent advances in fibronectin EDA and EDB-based therapeutic strategies developed to treat cancer. PMID:26639577

  15. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery. PMID:26631222

  16. Polymeric Micelles for Acyclovir Drug Delivery

    PubMed Central

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ?-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200 nm and the CMCs of ACV-PCLMPEG and ACV-PCL-chitosan were 2.0 mg L?1 and 6.6 mg L?1, respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. PMID:25193154

  17. Stimuli-responsive dendrimers in drug delivery.

    PubMed

    Wang, Hui; Huang, Quan; Chang, Hong; Xiao, Jianru; Cheng, Yiyun

    2016-02-23

    Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed. PMID:26806314

  18. Challenges in modelling nanoparticles for drug delivery.

    PubMed

    Barnard, Amanda S

    2016-01-20

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar. PMID:26682622

  19. Cooperative assembly in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  20. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ?-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. PMID:25193154

  1. Controlled Drug Delivery: Historical perspective for the next generation.

    PubMed

    Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam

    2015-12-10

    The modern day drug delivery technology is only 60years old. During this period numerous drug delivery systems have been developed. The first generation (1950-1980) has been very productive in developing many oral and transdermal controlled release formulations for clinical applications. On the other hand, the second generation (1980-2010) has not been as successful in generating clinical products. This is in large part due to the nature of the problems to overcome. The first generation of drug delivery technologies dealt with physicochemical problems, while the second struggled with biological barriers. Controlled drug delivery systems can be made with controllable physicochemical properties, but they cannot overcome the biological barriers. The third generation (from 2010) drug delivery systems need to overcome both physicochemical and biological barriers. The physicochemical problems stem from poor water solubility of drugs, large molecular weight of peptide and protein drugs, and difficulty of controlling drug release kinetics. The biological barriers to overcome include distribution of drug delivery systems by the body rather than by formulation properties, limiting delivery to a specific target in the body. In addition, the body's reaction to formulations limits their functions in vivo. The prosperous future of drug delivery systems depends on whether new delivery systems can overcome limits set by human physiology, and the development process can be accelerated with new ways of thinking. PMID:26456749

  2. Drug delivery with microsecond laser pulses into gelatin

    NASA Astrophysics Data System (ADS)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  3. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was synthesized and incorporated in different NCPs using various binding metals. A moderate drug loading of 44.9 wt% was determined for Zr-based NCPs. This drug loading, along with a diameter less than 200 nm, make these particles promising candidates for further stabilization via lipid encapsulation.

  4. Functionalization of protein-based nanocages for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Schoonen, Lise; van Hest, Jan C. M.

    2014-06-01

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  5. Intrathecal Drug Delivery (ITDD) systems for cancer pain

    PubMed Central

    Bhatia, Gaurav; Lau, Mary E; Koury, Katharine M; Gulur, Padma

    2014-01-01

    Intrathecal drug delivery is an effective pain management option for patients with chronic and cancer pain. The delivery of drugs into the intrathecal space provides superior analgesia with smaller doses of analgesics to minimize side effects while significantly improving quality of life. This article aims to provide a general overview of the use of intrathecal drug delivery to manage pain, dosing recommendations, potential risks and complications, and growing trends in the field. PMID:24555051

  6. Lipoidal Soft Hybrid Biocarriers of Supramolecular Construction for Drug Delivery

    PubMed Central

    Kumar, Dinesh; Sharma, Deepak; Singh, Gurmeet; Singh, Mankaran; Rathore, Mahendra Singh

    2012-01-01

    Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems. PMID:22888455

  7. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was found to correlate with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe and SCPC were: 9.8, 7.2 and 3.5 mug/h of Vanc and 4.5, 5.3 and 3.5 mug/h of Cis, respectively. Nearly inert Cris ceramic showed release kinetics controlled by its hierarchical nano porous structure. On the other hand, the phase composition and surface chemistry of bioactive Rhe or SCPC ceramics overruled the effect of surface area. The relatively low rate of drug release from SCPC was due to the dissolution-back precipitation reaction taking place on the material surface as confirmed by FTIR bands of surface hydroxyapatite layer at 576.5, 596.7 and 620.7 cm-1. Moreover, the solid solution of crystalline phases of SCPC enhanced the bioactivity of the composite. Nuclear Magnetic Resonance (NMR) and cell culture analyses demonstrated that the interactions between the SCPC dissolution products and the released drug did not cause measurable negative effects on the bioactivity of the tested drugs. The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the tumor. Five days after implantation 50-55% of the total cisplatin loaded was released from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared to sCis treatment. Severe side effects were observed in animals treated with sCis including rapid weight loss and decreased liver and kidney function, effects not observed in SCPC-Cis treated animals. Analysis of cisplatin distribution demonstrated drug concentrations in the tumor were 21 and 1.5-times higher in IT and ADJ groups, respectively, as compared to sCis treated animals. These data demonstrate the SCPC drug delivery system can provide an effective localized treatment for HCC with significantly reduced toxicity compared to systemic drug administration. Moreover, it is possible to tailor drug release kinetics from SCPC hybrids by controlling the crystalline structure of the material and the ratios of Cris and Rhe in the composite.

  8. Polymeric carriers: role of geometry in drug delivery

    PubMed Central

    Simone, Eric A; Dziubla, Thomas D; Muzykantov, Vladimir R

    2009-01-01

    The unique properties of synthetic nanostructures promise a diverse set of applications as carriers for drug delivery, which are advantageous in terms of biocompatibility, pharmacokinetics, targeting and controlled drug release. Historically, more traditional drug delivery systems have focused on spherical carriers. However, there is a growing interest in pursuing non-spherical carriers, such as elongated or filamentous morphologies, now available due to novel formulation strategies. Unique physiochemical properties of these supramolecular structures offer distinct advantages as drug delivery systems. In particular, results of recent studies in cell cultures and lab animals indicate that rational design of carriers of a given geometry (size and shape) offers an unprecedented control of their longevity in circulation and targeting to selected cellular and subcellular locations. This article reviews drug delivery aspects of non-spherical drug delivery systems, including material selection and formulation, drug loading and release, biocompatibility, circulation behavior, targeting and subcellular addressing. PMID:19040392

  9. Is nanotechnology a boon for oral drug delivery?

    PubMed

    Agrawal, Udita; Sharma, Rajeev; Gupta, Madhu; Vyas, Suresh P

    2014-10-01

    The oral route for drug delivery is regarded as the optimal route for achieving therapeutic benefits owing to increased patient compliance. Despite phenomenal advances in injectable, transdermal, nasal and other routes of administration, the reality is that oral drug delivery remains well ahead of the pack as the preferred delivery route. Nanocarriers can overcome the major challenges associated with this route of administration: mainly poor solubility, stability and biocompatibility of drugs. This review focuses on the potential of various polymeric drug delivery systems in oral administration, their pharmacokinetics, in vitro and in vivo models, toxicity and regulatory aspects. PMID:24786464

  10. Extended Release Drug Delivery Strategies in Psychiatry

    PubMed Central

    2005-01-01

    Objective: An overview of the emerging field of long-term delivery strategies for improved convenience and adherence with psychiatric medications is provided. This review is motivated by the hypothesis that adherence to treatment is an important determinant of clinical outcomes in a wide range of settings and is particularly important in psychiatry practice where patients require treatment for months or years and premature discontinuation can have serious consequences for patient health and quality of life. Design: The author reviews the relevant literature and highlights several approaches to providing improved access to continuous medication through new and innovative delivery strategies ranging from days to annual intervals. Benefits and Disadvantages: Several solutions to the problem of discontinuous access to pharmacotherapy are being developed in the form of new, long-acting drug-delivery systems, which gradually release medication over a period of several days or weeks with a single application. Long-acting formulations of psychiatric medications offer a number of potential benefits in comparison with conventional immediate-release agents, including improved safety and effectiveness. Potential limitations to using long-acting formulations may include pain and discomfort at the injection site, perceived inconvenience of a new treatment method, preference for oral medications, and length of time to titrate down to the lowest effective dose. Conclusions: The introduction of new, long-acting drug formulations could provide significant improvements in clinical outcomes and patient satisfaction for many patients, including those with affective disorders, schizophrenia, and alcohol dependence. Switching from oral administration to these new agents requires careful monitoring to reach the optimal dose, and patient concerns regarding the use of new delivery methods must be addressed. Long-acting formulations are not intended to be a sole form of treatment, and the use of psychotherapy as an adjunct form of treatment is still required. Controlled clinical trials of these new formulations have only recently been completed, offering clinicians a new option in their treatment regimens; however, as technologies improve, several new formulations are likely to enter clinical trials during the next few years. Psychiatrists will need to become acquainted with these technologies and educate their patients about them so they may work together to determine the most effective treatment option. PMID:21152152

  11. Microencapsulation: A promising technique for controlled drug delivery

    PubMed Central

    Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.

    2010-01-01

    Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795

  12. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  13. Advances in lymphatic imaging and drug delivery.

    PubMed

    Nune, Satish K; Gunda, Padmaja; Majeti, Bharat K; Thallapally, Praveen K; Forrest, M Laird

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on the use of various nanoparticulate and polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed. PMID:21718728

  14. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    PubMed

    Rady Raz, Nasibeh; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  15. Advances in Lymphatic Imaging and Drug Delivery

    PubMed Central

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Forrest, M. Laird

    2011-01-01

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on the use of various nanoparticulate and polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed. PMID:21718728

  16. Polymeric Microgels as Potential Drug Delivery Vesicles

    NASA Astrophysics Data System (ADS)

    McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu

    2010-03-01

    The temperature dependent volume phase change of cross-linked amphiphilic molecules (microgels) suggests their use as drug delivery vesicles. Drug particles aggregate in the slightly hydrophobic microgel interior. They are stored in equilibrium until the critical temperature (Tv) is reached where the volume phase change limits available space, thus expelling the drugs. This loading property of hydroxypropylcellulose (HPC) microgels was tested using amperometric analytical techniques. Small molecules inside microgels do not approach the electrode surface, which decreases current signal. A room temperature (Troom) flow amperometric measurement comparing microgel/paracetamol solution with control paracetamol samples yielded about 20 percent concentration reduction in the microgel sample. Results from the steady-state electrochemical experiment confirm the 20 percent concentration drop in the microgel sample compared to the control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the paracetamol concentration change between the temperature extremes was greater for the microgels than for the controls. An evolving aspect of the study is the characterization of microgel shrinkage from in situ, temperature controlled liquid AFM images as compared to previously completed DLS characterization of the same microgel sample.

  17. Microneedle-iontophoresis combinations for enhanced transdermal drug delivery.

    PubMed

    Donnelly, Ryan F; Garland, Martin J; Alkilani, Ahlam Zaid

    2014-01-01

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery as well as enabling the rate of delivery to be achieved with precise electronic control. However, few reports exist on the combination of ITP with in situ drug-loaded polymeric MN delivery systems. Our in vitro permeation studies revealed that MN enhances transdermal drug delivery. The combination of dissolving MN and ITP did not further enhance the extent of delivery of the low molecular weight drug ibuprofen sodium after short application periods. However, the extent of peptide/protein delivery was significantly enhanced when ITP was used in combination with hydrogel-forming MN arrays. As such, hydrogel-forming MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach, though further technical developments will be necessary before patient benefit is realized. PMID:24567135

  18. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles

    PubMed Central

    Trivedi, Ruchit; Kompella, Uday B

    2010-01-01

    Micellar delivery systems smaller than 100 nm can be readily prepared. While micelles allow a great depth of tissue penetration for targeted drug delivery, they usually disintegrate rapidly in the body. Thus, sustained drug delivery from micellar nanocarriers is a challenge. This article summarizes various key strategies and underlying principles for sustained drug delivery using micellar nanocarriers. Comparisons are made with other competing delivery systems such as polymeric microparticles and nanoparticles. Amphiphilic molecules self-assemble in appropriate liquid media to form nanoscale micelles. Strategies for sustained release nanomicellar carriers include use of prodrugs, drug polymer conjugates, novel polymers with low critical micellar concentration or of a reverse thermoresponsive nature, reverse micelles, multi-layer micelles with layer by layer assembly, polymeric films capable of forming micelles in vivo and micelle coats on a solid support. These new micellar systems are promising for sustained drug delivery. PMID:20394539

  19. 75 FR 45640 - Draft Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... and Related Drug Delivery Systems; Availability AGENCY: Food and Drug Administration, HHS. ACTION... guidance for industry entitled ``Residual Drug in Transdermal and Related Drug Delivery Systems.'' This draft guidance provides recommendations to developers and manufacturers of transdermal drug...

  20. Kontrollierte therapeutische Systeme (Controlled drug delivery systems)

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich

    Es gibt eine grosse Anzahl von Arzneistoffen, die nicht mit der höchsten Effizienz eingesetzt werden können, weil das geeignete therapeutische System (drug delivery system) für die optimale Applikation fehlt. Viele Arzneistoffe setzen eine häufige Anwendung voraus und sind oft mit mehr oder weniger starken Nebenwirkungen oder aber mit Beeinträchtigungen von Arbeits- und Lebensrhythmus der Patienten verbunden. Der therapeutische Erfolg einer medikamentösen Behandlung setzt eine korrekte Diagnose, die Wahl der richtigen Wirksubstanz sowie ihr Vorliegen in geeigneter Darreichungsform voraus. Zudem muss ein genauer Verabreichungsplan erstellt werden, dessen Einhaltung seitens der Patienten eine wesentliche Voraussetzung für die optimale Wirkung des Arzneistoffes ist. Das Mass, mit dem eine Wirksubstanz therapeutisch voll genutzt werden kann, korreliert direkt mit der Darreichungsform, in der sie angewandt wird. Da viele hochwirksame Arzneimittel bereits existieren, hat sich, neben Neuentwicklungen, das Interesse im vergangenen Jahrzehnt der Optimierung von Arzneimittelwirkungen durch neue Darreichungsformen zugewandt.

  1. Drug delivery by organ-specific immunoliposomes

    SciTech Connect

    Maruyama, Kazuo; Mori, Atsuhide; Hunag, Leaf . Dept. of Biochemistry); Kennel, S.J. )

    1990-01-01

    Monoclonal antibodies highly specific to the mouse pulmonary endothelial cells were conjugated to liposomes. The resulting immunoliposomes showed high levels of lung accumulation when injected intravenously into mice. Optimal target binding and retention were achieved if the lipid composition included ganglioside GM{sub 1} to reduce the uptake of immunoliposomes by the reticuloendothelial system. Details of the construction and optimization of these organ-specific immunoliposomes are reviewed. The drug delivery potential of this novel liposome system was demonstrated in an experimental pulmonary metastasis model. Immunoliposomes containing a lipophilic prodrug of deoxyfluorouridine effectively prolonged the survival time of the tumor-bearing mice. This and other therapeutic applications of the immunoliposomes are discussed. 25 refs., 5 figs.

  2. Herbal Excipients in Novel Drug Delivery Systems

    PubMed Central

    Shirwaikar, A.; Shirwaikar, Annie; Prabu, S. Lakshmana; Kumar, G. Aravind

    2008-01-01

    The use of natural excipients to deliver the bioactive agents has been hampered by the synthetic materials. However advantages offered by these natural excipients are their being non-toxic, less expensive and freely available. The performance of the excipients partly determines the quality of the medicines. The traditional concept of the excipients as any component other than the active substance has undergone a substantial evolution from an inert and cheap vehicle to an essential constituent of the formulation. Excipients are any component other than the active substance(s) intentionally added to formulation of a dosage form. This article gives an overview of herbal excipients which are used in conventional dosage forms as well as novel drug delivery systems. PMID:20046764

  3. Issues in drug delivery: concepts and practice.

    PubMed

    Martonen, Ted B; Smyth, Hugh D; Isaacs, Kristin K; Burton, Ray T

    2005-09-01

    Understanding the transport and deposition of inhaled aerosols is of fundamental importance to inhalation therapy. Herein we address issues that affect drug delivery from experimental and theoretical perspectives. Accordingly, we shall limit our comments to a focused review of laboratory work (ie, an in vitro perspective) and the development of a computer-based 3-dimensional (3D) oral morphology with related computational fluid dynamics (CFD) and particle deposition studies (ie, an "in silico" perspective). To describe the oral region, morphometric data from the literature were employed. With Maya Unlimited, a third-party animation software package, coronal images were used to create initial spline curves, which served as the foundation of a nonuniform rational B-spline surface, representing a 3D morphology. To the best of our knowledge, this study is the first medical application of Maya Unlimited. We have demonstrated that the code can be employed to construct 3D biological structures and perform 3D CFD simulations of aerosols from dry powder inhalers and metered-dose inhalers. A study was also conducted using Fluent, a commercially available software package that has been used extensively in our laboratory for 3D CFD computations. The Maya Unlimited software can generate physiologically realistic oral structures; it has great potential for use in the medical arena, because it requires neither advance technical training nor substantial peripheral ( eg, hardware) support, it allows for the introduction of medical devices ( eg, dry powder inhalers) into simulations, and it predicts 3D CFDpatterns consistent with experimental observations and results of more rigorous software ( Fluent). In the in vitro perspective we considered numerous salient topics, including the performances of dry powder inhalers and metered-dose inhalers, their respective operating characteristics, and relevance to in vivo data. We advocate that 3D CFD software be employed in a complementary manner, in real time, with aerosol therapy protocols in the medical arena, to promote the targeted delivery of inhaled drugs and thereby enhance their efficacies. PMID:16163810

  4. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery

    PubMed Central

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2015-01-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  5. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  6. Protein-based nanomedicine platforms for drug delivery.

    PubMed

    Maham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-01

    Protein-based nanomedicine platforms for drug delivery comprise naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug-delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug-delivery systems, including the ferritin/apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer-based, especially protein-based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein-based drug-delivery system. PMID:19572330

  7. Implantable MEMS drug delivery pumps for small animal research.

    PubMed

    Meng, Ellis; Li, Po-Ying; Lo, Ronalee; Sheybani, Roya; Gutierrez, Christian

    2009-01-01

    Advanced devices capable of selective delivery of compounds to targeted tissues are lacking, especially in small animal research. Biomedical microelectromechanical systems (bioMEMS) are uniquely suited to this application through the combination of scalability and precise control of fluid handling. Polymer-based drug delivery components and pumps for acute and chronic delivery in small animals are discussed. PMID:19964178

  8. Nanocarriers in ocular drug delivery: an update review.

    PubMed

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P

    2009-01-01

    Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit. PMID:19689343

  9. Mitochondrial biology, targets, and drug delivery.

    PubMed

    Milane, Lara; Trivedi, Malav; Singh, Amit; Talekar, Meghna; Amiji, Mansoor

    2015-06-10

    In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application. PMID:25841699

  10. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  11. Recent patents on stimuli responsive hydrogel drug delivery system.

    PubMed

    Patel, Gayatri C; Dalwadi, Chintan A

    2013-12-01

    Hydrogels are cross-linked hydrophilic polymer structures that imbibe large quantities of water or biological fluids. Hydrogels are an upcoming class of polymer-based controlled release drug delivery systems, embracing numerous biomedical and pharmaceutical applications. Hydrogels are swellable polymeric materials, and are being widely investigated as a carrier for drug delivery systems. Besides exhibiting swelling-controlled drug release, hydrogels also show stimuli responsive changes in their structural network and hence leading to the drug release. The present manuscript is concerned with the classification, method of preparation; application in drug deliveryand FDA approved market products of hydrogels with the patent review on hydrogel composition and its manufacturing process. It also highlights recent advances in hydrogel drug delivery especially stimuli-responsive hydrogel and its patents. This patent review is useful in the synthesis methods of hydrogel drug delivery and its application. PMID:24237032

  12. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2012-01-01

    Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. PMID:22212900

  13. Nano- and microfabrication for overcoming drug delivery challenges

    PubMed Central

    Kam, Kimberly R.

    2013-01-01

    This highlight article describes current nano- and microfabrication techniques for creating drug delivery devices. We first review the main physiological barriers to delivering therapeutic agents. Then, we describe how novel fabrication methods can be utilized to combine many features into a single physiologically relevant device to overcome drug delivery challenges. PMID:23730504

  14. Hydrogels for ocular drug delivery and tissue engineering

    PubMed Central

    Fathi, Marzieh; Barar, Jaleh; Aghanejad, Ayuob; Omidi, Yadollah

    2015-01-01

    Hydrogels, as crosslinked polymeric three dimensional networks, possess unique structure and behavior in response to the internal and/or external stimuli. As a result, they offer great prospective applications in drug delivery, cell therapy and human tissue engineering. Here, we highlight the potential of hydrogels in prolonged intraocular drug delivery and ocular surface therapy using stem cells incorporated hydrogels. PMID:26929918

  15. Synthetic Tumor Networks for Screening Drug Delivery Systems

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Nichols, Joseph B.; Garson, Charles J.; Mills, Ivy R.; Matar, Majed M.; Fewell, Jason G.; Pant, Kapil

    2015-01-01

    Tumor drug delivery is a complex phenomenon affected by several elements in addition to drug or delivery vehicle’s physico-chemical properties. A key factor is tumor microvasculature with complex effects including convective transport, high interstitial pressure and enhanced vascular permeability due to the presence of “leaky vessels”. Current in vitro models of the tumor microenvironment for evaluating drug delivery are oversimplified and, as a result, show poor correlation with in vivo performance. In this study, we report on the development of a novel microfluidic platform that models the tumor microenvironment more accurately, with physiologically and morphologically realistic microvasculature including endothelial cell lined leaky capillary vessels along with 3D solid tumors. Endothelial cells and 3D spheroids of cervical tumor cells were co-cultured in the networks. Drug vehicle screening was demonstrated using GFP gene delivery by different formulations of nanopolymers. The synthetic tumor network was successful in predicting in vivo delivery efficiencies of the drug vehicles. The developed assay will have critical applications both in basic research, where it can be used to develop next generation delivery vehicles, and in drug discovery where it can be used to study drug transport and delivery efficacy in realistic tumor microenvironment, thereby enabling drug compound and/or delivery vehicle screening. PMID:25599856

  16. Nanoscale covalent organic frameworks as smart carriers for drug delivery.

    PubMed

    Bai, Linyi; Phua, Soo Zeng Fiona; Lim, Wei Qi; Jana, Avijit; Luo, Zhong; Tham, Huijun Phoebe; Zhao, Lingzhi; Gao, Qiang; Zhao, Yanli

    2016-03-01

    Two porous covalent organic frameworks (COFs) with good biocompatibility were employed as drug nanocarriers, where three different drugs were loaded for subsequent drug release in vitro. The present work demonstrates that COFs are applicable in drug delivery for therapeutic applications. PMID:26877025

  17. Potential of nanoparticulate drug delivery systems by intranasal administration.

    PubMed

    Ali, Javed; Ali, Mushir; Baboota, Sanjula; Sahani, Jasjeet Kaur; Ramassamy, Charles; Dao, Lé; Bhavna

    2010-05-01

    Due to number of problems related with oral, parenteral, rectal and other routes of drug administration, the interest of pharmaceutical scientists has increased towards exploring the possibilities of intranasal delivery of various drugs. Nasal drug delivery system is commonly known for the treatment of local ailments like cold, cough, rhinitis, etc. Efforts have been made to deliver various drugs, especially peptides and proteins, through nasal route for systemic use; utilizing the principles and concepts of various nanoparticulate drug delivery systems using various polymers and absorption promoters. The incorporation of drugs into nanoparticles might be a promising approach, since colloidal formulations have been shown to protect them from the degrading milieu in the nasal cavity and facilitate their transport across the mucosal barriers. The use of nanoparticles for vaccine delivery provides beneficial effect, by achieving good immune responses. This could be due to the fact that small particles can be transported preferentially by the lymphoid tissue of the nasal cavity (NALT). The brain gets benefited through the intranasal delivery as direct olfactory transport bypasses the blood brain barrier and nanoparticles are taken up and conveyed along cell processes of olfactory neurons through the cribriform plate to synaptic junctions with neurons of the olfactory bulb. The intranasal delivery is aimed at optimizing drug bioavailability for systemic drugs, as absorption decreases with increasing molecular weight, and for drugs, which are susceptible to enzymatic degradation such as proteins and polypeptides. This review discusses the potential benefits of using nanoparticles for nasal delivery of drugs and vaccines for brain, systemic and topical delivery. The article aims at giving an insight into nasal cavity, consideration of factors affecting and strategies to improve drug absorption through nasal route, pharmaceutical dosage forms and delivery systems with examples of some patents for intranasal delivery, its advantages and limitations. PMID:20210751

  18. Pharmacosomes: An Emerging Novel Vesicular Drug Delivery System for Poorly Soluble Synthetic and Herbal Drugs

    PubMed Central

    2013-01-01

    In the arena of solubility enhancement, several problems are encountered. A novel approach based on lipid drug delivery system has evolved, pharmacosomes. Pharmacosomes are colloidal, nanometric size micelles, vesicles or may be in the form of hexagonal assembly of colloidal drug dispersions attached covalently to the phospholipid. They act as befitting carrier for delivery of drugs quite precisely owing to their unique properties like small size, amphiphilicity, active drug loading, high entrapment efficiency, and stability. They help in controlled release of drug at the site of action as well as in reduction in cost of therapy, drug leakage and toxicity, increased bioavailability of poorly soluble drugs, and restorative effects. There has been advancement in the scope of this delivery system for a number of drugs used for inflammation, heart diseases, cancer, and protein delivery along with a large number of herbal drugs. Hence, pharmacosomes open new challenges and opportunities for improved novel vesicular drug delivery system. PMID:24106615

  19. Infrared free electron laser enhanced transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Awazu, Kunio; Uchizono, Takeyuki; Suzuki, Sachiko; Yoshikawa, Kazushi

    2005-08-01

    It is necessary to control enhancement of transdermal drug delivery with non-invasive. The present study was investigated to assess the effectivity of enhancing the drug delivery by irradiating 6-?m region mid infrared free electron laser (MIR-FEL). The enhancement of transdermal drug (lidocaine) delivery of the samples (hairless mouse skin) irradiated with lasers was examined for flux (?g/cm2/h) and total penetration amount (?g/cm2) of lidocaine by High performance Liquid Chromatography (HPLC). The flux and total amount penatration date was enhanced 200-300 fold faster than the control date by the laser irradiation. FEL irradiating had the stratum corneum, and had the less thermal damage in epidermis. The effect of 6-?m region MIR-FEL has the enhancement of transdermal drug delivery without removing the stratum corneum because it has the less thermal damage. It leads to enhancement drug delivery system with non-invasive laser treatment.

  20. The impact of ageing on the barriers to drug delivery.

    PubMed

    Perrie, Yvonne; Badhan, Raj K Singh; Kirby, Daniel J; Lowry, Deborah; Mohammed, Afzal R; Ouyang, Defang

    2012-07-20

    Generally, we like to see ageing as a process that is happening to people older than ourselves. However the process of ageing impacts on a wide range of functions within the human body. Whilst many of the outcomes of ageing can now be delayed or reduced, age-related changes in cellular, molecular and physiological functionality of tissues and organs can also influence how drugs enter, distribute and are eliminated from the body. Therefore, the changing profile of barriers to drug delivery should be considered if we are to develop more age-appropriate medicines. Changes in the drug dissolution and absorption in older patients may require the formulation of oral delivery systems that offer enhanced retention at absorption sites to improve drug delivery. Alternatively, liquid and fast-melt dosage systems may address the need of patients who have difficulties in swallowing medication. Ageing-induced changes in the lung can also result in slower drug absorption, which is further compounded by disease factors, common in an ageing population, that reduce lung capacity. In terms of barriers to drug delivery to the eye, the main consideration is the tear film, which like other barriers to drug delivery, changes with normal ageing and can impact on the bioavailability of drugs delivery using eye drops and suspensions. In contrast, whilst the skin as a barrier changes with age, no significant difference in absorption of drugs from transdermal drug delivery is observed in different age groups. However, due to the age-related pharmacokinetic and pharmacodynamic changes, dose adaptation should still be considered for drug delivery across the skin. Overall it is clear that the increasing age demographic of most populations, presents new (or should that be older) barriers to effective drug delivery. PMID:22289435

  1. [Zonula occludens toxin: an innovative method of oral drugs delivery].

    PubMed

    Di Pierro, M; Fasano, A

    2001-02-01

    Conventional forms of administration of nonabsorbable drugs and peptides often rely on parenteral injection, because the intestinal epithelium represents a major barrier to the oral absorption of these therapeutical agents into the systemic circulation. Recently, a number of innovative drug-delivery approaches have been developed, including drug entrapment within small vesicles or the passage of the therapeutic molecules through the space between adjacent intestinal cells. This article reviews some of the most promising techniques currently available for oral delivery and their possible practical applications for the delivery of vaccines and drugs for the treatment of clinical conditions that require frequent, chronic parenteral administration. PMID:11309538

  2. Nanobiotechnology and its applications in drug delivery system: a review.

    PubMed

    Khan, Imran; Khan, Momin; Umar, Muhammad Naveed; Oh, Deog-Hwan

    2015-12-01

    Nanobiotechnology holds great potential in various regimes of life sciences. In this review, the potential applications of nanobiotechnology in various sectors of nanotechnologies, including nanomedicine and nanobiopharmaceuticals, are highlighted. To overcome the problems associated with drug delivery, nanotechnology has gained increasing interest in recent years. Nanosystems with different biological properties and compositions have been extensively investigated for drug delivery applications. Nanoparticles fabricated through various techniques have elevated therapeutic efficacy, provided stability to the drugs and proved capable of targeting the cells and controlled release inside the cell. Polymeric nanoparticles have shown increased development and usage in drug delivery as well as in diagnostics in recent decades. PMID:26647817

  3. Dermal delivery of ETH-615, a zwitterionic drug.

    PubMed

    Thorsteinsson, T; Masson, M; Loftsson, T

    2000-07-01

    ETH-615 is an amphoteric drug that forms a water-insoluble zwitterion at intermediate pH values. Increasing the aqueous solubility of ETH-615 through cyclodextrin complexation did not enhance transdermal delivery of the drug from saturated aqueous solutions. However, increasing the lipophilicity of the drug through masking of the anionic group with a pro-moiety increased the dermal and transdermal delivery of the drug. Furthermore, masking the anionic group enhanced the chemical stability of the drug, resulting in significant improvement of the shelf life of the drug in both aqueous and nonaqueous solutions. PMID:10872088

  4. Nanogel-an advanced drug delivery tool: Current and future.

    PubMed

    Sharma, Ankita; Garg, Tarun; Aman, Amrinder; Panchal, Kushan; Sharma, Rajiv; Kumar, Sahil; Markandeywar, Tanmay

    2016-02-01

    Nanogels are robust nanoparticles that could be used to deliver active drug compounds in controlled drug delivery applications. Nanogels drug delivery system is more effective and safer for both hydrophilic and hydrophobic drugs due to their chemical composition and formulations that are inappropriate for other formulations. Nanogels have enabled enlargement of functionalized nanoparticles, which act as a drug carriers that can be loaded with drugs and other active material to be released in a controlled manner at specific site. This review aims at providing general introduction on nanogels, recent synthesis methodology and their novel application in different fields. PMID:25053442

  5. Novel Approaches in Formulation and Drug Delivery using Contact Lenses

    PubMed Central

    Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna

    2011-01-01

    The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device PMID:24826007

  6. Nanofibers based antibacterial drug design, delivery and applications.

    PubMed

    Ulubayram, Kezban; Calamak, Semih; Shahbazi, Reza; Eroglu, Ipek

    2015-01-01

    Infections caused by microorganisms like bacteria, fungi, etc. are the main obstacle in healing processes. Conventional antibacterial administration routes can be listed as oral, intravenous/intramuscular, topical and inhalation. These kinds of drug administrations are faced with critical vital issues such as; more rapid delivery of the drug than intended which can result in bacterial resistance, dose related systemic toxicity, tissue irritation and finally delayed healing process that need to be tackled. Recently, studies have been focused on new drug delivery systems, overcoming resistance and toxicological problems and finally localizing the molecules at the site of action in a proper dose. In this regard, many nanotechnological approaches such as nanoparticulate therapeutic systems have been developed to address accompanying problems mentioned above. Among them, drug loaded electrospun nanofibers propose main advantages like controlled drug delivery, high drug loading capacity, high encapsulation efficiency, simultaneous delivery of multiple drugs, ease of production and cost effectiveness for pharmaceutical and biomedical applications. Therefore, some particular attention has been devoted to the design of electrospun nanofibers as promising antibacterial drug carrier systems. A variety of antibacterials e.g., biocides, antibiotics, quaternary ammonium salts, triclosan, metallic nanoparticles (silver, titanium dioxide, and zinc oxide) and antibacterial polymers (chitosan, polyethyleneimine, etc.) have been impregnated by various techniques into nanofibers that exhibit strong antibacterial activity in standard assays. This review highlights the design and delivery of antibacterial drug loaded nanofibers with particular focus on their function in the fields of drug delivery, wound healing, tissue engineering, cosmetics and other biomedical applications. PMID:25732666

  7. Microemulsion: New Insights into the Ocular Drug Delivery

    PubMed Central

    Hegde, Rahul Rama; Verma, Anurag; Ghosh, Amitava

    2013-01-01

    Delivery of drugs into eyes using conventional drug delivery systems, such as solutions, is a considerable challenge to the treatment of ocular diseases. Drug loss from the ocular surface by lachrymal fluid secretion, lachrymal fluid-eye barriers, and blood-ocular barriers are main obstacles. A number of ophthalmic drug delivery carriers have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. The potential use of microemulsions as an ocular drug delivery carrier offers several favorable pharmaceutical and biopharmaceutical properties such as their excellent thermodynamic stability, phase transition to liquid-crystal state, very low surface tension, and small droplet size, which may result in improved ocular drug retention, extended duration of action, high ocular absorption, and permeation of loaded drugs. Further, both lipophilic and hydrophilic characteristics are present in microemulsions, so that the loaded drugs can diffuse passively as well get significantly partitioned in the variable lipophilic-hydrophilic corneal barrier. This review will provide an insight into previous studies on microemulsions for ocular delivery of drugs using various nonionic surfactants, cosurfactants, and associated irritation potential on the ocular surface. The reported in vivo experiments have shown a delayed effect of drug incorporated in microemulsion and an increase in the corneal permeation of the drug. PMID:23936681

  8. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  9. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  10. Controlled Release for Local Delivery of Drugs: Barriers and Models

    PubMed Central

    Weiser, Jennifer R.; Saltzman, W. Mark

    2014-01-01

    Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors—such as diffusion, convection, and elimination—that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin. PMID:24801251

  11. Advances and Challenges of Liposome Assisted Drug Delivery

    PubMed Central

    Sercombe, Lisa; Veerati, Tejaswi; Moheimani, Fatemeh; Wu, Sherry Y.; Sood, Anil K.; Hua, Susan

    2015-01-01

    The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented. PMID:26648870

  12. Patents on nanoparticulate drug delivery systems--a review.

    PubMed

    Bhavna; Ali, Mushir; Baboota, Sanjula; Ali, Javed

    2008-01-01

    For the past few decades, there has been a considerable research interest in the area of drug delivery using particulate delivery systems as carriers for bioactive agents. Until now several reviews have been compiled on the nanoparticulate system concentrating on the various research works but there is no review, which compiles patents available for the nanoparticulate systems. Particulate systems like nanoparticles have been used as a physical approach to alter and improve the pharmacokinetic and pharmacodynamic properties of various types of drug molecules. A review on patents related to the nanoparticulate drug delivery systems has been prepared to summarize patents reported for the methods of preparation, applications in therapies and drug delivery. The status of patents for oral, topical and parenteral delivery has been discussed and the commercialized technology of nanoparticles for medical application has also been compiled. PMID:19075900

  13. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  14. Polymer nanogels: a versatile nanoscopic drug delivery platform

    PubMed Central

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  15. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  16. Marine Origin Polysaccharides in Drug Delivery Systems.

    PubMed

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  17. Drug delivery and nanodetection in lung cancer.

    PubMed

    Badrzadeh, Fariba; Rahmati-Yamchi, Mohammad; Badrzadeh, Kazem; Valizadeh, Alireza; Zarghami, Nosratollah; Farkhani, Samad Mussa; Akbarzadeh, Abolfazl

    2016-03-01

    Lung carcinoma is the most widespread type of cancer worldwide, and is responsible for more deaths than other types of cancer. Lung cancer remains the chief cause of cancer-related deaths in both men and women worldwide, and is increasingly common in women. Each year, the number of deaths from lung cancer is greater than the number due to breast and colorectal cancer combined. Lung cancer accounted for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths in 2008. In Iran, lung cancer is one of the five leading tumors. Among females, it was the fourth most commonly diagnosed cancer, and the second leading cause of cancer death. Nanotechnology can be defined as the science and engineering involved in the design, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale, i.e. one billionth of a meter. It is an exciting multidisciplinary field that involves the design and engineering of nano objects or nanotools with diameters less than 500 nanometers (nm), and it is one of the most interesting fields of the 21st century. Nanotechnology also offers the ability to detect diseases, such as tumors, much earlier than ever imaginable. This article presents nano devices for lung cancer detection and drug delivery systems. PMID:25386728

  18. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  19. Bioavailability of phytochemicals and its enhancement by drug delivery systems

    PubMed Central

    Aqil, Farrukh; Munagala, Radha; Jeyabalan, Jeyaprakash; Vadhanam, Manicka V.

    2013-01-01

    Issues of poor oral bioavailability of cancer chemopreventives have hindered progress in cancer prevention. Novel delivery systems that modulate the pharmacokinetics of existing drugs, such as nanoparticles, cyclodextrins, niosomes, liposomes and implants, could be used to enhance the delivery of chemopreventive agents to target sites. The development of new approaches in prevention and treatment of cancer could encompass new delivery systems for approved and newly investigated compounds. In this review, we discuss some of the delivery approaches that have already made an impact by either delivering a drug to target tissue or increasing its bioavailability by many fold. PMID:23435377

  20. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  1. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  2. Recent advances of cocktail chemotherapy by combination drug delivery systems.

    PubMed

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-03-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in the clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end. PMID:26546751

  3. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  4. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  5. Cyclodextrin nanoassemblies: a promising tool for drug delivery.

    PubMed

    Bonnet, Véronique; Gervaise, Cédric; Djedaïni-Pilard, Florence; Furlan, Aurélien; Sarazin, Catherine

    2015-09-01

    Among the biodegradable and nontoxic compounds that can form nanoparticles for drug delivery, amphiphilic cyclodextrins are very promising. Apart from ionic cyclodextrins, which have been extensively studied and reviewed because of their application in gene delivery, our purpose is to provide a clear description of the supramolecular assemblies of nonionic amphiphilic cyclodextrins, which can form nanoassemblies for controlled drug release. Moreover, we focus on the relationship between their structure and physicochemical characteristics, which is crucial for self assembly and drug delivery. We also highlight the importance of the nanoparticle technology preparation for the stability and application of this nanodevice. PMID:26037681

  6. Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery

    PubMed Central

    Mendelsohn, Adam; Desai, Tejal

    2014-01-01

    Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic ?-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success. PMID:20384222

  7. Questioning the Use of PEGylation for Drug Delivery

    PubMed Central

    Verhoef, Johan J.F.; Anchordoquy, Thomas J.

    2013-01-01

    Polyethylene glycol (PEG) is widely utilized in drug delivery and nanotechnology due to its reported “stealth” properties and biocompatibility. It is generally thought that PEGylation allows particulate delivery systems and biomaterials to evade the immune system and thereby prolong circulation lifetimes. However, numerous studies over the past decade have demonstrated that PEGylation causes significant reductions in drug delivery, including enhanced serum protein binding, reduced uptake by target cells, and the elicitation of an immune response that facilitates clearance in vivo. This report reviews some of the extensive literature documenting the detrimental effects of PEGylation, and thereby questions the wisdom behind employing this strategy in drug development. PMID:24932437

  8. The 2nd Annual Irish Drug Delivery Network Conference with UK and Ireland Controlled Release Society: advancing drug delivery.

    PubMed

    Brayden, David J; Armstrong, Graham; O'Driscoll, Caitriona M

    2010-10-01

    This meeting was part funded by Science Foundation Ireland and by the University College Dublin Seed-Funding program, and was an opportunity for the Irish Drug Delivery Network to invite selected internationally-recognized scientists from across Europe onto a program, together with some of its own principal investigators. The meeting was co-promoted by the UK and Ireland Controlled Release Society. Topics included fluorescent dyes for stability testing of proteins, engineering of nano-containers, peptide-polymer conjugates, designing novel biomaterials, oral liquid-emulsion drug delivery systems, barrier modulation for drug delivery to the eye using siRNA, cell-specific targeting in the lungs, hot-melt extrusion and modified cyclodextrins for delivery of siRNA. The conference was attended by 85 researchers and the Irish Drug Delivery Network co-chairs were Caitriona O'Driscoll (University College Cork) and David Brayden (University College Dublin). PMID:22833963

  9. Nasal Drug Delivery in Traditional Persian Medicine

    PubMed Central

    Zarshenas, Mohammad Mehdi; Zargaran, Arman; Müller, Johannes; Mohagheghzadeh, Abdolali

    2013-01-01

    Background Over one hundred different pharmaceutical dosage forms have been recorded in literatures of Traditional Persian Medicine among which nasal forms are considerable. Objectives This study designed to derive the most often applied nasal dosage forms together with those brief clinical administrations. Materials and Methods In the current study remaining pharmaceutical manuscripts of Persia during 9th to 18th century AD have been studied and different dosage forms related to nasal application of herbal medicines and their therapeutic effects were derived. Results By searching through pharmaceutical manuscripts of medieval Persia, different nasal dosage forms involving eleven types related to three main groups are found. These types could be derived from powder, solution or liquid and gaseous forms. Gaseous form were classified into fumigation (Bakhoor), vapor bath (Enkebab), inhalation (Lakhlakheh), aroma agents (Ghalieh) and olfaction or smell (Shomoom). Nasal solutions were as drops (Ghatoor), nasal snuffing drops (Saoot) and liquid snuff formulations (Noshoogh). Powders were as nasal insufflation or snorting agents (Nofookh) and errhine or sternutator medicine (Otoos). Nasal forms were not applied only for local purposes. Rather systemic disorders and specially CNS complications were said to be a target for these dosage forms. Discussion While this novel type of drug delivery is known as a suitable substitute for oral and parenteral administration, it was well accepted and extensively mentioned in Persian medical and pharmaceutical manuscripts and other traditional systems of medicine as well. Accordingly, medieval pharmaceutical standpoints on nasal dosage forms could still be an interesting subject of study. Therefore, the current work can briefly show the pharmaceutical knowledge on nasal formulations in medieval Persia and clarify a part of history of traditional Persian pharmacy. PMID:24624204

  10. Kinetics of reciprocating drug delivery to the inner ear.

    PubMed

    Pararas, Erin E Leary; Chen, Zhiqiang; Fiering, Jason; Mescher, Mark J; Kim, Ernest S; McKenna, Michael J; Kujawa, Sharon G; Borenstein, Jeffrey T; Sewell, William F

    2011-06-10

    Reciprocating drug delivery is a means of delivering soluble drugs directly to closed fluid spaces in the body via a single cannula without an accompanying fluid volume change. It is ideally suited for drug delivery into small, sensitive and unique fluid spaces such as the cochlea. We characterized the pharmacokinetics of reciprocating drug delivery to the scala tympani within the cochlea by measuring the effects of changes in flow parameters on the distribution of drug throughout the length of the cochlea. Distribution was assessed by monitoring the effects of DNQX, a reversible glutamate receptor blocker, delivered directly to the inner ear of guinea pigs using reciprocating flow profiles. We then modeled the effects of those parameters on distribution using both an iterative curve-fitting approach and a computational fluid dynamic model. Our findings are consistent with the hypothesis that reciprocating delivery distributes the drug into a volume in the base of the cochlea, and suggest that the primary determinant of distribution throughout more distal regions of the cochlea is diffusion. Increases in flow rate distributed the drug into a larger volume that extended more apically. Over short time courses (less than 2h), the apical extension, though small, significantly enhanced apically directed delivery of drug. Over longer time courses (>5h) or greater distances (>3mm), maintenance of drug concentration in the basal scala tympani may prove more advantageous for extending apical delivery than increases in flow rate. These observations demonstrate that this reciprocating technology is capable of providing controlled delivery kinetics to the closed fluid space in the cochlea, and may be suitable for other applications such as localized brain and retinal delivery. PMID:21385596

  11. Mechanism of laser-induced drug delivery in tumors

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud; Evers, B. M.

    2000-06-01

    Penetration of anti-cancer drugs (especially macromolecular agents) from blood in tumor cells is limited due to the presence of physiological barriers: tumor capillary wall, slow diffusion in the interstitium, and cancer cell membrane. Interaction of exogenous nano- or microparticles with laser or ultrasonic radiation may enhance drug delivery in tumor cells due to laser- or ultrasound-induced cavitation. Our previous studies demonstrated enhanced delivery of model macromolecular anti-cancer drugs in tissues in vitro when laser or ultrasonic radiation is applied. In this paper, we studied laser-induced cavitation in suspension of strongly absorbing particles and laser-enhanced drug delivery in human colon tumors of nude mice in vivo. Cavitation kinetics and thresholds were measured for carbon and colored polystyrene particle suspensions. Histological examination of control and irradiated tumors with fluorescent microscopy demonstrated that Q-switched Nd:YAG laser irradiation enhances delivery of a model macromolecular drug (FITC-dextran) in tumor blood vessel and interstitium. Enhanced delivery of an anti-cancer drug (5-FU) that is currently used in clinics resulted in tumor necrosis and inhibited tumor growth. Results of our studies suggest that the drug delivery enhancement is due to cavitation produced by local heating of particles with pulsed laser radiation.

  12. Design of Microbubbles for Gene/Drug Delivery.

    PubMed

    Bettinger, Thierry; Tranquart, François

    2016-01-01

    The role of ultrasound contrast agents (UCA) initially designed for diagnosis has evolved towards a therapeutic use. Ultrasound (US) for triggered drug delivery has many advantages. In particular, it enables a high spatial control of drug release, thus potentially allowing activation of drug delivery only in the targeted region, and not in surrounding healthy tissue. Moreover, UCA imaging can also be used firstly to precisely locate the target region to, and then used to monitor the drug delivery process by tracking the location of release occurrence. All these features make UCA and ultrasound attractive means to mediate drug delivery. The three main potential clinical indications for drug/gene US delivery are (i) the cardiovascular system, (ii) the central nervous system for small molecule delivery, and (iii) tumor therapy using cytotoxic drugs. Although promising results have been achieved in preclinical studies in various animal models, still very few examples of clinical use have been reported. In this chapter will be addressed the aspects pertaining to UCA formulation (chemical composition, mode of preparation, analytical methods…) and the requirement for a potential translation into the clinic following approval by regulatory authorities. PMID:26486339

  13. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety

    PubMed Central

    Donnelly, Ryan F.; Raj Singh, Thakur Raghu; Woolfson, A. David

    2010-01-01

    Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN. PMID:20297904

  14. Micro/nanofabricated platforms for oral drug delivery.

    PubMed

    Fox, Cade B; Kim, Jean; Le, Long V; Nemeth, Cameron L; Chirra, Hariharasudhan D; Desai, Tejal A

    2015-12-10

    The oral route of drug administration is most preferred due to its ease of use, low cost, and high patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is limited by various physiological barriers, and, as a result, drugs suffer from issues with low solubility, low permeability, and degradation following oral administration. The flexibility of micro- and nanofabrication techniques has been used to create drug delivery platforms designed to address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based responses, and permeation enhancers have been incorporated into such platforms to further enhance drug uptake. This review will outline the application of micro/nanotechnology to specifically address the physiological barriers to oral drug delivery and highlight technologies that may be incorporated into these oral drug delivery systems to further enhance drug uptake. PMID:26244713

  15. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs.

    PubMed

    Chao, Joshua T; Biggs, Manus J P; Pandit, Abhay S

    2014-11-01

    Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery. PMID:25146231

  16. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs. PMID:23954402

  17. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  18. A smart pill for drug delivery with sensing capabilities.

    PubMed

    Goffredo, R; Accoto, D; Santonico, M; Pennazza, G; Guglielmelli, E

    2015-08-01

    In this paper a novel system for local drug delivery is described. The actuation principle of the micropump used for drug delivery relies on the electrolysis of a water-based solution, which is separated from a drug reservoir by an elastic membrane. The electrolytically produced gases pressurize the electrolytic solution reservoir, causing the deflection of the elastic membrane. Such deflection, in turn, forces the drug out of its reservoir through a nozzle. The proposed system is integrated in a swallowable capsule, equipped with an impedance sensor useful to acquire information on the physiological conditions of the tissue. Such information can be used to control pump activation. PMID:26736521

  19. Nanoparticle hardness controls the internalization pathway for drug delivery.

    PubMed

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-02-14

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery. PMID:25585060

  20. Micelles and Nanoparticles for Ultrasonic Drug and Gene Delivery

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent’s side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers, and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nano-carriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means. PMID:18486269

  1. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori

    PubMed Central

    Zhao, Shan; Lv, Yan; Zhang, Jian-Bin; Wang, Bing; Lv, Guo-Jun; Ma, Xiao-Jun

    2014-01-01

    Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world’s population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections. PMID:25071326

  2. Targeting homeostasis in drug delivery using bioresponsive hydrogel microforms.

    PubMed

    Wilson, A Nolan; Guiseppi-Elie, Anthony

    2014-01-30

    A drug delivery platform comprising a biocompatible, bioresponsive hydrogel and possessing a covalently tethered peptide-drug conjugate was engineered to achieve stasis, via a closed control loop, of the external biochemical activity of the actuating protease. The delivery platform contains a peptide-drug conjugate covalently tethered to the hydrogel matrix, which in the presence of the appropriate protease, was cleaved and the drug released into the bathing environment. This platform was developed and investigated in silico using a finite element modeling (FEM) approach. Firstly, the primary governing phenomena guiding drug release profiles were investigated, and it was confirmed that under transport-limited conditions, the diffusion of the enzyme within the hydrogel and the coupled enzyme kinetics accurately model the system and are in agreement with published results. Secondly, the FEM model was used to investigate the release of a competitive protease inhibitor, MAG283, via cleavage of Acetyl-Pro-Leu-Gly|Leu-MAG-283 by MMP9 in order to achieve targeted homeostasis of MMP-9 activity, such as in the pathophysiology of chronic wounds, via closed-loop feedback control. The key engineering parameters for the delivery device are the radii of the hydrogel microspheres and the concentration of the peptide-inhibitor conjugate. Homeostatic drug delivery, where the focus turns away from the drug release rate and turns toward achieving targeted control of biochemical activity within a biochemical pathway, is an emerging approach in drug delivery methodologies for which the potential has not yet been fully realized. PMID:24333901

  3. Nanoparticle hardness controls the internalization pathway for drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-01-01

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.

  4. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    PubMed

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems. PMID:26027571

  5. Albumin-based nanocomposite spheres for advanced drug delivery systems.

    PubMed

    Misak, Heath E; Asmatulu, Ramazan; Gopu, Janani S; Man, Ka-Poh; Zacharias, Nora M; Wooley, Paul H; Yang, Shang-You

    2014-01-01

    A novel drug delivery system incorporating human serum albumin, poly(lactic-co-glycolic acid, magnetite nanoparticles, and therapeutic agent(s) was developed for potential application in the treatment of diseases such as rheumatoid arthritis and skin cancer. An oil-in-oil emulsion/solvent evaporation (O/OSE) method was modified to produce a drug delivery system with a diameter of 0.5–2 μm. The diameter was mainly controlled by adjusting the viscosity of albumin in the discontinuous phase of the O/OSE method. The drug-release study showed that the release of drug and albumin was mostly dependent on the albumin content of the drug delivery system, which is very similar to the drug occlusion-mesopore model. Cytotoxicity tests indicated that increasing the albumin content in the drug delivery system increased cell viability, possibly due to the improved biocompatibility of the system. Overall, these studies show that the proposed system could be a viable option as a drug delivery system in the treatment of many illnesses, such as rheumatoid arthritis, and skin and breast cancers. PMID:24106002

  6. Mucus-penetrating nanoparticles for vaginal and gastrointestinal drug delivery

    NASA Astrophysics Data System (ADS)

    Ensign-Hodges, Laura

    A method that could provide more uniform and longer-lasting drug delivery to mucosal surfaces holds the potential to greatly improve the effectiveness of prophylactic and therapeutic approaches for numerous diseases and conditions, including sexually transmitted infections and inflammatory bowel disease. However, the body's natural defenses, including adhesive, rapidly cleared mucus linings coating nearly all entry points to the body not covered by skin, has limited the effectiveness of drug and gene delivery by nanoscale delivery systems. Here, we investigate the use of muco-inert mucus-penetrating nanoparticles (MPP) for improving vaginal and gastrointestinal drug delivery. Conventional hydrophobic nanoparticles strongly adhere to mucus, facilitating rapid clearance from the body. Here, we demonstrate that mucoadhesive polystyrene nanoparticles (conventional nanoparticles, CP) become mucus-penetrating in human cervicovaginal mucus (CVM) after pretreatment with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large MPP did not change in F127 pretreated CVM, implying there is no affect on the native pore structure of CVM. Additionally, there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for one week. Importantly, HSV virus remains adherent in F127-pretreated CVM. Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that hypotonically-induced fluid uptake could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We evaluated hypotonic formulations for delivering water-soluble drugs and for drug delivery with MPP. Hypotonic formulations markedly increased the rate at which drugs and MPP reached the epithelial surface. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that isotonic formulations failed to reach. However, hypotonic formulations caused free drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. Minimally hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. We then describe an ex vivo method for characterizing particle transport on freshly excised mucosal tissues. By directly observing MPP transport on vaginal, gastrointestinal, and respiratory tissue, we were able to determine an innate difference in mucus mesh size at different anatomical locations. In addition, we were able to optimize particle size for gastrointestinal delivery in mice. As described here, there are numerous barriers to effective drug delivery in the gastrointestinal tract, including the mucus barrier. We go on to demonstrate that MPP can improve delivery in the gastrointestinal tract, both by rectal and oral administration. Finally, we describe the use of MPP for improving vaginal drug delivery. Incomplete drug coverage and short duration of action limit the effectiveness of vaginally administered drugs, including microbicides for preventing sexually transmitted infections. We show that MPP provide uniform distribution over the vaginal epithelium, whereas CP are aggregated by mouse vaginal mucus, leading to poor distribution. By penetrating into the deepest mucus layers in the rugae, more MPP were retained in the vaginal tract compared to CP. After 24 h, when delivered in a conventional vaginal gel, patches of a model drug remained on the vaginal epithelium, whereas the epithelium was coated with drug delivered by MPP. We then demonstrate that when administered 30 min prior to inoculum, anti-HSV-2 MPP protected 53% of mice compared to only 16% protected by soluble drug. Overall, MPP improved vaginal drug distribution and retention, provided more effective protection against vaginal viral challenge than soluble drug, and were non-toxic when administered daily for one week.

  7. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review

    PubMed Central

    Kushwaha, Swatantra KS; Saxena, Prachi; Rai, AK

    2012-01-01

    Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist for past 10-20 years. As an isolated organ, eye is very difficult to study from a drug delivery point of view. Despite this limitation, improvements have been made with the objective of maintaining the drug in the biophase for an extended period. A major problem in ocular therapeutics is the attainment of an optimal drug concentration at the site of action. To achieve effective ophthalmic therapy, an adequate amount of active ingredient must be delivered and maintained within the eye. The most frequently used dosage forms, i.e., eye solution, eye ointments, eye gels, and eye suspensions are compromised in their effectiveness by several limitations leading to poor ocular bioavailability. Ophthalmic use of viscosity-enhancing agents, penetration enhancers, cyclodextrins, prodrug approaches, and ocular inserts, and the ready existing drug carrier systems along with their application to ophthalmic drug delivery are common to improve ocular bioavailability. Amongst these hydrogel (stimuli sensitive) systems are important, which undergo reversible volume and/or sol-gel phase transitions in response to physiological (temperature, pH and present of ions in organism fluids, enzyme substrate) or other external (electric current, light) stimuli. They help to increase in precorneal residence time of drug to a sufficient extent that an ocularly delivered drug can exhibit its maximum biological action. The concept of this innovative ophthalmic delivery approach is to decrease the systemic side effects and to create a more pronounced effect with lower doses of the drug. The present article describes the advantages and use stimuli sensitive of hydrogel systems in ophthalmic drug delivery. PMID:23119233

  8. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management

    PubMed Central

    Manickavasagam, Dharani; Oyewumi, Moses O.

    2013-01-01

    Glaucoma is a group of heterogeneous disorders involving progressive optic neuropathy that can culminate into visual impairment and irreversible blindness. Effective therapeutic interventions must address underlying vulnerability of retinal ganglion cells (RGCs) to degeneration in conjunction with correcting other associated risk factors (such as elevated intraocular pressure). However, realization of therapeutic outcomes is heavily dependent on suitable delivery system that can overcome myriads of anatomical and physiological barriers to intraocular drug delivery. Development of clinically viable sustained release systems in glaucoma is a widely recognized unmet need. In this regard, implantable delivery systems may relieve the burden of chronic drug administration while potentially ensuring high intraocular drug bioavailability. Presently there are no FDA-approved implantable drug delivery devices for glaucoma even though there are several ongoing clinical studies. The paper critically assessed the prospects of polymeric implantable delivery systems in glaucoma while identifying factors that can dictate (a) patient tolerability and acceptance, (b) drug stability and drug release profiles, (c) therapeutic efficacy, and (d) toxicity and biocompatibility. The information gathered could be useful in future research and development efforts on implantable delivery systems in glaucoma. PMID:24066234

  9. Planar bioadhesive microdevices: a new technology for oral drug delivery

    PubMed Central

    Fox, Cade B.; Chirra, Hariharasudhan D.; Desai, Tejal A.

    2014-01-01

    The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery. PMID:25219863

  10. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    NASA Astrophysics Data System (ADS)

    Hwang, Tae Heon; Kim, Jin Bum; Som Yang, Da; Park, Yong-il; Ryu, WonHyoung

    2013-03-01

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

  11. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    PubMed

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. PMID:26241750

  12. Assessment of liposome disruption to quantify drug delivery in vitro.

    PubMed

    Nogueira, Eugénia; Cruz, Célia F; Loureiro, Ana; Nogueira, Patrícia; Freitas, Jaime; Moreira, Alexandra; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2016-02-01

    Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells. PMID:26589183

  13. Enzyme-responsive nanomaterials for controlled drug delivery.

    PubMed

    Hu, Quanyin; Katti, Prateek S; Gu, Zhen

    2014-11-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  14. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    PubMed Central

    Mufamadi, Maluta S.; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Ndesendo, Valence M. K.

    2011-01-01

    The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications. PMID:21490759

  15. Electrohydrodynamics: A facile technique to fabricate drug delivery systems

    PubMed Central

    Chakraborty, Syandan; Liao, I-Chien; Adler, Andrew; Leong, Kam W.

    2009-01-01

    Electrospinning and electrospraying are facile electrohydrodynamic fabrication methods that can generate drug delivery systems (DDS) through a one-step process. The nano-structured fiber and particle morphologies produced by these techniques offer tunable release kinetics applicable to diverse biomedical applications. Coaxial-electrospinning/electrospraying, a relatively new technique of fabricating core-shell fibers/particles have added to the versatility of these DDS by affording a near zero-order drug release kinetics, dampening of burst release, and applicability to a wider range of bioactive agents. Controllable electrospinning/spraying of fibers and particles and subsequent drug release from these chiefly polymeric vehicles depends on well-defined solution and process parameters. The additional drug delivery capability from electrospun fibers can further enhance the material’s functionality in tissue engineering applications. This review discusses the state-of-the-art of using electrohydrodynamic technique to generate nano-fiber/particles as drug delivery devices. PMID:19651167

  16. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications. PMID:25020039

  17. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering. PMID:17471764

  18. pH-responsive drug-delivery systems.

    PubMed

    Zhu, Ying-Jie; Chen, Feng

    2015-02-01

    In many biomedical applications, drugs need to be delivered in response to the pH value in the body. In fact, it is desirable if the drugs can be administered in a controlled manner that precisely matches physiological needs at targeted sites and at predetermined release rates for predefined periods of time. Different organs, tissues, and cellular compartments have different pH values, which makes the pH value a suitable stimulus for controlled drug release. pH-Responsive drug-delivery systems have attracted more and more interest as "smart" drug-delivery systems for overcoming the shortcomings of conventional drug formulations because they are able to deliver drugs in a controlled manner at a specific site and time, which results in high therapeutic efficacy. This focus review is not intended to offer a comprehensive review on the research devoted to pH-responsive drug-delivery systems; instead, it presents some recent progress obtained for pH-responsive drug-delivery systems and future perspectives. There are a large number of publications available on this topic, but only a selection of examples will be discussed. PMID:25303435

  19. Design of an Implantable Device for Ocular Drug Delivery

    PubMed Central

    Lee, Jae-Hwan; Pidaparti, Ramana M.; Atkinson, Gary M.; Moorthy, Ramana S.

    2012-01-01

    Ocular diseases, such as, glaucoma, age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa require drug management in order to prevent blindness and affecting million of adults in USA and worldwide. There is an increasing need to develop devices for drug delivery to address ocular diseases. This study focuses on the design, simulation, and development of an implantable ocular drug delivery device consisting of micro-/nanochannels embedded between top and bottom covers with a drug reservoir made from polydimethylsiloxane (PDMS) which is silicon-based organic and biodegradable polymer. Several simulations were carried out with six different micro-channel configurations in order to see the feasibility for ocular drug delivery applications. Based on the results obtained, channel design of osmotic I and osmotic II satisfied the diffusion rates required for ocular drug delivery. Finally, a prototype illustrating the three components of the drug delivery design is presented. In the future, the device will be tested for its functionality and diffusion characteristics. PMID:22919500

  20. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  1. Microsystems Technologies for Drug Delivery to the Inner Ear

    PubMed Central

    Leary Pararas, Erin E.; Borkholder, David A.; Borenstein, Jeffrey T.

    2012-01-01

    The inner ear represents one of the most technologically challenging targets for local drug delivery, but its clinical significance is rapidly increasing. The prevalence of sensorineural hearing loss and other auditory diseases, along with balance disorders and tinnitus, has spurred broad efforts to develop therapeutic compounds and regenerative approaches to treat these conditions, necessitating advances in systems capable of targeted and sustained drug delivery. The delicate nature of hearing structures combined with the relative inaccessibility of the cochlea by means of conventional delivery routes together necessitate significant advancements in both the precision and miniaturization of delivery systems, and the nature of the molecular and cellular targets for these therapies suggests that multiple compounds may need to be delivered in a time-sequenced fashion over an extended duration. Here we address the various approaches being developed for inner ear drug delivery, including micropump-based devices, reciprocating systems, and cochlear prosthesis-mediated delivery, concluding with an analysis of emerging challenges and opportunities for the first generation of technologies suitable for human clinical use. These developments represent exciting advances that have the potential to repair and regenerate hearing structures in millions of patients for whom no currently available medical treatments exist, a situation that requires them to function with electronic hearing augmentation devices or to live with severely impaired auditory function. These advances also have the potential for broader clinical applications that share similar requirements and challenges with the inner ear, such as drug delivery to the central nervous system. PMID:22386561

  2. 76 FR 51038 - Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... August 3, 2010 (75 FR 45640), FDA announced the availability of the draft version of this guidance. The... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems; Availability AGENCY: Food and Drug Administration, HHS. ACTION:...

  3. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  4. Micro-scale devices for transdermal drug delivery.

    PubMed

    Arora, Anubhav; Prausnitz, Mark R; Mitragotri, Samir

    2008-12-01

    Skin makes an excellent site for drug and vaccine delivery due to easy accessibility, immuno-surveillance functions, avoidance of macromolecular degradation in the gastrointestinal tract and possibility of self-administration. However, macromolecular drug delivery across the skin is primarily accomplished using hypodermic needles, which have several disadvantages including accidental needle-sticks, pain and needle phobia. These limitations have led to extensive research and development of alternative methods for drug and vaccine delivery across the skin. This review focuses on the recent trends and developments in this field of micro-scale devices for transdermal macromolecular delivery. These include liquid jet injectors, powder injectors, microneedles and thermal microablation. The historical perspective, mechanisms of action, important design parameters, applications and challenges are discussed for each method. PMID:18805472

  5. Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications.

    PubMed

    Davoodi, Pooya; Feng, Fang; Xu, Qingxing; Yan, Wei-Cheng; Tong, Yen Wah; Srinivasan, M P; Sharma, Vijay Kumar; Wang, Chi-Hwa

    2015-05-10

    As cancer takes its toll on human health and well-being, standard treatment techniques such as chemotherapy and radiotherapy often fall short of ideal solutions. In particular, adverse side effects due to excess dosage and collateral damage to healthy cells as well as poor patient compliance due to multiple administrations continue to pose challenges in cancer treatment. Thus, the development of appropriately engineered drug delivery systems (DDS) for effective, controlled and sustained delivery of drugs is of interest for patient treatment. Moreover, the physiopathological characteristics of tumors play an essential role in the success of cancer treatment. Here, we present an overview of the application of double-walled microparticles for local drug delivery with particular focus on the electrohydrodynamic atomization (EHDA) technique and its fabrication challenges. The review highlights the importance of a combination of experimental data and computational simulations for the design of an optimal delivery system. PMID:25483422

  6. Recent advances in peptides for enhancing transdermal macromolecular drug delivery.

    PubMed

    Ruan, Renquan; Chen, Ming; Zou, Lili; Wei, Pengfei; Liu, Juanjuan; Ding, Weiping; Wen, Longping

    2016-02-01

    Transdermal delivery of drugs, a compelling route of systemic drug delivery, provides painless, reliable, targeted, efficient and cost effective therapeutic regimen for patients. However, its use is limited by skin barrier especially the stratum corneum barrier. Moreover, transdermal delivery of macromolecules remains a challenge. Naturally, varieties of physical methods, chemical enhancers and drug carriers have been used to counteract this limitation. Recently, transdermal peptides discovered as safer, more efficient and more specific enhancers could promote the delivery of macromolecules across the skin. Herein, the underlying transdermal peptides are included. Subsequently, we have discussed typical applications and the possible mechanism of two groups of biologically inspired transdermal peptide enhancers, namely cell penetration peptides and transdermal enhanced peptides. PMID:26769200

  7. Nanotechnology and Drug Delivery: An Update in Oncology

    PubMed Central

    Jones, Tait; Saba, Nabil

    2011-01-01

    The field of nanotechnology has exploded in recent years with diverse arrays of applications. Cancer therapeutics have recently seen benefit from nanotechnology with the approval of some early nanoscale drug delivery systems. A diversity of novel delivery systems are currently under investigation and an array of newly developed, customized particles have reached clinical application. Drug delivery systems have traditionally relied on passive targeting via increased vascular permeability of malignant tissue, known as the enhanced permeability and retention effect (EPR). More recently, there has been an increased use of active targeting by incorporating cell specific ligands such as monoclonal antibodies, lectins, and growth factor receptors. This customizable approach has raised the possibility of drug delivery systems capable of multiple, simultaneous functions, including applications in diagnostics, imaging, and therapy which is paving the way to improved early detection methods, more effective therapy, and better survivorship for cancer patients. PMID:24310494

  8. Mucoadhesive and thermogelling systems for vaginal drug delivery.

    PubMed

    Caramella, Carla M; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria Cristina; Sandri, Giuseppina

    2015-09-15

    This review focuses on two formulation approaches, mucoadhesion and thermogelling, intended for prolonging residence time on vaginal mucosa of medical devices or drug delivery systems, thus improving their efficacy. The review, after a brief description of the vaginal environment and, in particular, of the vaginal secretions that strongly affect in vivo performance of vaginal formulations, deals with the above delivery systems. As for mucoadhesive systems, conventional formulations (gels, tablets, suppositories and emulsions) and novel drug delivery systems (micro-, nano-particles) intended for vaginal administration to achieve either local or systemic effect are reviewed. As for thermogelling systems, poly(ethylene oxide-propylene oxide-ethylene oxide) copolymer-based and chitosan-based formulations are discussed as thermogelling systems. The methods employed for functional characterization of both mucoadhesive and thermogelling drug delivery systems are also briefly described. PMID:25683694

  9. Micro-scale Devices for Transdermal Drug Delivery

    PubMed Central

    Arora, Anubhav; Prausnitz, Mark; Mitragotri, Samir

    2009-01-01

    Skin makes an excellent site for drug and vaccine delivery due to easy accessibility, immuno-surveillance functions, avoidance of macromolecular degradation in the gastrointestinal tract and possibility of self-administration. However, macromolecular drug delivery across the skin is primarily accomplished using hypodermic needles, which have several disadvantages including accidental needle-sticks, pain and needle phobia. These limitations have led to extensive research and development of alternative methods for drug and vaccine delivery across the skin. This review focuses on the recent trends and developments in this field of micro-scale devices for transdermal macromolecular delivery. These include liquid jet injectors, powder injectors, microneedles and thermal microablation. The historical perspective, mechanisms of action, important design parameters, applications and challenges are discussed for each method. PMID:18805472

  10. Recent Applications of Liposomes in Ophthalmic Drug Delivery

    PubMed Central

    Mishra, Gyan P.; Bagui, Mahuya; Tamboli, Viral; Mitra, Ashim K.

    2011-01-01

    Liposomal formulations were significantly explored over the last decade for the ophthalmic drug delivery applications. These formulations are mainly composed of phosphatidylcholine (PC) and other constituents such as cholesterol and lipid-conjugated hydrophilic polymers. Liposomes are biodegradable and biocompatible in nature. Current approaches for topical delivery of liposomes are focused on improving the corneal adhesion and permeation by incorporating various bioadhesive and penetration enhancing polymers. In the case of posterior segment disorders improvement in intravitreal half life and targeted drug delivery to the retina is achieved by liposomes. In this paper we have attempted to summarize the applications of liposomes in the field of ophthalmic drug delivery by citing numerous investigators over the last decade. PMID:21490757

  11. Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is non-invasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery. PMID:18506804

  12. Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy.

    PubMed

    Cai, Yuee; Xu, Yingqi; Chan, Hon Fai; Fang, Xiaobin; He, Chengwei; Chen, Meiwan

    2016-03-01

    Glycyrrhetinic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the root of licorice, has been used in hepatocellular carcinoma (HCC) therapy. Particularly, GA as a ligand in HCC therapy has been widely explored in different drug delivery systems, including liposomes, micelles, and nanoparticles. There is considerable interest worldwide with respect to the development of GA-modified drug delivery systems due to the extensive presence of GA receptors on the surface of hepatocyte. Up until now, much work has been focused on developing GA-modified drug delivery systems which bear good liver- or hepatocyte-targeted efficiency both in vitro and in vivo. Owing to its contribution in overcoming the limitations of low lipophilicity and poor bioavailability as well as its ability to promote receptor-mediated endocytosis, GA-modified drug delivery systems play an important role in enhancing liver-targeting efficacy and thus are focused on the treatment of HCC. Moreover, since GA-modified delivery systems present more favorable pharmacokinetic properties and hepatocyte-targeting effects, they may be a promising formulation for GA in the treatment of HCC. In this review, we will give an overview of GA-modified novel drug delivery systems, paying attention to their efficacy in treating HCC and discussing their mechanism and the treatment effects. PMID:26808002

  13. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    PubMed Central

    Ozalp, Veli Cengiz; Eyidogan, Fusun; Oktem, Huseyin Avni

    2011-01-01

    Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  14. The vagina as a route for drug delivery: a review.

    PubMed

    Srikrishna, Sushma; Cardozo, Linda

    2013-04-01

    Overactive bladder (OAB) syndrome has a significant deleterious impact on quality of life. After conservative therapy and bladder retaining, antimuscarinic drugs remain the mainstay of OAB management. Oral therapy is associated with frequent side effects, leading to the development of alternative agents and formulations or the use of novel routes of drug administration, such as the vaginal route. The vagina is often ideal for drug delivery because it allows the use of lower doses, maintains steady drug administration levels, and requires less frequent administration than the oral route. With vaginal drug administration, absorption is unaffected by gastrointestinal disturbances, there is no first-pass effect, and use is discreet. The aim of this review is to provide a background overview of vaginal development, anatomy, and physiology and the effect this has on the use of this route for both local and systemic drug delivery, with special reference to OAB management. Vaginal therapy continues to be an underused route of drug delivery. Vaginal administration allows nondaily, low, continuous dosing, which results in stable drug levels and may, in turn, achieve a lower incidence of side effects and improve patient compliance. These benefits must be balanced against inherent patient or physician bias against using this route and the need to overcome cultural, personal, and hygiene-related barriers to this form of therapy. More sophisticated and programmable vaginal rings are being developed for systemic delivery of therapeutically important macromolecules, such as antimuscarinic therapy in OAB management. PMID:23229421

  15. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  16. The potential of magneto-electric nanocarriers for drug delivery

    PubMed Central

    Kaushik, Ajeet; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan

    2015-01-01

    Introduction The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery. Areas covered This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted. Expert opinion Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance. PMID:24986772

  17. Basics and recent advances in peptide and protein drug delivery

    PubMed Central

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2014-01-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed. PMID:24228993

  18. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared. PMID:26027573

  19. In situ-forming hydrogels for sustained ophthalmic drug delivery.

    PubMed

    Nanjawade, Basavaraj K; Manvi, F V; Manjappa, A S

    2007-09-26

    Ophthalmic drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. The conventional ocular drug delivery systems like solutions, suspensions, and ointments show drawbacks such as increased precorneal elimination, high variability in efficiency, and blurred vision respectively. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form visco-elastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. The choice of a particular hydrogel depends on its intrinsic properties and envisaged therapeutic use. This review includes various temperature, pH, and ion induced in situ-forming polymeric systems used to achieve prolonged contact time of drugs with the cornea and increase their bioavailability. PMID:17719120

  20. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  1. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery

    PubMed Central

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Garland, Martin J; Migalska, Katarzyna; Majithiya, Rita; McCrudden, Cian M; Kole, Prashant Laxman; Mahmood, Tuan Mazlelaa Tuan; McCarthy, Helen O; Woolfson, A David

    2012-01-01

    Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients. PMID:23606824

  2. Cubosomes and hexosomes as versatile platforms for drug delivery.

    PubMed

    Azmi, Intan Dm; Moghimi, Seyed M; Yaghmur, Anan

    2015-12-01

    Nonlamellar liquid crystalline phases are attractive platforms for drug solubilization and targeted delivery. The attractiveness of this formulation principle is linked to the nanostructural versatility, compatiblity, digestiblity and bioadhesive properties of their lipid constituents, and the capability of solubilizing and sustaining the release of amphiphilic, hydrophobic and hydrophilic drugs. Nonlamellar liquid crystalline phases offer two distinct promising strategies in the development of drug delivery systems. These comprise formation of ISAsomes (internally self-assembled 'somes' or particles) such as cubosomes and hexosomes, and in situ formation of parenteral dosage forms with tunable nanostructures at the site of administration. This review outlines the unique features of cubosomes and hexosomes and their potential utilization as promising platforms for drug delivery. PMID:26652281

  3. Biodegradation-tunable mesoporous silica nanorods for controlled drug delivery.

    PubMed

    Park, Sung Bum; Joo, Young-Ho; Kim, Hyunryung; Ryu, WonHyoung; Park, Yong-il

    2015-05-01

    Mesoporous silica in the forms of micro- or nanoparticles showed great potentials in the field of controlled drug delivery. However, for precision control of drug release from mesoporous silica-based delivery systems, it is critical to control the rate of biodegradation. Thus, in this study, we demonstrate a simple and robust method to fabricate "biodegradation-tunable" mesoporous silica nanorods based on capillary wetting of anodic aluminum oxide (AAO) template with an aqueous alkoxide precursor solution. The porosity and nanostructure of silica nanorods were conveniently controlled by adjusting the water/alkoxide molar ratio of precursor solutions, heat-treatment temperature, and Na addition. The porosity and biodegradation kinetics of the fabricated mesoporous nanorods were analyzed using N2 adsorption/desorption isotherm, TGA, DTA, and XRD. Finally, the performance of the mesoporous silica nanorods as drug delivery carrier was demonstrated with initial burst and subsequent "zero-order" release of anti-cancer drug, doxorubicin. PMID:25746247

  4. Micro and nanoparticle drug delivery systems for preventing allotransplant rejection.

    PubMed

    Fisher, James D; Acharya, Abhinav P; Little, Steven R

    2015-09-01

    Despite decades of advances in transplant immunology, tissue damage caused by acute allograft rejection remains the primary cause of morbidity and mortality in the transplant recipient. Moreover, the long-term sequelae of lifelong immunosuppression leaves patients at risk for developing a host of other deleterious conditions. Controlled drug delivery using micro- and nanoparticles (MNPs) is an effective way to deliver higher local doses of a given drug to specific tissues and cells while mitigating systemic effects. Herein, we review several descriptions of MNP immunotherapies aimed at prolonging allograft survival. We also discuss developments in the field of biomimetic drug delivery that use MNP constructs to induce and recruit our bodies' own suppressive immune cells. Finally, we comment on the regulatory pathway associated with these drug delivery systems. Collectively, it is our hope the studies described in this review will help to usher in a new era of immunotherapy in organ transplantation. PMID:25937032

  5. The development of polyanhydrides for drug delivery applications.

    PubMed

    Tamada, J; Langer, R

    1992-01-01

    This paper reviews the development of the polyanhydrides as bioerodible polymers for drug delivery applications. The topics include design and synthesis of the polymer, physical properties, techniques to fabricate the polymer into drug delivery devices, evaluation of biocompatibility, and example applications of the polyanhydrides. Discussion of the interrelationship between the physical-chemical properties of the polyanhydrides, fabrication methods, and drug release rates is included. One section is devoted to a case study to provide a historical perspective of the development a polyanhydride-based drug delivery treatment from the conception of the idea to the final stages of human clinical trials. This section includes an outline of the extensive in vitro and in vivo testing that is necessary for development of a new material for biomedical applications. PMID:1350734

  6. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  7. Silk fibroin-based nanoparticles for drug delivery.

    PubMed

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  8. Rate-control drug delivery systems: controlled release vs. sustained release.

    PubMed

    Chien, Y W

    1989-01-01

    Recently, several technical advancements have been made in the development of new generation of drug delivery systems. These systems are capable of controlling the rate of drug delivery, sustaining the duration of therapeutic efficacy, and/or targeting the delivery of drug to a tissue. Depending upon the technical sophistication, these rate-control drug delivery systems can be classified into three major categories: (i) pre-programmed drug delivery, (ii) activation-controlled drug delivery, and (iii) feedback-regulated drug delivery. Various types of drug delivery devices which have been recently marketed or under active development are grouped, on technology basis, under each category. The fundamentals behind the development of each type of the rate-control drug delivery systems with the successful examples of biomedical application are analyzed, aiming to gain a better understanding of the science and technology involved as well as to pave a solid foundation for future development of innovative new drug delivery systems. PMID:2530424

  9. Using DNA nanotechnology to produce a drug delivery system

    NASA Astrophysics Data System (ADS)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  10. Insights into drug delivery across the nail plate barrier.

    PubMed

    Saner, Manish V; Kulkarni, Abhijeet D; Pardeshi, Chandrakantsing V

    2014-11-01

    Topical therapy is at the forefront in treating nail ailments (especially onychomycosis and nail psoriasis) due to its local effects, which circumvents systemic adverse events, improves patient compliance and reduces treatment cost. However, the success of topical therapy has been hindered due to poor penetration of topical therapeutics across densely keratinized nail plate barrier. For effective topical therapy across nail plate, ungual drug permeation must be enhanced. Present review is designed to provide an insight into prime aspects of transungual drug delivery viz. nail structure and physiology, various onychopathies, techniques of nail permeation enhancement and in vitro models for trans-nail drug permeation studies. Updated list of drug molecules studied across the nail plate and key commercial products have been furnished with sufficient depth. Patents pertinent to, and current clinical status of transungual drug delivery have also been comprehensively reviewed. This is the first systematic critique encompassing the detailed aspects of transungual drug delivery. In our opinion, transungual drug delivery is a promising avenue for researchers to develop novel formulations, augmenting pharmaceutical industries to commercialize the products for nail disorders. PMID:24964054

  11. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  12. Dissolving Microneedles for Transdermal Drug Delivery

    PubMed Central

    Lee, Jeong Woo; Park, Jung-Hwan; Prausnitz, Mark R.

    2008-01-01

    Microfabrication technology has been adapted to produce micron-scale needles as a safer and painless alternative to hypodermic needle injection, especially for protein biotherapeutics and vaccines. This study presents a design that encapsulates molecules within microneedles that dissolve within the skin for bolus or sustained delivery and leave behind no biohazardous sharp medical waste. A fabrication process was developed based on casting a viscous aqueous solution during centrifugation to fill a micro-fabricated mold with biocompatible carboxymethylcellulose or amylopectin formulations. This process encapsulated sulforhodamine B, bovine serum albumin, and lysozyme; lysozyme was shown to retain full enzymatic activity after encapsulation and to remain 96% active after storage for two months at room temperature. Microneedles were also shown to be strong enough to insert into cadaver skin and then to dissolve within minutes. Bolus delivery was achieved by encapsulating molecules just within microneedle shafts. For the first time, sustained delivery over hours to days was achieved by encapsulating molecules within the microneedle backing, which served as a controlled release reservoir that delivered molecules by a combination of swelling the backing with interstitial fluid drawn out of the skin and molecule diffusion into the skin via channels formed by dissolved microneedles. We conclude that dissolving microneedles can be designed to gently encapsulate molecules, insert into skin, and enable bolus or sustained release delivery. PMID:18261792

  13. Principles of Local Drug Delivery to the Inner Ear

    PubMed Central

    Salt, Alec N.; Plontke, Stefan K.

    2009-01-01

    As more and more substances have been shown in preclinical studies to be capable of preventing damage to the inner ear from exposure to noise, ototoxic drugs, ischemia, infection, inflammation, mechanical trauma and other insults, it is becoming very important to develop feasible and safe methods for the targeted delivery of drugs to specific regions in the inner ear. Recently developed methods for sampling perilymph from the cochlea have overcome major technical problems that have distorted previous pharmacokinetic studies of the ear. These measurements show that drug distribution in perilymph is dominated by passive diffusion, resulting in large gradients along the cochlea when drugs are applied intratympanically. Therefore, in order to direct drugs to specific regions of the ear, a variety of delivery strategies are required. To target drugs to the basal cochlear turn and vestibular system while minimizing exposure of the apical cochlear turns, single one-shot intratympanic applications are effective. To increase the amount of drug reaching the apical cochlear turns, repeated intratympanic injections or controlled-release drug delivery systems, such as biodegradable biopolymers or catheters and pumps, are more effective. However, if the applied substance does not easily pass through the round window membrane, or if a more widespread distribution of drug in the ear is required, then intralabyrinthine injections of the substance may be required. Intralabyrinthine injection procedures, which are currently in development in animals, have not yet been proven safe enough for human use. PMID:19923805

  14. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  15. Nanocrystal technology, drug delivery and clinical applications

    PubMed Central

    Junghanns, Jens-Uwe A H; Müller, Rainer H

    2008-01-01

    Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview. PMID:18990939

  16. Noninvasive Routes of Proteins and Peptides Drug Delivery

    PubMed Central

    Jitendra; Sharma, P. K.; Bansal, Sumedha; Banik, Arunabha

    2011-01-01

    Recent advances in the field of pharmaceutical biotechnology have led to the formulation of many protein and peptide-based drugs for therapeutic and clinical application. The route of administration has a significant impact on the therapeutic outcome of a drug. The needle and syringe is a well established choice of protein and peptide delivery which has some drawback related to patient and to formulation such as pain, cost, sterility etc. Thus, the noninvasive routes which were of minor importance as parts of drug delivery in the past have assumed added importance in protein and peptide drug delivery and these include nasal, ophthalmic, buccal, vaginal, transdermal and pulmonary routes. The pharmaceutical scientists have some approaches to develop the formulations for protein and peptide delivery by noninvasive routes. But, due to the physiochemical instability and enzymatic barrier of proteins and peptides there are several hurdle to develop suitable formulation. So there is need of penetration enhancers, enzyme inhibitors and suitable vehicles for noninvasive delivery to increase the bioavailability. In this review, the aim is to focus on the approaches to formulation of protein and peptide based drug administration by noninvasive route. PMID:22707818

  17. Novel Strategies for Anterior Segment Ocular Drug Delivery

    PubMed Central

    Cholkar, Kishore; Patel, Sulabh P.; Vadlapudi, Aswani Dutt

    2013-01-01

    Abstract Research advancements in pharmaceutical sciences have led to the development of new strategies in drug delivery to anterior segment. Designing a new delivery system that can efficiently target the diseased anterior ocular tissue, generate high drug levels, and maintain prolonged and effective concentrations with no or minimal side effects is the major focus of current research. Drug delivery by traditional method of administration via topical dosing is impeded by ocular static and dynamic barriers. Various products have been introduced into the market that prolong drug retention in the precorneal pocket and to improve bioavailability. However, there is a need of a delivery system that can provide controlled release to treat chronic ocular diseases with a reduced dosing frequency without causing any visual disturbances. This review provides an overview of anterior ocular barriers along with strategies to overcome these ocular barriers and deliver therapeutic agents to the affected anterior ocular tissue with a special emphasis on nanotechnology-based drug delivery approaches. PMID:23215539

  18. EMERGING MICROTECHNOLOGIES FOR THE DEVELOPMENT OF ORAL DRUG DELIVERY DEVICES

    PubMed Central

    Chirra, Hariharasudhan D.; Desai, Tejal A.

    2012-01-01

    The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications. PMID:22981755

  19. Which drug or drug delivery system can change clinical practice for brain tumor therapy?

    PubMed Central

    Siegal, Tali

    2013-01-01

    The prognosis and treatment outcome for primary brain tumors have remained unchanged despite advances in anticancer drug discovery and development. In clinical trials, the majority of promising experimental agents for brain tumors have had limited impact on survival or time to recurrence. These disappointing results are partially explained by the inadequacy of effective drug delivery to the CNS. The impediments posed by the various specialized physiological barriers and active efflux mechanisms lead to drug failure because of inability to reach the desired target at a sufficient concentration. This perspective reviews the leading strategies that aim to improve drug delivery to brain tumors and their likelihood to change clinical practice. The English literature was searched for defined search items. Strategies that use systemic delivery and those that use local delivery are critically reviewed. In addition, challenges posed for drug delivery by combined treatment with anti-angiogenic therapy are outlined. To impact clinical practice and to achieve more than just a limited local control, new drugs and delivery systems must adhere to basic clinical expectations. These include, in addition to an antitumor effect, a verified favorable adverse effects profile, easy introduction into clinical practice, feasibility of repeated or continuous administration, and compatibility of the drug or delivery system with any tumor size and brain location. PMID:23502426

  20. Electrospun materials for affinity-based engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Sill, T. J.; von Recum, H. A.

    2015-10-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can "hold" therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface.

  1. Status of surfactants as penetration enhancers in transdermal drug delivery

    PubMed Central

    Som, Iti; Bhatia, Kashish; Yasir, Mohd.

    2012-01-01

    Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393

  2. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.

    PubMed

    Torchilin, Vladimir P

    2014-11-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  3. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    PubMed Central

    Torchilin, Vladimir P.

    2015-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  4. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy. PMID:24772414

  5. Modeling nanoparticle delivery of TB drugs to granulomas.

    PubMed

    Grobler, A; Perez Sierra, Z; Viljoen, H J

    2016-01-01

    Tuberculosis, which typically presents as a pulmonary disease, has a complex pathology. The primary site of infection, the Ghon focus, recruits immune cells and a granuloma forms. At earlier stages the granuloma is still vascularized, offering the best opportunity for drug treatment. In the more progressive state blood flow is reduced and a distinct caseous structure develops. Effective delivery of drugs to bacilli in the core of the granuloma becomes very difficult. It is perceivable that granuloma cores could create conditions where bacilli persist and develop resistance. In this study we analyze drug delivery to granulomas by means of a nanoparticle delivery system. The model consists of two parts; the overall distribution of the nanoparticles is described by a simple circulatory model and this result is used in the second part, focusing on transport in a capillary lined with macrophages. Nanoparticles enter the macrophages where they are metabolized and the drugs are released. The model reveals significant differences in drug concentrations between the plasma and macrophages. Based on the results of the model, strategies for improved drug delivery are proposed. PMID:26493361

  6. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery.

    PubMed

    Thukral, Dipti Kakkar; Dumoga, Shweta; Mishra, Anil K

    2014-01-01

    Development of colloidal delivery systems has opened new avenues/frontiers for improving drug delivery. Solid lipid nanoparticles have come up as the latest development in the arena of lipid based colloidal delivery systems after nanoemulsion and liposomes ever since their introduction in the early 1990s. In this review, the authors have made efforts to bring forth the essential and practically relevant aspects of SLNs. This review gives an overview of the preparation methods of solid lipid nanoparticles while mainly focussing on their biological applications including their projected applications in drug delivery. This review critically examines the influential factors governing the formation of SLNs and then discussing in detail the several techniques being utilized for their characterization. This review discusses the drug loading and drug release aspects of SLNs as these are useful biocompatible carriers of lipophilic and to a certain extent hydrophilic drugs. An updated list of drugs encapsulated into various lipids to prepare SLN formulations has been provided. Other relevant aspects pertaining to the clinical use of SLN formulations like their sterilization and storage stability have also been explained. A unique facet of this review is the discussion on the challenging issues of in vivo applications and recent progresses in overcoming these challenges which follows in the end. PMID:25469779

  7. Designer lipids for drug delivery: from heads to tails

    PubMed Central

    Kohli, Aditya G.; Kierstead, Paul H.; Venditto, Vincent J.; Walsh, Colin L.; Szoka, Francis C.

    2014-01-01

    For four decades, liposomes composed of both naturally occurring and synthetic lipids have been investigated as delivery vehicles for low molecular weight and macromolecular drugs. These studies paved the way for the clinical and commercial success of a number of liposomal drugs, each of which required a tailored formulation; one liposome size does not fit all drugs! Instead, the physicochemical properties of the liposome must be matched to the pharmacology of the drug. An extensive biophysical literature demonstrates that varying lipid composition can influence the size, membrane stability, in vivo interactions, and drug release properties of a liposome. In this review we focus on recently described synthetic lipid headgroups, linkers and hydrophobic domains that can provide control over the intermolecular forces, phase preference, and macroscopic behavior of liposomes. These synthetic lipids further our understanding of lipid biophysics, promote targeted drug delivery, and improve liposome stability. We further highlight the immune reactivity of novel synthetic headgroups as a key design consideration. For instance it was originally thought that synthetic PEGylated lipids were immunologically inert; however, it’s been observed that under certain conditions PEGylated lipids induce humoral immunity. Such immune activation may be a limitation to the use of other engineered lipid headgroups for drug delivery. In addition to the potential immunogenicity of engineered lipids, future investigations on liposome drugs in vivo should pay particular attention to the location and dynamics of payload release. PMID:24816069

  8. Application of sterylglucoside-containing particles for drug delivery.

    PubMed

    Maitani, Yoshie; Nakamura, Koji; Kawano, Kumi

    2005-02-01

    Recent advances in biotechnology have promoted biomolecular targeting of drugs, peptides and genes in the treatment and management of major diseases and infections. Therapeutic development of drugs and delivery systems may have various objectives: Systemic drugs require optimal delivery and uptake at target sites; peptide drugs require alternative routes of administration, such as nasal or intestinal absorption; gene medicines need to be delivered efficiently, safely and selectively to diseased areas. The propensity of ligand-modified liposomes to carry drugs and genes to desirable sites has been extensively examined and current reports show considerable progress in this field. Sterylglucoside (SG) is a novel absorption-enhancer of peptide drugs across nasal and intestinal mucosae. Physico-chemical properties and biodistribution of liposomes incorporating SG were studied and compared against the profiles of aglycon and sitosterol derivatives of SG. It was shown that SG particles aided colon drug delivery and increased bioavailability of peptide drugs after nasal and intestinal administration. In addition, they were able to enhance anticancer effects in liver cancer chemotherapy. Biological fate and interaction of SG with hepatocytes support the novel proposition of liver-targeting SG-liposomes. PMID:15727558

  9. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    PubMed

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-01

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. PMID:26436442

  10. Targeted nanogels: a versatile platform for drug delivery to tumors.

    PubMed

    Murphy, Eric A; Majeti, Bharat K; Mukthavaram, Rajesh; Acevedo, Lisette M; Barnes, Leo A; Cheresh, David A

    2011-06-01

    Although nanoparticle-based drug delivery formulations can improve the effectiveness and safety of certain anticancer drugs, many drugs, due to their chemical composition, are unsuitable for nanoparticle loading. Here, we describe a targeted nanogel drug delivery platform that can (i) encapsulate a wide range of drug chemotypes, including biological, small molecule, and cytotoxic agents; (ii) display targeting ligands and polymeric coatings on the surface; (iii) enhance drug retention within the nanogel core after photo-cross-linking; and (iv) retain therapeutic activity after lyophilization allowing for long-term storage. For therapeutic studies, we used integrin ?v?3-targeted lipid-coated nanogels with cross-linked human serum albumin in the core for carrying therapeutic cargoes. These particles exhibited potent activity in tumor cell viability assays with drugs of distinct chemotype, including paclitaxel, docetaxel, bortezomib, 17-AAG, sorafenib, sunitinib, bosutinib, and dasatinib. Treatment of orthotopic breast and pancreas tumors in mice with taxane-loaded nanogels produced a 15-fold improvement in antitumor activity relative to Abraxane by blocking both primary tumor growth and spontaneous metastasis. With a modifiable surface and core, the lipid-coated nanogel represents a platform technology that can be easily adapted for specific drug delivery applications to treat a wide range of malignant diseases. PMID:21518727

  11. Drug-inorganic-polymer nanohybrid for transdermal delivery.

    PubMed

    Kim, Myung Hun; Park, Dae-Hwan; Yang, Jae-Hun; Choy, Young Bin; Choy, Jin-Ho

    2013-02-28

    For transdermal drug delivery, we prepared a drug-inorganic nanohybrid (FB-LDH) by intercalating a transdermal model drug, flurbiprofen (FB), into the layered double hydroxides (LDHs) via coprecipitation reaction. The X-ray diffraction patterns and FT-IR spectra of the FB-LDH indicated that the FB molecules were successfully intercalated via electrostatic interaction within the LDH lattices. The in vitro drug release revealed that the Eudragit(®) S-100 in release media could facilitate the drug out-diffusion by effectively replacing the intercalated drug and also enlarging the lattice spacing of the FB-LDH. In this work, a hydrophobic gel suspension of the FB-LDH was suggested as a transdermal controlled delivery formulation, where the suspensions were mixed with varying amounts of Eudragit(®) S-100 aqueous solution. The Frantz diffusion cell experiments using mouse full-skins showed that a lag time and steady-state flux of the drug could be controlled from 12.8h and 3.28μgcm(-2)h(-1) to less than 1h and 14.57μgcm(-2)h(-1), respectively, by increasing the mass fraction of Eudragit(®) S-100 solution in gel suspensions from 0% to 20% (w/w), respectively. Therefore, we conclude gel formulation of the FB-LDH have a potential for transdermal controlled drug delivery. PMID:23357253

  12. Enema ion compositions for enhancing colorectal drug delivery.

    PubMed

    Maisel, Katharina; Chattopadhyay, Sumon; Moench, Thomas; Hendrix, Craig; Cone, Richard; Ensign, Laura M; Hanes, Justin

    2015-07-10

    Delivering drugs to the colorectum by enema has advantages for treating or preventing both local and systemic diseases. However, the properties of the enema itself are not typically exploited for improving drug delivery. Sodium ions are actively pumped out of the lumen of the colon, which is followed by osmotically-driven water absorption, so we hypothesized that this natural mechanism could be exploited to drive nanoparticles and drugs to the colorectal tissue surface. Here, we report that sodium-based, absorption-inducing (hypotonic) enemas rapidly transport hydrophilic drugs and non-mucoadhesive, mucus penetrating nanoparticles (MPP), deep into the colorectal folds to reach virtually the entire colorectal epithelial surface. In contrast, isotonic and secretion-inducing (hypertonic) vehicles led to non-uniform, poor surface coverage. Sodium-based enemas induced rapid fluid absorption even when moderately hyper-osmolal (~350 mOsm) compared to blood (~300 mOsm), which suggests that active sodium absorption plays a key role in osmosis-driven fluid uptake. We then used tenofovir, an antiretroviral drug in clinical trials for preventing HIV, to test the effects of enema composition on local and systemic drug delivery. We found that strongly hypotonic and hypertonic enemas caused rapid systemic drug uptake, whereas moderately hypotonic enemas with ion compositions similar to feces resulted in high local tissue levels with minimal systemic drug exposure. Similarly, moderately hypotonic enemas provided improved local drug retention in colorectal tissue, whereas hypertonic and isotonic enemas provided markedly reduced drug retention in colorectal tissue. Lastly, we found that moderately hypotonic enema formulations caused little to no detectable epithelial damage, while hypertonic solutions caused significant damage, including epithelial sloughing; the epithelial damage caused increased systemic drug absorption and penetration of MPP into colorectal tissue, a potential advantage in certain drug delivery applications. In summary, we illustrate that enema composition can be adjusted to maximize local versus systemic drug delivery, and that mildly hypotonic, sodium-based vehicles can provide uniform drug and MPP delivery in the colon that maximizes local drug concentrations. PMID:25937321

  13. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    NASA Astrophysics Data System (ADS)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..

  14. Nanoscale drug delivery systems and the blood–brain barrier

    PubMed Central

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS. PMID:24550672

  15. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (?549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  16. Ocular Drug Delivery; Impact of in vitro Cell Culture Models

    PubMed Central

    Barar, Jaleh; Asadi, Masoud; Mortazavi-Tabatabaei, Seyed Abdolreza; Omidi, Yadollah

    2009-01-01

    Normal vision depends on the optimal function of ocular barriers and intact membranes that selectively regulate the environment of ocular tissues. Novel pharmacotherapeutic modalities have aimed to overcome such biological barriers which impede efficient ocular drug delivery. To determine the impact of ocular barriers on research related to ophthalmic drug delivery and targeting, herein we provide a review of the literature on isolated primary or immortalized cell culture models which can be used for evaluation of ocular barriers. In vitro cell cultures are valuable tools which serve investigations on ocular barriers such as corneal and conjunctival epithelium, retinal pigment epithelium and retinal capillary endothelium, and can provide platforms for further investigations. Ocular barrier-based cell culture systems can be simply set up and used for drug delivery and targeting purposes as well as for pathological and toxicological research. PMID:23198080

  17. Lipid-coated polymeric nanoparticles for cancer drug delivery.

    PubMed

    Krishnamurthy, Sangeetha; Vaiyapuri, Rajendran; Zhang, Liangfang; Chan, Juliana M

    2015-07-01

    Polymeric nanoparticles and liposomes have been the platform of choice for nanoparticle-based cancer drug delivery applications over the past decade, but extensive research has revealed their limitations as drug delivery carriers. A hybrid class of nanoparticles, aimed at combining the advantages of both polymeric nanoparticles and liposomes, has received attention in recent years. These core/shell type nanoparticles, frequently referred to as lipid-polymer hybrid nanoparticles (LPNs), possess several characteristics that make them highly suitable for drug delivery. This review introduces the formulation methods used to synthesize LPNs and discusses the strategies used to treat cancer, such as by targeting the tumor microenvironment or vasculature. Finally, it discusses the challenges that must be overcome to realize the full potential of LPNs in the clinic. PMID:26221931

  18. A clinical perspective on mucoadhesive buccal drug delivery systems

    PubMed Central

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406

  19. Medicated chewing gum, a novel drug delivery system

    PubMed Central

    Aslani, Abolfazl; Rostami, Farnaz

    2015-01-01

    New formulations and technologies have been developed through oral drug delivery systems’ researches. Such researches display significance of oral route amongst patients. We’ve reviewed all the features associated with medicated chewing gum as a modern drug delivery by introducing the history, advantages and disadvantages, methods of manufacturing, composition differences, evaluation tests and examples of varieties of medicated chewing gums. Acceptance of medicated chewing gum has been augmented through years. The advantages and therapeutic benefits of chewing gum support its development as we can see new formulations with new drugs contained have been produced from past and are going to find a place in market by formulation of new medicated chewing gums. Potential applications of medicated chewing gums are highly widespread as they will be recognized in future. Nowadays standards for qualifying chewing gums are the same as tablets. Patient-centered studies include medicated chewing gums as a delivery system too which creates compliance for patients. PMID:26109999

  20. Apomaghemite as a doxorubicin carrier for anticancer drug delivery.

    PubMed

    Jurado, Rocío; Frączek, Paulina; Droetto, Mélissa; Sánchez, Purificación; Valero, Elsa; Domínguez-Vera, José M; Gálvez, Natividad

    2016-04-01

    Protein cages have well-defined structures and can be chemically and biologically engineered in many ways, making them useful platforms for drug delivery applications. Taking advantage of the unique structure feature of apoferritin, a new theranostic nanocarrier is proposed herein. The apoferritin protein is effective for the encapsulation of maghemite nanoparticles and for loading a significant dose of doxorubicin (DOX) drug. This simultaneous loading of maghemite nanoparticles and DOX has been achieved using either co-encapsulation or surface-binding approaches. Maghemite nanoparticles coated with the protein apoferritin are an effective long-term MRI liver contrast agent and we report here that additionally they can serve as an anticancer drug-delivery system. In particular we show that maghemite-containing apoferritin can sustain the DOX delivery under period of 10 to 25days depending on the environmental conditions. PMID:26826473

  1. Controlled Release of Simvastatin from Biomimetic ?-TCP Drug Delivery System

    PubMed Central

    Chou, Joshua; Ito, Tomoko; Bishop, David; Otsuka, Makoto; Ben-Nissan, Besim; Milthorpe, Bruce

    2013-01-01

    Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study shows the potential applications of marine structures as a drug delivery system for simvastatin. PMID:23349949

  2. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery

    PubMed Central

    Hernot, Sophie; Klibanov, Alexander L.

    2008-01-01

    Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection is observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials. PMID:18486268

  3. Medicated chewing gum, a novel drug delivery system.

    PubMed

    Aslani, Abolfazl; Rostami, Farnaz

    2015-04-01

    New formulations and technologies have been developed through oral drug delivery systems' researches. Such researches display significance of oral route amongst patients. We've reviewed all the features associated with medicated chewing gum as a modern drug delivery by introducing the history, advantages and disadvantages, methods of manufacturing, composition differences, evaluation tests and examples of varieties of medicated chewing gums. Acceptance of medicated chewing gum has been augmented through years. The advantages and therapeutic benefits of chewing gum support its development as we can see new formulations with new drugs contained have been produced from past and are going to find a place in market by formulation of new medicated chewing gums. Potential applications of medicated chewing gums are highly widespread as they will be recognized in future. Nowadays standards for qualifying chewing gums are the same as tablets. Patient-centered studies include medicated chewing gums as a delivery system too which creates compliance for patients. PMID:26109999

  4. Recent advances in physical delivery enhancement of topical drugs.

    PubMed

    Raphael, Anthony P; Wright, Olivia R L; Benson, Heather A; Prow, Tarl W

    2015-01-01

    The skin has evolved to resist the penetration of foreign substances and particles. Effective topical drug delivery into and/or through the skin is hindered by these epidermal barriers. A range of physical enhancement methods has been developed to selectively overcome this barrier. This review discusses recent advances in physical drug delivery by broadly separating the techniques into two main areas; indirect and direct approaches. Indirect approaches consist of electrical, vibrational or laser instrumentation that creates pores in the skin followed by application of the drug. Direct approaches consist of mechanical disruption of the epidermis using techniques such as microdermabrasion, biolistic injectors and microneedles. Although, in general, physical techniques are yet to be established in a clinical setting, the potential gains of enhancing delivery of compounds through the skin is of great significance and will no doubt continue to receive much attention. PMID:25925114

  5. Synthesis of the KMB-Drug Delivery Carrier

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xu, Mei; Zhu, Yu-peng; Zhang, Wei-hua; Gong, Yuan-yuan; Li, Dong-sheng

    Purified konjac glucomannan(KGM) was blended with Xanthan gum to prepared gel, which was valued by its viscosity and tenacity. The konjac micro-balls(KMBs) were prepared in drying and wetting method respectively. The diameter of the KMBs was analyzed with laser particle size analyzer. To a carrier of drug deliver, the delivery characteristics of the NMP, which embedded in KMB, was discussed. The results showed that KMB was well dispersed in DMSO, and its diameter was 4.08 μm. In paraffin, KMB was homogeneous disperse with diameter(2.23 μm). In the behavior of drug delivery, the characteristics of drug sustained-release were obvious, and the delivery time was more than 24 h.

  6. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    NASA Astrophysics Data System (ADS)

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-05-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (A549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.

  7. Connecting drug delivery reality to smart materials design.

    PubMed

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. PMID:23624177

  8. Pressure Waves in Medicine: From Tissue Injury to Drug Delivery

    NASA Astrophysics Data System (ADS)

    Doukas, Apostolos G.

    2004-07-01

    Pressure waves have the potential to cause injury to cells and tissue or enable novel therapeutic modalities, such as fragmentation of kidney stones and drug delivery. Research on the biological effects of pressure waves have shown that the biological response on depends the pressure-wave characteristics. One of the most prominent effects induced by pressure waves is the permeabilization of a number of barrier structures (cell plasma membrane, skin and microbial biofilms) and facilitate the delivery of macromolecules. The permeabilization of the barrier structure is transient and the barrier function recovers. Thus, pressure waves can induce delivery of molecular species that would not normally cross the barrier structure.

  9. Thermo-Responsive Hydrogels for Ocular Drug Delivery.

    PubMed

    Kang-Mieler, Jennifer J; Mieler, William F

    2016-01-01

    Hydrogel as an ocular drug delivery platform holds great potential. Hydrogels are three-dimensional, hydrophilic, polymeric networks capable of absorbing large amounts of water or biological fluids. They have the ability to swell in an aqueous solvent system, holding solvents within a cross-linked gel system for potential sustained delivery. Through manipulation of permeation and diffusion characteristics, they can retain hydrophobic and hydrophilic agents, small molecules and macromolecules. In addition, hydrogel can be combined with nano- or microspheres to enhance delivery capacity. The aqueous environment of hydrogels can also protect cells and pharmacological agents. Depending on the specific structure, they can be nondegradable or degradable in their application. PMID:26502091

  10. Temperature sensitive contact lenses for triggered ophthalmic drug delivery.

    PubMed

    Jung, Hyun Jung; Chauhan, Anuj

    2012-03-01

    Ophthalmic drug delivery through eye drops is inefficient because of low corneal bioavailability and short residence time in tears. Contact lenses are ideally suited for extended and targeted drug delivery to cornea, but commercial contact lenses release ophthalmic drugs for only 1-2 h. This study focuses on dispersing timolol encapsulating highly crosslinked nanoparticles in contact lenses to increase the duration of drug release from 1 to 2 h to about 2-4 weeks. The highly crosslinked particles were prepared from monomers with multivinyl functionalities such as EGDMA (ethylene glycol dimethacrylate) and PGT (propoxylated glyceryl triacylate). The nanoparticles were about 3.5 nm in size and encapsulated 48-66% of the drug depending on the composition. Drug release studies in a diffusion cell showed that the particles released the drug for a period of about 4 weeks. The drug loaded particles were dispersed in hydroxy methyl methacrylate (HEMA) gels, which are common contact lens materials. The particle loaded gels release timolol in phosphate buffered saline (PBS) for 2-4 weeks at therapeutic dose, which is promising for extended drug release applications. The proposed mechanism of drug transport is hydrolysis of ester bonds that link timolol to the particle matrix which form during the particle formation process. The drug release profiles can be described by a first order reaction model with a temperature dependent rate constant. The rate constant of ester hydrolysis was significantly smaller than that in previous studies on timolol esters possibly due to steric effects and the low water content of the highly crosslinked hydrophobic particles. The results of this study provide evidences that contact lenses loaded with nanoparticles could be very useful for extended delivery of ophthalmic drugs. PMID:22182750

  11. Novel drug-delivery systems for patients with chronic rhinosinusitis

    PubMed Central

    Albu, Silviu

    2012-01-01

    Chronic rhinosinusitis, one of the most common chronic medical complaints in the United States, seems to be increasing in incidence and prevalence, and has a significant impact on quality of life. Topical forms of medical therapy represent an attractive alternative for drug delivery to the nasal cavity and paranasal sinuses. Topical drug delivery has the advantage of directly acting on the site of inflammation, producing a higher concentration at the target site while avoiding systemic side effects. Although considerable research has been undertaken into improving nasal formulations in order to enhance absorption, little attention has so far been directed to upgrading the delivery devices. The aim of this review is to present current knowledge on the novel drug-delivery devices in use in the management of chronic rhinosinusitis patients, and to present the current available knowledge on topical drug penetration into the sinuses using various delivery devices. Additionally, methods used to enhance fluid sinus deposition are presented and the published clinical studies on the results of nebulized antibiotics in the treatment of chronic rhinosinusitis patients are discussed. PMID:22745531

  12. Cell membrane-camouflaged nanoparticles for drug delivery.

    PubMed

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases. PMID:26210440

  13. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  14. Untethered magnetic millirobot for targeted drug delivery.

    PubMed

    Iacovacci, Veronica; Lucarini, Gioia; Ricotti, Leonardo; Dario, Paolo; Dupont, Pierre E; Menciassi, Arianna

    2015-01-01

    This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells. PMID:26009273

  15. Carbon nanotubes buckypapers for potential transdermal drug delivery.

    PubMed

    Schwengber, Alex; Prado, Héctor J; Zilli, Darío A; Bonelli, Pablo R; Cukierman, Ana L

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT-drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. PMID:26354234

  16. Applications of Nanoparticles for Anticancer Drug Delivery: A Review.

    PubMed

    Zhu, Yuanyuan; Liao, Lianming

    2015-07-01

    Biodegradable nanometer-sized particles have novel structural and physical properties that are attracting great interests from pharmaceuticals for the targeted delivery of anticancer drugs and imaging contrast agents. These smart nanoparticles are designed to ferry chemotherapeutic agents or therapeutic genes into malignant cells while sparing healthy cells. In this review, we describe currently clinically used chemotherapeutics in nanoparticle formulation and discuss the current status of nanoparticles developed as targeting delivery systems for anticancer drugs, with emphasis on formulations of micelles, liposome, polymeric nanoparticles, gold nanoparticle dendrimers, and bionanocapsules. PMID:26373036

  17. Application of liposomes in medicine and drug delivery.

    PubMed

    Daraee, Hadis; Etemadi, Ali; Kouhi, Mohammad; Alimirzalu, Samira; Akbarzadeh, Abolfazl

    2016-02-01

    Liposomes provide an established basis for the sustainable development of different commercial products for treatment of medical diseases by the smart delivery of drugs. The industrial applications include the use of liposomes as drug delivery vehicles in medicine, adjuvants in vaccination, signal enhancers/carriers in medical diagnostics and analytical biochemistry, solubilizers for various ingredients as well as support matrices for various ingredients and penetration enhancers in cosmetics. In this review, we summarize the main applications and liposome-based commercial products that are currently used in the medical field. PMID:25222036

  18. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    PubMed Central

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  19. Programmable nanomedicine: synergistic and sequential drug delivery systems

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis B.; Ligler, Frances S.; Gu, Zhen

    2015-02-01

    Recent developments in nanomedicine for the cancer therapy have enabled programmable delivery of therapeutics by exploiting the stimuli-responsive properties of nanocarriers. These therapeutic systems were designed with the relevant chemical and physical properties that respond to different triggers for enhanced anticancer efficacy, including the reduced development of drug-resistance, lower therapeutic dose, site-specific transport, and spatiotemporally controlled release. This minireview discusses the current advances in programmable nanocarriers for cancer therapy with particular emphasis on synergistic and sequential drug delivery systems.

  20. Intravesical drug delivery: Challenges, current status, opportunities and novel strategies.

    PubMed

    GuhaSarkar, Shruti; Banerjee, R

    2010-12-01

    The urinary bladder has certain unique anatomical features which enable it to form an effective barrier to toxic substances diffusing from the urine into the blood. The barrier function is due to the epithelial surface of the urinary bladder, the urothelium, which has characteristic umbrella cells, joined by tight junctions and covered by impenetrable plaques, as well as an anti-adherent mucin layer. Diseases of the urinary bladder, such as bladder carcinomas and interstitial cystitis, cause acute damage to the bladder wall and cannot be effectively treated by systemic administration of drugs. Such conditions may benefit from intravesical drug delivery (IDD), which involves direct instillation of drug into the bladder via a catheter, to attain high local concentrations of the drug with minimal systemic effects. IDD however has its limitations, since the permeability of the urothelial layer is very low and instilled drug solutions become diluted with urine and get washed out of the bladder during voiding, necessitating repeated infusions of the drug. Permeation enhancers serve to overcome these problems to some extent by using electromotive force to enhance diffusion of the drug into the bladder wall or chemical molecules, such as chitosan, dimethylsulphoxide, to temporarily disrupt the tight packing of the urothelium. Nanotechnology can be integrated with IDD to devise drug-encapsulated nanoparticles that can greatly improve chemical interactions with the urothelium and enhance penetration of drugs into the bladder wall. Nanocarriers such as liposomes, gelatin nanoparticles, polymeric nanoparticles and magnetic particles, have been found to enhance local drug concentrations in the bladder as well as target diseased cells. Intravesical drug carriers can be further improved by using mucoadhesive biomaterials which are strongly adhered to the urothelial cell lining, thus preventing the carrier from being washed away during urine voiding. This increases the residence time of the drug at the target site and enables sustained delivery of the drug over a prolonged time span. Polymeric hydrogels, such as the temperature sensitive PEG-PLGA-PEG polymer, have been used to develop in situ gelling systems to deliver drugs into the bladder cavity. Recent advances and future prospects of biodegradable nanocarriers and in situ gels as drug delivery agents for intravesical drug delivery are reviewed in this paper. PMID:20831887

  1. Drug trapping and delivery for Alzheimer's diagnosis.

    PubMed

    Jalil, M A; Kamoldilok, Surachart; Saktioto, T; Ong, C T; Yupapin, Preecha P

    2012-10-01

    In this investigation, a new design based on a PANDA ring resonator as an optical trapping tool for tangle protein, molecular motor storage, and delivery is proposed. The optical vortices are generated and the trapping mechanism is controlled in the same way as the conventional optical tweezers. The trapping force is produced by a combination of the gradient field and scattering photons. The required molecular volume is trapped and moved dynamically within the molecular network. The tangle protein and molecular motor can be transported and delivered to the required destinations for Alzheimer's diagnosis by molecular buffer and bus network. PMID:22384850

  2. Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications

    PubMed Central

    Labiris, N R; Dolovich, M B

    2003-01-01

    Research in the area of pulmonary drug delivery has gathered momentum in the last several years, with increased interest in using the lung as a means of delivering drugs systemically. Advances in device technology have led to the development of more efficient delivery systems capable of delivering larger doses and finer particles into the lung. As more efficient pulmonary delivery devices and sophisticated formulations become available, physicians and health professionals will have a choice of a wide variety of device and formulation combinations that will target specific cells or regions of the lung, avoid the lung's clearance mechanisms and be retained within the lung for longer periods. It is now recognized that it is not enough just to have inhalation therapy available for prescribing; physicians and other healthcare providers need a basic understanding of aerosol science, inhaled formulations, delivery devices, and bioequivalence of products to prescribe these therapies optimally. PMID:14616419

  3. Targeted Drug Delivery to Treat Pain and Cerebral Hypoxia

    PubMed Central

    Davis, Thomas P.

    2013-01-01

    Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion–transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia. PMID:23343976

  4. Sunflower Polymers for Folate-Mediated Drug Delivery.

    PubMed

    Wang, Christine E; Wei, Hua; Tan, Nicholas; Boydston, Andrew J; Pun, Suzie H

    2016-01-11

    Polymeric delivery vehicles can improve the safety and efficacy of chemotherapy drugs by facilitating preferential tumor delivery. Polymer-drug conjugates are especially attractive carriers because additional formulation steps are not required during manufacturing, and drug release profiles can be altered based on linker choice. For clinical translation, these vehicles should also be reproducibly and controllably synthesized. Recently, we reported the development of a class of materials called "sunflower polymers," synthesized by controlled radical polymerization of hydrophilic "petals" from a cyclic multimacroinitiator "core". This synthesis strategy afforded control over the size of the polymer nanostructures based on their petal polymerization time. In this work, we demonstrate that particle size can be further tuned by varying the degree of polymerization of the cyclic core in addition to that of the petals. Additionally, we investigate the application of these materials for tumor-targeted drug delivery. We demonstrate that folate-targeted, doxorubicin-conjugated sunflower polymers undergo receptor-mediated uptake into cancer cells and pH-triggered drug release leading to cytotoxicity. These materials are attractive as drug carriers due to their discrete and small size, shielded drug cargo that can be triggered for release, and relative ease of synthesis. PMID:26605422

  5. Drug delivery with topically applied nanoparticles: science fiction or reality.

    PubMed

    Lademann, J; Richter, H; Meinke, M C; Lange-Asschenfeldt, B; Antoniou, C; Mak, W C; Renneberg, R; Sterry, W; Patzelt, A

    2013-01-01

    The efficacy of topically applied drugs is determined by their action mechanism and their potential capacity of passing the skin barrier. Nanoparticles are assumed to be efficient carrier systems for drug delivery through the skin barrier. For flexible nanoparticles like liposomes, this effect has been well demonstrated. The penetration properties of solid nanoparticles are currently under intensive investigation. The crucial advantage of nanoparticles over non-particulate substances is their capability to penetrate deeply into the hair follicles where they can be stored for several days. There is no evidence, yet, that solid particles ≥40 nm are capable of passing through the healthy skin barrier. Therefore and in spite of the long-standing research efforts in this field, commercially available solid nanoparticle-based products for drug delivery through the healthy skin are still missing. Nevertheless, the prospects for the clinical use of nanoparticles in drug delivery are tremendous. They can be designed as transport systems delivering drugs efficiently into the hair follicles in the vicinity of specific target structures. Once deposited at these structures, specific signals might trigger the release of the drugs and exert their effects on the target cells. In this article, examples of such triggered drug release are presented. PMID:23921109

  6. Novel targeted bladder drug-delivery systems: a review

    PubMed Central

    Zacchè, Martino Maria; Srikrishna, Sushma; Cardozo, Linda

    2015-01-01

    The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. PMID:26649286

  7. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles. PMID:26271592

  8. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery

    PubMed Central

    Pan, Dipanjan; Pham, Christine TN; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a ‘magic bullet’ to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a ‘Grail Quest’ by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made ‘made the turn’ toward meaningful translational success. PMID:26296541

  9. Phospholipids and lipid-based formulations in oral drug delivery.

    PubMed

    Fricker, Gert; Kromp, Torsten; Wendel, Armin; Blume, Alfred; Zirkel, Jürgen; Rebmann, Herbert; Setzer, Constanze; Quinkert, Ralf-Olaf; Martin, Frank; Müller-Goymann, Christel

    2010-08-01

    Phospholipids become increasingly important as formulation excipients and as active ingredients per se. The present article summarizes particular features of commonly used phospholipids and their application spectrum within oral drug formulation and elucidates current strategies to improve bioavailability and disposition of orally administered drugs. Advantages of phospholipids formulations not only comprise enhanced bioavailability of drugs with low aqueous solubility or low membrane penetration potential, but also improvement or alteration of uptake and release of drugs, protection of sensitive active agents from degradation in the gastrointestinal tract, reduction of gastrointestinal side effects of non-steroidal anti-inflammatory drugs and even masking of bitter taste of orally applied drugs. Technological strategies to achieve these effects are highly diverse and offer various possibilities of liquid, semi-liquid and solid lipid-based formulations for drug delivery optimization. PMID:20411409

  10. 1st meeting on topical drug delivery to the nail.

    PubMed

    Murdan, Sudaxshina

    2007-07-01

    The first ever symposium dedicated solely to drug delivery to the nail following topical application was held on the 2nd April 2007, in London, UK, organised by Dr Clive Roper (Charles River Laboratories, Scotland) and Dr Sudaxshina Murdan (School of Pharmacy, University of London, UK), under the auspices of Skin Forum. The 1-day meeting was attended by approximately 35 delegates from industry, academia and hospitals, and provided a much-needed forum for the presentation and discussion of research and problems in this emerging field. Topical drug delivery is especially suitable for onychomycosis (fungal infections of the nail plate and/or nail bed) and nail psoriasis, which affect 2 - 13 and 1 - 3% of the general population, respectively, and make up the bulk of nail disorders. Topical therapy would avoid the adverse events and drug interactions of systemic antifungal agents and the pain of injection when antipsoriatic agents are injected into affected nail folds. However, successful topical therapy is extremely challenging due to the very low permeability of the nail plate. Five speakers spoke about various aspects of topical drug delivery to the nail, including review of the nail plate structure, function, diseases, their existing therapies (systemic and topical), limitations and global sales. The need for effective topical drug delivery to the nail to overcome the problems associated with present treatment, and the fact that there are few topical formulations available for the treatment of nail fungal infections and psoriasis, and the even fewer effective formulations, was highlighted. PMID:17683257

  11. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    PubMed Central

    Rodrigues, Susana; Dionísio, Marita; Remuñán López, Carmen; Grenha, Ana

    2012-01-01

    Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures. PMID:24955636

  12. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    PubMed Central

    Lohani, Alka; Singh, Garima; Bhattacharya, Shiv Sankar; Verma, Anurag

    2014-01-01

    Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs. PMID:24949205

  13. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    PubMed Central

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  14. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery

    PubMed Central

    Peetla, Chiranjeevi; Stine, Andrew; Labhasetwar, Vinod

    2009-01-01

    The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery. PMID:19432455

  15. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-01-01

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites. PMID:26556723

  16. Effective use of transdermal drug delivery in children.

    PubMed

    Delgado-Charro, M Begoña; Guy, Richard H

    2014-06-01

    Transdermal administration offers a non-invasive and convenient method for paediatric drug delivery. The competent skin barrier function in term infants and older children limits both water loss and the percutaneous entry of chemicals including drugs; but the smaller doses required by children eases the attainment of therapeutic concentrations. Transdermal patches used in paediatrics include fentanyl, buprenorphine, clonidine, scopolamine, methylphenidate, oestrogens, nicotine and tulobuterol. Some patches have paediatric labelling supported by clinical trials whereas others are used unlicensed. Innovative drug delivery methods, such as microneedles and sonophoresis are being tested for their safety and efficacy; needleless injectors are primarily used to administer growth hormone; and two iontophoretic devices were approved for paediatrics. In contrast, the immature and rapidly evolving skin barrier function in premature neonates represents a significant formulation challenge. Unfortunately, this population group suffers from an absence of approved transdermal formulations, a shortcoming exacerbated by the significant risk of excessive drug exposure via the incompletely formed skin barrier. PMID:24333231

  17. Advances in topical drug delivery system: micro to nanofibrous structures.

    PubMed

    Joshi, Mangala; Butola, B S; Saha, Kasturi

    2014-01-01

    This paper is a review of the latest developments in the field of topical drug delivery via which the drug is directly applied onto the skin with high selectivity and efficiency. Advances in microfiber-based medical textiles such as sutures and wound dressings, especially those containing a drug or an antimicrobial agent, have been covered briefly. A special focus is on recent developments in the area of nanofibrous drug delivery systems, which have several advantages due to their large surface area to volume ratio, high porosity and flexibility. The electrospinning technique to produce nanofibers has also been discussed with reference to latest advances such as multiple needles, needleless and coaxial forms of electrospinning. The applications of nanofibers in different areas such as wound dressing, periodontal and anticancer treatment have also been discussed. PMID:24730303

  18. Hybrid microparticles for drug delivery and magnetic resonance imaging.

    PubMed

    Serrano-Ruiz, David; Laurenti, Marco; Ruiz-Cabello, Jesús; López-Cabarcos, Enrique; Rubio-Retama, Jorge

    2013-05-01

    In this work, we report the synthesis, characterization, and possible application as drug-delivery system magnetically triggered, of hybrid microparticles formed by magnetic nanoparticles embedded within poly(?-caprolactone). The magnetism of the microparticles permits their localization within the body using magnetic resonance imaging, and the biodegradable polymer layer allows entrapping drugs that can be released when temperature increases. The synthesis of the hybrid material was performed using "grafting from" technique of conveniently modified magnetic nanoparticles. Subsequently, the resulting hybrid nanoparticles were assembled into spherical particles of 138 ± 49 nm via precipitation technique. The produced hybrid material was evaluated as stimuli-responsive drug delivery system in which the release of the drug was triggered by magnetic induction. Furthermore, the microparticles were injected in rats and their localization within the animal was monitored using the local field inhomogeneities generated by the particles. PMID:22915497

  19. Combination Drug Delivery Approaches in Metastatic Breast Cancer

    PubMed Central

    Lee, Jun H.; Nan, Anjan

    2012-01-01

    Disseminated metastatic breast cancer needs aggressive treatment due to its reduced response to anticancer treatment and hence low survival and quality of life. Although in theory a combination drug therapy has advantages over single-agent therapy, no appreciable survival enhancement is generally reported whereas increased toxicity is frequently seen in combination treatment especially in chemotherapy. Currently used combination treatments in metastatic breast cancer will be discussed with their challenges leading to the introduction of novel combination anticancer drug delivery systems that aim to overcome these challenges. Widely studied drug delivery systems such as liposomes, dendrimers, polymeric nanoparticles, and water-soluble polymers can concurrently carry multiple anticancer drugs in one platform. These carriers can provide improved target specificity achieved by passive and/or active targeting mechanisms. PMID:22619725

  20. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  1. HDL as a drug and nucleic acid delivery vehicle

    PubMed Central

    Lacko, Andras G.; Sabnis, Nirupama A.; Nagarajan, Bhavani; McConathy, Walter J.

    2015-01-01

    This review is intended to evaluate the research findings and potential clinical applications of drug transport systems, developed based on the concepts of the structure/function and physiological role(s) of high density lipoprotein type nanoparticles. These macromolecules provide targeted transport of cholesteryl esters (a highly lipophilic payload) in their natural/physiological environment. The ability to accommodate highly water insoluble constituents in their core regions enables High density lipoproteins (HDL) type nanoparticles to effectively transport hydrophobic drugs subsequent to systemic administration. Even though the application of reconstituted HDL in the treatment of a number of diseases is reviewed, the primary focus is on the application of HDL type drug delivery agents in cancer chemotherapy. The use of both native and synthetic HDL as drug delivery agents is compared to evaluate their respective potentials for commercial and clinical development. The current status and future perspectives for HDL type nanoparticles are discussed, including current obstacles and future applications in therapeutics. PMID:26578957

  2. Trojan-Horse Nanotube On-Command Intracellular Drug Delivery

    PubMed Central

    Wu, Chia-Hsuan; Cao, Cong; Kim, Jin Ho; Hsu, Chih-Hsun; Wanebo, Harold J.; Bowen, Wayne D.; Xu, Jimmy; Marshall, John

    2014-01-01

    A major challenge to nanomaterial-based medicine is the ability to release drugs on-command. Here, we describe an innovative drug delivery system based on carbon nanotubes (CNTs), in which compounds can be released inside cells from within the nanotube “on-command” by inductive heating with an external alternating current or pulsed magnetic field. Without inductive heating the drug remains safely inside the CNTs, showing no toxicity in cell viability tests. Similar to the “Trojan-Horse” in function, we demonstrate the delivery of a combination of chemotherapeutic agents with low aqueous solubility, paclitaxel (Taxol), and C6-ceramide, to multidrug resistant pancreatic cancer cells. Nanotube encapsulation permitted the drugs to be used at a 100-fold lower concentration compared to exogenous treatment yet achieve a comparable ?70% cancer kill rate. PMID:23030797

  3. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  4. "Nanotheranostics" for tumor imaging and targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Zou, Peng

    The magnetic resonance imaging (MRI) technique is a promising tool that improves cancer detection, facilitates diagnosis and monitors therapeutic effects. Superparamagnetic iron oxide nanoparticles (SPIOs) have emerged as MRI contrast agents for tumor imaging and as potential vectors for targeted anti-cancer drug delivery; nevertheless, the application of SPIOs has been hampered due to a lack of specificity to tumor tissues and premature drug release. This project aims at developing multifunctional SPIOs for both cancer imaging and targeted drug delivery via conjugation of tumor specific antibodies with SPIOs. The application of anti-TAG-72 antibodies as tumor targeting modalities was evaluated in cultured colorectal cancer cells and in xenograft models by using fluorescent imaging and positron emission tomography (PET) imaging. It was demonstrated that antibody-labeled SPIOs were superior imaging agents and drug carriers for increased tumor specificity. The regulation and kinetics of intracellular drug release from SPIOs were explored by means of fluorescence imaging. In vitro and in vivo fluorescence resonance energy transfer (FRET) imaging was employed to investigate the mechanisms of premature drug release from nanocarriers. The large volume and high hydrophobicity of cell membranes were found to play an important role in premature drug release. The encapsulation of SPIOs into nanocarriers decreased drug release in a dose-dependent mode. This study provided future opportunities to improve the efficiency of nanocarriers by exploring the mechanism of drug release and disassembly of SPIO-loaded polymeric nanoparticles.

  5. Ultrasound-triggered drug delivery using acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Fabiilli, Mario Leonardo

    The goal of targeted drug delivery is the spatial and temporal localization of a therapeutic agent and its associated bioeffects. One method of drug localization is acoustic droplet vaporization (ADV), whereby drug-laden perfluorocarbon (PFC) emulsions are vaporized into gas bubbles using ultrasound, thereby releasing drug locally. Transpulmonary droplets are converted into bubbles that occlude capillaries, sequestering the released drug within an organ or tumor. This research investigates the relationship between the ADV and inertial cavitation (IC) thresholds---relevant for drug delivery due to the bioffects generated by IC---and explores the delivery of lipophilic and hydrophilic compounds using PFC double emulsions. IC can positively and negatively affect ultrasound mediated drug delivery. The ADV and IC thresholds were determined for various bulk fluid, droplet, and acoustic parameters. At 3.5 MHz, the ADV threshold occurred at a lower rarefactional pressure than the IC threshold. The results suggest that ADV is a distinct phenomenon from IC, the ADV nucleus is internal to the droplet, and the IC nucleus is the bubble generated by ADV. The ADV triggered release of a lipophilic chemotherapeutic agent, chlorambucil (CHL), from a PFC-in-oil-in-water emulsion was explored using plated cells. Cells exposed to a CHL-loaded emulsion, without ADV, displayed 44% less growth inhibition than cells exposed to an equal concentration of CHL in solution. Upon ADV of the CHL-loaded emulsion, the growth inhibition increased to the same level as cells exposed to CHL in solution. A triblock copolymer was synthesized which enabled the formulation of stable water-in-PFC-in-water (W1/PFC/W2) emulsions. The encapsulation of fluorescein in the W1 phase significantly decreased the mass flux of fluorescein; ADV was shown to completely release the fluorescein from the emulsions. ADV was also shown to release thrombin, dissolved in the W1 phase, which could be used in vivo to extend synergistically the duration of ADV-generated, microbubble-based embolizations. Overall, the results suggest that PFC double emulsions can be used as an ultrasound-triggered drug delivery system. Compared to traditional drug delivery systems, ADV could be used to increase the therapeutic efficacy and decrease the systemic toxicity of drug therapy.

  6. System-based approach for an advanced drug delivery platform

    NASA Astrophysics Data System (ADS)

    Kulinsky, Lawrence; Xu, Han; Tsai, Han-Kuan A.; Madou, Marc

    2006-03-01

    Present study is looking at the problem of integrating drug delivery microcapsule, a bio-sensor, and a control mechanism into a biomedical drug delivery system. A wide range of medical practices from cancer therapy to gastroenterological treatments can benefit from such novel bio-system. Drug release in our drug delivery system is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs. The valves are bi-layer structures, made in the shape of a flap hinged on one side to a valve seat, and consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). These thin PPy(DBS) bi-layer flaps cover access holes of underlying chambers micromachined in a silicon substrate. Chromium and polyimide layers are applied to implement "differential adhesion" to obtain a voltage induced deflection of the bilayer away from the drug reservoir. The Cr is an adhesion-promoting layer, which is used to strongly bind the gold layer down to the substrate, whereas the gold adheres weakly to polyimide. Drug actives (dry or wet) were pre-stored in the chambers and their release is achieved upon the application of a small bias (~ 1V). Negative voltage causes cation adsorption and volume change in PPy film. This translates into the bending of the PPy/Au bi-layer actuator and release of the drug from reservoirs. This design of the drug delivery module is miniaturized to the dimensions of 200?m valve diameter. Galvanostatic and potentiostatic PPy deposition methods were compared, and potentiostatic deposition method yields film of more uniform thickness. PPy deposition experiments with various pyrrole and NaDBS concentrations were also performed. Glucose biosensor based on glucose oxidase (GOx) embedded in the PPy matrix during elechtrochemical deposition was manufactured and successfully tested. Multiple-drug pulsatile release and continuous linear release patterns can be implemented by controlling the operation of an array of valves. Varying amounts of drugs, together with more complex controlling strategies would allow creation of more complex drug delivery patterns.

  7. Modeling of transdermal drug delivery with a microneedle array

    NASA Astrophysics Data System (ADS)

    Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.

    2006-11-01

    Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.

  8. In vivo Evaluation of Self Emulsifying Drug Delivery System for Oral Delivery of Nevirapine

    PubMed Central

    Chudasama, A. S.; Patel, V. V.; Nivsarkar, M.; Vasu, Kamala K.; Shishoo, C. J.

    2014-01-01

    Nevirapine is a highly lipophilic and water insoluble non-nucleoside reverse transcriptase inhibitor used for the treatment of HIV-1 infection. Lymphoid tissue constitutes the major reservoir of HIV virus and infected cells in HIV-infected patients. Self-emulsifying drug delivery system, using long chain triglycerides, is a popular carrier of drugs due to their ability to transport lipophilic drugs into the lymphatic circulation. However, HIV/AIDS patients experience a variety of functional and anatomical abnormalities in gastrointestinal tract that result in diarrhoea and nutrient malabsorption. Medium chain triglycerides are readily absorbed from the small bowel under conditions in which the absorption of long chain triglycerides is impaired. Therefore, nevirapine self-emulsifying drug delivery system containing medium chain fatty acid, caprylic acid and a solubilizer, Soluphor® P (2-pyrrolidone) was developed and found to be superior to the marketed conventional suspension with respect to in vitro diffusion and ex vivo intestinal permeability. This self-emulsifying drug delivery system has now been further investigated for in vivo absorption in an animal model. The contribution of caprylic acid and Soluphor® P on in vivo absorption of nevirapine was also studied in the present study. The bioavailability of nevirapine from self-emulsifying drug delivery system, after oral administration, was 2.69 times higher than that of the marketed suspension. The improved bioavailability could be due to absorption of nevirapine via both portal and intestinal lymphatic routes. The study indicates that medium chain or structured triglycerides can be a better option to develop self-emulsifying drug delivery system for lipophilic and extensively metabolised drugs like nevirapine for patients with AIDS-associated malabsorption. PMID:25035533

  9. [Research progress of the drug delivery system of antitumor platinum drugs with macrocyclic compounds].

    PubMed

    Gao, Chuan-zhu; Zhang, Yan; Chen, Ji; Fei, Fan; Wang, Tian-shuai; Yang, Bo; Dong, Peng; Zhang, Ying-jie

    2015-06-01

    Platinum-based anticancer drugs have been becoming one of the most effective drugs for clinical treatment of malignant tumors for its unique mechanism of action and broad range of anticancer spectrum. But, there are still several problems such as side effects, drug resistance/cross resistance and no-specific targeting, becoming obstacles to restrict its expanding of clinical application. In recent years, supramolecular chemistry drug delivery systems have been gradually concerned for their favorable safety and low toxicity. Supramolecular macrocycles-platinum complexes increased the water solubility, stability and safety of traditional platinum drugs, and have become hot focus of developing novel platinum-based anticancer drugs because of its potential targeting of tumor tissues/organs. This article concentrates in the research progress of the new drug delivery system between platinum-based anticancer drugs with three generations of macrocycles: crown ether, cyclodextrin, cucurbituril and calixarene. PMID:26521433

  10. Drug delivery to the inner ear

    NASA Astrophysics Data System (ADS)

    Wise, Andrew K.; Gillespie, Lisa N.

    2012-12-01

    Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic.

  11. Optimization of Drug Delivery by Drug-Eluting Stents.

    PubMed

    Bozsak, Franz; Gonzalez-Rodriguez, David; Sternberger, Zachary; Belitz, Paul; Bewley, Thomas; Chomaz, Jean-Marc; Barakat, Abdul I

    2015-01-01

    Drug-eluting stents (DES), which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours) or very slowly (over periods of several months up to one year) at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices. PMID:26083626

  12. Optimization of Drug Delivery by Drug-Eluting Stents

    PubMed Central

    Bozsak, Franz; Gonzalez-Rodriguez, David; Sternberger, Zachary; Belitz, Paul; Bewley, Thomas; Chomaz, Jean-Marc; Barakat, Abdul I.

    2015-01-01

    Drug-eluting stents (DES), which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours) or very slowly (over periods of several months up to one year) at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices. PMID:26083626

  13. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  14. Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery.

    PubMed

    Rapoport, Natalya

    2016-01-01

    The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome. PMID:26486341

  15. Buccal drug delivery of pravastatin sodium.

    PubMed

    Shidhaye, Supriya S; Thakkar, Pritesh V; Dand, Neha M; Kadam, Vilasrao J

    2010-03-01

    The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal tablets of pravastatin sodium using carrageenan gum as the base matrix. The tablets were prepared by direct compression method. Polyvinyl pyrrolidone (PVP) K 30, Pluronic(R) F 127, and magnesium oxide were used to improve tablet properties. Magnesium stearate, talc, and lactose were used to aid the compression of tablets. The tablets were found to have good appearance, uniform thickness, diameter, weight, pH, and drug content. A 2(3) full factorial design was employed to study the effect of independent variables viz. levels of carrageenan gum, Pluronic F 127 and PVP K30, which significantly influenced characteristics like in vitro mucoadhesive strength, in vitro drug release, swelling index, and in vitro residence time. The tablet was coated with an impermeable backing layer of ethyl cellulose to ensure unidirectional drug release. Different penetration enhancers were tried to improve the permeation of pravastatin sodium through buccal mucosa. Formulation containing 1% sodium lauryl sulfate showed good permeation of pravastatin sodium through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for the administration of pravastatin sodium. PMID:20300898

  16. Therapeutic applications of hydrogels in oral drug delivery

    PubMed Central

    Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A

    2015-01-01

    Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309

  17. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier.

    PubMed

    Hersh, David S; Wadajkar, Aniket S; Roberts, Nathan B; Perez, Jimena G; Connolly, Nina P; Frenkel, Victor; Winkles, Jeffrey A; Woodworth, Graeme F; Kim, Anthony J

    2016-01-01

    The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS. PMID:26685681

  18. Mucoadhesive microspheres: a promising tool in drug delivery.

    PubMed

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described. PMID:18855602

  19. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier.

    PubMed

    Pooja, Deep; Panyaram, Sravani; Kulhari, Hitesh; Reddy, Bharathi; Rachamalla, Shyam S; Sistla, Ramakrishna

    2015-09-01

    Biocompatibility is one of the major concerns with inorganic nanoparticles for their applications as drug delivery system. Natural compounds such as sugars, hydrocolloids and plant extracts have shown potential for the green synthesis of biocompatible gold nanoparticles. In this study, we report the synthesis of gum karaya (GK) stabilized gold nanoparticles (GKNP) and the application of prepared nanoparticles in the delivery of anticancer drugs. GKNP were characterized using different analytical techniques. GKNP exhibited high biocompatibility during cell survival study against CHO normal ovary cells and A549 human non-small cell lung cancer cells and during hemolytic toxicity studies. Gemcitabine hydrochloride (GEM), an anticancer drug, was loaded on the surface of nanoparticles with 19.2% drug loading efficiency. GEM loaded nanoparticles (GEM-GNP) showed better inhibition of growth of cancer cells in anti-proliferation and clonogenic assays than native GEM. This effect was correlated with higher reactive oxygen species generation by GEM-GNP in A549 cells than native GEM. In summary, GK has significant potential in the synthesis of biocompatible gold nanoparticles that could be used as prospective drug delivery carrier for anticancer drugs. PMID:26093321

  20. Novel strategies for effective transdermal drug delivery: a review.

    PubMed

    Jain, Ankita; Jain, Priyanka; Kurmi, Jaya; Jain, Darshana; Jain, Roshni; Chandel, Silky; Sahu, Anamika; Mody, Nishi; Upadhaya, Satish; Jain, Aviral

    2014-01-01

    Skin is the largest and easily accessible organ of the body and therefore can be extensively used as a prominent route of delivery for local and systemic effects. Though it presents a multifunctional barrier between body and surrounding particles, there are chances to deliver therapeutic nanocarrier, particularly in diseased skin. Both for dermal and transdermal drug delivery, the horny layer, i.e., the uppermost layer of the skin serve as the most resistant layer to be crossed and for this purpose, different perforation techniques are used that relatively widen the skin opening and allow the passage of drug (? 10 mg) and micromolecules, but this amateur disruption of the skin can be avoided in order to preserve this barrier against cutaneous microbiota by using deformable nanocarriers. In this review, we discuss the nanosized aggregates and microneedle technology for the advanced delivery of vaccines, protein, peptides, nucleic acid, and hormone across the skin. PMID:24940749

  1. Drug Design, Development, and Delivery: An Interdisciplinary Course on Pharmaceuticals

    ERIC Educational Resources Information Center

    Prausnitz, Mark R.; Bommarius, Andreas S.

    2011-01-01

    We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…

  2. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications.

    PubMed

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  3. Drug Design, Development, and Delivery: An Interdisciplinary Course on Pharmaceuticals

    ERIC Educational Resources Information Center

    Prausnitz, Mark R.; Bommarius, Andreas S.

    2011-01-01

    We developed a new interdisciplinary course on pharmaceuticals to address needs of undergraduate and graduate students in chemical engineering and other departments. This course introduces drug design, development, and delivery in an integrated fashion that provides scientific depth in context with broader impacts in business, policy, and ethics.…

  4. Nanoparticle-based targeted drug delivery.

    PubMed

    Singh, Rajesh; Lillard, James W

    2009-06-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the "nanometer" size range. These nano-sized objects, e.g., "nanoparticles", take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad((c)) nanoparticle formulation that has shown efficacy in treating solid tumors, single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  5. Nanoparticle-based targeted drug delivery

    PubMed Central

    Singh, Rajesh; Lillard, James W.

    2009-01-01

    Nanotechnology could be defined as the technology that has allowed for the control, manipulation, study, and manufacture of structures and devices in the “nanometer” size range. These nano-sized objects, e.g., “nanoparticles”, take on novel properties and functions that differ markedly from those seen from items made of identical materials. The small size, customized surface, improved solubility, and multi-functionality of nanoparticles will continue to open many doors and create new biomedical applications. Indeed, the novel properties of nanoparticles offer the ability to interact with complex cellular functions in new ways. This rapidly growing field requires cross-disciplinary research and provides opportunities to design and develop multifunctional devices that can target, diagnose, and treat devastating diseases such as cancer. This article presents an overview of nanotechnology for the biologist and discusses the attributes of our novel XPclad© nanoparticle formulation that has shown efficacy in treating solid tumors, for single dose vaccination, and oral delivery of therapeutic proteins. PMID:19186176

  6. Substituted amylose matrices for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  7. Bioeliminable polymeric nanoparticles for proteic drug delivery.

    PubMed

    Chiellini, Federica; Bartoli, Cristina; Dinucci, Dinuccio; Piras, Anna Maria; Anderson, Robert; Croucher, Terry

    2007-10-01

    Bioeliminable co-polymers based on poly(methacryloylglycylglycine-OH(x)-co-hydroxypropylmethacrylamide(y)) were successfully converted into nanoparticles by using the co-precipitation technique. Human serum albumin (HSA) and a modified (beta-cyclodextrin were used, respectively, as model protein drug and stabilizer. Nanoparticles were characterized from a dimensional and morphological point of view by means of laser diffraction granulometry and scanning electron microscopy (SEM). The prepared nanoparticles displayed a monomodal diameter distribution in the range of 130 nm, confirmed by SEM micrographs. Protein loading efficiency and drug release kinetics investigations, carried out on bioeliminable nanoparticles loaded with fluoresceinated HSA (HSA-FITC), showed that protein loading is in the range of 60% with a typical time controlled release profile. In vitro cytotoxicity investigations of the polymer matrices and resulting nanoparticles were carried out by using different assays aimed at the evaluation of the interactions of the materials with cell metabolism and the cell membrane. On the whole, bioeliminable polymers and nanoparticles resulted in high cytocompatibility thus suggesting their suitability for biomedical applications. PMID:17580105

  8. Bioeliminable polymeric nanoparticles for proteic drug delivery.

    TOXLINE Toxicology Bibliographic Information

    Chiellini F; Bartoli C; Dinucci D; Piras AM; Anderson R; Croucher T

    2007-10-01

    Bioeliminable co-polymers based on poly(methacryloylglycylglycine-OH(x)-co-hydroxypropylmethacrylamide(y)) were successfully converted into nanoparticles by using the co-precipitation technique. Human serum albumin (HSA) and a modified (beta-cyclodextrin were used, respectively, as model protein drug and stabilizer. Nanoparticles were characterized from a dimensional and morphological point of view by means of laser diffraction granulometry and scanning electron microscopy (SEM). The prepared nanoparticles displayed a monomodal diameter distribution in the range of 130 nm, confirmed by SEM micrographs. Protein loading efficiency and drug release kinetics investigations, carried out on bioeliminable nanoparticles loaded with fluoresceinated HSA (HSA-FITC), showed that protein loading is in the range of 60% with a typical time controlled release profile. In vitro cytotoxicity investigations of the polymer matrices and resulting nanoparticles were carried out by using different assays aimed at the evaluation of the interactions of the materials with cell metabolism and the cell membrane. On the whole, bioeliminable polymers and nanoparticles resulted in high cytocompatibility thus suggesting their suitability for biomedical applications.

  9. A laser based reusable microjet injector for transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Han, Tae-hee; Yoh, Jack J.

    2010-05-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of microscale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 ?m and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  10. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  11. Particles from preformed polymers as carriers for drug delivery

    PubMed Central

    Miladi, K.; Ibraheem, D.; Iqbal, M.; Sfar, S.; Fessi, H.; Elaissari, A.

    2014-01-01

    Biodegradable and biocompatible polymers are widely used for the encapsulation of drug molecules. Various particulate carriers with different sizes and characteristics have been prepared by miscellaneous techniques. In this review, we reported the commonly used preformed polymer based techniques for the preparation of micro and nano-structured materials intended for drug encapsulation. A description of polymer-solvent interaction was provided. The most widely used polymers were reported and described and their related research studies were mentioned. Moreover, principles of each technique and its crucial operating conditions were described and discussed. Recent applications of all the reported techniques in drug delivery were also reviewed. PMID:26417241

  12. Chemical delivery systems and soft drugs: Retrometabolic approaches of drug design.

    PubMed

    Bhardwaj, Yashumati Ratan; Pareek, Ashutosh; Jain, Vivek; Kishore, Dharma

    2014-09-01

    Inclusion of metabolic considerations in the drug design process leads to significant development in the field of chemical drug targeting and the design of safer drugs during past few years which is a part of an approach now designated as Retro metabolic drug design (RMDD). This approach represents systematic methodologies that integrate structure-activity and structure-metabolism relationships and are aimed to design safe, locally active compounds with an improved therapeutic index. It embraces two distinct methods, chemical delivery systems and a soft drug approach. Present review recapitulates an impression of RMDD giving reflections on the chemical delivery system and the soft drug approach and provides a variety of examples to embody its concepts. Successful application of such design principles has already been applied to a number of marketed drugs like esmolol; loteprednol etc., and many other candidates like beta blockers, ACE inhibitors, alkylating agents, antimicrobials etc., are also under investigation. PMID:25161372

  13. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    PubMed Central

    Paranjpe, Mukta; Müller-Goymann, Christel C.

    2014-01-01

    Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API) forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed. PMID:24717409

  14. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    PubMed

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed. PMID:23313176

  15. Providing sustained transgene induction through affinity-based drug delivery.

    PubMed

    Rivera-Delgado, Edgardo; Ward, Emily; von Recum, Horst A

    2016-05-01

    Small molecule drug activators of gene expression have been used in applications ranging from gene therapy, to tissue engineering and regenerative medicine. One concern is that for sustained gene expression, a long-term, controlled delivery system is needed. Insoluble polymers containing a high proportion of cyclodextrin (CD) affinity groups have been shown to prolong drug delivery far beyond that capable of polymers relying on diffusion alone. In this study we evaluate the capacity of such polymers to deliver the transgene inducer doxycycline. Our results show that initial drug loading is proportional to affinity, with ∼8% loading in high-affinity γ-CD polymers; ∼7% loading in moderate-affinity β-CD polymers; and only ∼4.5% loading in the non-affinity control polymer made from linear dextran. When release aliquots from these polymers were incubated with cells genetically modified for inducible transgene expression we observed activation of transgene expression for up to three weeks from samples released by affinity-based polymers. We showed that drug stability is maintained over the course of the study using a bacterial zone of inhibition assay where again affinity-based polymers show sustained availability of drug, weeks longer than non-affinity controls. Lastly we provide theoretical calculations of strength of binding interactions between cyclodextrins and many additional transgene inducers demonstrating the broad utility of this delivery platform. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1135-1142, 2016. PMID:26749453

  16. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  17. Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery

    PubMed Central

    Barve, Ashutosh; Jin, Wei; Cheng, Kun

    2014-01-01

    Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184

  18. Imaging Drug Delivery to Skin with Stimulated Raman Scattering Microscopy

    PubMed Central

    Saar, Brian G.; Contreras-Rojas, L. Rodrigo; Xie, X. Sunney; Guy, Richard H.

    2011-01-01

    Efficient drug delivery to the skin is essential for the treatment of major dermatologic diseases, such as eczema, psoriasis and acne. However, many compounds penetrate the skin barrier poorly and require optimized formulations to ensure their bioavailability. Here, stimulated Raman scattering (SRS) microscopy, a recently-developed, label-free chemical imaging tool, is used to acquire high resolution images of multiple chemical components of a topical formulation as it penetrates into mammalian skin. This technique uniquely provides label-free, non-destructive, three-dimensional images with high spatiotemporal resolution. It reveals novel features of (trans)dermal drug delivery in the tissue environment: different rates of drug penetration via hair follicles as compared to the intercellular pathway across the stratum corneum are directly observed, and the precipitation of drug crystals on the skin surface is visualized after the percutaneous penetration of the co-solvent excipient in the formulation. The high speed three-dimensional imaging capability of SRS thus reveals features that cannot be seen with other techniques, providing both kinetic information and mechanistic insight into the (trans)dermal drug delivery process. PMID:21548600

  19. pH-responsive Nanoparticles for Drug Delivery

    PubMed Central

    Gao, Weiwei; Chan, Juliana; Farokhzad, Omid C.

    2010-01-01

    First-generation nanoparticles (NPs) have been clinically translated as pharmaceutical drug delivery carriers for their ability to improve on drug tolerability, circulation half-life, and efficacy. Towards the development of the next-generation NPs, researchers have designed novel multifunctional platforms for sustained release, molecular targeting, and environmental responsiveness. This review focuses on environmentally-responsive mechanisms used in NP designs, and highlights the use of pH-responsive NPs in drug delivery. Different organs, tissues, and subcellular compartments – as well as their pathophysiological states – can be characterized by their pH levels and gradients. When exposed to these pH stimuli, pH-responsive NPs respond with physicochemical changes to their material structure and surface characteristics. These include swelling, dissociating or surface charge switching, in a manner that favors drug release at the target site over surrounding tissues. The novel developments described here may revise the classical outlook that NPs are passive delivery vehicles, in favor of responsive, sensing vehicles that use environmental cues to achieve maximal drug potency. PMID:20836539

  20. Nanoparticle-mediated pulmonary drug delivery: a review.

    PubMed

    Paranjpe, Mukta; Müller-Goymann, Christel C

    2014-01-01

    Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API) forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed. PMID:24717409

  1. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    SciTech Connect

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  2. Opinion: Assessing the Barriers to Image Guided Drug Delivery

    PubMed Central

    Lanza, Gregory M.; Moonen, Chrit; Baker, James R.; Chang, Esther; Cheng, Zheng; Grodzinski, Piotr; Ferrara, Katherine; Hynynen, Kullervo; Kelloff, Gary; Koo Lee, Yong-Eun; Patri, Anil K; Sept, David; Schnitzer, Jan E.; Wood, Bradford J.; Zhang, Miqin; Zheng, Gang; Farahani, Keyvan

    2014-01-01

    Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called Image Guided Drug Delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk-stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed towards identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward. PMID:24339356

  3. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.

    PubMed

    Marchal, Sophie; El Hor, Amélie; Millard, Marie; Gillon, Véronique; Bezdetnaya, Lina

    2015-09-01

    The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted. PMID:26323338

  4. Bioreducible heparin-based nanogel drug delivery system.

    PubMed

    Wu, Wei; Yao, Wei; Wang, Xin; Xie, Chen; Zhang, Jialiang; Jiang, Xiqun

    2015-01-01

    Bioreducible heparin (HEP)-based nanogels were prepared by derivatizing HEP with vinyl group followed by copolymerizing with cystamine bisacrylamide in aqueous medium in the absence of surfactant. The hydrodynamic diameter of the HEP nanogels could be tuned in the range from 80 to 200 nm. Doxorubicin (DOX) was loaded into the HEP nanogels, and high drug loading content (30%) and efficiency (90%) were achieved. In vitro drug release test revealed that this drug delivery system exhibited strongly redox-sensitive drug release behavior that would greatly favor the in vivo drug delivery performance of the nanogels. After injected into tumor-bearing mice through tail vein, the DOX-loaded HEP nanogels showed remarkable accumulation in tumors as demonstrated by in vivo near infared fluorescence imaging and ex vivo DOX concentration measurements. The doxorubicin accumulation at tumor site goes beyond 9% injected dose per gram of tumor through such delivery system, making that DOX-loaded HEP nanogels have significantly superior in vivo antitumor activity. PMID:25468376

  5. Polymeric controlled drug-delivery systems: perspective issues and opportunities.

    PubMed

    Kumar, M N; Kumar, N

    2001-01-01

    Although, the drug-delivery system (DDS) concept is not new, great progress has been made recently in the treatment of a variety of diseases. Targeting delivery of drugs to the diseased lesions is one of the most important aspects of DDS. To convey a sufficient dose of drug to the lesion, suitable carriers of drugs are needed. Polymers, which swell and contract in response to external pH levels, are being explored. The research in this area is being carried out all over the world at a great pace. Not only that new developments are emerging in the existing technologies, but also various new technologies are being developed and tested. Consequently, a huge amount of new information is available, which should be compiled and presented in a comprehensive way to benefit large numbers of users in this area as well as to help active research workers in the field. The purpose of this review is to discuss some recent advances and future prospects in controlled drug-delivery technology. The article serves as a useful tool for the beginners as well as for the researchers actively involved in this fascinating area of applied polymer science. PMID:11247530

  6. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    PubMed Central

    Ita, Kevin

    2015-01-01

    Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use. PMID:26131647

  7. Applications of nanodiamonds in drug delivery and catalysis.

    PubMed

    Moosa, Basem; Fhayli, Karim; Li, Song; Julfakyan, Khatchatur; Ezzeddine, Alaa; Khashab, Niveen M

    2014-01-01

    The interest of researchers in utilizing nanomaterials as carriers for a wide spectrum of molecules has exploded in the last two decades. Nanodiamonds are one class of carbon-based nanomaterials that have emerged as promising drug delivery vehicles and imaging probes. Their ease of functionalization also led to the generation of stimuli-responsive nanodiamonds that deliver drugs on demand in a controlled manner. The ample surface area of NDs allowed for a higher loading of not only small molecules but also macromolecules like genes and proteins. Recently, the unique surface of NDs has attracted more attention as catalyst support in a huge range of organic modification and C-C bond formation reactions. Herein, recent advances in the utilization of nanodiamonds as a drug delivery vehicle and catalytical support are highlighted and summarized to illustrate the potential and versatility of this cheap and commercially available nanomaterial. PMID:24730266

  8. Porous silicon in drug delivery devices and materials?

    PubMed Central

    Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.

    2009-01-01

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154

  9. Microsponges: A novel strategy for drug delivery system

    PubMed Central

    Kaity, Santanu; Maiti, Sabyasachi; Ghosh, Ashoke Kumar; Pal, Dilipkumar; Ghosh, Animesh; Banerjee, Subham

    2010-01-01

    Microsponges are polymeric delivery systems composed of porous microspheres. They are tiny sponge-like spherical particles with a large porous surface. Moreover, they may enhance stability, reduce side effects and modify drug release favorably. Microsponge technology has many favorable characteristics, which make it a versatile drug delivery vehicle. Microsponge Systems are based on microscopic, polymer-based microspheres that can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as a gel, cream, liquid or powder. The outer surface is typically porous, allowing a sustained flow of substances out of the sphere. Microsponges are porous, polymeric microspheres that are used mostly for topical use and have recently been used for oral administration. Microsponges are designed to deliver a pharmaceutical active ingredient efficiently at the minimum dose and also to enhance stability, reduce side effects, and modify drug release. PMID:22247859

  10. Biolabile peptidyl delivery systems toward sequential drug release.

    PubMed

    Ragozin, Elena; Redko, Boris; Tuchinsky, Elena; Rozovsky, Alex; Albeck, Amnon; Grynszpan, Flavio; Gellerman, Gary

    2016-01-01

    Compact carriers for peptidyl delivery systems (PDSs) loaded with various drugs were synthesized using a simple and convenient solid phase organic synthesis strategy, including semi-orthogonal functional group protection schemes. Each attachment point of the compact carrier can thus be bound to an anticancer agent through a biodegradable covalent link. Chemo- and biostability experiments of a model peptidyl platform loaded with three different drugs revealed pH and liver homogenate (metabolic) dependent sequential release behavior. The versatility of this approach will serve to expedite the preparation of PDS libraries. This approach may prove useful for applications suitable for personalized medicine where multiple drug delivery is required in a sequential and controlled fashion. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 119-132, 2016. PMID:26662352

  11. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-03-24

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. PMID:26974603

  12. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    PubMed Central

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers. PMID:24746627

  13. Topical drug delivery to the eye: dorzolamide.

    PubMed

    Loftsson, Thorsteinn; Jansook, Phatsawee; Stefánsson, Einar

    2012-11-01

    Topically applied carbonic anhydrase inhibitors (CAIs) in eye drop solutions are commonly used to treat glaucoma. However, local eye irritation and multiple daily administrations may hamper their clinical usefulness. Aqueous eye drop formulations that improve their topical bioavailability and reduce their eye irritation can improve their clinical efficacy. Earlier studies showed that dorzolamide and closely related CAIs are more effectively delivered into the eye from acidic eye drop solutions than from comparable neutral solutions. Consequently, dorzolamide was marketed as an aqueous pH 5.6 eye drop solution (Trusopt(®) , Merck). Later, it was shown that increasing the pH of the eye drops from pH 5.6 to physiologic pH significantly reduced their local irritation. Earlier attempts to use cyclodextrins (CDs) as ocular penetration enhancers in dorzolamide eye drop solutions failed since; although the CDs were able to enhance the aqueous solubility of dorzolamide, increasing the pH from 5.6 to physiologic pH reduced the ability of the drug to permeate into the eye. Later, it was discovered that formulating the drug as aqueous dorzolamide/?CD eye drop microparticle suspension resulted in significant bioavailability enhancement. The solid dorzolamide/?CD microparticles are mucoadhesive and release dorzolamide into the aqueous tear fluid for extended time period. Consequently, sustained high dorzolamide concentrations in aqueous humour and various eye tissues were observed after single administration of the aqueous dorzolamide/?CD eye drop microsuspension. The microsuspension has a potential of being developed into a once-a-day eye drop product. This article reviews the physicochemical properties of dorzolamide, its permeation characteristics and topical bioavailability. PMID:22269010

  14. Smart drug delivery injector microsystem based on pyrotechnical actuation

    NASA Astrophysics Data System (ADS)

    Puig-Vidal, Manel; Lopez, Jaime; Miribel, Pere; Samitier-Marti, Josep; Rossi, Carole; Berthold, Axel

    2003-04-01

    A smart drug delivery injector microsystem is presented based on small pyrotechnics to impulse drugs to be injected to a human being. The proposal refers to a feasibility demonstration of the technology for pharmaceutical chips. These chips would be around some cm2 in section and will be able to inject a drug into de subject skin responding to an electrical signal. The product derived from this activity will be useful for astronaut's health, being able to administrate emergency doses of products (for instance cardio-tonic or hypoallegic drugs) enough to survive an emergency situation (as it can be a heart attack during EVA). The system can also be used for easy administration of drugs needed for physiological research. The usefulness of the device in terrestrial applications has no doubt, allowing remote administration of drugs to patients whose biomedical parameters are remotely monitored. The concept proposed here is new in combining the idea of pharmaceutical chip with the ultrasonic droplet technology and the use of pyrotechnics to provide energy to the drug to be injected. The proposed Drug Injector Microsystem is based on 2 main blocks:- Micropyrotechnic system: defines the ignition part based on pyrotechnic.- Microfluidic system: defines the drug injection part. This part is also divided in different critical parts: Expansion chamber, membrane or piston, drug reservoir and a needle. Different sensors are placed on the expansion chamber of microfluidic system and on the micropyrotechnic system. A complete electronic module is implemented with a PC interface to define flexible and user friendly experiences showing the smart drug delivery injector microsystem principle.

  15. Diffusion of Macromolecules in the Brain: Implications for Drug Delivery

    PubMed Central

    Wolak, Daniel J.; Thorne, Robert G.

    2013-01-01

    Therapeutics must diffuse through the brain extracellular space (ECS) in order to distribute within the central nervous system (CNS) compartment; this requirement holds both for drugs that are directly placed within the CNS (i.e. central input) and for drugs that cross the barriers separating blood and brain following systemic administration. The diffusion of any substance within the CNS may be affected by a number of properties associated with the brain microenvironment, e.g. the volume fraction, geometry, width, and local viscosity of the ECS, as well as interactions with cell surfaces, the extracellular matrix, and components of the interstitial fluid. Here, we discuss ECS properties important in governing the distribution of macromolecules (e.g. antibodies and other protein therapeutics), nanoparticles and viral vectors within the CNS. We also provide an introduction to some of the methods commonly applied to measure diffusion of molecules in the brain ECS, with a particular emphasis on those used for determining the diffusion properties of macromolecules. Finally, we discuss how quantitative diffusion measurements can be used to better understand and potentially even improve upon CNS drug delivery by modeling delivery within and across species, screening drugs and drug conjugates, evaluating methods for altering drug distribution, and appreciating important changes in drug distribution that may occur with CNS disease or injury. PMID:23298378

  16. Respirable nanocarriers as a promising strategy for antitubercular drug delivery.

    PubMed

    Mehanna, Mohammed M; Mohyeldin, Salma M; Elgindy, Nazik A

    2014-08-10

    Tuberculosis is considered a fatal respiratory infectious disease that represents a global threat, which must be faced. Despite the availability of oral conventional anti-tuberculosis therapy, the disease is characterized by high progression. The leading causes are poor patient compliance and failure to adhere to the drug regimen primarily due to systemic toxicity. In this context, inhalation therapy as a non-invasive route of administration is capable of increasing local drug concentrations in lung tissues, the primary infection side, by passive targeting as well as reducing the risk of systemic toxicity and hence improving the patient compliance. Nanotechnology represents a promising strategy in the development of inhaled drug delivery systems. Nanocarriers can improve the drug effectiveness and decrease the expected side effects as consequences of their ability to target the drug to the infected area as well as sustain its release in a prolonged manner. The current review summarizes the state-of-the-art in the development of inhaled nanotechnological carriers confined currently available anti-tuberculosis drugs (anti TB) for local and targeting drug delivery specifically, polymeric nanoparticles, solid lipid nanoparticles, nanoliposomes and nanomicelles. Moreover, complexes and ion pairs are also reported. The impact and progress of nanotechnology on the therapeutic effectiveness and patient adherence to anti TB regimen are addressed. PMID:24878180

  17. Oral drug delivery systems using chemical conjugates or physical complexes.

    PubMed

    Al-Hilal, Taslim A; Alam, Farzana; Byun, Youngro

    2013-06-15

    Oral delivery of therapeutics is extremely challenging. The digestive system is designed in a way that naturally allows the degradation of proteins or peptides into small molecules prior to absorption. For systemic absorption, the intact drug molecules must traverse the impending harsh gastrointestinal environment. Technologies, such as enteric coating, with oral dosage formulation strategies have successfully provided the protection of non-peptide based therapeutics against the harsh, acidic condition of the stomach. However, these technologies showed limited success on the protection of therapeutic proteins and peptides. Importantly, inherent permeability coefficient of the therapeutics is still a major problem that has remained unresolved for decades. Addressing this issue in the context, we summarize the strategies that are developed in enhancing the intestinal permeability of a drug molecule either by modifying the intestinal epithelium or by modifying the drug itself. These modifications have been pursued by using a group of molecules that can be conjugated to the drug molecule to alter the cell permeability of the drug or mixed with the drug molecule to alter the epithelial barrier function, in order to achieve the effective drug permeation. This article will address the current trends and future perspectives of the oral delivery strategies. PMID:23220326

  18. Thermosensitive liposomal drug delivery systems: state of the art review

    PubMed Central

    Kneidl, Barbara; Peller, Michael; Winter, Gerhard; Lindner, Lars H; Hossann, Martin

    2014-01-01

    Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine. PMID:25258529

  19. Tunable drug delivery using chemoselective functionalization of hydrogels.

    PubMed

    Mauri, Emanuele; Rossi, Filippo; Sacchetti, Alessandro

    2016-04-01

    In the last decades interests on cleavable linkers are growing due to the need to develop controlled drug delivery systems in biochemical and therapeutic applications. The synthesis of hydrogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy for this aim. However with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small molecules through hydrogel pores. In this work, we propose the functionalization of polyethylene glycol (PEG) chains with two different pH-sensitive linkers, ester and hydrazone, and their application as building blocks of microwave-assisted hydrogels for controlled delivery of small hydrophilic drugs. As drug mimetic we used Rhodamine B, a harmless fluorophore with steric hindrance and reactive groups similar to many small hydrophilic drugs. At physiological and low basic conditions, the cleavability of ester and hydrazone spacer evidenced the possibility to delay the release of drugs from the scaffold compared to hydrogels where drug was entrapped within the network only due to its steric hindrance. The obtained release profiles were compared, underlining the opportunity to tune the release rate using the synthesized hydrogels. PMID:26838916

  20. Efficient Hepatic Delivery of Drugs: Novel Strategies and Their Significance

    PubMed Central

    Yadav, Narayan Prasad; Jain, Sanyog; Arora, Sumit

    2013-01-01

    Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action. PMID:24286077

  1. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace. PMID:26354801

  2. Drug delivery to solid tumors by elastin-like polypeptides

    PubMed Central

    McDaniel, Jonathan R.; Callahan, Daniel J.; Chilkoti, Ashutosh

    2010-01-01

    Thermally responsive elastin-like polypeptides (ELPs) are a promising class of recombinant biopolymers for the delivery of drugs and imaging agents to solid tumors via systemic or local administration. This article reviews four applications of ELPs to drug delivery, with each delivery mechanism designed to best exploit the relationship between the characteristic transition temperature (Tt) of the ELP and body temperature (Tb). First, when Tt >> Tb, small hydrophobic drugs can be conjugated to the C-terminus of the ELP to impart the amphiphilicity needed to mediate the self-assembly of nanoparticles. These systemically delivered ELP-drug nanoparticles preferentially localize to the tumor site via the EPR effect, resulting in reduced toxicity and enhanced treatment efficacy. The remaining three approaches take direct advantage of the thermal responsiveness of ELPs. In the second strategy, where Tb < Tt < 42 °C, an ELP-drug conjugate can be injected in conjunction with external application of mild hyperthermia to the tumor to induce ELP coacervation and an increase in concentration within the tumor vasculature. The third approach utilizes hydrophilic-hydrophobic ELP block copolymers that have been designed to assemble into nanoparticles in response to hyperthermai due to the independent thermal transition of the hydrophobic block, thus resulting in multivalent ligand display of a ligand for spatially enhanced vascular targeting. In the final strategy, ELPs with Tt < Tb are conjugated with radiotherapeutics, injtect intioa tumor where they undergo coacervation to form an injectable drug depot for intratumoral delivery. These injectable coacervate ELP-radionuclide depots display a long residence in the tumor and result in inhibition of tumor growth. PMID:20546809

  3. Novel drug delivery strategies for porphyrins and porphyrin precursors

    NASA Astrophysics Data System (ADS)

    Morrow, D. I. J.; Donnelly, R. F.

    2009-06-01

    superficial lesions, such as actinic keratosis. In addition, photodynamic antimicrobial chemotherapy (PACT) is attracting increasing interest for the treatment of infection. However, delivery strategies for topical PDT and PACT are still based on application of rather simplistic cream and solution formulations, with little consideration given to thermodynamics, targeting or the physicochemical properties of the active agent. Purpose-designed dosage forms for topical delivery of aminolevulinic acid or its esters include creams containing penetration enhancers and/or iron chelators, pressure sensitive patches and bioadhesive patches. Such systems aim to enhance drug delivery across the stratum corneum and keratinised debris overlying neoplastic lesions and improve subsequent protoporphyrin IX (PpIX) production. The alternative to using porphyrin precursors is the use of pre-formed photosensitisers. However, owing to their relatively high molecular weights, conventional topical application is not appropriate. Innovative strategies, such as the use of needle-free injections and microneedle arrays, bypass the stratum corneum, enabling rapid and targeted delivery not only porphyrin precursors but also pre-formed photosensitisers. This presentation will review drug delivery work published to date in the fields of PDT and PACT. In addition, the benefits of employing the latest advances in pharmaceutical technology will be highlighted.

  4. Insight to drug delivery aspects for colorectal cancer.

    PubMed

    Gulbake, Arvind; Jain, Aviral; Jain, Ashish; Jain, Ankit; Jain, Sanjay K

    2016-01-14

    Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide in human beings. Surgery, chemotherapy, radiotherapy and targeted therapies are the conventional four approaches which are currently used for the treatment of CRC. The site specific delivery of chemotherapeutics to their site of action would increase effectiveness with reducing side effects. Targeted oral drug delivery systems based on polysaccharides are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific drug delivery to colon increases its concentration at the target site, and thus requires a lower dose and hence abridged side effects. Some novel therapies are also briefly discussed in article such as receptor (epidermal growth factor receptor, folate receptor, wheat germ agglutinin, VEGF receptor, hyaluronic acid receptor) based targeting therapy; colon targeted proapoptotic anticancer drug delivery system, gene therapy. Even though good treatment options are available for CRC, the ultimate therapeutic approach is to avert the incidence of CRC. It was also found that CRCs could be prevented by diet and nutrition such as calcium, vitamin D, curcumin, quercetin and fish oil supplements. Immunotherapy and vaccination are used nowadays which are showing better results against CRC. PMID:26811609

  5. Carrier-Based Drug Delivery System for Treatment of Acne

    PubMed Central

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  6. Carbon Nanotube Micro-Needles for Rapid Transdermal Drug Delivery

    NASA Astrophysics Data System (ADS)

    Lyon, Bradley; Aria, Adrianus Indrat; Gat, Amir; Cosse, Julia; Montemayor, Lauren; Beizaie, Masoud; Gharib, Morteza

    2012-11-01

    By catalyst patterning, bundles of vertically-aligned carbon nanotubes (CNT) can be assembled to create 2D arrays of hollow micro-needles with feature size as small as a few microns. For transdermal drug delivery, the most challenging mechanical requirement is to make the CNT micro-needle small enough so that delivery is painless yet large enough so that the micro-needle can achieve skin penetration. By taking advantage of capillary action and the nanoporosity of CNT bundles, we can wick high strength polymer into the inter-spacing between nanotubes to augment the stiffness of our micro-needles. For low viscous polymers, the large ratio between the micron sized center hole of the micro-needle and the nanopores of the surrounding CNT allow us to wick polymer through the nanotubes while maintaining an open central hole for drug transport. For a transdermal patch prototype with a delivery area less than 1cm x 1cm square, we can fabricate 50 CNT micro-needles that produces a total flow rate up to 100 uL/s with actuation pressure provided by a mere finger tap. From in vitro experiments, we will demonstrate that CNT micro-needles provide a much faster convective delivery of drugs than conventional topical diffusion based patches. We acknowledge Zcube s.r.l for their support of this work.

  7. Challenges and Opportunities in Drug Delivery for Wound Healing

    PubMed Central

    Whittam, Alexander J.; Maan, Zeshaan N.; Duscher, Dominik; Wong, Victor W.; Barrera, Janos A.; Januszyk, Michael; Gurtner, Geoffrey C.

    2016-01-01

    Significance: Chronic wounds remain a significant public health problem. Alterations in normal physiological processes caused by aging or diabetes lead to impaired tissue repair and the development of chronic and nonhealing wounds. Understanding the unique features of the wound environment will be required to develop new therapeutics that impact these disabling conditions. New drug-delivery systems (DDSs) may enhance current and future therapies for this challenging clinical problem. Recent Advances: Historically, physical barriers and biological degradation limited the efficacy of DDSs in wound healing. In aiming at improving and optimizing drug delivery, recent data suggest that combinations of delivery mechanisms, such as hydrogels, small molecules, RNA interference (RNAi), as well as growth factor and stem cell-based therapies (biologics), could offer exciting new opportunities for improving tissue repair. Critical Issues: The lack of effective therapeutic approaches to combat the significant disability associated with chronic wounds has become an area of increasing clinical concern. However, the unique challenges of the wound environment have limited the development of effective therapeutic options for clinical use. Future Directions: New platforms presented in this review may provide clinicians and scientists with an improved understanding of the alternatives for drug delivery in wound care, which may facilitate the development of new therapeutic approaches for patients. PMID:26862465

  8. Insight to drug delivery aspects for colorectal cancer

    PubMed Central

    Gulbake, Arvind; Jain, Aviral; Jain, Ashish; Jain, Ankit; Jain, Sanjay K

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide in human beings. Surgery, chemotherapy, radiotherapy and targeted therapies are the conventional four approaches which are currently used for the treatment of CRC. The site specific delivery of chemotherapeutics to their site of action would increase effectiveness with reducing side effects. Targeted oral drug delivery systems based on polysaccharides are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific drug delivery to colon increases its concentration at the target site, and thus requires a lower dose and hence abridged side effects. Some novel therapies are also briefly discussed in article such as receptor (epidermal growth factor receptor, folate receptor, wheat germ agglutinin, VEGF receptor, hyaluronic acid receptor) based targeting therapy; colon targeted proapoptotic anticancer drug delivery system, gene therapy. Even though good treatment options are available for CRC, the ultimate therapeutic approach is to avert the incidence of CRC. It was also found that CRCs could be prevented by diet and nutrition such as calcium, vitamin D, curcumin, quercetin and fish oil supplements. Immunotherapy and vaccination are used nowadays which are showing better results against CRC. PMID:26811609

  9. Exosome mimetics: a novel class of drug delivery systems

    PubMed Central

    Kooijmans, Sander AA; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics. PMID:22619510

  10. A critical appraisal of microemulsions for drug delivery: part II.

    PubMed

    Sapra, Bharti; Thatai, Purva; Bhandari, Sameer; Sood, Jatin; Jindal, Manish; Tiwary, Ashok K

    2014-01-01

    Microemulsions are thermodynamically stable, optically transparent isotropic solutions of oil and water successfully formulated by using a combination of suitable surfactant and cosurfactant. The solubilization power of microemulsions for lipophilic, hydrophilic and amphiphilic solutes form a viable approach for enhancing the bioavailability of hydrophobic drugs and percutaneous permeation of poorly permeable drugs, mainly due to the large area per volume ratio available for mass transfer. Microemulsions have emerged as novel vehicles for drug delivery due to their versatile applications. They allow sustained release for topical, oral, nasal, intravenous, ocular, parenteral and other administration routes of drugs. They also offer a relevant application platform for improving target specificity, therapeutic activity, and reducing toxicity of drugs. PMID:24341819

  11. Nanostructured porous Si-based nanoparticles for targeted drug delivery

    PubMed Central

    Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hélder A.

    2012-01-01

    One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO2) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO2 and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for “smart” cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

  12. Advanced Materials and Processing for Drug Delivery: The Past and the Future

    PubMed Central

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W.

    2012-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. PMID:23088863

  13. Synthetic Polymers as Drug-Delivery Vehicles in Medicine

    PubMed Central

    Neuse, Eberhard W.

    2008-01-01

    Cancerous diseases present a formidable health problem worldwide. While the chemotherapy of cancer, in conjunction with other treatment modalities, has reached a significant level of maturity, efficacious use of such agents is still restricted by numerous pharmacological deficiencies, such as poor water solubility, short serum circulation lifetimes, and low bioavailability resulting from lack of affinity to cancer tissue and inadequate mechanisms of cell entry. More critically still, most drugs suffer from toxic side effects and a risk of drug resistance. The class of platinum anticancer drugs, although outstandingly potent, is particularly notorious in that respect. Among the countless methods developed in recent years in an effort to overcome these deficiencies, the technology of polymer-drug conjugation stands out as a particularly advanced treatment modality. The strategy involves the bioreversible binding, conjugating, of a medicinal agent to a water-soluble macromolecular carrier. Following pharmacokinetic pathways distinctly different from those of the common, nonpolymeric drugs, the conjugate so obtained will act as a prodrug providing safe transport of the bioactive agent to and into the affected, that is, cancerous cell for its ultimate cell-killing activity. The present treatise will acquaint us with the pharmacological fundamentals of this drug delivery approach, applied here specifically to the metalorganic platinum-type drug systems and the organometallic ferrocene drug model. We will see just how this technology leads to conjugates distinctly superior in antiproliferative activity to cisplatin, a clinically used antitumor agent used here as a standard. Polymer-drug conjugation involving metal-based and other medicinal agents has unquestionably matured to a practical tool to the pharmaceutical scientist, and all indications point to an illustrious career for this nascent drug delivery approach in the fight against cancer and other human maladies. PMID:18497867

  14. Gelatin-based particulate systems in ocular drug delivery.

    PubMed

    Hathout, Rania M; Omran, Mohamed K

    2016-05-01

    Despite all scientists efforts exerted over the past years, the ocular delivery of drugs remains a great challenge due to several barriers and hurdles faced by this kind of administration. The exploitation of gelatin that has a long history of safe use in pharmaceuticals and which is considered as a GRAS (Generally Regarded As Safe) material by the FDA was not fully achieved in this field. This review summarizes the recent studies and findings where gelatin-based micro- and nanoparticles were used for successful ocular delivery aiming at drawing the attention of researchers and scientists to this valuable biomaterial that has not been fully explored. PMID:25567143

  15. Novel Drug Delivery System Shows Early Promise for Treating Lupus in Mice

    MedlinePLUS

    ... Lupus in Mice A drug delivery system using nanoparticle technology that allows for better targeting of specific ... be effectively programmed to seek specific cells. Although nanoparticle drug delivery systems have been used experimentally to ...

  16. Discovery of synergistic permeation enhancers for oral drug delivery.

    PubMed

    Whitehead, Kathryn; Karr, Natalie; Mitragotri, Samir

    2008-06-01

    Oral drug delivery offers an attractive method of needle-free drug administration. Unfortunately, oral delivery is often hampered by the poor permeability of drugs across the intestinal epithelium. Although several single chemical permeation enhancers have been shown to alleviate permeability difficulties, this often occurs at the expense of safety. This in vitro study demonstrates the use of binary and ternary combinations of permeation enhancers to create synergistic enhancer formulations (SEFs) that offer a high level of potency while inducing very little toxicity in Caco-2 cells. Although relatively rare in the explored formulation space, SEFs were abundant enough to significantly increase the repertoire of permeation enhancers that are safe and effective in vitro. The most promising enhancers from the binary study led to easily identifiable ternary SEFs, thus increasing the efficiency of the discovery process. Some of the best performers of the study included binary combinations of hexylamine and chembetaine and ternary combinations of sodium laureth sulfate, decyltrimethyl ammonium bromide, and chembetaine, all at a total concentration of 0.1% (w/v). Furthermore, several SEFs were shown to be capable of increasing mannitol and 70 kDa dextran permeability across Caco-2 monolayers 15- and 8-fold, respectively. These results encourage further exploration of several leading formulations for in vivo applications in oral drug delivery. PMID:18433909

  17. Microneedles array with biodegradable tips for transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  18. Crosslinked Multilamellar Liposomes for Controlled Delivery of Anticancer Drugs

    PubMed Central

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S.; Wong, Michael K.; Li, Zibo; Wang, Pin

    2014-01-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  19. PLGA nanoparticles in drug delivery: the state of the art.

    PubMed

    Bala, Indu; Hariharan, Sarita; Kumar, M N V Ravi

    2004-01-01

    Nanoparticles represent drug delivery systems suitable for most administration routes. Over the years, a variety of natural and synthetic polymers have been explored for the preparation of nanoparticles, of which Poly(lactic acid) (PLA), Poly(glycolic acid) (PGA), and their copolymers (PLGA) have been extensively investigated because of their biocompatibility and biodegradability. Nanoparticles act as potential carries for several classes of drugs such as anticancer agents, antihypertensive agents, immunomodulators, and hormones; and macromolecules such as nucleic acids, proteins, peptides, and antibodies. The options available for preparation have increased with advances in traditional methods, and many novel techniques for preparation of drug-loaded nanoparticles are being developed and refined. The various methods used for preparation of nanoparticles with their advantages and limitations have been discussed. The crux of the problem is the stability of nanoparticles after preparation, which is being addressed by freeze-drying using different classes of lyoprotectants. Nanoparticles can be designed for the site-specific delivery of drugs. The targeting capability of nanoparticles is influenced by particle size, surface charge, surface modification, and hydrophobicity. Finally, the performance of nanoparticles in vivo is influenced by morphological characteristics, surface chemistry, and molecular weight. Careful design of these delivery systems with respect to target and route of administration may solve some of the problems faced by new classes of active molecules. PMID:15719481

  20. Multi-access drug delivery network and stability

    PubMed Central

    Mitatha, S; Moongfangklang, N; Jalil, MA; Suwanpayak, N; Ali, J; Yupapin, PP

    2011-01-01

    A novel design of a multi-drug delivery network and diagnosis using a molecular network is proposed. By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required drug delivery targets can be achieved within the network. The advantage of the proposed system is that the diagnostic method can be used within a tiny system (thin film device or circuit), which is available as an embedded device for diagnostic use in patients. In practice, the large molecular networks such as ring, star, and bus networks can be integrated to form a large drug delivery system. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided by using the appropriate free spectrum range, which is analyzed and discussed in the terms of crosstalk effects. In this work, crosstalk effects of about 0.1% are noted, which can be neglected and does not affect the network stability. PMID:21980238

  1. Advances in drug delivery via electrospun and electrosprayed nanomaterials

    PubMed Central

    Zamani, Maedeh; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2013-01-01

    Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications. PMID:23976851

  2. Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery.

    PubMed

    Duffy, Connor V; David, Laurent; Crouzier, Thomas

    2015-07-01

    The sustained delivery of both hydrophobic and hydrophilic drugs from hydrogels has remained a challenge requiring the design and scalable production of complex multifunctional synthetic polymers. Here, we demonstrate that mucin glycoproteins, the gel-forming constituents of native mucus, are suitable for assembly into robust hydrogels capable of facilitating the sustained release of hydrophobic and hydrophilic drugs. Covalently-crosslinked mucin hydrogels were generated via exposure of methacrylated mucin to ultraviolet light in the presence of a free radical photoinitiator. The hydrogels exhibited an elastic modulus similar to that of soft mammalian tissue and were sensitive to proteolytic degradation by pronase. Paclitaxel, a hydrophobic anti-cancer drug, and polymyxin B, a positively-charged hydrophilic antibacterial drug, were retained in the hydrogels and released linearly with time over seven days. After four weeks of drug release, the hydrogels continued to release sufficient amounts of active paclitaxel to reduce HeLa cell viability and sufficient amounts of active polymyxin B to prevent bacterial proliferation. Along with previously-established anti-inflammatory, anti-viral, and hydrocarbon-solubilizing properties of mucin, the results of this study establish mucin as a readily-available, chemically-versatile, naturally-biocompatible alternative to complex multifunctional synthetic polymers as building blocks in the design of biomaterials for sustained drug delivery. PMID:25818947

  3. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  4. Physical energy for drug delivery; poration, concentration and activation.

    PubMed

    Lakshmanan, Shanmugamurthy; Gupta, Gaurav K; Avci, Pinar; Chandran, Rakkiyappan; Sadasivam, Magesh; Jorge, Ana Elisa Serafim; Hamblin, Michael R

    2014-05-01

    Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed. PMID:23751778

  5. Spatiotemporal drug delivery using laser-generated-focused ultrasound system.

    PubMed

    Di, Jin; Kim, Jinwook; Hu, Quanyin; Jiang, Xiaoning; Gu, Zhen

    2015-12-28

    Laser-generated-focused ultrasound (LGFU) holds promise for the high-precision ultrasound therapy owing to its tight focal spot, broad frequency band, and stable excitation with minimal ultrasound-induced heating. We here report the development of the LGFU as a stimulus for promoted drug release from microgels integrated with drug-loaded polymeric nanoparticles. The pulsed waves of ultrasound, generated by a carbon black/polydimethylsiloxane (PDMS)-photoacoustic lens, were introduced to trigger the drug release from alginate microgels encapsulated with drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. We demonstrated the antibacterial capability of this drug delivery system against Escherichia coli by the disk diffusion method, and antitumor efficacy toward the HeLa cell-derived tumor spheroids in vitro. This novel LGFU-responsive drug delivery system provides a simple and remote approach to precisely control the release of therapeutics in a spatiotemporal manner and potentially suppress detrimental effects to the surrounding tissue, such as thermal ablation. PMID:26299506

  6. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    PubMed

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery