Science.gov

Sample records for micro-hydro power development

  1. DEVELOPMENT PLAN OF A SUSTAINABLE MICRO-HYDRO POWER PLANT AND DISTRIBUTION SYSTEM FOR A TRIBAL VILLAGE CLUSTER IN RURAL INDIA

    EPA Science Inventory

    Columbia University Engineers Without Borders (CU-EWB) is developing a sustainable micro-hydro power plant for the Badi Trika Gouda village in the Indian state of Orissa. The community currently relies on firewood and animal waste matter for lighting and cooking. Our ...

  2. Development of a Positive Displacement Micro-Hydro Turbine

    NASA Astrophysics Data System (ADS)

    Phommachanh, Dousith; Kurokawa, Junichi; Choi, Young-Do; Nakajima, Noboru

    The objective of this study is to develop an efficient turbine that can be used to extract micro hydropower potential of a water supply system. For the case of high head and critical low flow rate range of micro hydropower resources, it requires very low specific speed turbines which are lower than conventional impulse turbines specific speed. For this purpose, we develop a new Positive Displacement Turbine (PDT). In order to reveal the performance characteristics of the new turbine, one conventional impulse turbine, which is used for automatic water faucet system, was tested for comparison. The test results show that the PDT was much more efficient than a conventional turbine and it can sustain high efficiency under the wide range of operating conditions. In addition, the efficiency of the PDT is much improved when reducing its side clearance. The pressure pulsations at the inlet and outlet of the PDT can be considerably minimized by using simple dampers.

  3. Induction generators for stand-alone micro-hydro systems

    SciTech Connect

    Smith, N.P.A.

    1995-12-31

    Micro-hydro schemes have an output of less than 100 kW. They are usually installed to supply electricity to small communities in remote areas which the grid fails to reach. Most micro-hydro schemes are located in the mountainous regions of developing countries, such as the Andes and Himalaya. By using appropriate designs, local skills and local manufacture these schemes can be more cost-effective than large hydro projects. By using self-excited induction generators rather than synchronous generators cost savings and reliability improvements can be achieved, due to the simple construction and inherent robustness of cage induction machines. However, until recently the extra cost and complexity of the voltage and frequency control equipment has more than offset the advantages of using stand-alone induction generators. This paper describes a new approach to controlling induction generators on stand-alone micro-hydro systems. The turbine power-speed characteristic and the relatively high magnetic saturation of modern induction machines are used to reduce the control equipment required. The implementation of the control approach is described along with considerations regarding generator selection and efficiency.

  4. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, First Annual Progress Report (Covering Field Season July-November 1982).

    SciTech Connect

    Leathe, Stephen A.; Graham, Patrick J.

    1984-03-01

    This fisheries study is to determine the potential cumulative biological and economic effects of 20 small or micro-hydro-electric facilities (less than 5 megawatts) proposed to be constructed on tributaries to the Swan River, a 1738 square kilometer (671 square mile) drainage located in northwestern Montana. The study addresses portions of measure 1204 (b) (2) of the Norwthwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. Aerial pre-surveys conducted during 1982 identified 102 stream reaches that may support fish populations in the Swan drainage between Swan and Lindbergh lakes. These reaches were located in 49 tributary streams and constituted 416 kilometers (258 miles) of potential fish habitat. Construction of all proposed small hydro projects would divert water from 54 kilometers (34 miles) or about 13 percent of the tributary system. Only two of the 20 proposed hydro sites did not support trout populations and most were populated by migratory bull trout and westslope cutthroat trout. Potential cumulative habitat losses that could result from dewatering of all proposed project areas were predicted using a stream reach classification scheme involving stream gradient, drainage ara, and fish population data. Preliminary results of this worst case analysis indicate that 23, 19 and 6 percent of the high quality rearing habitat for cutthroat, bull, and brook trout respectively would be lost.

  5. Dyadic design interface between energy and agriculture: the case of Pinthali micro hydro system in Nepal.

    PubMed

    Regmi, A

    2003-01-01

    Technology, like society, is heterogeneous. It mirrors the context in which it operates. Micro hydro development in Nepal is a rural energy strategy, which relies on technology and innovation and takes place in a specific social context. In designing this energy strategy, both technology and its social context, therefore, need to be considered seriously. In technical design processes, the interplay between the content (technology) and the context (society) needs to be considered, as the outcome will affect the people. For example, the content--micro hydro system--in the domain of the context--agriculture--provides an arena for an integrated water control system. Thus, it is possible to control water for two purposes: to produce power and to provide irrigation. The end product will be "energy" as a "consumptive" output and improved food security as a "productive" output of water. Therefore, within a sociotechnical framework, energy and irrigation become constitutive outputs of the sacrosanct "water". Thus, the metaphor of power--the "sociotechnical code" of "content" and "context"--can be used with the term "agro-anergy" in the design process of micro hydro systems. Evidence suggests that this interaction can lead to a transformed water use system for both productive and consumptive output for the benefit of rural communities. PMID:12731792

  6. Experimental optimization of a free vortex propeller runner for micro hydro application

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2009-09-15

    The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture. This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with a gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades. The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage. It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15-30%, while shaft power increased in the range of 12-45%, thus influencing the efficiency characteristics. The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation. It was also found that the optimization study on a propeller runner has reasonably validated the estimates of the free vortex theory despite small deviations. The final runner configuration demonstrated a maximum efficiency of 74% ({+-}1.8%), which is very encouraging from the perspectives of micro hydro application. The paper concludes with recommendations of a series of optimization steps to increase the efficiency of the runner. It also recommends the attempt of Computational Fluid Dynamics both as a validation and optimization tool for future research on propeller runners. (author)

  7. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume II, Technical Information, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.

    1985-07-01

    This report summarizes a study to determine the potential cumulative effects of proposed small hydro development on the fisheries of the Swan River drainage. This report contains technical information and is a support document for the main report (Leathe and Enk, 1985). Consequently, discussion of results was minimized. The sections on fish population monitoring, streambed monitoring, habitat survey comparisons, and water temperature are the only portions that were not discussed in the main report. 5 refs., 55 figs., 44 tabs.

  8. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume I, Summary, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.; Enk, Michael D.

    1985-04-01

    This study was designed to develop and apply methods to evaluate the cumulative effects of 20 proposed small hydro projects on the fisheries resources of the Swan River drainage located in northwestern Montana. Fish population and reach classification information was used to estimate total populations of 107,000 brook trout, 65,000 cut-throat trout and 31,000 juvenile bull trout within the tributary system. Distribution, abundance, and life history of fish species in the drainage and their contribution to the sport fishery were considered in the cumulative impact analysis. Bull trout were chosen as the primary species of concern because of their extensive use of project areas, sensitivity to streambed sedimentation, and their importance to the lake and river sport fisheries. Dewatering of hydroelectric diversion zones and streambed sedimentation (resulting from forest and small hydro development) were the major impacts considered. The developer proposed to divert up to the entire streamflow during low flow months because maintenance of recommended minimum bypass flows would not allow profitable project operation. Dewatering was assumed to result in a total loss of fish production in these areas. 105 refs., 19 figs., 38 tabs.

  9. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, Volume III, Fish and Habitat Inventory of Tributary Streams, 1983-1984 Final Report.

    SciTech Connect

    Leathe, Stephen A.

    1985-03-01

    This report summarizes a study of the fisheries of the Swan River drainage in relation to potential small hydro development. This information was collected in order to obtain a reliable basin-wide database which was used to evaluate the potential cumulative effects of a number of proposed small hydro developments on the fisheries of the drainage. For each named tributary stream there is a reach-by-reach narrative summary of general habitat characteristics, outstanding features of the stream, and fish populations and spawning use. An attempt was made to rank many of the measured parameters relative to other surveyed stream reaches in the drainage. 3 refs.

  10. Simulations of Blade Angle Effects on EGAT-Micro Hydro Turbine

    NASA Astrophysics Data System (ADS)

    Nuantong, Weerapon; Taechajedcadarungsri, Sirivit

    2010-06-01

    Following the feasibility study of design phase of EGAT (Electricity Generating Authority of Thailand) in-house micro hydro bulb turbine at Huai Kum Dam drainage pipeline from the reservoir for irrigation, the simulation of blade angle effects had been performed. In this case study, the turbine was designed at the average head of 21 m and water flow rate of 0.424 m3/s. The simulation was conducted in order to study of the effects of blade angle on the fluid flow for this specific case. The LES turbulence model under the practical condition of unsteady flow and incompressible fluid at Huai Kum Dam was investigated. The rotating blades effect the change in pressure and momentum which depend on head and flow rate of fluid. The research studied pressure and velocity of fluid flow on blades solving the pre-design for the improvement of hydro turbine efficiency. The computational Fluid Dynamics (CFD) was used to simulate the pressure and velocity distributions on blades of hydro bulb turbine which consists of five-blade runner and rotates at 980 rpm by using Fluent Software. The model was set at the blade twist angle of 25o and blade camber angle of 32o and then adjusted the guide vane angle to 60o, 65o and 70o respectively for comparing the maximum and minimum pressure on both sides of the blades as well as the corresponding efficiency. The results have shown that by setting guide vane angle to 60o, 65o and 70o, the maximum pressure, located at the leading edge of pressure side, are 213 kPa, 217 kPa and 207 kPa and the minimum pressure, located at the leading edge of suction side are -473 kPa, -465 kPa, and -581 kPa respectively. The flow profiles of pressure, velocity and stream line showed the guidelines of better blade angle comparisons. The maximum efficiency of hydro bulb turbine found in this study was 67.8% at blade angle of 32o and guide vane of 60o. This case study will be further investigated on the blade design for the improvement of the turbine efficiency before finalized the post-design.

  11. Low head, micro-hydro demonstration project, Coker, Alabama. Final report

    SciTech Connect

    Simpson, B.J.

    1983-09-01

    Project objective was to demonstrate the feasibility of using a crossflow (Banki) turbine in a low head, run-of-steam application. Project consisted of construction of small dam across Big Creek at Coker, Alabama. Design, construction and installation of a crossflow turbine with appurtenant feed water structures and control devices. Design of crossflow turbine was for 6 ft net head at 15 cubic ft per second flow. Dimensions of turbine constructed were: diameter 19'', length 72'', No. of blades - 20. Jet thickness (nozzle opening) 1.25'' with calculated full flow rpm of 117. Construction was started in summer of 1981 and completed in September 1981. Before any meaningful information could be gained the dam was demolished by flood. The dam was rebuilt during the summer of 1982. Preliminary testing, using a 8 kW Dayton ac Generator with gear box (input rpm 540) indicated a peak power output at full flow of 2.8 kW as opposed to calculated 7 kW at 75% efficiency for the system. This testing was done in November and December of 1982 under extremely difficult conditions which included destruction of the turbine blades by debris pushed into high backwater. Due to frequent and heavy rains during the winter of 1983 no testing was possible in January and February. In March 1983 the dam was lost again due to severe flooding conditions eroding away the end of the dam. The project will be rebuilt at some future time when funds become available.

  12. Capstone develops local power

    SciTech Connect

    Barker, T.

    1996-01-01

    Capstone Turbine Corporation has developed a compact 24-kW gas turbine-generator unit. Potential applications are distributed power generation, mobile power and power for electric vehicles. This paper describes in brief the design and specifications of the unit. 3 figs.

  13. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  14. Heatpipe power system development

    SciTech Connect

    Houts, M.G.; Poston, D.I.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a design approach that could enable the development of near-term, low-cost, space fission-power systems. Sixteen desired attributes were identified for such systems and detailed analyses were performed to verify that they are feasible. Preliminary design work was performed on one concept, the Heatpipe Power system (HPS). As a direct result of this project, funding was obtained from the National Aeronautics and Space Administration to build and test an HPS module. The module tests went well, and they now have funding to build a bimodal module.

  15. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  16. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  17. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  18. "Word Power" (Vocabulary Development).

    ERIC Educational Resources Information Center

    Voorhees, Roxy

    Containing numerous vocabulary-building activities and exercises, this guidebook is designed to help elementary students learn to manipulate language as they gain concrete experiences with words, increase their "word power," and have fun. The activities described involve dictionary games, synonyms, "saidonyms" (alternatives for the overused word

  19. Dual use power supply development

    NASA Astrophysics Data System (ADS)

    Kolb, Alan C.; Strickland, Bryan E.

    1995-01-01

    Size, weight, efficiency and reliability define space power systems. Then years ago NASA re-emphasized that missions such as Space Station needed cost effective critical technologies, one being power conversion. Thus, NASA began to emphasize ``dual-use'' technology through its center for Commercial Development of Space (mid 1980s). This CCDS program funded research and development efforts needed for future space missions as well as terrestrial applications for commercial markets. Maxwell and Auburn University (Space Power Institute) jointly developed reliable power systems for manned space projects as well as commercial applications of high power, high voltage switchmode power supplies. These serve the medical, scientific and industrial markets (lasers, accelerators and intense light sources). These applications required improvements in power density, efficiency, regulation, reliability and cost effectiveness to be successful. One of NASA's first programs at Auburn and Maxwell was a high frequency, series resonant power converter optimized for commercial applications. It also meets the needs of space missions (additional space flight qualification is needed). This power converter topology demonstrates dual-use technology for power density, power-to-weight, regulation, reliability and cost effectiveness. All goals were exceeded for both space and terrestrial applications. This was the first product of NASA's CCDS program producing a family of high voltage capacitor charging power supplies. Maxwell's CCDS capacitor power supplies are achieving greater acceptance demonstrating the value of the CCDS program.

  20. Nanosat Intelligent Power System Development

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beaman, Robert G.; Mica, Joseph A.; Truszkowski, Walter F.; Rilee, Michael L.; Simm, David E.

    1999-01-01

    NASA Goddard Space Flight Center is developing a class of satellites called nano-satellites. The technologies developed for these satellites will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections theme and will be of great benefit to other NASA enterprises. A major challenge for these missions is meeting significant scientific- objectives with limited onboard and ground-based resources. Total spacecraft power is limited by the small satellite size. Additionally, it is highly desirable to minimize operational costs by limiting the ground support required to manage the constellation. This paper will describe how these challenges are met in the design of the nanosat power system. We will address the factors considered and tradeoffs made in deriving the nanosat power system architecture. We will discuss how incorporating onboard fault detection and correction capability yields a robust spacecraft power bus without the mass and volume penalties incurred from redundant systems and describe how power system efficiency is maximized throughout the mission duration.

  1. 25 CFR 137.6 - Power development.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Power development. 137.6 Section 137.6 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA 137.6 Power development. The cost of the power development at... power development shall be disposed of as required by the terms and conditions of the act of March...

  2. 25 CFR 137.6 - Power development.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Power development. 137.6 Section 137.6 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA 137.6 Power development. The cost of the power development at... power development shall be disposed of as required by the terms and conditions of the act of March...

  3. 25 CFR 137.6 - Power development.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Power development. 137.6 Section 137.6 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA 137.6 Power development. The cost of the power development at... power development shall be disposed of as required by the terms and conditions of the act of March...

  4. 25 CFR 137.6 - Power development.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Power development. 137.6 Section 137.6 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA 137.6 Power development. The cost of the power development at... power development shall be disposed of as required by the terms and conditions of the act of March...

  5. 25 CFR 137.6 - Power development.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Power development. 137.6 Section 137.6 Indians BUREAU OF... CARLOS INDIAN IRRIGATION PROJECT, ARIZONA 137.6 Power development. The cost of the power development at... power development shall be disposed of as required by the terms and conditions of the act of March...

  6. Plastic Laminate Pulsed Power Development

    SciTech Connect

    ALEXANDER,JEFF A.; SHOPE,STEVEN L.; PATE,RONALD C.; RINEHART,LARRY F.; JOJOLA,JOHN M.; RUEBUSH,MITCHELL H.; CROWE,WAYNE; LUNDSTROM,J.; SMITH,T.; ZAGAR,D.; PRESTWICH,K.

    2000-09-01

    The desire to move high-energy Pulsed Power systems from the laboratory to practical field systems requires the development of compact lightweight drivers. This paper concerns an effort to develop such a system based on a plastic laminate strip Blumlein as the final pulseshaping stage for a 600 kV, 50ns, 5-ohm driver. A lifetime and breakdown study conducted with small-area samples identified Kapton sheet impregnated with Propylene Carbonate as the best material combination of those evaluated. The program has successfully demonstrated techniques for folding large area systems into compact geometry's and vacuum impregnating the laminate in the folded systems. The major operational challenges encountered revolve around edge grading and low inductance, low impedance switching. The design iterations and lessons learned are discussed. A multistage prototype testing program has demonstrated 600kV operation on a short 6ns line. Full-scale prototypes are currently undergoing development and testing.

  7. Renewable Energy for Sustainable Rural Village Power

    SciTech Connect

    Touryan, J. O. V.; Touryan, K. J.

    1999-08-05

    It is estimated that two billion people live without electricity and its services worldwide. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel generator or partial electrification. For many villages connected to the grid, power is often sporadically available and of poor quality. The US National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program that involves hybrid systems, to address these potential electricity opportunities in rural villages through the application of renewable energy technologies.1 The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. Hybrid systems are multi-disciplinary, multi-technology, multi-application programs composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel generator, micro-hydro and micro-biomass technologies may be integrated in the future. Thirteen countries are actively engaged in hybrid systems for rural and remote applications and another dozen countries have requested assistance in exploring wind/PV hybrid systems within their territories. At present rural/remote site application of renewable technologies is the fastest growing aspect of renewable energy worldwide.

  8. Wind, Sun and Water: Complexities of Alternative Energy Development in Rural Northern Peru

    ERIC Educational Resources Information Center

    Love, Thomas; Garwood, Anna

    2011-01-01

    Drawing on recent research with NGO-driven projects in rural Cajamarca, Peru, we examine the paradoxes of relying on wind, solar and micro-hydro generation of electricity for rural community development. In spite of cost, vagaries of these energy resources and limited material benefits, especially with wind and solar systems, villagers are eagerly

  9. Wind, Sun and Water: Complexities of Alternative Energy Development in Rural Northern Peru

    ERIC Educational Resources Information Center

    Love, Thomas; Garwood, Anna

    2011-01-01

    Drawing on recent research with NGO-driven projects in rural Cajamarca, Peru, we examine the paradoxes of relying on wind, solar and micro-hydro generation of electricity for rural community development. In spite of cost, vagaries of these energy resources and limited material benefits, especially with wind and solar systems, villagers are eagerly…

  10. X2000 power system electronics development

    NASA Technical Reports Server (NTRS)

    Carr, Greg; Deligiannis, Frank; Franco, Lauro; Jones, Loren; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treichler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2005-01-01

    The X2000 Power System Electronics (PSE) is a Jet Propulsion Laboratory (JPL) task to develop a new generation of power system building blocks for potential use on future deep space missions. The effort includes the development of electronic components and modules that can be used as building blocks in the design of generic spacecraft power systems.

  11. Biomass power for rural development

    SciTech Connect

    Shepherd, P.

    2000-06-02

    Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

  12. Renewables for sustainable village power

    SciTech Connect

    Flowers, L.

    1997-03-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal.

  13. Space power development impact on technology requirements

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.

    1986-01-01

    The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.

  14. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  15. The development of swimming power

    PubMed Central

    Gatta, Giorgio; Leban, Bruno; Paderi, Maurizio; Padulo, Johnny; Migliaccio, Gian Mario; Pau, Massimiliano

    2014-01-01

    Summary Purpose: the aim of this study was to investigate the effects of the transfer strength training method on swimming power. Methods: twenty male swimmers “master“ were randomly allocated to strength (n= 10, ST) and swimming training (n=10, SW) groups. Both groups performed six-weeks training based on swimming training for SW and strength training which consisted in a weight training session immediately followed by the maximum swimming velocity. The performance in both groups was assessed by Maximal-Mechanical-External-Power (MMEP) before and after the six-weeks period, using a custom ergometer that provided force, velocity, and power measurement in water. Results: a significant increased MMEP in ST group (5.73% with p< 0.05) was obtained by an increased strength (11.70% with p< 0.05) and a decreased velocity (4.99% with p> 0.05). Conversely, in the SW group there was a decreased in MMEP (7.31%; p< 0.05), force and velocity (4.16%, and 3.45; respectively p> 0.05). Conclusion: this study showed that the transfer training method, based on combination of weight training (in dry condition) immediately followed by fast swim (in water) significantly improves swimming-power in master. PMID:25767781

  16. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  17. U.S. Wind Power Development

    SciTech Connect

    2007-11-15

    The report provides an overview of domestic wind power development which provides an understanding of where the industry stands today, how it got there, and where it is going. The advent of state renewable portfolio standards and the 3-year renewal of the production tax credit have driven wind power to record levels. A key objective of the report is to provide a comprehensive view of what is behind these developments, so that industry participants can take advantage of the opportunity offered by wind power. Topics covered include: overview of U.S. wind power including its history, current status, and future prospects; business drivers of the U.S. wind power market; barriers to the growth of the U.S. wind power market; keys to successful wind power project development; economics of U.S. wind power, including cost, revenue, and government subsidy components; analysis of key state markets for wind power development; and, profiles of major U.S. wind power project developers.

  18. Developing a space power Brayton system

    SciTech Connect

    Prisnyakov, V.F.; Statsenko, I.N.; Kondratjev, A.I.; Markov, V.L.; Petrov, B.E.; Gabrinets, V.A.

    1994-12-31

    This paper presents the result of preliminary development on a dynamic solar power system suitable for space applications. From the results of this development two schemes that meet most demands have been chosen.

  19. Development of Power Assisting Suit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  20. Rude awakening. [overseas development of independent power

    SciTech Connect

    Goodwin, L.M. )

    1993-07-15

    Developers will find language isn't the only thing that's different overseas. The nation's dramatic success in allowing competition in electric power generation and the subsequent growth in non-utility power plant development has encouraged other countries to try their hand at stimulating growth in their internal electric markets. This has coincided with a general trend toward privatizing what were once governmental functions, a process encouraged by international agencies such as the World Bank. Because U.S. developers have acquired significant experience developing independent power projects during the 15 years since the Public Utility Regulatory Policies Act (PURPA) was passed, they have been among the most aggressive participants in the early stages of international independent power development. Developers who try to transplant their domestic experience directly to foreign markets may be in for a rude awakening, however. Despite apparent similarities, significant differences exist between energy project development here and in international markets.

  1. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The design of the EVA glove is examined, emphasizing the development of a more flexible metacarpophalangeal (MCP) joint for the EVA glove. The analysis of the EVA glove MCP joint is reviewed and the glove design process is recapitulated. Experimental tests of the glove are summarized.

  2. Biomass Power for Rural Development

    SciTech Connect

    2000-06-01

    The U.S. Departments of Energy and Agriculture work together to advance the development of electricity generation systems that use biomass instead of fossil fuels. The national benefits include lower sulfur emissions (which contribute to acid rain), reductions in greenhouse gas emissions, and less dependence on fossil fuels.

  3. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  4. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  5. High-Power Electromagnetic Thruster Being Developed

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.

    2001-01-01

    High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).

  6. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  7. Multikilowatt power electronics development for spacecraft

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.; Rolandelli, D. L.

    1991-01-01

    Attention is given to several multikilowatt power electronic components developed by TRW for the Space Station Power Management and Distribution test bed at NASA Lewis Research Center. These components include a 12.5-kW DC-DC converter, a 6.25-kW battery charge/discharge regulator, an 82-channel sequential shunt unit, a 10-A remote power controllers, and three different types of 1-kW load converters. TRW is also monitoring the development of 120-V fuses for space applications. The authors discuss these developments and provide steady-state and dynamic performance parameters.

  8. SP-100 power system development status

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.

    1990-01-01

    The SP-100 ground engineering system development project objectives, approach and status are described. The SP-100 GES development project is phase II of a three-phase program funded and directed by three United States Federal Agencies (NASA, DOD and DOE) to develop space reactor power systems for space applications in the 10 to 1000 KWe power range. The first phase of the program lasted three years, and this was completed at the end of FY 1985. SP-100 Phase I analytically and experimentally reviewed all near-term space reactor power system candidates and selected one system that best met the project mission requirements for future civilian and military space applications. The SP-100 Phase II started in fiscal year 1986 to develop the Phase I selected space reactor power system to be technically ready for space applications in the mid- to late 1990s.

  9. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  10. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  11. Geothermal Power Development in the Phillippines

    SciTech Connect

    Jovellanos, Jose U.; Alcaraz, Arturo; Datuin, Rogelio

    1980-12-01

    The generation of electric power to meet the needs of industrial growth and dispersal in the Philippines is aimed at attaining self-reliance through availment of indigenous energy resources. The Philippines by virtue of her position in the high-heat flow region has in abundance a number of exploitable geothermal fields located all over the country. Results indicate that the geothermal areas of the Philippines presently in various stages of exploration and development are of such magnitude that they can be relied on to meet a significant portion of the country's power need. Large scale geothermal energy for electric power generation was put into operation last year with the inauguration of two 55-MW geothermal generating units at Tiwi, Albay in Southern Luzon. Another two 55-MW units were added to the Luzon Grid in the same year from Makiling-Banahaw field about 70 kilometers south of Manila. For 1979 alone, therefore, 220-MW of generating capacity was added to the power supply coming from geothermal energy. This year a total of 220-MW power is programmed for both areas. This will bring to 443-MW of installed generating capacity from geothermal energy with 3-MW contributed by the Tongonan Geothermal pilot plant in Tongonan, Leyte, Central Philippines in operation since July 1977. Financial consideration of Philippine experience showed that electric power derived from geothermal energy is competitive with other sources of energy and is a viable source of baseload electric power. Findings have proven the technical and economic acceptability of geothermal energy resources development. To realize the benefits that stem from the utilization of indigenous geothermal resources and in the light of the country's ever increasing electric power demand and in the absence of large commercial oil discovery in the Philippines, geothermal energy resource development has been accelerated anew. The program includes development of eight fields by 1989 by adding five more fields to the currently developed and producing geothermal areas.

  12. High-power microwave development in Russia

    NASA Astrophysics Data System (ADS)

    Gauthier, Sylvain

    1995-03-01

    This is a survey of Russian research and development in high-power microwave (HPM) sources. It emphasizes those sources of nanoseconds pulse duration time which have potential weapon as well as radar applications. It does not cover the whole range of Russian HPM research and development but concentrates on those aspects which may lead to military applications. Russian investigators have achieved many world firsts in HPM generation; for example, a multiwave Cerenkov generator with a peak output power of 15 gigawatts. Their successes are based on their impressive capability in pulsed power technology which has yielded high-current generators of terawatt peak power. They have transformed the energy of these currents into microwave radiation using tubes of both conventional and novel designs exploiting relativistic electron beams. Recently, the development of high-current mini-accelerators has moved relativistic electron-beam (REB) HPM generation out of the laboratory and enabled the development of deployable military systems with peak powers in the gigawatt range. As a result, they now see development of a REB-based radar systems as one of the most promising directions in radar systems. Details of such a system are described and the implications for HPM weapons are considered.

  13. Power Actuation and Switching Module Development

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.; Carr, Greg; Deligiannis, Frank; Jones, Loren; Lam, Barbara; Sauers, Jim; Haskell, Russ; Mulvey, Jim

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a Power Actuation and Switching Module (PASM). This component enables a modular and scalable design approach for power switching applications, which can result in a wide variety of power switching architectures using this simple building block. The PASM is designed to provide most of the necessary power switching functions of spacecraft for various Deep Space missions including future missions to Mars, comets, Jupiter and its moons. It is fabricated using an A SIC process that is tolerant of high radiation. The development includes two application specific integrated circuits (ASICs) and support circuitry all packaged using High Density Interconnect (HDI) technology. It can be operated in series or parallel with other PASMs, It can be used as a high-side or low-side switch and it can drive thruster valves, pyrotechnic devices such as NASA standard initiators, bus shunt resistors, and regular spacecraft component loads. Each PASM contains two independent switches with internal current limiting and over-current trip-off functions to protect the power subsystem from load faults. During turnon and turnoff each switch can limit the rate of current change (di/dt) to a value determined by the user. Threeway majority-voted On/Off commandability and full switch status telemetry (both analog and digital) are built into the module. This paper describes the development process used to design, model, fabricate, and test these compact and versatile power switches. Preliminary test results from prototype HDI PASM hardware are also discussed.

  14. Hydroelectric power development using irrigation flows

    SciTech Connect

    Nigus, L.A.

    1995-12-31

    Utilization and optimization of an environmentally benign hydraulic resource are goals of every hydroelectric power developer and engineer. With the application of economical engineering solutions, partial year flows from irrigation canals can become such a resource for power production. This paper presents the highlights of how the North Side Canal Company and the Ida-West Energy Company used cost-effective site and powerhouse arrangements and pit turbines to develop the Hazelton B and Wilson Lake Hydroelectric Projects on an irrigation canal in south-central Idaho.

  15. The developing international private power market

    SciTech Connect

    Sullivan, J.B.

    1989-09-01

    A review group comprised of representatives from ten U.S. power industry companies recently released a report recommending increased assistance by the U.S. Agency for International Development (USAID) and other government agencies to provide reliable supplies of electricity and efficient use of energy. The report called for integrating U.S. foreign aid and trade policy to support U.S. industry in expanding overseas markets. The review group estimates a potential market of $370 billion to $900 billion worth of power equipment and services over the next 20 years. Recommendations of the Review Group include: Provide funding to support feasibility studies for electric power projects; Increase economic support funds and development assistance to emphasize energy, infrastructure, trade and investment; expand USAID's energy and private power activities through the formation of an Energy/Power, Infrastructure and Trade Institute as a public-private partnership; and include considerations of the U.S. trade balance in USAID's programs. The Report also criticized the U.S. power industry for an inadequate commitment to long term involvement in overseas markets.

  16. Low-Power Ion Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    1999-01-01

    An effort is on-going to examine scaling relationships and design criteria for ion propulsion systems, and to address the need for a light weight, low power, high specific impulse propulsion option for small spacecraft. An element of this activity is the development of a low-power (sub-0.5 kW) ion thruster. This development effort has led to the fabrication and preliminary performance assessment of an 8 cm prototype xenon ion thruster operating over an input power envelope of 0.1-0.3 kW. Efficiencies for the thruster vary from 0.31 at 1750 seconds specific impulse at 0.1 kW, to about 0.48 at 2700 seconds specific impulse and 0.3 kW input power. Discharge losses for the thruster over this power range varied from about 320-380 W/A down to about 220-250 W/A. Ion optics performance compare favorably to that obtained with 30 cm ion optics, when scaled for the difference in beam area. The neutralizer, fabricated using 3 mm hollow cathode technology, operated at keeper currents of about 0.2-0.3 A, at a xenon flow rate of about 0.06 mg/s, over the 0.1-0.3 kW thruster input power envelope.

  17. Expected development of chemical power sources

    NASA Astrophysics Data System (ADS)

    Kulcsar, S.

    1984-02-01

    An investigation of chemical power sources considers their use by professional consumers in terms of loadability, weight, life, purchase price, operating price, maintenance requirements, and reliability. The criteria for non-professional consumers are mainly purchase price and whether the system is maintenance-free. The single power sources evaluated according to technical requirements, economic properties, convenience, and prognosis include lead-acid accumulators; Ni-Cd accumulators; Ni-Fe accumulators; Ni-Zn accumulators; Ag-Zn accumulators; Zn-Br system accumulators; and accumulators operating at high and average temperatures. Also considered are Leclanchecells; alkali-manganese dioxide cells; elements with Li anode; and fuel cells. It is concluded that present power sources will probably continue to be used for the next 5-10 years, and further development is proposed in various areas, including power supplies for spacecraft and satellites.

  18. High average power linear induction accelerator development

    SciTech Connect

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs.

  19. Development and Marital Power in Mexico.

    ERIC Educational Resources Information Center

    Oropesa, R. S.

    1997-01-01

    Life histories of 794 Mexican women, ages 25-31 and 40-49, revealed that wives faced diverse circumstances with respect to marital power and husband dominance. Results support the modernization perspective on the consequences of economic development, in that educational attainment affected wives' exposure to domestic violence and participation in

  20. Millimeterwave Space Power Grid architecture development 2012

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t- ramp up space solar power level to over 5.6 TeraWatts by year 50 from project start. Runway-based launch and landing are required to achieve the launch productivity as well as the cost reductions to enable such a large deployment on schedule. Advancements in the certainty of millimeter wave conversion technology and runway-based space access, are seen to be the outstanding issues in proceeding to full-scale Space Solar Power.

  1. Fuel cell stationary power business development

    NASA Astrophysics Data System (ADS)

    Weiner, Scott A.

    This paper discusses the recent business and product development activities at Ballard Generation Systems. Ballard Generation Systems was formed in late 1996 as a venture between Ballard Power Systems and GPU International. The focus of this venture is to commercialize fuel cell power plants for stationary applications using Ballard's polymer electrolyte membrane (PEM) fuel cell. This paper will discuss the framework and structure of this model strategic alliance for fuel cell commercialization. This paper will provide the perspective and rationale of Ballard Power Systems in developing this unique business relationship to bring its PEM fuel cell power plants to market. It will also provide insight into the GPU International viewpoint on the fuel cell business and the GPU International rationale for their investment. As well, this paper will discuss the benefits Ballard and GPU International expect to achieve through this relationship. Having recently completed the construction and commissioning of the prototype of the company's first commercial product, this paper will discuss recent achievements of the company's product development activities as it moves towards product introduction.

  2. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M. . Dept. of Nuclear Engineering); Weng, C.K. . Dept. of Mechanical Engineering); Lindsay, R.W. )

    1992-01-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  3. Experimental development of power reactor advanced controllers

    SciTech Connect

    Edwards, R.M.; Weng, C.K.; Lindsay, R.W.

    1992-06-01

    A systematic approach for developing and verifying advanced controllers with potential application to commercial nuclear power plants is suggested. The central idea is to experimentally demonstrate an advanced control concept first on an ultra safe research reactor followed by demonstration on a passively safe experimental power reactor and then finally adopt the technique for improving safety, performance, reliability and operability at commercial facilities. Prior to completing an experimental sequence, the benefits and utility of candidate advanced controllers should be established through theoretical development and simulation testing. The applicability of a robust optimal observer-based state feedback controller design process for improving reactor temperature response for a TRIGA research reactor, Liquid Metal-cooled Reactor (LMR), and a commercial Pressurized Water Reactor (PWR) is presented to illustrate the potential of the proposed experimental development concept.

  4. Analysis of Alaska hydro power development

    SciTech Connect

    Sieber, O.V.

    1983-12-01

    Alaska leads the world in terms of total potential for hydropower development, yet Alaska is 91% dependent on fossil fuels. A mix of gas, diesel and coal-fired power plants generate all but 9% of its electricity. This dependence on fossil fuels stems from the abundance of cheap gas, coal and oil-nonrenewable resources that are becoming more costly. Hydro power is also costly; however, most hydro projects are justified by long term returns. Once the water hits the turbine in a hydro project, the operating and maintenance cost is practically nil. The successful completion of two complex thin-arch concrete dams and several other hydro projects are discussed in order to meet Alaska's power demand.

  5. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  6. Solid oxide fuel cell power system development

    SciTech Connect

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  7. High power heat pipe heat exchanger development

    SciTech Connect

    Fale, J.E.; Zuo, Z.J.; Gernert, N.J.; Goryca, M.L.

    1998-07-01

    This paper presents the results of a recently completed SBIR Phase 2 program by Thermacore, Inc. to develop a 350kW heat pipe radiator for the M109 A6 Howitzer engine cooling. After a brief discussion of operating principles and unique advantages of heat pipe heat exchangers, the paper focuses on the development of high power heat pipe heat exchangers. Design and manufacturing issues associated with high power heat pipe heat exchangers, such as non-uniform heat load distribution, redundancy/damage resistance, and seals between the two fluid streams, are addressed. Test results of segment and full scale heat pipe radiators are presented. Heat pipe heat exchanger applications, including the potential applications in the turbine industry and the food and pharmaceutical industry, are discussed.

  8. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing. The advantages of this scheme are: 1) Because only a fraction of the power is processed through the dc-dc converter, the single- stage conversion efficiency is 94 to 98 percent; 2) Costly, high-efficiency dc-dc converters are not necessary for high end-to-end system efficiency; 3) The system is highly fault tolerant because the bypass connection will still deliver power if the dc-dc converter fails; and 4) The converters can easily be connected in parallel, allowing higher power systems to be built from a common building block. This new technology will be spaceflight tested in the Photovoltaic Regulator Kit Experiment (PRKE) on TRW's Small Spacecraft Technology Initiative (SSTI) satellite scheduled for launch in 1996. This experiment uses commercial dc-dc converters (28 to 15 Vdc) and additional control circuitry to regulate current to a battery load. The 60-W, 87- percent efficiency converters can control 180 W of power at an efficiency of 94 percent in the new configuration. The power density of the Photovoltaic Regulator Kit Experiment is about 200 W/kg.

  9. Wireless Power Transmission Technology Development and Demonstrations

    NASA Astrophysics Data System (ADS)

    Steinsiek, F.; Weber, K.-H.; Foth, W.-P.; Foth, H. J.; Schäfer, C.

    2004-12-01

    The Wireless Power Transmission (WPT) technology has been treated to a wide extent in the recent years. A broad variety of applications has been investigated, from earth to orbit, orbit to earth, in-orbit and planetary ones, as for moon and Mars missions. In this course the question to use laser or microwave technology has widely been discussed. Beaming energy to spacecrafts could provide an important space mission-economic potential. It promises significant reduction in the cost of access to space, for scientific and commercial missions, and increases the mission capabilities for in-space systems. For the future enhancement of ISS capabilities and operational efficiency, the use of WPT technology became part of the technology research planning for the ISS. The WPT may have the potential of providing operational benefits, increase of spacecraft systems efficiency for elements like co-orbiting platforms, transfer vehicles or other ISS related in-orbit spacecrafts, and planetary exploration vehicles. The laser technology provides specific technical, operational and economic benefits compared to microwave applications and provides the actual basis for the envisioned wireless power transmission concepts. An outlook in terms of future wireless power perspectives, both for terrestrial as for space-to-space scenarios is given; these applications are part of a technology demonstration roadmap for wireless power transmission key- and supporting technologies, which is characterized by dedicated technology demonstration milestones on ground and in space. The actual technology development philosophy as conceived at EADS-Space Transportation is described and includes main system demonstration missions, as a laboratory test bed employing a small rover system, a scaled airship model demonstration as planned in 2004 and an experiment onboard the International Space Station ISS. These demonstrations represent milestones in terms of technical capability verification on the way to solar power platforms in space, as an actual Solar Power Platform Design Concept in the 400 kW range for GEO including the receiver side on ground. Special attention is given to the fact, that technological spin-offs out of the Solar Power Platforms development are an essential aspect of the activities. The application of the suitable type of laser systems for future solar power concepts in space will be discussed, based on recent investigations in the frame of the EADS technology development work. The experimental application of a laser system for power transmission to a moveable and steerable target, a small rover, is addressed also and the demonstration philosophy and experimental set-up are detailed. The ground test objectives, the definition, design and performance of a "Wireless Power Transmission" system and the demonstration of the basic principles of power transmission and target acquisition, pointing and tracking are covered. The lessons learned and consequences for a continuation of this type of demonstration are outlined.

  10. Development of superconducting power transmission technology

    NASA Astrophysics Data System (ADS)

    Forsyth, E. B.

    Superconducting power transmission cables are the latest innovation in a technology which is as old as electric power engineering. Distribution of power by means of wires suspended from poles was tried briefly but the densely populated areas chosen as sites for the early generators soon forced the distribution system underground. Edison's low voltage dc system was a technological dead-end but by 1890 Ferranti had built a 7 mile-long underground cable system which operated at the then unprecedented level of 10,000 V, alternating current. Ferranti was remarkably prescient in his choice of wrapped brown paper for the cable insulation, a material which has continued to be used in this application until the present day. Paper was chosen for the insulation because it gave good operating performance at low cost compared to other insulating materials then available, such as rubber and gutta percha. Economic considerations must be weighed carefully in the design of underground power transmission systems and they have been a compelling factor in the pattern of development from the turn of the century to the advanced superconducting systems under test in the 1980's.

  11. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing.

  12. Development of a solar-powered freezer

    SciTech Connect

    Ameen, A.

    1994-12-31

    This paper describes a contribution to the development of a solar-powered freezer suitable for storing 20 pounds (9.1 kg) of medicine and vaccine at {minus}10 C in remote tropical areas where electricity is not available. The system comprises a freezer unit and a solar-powered conversions storage system that includes an array of photovoltaic cells and a battery. The freezer unit employs a conventional vapor-compression refrigeration cycle using R-12 as a refrigerant and a capillary tube as an expansion device. The length of the capillary tube and the refrigerant charge were optimized at 11.18 ft (3.41 m) and 0.144 lb (65.2 g), respectively, for the most efficient operation. The effectiveness of photovoltaic cells in charging lead acid batteries to supply power to the freezer compressor was also investigated and, based on the findings, recommendations were made to modify the configuration. The paper highlights the methodology used in the optimization procedure and describes the performance tests carried out on the solar-powered freezer.

  13. Development of superconducting power transmission technology

    SciTech Connect

    Forsyth, E.B.

    1985-01-01

    Superconducting power transmission cables are the latest innovation in a technology which is as old as electric power engineering. The construction of central electricity generating stations by Thomas Edison in the USA and Sebastian Ferranti in England in the 1880's immediately posed the problem of how customers could be connected to the power source. Distribution by means of wires suspended from poles was tried briefly but the densely populated areas chosen as sites for the early generators soon forced the distribution system underground. Edison's low voltage dc system was a technological dead-end but by 1890 Ferranti had built a 7 mile-long underground cable system from the generating plant at Deptford to central London which operated at the then unprecedented level of 10,000 V, alternating current. Ferranti was remarkably prescient in his choice of wrapped brown paper for the cable insulation, a material which has continued to be used in this application until the present day. Paper was chosen for the insulation because it gave good operating performance at low cost compared to other insulating materials then available, such as rubber and gutta percha. Economic considerations must be weighed carefully in the design of underground power transmission systems and they have been a compelling factor in the pattern of development from the turn of the century to the advanced superconducting systems under test in the 1980's.

  14. Development of Solar Powered Irrigation System

    NASA Astrophysics Data System (ADS)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  15. Developing static reactive power compensators in a power system simulator for power education

    SciTech Connect

    Chang, W.N.; Wu, C.J.

    1995-11-01

    This paper describes a newly installed laboratory module microcomputer-based static reactive power compensator (SVC) in detail to teach students how an SVC affects system voltage, load balancing, power factor, and transmission line losses. The SVC is merged into an old power system simulator for extensive power engineering education. The structure of the SVC is thyristor controlled reactors with fixed capacitors (TCR-FC). Two control algorithms, feedback control and feedforward control, are developed and compared. For the purpose of program flexibility and portability, a VME-Bus based microcomputer is used to synthesize the controller of the SVC. Several suggested experiments are given to show the effects of the SVC on distribution system compensation. The SVC greatly promotes the performance of the power system simulator.

  16. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  17. Ultrafast Power Processor for Smart Grid Power Module Development

    SciTech Connect

    MAITRA, ARINDAM; LITWIN, RAY; lai, Jason; Syracuse, David

    2012-12-30

    This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among some prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.

  18. HTS component development for electric power applications

    SciTech Connect

    Haldar, P.

    1994-07-29

    This presentation covers the collaboration between Intermagnetics General Corporation (IGC) and U.S. DOE laboratories such as the Argonnne National Lab, Oak Ridge National Lab, and the DOE/Superconductivity Partnership Initiative (DOE/SPI); along with informal collaboration with six other government research facilities. Being developed is applications for superconductors related to electric power, such as generators, motors, transmisssion cable, fault current limiter, and transformers. Highlighted are the critical current densities of short and long tapes at 77K; material and labor costs for Bi-2223 tapes; structural and performance specifications for a HTS magnet; and an overview of the the DOE/SPI program with plans for future work.

  19. An accelerated fusion power development plan

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.

    1991-06-01

    Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.

  20. New developments for future solar power plants

    NASA Astrophysics Data System (ADS)

    Lorenz, J.; Feustel, J.; Kraft, M.

    The development of a planned solar farm providing 15 to 500 kW of electrical and mechanical energy in regions with high insolation is discussed. In the proposed power plant, 200 to 300 C heat generated in tracking parabolic cylindrical collectors is used to produce high-pressure steam as a source of mechanical energy, electricity or low-temperature heat. The optimization of system operating temperature and collector area with respect to collector and machine efficiency is discussed, and the first plant prototype is presented. Advanced development of the modular collector units and the energy conversion circuit, which consists of the boiler, expansion machine, electrical generator, condenser, cooling tower and control, monitoring and auxiliary devices, is then considered.

  1. Development of small, modular biomass power systems

    SciTech Connect

    Turnbull, J.H.; Hulkkonen, S.

    1996-12-31

    This paper describes a collaborative effort between the Electric Power Research Institute, Bechtel Corporation and Imatran Voima Oy. The goal is commercialization of a biomass-fueled, modular (50 to 250 kW) heat and power technology for distributed applications. The technology to be selected will not present any major technical challenges, but first and foremost must be simple and reliable. Additional criteria include: acceptable capital cost, fuel flexibility, and the capability for meeting local environmental standards. As the capital cost of small units will be influenced by economies of fabrication, the economic viability of these systems depends upon the size of the domestic and international markets. Thus, evaluation of available conversion technologies was undertaken concurrently with a broad-based market assessment. The technology scan included all the commercial and pre-commercial biomass systems that could be located. Information was sorted into five categories: (1) gasifiers with either diesel or spark-ignited engines; (2) indirectly fired gas turbines; (3) directly fired gas turbines; (4) pyrolysis processes with diesel engines; or (5) conventional steam-cycles. The evaluation of the technologies was based on the above criteria, along with the recognition that the levelized cost of power from the system must be competitive with available diesel generation. The market for these systems within the contiguous 48 states is expected to be limited to situations involving forest ecosystem improvements and the reduction of forest fire hazards, and/or clean-up and remediation following natural disasters. Another North American market is remote villages in Canada and Alaska. By far the largest market is in developing nations where two billion people are without electricity for lighting, water pumping or refrigeration. Serving this latter market presents a major challenge, as each system will require establishment of a whole new local infrastructure.

  2. Power Systems Development Facility. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

  3. Development of superconducting power devices in Europe

    NASA Astrophysics Data System (ADS)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  4. Development of dielectric barrier discharging power supply

    NASA Astrophysics Data System (ADS)

    Gao, Yinghui; Liu, Kun; Fu, Rongyao; Sun, Yaohong; Yan, Ping

    2015-11-01

    Due to the demand of a dielectric barrier discharge power supply, a high voltage and high frequency AC power supply was designed and implemented. Its output voltage is standard or approximate standard sine waveform with the frequency range of 1 kHz to 50 kHz. The output voltage and output frequency can be adjusted individually. The maximum output power of the power supply is 2 kW. It can be operated through local or remote control. The power supply has been used in the dielectric barrier discharging research under different conditions.

  5. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  6. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single streams, efforts are underway to generate a data bank and algorithm applicable to dual-stream jets. Shock-associated noise in high-powered jets such as military aircraft can benefit from these predictions.

  7. Development of Asset Management Decision Support Tools for Power Equipment

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki; Takahashi, Tsuguhiro

    Development of asset management decision support tools become very intensive in order to reduce maintenance cost of power equipment due to the liberalization of power business. This article reviews some aspects of present status of asset management decision support tools development for power equipment based on the papers published in international conferences, domestic conventions, and several journals.

  8. DEVELOPMENT OF COMMUNITY POWER FROM SUSTAINABLE SMALL HYDRO POWER SYSTEMS ACAPACITY BUILDING PROJECT IN BANGANG, CAMEROON

    EPA Science Inventory

    Electric power is one of the basic needs for the development of any community. With electric power lacking in most rural communities in Africa, providing basic amenities that are dependent on power such as clean portable drinking water, powering equipment in health and dent...

  9. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  10. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    Reasons for mounting the Space Exploration Initiative, the variables facing U.S. planners, and the developmental technologies that will be needed to support this initiative are discussed. The three more advanced technological approaches in the field of power generation described include a lunar-based solar power system, a geosynchronous-based earth orbit solar power satellite system, and the utilization of helium-3/deuterium fusion reaction to create a nuclear fuel cycle. It is noted that the major elements of the SEI will include a heavy-lift launch vehicle, a transfer vehicle and a descent/ascent vehicle for use on lunar missions and adaptable to Mars exploration.

  11. Nanostructured Materials Development for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.

    2003-01-01

    There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.

  12. Participation without Power: Subterfuge or Development?

    ERIC Educational Resources Information Center

    Smith, B. C.

    1998-01-01

    Inauthentic participation may be limited to providing inputs, giving the community no power. However, even weak participation in the form of utilization, contributions, enlistment, cooperation, and consultation can have benefits. (Author/SK)

  13. New developments in RF power sources

    SciTech Connect

    Miller, R.H.

    1994-06-01

    The most challenging rf source requirements for high-energy accelerators presently being studied or designed come from the various electron-positron linear collider studies. All of these studies except TESLA (the superconducting entry in the field) have specified rf sources with much higher peak powers than any existing tubes at comparable high frequencies. While circular machines do not, in general, require high peak power, the very high luminosity electron-positron rings presently being designed as B factories require prodigious total average rf power. In this age of energy conservation, this puts a high priority on high efficiency for the rf sources. Both modulating anodes and depressed collectors are being investigated in the quest for high efficiency at varying output powers.

  14. Development of an aeroelastic vibration power harvester

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Garcia, Ephrahim

    2009-03-01

    Aeroelastic vibration of structures represents a novel energy harvesting opportunity that may offer significant advantages over traditional wind power devices in many applications. Such a system could complement existing alternative energy sources by allowing for distributed power generation and placement in urban areas. The device configuration of a simple two degree aeroelastic system suitable for piezoelectric power harvesting is presented. The mechanical, electromechanical, and aerodynamic equations of motion governing the dynamics and electrical output of the system as a function of incident wind speed are derived. The response and current output of one design for a bench top scale harvester are simulated and presented. Finally, a strategy for expanding the operating envelope of the power harvester is proposed and discussed.

  15. Electric power needs in developing countries: Cogeneration and standardization

    SciTech Connect

    Bollini, R.; Youn, L.T.

    1996-12-31

    All of the developing countries need electric power for their industrial, commercial, and domestic use. The use of electricity will increase very rapidly in the underdeveloped countries as their economies improve, as it did in the developed nations during the sixties and seventies. This paper discusses the standardization of power plant design and construction as a means to achieve power plants with high overall efficiency, promote international competition to reduce power plant cost, and promote careful planning to safeguard the environment.

  16. Development of Automated Power Systems Management for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1980-01-01

    Automated Power Systems Management is a technology being developed at JPL to provide the capability for onboard monitoring, computation, and control of planetary-spacecraft electrical power systems without the need for ground intervention. The technology uses microcomputers to provide the control and flexibility necessary to achieve rapid and decisive control of power system functions in the event of electrical power failures or unplanned events requiring power system responses. The current program at JPL includes the design, fabrication, test, and evaluation of a breadboard spacecraft power system, modified to incorporate automated power system functions which are implemented by means of a distributed microcomputer system.

  17. Technology development for high power induction accelerators

    SciTech Connect

    Birx, D.L.; Reginato, L.L.

    1985-06-11

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  18. Development of the NEXT Power Processing Unit

    NASA Technical Reports Server (NTRS)

    Phelps, Thomas K.; Wiseman, Steve; Komm, David S.; Bond, Thomas; Pinero, Luis R.

    2005-01-01

    Boeing Electron Dynamic Devices, Inc. (EDD) has designed and fabricated a breadboard version of a 6 kW power processing unit (PPU) for gridded ion thrusters. This breadboard PPU will be integrated with an engineering model 40 cm ion engine designed and tested at NASA Glenn. The results of our tests using resistive loads are reported in this paper. The PPU demonstrated efficiencies to date are higher than 95 percent for the beam supply and higher than 92 percent for the discharge supply at full power. Overall PPU efficiency is greater than 94 percent at full throttle settings.

  19. Power plant development at Mammoth Project

    SciTech Connect

    Holt, B.; Campbell, R.G.

    1984-04-01

    The Mammoth Geothermal Project is located within the Long Valley Known Geothermal Resources Area (KGRA) on the eastern slope of the Sierra Nevada mountain range of California some 300 miles north of Los Angeles. The plant is owned by Mammoth-Pacific (M-P), a joint venture of Pacific Energy Resources Incorporated and Mammoth Binary Power Company. The plan is to build two identical 3500 kW (net) air-cooled binary cycle geothermal power plants scheduled for completion in mid 1984. Nearly all the residential and commercial space heating in the Mammoth Lakes area is electrical. Electrical usage peaks in the wintertime, unlike the rest of the Edison system. While some power is provided by hydro plants in the area, most of the Edison supply arrives via a transmission line connecting to Edison facilities in the Mojave desert some 200 miles to the south. Peak power consumption in the area is about 40 MWe. The need to augment energy needs in the area by producing electricity from geothermal resources and using geothermal heat to replace electricity for space heating has long been recognized. The feasibility of this project is discussed.

  20. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    NASA Technical Reports Server (NTRS)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  1. The privatization mosaic: International power development agendas and opportunities

    SciTech Connect

    Pfeffer, J.L.

    1992-10-01

    This article examines the international trend toward private ownership of state-owned power production, transmission and distribution systems. The topics of the article include trends towards private investment in electric power systems, alternative opportunities for private sector investment, investor objectives in private power development and utility privatization, and potential investors in overseas projects.

  2. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  3. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    The possible role of Solar Power Satellites (SPS) in advancing the goals of the Space Exploration Initiative is considered. Three approaches are examined: (1) the use of lunar raw materials to construct a large SPS in GEO, (2) the construction of a similar system on the lunar surface, and (3) a combination of (1) and (2). Emphasis is given to the mining of He-3 from the moon and its use by the SPS.

  4. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  5. JPL - Small Power Systems Applications Project. [for solar thermal power plant development and commercialization

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Marriott, A. T.; Truscello, V.

    1978-01-01

    The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.

  6. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  7. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  8. Economic prerequisites for the development of nuclear power

    SciTech Connect

    Chernilin, Y.F.

    1995-10-01

    The development of nuclear power, as no other field of human endeavor, has revealed the need for predicting the consequences of nuclear power not only in the production of energy itself, but also in the ecology, economics, and even politics. On the one hand, the future of nuclear power is determined by a society`s attitude toward nuclear power and depends on economic possibilities. On the other hand, the future society and the economic situation that will develop in the world will largely depend on the amount of energy accessible to mankind and the method used to obtain it, and therefore also the relative contribution of atomic energy to the total balance of energy production. In declaring its attitude toward nuclear power, society is now determining to a definite extent not only the future of nuclear power but also nuclear power itself. This article is an abstract of the entire report.

  9. Geothermal power development: 1984 overview and update

    SciTech Connect

    DiPippo, R.

    1984-10-01

    The status of geothermal power plants as of mid-1984 is given. There are 15 countries with active plants, and France (Guadeloupe) is expected to join the roster in the near future. The total number of operating units (defined as individual turbo-generator sets) is 145; the total installed capacity is somewhat less than 3770 MW. If plans for additional plants are met, the total could jump by more than 200 MW over the next two years. Recent growth is presented and the worldwide installed capacity is traced. A graphic portrayal of the growth pattern is presented. The countries that will be most responsible for sustaining this growth are the US, the Philippines, Mexico, and Indonesia. Other countries that will contribute significantly include Italy, Japan, Kenya, Nicaragua, and Turkey. The following countries do not now have any geothermal plants but may bring some online by 1990: Guatemala, Costa Rica, Greece, St. Lucia, Thailand, and Ethiopia.

  10. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  11. NASA's Advanced Radioisotope Power Conversion Technology Development Status

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Sankovic, John; Wilt, David; Abelson, Robert D.; Fleurial, Jean-Pierre

    2007-01-01

    NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.).

  12. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect

    Schmidt, George R.; Houts, Michael G.

    2006-01-20

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  13. Development of management technology for large power systems. [of spacecraft

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Messner, A.; Graves, J.

    1982-01-01

    Autonomous power management has been proposed as a method to perform optimization of power subsystem performance in connection with the management of multikilowatt space platforms. A concept for a 250-kW utility-type power subsystem was developed. A Cassegrain concentrator solar array primary source is conditioned by a solar array switching unit which supplies seventeen 220 +20 Vdc power channels. A power management subsystem provides the monitoring and control of the overall electrical power subsystem. The discussed system concept for autonomous management of high power space platforms utilizes on-board microprocessors in a decentralized data management architecture. A data bus protocol and a data bus contention resolution scheme were selected in conjunction with the dencentralized management architecture.

  14. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-{Tc}) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-{Tc} superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs.

  15. Technology development issues in space nuclear power for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Atkins, K. L.; Mastal, E. F.; Mcconnell, D. G.

    1990-01-01

    Planning for future planetary exploration missions indicates that there are continuing, long range requirements for nuclear power, and in particular radioisotope-based power sources. In meeting these requirements, there is a need for higher efficiency, lower mass systems. Four technology areas currently under development that address these goals are described: modular RTG, modular RTG with advanced thermoelectric materials, dynamic isotope power system (DIPS), and the Alkali Metal Thermoelectric Converter (AMTEC).

  16. Heat engine development for solar thermal power systems

    NASA Astrophysics Data System (ADS)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  17. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  18. Photovoltaic power conditioners: Development, evolution, and the next generation

    SciTech Connect

    Bulawka, A.; Krauthamer, S.; Das, R.; Bower, W.

    1994-07-01

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  19. Photovoltaic power conditioners: Development, evolution, and the next generation

    NASA Astrophysics Data System (ADS)

    Bulawka, A.; Krauthamer, S.; Das, R.; Bower, W.

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  20. Power Systems Development Facility: Design, Construction, and Commissioning Status

    SciTech Connect

    Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

    1996-12-31

    This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

  1. Power Mechanics Curriculum Guide. Curriculum Development. Bulletin 1813.

    ERIC Educational Resources Information Center

    Territo, Peter A., Jr.; McMurry, James G.

    This model instructional unit was developed to aid trade and industrial education teachers in Louisiana in preparing students for careers in the field of power mechanics. Students are provided experiences related to the design, theory, construction, and appropriate uses of the power systems, as well as the maintenance and repair of the more common…

  2. Developing Student Character: Community College Professors Who Share Power

    ERIC Educational Resources Information Center

    Humphreys, Connie K.

    2012-01-01

    This phenomenological study examined the definitions, values, and experiences of seven community college professors who have tried to promote student character development by sharing some of their power in the classroom. Power sharing is a participative gesture, and participative teachers can encourage students to become more engaged in their own…

  3. Developing Student Character: Community College Professors Who Share Power

    ERIC Educational Resources Information Center

    Humphreys, Connie K.

    2012-01-01

    This phenomenological study examined the definitions, values, and experiences of seven community college professors who have tried to promote student character development by sharing some of their power in the classroom. Power sharing is a participative gesture, and participative teachers can encourage students to become more engaged in their own

  4. Incorporating international environmental legislation into power plant development. Part 2

    SciTech Connect

    Cooper, H.W.

    1997-11-01

    Part 1 reviewed aspects of global environmental legislation affecting power plant development: Economics, Energy and the Environment; Environmental Overview of Power Plant Projects; Environmental Impact Issues; and The Regulators. Part 2 concludes the article with reports on Environmental Standards; Meeting Environmental Requirements; Obtaining Environmental Permits; and Trends.

  5. High power target developments at ISAC

    NASA Astrophysics Data System (ADS)

    Bricault, P.; Dombsky, M.; Dowling, A.; Lane, M.

    2003-05-01

    TRIUMF, Canada's national research facility for particle and nuclear physics is currently operating the ISAC facility. A high-energy proton beam from the H - TRIUMF cyclotron is used to generate short-lived radioactive species in a thick target. An ion source at the target creates a radioactive beam, which is then injected into the ISAC beam lines and accelerator system. The ISAC facility is designed to accept proton beam intensity up to 100 ?A at 500 MeV. At present our target design can only sustains 40 ?A at maximum. Beyond this point the target has to be cooled. A new target equipped with fins has been developed that may sustain proton beam up to 100 ?A. The fined target has been tested off-line and a thermal simulation using ANSYS has been conducted and the results are reported here.

  6. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  7. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  8. Development of a General Purpose Power System Control Board

    SciTech Connect

    Nam, S.H.; Jeong, S.H.; Kim, S.H.; Kim, S.C.; Park, S.S.; Suh, J.H.; Bellomo, P.; Cassel, R.; Larsen, R.; Nguyen, M.N.; /SLAC

    2007-07-23

    In an effort to control modern solid state power modules, a general purpose, multi function power system control board (PSCB) has been under development as a collaboration project between Pohang Accelerator Laboratory (PAL), Korea, and Stanford Linear Accelerator Center (SLAC), USA. The PSCB is an embedded, interlock supervisory, diagnostic, timing, and set-point control board. It is designed to use in various power systems such as sequenced kicker pulsers, solid state RF modulators, simple DC magnet power supplies, etc. The PSCB has the Ethernet communication with the TCP/IP Modbus protocol.

  9. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  10. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  11. Development of Thin-Film Battery Powered Transdermal Medical Devices

    SciTech Connect

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-film battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.

  12. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  13. Development of a neural network predictor for wind power

    SciTech Connect

    Devgan, S.S.; Bodruzzaman, M.

    1997-06-01

    Increasing public concern about environmental impact of emissions from fossil fuel generating stations, disposal of hazardous materials and threat of nuclear mishap is causing great uncertainty in approval and installation of traditional large generating stations to meet future energy needs. Additionally federal regulation regarding the level of CO{sub 2} and SO{sub 2} emission is urging utilities to consider non-polluting sources of power in their overall generation mix to meet continued increasing demand for electric power also as they retire old generation stations. PURPA is requiring utilities to provide access to their transmission and distribution systems for independent power producers. All of this is forcing the utility industry to consider alternate sources of power especially renewable and non-polluting sources such as wind power. Because of its very nature wind is very unpredictable and thus the power from wind electric power systems. As the wind power sources gain more reliability in performance and become cost competitive, the penetration level of wind power in the overall generation mix will increase. Reliable wind power prediction methods are needed. Short time predictions are needed for economic generation scheduling and long term wind power prediction will be useful for planning purposes. Neural networks have been used and are very good for pattern recognition and when fully trained their response is extremely fast and they are very robust. Neural networks have been investigated for load prediction for utilities. This paper investigates different multilayer feedforward neural network architectures using back-propagation algorithm for the development of a neural network-based wind turbine power output predictor. This multilayer feedforward neural network was trained and tested on a sample wind turbine power output data set. This paper will also discuss control and communication issues related to interface of wind electric power system with utility.

  14. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  15. Assessing Teachers' Developing Interpretive Power: Analysing Student Thinking

    ERIC Educational Resources Information Center

    Nickerson, Susan D.; Masarik, Diane K.

    2010-01-01

    A cohort of middle school mathematics teachers in the U.S. participated in a two-year professional development program that focused on developing a deeper conceptual understanding of the mathematics of middle school with connections to instructional practice. We assessed the teachers' developing interpretive power, specifically developing…

  16. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  17. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  18. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  19. Full power level development of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Colbo, H. I.

    1982-01-01

    Development of the Space Shuttle main engine for nominal operation at full power level (109 percent rated power) is continuing in parallel with the successful flight testing of the Space Transportation System. Verification of changes made to the rated power level configuration currently being flown on the Orbiter Columbia is in progress and the certification testing of the full power level configuration has begun. The certification test plan includes the accumulation of 10,000 seconds on each of two engines by early 1983. Certification testing includes the simulation of nominal mission duty cycles as well as the two abort thrust profiles: abort to orbit and return to launch site. Several of the certification tests are conducted at 111 percent power to demonstrate additional safety margins. In addition to the flight test and development program results, future plans for life demonstration and engine uprating will be discussed.

  20. MGX: a high-power, pulsed microwave generator development project

    SciTech Connect

    Scarpetti, R.; Vogtlin, G.; Lundberg, R.; Burkhart, S.; Hofer, W.

    1983-06-03

    A high-power, short-pulse microwave source, MGX, is being developed at Lawrence Livermore National Laboratory. It will be used for high-power microwave vulnerability and lethality studies, investigation of air breakdown, and high-power microwave diagnostic development. The microwave source, a virtual cathode oscillator (VIRCATOR), is initially designed to operate at 8 GHz, with an output power greater than 1 GW, and 70 ns pulse width. The pulsed power source is a modified one-unit FXR Blumlein system charged to approximately 650 kV. A new insulator and electron-beam diode have been designed. In addition, a water-breakdown gap has been included to suppress diode prepulse and to sharpen the pulse rise time. The VIRCATOR has been extensively modeled with the MASK code at LLNL. Preliminary results are presented.

  1. Development of an analytical tool to study power quality of AC power systems for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan; Kankam, M. David

    1991-01-01

    A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of the Electric Power Research Institute's HARMFLO program which assumes a three phase, balanced, AC system with loads of harmonic distortion. The modified power flow program can be used with single phase, AC systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20 kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of present results with published data. Although the results are not exact, the discrepancies are relatively small.

  2. Development of an analytical tool to study power quality of ac power systems for large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. A.; Kankam, M. D.

    1991-01-01

    A harmonic power flow program applicable to space power systems with sources of harmonic distortion is described. The algorithm is a modification of Electric Power Research Institute's HARMFLO program which assumes a three-phase, balanced, ac system with loads of harmonic distortion. The modified power flow program can be used with single phase, ac systems. Early results indicate that the required modifications and the models developed are quite adequate for the analysis of a 20-kHz testbed built by General Dynamics Corporation. This is demonstrated by the acceptable correlation of the present results with published data. Although the results are not exact, the discrepancies are relatively small.

  3. Development status of the small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1982-01-01

    The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.

  4. Innovation on Energy Power Technology (13)Development of Geothermal Power Generating Facilities

    NASA Astrophysics Data System (ADS)

    Sakai, Yoshihiro

    The geothermal power generating facilities that utilize the geothermal energy from the earth are environment-friendly, because they scarcely emit the greenhouse gases such as carbon dioxide (CO2) or the environmental pollution substances such as nitrogen oxides (NOx) and sulfur oxides (SOx). On the other hand, they should work swallowing the geothermal steam that contains much amount of chemical impurities such as hydrogen sulfides (H2S), sulfates (SO42-), chlorides (Cl-), silica (SiO2), etc. Therefore, it is not too much to say that the geothermal power generation is a fight against the chemical impurities. Since the first practical geothermal power generating facility in Japan began operating with a small capacity of 30kW in 1960 at Hakone Kowakien, Japanese manufacturers have been developing geothermal power generating facilities and supplying them worldwide. The geothermal power generation is one of the technical challenges that gives a hope for a sustainable development of the human society.

  5. Ultra-low power microwave CHFET integrated circuit development

    SciTech Connect

    Baca, A.G.; Hietala, V.M.; Greenway, D.; Sloan, L.R.; Shul, R.J.; Muyshondt, G.P.; Dubbert, D.F.

    1998-04-01

    This report summarizes work on the development of ultra-low power microwave CHFET integrated circuit development. Power consumption of microwave circuits has been reduced by factors of 50--1,000 over commercially available circuits. Positive threshold field effect transistors (nJFETs and PHEMTs) have been used to design and fabricate microwave circuits with power levels of 1 milliwatt or less. 0.7 {micro}m gate nJFETs are suitable for both digital CHFET integrated circuits as well as low power microwave circuits. Both hybrid amplifiers and MMICs were demonstrated at the 1 mW level at 2.4 GHz. Advanced devices were also developed and characterized for even lower power levels. Amplifiers with 0.3 {micro}m JFETs were simulated with 8--10 dB gain down to power levels of 250 microwatts ({mu}W). However 0.25 {micro}m PHEMTs proved superior to the JFETs with amplifier gain of 8 dB at 217 MHz and 50 {mu}W power levels but they are not integrable with the digital CHFET technology.

  6. Development of ceramic superconductors for electric power applications

    SciTech Connect

    Balachandran, U.

    1997-03-01

    The U.S. Department of Energy supports an applied superconductivity program entitled {open_quotes}Superconductivity Program for Electric Power Systems.{close_quotes} Activities under this program are designed to help develop the high-temperature superconductor (HTS) technology that is needed for industry to proceed with the commercial development of electric power applications. Research is conducted in three categories: wire development, systems technology development, and Superconductivity Partnership Initiative (SPI). Wire development activities are devoted to improving the critical current density (J{sub c}) of short-length HTS wire, whereas activities in systems technology development focus on fabrication of long-length wires, coils, and magnets. Finally, SPI activities focus on the development of prototypes that consist of a generator coil, a fault current limiter, a transmission cable, and a motor. A current overview and recent progress in the development of HTSs are outlined in this paper. 48 refs., 6 figs.

  7. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  8. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Astrophysics Data System (ADS)

    Schmitz, Gregory V.; Biess, John J.

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  9. Development of high frequency low weight power magnetics for aerospace power systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1984-01-01

    A dominant design consideration in the development of space type power mangetic devices is the application of reliable thermal control methods to prevent device failure which is due to excessive temperature rises and hot temperatures in critical areas. The resultant design must also yield low weight, high efficiency, high reliability and maintainability, and long life. The weight savings and high efficiency that results by going to high frequency and unique thermal control techniques is demonstrated by the development of a 25 kVA, 20 kHz space type transformer under the power magnetics technology program. Work in the area of power rotary transformer is also discussed.

  10. Development of a linear piston-type pulse power electric generator for powering electric guns

    NASA Astrophysics Data System (ADS)

    Summerfield, Martin

    1993-01-01

    The development of a linear piston-type electric pulse-power generator capable of powering electric guns and EM (rail and coil) guns and ET guns, presently under development, is discussed. The pulse-power generator consists of a cylindrical armature pushed by gases from the combustion of fuel or propellant through an externally produced magnetic field. An arrangement of electrodes and connecting straps serves to extract current from the moving armature and to send it to an external load (the electric gun).

  11. 75 FR 76455 - Coso Energy Developers; Coso Finance Partners; Coso Power Developers; Notice Of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Coso Energy Developers; Coso Finance Partners; Coso Power Developers; Notice... Finance Partners, and Coso Power Developers, pursuant to section 207 of the Federal Energy...

  12. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  13. Development of a multikilowatt ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Goldin, D. S.; Biess, J. J.

    1972-01-01

    A feasibility study was made of the application of silicon-controlled, rectifier series, resonant inverter, power conditioning technology to electric propulsion power processing operating from a 200 to 400 Vdc solar array bus. A power system block diagram was generated to meet the electrical requirements of a 20 CM hollow cathode, mercury bombardment, ion engine. The SCR series resonant inverter was developed as a primary means of power switching and conversion, and the analog signal-to-discrete-time-interval converter control system was applied to achieve good regulation. A complete breadboard was designed, fabricated, and tested with a resistive load bank, and critical power processor areas relating to efficiency, weight, and part count were identified.

  14. Development of an Integrity Evaluation System for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jin; Choi, Jae-Boong; Lee, Joon-Seong; Jun, Hyun-Kyu; Park, Youn-Won

    This paper describes the structure and development strategy for integrity evaluation system for nuclear power plants called NPP-KINS/SAFE. NPP-KINS/SAFE consists of three different programs covering the integrity assessment of reactor pressure vessel, pipings, and pressure tubes, respectively. The system has been developed based on currently available codes and standards, and includes a number of databases, expert systems, and numerical analysis schemes. NPP-KINS/SAFE is applicable for various types of nuclear power plants constructed in Korea with the aid of attached database systems including plant specific data. Case studies for the developed system are also provided.

  15. Should the US abandon efforts to develop commercial fusion power

    SciTech Connect

    Kay, W.D.; Kinter, E.E.

    1993-01-22

    This article presents viewpoints and rationale for continuing and disbanding the US efforts to develop commercial fusion power. The views of W.D. Kay, an assistant professor of political science at Northeastern University, are presented regarding - yes, abandon efforts. Meanwhile, the views of Edwin Keutes, former director of the Magnetic Fusion Program for DOE, are presented for continued development.

  16. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  17. Repetitive high energy pulsed power technology development for industrial applications

    SciTech Connect

    Schneider, L.X.; Reed, K.R.; Kaye, R.J.

    1996-10-01

    The technology base for Repetitive High Energy Pulsed Power (RHEPP) was originally developed to support defense program applications. As RHEPP technology matures, its potential for use in commercial applications can be explored based on inherent strengths of high average power, high dose rate, cost efficient scaling with power, and potential for long life performance. The 300 kW, 2 MeV RHEPP II accelerator is now in operation as a designated DOE User Facility, exploring applications where high dose-rate (> 10{sup 8} Gy/s) may be advantageous, or very high average power is needed to meet throughput requirements. Material surface and bulk property modification, food safety, and large-scale timber disinfestation are applications presently under development. Work is also in progress to generate the reliability database required for the design of 2nd generation systems.

  18. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  19. Space shuttle orbiter auxiliary power unit development challenges

    NASA Technical Reports Server (NTRS)

    Lance, R.; Weary, D.

    1985-01-01

    When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.

  20. Current and future developments in diesel powered hovercraft

    NASA Astrophysics Data System (ADS)

    Leonard, J. C.; Stevens, M. J.; Buttigieg, J. A.

    After evaluating the development status of the application of diesel power to air-cushion vehicles (ACVs) and surface-effect ships (SESs), attention is given to the AP1-88 ACV, which is both the first and largest operational diesel-powered amphibious craft of this type. An account is given of the ACV and SES features that are dictated by the need to accommodate diesel power sources; the major advantages and disadvantages of diesel (vs gas turbine) engines are discussed. Although cost reductions are achievable against gas turbine powerplant use, lower payload fractions and slightly lower performance capabilities appear to be inescapable.

  1. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  2. Geothermal Power Development Resource Evaluation Aspects for Kyushu Electric Power Co., Inc., Fukuoka, Japan

    SciTech Connect

    1980-10-30

    This report is a limited review of and presents comments on the geothermal resource exploration program of Kyushu Electric Power Company (KEPCO). This program is for developing geothermal resources to generate electric power on Kyushu Island, Japan. Many organizations in Japan and in particular Kyushu Electric Power Co., Inc. are actively exploring for and developing geothermal resources on Kyushu Island. KEPCO has already demonstrated an ability and expertise to explore for geothermal resources by their successful exploration and subsequent development of several fields (Hatchobaru and Otake) on the island of Kyushu for electric power generation. The review and comments are made relative to the geothermal resource aspects of Kyushu Electric Power Company's geothermal exploration program, and within the time, budget, and scope of the Rogers Engineering's effort under the existing contract. Rogers and its consultants have had a wide variety of geothermal exploration experience and have used such experience in the analysis of what has been presented by KEPCO. The remainder of the introduction section develops general knowledge concerning geothermal power development with particular emphasis on the resource exploration. The data received section describes the information available to perform the project work. There are no interpretative parts to the data received section. The philosophy section relates our understanding of the KEPCO thinking and conditions surrounding current geothermal resource development in Japan. The survey and methods sections presents three important items about each study KEPCO has performed in the resource exploration program. These three aspects are: what should be obtained from the method, what data was obtained and presented, and what is a review and analysis of where the KEPCO exploration program is currently in terms of progress and successful location of reservoirs. The final section presents recommendations on the many aspects of the resource exploration for geothermal power development.

  3. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

  4. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  5. Development Status of the NSTAR Ion Propulsion System Power Processor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.

    1995-01-01

    A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.

  6. Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs—Summary Report

    SciTech Connect

    O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; Leo, R.; Perman, K.

    2013-07-01

    This document is a summarization of the report, Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs, the final report for phase 2 of the SPSP (DOE workforce study) project.

  7. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect

    Makino, R. Kobayashi, K.; Kubo, S.; Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.

    2014-11-15

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  8. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  9. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  10. Incorporating international environmental legislation into power plant development. Part 1

    SciTech Connect

    Cooper, H.W.

    1997-10-01

    New power plant installations are shifting world-wide faster than anyone could have imagined, even two years ago. Acumen and experience developed laboriously in the US is now in international demand. Dr. Cooper`s two-part series explores the environmental legislation which is integral to this global development. Part 1 reviews economics, energy and the environment; environmental overview of power plant projects; environmental impact issues; and concludes with the regulators. Part 2, to appear in the Fall 1997 issue, carries on with environmental standards; meeting environmental requirements; obtaining environmental permits and trends.

  11. Development status of the SP-100 power system

    NASA Technical Reports Server (NTRS)

    Mondt, Jack F.

    1989-01-01

    The SP-100 Program, whose goal is to develop 10 to 1000 kW electric space reactor power systems for use in civil and military space missions in the mid 1990s and beyond, is described. The major accomplishments of the SP-100 ground engineering system development project are: (1) completion of the preliminary design of the reactor test facility, and (2) completion of the generic flight system design which meets the technical specifications and is the basis for all the ground engineering system analytical and experimental tasks. The power conditioning, control, and distribution subsystem is indicated schematically.

  12. Development of decommissioning technology for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ogawa, Nagano; Saishu, Sadanori; Ishikura, Takeshi

    2000-01-01

    More than 30 years have already passed since the first commercial nuclear power plant in Japan was put in operation. Presently, about 50 commercial nuclear power plants (NPPs) are operating and in the future NPP will be ceased the operation and the plant will be decommissioned. NUPEC has been developing the decommissioning technology undertaking the safe, secure, and rational decommissioning for NPPs since 1982. NUPEC has focused its development effort on techniques for decontamination before dismantling, reactor facility dismantling, measurement of residual radioactivity in buildings, waste decontamination, recycling.

  13. Development of the SCRF Power Coupler for the APT Accelerator

    SciTech Connect

    Schmierer, E.N.; Lujan, R.E.; Rusnak, B.; Smith, B.; Haynes, W.B.; Gautier, C.; Waynert, J.A.; Krawczyk, F.; Gioia, J.

    1999-03-01

    The team responsible for the design of the Accelerator Production of Tritium (APT) superconducting (SC) radio frequency (RF) power coupler has developed two 700-MHz, helium gas-cooled power couplers. One has a fixed inner conductor and the other has an adjustable inner conductor (gamma prototype and alpha prototype). The power couplers will be performance tested in the near future. This paper discusses the mechanical design and fabrication techniques employed in the development of each power coupler. This includes material selection, copper coating, assembly sequences, and metal joining procedures, as well as the engineering analyses performed to determine the dynamic response of the inner conductors due to environmental excitations. A bellows is used in both prototype inner conductors in the area near the ceramic RF window, to compensate for thermal expansion and mechanical tolerance build-up. In addition, a bellows is used near the tip of the inner conductor of the alpha prototype for running the power coupler after it is installed on the accelerator. Extensive analytical work has been performed to determine the static loads transmitted by the bellows due to thermally induced expansion on the inner conductor and on the RF window. This paper also discusses this analysis, as well as the mechanical analysis performed to determine the final geometric shape of the bellows. Finally, a discussion of the electromagnetic analysis used to optimize the performance of the power couplers is included.

  14. Lightweight Radiators Being Developed or Advanced Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Tew, Roy C.; Thieme, Lanny G.

    2001-01-01

    The thermodynamic heat-to-electric power conversion efficiency of Stirling systems is 3 to 5 times higher than that of thermoelectric converters. Hence for unmanned deep space probes, Stirling advanced radioisotope power systems (ARPS) could deliver up to 5 times as much power as radioisotope thermoelectric generators for the same amount of radioisotope, or they could require one-third to one-fifth as much isotope inventory for the same power output. However, Stirling power systems reject unconverted heat at much lower temperatures than radioisotope thermoelectric generators. Normally, this requires larger and heavier heat-rejection subsystems because of the greater radiator areas, which are proportional to the first power of the heat rejected and the fourth power of the absolute heat-rejection temperature, as specified by the Stefan-Boltzmann radiation heat transfer law. The development of directly coupled disk radiators using very high conductivity encapsulated thermopyrolitic graphite materials represents a significant advance in Stirling ARPS space heat-rejection subsystem technology. A conceptual Stirling ARPS with two engines coupled to a radioisotope general-purpose heat source (GPHS) is shown in the illustration.

  15. DIII-D power supply, design, and development

    SciTech Connect

    Nerem, A.

    1995-02-01

    An overview of the DIII-D power supply system with information details concerning the configuration, power ratings, acquisition costs, and cost scaling relevant to the design of ITER and other tokamaks is presented. The power supplies for the DIII-D tokamak were installed and commissioned during the late 1970`s and the beginning of the 1980`s. Several upgrades have been implemented during the last two years to solve increasing reliability problems encountered as the equipment aged, to provide enhanced operational flexibilities, and to enable operation at the higher power levels needed to provide experimental data relevant to the ITER and TPX design activities. These upgrades ranged from redesign of the power supply control systems to the replacement of vacuum circuit breakers which had become unreliable in service. A new interlock and protection system has also been implemented using the latest programmable logic controllers (PLC) and computer technology. These upgrades have been highly successful and are described to provide insight to many issues in the specification of high power converters. Power supply models used in the design of the DIII-D Plasma Control System are also described along with model verification test data. These models are being used in the development of a new advanced plasma control system for the DIII-D tokamak. Recent operational experience and results are presented.

  16. The MGX: A high power, pulsed microwave generator development project

    NASA Astrophysics Data System (ADS)

    Scarpetti, R.; Vogtlin, G.; Lundberg, R.; Burkhart, S.; Hofer, W.

    1983-06-01

    Lawrence Livermore National Laboratory. It will be used for high-power microwave vulnerability and lethality studies, investigation of air breakdown, and high-power microwave diagnostic development. The microwave source, a virtual cathode oscillator (VIRCATOR), is initially designed to operate at 8 GHz, with an output power greater than 1 GW, and 70 ns pulse width. The pulsed power source is a modified one-unit FXR Blumlein system charged to approximately 650 kV. A new insulator and electron-beam diode have been designed. In addition, a water-breakdown gap has been included to suppress diode prepulse and to sharpen the pulse rise time. The VIRCATOR has extensively modeled with the MASK code at LINI. Preliminary results are presented.

  17. Newly developed high-power laser diode bars

    NASA Astrophysics Data System (ADS)

    Kageyama, Nobuto; Morita, Takenori; Torii, Kousuke; Takauji, Motoki; Nagakura, Takehito; Maeda, Junya; Miyajima, Hirofumi; Yoshida, Harumasa

    2012-03-01

    High Power Laser Diode (LD) modules are widely used as high-brightness light sources for pumping solid-state lasers and for direct diode laser processing utilizing a compact feature. The LD bars installed in modules are required with higher output power, efficiency and beam quality. We have optimized the LD bar structure for high output power and efficient operation. The water-cooled heat sink has been designed for excellent thermal performance as well as long-term stable cooling performance. We have also developed the thermal expansion controlled assembly technique to suppress the "smile". As a result, we have achieved an output power of over 200 W and a conversion efficiency of 58% from 940 nm LD bars under continuous wave (CW) operation with very low smile of 0.8 ?m.

  18. Development of lightweight radiators for lunar based power systems

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology.

  19. Development of Lightweight Radiators for Lunar Based Power Systems

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1994-01-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology.

  20. Development of a dual-field heteropoplar power converter

    NASA Technical Reports Server (NTRS)

    Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.

    1981-01-01

    The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.

  1. Middle Eastern power systems; Present and future developments

    SciTech Connect

    Not Available

    1992-06-01

    Middle Eastern Power systems have evolved independently of each other over many decades. The region covers a wide geographical area of over 4 million square kilometers with an estimated population in 1990 of over 120 million people. This paper discusses the present status and future power system developments in the Middle East with emphasis on the Mashrequ Arab Countries (MAC). MAC consists of Egypt, Iraq, Jordan, Lebanon, Syria, Yemen, and the six Gulf Cooperation Council (GCC) countries, namely, Bahrain, Kuwait, Qatar, Saudi Arabia, Oman, and the United Arab Emirates (UAE). Interconnections within MAC and possible extensions to Turkey, Europe, and Central Africa are discussed. A common characteristic of the MAC power systems is that they are all operated by government or semi-government bodies. The energy resources in the region are varied. Countries such as Iraq, Egypt, and Syria have significant hydro power resources. On the other hand, the GCC countries and Iraq have abundant fossil fuel reserves.

  2. A Practical Approach to Starting Fission Surface Power Development

    SciTech Connect

    Mason, Lee

    2006-07-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential road-map for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology test-bed to investigate and resolve system integration issues. (author)

  3. A Practical Approach to Starting Fission Surface Power Development

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.

  4. Progress in High Power Free-Piston Stirling Convertor Development

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Kirby, Raymond L.; Chapman, Peter A.; Walter, Thomas J.

    2008-01-01

    The U.S. Space Exploration Policy has established a vision for human exploration of the moon and Mars. One option for power for future outposts on the lunar and Martian surfaces is a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. A 25 kW convertor was developed in the 1990s under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in such a possible lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Foster-Miller, Inc. is developing the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  5. The Electric Power System of the International Space Station: A Platform for Power Technology Development

    NASA Technical Reports Server (NTRS)

    Gietl, Eric B.; Gholdston, Edward W.; Manners, Bruce A.; Delventhal, Rex A.

    2000-01-01

    The electrical power system developed for the International Space Station represents the largest space-based power system ever designed and, consequently, has driven some key technology aspects and operational challenges. The full U.S.-built system consists of a 160-Volt dc primary network, and a more tightly regulated 120-Volt dc secondary network. Additionally, the U.S. system interfaces with the 28-Volt system in the Russian segment. The international nature of the Station has resulted in modular converters, switchgear, outlet panels, and other components being built by different countries, with the associated interface challenges. This paper provides details of the architecture and unique hardware developed for the Space Station, and examines the opportunities it provides for further long-term space power technology development, such as concentrating solar arrays and flywheel energy storage systems.

  6. Power Systems Development Facility Gasification Test Campaing TC14

    SciTech Connect

    Southern Company Services

    2004-02-28

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  7. Electrodeless lighting RF power source development. Final report

    SciTech Connect

    1996-08-30

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  8. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  9. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  10. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  11. High-power microwave source development at Los Alamos

    SciTech Connect

    Fazio, M.V.; Kinross-Wright, J.; Hoeberling, R.F.; VanHaaften, F.

    1988-01-01

    Experimental research is under way at Los Alamos to develop the large-orbit gyrotron and the resonant-cavity virtual cathode oscillator as very high power microwave sources. These sources, though still in an early stage of development, have demonstrated power outputs from the several hundred megawatt to the gigawatt level at various Laboratories. These devices exhibit very narrow band output, making them candidates for future accelerator drivers. Our efforts are directed toward achieving repetitively pulsed operation at pulse lengths in the microsecond regime. To provide the pulsed power for these experiments, a 1-MV, 10-kA modulator with a 1-..mu..s pulse length and a 5-Hz pulse-repetition frequency has been developed and is currently being assembled. The resonant-cavity virtual cathode source has achieved very narrow band output compared to the conventional free-running virtual cathode oscillator. Techniques are being developed for extracting the microwave power from both sources into the rectangular waveguide. The experimental effort is described and current experimental results are discussed.

  12. Development of power devices based on lyophobous working bodies

    NASA Astrophysics Data System (ADS)

    Sorokin, A. P.; Portianoy, A. G.; Serdun, E. N.; Egorov, V. S.; Moliavkin, A. N.; Portianoy, G. A.

    1999-01-01

    The possibility of development of new generation power devices of various functional assigning based on lyophobous capillary-porous systems is considered. The virtues and shortages of offered energy converters, accumulators, dampers, accident protection devices on a comparison with conventional devices of similar assigning are analyzed.

  13. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of

  14. The Hazards Posed by the Global Development of Nuclear Power

    ERIC Educational Resources Information Center

    O'Reilly, S. A.

    1976-01-01

    Outlines the growth in the demand for energy on a world-wide basis. Reviews the development of nuclear power and points out the many hazards in the nuclear fuel cycle. Describes the nature of nuclear wastes and explains the quantities involved and the current techniques for waste disposal. (GS)

  15. Power and Perspective: The Discourse of Professional Development School Literature

    ERIC Educational Resources Information Center

    Breault, Rick

    2014-01-01

    This paper reports on the results of a study in which the discourse within 75 professional development school (PDS)-related publications was examined to determine where the power, influence, and representation lies in PDS partnerships, as indicated by how those partnerships are described in writing. The results found that while university faculty…

  16. Research, Development, Demonstration and Deployment Issues in the Power Sector

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge In this chapter we explore the challenges in developing and deploying technology for mitigation of CO2 emissions associated with power generation. Past successes with controlling other pollutants (notab...

  17. Research, Development, Demonstration and Deployment Issues in the Power Sector

    EPA Science Inventory

    For Frank Princiottas book, Global Climate ChangeThe Technology Challenge In this chapter we explore the challenges in developing and deploying technology for mitigation of CO2 emissions associated with power generation. Past successes with controlling other pollutants (notab...

  18. 300-Watt Power Source Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.

    2005-01-01

    This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.

  19. Trends and prospects of development of geothermal power engineering

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.; Parshin, B. E.

    2012-11-01

    Analysis of the state and prospects of geothermal energetics development in Russia and foreign countries is carried out. Trends of improving the geothermal energy technologies are considered. An estimation of the development of promising binary power units for electric energy production by using low-temperature geothermal and other heat sources is given. The geothermal projects being dominant and best suited to be implemented in Russia are estimated.

  20. Development of over 300-watts average power excimer laser

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuhiro; Kawamura, Joichi; Katou, Hiroyuki; Sajiki, Kazuaki; Okada, Makoto

    2004-05-01

    The high power excimer laser was developed. We have supplied the 240 watts (800 mJ, 300 Hz) average power excimer laser for industrial use, mainly for TFT LCD annealing. We are going to add the 300 watts (1 J, 300 Hz) average power laser for our line-up. This 300 watts new laser is based on the 240 watts laser, but improved some points. The electrodes size is longer and the electrical power circuit is reinforcement. Laser gas recipe is changed to be good for new system. In our test, we could oscillate over 300 watts average power operation. 310 watts servo operation is able to oscillate over 40 million pulses with less than 1.0 per cent for ? output stability. 330 watts servo operation is able to oscillate over 30 million pulses with almost less than 1.0 per cent for ? output stability. Experimental and theoretical studies of various parameters influencing the laser performance will be continued with further investigations and future improvements. We have confidence that it will be possible for this laser to produce higher power with long gas life.

  1. Development and advances in conventional high power RF systems

    SciTech Connect

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ``wall plug`` to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders.

  2. Status of Brayton Cycle Power Conversion Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.

  3. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  4. Development of a robust space power system decision model

    NASA Astrophysics Data System (ADS)

    Chew, Gilbert; Pelaccio, Dennis G.; Jacobs, Mark; Stancati, Michael; Cataldo, Robert

    2001-02-01

    NASA continues to evaluate power systems to support human exploration of the Moon and Mars. The system(s) would address all power needs of surface bases and on-board power for space transfer vehicles. Prior studies have examined both solar and nuclear-based alternatives with respect to individual issues such as sizing or cost. What has not been addressed is a comprehensive look at the risks and benefits of the options that could serve as the analytical framework to support a system choice that best serves the needs of the exploration program. This paper describes the SAIC developed Space Power System Decision Model, which uses a formal Two-step Analytical Hierarchy Process (TAHP) methodology that is used in the decision-making process to clearly distinguish candidate power systems in terms of benefits, safety, and risk. TAHP is a decision making process based on the Analytical Hierarchy Process, which employs a hierarchic approach of structuring decision factors by weights, and relatively ranks system design options on a consistent basis. This decision process also includes a level of data gathering and organization that produces a consistent, well-documented assessment, from which the capability of each power system option to meet top-level goals can be prioritized. The model defined on this effort focuses on the comparative assessment candidate power system options for Mars surface application(s). This paper describes the principles of this approach, the assessment criteria and weighting procedures, and the tools to capture and assess the expert knowledge associated with space power system evaluation. .

  5. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 ?F and 15 kV/356 ?F capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 ?F capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  6. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 ?F and 15 kV/356 ?F capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 ?F capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed. PMID:25725838

  7. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  8. Modelling Sustainable Development Scenarios of Croatian Power System

    NASA Astrophysics Data System (ADS)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  9. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  10. Power Management and Distribution (PMAD) Model Development: Final Report

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    2011-01-01

    Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

  11. Development and fabrication of an augmented power transistor

    NASA Technical Reports Server (NTRS)

    Geisler, M. J.; Hill, F. E.; Ostop, J. A.

    1983-01-01

    The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.

  12. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  13. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have also to be mentioned. The objective of this paper is to review some recent developments in ultrasonic processing to show the present situation and the prospective progresses of high-power ultrasonics as an innovative technology in many industrial sectors.

  14. Power console development for NASA's electric propulsion outreach program

    NASA Astrophysics Data System (ADS)

    Pinero, Luis R.; Patterson, Michael J.; Satterwhite, Vincent E.

    1993-12-01

    NASA LeRC is developing a 30 cm diameter xenon ion thruster for auxiliary and primary propulsion applications. To maximize expectations for user-acceptance of ion propulsion technology, NASA LeRC, through their Electric Propulsion Outreach Program, is providing sectors of industry with portable power consoles for operation of 5 KW-class xenon ion thrusters. This power console provides all necessary functions to permit thruster operations over a 0.5-5 KW envelope under both manual and automated control. These functions include the following: discharge, cathode heater, neutralizer keeper, and neutralizer heater currents, screen and accelerator voltages, and a gas feed system to regulate and control propellant flow to the thruster. An electronic circuit monitors screen and accelerator currents and controls arcing events. The power console was successfully integrated with the NASA 30 cm thruster.

  15. Power console development for NASA's electric propulsion outreach program

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Patterson, Michael J.; Satterwhite, Vincent E.

    1993-01-01

    NASA LeRC is developing a 30 cm diameter xenon ion thruster for auxiliary and primary propulsion applications. To maximize expectations for user-acceptance of ion propulsion technology, NASA LeRC, through their Electric Propulsion Outreach Program, is providing sectors of industry with portable power consoles for operation of 5 KW-class xenon ion thrusters. This power console provides all necessary functions to permit thruster operations over a 0.5-5 KW envelope under both manual and automated control. These functions include the following: discharge, cathode heater, neutralizer keeper, and neutralizer heater currents, screen and accelerator voltages, and a gas feed system to regulate and control propellant flow to the thruster. An electronic circuit monitors screen and accelerator currents and controls arcing events. The power console was successfully integrated with the NASA 30 cm thruster.

  16. Development and fabrication of improved power transistor switches

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1979-01-01

    A new class of high-voltage power transistors was achieved by adapting present interdigitated thyristor processing techniques to the fabrication of npn Si transistors. Present devices are 2.3 cm in diameter and have V sub CEO (sus) in the range of 400 to 600V. V sub CEO (sus) = 450V devices were made with an (h sub FE)(I sub C) product of 900A at V sub CE = 2.5V. The electrical performance obtained was consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The device design, wafer processing, and assembly techniques are described. Experimental measurements of the dc characteristics, forward SOA, and switching times are included. A new method of characterizing the switching performance of power transistors is proposed.

  17. Development Of High Power Solid State Lasers At HOYA Corp.

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takayasu; Unternahrer, Josef R.; Amano, Satoru; Tajima, Hidemi; Nakajima, Sadahiro; Moriyama, M.

    1989-03-01

    Several lasers are, or have been, developed at the HOYA Laser Laboratory: Conventional YAG-rod lasers, glass fiber bundle lasers and moving glass slab lasers. Slab lasers are considered the engineering answer to the demand of higher average power. We obtained 386 W with a moving glass slab laser. Parts of the program are also erbium doped YAG and glass lasers. We developed a stable and reliable 10-W output 3-?m Er:YAG laser. All models have been developed with a specific application in mind,

  18. Power electronics development for the SPT-100 thruster

    NASA Astrophysics Data System (ADS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-02-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  19. Power Electronics Development for the SPT-100 Thruster

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  20. Designs and applications for floating-hydro power systems in small streams

    SciTech Connect

    Rehder, J.B.

    1983-01-01

    The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion of the potential applications of floating hydro power systems in small streams.

  1. 2007 Wholesale Power Rate Case Final Proposal : Wholesale Power Rate Development Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2006-07-01

    The Wholesale Power Rate Development Study (WPRDS) serves two primary purposes. It synthesizes information supplied by the other final studies that comprise the BPA rate proposal and shows the actual calculations for BPA's power rates. In addition, the WPRDS is the primary source for certain information used in establishing the power rates. Information developed in the WPRDS includes rate design (including seasonal and diurnal shapes for energy rates, demand, and load variance rates), the risk mitigation tools (Cost Recovery Adjustment Clause (CRAC), along with the [N]ational Marine Fisheries Service [F]ederal Columbia River Power System [B]iological Opinion (NFB) Adjustment, the Emergency NFB Surcharge, and Dividend Distribution Clause (DDC)), development of the Slice rate, and all discounts and other adjustments that are included in the rate schedules and the General Rate Schedule Provisions. The WPRDS also includes the description of the methodology for the Cost of Service Analysis (COSA), and the various rate design steps necessary to establish BPA's power rates. The WPRDS also shows the calculations for inter-business line revenues and expenses, the revenue forecast and, finally, includes a description of all of the rate schedules. The actual rate schedules are shown in ''Administrator's Final Record of Decision (ROD), Appendix A: 2007 Wholesale Power Rate Schedules and General Rate Schedule Provisions, WP-07-A-02''. The WPRDS also includes the Partial Resolution of Issues, shown in Attachment 1 of the ROD. The Partial Resolution of Issues affected many of the features described in this study. These are noted where appropriate.

  2. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  3. Technology Development for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions.

  4. Development of High Power Gyrotron and Power Modulation Technique using the JT-60U ECRF System

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayuki; Terakado, Masayuki; Sato, Fumiaki; Yokokura, Kenji; Shimono, Mitsugu; Hasegawa, Koichi; Sawahata, Masayuki; Suzuki, Sadaaki; Hiranai, Shinichi; Igarashi, Koichi; Wada, Kenji; Suzuki, Takashi; Kajiwara, Ken; Kasugai, Atsushi; Sakamoto, Keishi; Isayama, Akihiko; Matsunaga, Go; Moriyama, Shinichi

    Electron cyclotron range of frequency system of the JT-60U finished operation at the end of August 2008, and improvements toward JT-60SA have been started. In the last two years stable gyrotron oscillation at an output power of 1.5 MW for 1 s was demonstrated, for the first time, using the 110 GHz gyrotron. It was verified that the heat load on the cavity was at an acceptable level with continuous oscillations at 1.5 MW. The absorption power of the collector was also at an acceptable level for the longer pulse oscillation of 5 s. A power modulation technique based on anode voltage modulation was also developed in order to study the effects of modulated Electron Cyclotron Current Drive (ECCD) on Neoclassical Tearing Mode (NTM) stabilization. Modulation frequencies of up to 7 kHz were achieved at output power of 0.8 MW exceeding the previous limit of 3 kHz. Modulated ECCD experiments in synchronization with the NTM were successfully performed with a modulation frequency of around 5 kHz. Development of an accurate synchronization system played an essential role in the experiments that needed a maintained phase between the magnetic probe signal and modulated ECCD in real time. The results provide significant information for further developments that will enhance the overall performance of ECRF systems in the near future.

  5. DEVELOPMENT OF COMMUNITY POWER FROM SUSTAINABLE SMALL HYDRO POWER SYSTEMS – ACAPACITY BUILDING PROJECT IN BANGANG, CAMEROON

    EPA Science Inventory

    Electric power is one of the basic needs for the development of any community. With electric power lacking in most rural communities in Africa, providing basic amenities that are dependent on power such as clean portable drinking water, powering equipment in health and dent...

  6. Development and fabrication of improved Schottky power diodes

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkel, M.; Taft, E. A.

    1975-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts.

  7. Development of lead/acid batteries for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Tsubota, Masaharu

    In order to increase charging efficiency and reduce maintenance such as topping up, lead/acid batteries should not be overcharged. However, when they are used for long periods without overcharging, stratification of the electrolyte can result because the electrolyte is not agitated by the gas evolved during overcharging, thus reducing battery life. In consequence, we have developed two types of lead/acid batteries: vented (Model SLB), and sealed (Model SRE), for photovoltaic power applications.

  8. Inertial fusion power development: the path to global warming suppression

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-01-01

    Shortly after the demonstration of the first lasers, it was proposed that nuclear fusion induced by laser energized implosion could be utilized for energy generation. Today, there are many facilities worldwide undertaking IFE research, and after decades of experiments, theoretical developments and simulations, it is expected that the laser fusion ignition will be demonstrated in the next few years. If this does indeed happen, we will see a new era toward the realization of a fusion power plant.

  9. Development Status: Automation Advanced Development Space Station Freedom Electric Power System

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Kish, James A.; Mellor, Pamela A.

    1990-01-01

    Electric power system automation for Space Station Freedom is intended to operate in a loop. Data from the power system is used for diagnosis and security analysis to generate Operations Management System (OMS) requests, which are sent to an arbiter, which sends a plan to a commander generator connected to the electric power system. This viewgraph presentation profiles automation software for diagnosis, scheduling, and constraint interfaces, and simulation to support automation development. The automation development process is diagrammed, and the process of creating Ada and ART versions of the automation software is described.

  10. Power Systems Development Facility Gasification Test Campaign TC20

    SciTech Connect

    Southern Company Services

    2006-09-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of the Transport Gasifier following significant modifications of the gasifier configuration. This demonstration took place during test campaign TC20, occurring from August 8 to September 23, 2006. The modifications proved successful in increasing gasifier residence time and particulate collection efficiency, two parameters critical in broadening of the fuel operating envelope and advancing gasification technology. The gasification process operated for over 870 hours, providing the opportunity for additional testing of various gasification technologies, such as PCD failsafe evaluation and sensor development.

  11. Development of high temperature superconductors for electric power applications

    SciTech Connect

    Schiff, N.

    1995-09-01

    The Nobel Prize-winning discovery in 1986 of a new family of superconductors that exhibited the property of no resistance at temperatures more than ten times greater than the traditional low temperature superconductors (LTS) currently used in MRI and high field magnets, made it possible to foresee a new era for the production, transmission and distribution of electrical power. Smaller, more efficient motors, generators, power cables, transformers, inductors, and superconducting magnetic energy storage (SMES) for power quality were applications immediately envisioned for these high temperature superconductors (HTS), promising enhanced capabilities and lower costs. Work also began on new product concepts, such as more effective fault current limiters for both transmission and distribution systems that could protect expensive hardware and avoid the cost of upgrading circuit breakers as system capacity is increased. The interest of industry and utilities has been increased by successful demonstrations of small-scale prototypes. Recent demonstrations include a one meter conductor for an underground transmission cable produced by American Superconductor which carried over 4,200 amps, a 5 hp synchronous motor produced by Reliance Electric Company, magnet systems which generated over 2 Tesla at temperatures over 20 Kelvin (K) by both American Superconductor Corporation (ASC) and Sumitomo Electric Industries. The Department of Energy, under the Superconductivity Partnership Initiative Program (SPI), recently funded four application development projects: a 100 hp HTS motor demonstration, design of a generator rotor, a fault current limiter for distribution systems, and a 30 meter HTS power transmission cable. This paper will review the progress in application development of HTS products. The specific benefits and costs associated with this technology in power applications will be examined.

  12. Development of low-power wireless networked radioactive material sensor

    NASA Astrophysics Data System (ADS)

    Katsis, Dimosthenis; Burns, David; Henriquez, Stanley; Litz, Marc

    2010-04-01

    Our team at the United States army research laboratory (ARL) has implemented the design and development of a low-power, compact, wireless-networked radiation sensor array. The sensor system was developed to provide high sensitivity event detection and remote warning for a broad range of radioactive materials. The sensor can identify the presence of 1?Ci Cs137 at a distance of 1.5m. The networked array operates well as a facility sensor however the architecture is designed to be operated outside the laboratory environment as well. The performance of the facility radiation measurement system is described and benchmarked to readily available check sources such as Cs137.

  13. Development of Power Assisting Suit for Assisting Nurse Labor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Hyodo, Kazuhito; Ishii, Mineo; Matsuo, Takashi

    In order to realize a power assisting suit for assisting a nurse caring a patient in her arm, a hardness sensor of muscle using load cell and a pneumatic rotary actuator utilizing pressure cuffs have been developed. The power assisting suit consists of shoulders, arms, waist and legs made of aluminum, and is fitted on the nurse body. The power assisting suit is originated with the concept of a master and slave system in one body. The arms, waist and legs have the pneumatic rotary actuators. The pneumatic rotary actuators are constructed with pressure cuffs sandwiched between thin plates. The action of the arms, waist and legs of the nurse are sensed with the muscle hardness sensor utilizing load cell with diaphragm mounted on a sensing tip. The dent of the sensing tip corresponds to the hardness of the muscle so that exerting muscle force produces electric signal. This paper gives the design and characteristics of the power assisting suit using the cuff type pneumatic rotary actuators and the muscle hardness sensor verifying its practicability.

  14. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  15. Development of 3 kW at 325 MHz solid-state RF power amplifier using four power amplifier modules

    NASA Astrophysics Data System (ADS)

    Ramarao, B. V.; Sonal, S.; Mishra, J. K.; Pande, M.; Singh, P.; Kumar, G.; Mukherjee, J.

    2014-01-01

    A high power solid-state RF power amplifier of 3 kW at 325 MHz has been developed using only four RF power amplifier modules of 850 W power output each. The design and characterization of RF power modules have been presented. A four way Wilkinson power combiner adds the output of four power amplifier modules with a total transmission loss of less than 6%. The combined power amplifier has a power gain of 20.2 dB at 1-dB compression point, and the corresponding output power is 2.8 kW at 325 MHz. The drain efficiency of the power amplifier is 65.3% at 3 kW. All the harmonics of this amplifier are below -40 dBc. The amplifier has better characteristics like fewer numbers of active devices per kilo watt, high efficiency, high gain, and ruggedness etc for RF accelerator applications.

  16. Power Systems Development Facility Gasification Test Campaign TC22

    SciTech Connect

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  17. Power Systems Development Facility Gasification Test Campaign TC21

    SciTech Connect

    Southern Company Services

    2007-01-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coal. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of the first demonstration of gasification operation with lignite coal following the 2006 gasifier configuration modifications. This demonstration took place during test campaign TC21, occurring from November 7, 2006, through January 26, 2007. The test campaign began with low sodium lignite fuel, and after 304 hours of operation, the fuel was changed to high sodium lignite, for 34 additional hours of operation. Both fuels were from the North Dakota Freedom mine. Stable operation with low sodium lignite was maintained for extended periods, although operation with high sodium lignite was problematic due to agglomeration formation in the gasifier restricting solids circulation.

  18. Power Systems Development Facility Gasification Test Campaign TC16

    SciTech Connect

    Southern Company Services

    2004-08-24

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

  19. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  20. Power Systems Development Facility Gasification Test Campaing TC18

    SciTech Connect

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  1. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  2. Power conditioning development for the National Ignition Facility

    SciTech Connect

    Newton, M.A.; Larson, D.W.; Wilson, J.M.; Harjes, H.C.; Savage, M.E.; Anderson, R.L.

    1996-10-01

    The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system.

  3. Development of nuclear power plants: Past, present, and future

    SciTech Connect

    Dastidar, P.; Kupitz, J.; Cleveland, J. )

    1992-01-01

    This paper discusses the past, present, and future roles of nuclear power and summarizes the evolution of nuclear power plants, advanced reactor development, and the role of the International Atomic Energy Agency (IAEA). Although nuclear energy is an essentially unlimited resource, the rate of introduction of nuclear plants remains below even the more pessimistic earlier forecasts. Nevertheless, nuclear energy accounts for 17% of the world's total electricity generation. With increasing focus on environmentally acceptable economic development and close examination of appropriate applications of science and technology, it is reasonable to expect a reduced rate of increase and ultimately a leveling of electricity demand. The IAEA estimates an increase by the year 2010 from the current nuclear generating capacity of 327 GW(electric) to a capacity of 456 GW(electric) (low estimate) to 577 GW(electric) (high estimate). From an environmental standpoint, the recent Helsinki Symposium on Electricity and the Environment concluded that a key element in the strategy to cope with the increasing risk of global warming due to CO[sub 2] emissions from fossil plants is the deployment of advanced nuclear power plants.

  4. 2007 Wholesale Power Rate Case Initial Proposal : Wholesale Power Rate Development Study.

    SciTech Connect

    United States. Bonneville Power Administration.

    2007-11-01

    The Wholesale Power Rate Development Study (WPRDS) calculates BPA proposed rates based on information either developed in the WPRDS or supplied by the other studies that comprise the BPA rate proposal. All of these studies, and accompanying documentation, provide the details of computations and assumptions. In general, information about loads and resources is provided by the Load Resource Study (LRS), WP-07-E-BPA-01, and the LRS Documentation, WP-07-E-BPA-01A. Revenue requirements information, as well as the Planned Net Revenues for Risk (PNNR), is provided in the Revenue Requirement Study, WP-07-E-BPA-02, and its accompanying Revenue Requirement Study Documentation, WP-07-E-BPA-02A and WP-07-E-BPA-02B. The Market Price Forecast Study (MPFS), WP-07-E-BPA-03, and the MPFS Documentation, WP-07-E-BPA-03A, provide the WPRDS with information regarding seasonal and diurnal differentiation of energy rates, as well information regarding monthly market prices for Demand Rates. In addition, this study provides information for the pricing of unbundled power products. The Risk Analysis Study, WP-07-E-BPA-04, and the Risk Analysis Study Documentation, WP-07-E-BPA-04A, provide short-term balancing purchases as well as secondary energy sales and revenue. The Section 7(b)(2) Rate Test Study, WP-07-E-BPA-06, and the Section 7(b)(2) Rate Test Study Documentation, WP-07-E-BPA-06A, implement Section 7(b)(2) of the Northwest Power Act to ensure that BPA preference customers firm power rates applied to their general requirements are no higher than rates calculated using specific assumptions in the Northwest Power Act.

  5. Development of Rust Stripping System using High Power Laser

    NASA Astrophysics Data System (ADS)

    Shirakawa, Kazuomi; Ohashi, Katsuaki; Ashidate, Shuichi; Kurosawa, Kiyoshi; Nakayama, Michio; Uchida, Yutaka; Nobusada, Yuuji

    The repainting cycle depends on removal of rust in maintenance of outdoor steel-frame structural facilities. However existing stripping process, which is usually made by hands with brushes, cannot strip the rust completely in maintenance of power transmission towers, for example. To solve this problem, we investigated laser fluence and pulse width for removal of rust using DPSSL (Diode Pumped Solid State Laser), and selected optimum laser supply. Then we checked the effect of laser stripping on prolongation of the repainting cycle compared with the conventional stripping process. Utilizing results of the research, we developed rust stripping system using DPSSL. From the results of field trial of rust removal operation using this system at high places of a power transmission tower, possibility of practical use of the system for the maintenance was confirmed.

  6. Development and state of the art regarding lignite power stations

    NASA Astrophysics Data System (ADS)

    Krost, H.; Vetter, H.

    1981-05-01

    In 1980 about 20-25% of the electric energy generated in West Germany was obtained by using lignite as fuel. An employment of raw lignite as fuel presents special problems in connection with the high water content of the material (from 50% to 60%), the ash content (from 5 to 15%), and the high percentage of volatile components. Preparation processes which transform the raw lignite into a form which is suitable for a use as fuel are discussed, taking into account also the combustion temperatures and the required air ratio. The introduction of power stations with a 'block' structure is considered. Boiler, turbine, and recooling plant form a unit, which can operate by itself without any connection to an adjacent unit. A 600-MW 'block' stage represents the current state of technology. Attention is also given to environmental conditions, waste heat utilization, reductions in fuel oil consumption of power stations, availability and reliability, operational life, renovation requirements, and new developments.

  7. The Solar Power Satellite - An opportunity for Third World development

    NASA Astrophysics Data System (ADS)

    Mayur, R.; Glaser, P. E.

    The application of Solar Power Satellite (SPS) systems in conjunction with other renewable energy configurations such as flat plate collectors, windmills, hydroelectric power stations, OTEC, and photovoltaic cells to alleviate the shortages and costs of energy sources in developing nations is recommended. Education of people in the Third World to potential benefits of space resources exploitation is a way to involve them in space activities in the 21st century. SPS systems are noted to have a potential of freeing millions of tons of manure and firewood for other uses. Potential land-use and legal definitions of GEO problems are indicated, along with the potential for ocean-basing the rectennas to serve as mariculture sites.

  8. Access to Power: Governance and Development in the Pakistani Electrical Power Sector

    NASA Astrophysics Data System (ADS)

    Naqvi, Ijlal

    This dissertation explores governance in Pakistan through a study of the state-run electrical power sector. At both the micro and macro level, the Pakistani power sector provides a lens into the heart of the Pakistani state and its governance institutions. This ethnographic and historical study offers an in-depth look at state operations in a developing country, situates the current Pakistani power crisis in a larger context of continuity through periods of dictatorship and democracy, and suggests how efforts to make state service delivery more responsive to citizens might be reconceived. A historical review of the Pakistani power sector establishes first and foremost that the current crisis is the product of longer-term processes for which the policy solutions currently being proposed (with the support of international donors and multilateral lenders) are inadequate. Depoliticized attempts at power sector reform have little to offer in light of the pervasively informal and negotiated nature of the fragmented Pakistani state. The institutions of power sector governance are mutually constituted by the formal rules and the informal---personal relationships, language, violence, money, and power. These rules of the game are as relevant to relations within and between public sector organizations as they are to the engagement of citizens with their state. The same rules apply at the margins of the state---informal squatter settlements---as at the core, though the resources brought to bear and the resultant outcomes are different. The internal incoherence of this state underscores the limitations of formal rules in determining outcomes, and the poor prospects for reform efforts that focus exclusively on the formal aspects of governance. To proactively engage with the question of political will leads away from top-down policy perspectives and counter to the depoliticizing tendencies that currently shape policy reforms. Instead, an energized and informed local participation can be a counterweight to the inertial tendencies of a Pakistani state whose reforms tend to be co-opted by existing power centers rather than result in changed outcomes.

  9. White LEDs for lighting remote communities in developing countries

    NASA Astrophysics Data System (ADS)

    Craine, Stewart; Irvine-Halliday, Dave

    2001-12-01

    Over the past 5 years, the application of white LEDs for ambient lighting has been investigated in the remote villages of Nepal. Currently, lighting is often met using kerosene wick lamps, which emit unhealthy levels of fumes, or by burning sap-filled pine sticks, which are worse than the kerosene lamps. A team of students from Calgary University developed some LED lamps that could easily be fabricated in Nepal using local materials and personnel. To generate power, a pedal DC generator was developed to charge batteries, as well as a simple wind turbine. The Nepal Light Project implemented a series of many projects over the last 2 years in several villages across Nepal, using several different power generating systems. A total of 142 households, two schools and a temple were fitted with lamps in 2000, and more will follow in 2001. A research project has also been undertaken in Nepal for the Danish International Development Agency (DANIDA) to investigate the potential for energy efficient lamps in the micro hydro industry. The R&D project was very small, and conducted basic testing on locally available compact fluorescent lamps and LED lamps. The report concluded that encouraging the use of CFLs would decrease costs by 30-50%, and that they should be included in the subsidy policy, along with power factor correcting capacitors. LED lamps should not be overly encouraged as the development of the diodes was advancing very rapidly. The real advantage of LED lamps lies in extremely low maintenance costs due to the low power requirements and long life, which is just as important for remote villages as it is for traffic lights and exit signs. It is estimated that these low ongoing costs could be as low as $3/household/year for a rural lighting project. Pilot projects should be encouraged to demonstrate and investigate the potential of WLEDs for lighting in remote communities in developing countries. With 2 billion people without access to electricity, and lighting being the first end use people generally require, the potential for white LEDs is nothing short of staggering, but they will face challenges similar to CFL technology due to the high initial cost of the lamps.

  10. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  11. Power Systems Development Facility. First quarterly report, 1997

    SciTech Connect

    1997-07-01

    The objective of this project, herein referred to as the Power Systems Development Facility (PSDF), is to evaluate hot gas particle control technologies using coal derived gas streams. This project entails the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device (PCD) issues to be addressed include the integration of the PCDs into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  12. The Environment-Power System Analysis Tool development program. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Wilcox, Katherine G.; Stevens, N. John; Putnam, Rand M.; Roche, James C.

    1989-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide engineers with the ability to assess the effects of a broad range of environmental interactions on space power systems. A unique user-interface-data-dictionary code architecture oversees a collection of existing and future environmental modeling codes (e.g., neutral density) and physical interaction models (e.g., sheath ionization). The user-interface presents the engineer with tables, graphs, and plots which, under supervision of the data dictionary, are automatically updated in response to parameter change. EPSAT thus provides the engineer with a comprehensive and responsive environmental assessment tool and the scientist with a framework into which new environmental or physical models can be easily incorporated.

  13. Development and Commercialization of the Lunar Solar Power System

    NASA Astrophysics Data System (ADS)

    Criswell, D. R.

    2002-01-01

    The proposed Lunar Solar Power (LSP) System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth (1, 2, 3, 4). The LSP System may be the only reasonable method for establishing sustainable global energy prosperity within two generations. Commercial power prosperity requires at least 2 kWe/person. For ten billion people this implies 20 TWe and 2,000 TWe-y of electric energy or ~6,000 TWt-y of thermal energy per century (5, 6, 7, 8). A brief overview is presented of a reference LSP System that supplies 20 TWe by 2050. The engineering scales and the cost and benefits of this system are described. In order to provide low cost commercial electric energy, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth (1, 2, 3). In addition, lunar production machinery can be made primarily from lunar materials. Advantages of this approach, versus the reference LSP System, are discussed. Full-scale production of a LSP System will certainly be proceeded by terrestrial and lunar operation of the production machinery and a small-scale demonstration of the operational system (1). Using government funds to establishing a permanent lunar base and the associated transportation system would significantly reduce the upfront cost for the demonstration of a commercial LSP System (2). The government program would provide a legal framework for commercial development of the LSP System (3, 9). The LSP System offers the opportunity to establish a materials industry on the Moon that can produce a growing mass and variety of goods and enable new services of benefit on the Earth and the Moon (10). New priorities are suggested for civilian space programs that can accelerate the establishment of a demonstration LSP System and growing commercialization of the Moon and cis-lunar space. 1. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.ukin the Congress Papers, Discussion Sessions] 2. Criswell, D. R. and Waldron, R. D. 1993. International Lunar Base and Lunar-based Power System to Supply Earth with Electric Power, Acta Astronautica, Vol. 29, No. 6, pp. 469-480. Pergamon Press Ltd. 3. NASA TASK FORCE. 1989 (July) Report of NASA Lunar Energy Enterprise Case Study Task Force. NASA Technical Memo 101652. 163pp. NASA Headquarters, Office of Exploration (Code Z), Washington, D.C. 20546. 4. Moore, T. (2000, Spring) "Renewed interest in space solar power," EPRI Journal, pp. 6-17. 5. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 6. Criswell, David R. (2002) Energy Prosperity within the 21st Century and Beyond: Options and the Unique Roles of the Sun and the Moon. Chapter 9: Innovative Solutions To CO2 Stabilization, R. Watts (editor), Cambridge Un. Press 7. Strong, Maurice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 8. Criswell, D. R. and Thompson, R. G. (1996), "Data envelopment analysis of space and terrestrial-based large scale commercial power systems for Earth: A prototype analysis of their relative economic advantages," Solar Energy, 56, No. 1: 119-131. 9 ILEWG (1997), Proc. 2nd International Lunar Workshop, organized by: International Lunar Exploration Working Group, Inst. Space and Astronautical Science, and National Space Development Agency of Japan, Kyoto, Japan, (October 14 - 17), 89pp. 10. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  14. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program (LS&T) at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the LS&T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS&T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (10{sup 12} Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 M class output and 5 to 10 ps pulse duration for generating intense radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  15. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  16. Power Systems Development Facility Gasification Test Campaign TC24

    SciTech Connect

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  17. Private power development and environmental protection in India

    SciTech Connect

    Das, S.; Wilbanks, T.J.

    1997-12-01

    This report assesses relationships between private power development in India and environmental protection in that country. The central question is whether private firms generating and distributing electricity in developing countries will do a better or a worse job in environmental protection, as a part of their overall corporate responsibility, than public-sector institutions. After reviewing the fundamental question, why it is asked, and the context in which it operates in the nation of India, this report continues with an analysis of available information, quantitative and qualitative, that can help to resolve the issues in the particular case of India. Finally, it ends with conclusions from the analysis and recommendations for reducing remaining uncertainties in the future.

  18. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-kW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

  19. Duke Power Company's development of a biofouling monitoring program

    SciTech Connect

    Derwort, J.E.; Gnilka, A. )

    1991-11-01

    Biofouling programs at Duke Power Company (DPC) can be traced to the invasion of the Catawba River system by Corbicula in 1968. Raw water systems at Plant Allen, a coal-fired station on Lake Wylie, became heavily infested by clams during the 1970s. Development of programs was accelerated as a result of the shutdown of Catawba nuclear station (CNS) on lake Wylie in 1986 due to clam infestations in safety-related systems, increased biofouling problems at McGuire nuclear station (MNS) on lake Norman, and by the issuance of the US Nuclear Regulatory Commission's (NRC's) Generic Letter (GL) 89-13 (issued in 1989). Historical data were reviewed to identify pertinent questions, and a refined, multifaceted Corbicula monitoring plan was developed. This plan was implemented at CNS and MNS in 1989.

  20. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, J. L., Jr.; Louis, G. A.; Abrams, M. L.

    1980-08-01

    During this quarter, effort was continued in all four major task areas: system studies to define the reference power plant design; cell and stack design, development and verification; preparation for fabrication and testing of the full-scale prototype stack; and developing the capability for operation of stacks on coal-derived gas. Preliminary module and cell stack design requirements were completed. Fuel processor characterization was completed. Design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping were defined. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication was made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated. Theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects.

  1. Economic viability of photovoltaic power for development assistance applications

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  2. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.

  3. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.

  4. VGA 17 ?m development for compact, low-power systems

    NASA Astrophysics Data System (ADS)

    Durand, A.; Tissot, J. L.; Robert, P.; Cortial, S.; Roman, C.; Vilain, M.; Legras, O.

    2011-06-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon has enabled ULIS to develop VGA IRFPA formats with 17 ?m pixel-pitch, hence building up the currently available product catalog. This detector keeps all the innovations developed on the 25 ?m pixel-pitch ROIC (detector configuration by serial link, low power consumption and wide electrical dynamic range). The specific appeal of this unit lies in the high spatial resolution it provides. The pixel-pitch reduction turns this TEC-less VGA array into a product well adapted for high resolution and compact systems. Electro-optical performances of this IRFPA are presented hereafter as well as recent performance improvement. We will focus on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of amorphous silicon technology coupled with the ROIC design. Solar exposure is also taken into account and shows that ULIS amorphous silicon is perfectly well suited to sustain high intensity exposure. This technology node associated with advanced packaging technique paves the way to compact low power system.

  5. Development of a high temperature solar powered water chiller

    NASA Astrophysics Data System (ADS)

    English, R. A.

    1982-03-01

    The objectives of this program are: to develop a high temperature solar powered air cooled 25 ton chiller utilizing 250 to 300 F solar hot water suitable for commercial and multi-family applications; to study, design, and build a prototype Rankine powered vapor compression cycle; and to demonstrate and evaluate performance through steady state and dynamic laboratory testing. Cycle studies and preliminary turbo machine studies were completed under Phase I establishing the final conceptual approach and anticipated cost/performance. The evaluation of the working fluid thermal stability has satisfactorily shown that R-113 has excellent life potential in an oil-free steel boiler at the maximum expected temperature, 320 F, for this application. The detailed design of the turbo machine and the chiller has been completed. The turbomachine has been completed and has successfully passed its qualification tests on air. The chiller has been built in the water cooled configuration, has been installed in a test facility, instrumented and charged. A two stage boiler feed pump has been developed and successfully tested on R-113 in a separate loop.

  6. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    SciTech Connect

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS program. The CETF design effort continued through this quarter with the completion of the following systems: 1. Char Storage and Transport System 2. Reheat Burner The char storage system is required for the HIPPS program because the ball mill needs to be de-coupled from the burner. This de-coupling of the mill and the burner allows greater flexibility in changing char particle size distribution ? one of the main test variables under the HIPPS program. The reheat burner is employed to prevent condensation of the flue gas in the baghouse.

  7. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    SciTech Connect

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Preliminary process design was started with respect to the integrated test program at the PSDF. All of the construction tasks at Foster Wheeler's Combustion and Environmental Test Facility (CETF) have been completed in preparation for the char combustion test program, this includes installation of the char burner, and the on-line mass spectrometer. A test matrix has been defined, utilizing a statistical design of experiment (SDOE) methodology, for the char combustion program. The first phase of the CETF shakedown has been completed, and all analog devices (thermocouples, transmitters, etc.) have been calibrated.

  8. Development of high-power gyrotrons with gradually tapered cavity

    NASA Astrophysics Data System (ADS)

    Chaojun, Lei; Sheng, Yu; Xinjian, Niu; Yinghui, Liu; Hongfu, Li; Xiang, Li

    2012-12-01

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including "cold cavity" and "hot cavity" is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE03 has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  9. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  10. LIFE: a sustainable solution for developing safe, clean fusion power.

    PubMed

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors. PMID:23629070

  11. Experimental development of power consumption in LIPCA-C2

    NASA Astrophysics Data System (ADS)

    Smith, Byron F.; Goo, Nam Seo; Mossi, Karla

    2007-04-01

    Currently a carbon/glass fiber, piezoelectric-ceramic composite, LIPCA, is being investigated for use in micro aerial vehicles, micropumps, vibration control systems, and a number of bio-inspired robotic devices. Many of these applications help demonstrate the growing trend in miniaturization that drives innovative developments in products ranging from pacemakers to cell phones. When designing products for our ever shrinking world not only must the size of the principal components of the system be taken into consideration but also the components of the system that afford functionality as a bi-product of their inclusion. To this end we are referring to the mechanical or electrical systems that provide these devices with the necessary energy to perform their tasks. In order to make efficient use of LIPCA in the previously mentioned applications, the ability to forecast power consumption is essential. In the present investigation, a method of modeling the power consumption of piezoelectric devices is presented and evaluated over a range of frequencies and voltages. Effects of variation in actuator dimension, driving voltage, and frequency are presented. Accuracy of the model is assessed and factors leading to inaccuracies are identified.

  12. Power Systems Development Facility Gasification Test Run TC09

    SciTech Connect

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  13. Power Systems Development Facility Gasification Test Run TC11

    SciTech Connect

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  14. Geometry, contact, surface, and optical developments for photoconductive power switches

    SciTech Connect

    Nunnally, W.C.; Hammond, R.B.; Wagner, R.S.

    1984-01-01

    Photoconductive Power Switches (PCPSs) have the advantages of precise control, extremely fast closure times, extremely low inductances and scalability to very high voltages and currents. PCPSs have these advantages because the size or power of the switch is not related to its closure time. The closure time is determined by the external optical source that uniformly illuminates the PCPS between the electrodes. Because carriers are generated uniformly between the electrodes at the desired density, current can flow through the switch immediately without waiting for carrier transient delays. The operating voltage is determined by the switch length l, and the operating current is determined by the switch width w. The electrodes can be made as wide as desired so that the inductance can be extremely low, or the area available for heat removal can be increased and the entire switch brough into conduction at the same instant if the same optical pulse and path length are used. This paper describes recent research at Los Alamos that has improved PCPS contact fabrication technology, has developed a simple optical control illumination system using fiber optics and rectangular optics, and has improved photoconductor surface fabrication methods and processes for high electric field operation.

  15. Power systems development facility. Quarterly report, January 1995--March 1995

    SciTech Connect

    1995-05-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs.

  16. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  17. Power Electronics Being Developed for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2003-01-01

    Electronic circuits and systems designed for deep space missions need to operate reliably and efficiently in harsh environments that include very low temperatures. Spacecraft that operate in such cold environments carry a large number of heaters so that the ambient temperature for the onboard electronics remains near 20 C. Electronics that can operate at cryogenic temperatures will simplify system design and reduce system size and weight by eliminating the heaters and their associated structures. As a result, system development and launch cost will be reduced. At the NASA Glenn Research Center, an ongoing program is focusing on the development of power electronics geared for deep space low-temperature environments. The research and development efforts include electrical components design, circuit design and construction, and system integration and demonstration at cryogenic temperatures. Investigations are being carried out on circuits and systems that are targeted for use in NASA missions where low temperatures will be encountered: devices such as ceramic and tantalum capacitors, metal film resistors, semiconductor switches, magnetics, and integrated circuits including dc/dc converters, operational amplifiers, voltage references, and motor controllers. Test activities cover a wide range of device and circuit performance under simple as well as complex test conditions, such as multistress and thermal cycling. The effect of low-temperature conditions on the switching characteristics of an advanced silicon-on-insulator field effect transistor is shown. For gate voltages (VGS) below 2.6 V, drain currents at -190 C are lower than drain currents at room temperature (20 C).

  18. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  19. Development of a high permeability cored transintegumental power transformer.

    PubMed

    Helmicki, A J; Melvin, D M; Henderson, H T; Nebrigic, D; Venkat, R; Glos, D L

    1996-01-01

    Circulatory support devices require 10-20 W. Currently, several devices are under development for the transmission of this power via transcutaneous transformers, with the secondary implanted subcutaneously and the primary worn externally. Because these devices are air cored, they have relatively large, bulky external appliances, poor coil to coil coupling, and result in significant stray fields passing through adjacent tissues. This article reports on the engineering design of a novel, high permeability cored transformer implanted in a transenteric configuration using an isolated intestinal pouch. Such an approach offers greater energy transmission efficiency, less heat dissipation, less stray electromagnetic energy, and greatly reduced device size. Two competing designs using this concept have been developed and tested. Each consists of the transformer, together with power interface electronics, forming a direct current (DC)/DC resonant converter. Operating frequencies are 90.2 and 14.7 kHz, respectively, with primary/secondary turns ratios of 10/10 and 11/14, respectively. In addition, data interface electronics allows communication across the transformer of up to four signals at a per channel sample rate of 10 Hz. Both designs are able to continuously transmit 25 W at an output level of 12 Vdc into a 5.8 omega load. Calorimetry tests indicate DC to DC efficiencies greater than 75% and coil to coil efficiencies greater than 96%. Total package size for the implantable portion of each device (including sensor internal interface electronics) is less than 40 ml, with a weight weight of less than 100 g. The results of short-term implantation studies have been favorable. Long-term implantation studies currently are under way. PMID:8944956

  20. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  1. Bi-directional four quadrant (BDQ4) power converter development

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1979-01-01

    The feasibility for implementation of a concept for direct ac/dc multikilowatt power conversion with bidirectional transfer of energy was investigated. A 10 kHz current carrier was derived directly from a common 60 Hz three phase power system. This carrier was modulated to remove the 360 Hz ripple, inherent in the three phase power supply and then demodulated and processed by a high frequency filter. The resulting dc power was then supplied to a load. The process was implemented without the use of low frequency transformers and filters. This power conversion processes was reversible and can operate in the four quadrants as viewed from any of the two of the converter's ports. Areas of application include: power systems on air and spacecraft; terrestrial traction; integration of solar and wind powered systems with utility networks; HVDC; asynchronous coupling of polyphase networks; heat treatment; industrial machine drives; and power supplies for any use including instrumentation.

  2. Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.

    2003-01-01

    The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research Laboratory, the University of Wisconsin, the University of Michigan, and Colorado State University will perform a 6-month study that will result in the design of a 25-kW ion thruster, a propellant feed system, and a power processing architecture. The following 2 years will involve hardware development, wear tests, single-string tests of the thruster-power circuits and the xenon feed system, and subsystem service life analyses. The 2-kW-class ion propulsion technology developed for the Deep Space 1 mission will be used for NASA's discovery mission Dawn, which involves maneuvering a spacecraft to survey the asteroids Ceres and Vesta. The 6-kW-class ion thruster subsystem technology under NEXT is scheduled to be flight ready by calendar year 2006. The less mature 25- kW ion thruster system under HiPEP is expected to be ready for a flight advanced development program in calendar year 2006.

  3. Development of an externally powered prosthetic hook for amputees

    NASA Technical Reports Server (NTRS)

    Karchak, A., Jr.; Allen, J. R.; Bontrager, E. L.

    1973-01-01

    The powered hook with trigger finger appears to be a useful adaptation of a terminal device for an amputee when performing vocational activities involving the use of a powered tool requiring a trigger control. The proportional control system includes transducers and amplifiers and appears to have widespread application for control of any external power, whether it be in the orthotic or prosthetic field.

  4. How to Develop Renewable Power in China? A Cost-Effective Perspective

    PubMed Central

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672

  5. How to develop renewable power in China? A cost-effective perspective.

    PubMed

    Cong, Rong-Gang; Shen, Shaochuan

    2014-01-01

    To address the problems of climate change and energy security, Chinese government strived to develop renewable power as an important alternative of conventional electricity. In this paper, the learning curve model is employed to describe the decreasing unit investment cost due to accumulated installed capacity; the technology diffusion model is used to analyze the potential of renewable power. Combined with the investment cost, the technology potential, and scenario analysis of China social development in the future, we develop the Renewable Power Optimization Model (RPOM) to analyze the optimal development paths of three sources of renewable power from 2009 to 2020 in a cost-effective way. Results show that (1) the optimal accumulated installed capacities of wind power, solar power, and biomass power will reach 169000, 20000, and 30000 MW in 2020; (2) the developments of renewable power show the intermittent feature; (3) the unit investment costs of wind power, solar power, and biomass power will be 4500, 11500, and 5700 Yuan/KW in 2020; (4) the discounting effect dominates the learning curve effect for solar and biomass powers; (5) the rise of on-grid ratio of renewable power will first promote the development of wind power and then solar power and biomass power. PMID:24578672

  6. High power KrF laser development at Los Alamos

    SciTech Connect

    McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

    1988-01-01

    The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

  7. The introduction of space technology power systems into developing countries

    NASA Technical Reports Server (NTRS)

    Roberts, Allen F.; Ratajczak, Anthony F.

    1989-01-01

    Between 1978 and 1984, NASA-Lewis was responsible for the design, fabrication, installation and operational support of 57 photovoltaic power systems in 27 countries. These systems were installed in locations not served by a central power system and ranged in size from 40 W for powering street lights to 29 kW for providing power to a complete village. Several of the system projects had socio/economic studies components that provided for an assessment of how the introduction of both electricity and a novel high technology power system affected the users and their society.

  8. Power Systems Development Facility. Quarterly report, July--September 1995

    SciTech Connect

    1995-11-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a fimction of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and hot gas cleanup units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is nearing completion. Nearly all equipment are set in its place and the FW equipment and the PCDs are being set in the structure.

  9. Power Systems Development Facility Gasification Test Run TC07

    SciTech Connect

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  10. Power Systems Development Facility Gasification Test Run TC08

    SciTech Connect

    Southern Company Services

    2002-06-30

    This report discusses Test Campaign TC08 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier in air- and oxygen-blown modes during TC08. Test Run TC08 was started on June 9, 2002 and completed on June 29. Both gasifier and PCD operations were stable during the test run with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen blown was smooth. The gasifier temperature was varied between 1,710 and 1,770 F at pressures from 125 to 240 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC08, 476 hours of solid circulation and 364 hours of coal feed were attained with 153 hours of pure oxygen feed. The gasifier and PCD operations were stable in both enriched air and 100 percent oxygen blown modes. The oxygen concentration was slowly increased during the first transition to full oxygen-blown operations. Subsequent transitions from air to oxygen blown could be completed in less than 15 minutes. Oxygen-blown operations produced the highest synthesis gas heating value to date, with a projected synthesis gas heating value averaging 175 Btu/scf. Carbon conversions averaged 93 percent, slightly lower than carbon conversions achieved during air-blown gasification.

  11. Development of the loss minimization function for real time power system operations: A new tool

    SciTech Connect

    Shin, B.C.G. )

    1994-11-01

    This paper presents development of an innovative tool for online power system operation. It is designed to operate in an Energy Control Center (ECC) environment. Online application consists of using the developed Optimal Power Flow (OPF) based Loss Minimization (LM) function for real time power system corrective actions by ECC dispatchers. The results of online power system operations using the LM function are reported to demonstrate economic and security gains for power system operations.

  12. Development of a Powered Wheelchair Driving Simulator for Research and Development Use

    NASA Astrophysics Data System (ADS)

    Ito, Takuma; Shino, Motoki; Inoue, Takenobu; Kamata, Minoru

    The purpose of a powered wheelchair driving simulator is to decrease the time and effort in the process of clinic, research and development. In this paper, the design concepts of our driving simulator for research and development use are explained. To design the simulator's software and hardware, two following experiments were conducted. 1: The driver's horizontal field of view was measured. While making a right turn at a corner of a corridor, the movement of the driver's gazing point was measured. From this result, the maximum and minimum values of gazing point movement were analyzed to design the simulator's angle of view. 2: Motion cues such as acceleration and vibration were measured. The characteristics of these motion cues were analyzed to design the motion system. From the experiment results, a driving simulator of a powered wheelchair was developed. To evaluate the driving simulator, the experiment for comparing with a real powered wheelchair driving was conducted. Evaluations improved by the components which were specially designed for the driving simulator.

  13. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  14. Development of molten carbonate fuel cell power plant

    NASA Astrophysics Data System (ADS)

    Peterson, J. R.

    1980-07-01

    User requirements and power plant subsystem alternatives and characteristics were defined. A total of 27 laboratory cells were operated and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state of the art cell carried-over from a previous program was achieved and 1500 hours endurance was obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shakedown tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks were identified. An overall test plan to commercialization for molten carbonate fuels cells and a functional specification for the tenth-scale stack test facility were proposed. Cost-effective manufacturing assessment of available designs and processes was initiated. Available contaminants concentration and effects information was gathered and initial projections of contaminant ranges and concentrations were prepared.

  15. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Bushnell, C. L.; Davis, C. L.; Dayton, J. E.; Johnson, C. K.; Katz, M.; Krasij, M.; Kunz, H. R.; Maricle, D. L.; Meyer, A. P.; Pivar, J. C.

    1984-09-01

    A prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired electrical utility central station, or industrial cogeneration power plant was developed. Compressive creep testing of the present anode is continuedl the samples and support the earlier data showing improved creep resistance. Testing to define the operating limits that are suitable for extending the life of nickel oxide cathodes to an acceptable level is continuing. The mechanical characteristics of several one-piece cathode current collector candidates are measured for suitability. Metallographic evaluation of stack separators was initiated. Posttest characterization of surface treated INCO 825 was completed, retort corrosion testing of this material is continuing, potentiostatic immersion testing of alternative single piece cathode current collector materials is initiated. The 20-cell Stack No. 3 progressed from completion and delivery of the Test Plan through Design Review, assembly, and initial heat-up for the start of testing. Manufacture of separator plates for the upcoming 20-cell Stack No. 4 has begun. The primary objective of this follow-on test is stack cost reduction.

  16. Power Systems Development Facility Gasification Test Run TC10

    SciTech Connect

    Southern Company Services

    2002-12-30

    This report discusses Test Campaign TC10 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC10 in air- (mainly for transitions and problematic operations) and oxygen-blown mode. Test Run TC10 was started on November 16, 2002, and completed on December 18, 2002. During oxygen-blown operations, gasifier temperatures varied between 1,675 and 1,825 F at pressures from 150 to 180 psig. After initial adjustments were made to reduce the feed rate, operations with the new fluidized coal feeder were stable with about half of the total coalfeed rate through the new feeder. However, the new fluidized-bed coal feeder proved to be difficult to control at low feed rates. Later the coal mills and original coal feeder experienced difficulties due to a high moisture content in the coal from heavy rains. Additional operational difficulties were experienced when several of the pressure sensing taps in the gasifier plugged. As the run progressed, modifications to the mills (to address processing the wet coal) resulted in a much larger feed size. This eventually resulted in the accumulation of large particles in the circulating solids causing operational instabilities in the standpipe and loop seal. Despite problems with the coal mills, coal feeder, pressure tap nozzles and the standpipe, the gasifier did experience short periods of stability during oxygenblown operations. During these periods, the syngas quality was high. During TC10, the gasifier gasified over 609 tons of Powder River Basin subbituminous coal and accumulated a total of 416 hours of coal feed, over 293 hours of which were in oxygen-blown operation. No sorbent was used during the run.

  17. The Development of Power Technologies for Low-Grade Coal

    NASA Astrophysics Data System (ADS)

    Basu, K.

    Beneficiation of Indian coal and operation of power plants with imported coal will improve the efficiency of power generation to some extent but they will not satisfy overall future requirements of pollution control and conservation of energy. Therefore, there is a need to adopt new clean coal technologies.

  18. Development of 26GHz dielectric-based wakefield power extractor.

    SciTech Connect

    Jing, C.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.; High Energy Physics; Euclid Techlabs; KEK; Dynamics Software

    2009-01-01

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  19. Development of 26 GHz Dielectric-Based Wakefield Power Extractor

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.; Gao, F.; Kazakov, S.; Kustov, A.

    2009-01-22

    High frequency, high power rf sources are needed for many applications in particle accelerators, communications, radar, etc. In this article we present a design of a 26 GHz high power rf source based on the extraction of wakefields from a relativistic electron beam. The extractor is designed to couple out rf power generated from a high charge electron bunch train traversing a dielectric loaded waveguide. Using a 20 nC bunch train (bunch length of 1.5 mm) at the Argonne Wakefield Accelerator (AWA) facility, we can obtain a steady 26 GHz output power of 148 MW. The extractor has been fabricated and bench tested, with the first high power beam experiments to be performed in the coming year.

  20. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than 0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  1. Development of an organic Rankine-cycle power module for a small community solar thermal power experiment

    SciTech Connect

    Kiceniuk, T.

    1985-01-15

    An organic Rankine-cycle (ORC) power module was designed and developed for use in a multi-module solar power plant to be built and operated in a small community. Although neither final design nor construction of the multi-module plant took place, many successful components and subsystems, including the receiver, power conversion subsystem, energy transport subsystem, and control subsystem, were developed and tested before the program was halted. In addition, tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator at the Jet Propulsion Laboratory's Parabolic Dish Test Site at Edwards Air Force Base, California. Test results with the complete module verified that all major single-module program functional objectives were met and that multi-module operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-h endurance run with no evidence of wear or operating problems.

  2. Power

    NASA Technical Reports Server (NTRS)

    Corbett, R.

    1984-01-01

    The space station requires an increase in power or energy of at least several orders of magnitude compared to previous space missions. With the requirement up in the range of 10 kilowatt hours, this obviiously requires the development of new technology. Although the power area is very well integrated in the spacecraft itself, it represents a diverse set of components necessary for energy conversion, electronics, and energy distribution. Considerable work is ongoing at NASA Lewis in the power devices development area, including transformers, large area solid-state chips, transistors, and fast recovery diodes. This work is oriented toward eventual application to both AC and DC power conversion approaches. In the energy storage area, there are many options available to fit into the space station representing various degrees of risk and leverage combination, such as the near-term integral-pressure-vessel nickel hydrogen battery, an advanced Ni-H2 battery concept, and the regenrative hydrogen-oxygen system utilizing essentially the Shuttle orbiter type of fuel cell.

  3. Development of Voltage Reactive Power Control Considering Load Change

    NASA Astrophysics Data System (ADS)

    Shimone, Takaaki; Yatsubo, Osamu; Ishigame, Atsushi; Hasegawa, Tsuguto

    Modern power system has become large and complex networks, which require more flexible system operation. Voltage and reactive power control (VQC) that transports more electric powers especially maintaining voltages within range of constraints is expected to become more important for a high-performance system operation. In this paper, we propose a new technique of VQC considering load change with a short-term load forecasting and an optimal control by a new Meta-heuristics technique with combination of Particle Swarm Optimization (PSO) and Tabu Search (TS).

  4. Development and analysis for core power gamma thermometer adaptation

    SciTech Connect

    Ren-Tai Chiang; Leong, T.

    1996-12-31

    The gamma thermometer (GT) has gained increasing interest to replace the local power range monitor (LPRM) and the traversing in-core probe (TIP) as the core monitoring device in new boiling water reactor (BWR) designs. The number of GTs is designed between the number of LPRMs, 4, and the number of TIPs, 24, per string, but its optimal number is yet to be determined. The authors have modified the BWR core Simulator PANACEA for analyzing the core power GT adaptation and have compared the axial core-averaged relative power distributions and two thermal limits of the GT 8- and 12-point adaptations against those of the TIP 24-point adaptation.

  5. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    1985-10-01

    This report summarizes the work performed to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired, electrical utility central station, or industrial cogeneration power plant. Fabrication of the cell components to be used in the 100-cell stack was completed successfully. Compressive creep of the anode to be used in the 100-cell stack was measured through 720 hours of testing at 1300(0)F. The data continue to support the creep resistance of this component. Anode and bubble barrier pore spectra data obtained after aging at 1300F confirmed the sintering resistance of these components. A parametric study of candidate separator material data obtained from retort corrosion tests was completed. Based on the study, cell testing of treated INCO 825 was begun. A 1000 hour cell test of Ni-201/316SS at accelerated test conditions showed no failure of this separator plate material. Single cell tests to evaluate Co-based and Ti-based alternate cathode materials were conducted. The cell test performance data and post test chemical analysis show both materials are unstable. Cell testing of a doped Fe-based cathode showed a reaction with the matrix used. A repeat test using a different matrix material is planned. Testing of the 20-cell Subscale Stack was completed on schedule following 2000 hours of operation. A post test analysis was begun in order to correlate the diagnostic test data with the physical evidence of component stability, including electrolyte containment.

  6. Development of multilayer conducting polymer actuator for power application

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-03-01

    In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications because it has advantages of high work/weight ratio and in-the-air operation, in addition to advantages of conventional polymer actuators.

  7. Beyond blue pico laser: development of high power blue and low power direct green

    NASA Astrophysics Data System (ADS)

    Vierheilig, Clemens; Eichler, Christoph; Tautz, Snke; Lell, Alfred; Mller, Jens; Kopp, Fabian; Stojetz, Bernhard; Hager, Thomas; Brderl, Georg; Avramescu, Adrian; Lermer, Teresa; Ristic, Jelena; Strauss, Uwe

    2012-03-01

    There is a big need on R&D concerning visible lasers for projection applications. The pico-size mobile projection on the one hand awaits the direct green lasers with sufficiently long lifetimes at optical powers above 50mW. In this paper we demonstrate R&D-samples emitting at 519nm with lifetimes up to 10.000 hours. The business projection on the other hand requires high power operation and already uses blue lasers and phosphor conversion, but there is a strong demand for higher power levels. We investigate the power limits of R&D laser structures. In continuous wave operation, the power is limited by thermal roll-over. With an excellent power conversion efficiency of up to 29% the thermal roll-over is as high as 2.5W for a single emitter in TO56 can. We do not observe significant leakage at high currents. Driven in short pulse operation to prevent the laser from self heating, linear laser characteristics of optical power versus electrical current are observed up to almost 8W of optical power.

  8. Proceedings of steam turbine-generator developments for the power generation industry

    SciTech Connect

    Steltz, W.G. )

    1992-01-01

    This book contains proceedings of Steam Turbine Generator developments for the power industry. Topics covered include: areas of current concentration and continuing expansion and development in the power generation industry; the combined cycle; the continuing development of more reliable and more efficient low-pressure steam turbine designs; several techniques and processes under development which may provide significant improvements in the future thermal performance of power generation systems.

  9. Development Status of a Power Processing Unit for Low Power Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.

    2000-01-01

    An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.

  10. Photovoltaic power conditioning subsystem: state of the art and development opportunities

    SciTech Connect

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-15

    Photovoltaic sytems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and hot utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are also considered, including: (1) standards, guidelines, and specifications; (2) cost-effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. In addition, theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  11. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  12. Development of Jet Noise Power Spectral Laws Using SHJAR Data

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. Following the work of Viswanathan, velocity power factors are estimated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The regression parameters are scrutinized for their uncertainty within the desired confidence margins. As an immediate application of the velocity power laws, spectral density in supersonic jets are decomposed into their respective components attributed to the jet mixing noise and broadband shock associated noise. Subsequent application of the least squares method on the shock power intensity shows that the latter also scales with some power of the shock parameter. A modified shock parameter is defined in order to reduce the dependency of the regression factors on the nozzle design point within the uncertainty margins of the least squares method.

  13. Development of an expert system for power quality advisement using CLIPS 6.0

    NASA Technical Reports Server (NTRS)

    Chandrasekaran, A.; Sarma, P. R. R.; Sundaram, Ashok

    1994-01-01

    Proliferation of power electronic devices has brought in its wake both deterioration in and demand for quality power supply from the utilities. The power quality problems become apparent when the user's equipment or systems maloperate or fail. Since power quality concerns arise from a wide variety of sources and the problem fixes are better achieved from the expertise of field engineers, development of an expert system for power quality advisement seems to be a very attractive and cost-effective solution for utility applications. An expert system thus developed gives an understanding of the adverse effects of power quality related problems on the system and could help in finding remedial solutions. The paper reports the design of a power quality advisement expert system being developed using CLIPS 6.0. A brief outline of the power quality concerns is first presented. A description of the knowledge base is next given and details of actual implementation include screen output from the program.

  14. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  15. Development of a photovoltaic power supply for wireless sensor networks.

    SciTech Connect

    Harvey, Matthew R.; Kyker, Ronald D.

    2005-06-01

    This report examines the design process of a photovoltaic (solar) based power supply for wireless sensor networks. Such a system stores the energy produced by an array of photovoltaic cells in a secondary (rechargeable) battery that in turn provides power to the individual node of the sensor network. The goal of such a power supply is to enable a wireless sensor network to have an autonomous operation on the order of years. Ideally, such a system is as small as possible physically while transferring the maximum amount of available solar energy to the load (the node). Within this report, there is first an overview of current solar and battery technologies, including characteristics of different technologies and their impact on overall system design. Second is a general discussion of modeling, predicting, and analyzing the extended operation of a small photovoltaic power supply and setting design parameters. This is followed by results and conclusions from the testing of a few basic systems. Lastly, some advanced concepts that may be considered in order to optimize future systems will be discussed.

  16. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  17. Biomass power for rural development. Revised design report.

    SciTech Connect

    Neuhauser, Edward

    1999-10-03

    The retrofit of Dunkirk Steam Station to fire biomass fuels is an important part of the Consortium's goal--demonstrating the viability of commercial scale willow energy crop production and conversion to power. The goal for th biomass facilities at Dunkirk is to reliably cofire a combination of wood wastes and willow biomass with coal at approximately 20% by heat input.

  18. Airworthiness criteria development for powered-lift aircraft: A program summary

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.

    1977-01-01

    A four-year simulation program to develop airworthiness criteria for powered-lift aircraft is summarized. All flight phases affected by use of powered lift (approach, landing, takeoff) are treated with regard to airworthiness problem areas (limiting flight conditions and safety margins: stability, control, and performance; and systems failure). The general features of powered-lift aircraft are compared to conventional aircraft.

  19. Hydrothermal industrialization electric-power systems development. Final report

    SciTech Connect

    Not Available

    1982-03-01

    The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

  20. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  1. A Participatory Approach to Develop the Power Mobility Screening Tool and the Power Mobility Clinical Driving Assessment Tool

    PubMed Central

    Kamaraj, Deepan C.; Dicianno, Brad E.; Cooper, Rory A.

    2014-01-01

    The electric powered wheelchair (EPW) is an indispensable assistive device that increases participation among individuals with disabilities. However, due to lack of standardized assessment tools, developing evidence based training protocols for EPW users to improve driving skills has been a challenge. In this study, we adopt the principles of participatory research and employ qualitative methods to develop the Power Mobility Screening Tool (PMST) and Power Mobility Clinical Driving Assessment (PMCDA). Qualitative data from professional experts and expert EPW users who participated in a focus group and a discussion forum were used to establish content validity of the PMCDA and the PMST. These tools collectively could assess a user's current level of bodily function and their current EPW driving capacity. Further multicenter studies are necessary to evaluate the psychometric properties of these tests and develop EPW driving training protocols based on these assessment tools. PMID:25276796

  2. Development and Use of the Galileo and Ulysses Power Sources

    SciTech Connect

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    1994-10-01

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify the design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.

  3. Development of a higher power cooling system for lithium targets.

    PubMed

    Phoenix, B; Green, S; Scott, M C; Bennett, J R J; Edgecock, T R

    2015-12-01

    The accelerator based Boron Neutron Capture Therapy beam at the University of Birmingham is based around a solid thick lithium target cooled by heavy water. Significant upgrades to Birmingham's Dynamitron accelerator are planned prior to commencing a clinical trial. These upgrades will result in an increase in maximum achievable beam current to at least 3 mA. Various upgrades to the target cooling system to cope with this increased power have been investigated. Tests of a phase change coolant known as "binary ice" have been carried out using an induction heater to provide a comparable power input to the Dynamitron beam. The experimental data shows no improvement over chilled water in the submerged jet system, with both systems exhibiting the same heat input to target temperature relation for a given flow rate. The relationship between the cooling circuit pumping rate and the target temperature in the submerged jet system has also been tested. PMID:26254970

  4. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  5. Prospects for the power sector in nine developing countries

    SciTech Connect

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  6. Development of lighting goggles with power white LED modules

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Kawakami, Yoichi; Fujita, Shigeo

    2003-07-01

    Everywhere in the world, the highest quality and quantity of lighting is required during the surgical operations. However, the surgical approach has had many types and various angles, common ceiling surgical halogen shadow less lighting system cannot provide an adequate amount of beams because the surgeons' heads hinder the illuminations from reaching the operation field. Therefore, we have designed surgical lighting system composed of white LEDs equipped on both sides of goggles. In fact, we succeeded in the first internal shunt operation in the left forearm using the surgical LED lighting sytem on 11th Sept 2000. In the operation with sitting position, it was about 34 cm from the operation field to the surgeon's eye point. Therefore, in the next approach, we have to try the operations with usual standing position. To get the more powerful LED light source, we have tried to make "power white LED module" composed with Nichia white LEDs (NCCx002) on AlN plate. Then we have tried the general thoracic operation with LED goggles composed "power white LED modules" on 9th December 2002.

  7. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  8. Photovoltaic power systems for rural areas of developing countries

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Hein, G. F.; Ratajczak, A. F.

    1979-01-01

    Photovoltaic (PV) applications for rural areas of underdeveloped countries are discussed in relation to PV system technology, reliability, and present and projected cost. The information presented is derived mainly from NASA, Lewis Research Center experience with PV systems deployed with a variety of users for applications relevant to LDCs. A detailed description of two village power systems is included. Energy cost comparisons are presented for PV systems versus alternative energy sources. It is concluded, based on present PV system technology, reliability and cost that photovoltaics provides a realistic energy option for LDCs in both the near- and far-term.

  9. Lightning Model Development: Contribution to High Power Electromagnetics

    NASA Astrophysics Data System (ADS)

    Gardner, R. L.

    As the accompanying articles can attest, Dr. Carl E. Baum has had a varied career with fundamental contributions to many subjects. Lightning is one of those technical areas in which he has provided deep insight into the mechanisms of a very complex physical phenomenon. His contributions include fundamental measurements of lightning properties, basic models of important physical characteristics, lightning simulation characterization, and finally, lightning interaction with important systems like aircraft. The foundations of these techniques have helped him form the foundation of the general subject of high power electromagnetics.

  10. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, Jeff; Stuart, Brent; Seryi, Andrei; /SLAC

    2012-07-05

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system.

  11. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development

    PubMed Central

    Allen, Anna E.; MacMillan, David W. C.

    2012-01-01

    Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature. PMID:22518271

  12. The development of power specific redlines for SSME safety monitoring

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Bosch, Claudia M.

    1989-01-01

    Over the past several years, there has been an increased awareness in the necessity for rocket engine health monitoring because of the cost and complexity of present and future systems. A current rocket engine system, the Space Shuttle Main Engine (SSME), combines a limited redline system with closed-loop control of the engine's thrust level and mixture ratio. Despite these features, 27 tests of the SSME have resulted in major incidents. A SSME transient model was used to examine the effect of variations in high pressure turbopump performance on various engine parameters. Based on analysis of the responses, several new parameters are proposed for further investigation as power-level specific redlines.

  13. Power supply technologies - Keystones for space and terrestrial development

    NASA Astrophysics Data System (ADS)

    Fritzsche, A.; Reich, G.; Schwarzott, W.

    1990-10-01

    Terrestrial and space energy systems share such technical requirements as high conversion efficiencies, long service life, high reliability, and substantial adaptability to user requirements, in conjunction with growth capacity. Attention is presently given to current technological possibilities in solar energy utilization, energy storage, and such regenerative media energy-supply concepts as solar cells. Both solar-dynamic and photovoltaic solar systems are discussed; the former may operate according to the Stirling, organic Rankine, or Brayton cycles. In any of these cases, solar dynamic power systems will benefit from extensive existing experience with turbomachinery.

  14. The 40-kw field test power plant modification and development, phase 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progression on the design and development of a 40 KW fuel cell system for on-site installation for providing both thermal and electrical power is reported. Development of the steam reformer fuel processor, power section, inverter, control system, and thermal management and water treatment systems is described.

  15. Development of a high-power lithium-ion battery.

    SciTech Connect

    Jansen, A. N.

    1998-09-02

    Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

  16. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  17. DEVELOPMENT OF HTS CONDUCTORS FOR ELECTRIC POWER APPLICATIONS

    SciTech Connect

    Goyal, A.; Rupich, M.

    2012-10-23

    Second generation (2G) technologies to fabricate high-performance superconducting wires developed at the Oak Ridge National Laboratory (ORNL) were transferred to American Superconductor via this CRADA. In addition, co-development of technologies for over a decade was done to enable fabrication of commercial high-temperature superconducting (HTS) wires with high performance. The massive success of this CRADA has allowed American Superconductor Corporation (AMSC) to become a global leader in the fabrication of HTS wire and the technology is fully based on the Rolling Assisted Biaxially Textured Substrates (RABiTS) technology invented and developed at ORNL.

  18. Factors driving wind power development in the United States

    SciTech Connect

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  19. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  20. Advanced Gas Turbine (AGT) power-train system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Johnson, R. A.; Gibson, R. K.

    1982-01-01

    Technical work on the design and component testing of a 74.5 kW (100 hp) advanced automotive gas turbine is described. Selected component ceramic component design, and procurement were tested. Compressor tests of a modified rotor showed high speed performance improvement over previous rotor designs; efficiency improved by 2.5%, corrected flow by 4.6%, and pressure ratio by 11.6% at 100% speed. The aerodynamic design is completed for both the gasifier and power turbines. Ceramic (silicon carbide) gasifier rotors were spin tested to failure. Improving strengths is indicated by burst speeds and the group of five rotors failed at speeds between 104% and 116% of engine rated speed. The emission results from combustor testing showed NOx levels to be nearly one order of magnitude lower than with previous designs. A one piece ceramic exhaust duct/regenerator seal platform is designed with acceptable low stress levels.

  1. Integrated Power and Attitude Control System (IPACS) technology developments

    NASA Technical Reports Server (NTRS)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  2. Intellectual Property: a powerful tool to develop biotech research

    PubMed Central

    Giugni, Diego; Giugni, Valter

    2010-01-01

    Summary Today biotechnology is perhaps the most important technology field because of the strong health and food implications. However, due to the nature of said technology, there is the need of a huge amount of investments to sustain the experimentation costs. Consequently, investors aim to safeguard as much as possible their investments. Intellectual Property, and in particular patents, has been demonstrated to actually constitute a powerful tool to help them. Moreover, patents represent an extremely important means to disclose biotechnology inventions. Patentable biotechnology inventions involve products as nucleotide and amino acid sequences, microorganisms, processes or methods for modifying said products, uses for the manufacture of medicaments, etc. There are several ways to protect inventions, but all follow the three main patentability requirements: novelty, inventive step and industrial application. PMID:21255349

  3. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  4. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  5. Solar Selective Coatings Developed for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is envisioned for space power applications on minisatellites. A high solar absorptance is needed to collect as much of the incident solar radiation as possible and a low infrared emittance is needed to minimize radiant energy losses. A lightweight material having a high thermal conductivity is needed to transport the absorbed energy to where it is needed. Such a solar collector may be used with a low temperature-differential heat engine to provide electric power to the minisatellite components or as a source of thermal energy for a thermal bus that would heat remote regions of the spacecraft. The key to such a collector is the use of cermet coatings. Cermet coatings are composed of molecular islands of metal embedded in a three-dimensional matrix of dielectric. Recent research on molecular mixtures of aluminum and aluminum oxide at the NASA Glenn Research Center has yielded cermet coatings with a solar absorptance a of 0.797 and an infrared emittance epsilon of 0.131, yielding an alpha/epsilon ratio of 6. Although additional work is needed to further increase the alpha/epsilon ratio, these coatings are attractive owing to their potential durability in the space environment. The aluminum oxide surface should provide substantial protection from the atomic oxygen found in low Earth orbit. To help minimize emittance, these coatings are deposited on a smooth surface. The selected surface is aluminum that has been diamond turned to a mirror finish. Cermet coatings are manufactured by sputter deposition. To achieve the desired variable composition, Glenn's researchers implemented a novel approach using a cylindrical target composed of aluminum and aluminum oxide. Rotating the cylinder during the deposition process yields a coating of variable composition. A photograph of the custom-made aluminum and aluminum oxide cylindrical target installed in the sputter deposition chamber is shown.

  6. Power Systems Development Facility: High Temperature, High Pressure Filtration in Gasification Operation

    SciTech Connect

    Martin, R.A.; Guan, X.; Gardner, B.; Hendrix, H.

    2002-09-18

    High temperature, high pressure gas filtration is a fundamental component of several advanced coal-fired power systems. This paper discusses the hot-gas filter vessel operation in coal gasification mode at the Power Systems Development Facility (PSDF). The PSDF, near Wilsonville, Alabama, is funded by the U.S. Department of Energy (DOE), Southern Company, and other industrial participants currently including the Electric Power Research Institute, Siemens Westinghouse Power Corporation, Kellogg Brown & Root Inc. (KBR), and Peabody Energy. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems designed at sufficient size to provide data for commercial scale-up.

  7. Activity and accomplishments of dish/Stirling electric power system development

    NASA Astrophysics Data System (ADS)

    Livingston, F. R.

    1985-02-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  8. Activity and accomplishments of dish/Stirling electric power system development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  9. Response of Rocky Mountain elk (Cervus elaphus) to wind-power development

    USGS Publications Warehouse

    Walter, W. David; Leslie, David M., Jr.; Jenks, J.A.

    2006-01-01

    Wind-power development is occurring throughout North America, but its effects on mammals are largely unexplored. Our objective was to determine response (i.e., home-range, diet quality) of Rocky Mountain elk (Cervus elaphus) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power development on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction was initiated on 1 June 2003 and was completed by December 2003 with 45 active turbines. The largest composite home range sizes (>80 km2) occurred April-June and September, regardless of the status of wind-power facility development. The smallest home range sizes (<50 km2) typically occurred in October-February when elk aggregated to forage on winter wheat. No elk left the study site during the study and elk freely crossed the gravel roads used to access the wind-power facility. Carbon and nitrogen isotopes and percent nitrogen in feces suggested that wind-power development did not affect nutrition of elk during construction. Although disturbance and loss of some grassland habitat was apparent, elk were not adversely affected by wind-power development as determined by home range and dietary quality.

  10. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  11. Satellite power system: concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    SciTech Connect

    Dietz, R.H.; Arndt, G.D.; Seyl, J.W.; Leopold, L.; Kelley, J.S.

    1981-07-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  12. Review of photovoltaic: powered refrigeration for vaccines for developing countries

    SciTech Connect

    Field, R.L.; Carrasco, P.; de Quadros, C.A.

    1982-01-01

    The application of photovoltaic systems in immunization programs throughout the world is currently being evaluated, with the promise that photovoltaic systems may permit the extension of vaccine delivery systems by using alternative technologies in those areas where conventional forms of energy have yet to be introduced or are too costly. The cold chain is a system whose elements of logistics, equipment, and methodology are linked together to deliver vaccines in an efficient manner at temperatures between +4/sup 0/C to +8/sup 0/C. Vaccines are delicate substances and to keep them potent they must be kept cold from the time they are manufactured to the time of their administration. The cooling system of the vaccine refrigerator may be either of the conventional compression type or absorption type. The use of a direct current thermoelectric cooling system is also being considered. Either the compression or thermoelectric types may be PV powered, and there are incidental electricity needs with the kerosene powered absorption type. A small 10l size refrigerator should be capable of producing 1l of ice in the (8 hours of) night (in +32/sup 0/C design ambient) and must maintain temperature of +4 to +8/sup 0/C during the day (in +43/sup 0/C ambient). It is desirable that a 40l size produce 4l of ice per 24 h in a night-time ambient of +32/sup 0/C. with a COP (coefficient of performance) of 1.0, photocell net area of 1.3m/sup 2/ is needed for the designed compression of absorption type, and an area of 14.6m/sup 2/ is needed for the thermoelectric refrigerator of this size. An 80l size must be capable of producing 1-2l of ice per day (8l desirable). Costs are estimated at $800 for the 10l size, $1675 for 40l size and $3410 for 80l size, including photocells, batteries and refrigerator.

  13. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    Kemp, F. S.

    1985-01-01

    A 30-cell stack was tested for 7200 hours. At 6000 hours the stack was successfully refilled with acid with no loss of performance. A second stack containing the advanced Configuration B cell package was fabricated and assembled for testing in 1985. A 200-kW brassboard inverter was successfully evaluated, verifying the design of the two-bridge ASCR circuit design. A fuel processing catalyst train was tested for 2000 hours verifying the catalyst for use in a 200-kW development reformer. The development reformer was fabricated for evaluation in 1985. The initial test plan was prepared for a 200-kW verification test article.

  14. Photovoltaics. [research and development of terrestrial electric power systems

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  15. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  16. Development of power accumulation-type SiC MOSFET

    NASA Astrophysics Data System (ADS)

    Linewih, Handoko; Dimitrijev, Sima; Harrison, H. Barry

    1999-10-01

    A new structure of SiC ACCUFET MOSFET for high power applications have been proposed and analyzed by simulation. The new MOSFET has an n-type ion implanted trench region and a MOS structure consisting of a thin surface layer of epitaxially grown n-type SiC. The current flows through then-type ion implanted region, then via accumulation channel of electrons defined in the epitaxially grown SiC surface layer. The thickness and doping of the n-type surface and p-type base epitaxially grown layers control the channel conditions. At zero gate bias the channel is fully depleted by the built-in fields of SiC p-base layer and the gate electrode resulting in a normally off device with the drain voltage supported by the n-drift region. Moreover, this designed structure fully addresses most of the open issues related to the MOS interface problems, i.e. low channel mobility and high electric field in the gate oxide of the MOS structure. 2D numerical simulations demonstrate that the optimized designed structure can withstand the blocking voltage of more than 1000 V, and a low specific on- resistance. The analytically calculated and simulated result son specific on-resistance of the optimized structure show as low a s 19.3 (Omega) cm2 specific on resistance can achieved with low gate bias of 5V.

  17. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    M. L. Grossbeck J-P.A. Renier Tim Bigelow

    2003-09-30

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

  18. Advanced PEFC development for fuel cell powered vehicles

    NASA Astrophysics Data System (ADS)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  19. The Power of Collegiality in School-Based Professional Development

    ERIC Educational Resources Information Center

    Owen, Susanne

    2005-01-01

    The school has increasingly become the focus for teacher professional development and school leaders are maximizing teacher learning through restructuring time and meeting structures to create additional opportunities for collegial work within the school day. This research paper is the second part of a three stage research design investigating

  20. An automated dynamic load for power system development

    NASA Technical Reports Server (NTRS)

    Whitehead, Norma Dugal; Kapustka, Robert E.

    1988-01-01

    This paper describes a dynamic load which is computer-controlled and has an increased bandwidth of more than 10 times that commercially available at the time the development of the project began. The load is 3 kW with a bandwidth of 35 kHz. The hardware and software are described, and the control circuitry is shown.

  1. Commercial Research and Development: Power to Explore, Opportunities from Discovery

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving force for strengthening the commercial space activities is not only the technological advances in launch vehicle, or newer satellites, but the myriad of enabling payloads technologies that could, as a goal, result in an almost transparent facilitation to regular CD a, -n access to space and microgravity environments by the future users from the existing Earth-based research and development organizations market segments. Rather than focusing only on developing high lift performance launch vehicles and then developing payloads to fit them, the real focus from a business model perspective should to be on the customer payloads requirements, and on designing launch vehicles and platforms systems for a space transportation and facility infrastructure to support all aspects of the business model for the user market. To harness the full potential of space commercialization, new efforts need to be made to comprehensively examine all the critical business model areas for commercial research, development, and manufacturing in space so as to identify specific products and efforts; to determine how such operations must be both similar to and different from current Earth-based activities; to evaluate the enabling technological devices, processes and efforts so that like efforts can be addressed in a synergistic fashion for maximum user cost effectiveness; to delineate the services that are both needed and can be provided by such activities; and to use this information to drive design and development of space commercialization efforts and policy.

  2. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  3. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    SciTech Connect

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor fuel core was chosen for the study, and state-of-the-art neutronic reactor core computer codes were used for analysis. Power distribution, fuel burnup, reactivity due to burnable poisons and other fission products, spectrum shift, core reactivity, moderator void coefficients, as well as other parameters were calculated as a function of time and fuel burnup. The results not only showed advantages of separation of burnable poison isotopes but revealed benefits to be achieved by careful selection of the configuration of even naturally occurring elements used as burnable poisons. The savings in terms of additional days of operation is shown in Figure 1, where the savings is plotted for each of six favorable isotopes in the four configurations. The benefit of isotope separation is most dramatic for dysprosium, but even the time savings in the case of gadolinium is several days. For a modern nuclear plant, one day's worth of electricity is worth about one million dollars, so the resulting savings of only a few days is considerable. It is also apparent that the amount of savings depends upon the configuration of the burnable poison.

  4. Development of a power control system for AUVs probing for underwater mineral resources

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Kim, Hyung Tae; Cho, Young June; Lee, Kang Won

    2009-12-01

    Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensive exploration area makes it difficult to maintain contact with operators. AUVs depend on batteries, so their power consumption should be reduced to extend exploration time. Power for conventional marine instrument systems is incorporated in their waterproof sealing. External intermittent control of this power source until termination of exploration is challenging due to limitations imposed by the underwater environment. Thus, the AUV must have a power control system that can improve performance and maximize use of battery capacity. The authors developed such a power control system with a three-step algorithm. It automatically detects underwater operational states and can limit power, effectively decreasing power consumption by about 15%.

  5. Photovoltaic power systems for rural areas of developing countries

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.; Bifano, W. J.; Hein, G. F.; Ratajczak, A. F.

    1979-01-01

    Systems technology, reliability, and present and projected costs of photovoltaic systems are discussed using data derived from NASA, Lewis Research Center experience with photovoltaic systems deployed with a variety of users. Operating systems in two villages, one in Upper Volta and the other in southwestern Arizona are described. Energy cost comparisons are presented for photovoltaic systems versus alternative energy sources. Based on present system technology, reliability, and costs, photovoltaics provides a realistic energy option for developing nations.

  6. Recent developments in refractive concentrators for space photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Oneill, Mark J.

    1993-01-01

    Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.

  7. Development of Low-Speed Low-Capacity Vertical-Axis-Type Wind Power Generator

    NASA Astrophysics Data System (ADS)

    Soejima, Katsunori; Higuchi, Tsuyoshi; Abe, Takashi; Hirayama, Tadashi; Kouno, Katsuiti

    We have developed a low-speed and low-capacity wind power generator. In this paper, we introduce the outline of the 5kW multi-polar synchronous generator that generates the electric power efficiently from 50rpm to 180rpm. The generator is produced by a magnetic powder core for cost reduction. We also express the outline and field test results of the low-capacity power plant constructed in Ohmura City, Nagasaki.

  8. Engineering development of superconducting RF linac for high-power applications

    SciTech Connect

    Dominic Chan, K.C.; Rusnak, B.; Gentzlinger, R.C.; Campbell, B.M.; Kelley, J.P.; Safa, H.

    1998-12-31

    High-power proton linacs are a promising source of neutrons for material processing and research applications. Superconducting radiofrequency (SCRF) Rf linac technology is preferred for such applications because of power efficiency. A multi-year engineering development program is underway at Los Alamos National Laboratory to demonstrate the required SCRF technology. The program consists of development of SC cavities, power couplers, and cryomodule integration. Prototypes will be built and operated to obtain performance and integration information, and for design improvement. This paper describes the scope and present status of the development program.

  9. Development, integration, and testing of a 30 cm thruster/power conditioning and control system.

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Collett, C. R.; Garth, D. R.

    1972-01-01

    The 30 cm thruster/power conditioning and control system discussed represents a significant milestone in the evolution of prime ion propulsion systems. The effort described covers three distinct electronic hardware implementation, integration and testing phases; development of a flight-type power conditioner for laboratory testing, development of a thruster control system to control the power conditioning for demonstrating continuously variable automatic thruster throttling from a single control over a range in excess of 5:1, and finally development of an automated endurance test system incorporating many of the above designs for a 6000 hour thruster life test.

  10. Toward the last frontier - A strategy for the evolutionary development of space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    A number of exciting mission opportunities are being considered for the 21st century, including advanced robotic science missions to the outer planets and beyond, human exploration of the Moon and Mars, and advanced space transportation systems. All of these missions will require some form of nuclear power; however, it is clear that current budgetary constraints preclude developing many different types of space nuclear power systems. This paper reviews the specific civil space missions which have been identified, the power levels and lifetimes required, and the technologies available. From this an evolutionary space nuclear power program is developed which builds upon the experience of radioisotope thermoelectric generators, dynamic isotope power systems, and space nuclear reactors. It is strongly suggested that not only does this approach make technical and budgetary sense but that it is consistent with the normal development of new technologies.

  11. ICRF array module development and optimization for high power density

    SciTech Connect

    Ryan, P.M.; Swain, D.W.

    1997-02-01

    This report describes the analysis and optimization of the proposed International Thermonuclear Experimental Reactor (ITER) Antenna Array for the ion cyclotron range of frequencies (ICRF). The objectives of this effort were to: (1) minimize the applied radiofrequency rf voltages occurring in vacuum by proper layout and shape of components, limit the component`s surface/volumes where the rf voltage is high; (2) study the effects of magnetic insulation, as applied to the current design; (3) provide electrical characteristics of the antenna for the development and analysis of tuning, arc detection/suppression, and systems for discriminating between arcs and edge-localized modes (ELMs); (4) maintain close interface with mechanical design.

  12. Managing environmental issues during international electric power project development

    SciTech Connect

    Cooper, H.W.

    1998-07-01

    Responsible international project developers most often view environmental matters with quite mixed emotions. Those with whom Dynalytics has worked would certainly never contemplate jeopardizing the health of anyone in the world. But while they want their projects realized, and are willing to implement reasonable requirements, they are often asked to do more than is appropriate, more than is technologically possible, and more than is financially possible. The paper discusses the following: who is in charge of environmental matters; whose environmental standards apply; the role of technology; accelerating timetables and reducing costs; documentation and applications; and post-construction requirements.

  13. Aluminum-air power cell research and development

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1984-02-01

    An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full-recharge. The cell uses tin-plated copper tracks to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m(2). A second generation wedge cell was developed which incorporates air- and electrolyte-manifolding into individually-replaceable air-cathode cassettes. A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydrocyclone.

  14. A Comparative Analysis of Community Wind Power DevelopmentModels

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

    2005-05-20

    For years, farmers in the United States have looked with envy on their European counterparts ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned windpower development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for windpower. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus cooperative ownership, and the state and utility service territory in which the project will be located.

  15. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    SciTech Connect

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  16. Review of 1992 industry developments. [Nuclear power industry

    SciTech Connect

    Not Available

    1993-01-01

    The year 1992 was remarkable for a number of major events that affected the market. The key developments can be categorized in areas such as supply restrictions, legislative and political events, industry consolidations, reactor and mine closures as well as start-ups, and achievements at assorted fuel cycle operations. Clearly, the most influential event was the US uranium anti-dumping investigation, but other significant developments included Euratom's actions restricting imports of CIS-origin uranium into the European Community, continuing upheaval and evolution of the market-based economies of the CIS and central Europe, the second-most active year ever in the uranium spot market, the formation of ConverDyn and the indefinite shutdown of Sequoyah Fuels, Cogema's purchase of Urangesellschaft, passage of a US Energy Bill, China's signing of the Non-Proliferation Treaty, renewed progress on Taiwan's fourth nuclear station, formation of the Japanese fuel cycle corporation JNFL, premature closure of three US reactors for economic reasons, and several mergers and acquisitions that further consolidated the uranium and nuclear industries. As a whole, the past year will be looked back on by market participants as a year of turning point, both good and bad, in the evolution of the industry.

  17. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  18. Development and optimization of a stove-powered thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  19. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  20. The World Bank, Support for Universities, and Asymmetrical Power Relations in International Development

    ERIC Educational Resources Information Center

    Collins, Christopher S.; Rhoads, Robert A.

    2010-01-01

    This article examines the role of the World Bank in advancing higher education sectors in the developing world, considering in particular the increasing power and strength of a global knowledge-based economy. Given the powerful role that intergovernmental organizations such as the World Bank play in shaping global economic policies, the authors…

  1. TOPAZ-2'' thermionic space nuclear power system and the perspectives of its development

    SciTech Connect

    Nickitin, V.P.; Ogloblin, B.G.; Luppov, A.N. ); Usov, V.A. ) Nicolaev, Y.V. ) Wetch, J.R. )

    1991-01-05

    This paper describes characteristics of the TOPAZ Reactors for space power applications developed in the USSR. TOPAZ-2 has been shown to be useful for satellites and for lunar or Martian bases. It can be coupled with a Stirling engine. TOPAZ-3 reactor provides greater power levels while TOPAZ-4 has an improved multicell thermionic fuel element. (AIP)

  2. The World Bank, Support for Universities, and Asymmetrical Power Relations in International Development

    ERIC Educational Resources Information Center

    Collins, Christopher S.; Rhoads, Robert A.

    2010-01-01

    This article examines the role of the World Bank in advancing higher education sectors in the developing world, considering in particular the increasing power and strength of a global knowledge-based economy. Given the powerful role that intergovernmental organizations such as the World Bank play in shaping global economic policies, the authors

  3. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Individual and Team Performance Guidelines

    SciTech Connect

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Individual and Team Performance Guidelines. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  4. SPSP Phase III Recruiting, Selecting, and Developing Secure Power Systems Professionals. Job Profiles

    SciTech Connect

    O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.; Greitzer, Frank L.; Dalton, Angela C.; Pusey, Portia K.

    2015-03-01

    The Secure Power Systems Professional Phase III final report was released last year which an appendix of Job Profiles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.

  5. Power for all? Electricity and uneven development in North Carolina

    NASA Astrophysics Data System (ADS)

    Harrison, Conor M.

    Many towns in eastern North Carolina face a number of challenges common to the rural South, including high rates of poverty and diminishing employment opportunities. However, some residents of this region also confront a unique hardship---electricity prices that are vastly higher than those of surrounding areas. This dissertation examines the origins of pricing inequalities in the electricity market of eastern North Carolina---namely how such inequalities developed and their role in the production of racial and economic disparities in the South. This dissertation examines the evolving relations between federal and state agencies, corporations, and electric utilities, and asks why these interactions produced varying social outcomes across different places and spatial settings. The research focuses on the origins and subsequent development of electric utilities in eastern North Carolina, and examines how electricity as a material technology interacted with geographies of race and class, as well as the dictates of capital accumulation. This approach enables a rethinking of several concepts that are rarely examined by scholars of electric utilities, most notably the monopoly service territory, which I argue served as a spatial fix to accumulation problems in the industry. Further, examining the way that electric utilities developed in North Carolina during the 20th century brings to the forefront the at times contradictory relationships among systems of electricity provision, Jim Crow segregation, the Progressive Era, and the New Deal. Such a focus highlights the important role that the control of electricity provision played in shaping racial inequalities that continue to persist in the region. With most urban areas were electrified in the 1930s, the research also traces the electricity distribution lines as they moved out of cities through rural electrification programs, a shift that highlights the state as a multi-scalar and variegated actor that both aided and impeded electrification efforts by various institutional and corporate entities. Ultimately, I argue that the historical geography of electricity is a critical factor that must be considered in order to adequately understand and address the issues of inequality and poverty that continue to persist in the region.

  6. Adult development and the transformative powers of psychotherapy.

    PubMed

    Geller, Jesse D

    2014-08-01

    This article explores the ways in which receiving, providing, and teaching others to do psychotherapy have influenced my adult development. In my 70s, I arrived at the conviction that at every stage of adulthood, practicing psychotherapy has had a direct and causal influence on my efforts to fill my personal life with meaning, virtue, and maturity. The first section of this article focuses on the ways in which learning to be a particular kind of psychoanalytic therapist facilitated my transition into early adulthood. The middle sections describe how I have used the professional practice of psychotherapy to integrate or dissolve the boundaries between work and play, and science and art, in the everyday conduct of my life. My psychobiographical analysis concludes with some reflections on a professional failure and the compensations of being an aging therapist. PMID:24953767

  7. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  8. Aluminum-air power cell research and development

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  9. Activity and accomplishments in dish/Stirling electric power system development

    SciTech Connect

    Livingston, F.R.

    1985-02-15

    Development of a modular, sun-heated, 25-kWe Stirling-engine generating plant that began in late 1977 has now been achieved. The US Department of Energy Solar Thermal Technology Division sponsored the development of this solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system. As of late 1984, the dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. Further product development is ongoing. The report also covers the fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of Parabolic Dish Concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit.

  10. 1000kW on-site PAFC power plant development and demonstration

    SciTech Connect

    Satomi, Tomohide; Koike, Shunichi; Ishikawa, Ryou

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  11. The Design and Development of the SMEX-Lite Power System

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn P.; Schnurr, Richard G., Jr.; Solly, Michael A.

    1998-01-01

    This paper describes the design and development of a 250W orbit average electrical power system electronic Power Node and software for use in Low Earth Orbit missions. The mass of the Power Node is 3.6 Kg (8 lb.). The dimensions of the Power Node are 30cm x 26cm x 7.9cm (11 in. x 10.25 in x 3.1 in.) The design was realized using software, Field Programmable Gate Array (FPGA) digital logic and surface mount technology. The design is generic enough to reduce the non-recurring engineering for different mission configurations. The Power Node charges one to five, low cost, 22-cell 4 AH D-cell battery packs independently. The battery charging algorithms are executed in the power software to reduce the mass and size of the power electronic. The Power Node implements a peak-power tracking algorithm using an innovative hardware/software approach. The power software task is hosted on the spacecraft processor. The power software task generates a MIL-STD-1553 command packet to update the Power Node control settings. The settings for the battery voltage and current limits, as well as minimum solar array voltage used to implement peak power tracking are contained in this packet. Several advanced topologies are used in the Power Node. These include synchronous rectification in the bus regulators, average current control in the battery chargers and quasi-resonant converters for the Field Effect Transistor (FET) transistor drive electronics. Lastly, the main bus regulator uses a feed-forward topology with the PWM implemented in an FPGA.

  12. 75 FR 30852 - Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... necessary to adequately define impacts on the Dallas Creek Project and the environment of the development... environment. Explain any proposed use of the hydropower development for conservation and utilization of the... Bureau of Reclamation Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project,...

  13. Biomass power for rural development. Technical progress report, January 1--March 31, 1998

    SciTech Connect

    Neuhauser, E.

    1998-11-01

    Brief progress reports are presented on the following tasks: design packages for retrofits at the Dunkirk Station; fuel supply and site development plans; major equipment guarantees and project risk sharing; power production commitment; power plant site plan, construction and environmental permits; and experimental strategies for system evaluation. The paper then discusses in more detail the following: feedstock development efforts; clone-site testing and genetic studies; and efforts at outreach, extension and technology transfer.

  14. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    NASA Technical Reports Server (NTRS)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  15. Satellite power system concept development and evaluation program. Volume 2: System defintion

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  16. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  17. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2003-01-01

    The continuing development of microsatellites and nanosatellites for low Earth orbits requires the collection of sufficient power for instruments onboard a low-weight, low-volume spacecraft. Because the overall surface area of a microsatellite or nanosatellite is small, body-mounted solar cells cannot provide enough power. The deployment of traditional, rigid, solar arrays necessitates larger satellite volumes and weights, and also requires extra apparatus for pointing. One solution to this power choke problem is the deployment of a spherical, inflatable power system. This power system, termed the "PowerSphere," has several advantages, including a high collection area, low weight and stowage volume, and the elimination of solar array pointing mechanisms.

  18. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.

  19. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  20. Development of Innovative Distributed Power Interconnection and Control Systems: Annual Report, December 2000-December 2001

    SciTech Connect

    Liss, W.; Dybel, M.; West, R.; Adams, L.

    2002-11-01

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging, and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.

  1. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  2. High Power MPD Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Mikellides, Pavlos G.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Propulsion requirements for large platform orbit raising, cargo and piloted planetary missions, and robotic deep space exploration have rekindled interest in the development and deployment of high power electromagnetic thrusters. Magnetoplasmadynamic (MPD) thrusters can effectively process megawatts of power over a broad range of specific impulse values to meet these diverse in-space propulsion requirements. As NASA's lead center for electric propulsion, the Glenn Research Center has established an MW-class pulsed thruster test facility and is refurbishing a high-power steady-state facility to design, build, and test efficient gas-fed MPD thrusters. A complimentary numerical modeling effort based on the robust MACH2 code provides a well-balanced program of numerical analysis and experimental validation leading to improved high power MPD thruster performance. This paper reviews the current and planned experimental facilities and numerical modeling capabilities at the Glenn Research Center and outlines program plans for the development of new, efficient high power MPD thrusters.

  3. Predicting future wind power generation and power demand in France using statistical downscaling methods developed for hydropower applications

    NASA Astrophysics Data System (ADS)

    Najac, Julien

    2014-05-01

    For many applications in the energy sector, it is crucial to dispose of downscaling methods that enable to conserve space-time dependences at very fine spatial and temporal scales between variables affecting electricity production and consumption. For climate change impact studies, this is an extremely difficult task, particularly as reliable climate information is usually found at regional and monthly scales at best, although many industry oriented applications need further refined information (hydropower production model, wind energy production model, power demand model, power balance model). Here we thus propose to investigate the question of how to predict and quantify the influence of climate change on climate-related energies and the energy demand. To do so, statistical downscaling methods originally developed for studying climate change impacts on hydrological cycles in France (and which have been used to compute hydropower production in France), have been applied for predicting wind power generation in France and an air temperature indicator commonly used for predicting power demand in France. We show that those methods provide satisfactory results over the recent past and apply this methodology to several climate model runs from the ENSEMBLES project.

  4. 76 FR 6820 - Contract for Hydroelectric Power Development at the C-Drop, a Feature of the Klamath Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... development of electrical power resource potential on Federal water resource projects, Reclamation will... with the C-Drop, for non-Federal electric power generation and sale by the entity. Leases of power... Bureau of Reclamation Contract for Hydroelectric Power Development at the C-Drop, a Feature of...

  5. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  6. Development of Ada language control software for the NASA power management and distribution test bed

    NASA Technical Reports Server (NTRS)

    Wright, Ted; Mackin, Michael; Gantose, Dave

    1989-01-01

    The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.

  7. Design of isolated renewable hybrid power systems

    SciTech Connect

    Sreeraj, E.S.; Chatterjee, Kishore; Bandyopadhyay, Santanu

    2010-07-15

    Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system. (author)

  8. Develop and test fuel cell powered on site integrated total energy sysems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1986-01-01

    A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.

  9. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  10. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  11. Innovation on Energy Power Technology (22)Challenge to Development of Expert System stored Knowledge of Expert Power Network Operators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hideharu

    Do you remember an expert system? I think there are various impressions about the system. For example, some might say It reminds me of old days. On the other hand, some might say It was really troublesome. About 25 years ago, from late 1980s to the middle of 1990s, when the Showa era was about to change into the Heisei Era, artificial intelligence boomed. Research and development for an expert system which was equipped with expertise and worked as smart as expert, was advanced in various fields. Our company also picked up the system as the new system which covered weak point of conventional computer technology. We started research and development in 1984, and installed an expert system in a SCADA system, which started operating in March 1990 in the Fukuoka Integrated Control Center. In this essay, as an electric power engineer who involved in development at that time, I introduce the situation and travail story about developing an expert system which support restorative actions from the outage and overload condition of power networks.

  12. Update on Development of SiC Multi-Chip Power Modules

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Cilio, Edgar; Mitchell, Gavin; Schupbach, Roberto

    2008-01-01

    Progress has been made in a continuing effort to develop multi-chip power modules (SiC MCPMs). This effort at an earlier stage was reported in 'SiC Multi-Chip Power Modules as Power-System Building Blocks' (LEW-18008-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 28. The following recapitulation of information from the cited prior article is prerequisite to a meaningful summary of the progress made since then: 1) SiC MCPMs are, more specifically, electronic power-supply modules containing multiple silicon carbide power integrated-circuit chips and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking; 2) The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules; and, 3) In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications. Because identical SiC MCPM building blocks could be utilized in such a variety of ways, the cost and difficulty of designing new, highly reliable power systems would be reduced considerably. This concludes the information from the cited prior article. The main activity since the previously reported stage of development was the design, fabrication, and testing a 120- VDC-to-28-VDC modular power-converter system composed of eight SiC MCPMs in a 4 (parallel)-by-2 (series) matrix configuration, with normally-off controllable power switches. The SiC MCPM power modules include closed-loop control subsystems and are capable of operating at high power density or high temperature. The system was tested under various configurations, load conditions, load-transient conditions, and failure-recovery conditions. Planned future work includes refinement of the demonstrated modular system concept and development of a new converter hardware topology that would enable sharing of currents without the need for communication among modules. Toward these ends, it is also planned to develop a new converter control algorithm that would provide for improved sharing of current and power under all conditions, and to implement advanced packaging concepts that would enable operation at higher power density.

  13. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.

  14. An integrated and modular digital modeling approach for the space station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  15. An integrated and modular digital modeling approach for the Space Station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  16. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  17. The alternative strategies of the development of the nuclear power industry in the 21st century

    NASA Astrophysics Data System (ADS)

    Goverdovskii, A. A.; Kalyakin, S. G.; Rachkov, V. I.

    2014-05-01

    This paper emphasizes the urgency of scientific-and-technical and sociopolitical problems of the modern nuclear power industry without solving of which the transition from local nuclear power systems now in operation to a large-scale nuclear power industry would be impossible. The existing concepts of the longterm strategy of the development of the nuclear power industry have been analyzed. On the basis of the scenarios having been developed it was shown that the most promising alternative is the orientation towards the closed nuclear fuel cycle with fast neutron reactors (hereinafter referred to as fast reactors) that would meet the requirements on the acceptable safety. It was concluded that the main provisions of "The Strategy of the Development of the Nuclear Power Industry of Russia for the First Half of the 21st Century" approved by the Government of the Russian Federation in the year 2000 remain the same at present as well, although they require to be elaborated with due regard for new realities in the market for fossil fuels, the state of both the Russian and the world economy, as well as tightening of requirements related to safe operation of nuclear power stations (NPSs) (for example, after the severe accident at the Fukushima nuclear power station, Japan) and nonproliferation of nuclear weapons.

  18. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.

  19. Economic Development Impacts of Wind Power--Case Studies Fact Sheet

    SciTech Connect

    NWCC Economic Development Work Group

    2003-12-17

    OAK-B135 Interest in wind power development is growing as a means of expanding local economies. Such development holds promise as a provider of short-term employment during facility construction and long-term employment from ongoing facility operation and maintenance (O&M). It may also add to the supply of electric power in the area and support some expansion of the local economy through ripple effects resulting from initial increases in jobs and income. These ripple effects stem from subsequent expenditures for goods and services made possible by first-round income from the development, and are expressed in terms of a multiplier. If the local economy offers a wide range of goods and services the resulting multiplier can be substantial--as much as three or four. If not, then much of the initial income will leave the local economy to buy goods and services from elsewhere. Loss of initial income to other locales is referred to as a leakage. While there is a growing body of information about the local impacts of wind power, the economic impacts from existing wind power developments have not been thoroughly and consistently analyzed. Northwest Economic Associates, under contract to the National Wind Coordinating Committee (NWCC), conducted a study and produced a report entitled ''Assessing the Economic Development Impacts of Wind Power.'' The primary objective of the study was to provide examples of appropriate analyses and documentation of economic impacts from wind power development, using case studies of three existing projects in the United States. The findings from the case studies are summarized here; more detail is available in the report, available at NWCC's website http://www.nationalwind.org/. It should be noted that specific results presented apply only to the respective locales studied and are not meant to be representative of wind power in general. However, qualitative findings, discussed below, are likely to be replicated in most areas where wind development occurs.

  20. Development of Lithium-ion Battery as Energy Storage for Mobile Power Sources Applications

    NASA Astrophysics Data System (ADS)

    Sulaiman, Mohd Ali; Hasan, Hasimah

    2009-09-01

    In view of the need to protect the global environment and save energy, there has been strong demand for the development of lithium-ion battery technology as a energy storage system, especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium-ion battery development is toward the high power and energy density, cheaper in price and high safety standard. In our laboratory, the research and development of lithium-ion battery technology was mainly focus to develop high power density performance of cathode material, which is focusing to the Li-metal-oxide system, LiMO2, where M=Co, Ni, Mn and its combination. The nano particle size material, which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition, we also developed variety of sizes of lithium-ion battery prototype, including (i) small size for electronic gadgets such as mobile phone and PDA applications, (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC, SIRIM Berhad will be discussed in this paper.

  1. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  2. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  3. Development of high-average-power DPSSL with high beam quality

    NASA Astrophysics Data System (ADS)

    Nakai, Sadao; Kanabe, Tadashi; Kawashima, Toshiyuki; Yamanaka, Masanobu; Izawa, Yasukazu; Nakatuka, Masahiro; Kandasamy, Ranganathan; Kan, Hirofumi; Hiruma, Teruo; Niino, Masayuki

    2000-08-01

    The recent progress of high power diode laser is opening new fields of laser and its application. We are developing high average power diode pumped solid state laser DPSSL for laser fusion power plant, for space propulsion and for various applications in industry. The common features or requirements of our High Average-power Laser for Nuclear-fusion Application (HALNA) are large pulse energy with relatively low repetition of few tens Hz, good beam quality of order of diffraction limit and high efficiency more than 10%. We constructed HALNA 10 (10J X 10 Hz) and tested the performance to clarify the scalability to higher power system. We have obtained in a preliminary experiment a 8.5 J output energy at 0.5 Hz with beam quality of 2 times diffraction limited far-field pattern.

  4. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  5. Advantages of using low-power telephones with FITL systems in developing countries

    NASA Astrophysics Data System (ADS)

    Greenwood, Doug; Pellerin, Sharon L.

    1992-02-01

    Exciting possibilities exist for those developing countries taking major steps in revamping their telecommunications infrastructure. Unlike more developed countries that are tethered to supporting old standards for equipment, developing countries can standardize on new technologies providing substantial cost and feature advantages over equipment supporting old standards. This paper investigates variable power costs of FITL systems from an energy cost perspective and then from a peak power cost perspective. These cost perspectives are then related to telephones to show how improvements in telephone efficiency affect life cycle costs. Finally, these cost improvements are related to the networks of developing countries to show the overall system cost savings. For the sake of power calculations U.S. standards for telephone equipment are used, because they are familiar and much supporting cost analysis exists. Standards drafted by CCITT are similar to U.S. standards.

  6. Career Adaptability Development in Adolescence: Multiple Predictors and Effect on Sense of Power and Life Satisfaction

    ERIC Educational Resources Information Center

    Hirschi, Andreas

    2009-01-01

    This longitudinal panel study investigated predictors of career adaptability development and its effect on development of sense of power and experience of life satisfaction among 330 Swiss eighth graders. A multivariate measure of career adaptability consisting of career choice readiness, planning, exploration, and confidence was applied. Based on

  7. Development and application of clean coal technology for power in Harbin Boiler Co. Ltd (HBC)

    SciTech Connect

    Li, W.; Yang, Z.

    1999-07-01

    The development and application of deNox burners and large CFB, as well as desulfurization techniques at the Harbin Boiler Co. ltd (HBC) are introduced in this paper. The plan to develop the power generation technology with high efficiency and low pollution for future market is also given in the paper.

  8. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  9. Solar Power Generation for ICT and Sustainable Development in Emerging Economies

    ERIC Educational Resources Information Center

    Paul, Damasen I.; Uhomoibhi, James

    2012-01-01

    Purpose: The purpose of this paper is to systematically examine and draw attention to the potential benefits of solar power generation for access to and use of information and communication technologies (ICT) aimed at sustainable development in emerging economies. Design/methodology/approach: Electricity plays a crucial role in the development and

  10. Development of a Publications and Conferences Data Base in the Mexican Electric Power Research Institute.

    ERIC Educational Resources Information Center

    Ripoll, C. Lopez Cerdan; And Others

    This paper describes the development by the Mexican Electric Power Research Institute (Instituto de Investigaciones Electricas or IIE) over a 10-year period of a publications and conferences database (PCDB) of research and development output of the institute. The paper begins by listing the objectives of the database and describing data coverage

  11. A Teaching Strategy for Developing the Power of Observation in Science Education

    ERIC Educational Resources Information Center

    Oguz-Unver, Ayse; Yurumezoglu, Kemal

    2009-01-01

    Despite the importance of observation in knowledge building, it has received less attention than experimental forms of inquiry in science education. Therefore, the aims of this study are to use observation strategies for developing the power of observation in science education and to develop student teachers' skills of observation process. The…

  12. Solar Power Generation for ICT and Sustainable Development in Emerging Economies

    ERIC Educational Resources Information Center

    Paul, Damasen I.; Uhomoibhi, James

    2012-01-01

    Purpose: The purpose of this paper is to systematically examine and draw attention to the potential benefits of solar power generation for access to and use of information and communication technologies (ICT) aimed at sustainable development in emerging economies. Design/methodology/approach: Electricity plays a crucial role in the development and…

  13. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  14. Development of Analytical Algorithm for the Performance Analysis of Power Train System of an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon

    Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.

  15. Development Status of the NASA 30-cm Ion Thruster and Power Processor

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Haag, Thomas W.; Hamley, John A.; Mantenieks, Maris A.; Patterson, Michael J.; Pinero, Luis R.; Rawlin, Vincent K.; Kussmaul, Michael T.; Manzella, David H.; Myers, Roger M.

    1994-01-01

    Xenon ion propulsion systems are being developed by NASA Lewis Research Center and the Jet Propulsion Laboratory to provide flight qualification and validation for planetary and earth-orbital missions. In the ground-test element of this program, light-weight (less than 7 kg), 30 cm diameter ion thrusters have been fabricated, and preliminary design verification tests have been conducted. At 2.3 kW, the thrust, specific impulse, and efficiency were 91 mN, 3300 s, and 0.65, respectively. An engineering model thruster is now undergoing a 2000 h wear-test. A breadboard power processor is being developed to operate from an 80 V to 120 V power bus with inverter switching frequencies of 50 kHz. The power processor design is a pathfinder and uses only three power supplies. The projected specific mass of a flight unit is about 5 kg/kW with an efficiency of 0.92 at the full-power of 2.5 kW. Preliminary integration tests of the neutralizer power supply and the ion thruster have been completed. Fabrication and test of the discharge and beam/accelerator power stages are underway.

  16. Development of ultra high power, valve-regulated lead-acid batteries for industrial applications

    NASA Astrophysics Data System (ADS)

    Soria, M. Luisa; Valenciano, Jess; Ojeda, Araceli

    There is a recent market trend towards industrial battery powered products that demand occasionally very high discharge rates. This fact is today solved by oversizing the battery or by using more expensive high power nickel-cadmium batteries. Within an EC funded project, ultra high power lead-acid batteries for UPS applications are being developed. The batteries are characterised by a thin electrode design linked to the use of novel separator materials to increase the battery life under floating and deep cycling conditions. Battery performance under different working conditions is presented, in comparison to standard products, and the battery improvements and failure mechanisms are also discussed.

  17. Status report on developments for the main components of a high-peak power FEL

    NASA Astrophysics Data System (ADS)

    Joly, Serge; Dei-Cas, Renato; Balleyguier, Pascal; Bois, Robert; Bonetti, Claude

    1989-12-01

    Components have been designed to reach high-peak powers and high efficiencies with a FEL. The components include a photoinjector using an RF gun cavity at 144 MHz to produce electron bunches, a 433-MHz 3-cell cavity powered by a new 6 MW peak power and 200 microsec pulse duration klystron, and a tapered hybrid wiggler using permanent magnets and pulsed coils for online fine tuning. Simulation codes have also been developed to follow electron bunches from the cathode down through the injector, the accelerator, and the transport system.

  18. Development and demonstration of a high temperature superconducting power transmission cable system

    SciTech Connect

    Scudiere, J.D.; Buczek, D.M.; Miles, P.

    1997-06-01

    American Superconductor Corporation and its partners, Pirelli Cable Corporation and the Electric Power Research Institute, are developing a commercially viable high-temperature superconducting power transmission cable. In this phase of the program, two multistrand conductor assemblies will be made to verify the Bi-2223 HTS power transmission cable design. Six thousand meters of superconducting wire in tape form has been manufactured for the first multistrand conductor assembly (MCA). This tape has been thoroughly tested and results have exceeded the requirements for the first MCA. Some of the test results that are reported include critical current, mechanical properties, and environmental durability.

  19. Development of a microprocessor controller for stand-alone photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  20. Development of a quiet Stirling cycle multi-fuel engine for electric power generation

    NASA Astrophysics Data System (ADS)

    Mercer, J. E.; Emigh, S. G.; Riggle, P.; Tremoulet, O. L.; White, M. A.

    1982-08-01

    The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

  1. Status of Resonant Diplexer Development for high-power ECRH Applications

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Plaum, B.; Lechte, C.; Filipovic, E.; Erckmann, V.; Grünwald, G.; Hollmann, F.; Maraschek, M.; Michel, G.; Monaco, F.; Müller, S.; Noke, F.; Purps, F.; Schubert, M.; Schütz, H.; Stober, J.; Wagner, D.; van den Braber, R.; Doelman, N.; Fritz, E.; Bongers, W.; Krijger, B.; Petelin, M.; Lubyako, L.; Bruschi, A.; Sakamoto, K.

    2012-09-01

    Characteristics of ring resonator diplexers for high-power ECRH are briefly reviewed. Commissioning experiments performed on ASDEX Upgrade with the diplexer Mk IIa are presented, which demonstrate slow and fast switching of the power between two launchers, and thus the capability for efficient suppression of neoclassical tearing modes and simultaneous central heating of the plasma. The development of the compact diplexer Mk IIIb is discussed, and test results are presented. Finally, an evacuated design for 170 GHz is shown.

  2. Design features and problems in development of autonomous mobile cw DF laser systems of various power

    NASA Astrophysics Data System (ADS)

    Bashkin, A. S.

    2006-01-01

    Design features and problems in development of autonomous mobile DF laser systems of various power, with exhaust of laser gas flow to the atmosphere, are considered. Various versions of such laser systems design are discussed. The ways and means to reduce the mass and size of the main laser subsystems are analyzed, which allows DF laser with high output power up to ~300 kW to be installed on various vehicles, like trailer trucks, ships, and so on.

  3. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  4. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    SciTech Connect

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  5. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  6. Development of software to improve AC power quality on large spacecraft

    NASA Technical Reports Server (NTRS)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, AC power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can cause malfunctions in equipment that the power system is supplying, and during extreme distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. HARMFLO, a power flow computer program, which was capable of analyzing harmonic conditions on three phase, balanced, 60 Hz, AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The results are that (1) the harmonic power now has a model of a single phase, voltage controlled, full wave rectifier; and (2) HARMFLO was ported to the SUN workstation platform.

  7. Development of a model of on-board PEMFC powered locomotive with a metal hydride cylinder

    SciTech Connect

    Hasegawa, H.; Ohki, Y.

    1995-12-31

    This paper presents a phase-zero evaluation case of installing on-off-board hybrid powered Electric Motor Vehicle (EMV) in existing and new local line and reports development of a model fuel cell powered locomotive. EMV such as electric car and locomotive are a new conceptual EMV using hybrid power between off-board substation and on-board Regenerative Fuel Cell (RFC) power system with Metal Hydride (MH) stored hydrogen generated with water electrolyzer by off-board surplus power. In this study, it is estimated a possibility to close power gap over 30% in placing the new conceptual vehicle. The Locomotive is a 110 cm long locomotive powered by a 20 W PEMFC configured with 20 cells and supplies with about 2 g hydrogen, from a cylinder of 100 g metal hydride, and natural convection air (O{sub 2}). Measuring 50 cm (W), 50 cm (H), and weighting 25.8 kgf, the locomotive has a permanent magnet motor with a rated power 38 W (12 V, 3 A) and ran on railway that has a gauge of 126 mm (3 feet 6 inches/8.5 = 4.94 inches), a length of 100 m. The performance of this train was acceleration of 0.5 m/s, cruising speed of 4.1 m/s at traction force of 15.8 N (1.6 kgf), average rolling friction of 5 N (460 gf).

  8. High power diode pumped solid state laser development at Lawrence Livermore National Laboratory

    SciTech Connect

    Solarz, R.; Albrecht, G.; Hackel, L.

    1994-03-01

    The authors recent developments in high powered diode pumped solid state lasers at Lawrence Livermore National Laboratory. Over the past year the authors have made continued improvements to semiconductor pump array technology which includes the development of higher average power and lower cost pump modules. They report the performance of high power AlGaAs, InGaAs, and AlGaInP arrays. They also report on improvement to the integrated micro-optics designs in conjunction with lensing duct technology which gives rise to very high performance end pumping designs for solid state lasers which have major advantages which they detail. Substantial progress on beam quality improvements to near the diffraction limit at very high power have also been made and will be reported. They also will discuss recent experiments on high power non-linear materials for q-switches, harmonic converters, and parametric oscillators. Advances in diode pumped devices at LLNL which include tunable Cr:LiSrAlF{sub 6}, mid-IR Er:YAG, holmium based lasers and other developments will also be outlined. Concepts for delivering up to 30 kilowatts of average power from a DPSSL oscillator will be described.

  9. Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama

    SciTech Connect

    Longanbach, J.R.

    1995-12-01

    One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

  10. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications

    NASA Astrophysics Data System (ADS)

    Naresh, P.; Hitesh, C.; Patel, A.; Kolge, T.; Sharma, Archana; Mittal, K. C.

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  11. Progress in High Power Density SOFC Material Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Sofie, Stephen W.; Setlock, John A.; Misra, Ajay K.

    2004-01-01

    Solid oxide fuel cell (SOFC) systems for aircraft applications require order of magnitude increase in specific power density and long life under aircraft operating conditions. Advanced SOFC materials and fabrication processes are being developed at NASA GRC to increase specific power density and durability of SOFC cell and stack. Initial research efforts for increasing specific power density are directed toward increasing the operating temperature for the SOFC system and reducing the weight of the stack. While significant research is underway to develop anode supported SOFC system operating at temperatures in the range of 650 - 850 C for ground power generation applications, such temperatures may not yield the power densities required for aircraft applications. For electrode-supported cells, SOFC stacks with power densities greater than 1.0 W/sq cm are favorable at temperatures in excess of 900 C. The performance of various commercial and developmental anode supported cells is currently being evaluated in the temperature range of 900 to 1000 C to assess the performance gains and materials reliability. The results from these studies will be presented. Since metal interconnects developed for lower temperature operation are not practical at these high temperatures, advanced perovskite based ceramic interconnects with high electronic conductivity and lower sintering temperatures are being developed. Another option for increasing specific power density of SOFC stacks is to decrease the stack weight. Since the interconnect contributes to a significant portion of the stack weight, considerable weight benefits can be derived by decreasing its thickness. Eliminating the gas channels in the interconnect by engineering the pore structure in both anode and cathode can offer significant reduction in thickness of the ceramic interconnect material. New solid oxide fuel cells are being developed with porous engineered electrode supported structures with a 10 - 20 micron thin electrolyte. The performance data for advanced SOFC cells with engineered porosity in both electrodes will be presented.

  12. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  13. Development of a rotary power transformer and inverter drive for spacecraft

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Bridgeforth, A. O.

    1983-01-01

    Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.

  14. MHD advanced power train. Phase 1, Final report: Volume 2, Development program plan

    SciTech Connect

    Jones, A.R.

    1985-08-01

    Two scale-up steps are required before the 200 MW(e) power plant could be designed and constructed. The development program plan is designed to meet these 3 needed program elements: (a) design and demonstration test of a 50 MW(t) power train that verifies channel life; (b) design, development, and demonstration of an advanced power train in a 250 MW(t) plant facility; and (c) development of technology for advanced MHD generators that are economic of magnet warm bore, reliable for at least 4000 hours operation, and are amenable to automated production to meet the low cost goal. An implicit program element, Base Technology, provides support to these 3 elements. The overall program will require 11 years and is estimated to cost $278 million in 1984 dollars.

  15. Development of NASA's Small Fission Power System for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  16. Development of NASA's Small Fission Power System for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Mason, Lee; Bowman, Cheryl; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2014-01-01

    Exploration of our solar system has brought great knowledge to our nation's scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASA's Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (greater than 1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue, assuming its availability, to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named "Kilopower" that is scalable from approximately 1-10 kWe.

  17. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  18. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  19. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  20. Development of a Pre-Prototype Power Assisted Glove End Effector for Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this program was to develop an EVA power tool which is capable of performing a variety of functions while at the same time increasing the EVA crewmember's effectiveness by reducing hand fatigue associated with gripping tools through a pressurized EMU glove. The Power Assisted Glove End Effector (PAGE) preprototype hardware met or exceeded all of its technical requirements and has incorporated acoustic feedback to allow the EVA crewmember to monitor motor loading and speed. If this tool is to be developed for flight use, several issues need to be addressed. These issues are listed.

  1. Development of hydrogen-fueled fuel cell-powered light-duty transportation engine

    SciTech Connect

    Singh, S.P.N.; adams, D.J.; Keever, J.W.

    1996-05-30

    To avoid the dire consequences, and yet ensure continued economic development, from the expected large increase in the global automobile population in the Third World, the transportation sector needs to move away from the internal combustion engine to fuel cell powered vehicles that operate on hydrogen. A research, development, and demonstration (RD&D) program is proposed to establish the superiority of the hydrogen-fueled, PEM (proton exchange membrane) fuel cell-powered engine compared to the present internal combustion engine powertrain. This new drivetrain will lead to a major decrease in environmental pollution. ORNL is seeking funding to undertake this RD&D program.

  2. Biomass power for rural development. Quarterly report, July 3--December 4, 1997

    SciTech Connect

    Cooper, J.T.

    1998-03-01

    This paper describes progress in several projects related to biomass power. These include switchgrass conversion development; switchgrass gasification development; production activities including soil studies, carbon studies, switchgrass production economics, watershed impacts, and prairie lands bio-products; information and education; and geographical information system. Attachments describe switchgrass co-firing test; switchgrass production in Iowa; cooperative agreements with ISU; Rathbun Lake watershed project; newspaper articles and information publications; Secretary of Agriculture Glickman`s visit; integration of technical aspects of switchgrass production in Iowa; and evaluation of an integrated biomass gasification/fuel cell power plant.

  3. Fission Surface Power Technology Development Testing at NASA's Early Flight Fission Test Facility

    NASA Technical Reports Server (NTRS)

    Houts. Michael G.

    2009-01-01

    Fission surface power (FSP) systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at polar locations, at locations away from the poles, or in permanently shaded regions, with excellent performance at all sites. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system (FSPS) is also readily extensible for use on Mars. At Mars the system would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Under the NASA Exploration Technology Development Program (ETDP), NASA and the Department of Energy (DOE) have begun technology development on Fission Surface Power (FSP). The primary customer for this technology is the NASA Constellation Program which is responsible for the development of surface systems to support human exploration on the moon and Mars. The objectives of the FSP technology project are: 1) Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FSP design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow Agency decision-makers to consider FSP as a viable option for flight development. To be mass efficient, FSP systems must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial systems. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference FSP system uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance on the surface of the moon or Mars. Recent testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference FSP system, and has helped evaluate methods for system integration. In June, 2009, a representative pumped NaK loop (provided by Marshall Space Flight Center) was coupled to a Stirling power converter (provided by Glenn Research Center) and tested at various conditions representative of those that would be seen during actual FSP system operation. In all areas, performance of the integrated system exceeded project goals. High-temperature NaK pump testing has also been performed at the EFF-TF, as has testing of methods for providing long-duration NaK purity.

  4. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASAs current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  5. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  6. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  7. Developing a Computerized Aging Management System for Concrete Structures in Finnish Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Al-Neshawy, F.; Piironen, J.; Sistonen, E.; Vesikari, E.; Tuomisto, M.; Hradil, P.; Ferreira, M.

    2013-07-01

    Finland has four nuclear reactors units in two power plants. The first unit started operation in 1977 and in the early 1980's all four units were in use. During the last few years the aging management of the Nuclear Power Plant's (NPP) concrete structures has grown an important issue because the existing structures are reaching the end of their licensed operating lifetime (about 40 years). Therefore the nuclear power companies are developing aging management systems to avoid premature degradation of NPP facilities and to be able to extend their operating lifetime. This paper is about the development of a computerized ageing management system for the nuclear power plants concrete structures. The computerized ageing management system is built upon central database and implementation applications. It will assist the personnel of power companies to implement the aging management activities at different phases of the lifetime of a power plant. It will provide systematic methods for planning, surveillance, inspection, monitoring, condition assessment, maintenance and repair of structures.

  8. Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.

  9. Development of Power Electronics for a 0.2kW-Class Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Patterson, Michael J.; Bowers, Glen E.

    1997-01-01

    Applications that might benefit from low power ion propulsion systems include Earth-orbit magnetospheric mapping satellite constellations, low Earth-orbit satellites, geosynchronous Earth-orbit satellite north-south stationkeeping, and asteroid orbiters. These spacecraft are likely to have masses on the order of 50 to 500 kg with up to 0.5 kW of electrical power available. A power processing unit for a 0.2 kW-class ion thruster is currently under development for these applications. The first step in this effort is the development and testing of a 0.24 kW beam power supply. The design incorporates a 20 kHz full bridge topology with multiple secondaries connected in series to obtain outputs of up to 1200 V(sub DC). A current-mode control pulse width modulation circuit built using discrete components was selected for this application. An input voltage of 28 +/- 4 V(sub DC) was assumed, since the small spacecraft for which this system is targeted are anticipated to have unregulated low voltage busses. Efficiencies in excess of 91 percent were obtained at maximum output power. The total mass of the breadboard was less than 1.0 kg and the component mass was 0.53 kg. It is anticipated that a complete flight power processor could weigh about 2.0 kg.

  10. Space power system design and development from an economic point of view

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1977-01-01

    The concept of a satellite solar power system offers a feasible, but unproven, long-range energy alternative. While the basic physics of these systems is understood, many developments are necessary in order to reduce the system cost to the point of being cost-competitive with alternative energy sources. Thus, a substantial technology advancement and verification program, plus test and demonstration satellite programs are necessary before a full-scale satellite can be designed and built. It is important to properly identify those elements of the technology that should be subject to development efforts, the goals of the corresponding development programs and the appropriate funding levels and schedules. Systems studies and designs play a major role in rationally formulating a development program. This paper uses an economic approach to place these studies into a framework for formulating a viable satellite solar power system development plan.

  11. Power grid operation risk management: V2G deployment for sustainable development

    NASA Astrophysics Data System (ADS)

    Haddadian, Ghazale J.

    The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems, it considers a two-stage model using the Benders Decomposition (BD). The numerical simulation demonstrate that the utilization of smart EV fleets in power grid systems would ensure a sustainable grid operation with lower carbon footprints, smoother integration of renewable sources, higher security, and lower power grid operation costs. The results, additionally, illustrate the effectiveness of the proposed MILP approach and its potentials as an optimization tool for sustainable operation of large scale electric power systems.

  12. Development of traveling wave resonator based test bed for high power transmission line component testing

    NASA Astrophysics Data System (ADS)

    Jha, Akhil; Harikrishna, JVS; Ajesh, P.; Anand, Rohit; Trivedi, Rajesh; Mukherjee, Aparajita

    2015-12-01

    India is responsible for delivery of 8+1(prototype) RF sources to ITER Organization. Each RF source will provide 2.5MW of RF power at 2 VSWR in the frequency range of 35 to 65MHz. Eight such RF sources will generate total 20MW of RF power. A large number of high power transmission line components are required for connecting various stages of RF source. To test these passive transmission line components at high power, prior to connecting with RF source system, a test facility is required. India is developing a 3MW test facility based on the concept of Traveling Wave Resonator (TWR) for testing of transmission line components. TWR is basically a ring resonator which will build high power under certain operation condition at resonant frequency (˜55MHz in this case). In TWR, power is fed to the ring via a directional coupler continuously which leads to development of high circulating power in the ring. The voltage and current magnitude inside the ring increases with the increasing circulating power. Detailed RF simulation and design of the TWR test bed has been done using high frequency simulator Microwave Studio (MWS). Calculations done for the ring gain, transmission loss, resonance frequency etc. and are verified with the simulation results. Concept validated using 3-1/8 inch prototype TWR test bed, where experiments were carried out with a ˜10dB (λ/4 coupled) coupler to feed the ring. Ring gain of ˜13.24dB (˜21times) was achieved with ˜0.17 dB of ring loss. Around 9.2 kW ring power is achieved with an input power of 440W. At present, the 3-1/8inch TWR test bed is being upgraded with a ˜15dB coupler to achieve ring gain ˜19-20dB (˜80-100 times). This concept will be finally adopted for 12inch TWR test bed to achieve 3MW ring power with ˜30-40kW of input power. In this paper, detailed design, simulation, test results out of prototype activity and future plan for establishing MW level transmission line test bed is described.

  13. Development of an Instrument for Measuring Clinicians Power Perceptions in the Workplace

    PubMed Central

    Bartos, Christa E.; Fridsma, Douglas B.; Butler, Brian S.; Penrod, Louis E.; Becich, Michael J.; Crowley, Rebecca S.

    2008-01-01

    We report on the development of an instrument to measure clinicians perceptions of their personal power in the workplace in relation to resistance to computerized physician order entry (CPOE). The instrument is based on French and Ravens six bases of social power and uses a semantic differential methodology. A measurement study was conducted to determine the reliability and validity of the survey. The survey was administered online and distributed via a URL by email to 19 physicians, nurses, and health unit coordinators from a university hospital. Acceptable reliability was achieved by removing or moving some semantic differential word pairs used to represent the six power bases (alpha range from 0.760.89). The Semantic Differential Power Perception (SDPP) survey validity was tested against an already validated instrument and found to be acceptable (correlation range from 0.510.81). The SDPP survey instrument was determined to be both reliable and valid. PMID:18375189

  14. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  15. Proposal and Development of Power Quality Improvement Method under Islanding Operation in a Micro-Grid

    NASA Astrophysics Data System (ADS)

    Temma, Koji; Kono, Yoshiyuki; Shimomura, Masaru; Kataoka, Michio; Goda, Tadahiro; Uesaka, Shin

    A Micro-Grid has a small capacity of the system compared with conventional power system. When the Micro-Grid is disconnected from power system and operated under islanding condition, the problems of the power quality such as frequency fluctuation and voltage fluctuation can occur. This paper presents the local control" method of improvement of the power quality in order to solve the problem. The suggested method is to use an inverter of a battery which is an energy storage system in the Micro-Grid and to improve frequency fluctuation and voltage fluctuation in Micro-Grid islanding operation. The impact of the method is investigated in this paper by analysis using HYPERSIM. Additionally, it is shown that the local control is developed and verified by field test in the Micro-Grid under islanding operation.

  16. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  17. Development of J-PARC MR Main Magnets Power Supplies for High Repetition Rate Operation

    NASA Astrophysics Data System (ADS)

    Morita, Yuichi; Shimogawa, Tetsushi; Sagawa, Ryu; Kurimoto, Yoshinori; Nakamura, Shu; Miura, Kazuki

    The Japan Proton Accelerator Research Complex (J-PARC) aims at achieving a megawatt-class proton accelerator facility. One of the promising solutions for increasing the beam power is to increase the repetition rate of the Main Ring (MR) from the current rating of 0.4 to 1.0?Hz. However, in this scheme, the increase in the output voltage and the power variation in the electrical power supply are serious concerns for the main magnets. At the same time, a current-ripple reduction is required to increase the beam quality. This paper introduces the power supply (PS) system of the J-PARC MR main magnets which has the potential to overcome these issues, and reports the design and test results of the prototype PS developed.

  18. The Design and Development of The EBIS LEBT Solenoid Power Supply

    SciTech Connect

    Tan, Y.; Addessi, J.; Alessi, J.; Lambiase, R.; Liaw, C.J.; Pikin, A.; Sandberg, J.; Zhang, W.; Zubets, V.

    2010-05-23

    This power supply was designed and developed at Brookhaven National Laboratory (BNL) as part of a new ion preinjector system called EBIS (Electron Beam Ion Source). It consists of a charging power supply, a capacitor bank, a discharge and recovery circuit and control circuits. The output is fed through cables into a solenoid magnet. The magnet's inductance is 1.9mH. The maximum charging voltage is 1000V. The power supply output is a half sine wave of 13ms duration. The repetition rate is 5Hz. The power supply output can be set to any value between 250A and 1900A in one second in order to accommodate the varying species of ions specified by different machine users.

  19. Development of high-power all-solid-state lasers in the Japanese MITI project

    NASA Astrophysics Data System (ADS)

    Matsuno, Ken-ichi; Sato, Toshio

    2000-04-01

    The 'Advanced Photon Processing and Measurement Technology' project was started in Aug. 1997 as part of the Industrial Science and Technology Frontier Program of the Agency of Industrial Science and Technology (AIST), MITI in Japan. In the project, 13 private companies and 1 university, which are the member of RIPE, and 4 national research institutes under MITI are developing new technologies using high-quality photon beams, by challenging 6 key themes in the 3 technology fields, 'Photon generation technology,' 'Photon-applied processing technology,' and 'Photon-applied measurement technology.' In the 'Photon generation technology,' we are developing 'High- power all-solid-state laser technology,' and 'Tightly-focusing all-solid-state laser technology.' The objective of the former theme is to develop LD-pumped all-solid-state laser devices of high power (greater than or equal to 10 kW), high efficiency (greater than or equal to 20%), and compact size (laser head less than or equal to 0.05m3). Recently, we obtained 3.3 kW output power from both rod-type and slab-type Nd:YAG laser oscillators. The objective of the latter theme is to develop compact all-solid-state laser devices of high power (greater than or equal to 1 kW), high efficiency (greater than or equal to 20%), for focusing the beam on a very small area of 50 micrometer in diameter of the processing object. In this theme we are developing two types of lasers, 'a disk or cylindrical shaped fiber laser pumped by LD from surroundings' and 'a high-brightness and high-rep-rate UV all-solid-state laser with CLBO crystal.' Recently, we obtained 10 W output power from the fiber laser and 20 W UV output power using CLBO crystal.

  20. The future of nuclear energy: A perspective on nuclear power development

    SciTech Connect

    Sackett, J. I.

    2000-04-03

    The author begins by discussing the history of nuclear power development in the US. He discusses the challenges for nuclear power such as the proliferation of weapons material, waste management, economics, and safety. He then discusses the future for nuclear power, specifically advanced reactor development. People can all be thankful for nuclear power, for it may well be essential to the long term survival of civilization. Within the seeds of its potential for great good, are also the seeds for great harm. People must ensure that it is applied for great good. What is not in question is whether people can live without it, they cannot. United States leadership is crucial in determining how this technology is developed and applied. The size and capability of the United States technical community is decreasing, a trend that cannot be allowed to continue. It is the author's belief that in the future, the need, the vision and the confidence in nuclear power will be restored, but only if the US addresses the immediate challenges. It is a national challenge worthy of the best people this nation has to offer.

  1. Toward sustainable energy development in the Indian power sector: A critique of fifty years of power development in India and an analysis of sustainable energy alternatives

    NASA Astrophysics Data System (ADS)

    Govindarajalu, Chandrasekhar

    At present, the Indian electric power sector (EPS) finds itself in a "triple bind," plagued by a severe resource crunch, adverse environmental impacts and unequal social access to energy services, and a poor record of technical performance in generation and distribution of electricity. The problems of the EPS are seen in this dissertation as manifestations of a larger crisis of unsustainable energy development, rooted in the political economy of power development in India. A theoretical framework is articulated based on a political economy approach constructed for this dissertation. The political economy framework is comprised of three elements: a materialization thesis that describes the core social relations in support of a specific political and economic structure; an institutionalization thesis that describes how these material relations are reproduced; and an ideology thesis which argues that a pervasive ideology exists making intelligible the existence of a particular form of political economy. From the vantage-point of this framework, and through a detailed examination of the political history of the power sector in India, the crisis in the Indian power sector is linked to the contradictions of what is termed as the "conventional model of energy development" (CMED) embraced by Indian planners at the time of independence. It is argued that the crisis in the EPS is caused by the intensive bureaucratization and technicization of the system, all but removing it from social and environmental evaluation. Current policy prescriptions for the Indian EPS, both Western as well as domestic, call for further strengthening the technocratic construct of the EPS. Privatization and restructuring experiments, underway in India, rather than breaking away from the existing approach, actually deepen the institutional hold of the CMED. Sustainable energy development (SED) is examined as an alternative to the CMED. The meaning and relevance of this concept in the context of the Indian EPS are examined, and guideposts to sustainability are identified. Linking SED back to the political economy framework, it is argued that if the concept is to signify a real departure from the current EPS, ideological, material and institutional changes will be required. These changes will result not only in a transformation of technology, but in a reconstruction of the energy system, from its values and philosophy to its social, political, economic, and environmental relations.

  2. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3: Full-scale power plant development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.

  3. Prospects of development of the power industry in the zone of influence of the transcontinental railroad

    SciTech Connect

    Fel`dman, B.N.; Luk`yanov, V.A.

    1994-02-01

    The authors examine the possibilities of developing a power industry in the zone of influence of the transcontinental railroad (TCR). Two aspects of development are studied in particular: (1) the electric power supply for construction and subsequently for the operating railroad in coordination with simultaneous provision for the needs of adjacent regions; (2) the construction of a transcontinental transmission line with the use of a tunnel and railroad for its construction and with the creation of a unified transport--power corridor. Of great interest are the possibilities of constructing hydrostations in regions of the Sakha Republic (Yakutia), Chukchi Peninsula, and in the southern part of the Magadan region. The route of the proposed main line is located in the zone of influence of a number of prospective hydropower installations. 2 tabs.

  4. The permanent relation between biology, power and war: the dual use of the biotechnological development.

    PubMed

    de Almeida, Maria Eneida

    2015-07-01

    Throughout the twentieth century, the biological advance had a closer and closer relation with the strategies of power in search of high technology. From 1970, the manipulation of genetically recombined pathogenic agents was a high technological breakthrough that radically over passed traditional biology and reinforced the war relations of science. The biotechnological revolution started along with new perspectives for the political and military field of science. From this point of the biotechnological development a new paradigm for war, as well as for the sciences of life, was then created and new challenges for International Health in the twenty first century came into scene. Through a historical account related to power, this paper is meant to present the mechanism of articulation existent between science and power and to contribute for understanding how the military field is naturally inserted in the biotechnological development which, in its essence, produces biotechnologies for civil and military uses. PMID:26132264

  5. Development of a PEMFC Power System with Integrated Balance of Plant

    NASA Technical Reports Server (NTRS)

    Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.

    2012-01-01

    Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.

  6. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  7. Development of SMES for power system control: present status and perspective

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Taniguchi, S.; Nagaya, S.; Akita, S.; Koso, S.; Tatsuta, M.

    2004-10-01

    A present Japanese national project for SMES development focuses on the development of cost reduction technologies for a small-scale SMES for power system control. Optimal SMES system concepts were developed for power system stabilization and for load fluctuation compensation or frequency regulation. Performance of the designed superconductors was analyzed through fabrication and tests of short sample superconductors. Then, two kinds of model coil systems were manufactured and tested for evaluation of the design concepts and cost reduction technology developments. A multi-pole solenoid coil set as a model coil system for load fluctuation compensation SMES was successfully tested, for example, in 10 000-pulse iterative charge-discharge operations. In addition, application of high- TC superconductors to SMES has been studied for further cost reduction, more reliable operation, etc.

  8. Implementing the General Education Development (GED) Program in First Nations Communities: Struggles for Power

    ERIC Educational Resources Information Center

    Shields, Tracy Jill; Melville, Wayne

    2015-01-01

    This paper describes an ethnographic case study of eleven First Nations adult learners in a Northern Ontario community attempting to earn secondary school equivalency through the General Education Development (GED) program. The paper maintains a focus on the power differentials at work in both the learners' prior educational endeavours and their…

  9. Participation and Power: Reflections on the Role of Government in Land Use Planning and Rural Development

    ERIC Educational Resources Information Center

    Aarts, Noelle; Leeuwis, Cees

    2010-01-01

    Purpose: To examine the role of power in interactive policymaking settings. Design/Methodology/Approach: A literature study is combined with four case studies relating to citizen participation in natural resource management and rural development in the Netherlands. Findings: Many of the identified problems and dilemmas of interactive policymaking…

  10. Program plan for research and development of HVDC power systems and components

    SciTech Connect

    Not Available

    1984-01-01

    The Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) has formulated a program for research and development (R and D) of high-voltage direct-current (HVDC) power transmission and delivery systems and associated dc components. The program includes analysis of future utility system applications, development of new HVDC control and protection concepts, and advanced dc component research. The structure of this program will provide an appropriate balance between mid- and long-term options for the enhancement of HVDC power transmission and delivery for future electric power systems. This HVDC research program is intended to further develop and improve an important energy transport technology, one that will offer many opportunities to reduce future energy costs. The economics and operating constraints in alternating-current (ac) solutions strongly indicate that new HVDC technology options will be advantageous and will provide an enhanced ability to use generation and transmission system resources efficiently and economically in existing electric energy systems. Studies show that further development of this technology will lead to significant integration of new HVDC techniques into existing electric energy systems with appreciable economic and technical benefit. The R and D proposed in this HVDC Program Plan will be of substantial value to future electric power systems.

  11. Development of a solar-powered residential air conditioner. Program review

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  12. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  13. Theoretical Borderlands: Using Multiple Theoretical Perspectives to Challenge Inequitable Power Structures in Student Development Theory

    ERIC Educational Resources Information Center

    Abes, Elisa S.

    2009-01-01

    This article is an exploration of possibilities and methodological considerations for using multiple theoretical perspectives in research that challenges inequitable power structures in student development theory. Specifically, I explore methodological considerations when partnering queer theory and constructivism in research on lesbian identity…

  14. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  15. Becoming Jordan's Writers: Developing Powerful Writing Instruction in the Middle East

    ERIC Educational Resources Information Center

    Lehman, Christopher; DeLiddo, Emily

    2010-01-01

    The United States involvement in the Middle East has been prominent in our recent national history, sometimes clouded by myths and misrepresentations of the people of that region of the world. This article details the experiences of teacher-researchers working with teachers and students in Amman, Jordan, to develop powerful English writing

  16. Workshop: Research and development plans for high power spallation neutron testing at BNL

    SciTech Connect

    1996-08-05

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS.

  17. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    SciTech Connect

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  18. Becoming Jordan's Writers: Developing Powerful Writing Instruction in the Middle East

    ERIC Educational Resources Information Center

    Lehman, Christopher; DeLiddo, Emily

    2010-01-01

    The United States involvement in the Middle East has been prominent in our recent national history, sometimes clouded by myths and misrepresentations of the people of that region of the world. This article details the experiences of teacher-researchers working with teachers and students in Amman, Jordan, to develop powerful English writing…

  19. Application of photovoltaic electric power to the rural education/communication needs of developing countries

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delansanta, D.; Burrill, G.

    1982-01-01

    The suitability (i.e., cost competitiveness and reliability) of photovoltaic (PV) power systems for rural applications in developing countries is considered. Potential application sectors include health delivery, education and communication where small amounts of electricity are needed to meet critical needs.

  20. Participation and Power: Reflections on the Role of Government in Land Use Planning and Rural Development

    ERIC Educational Resources Information Center

    Aarts, Noelle; Leeuwis, Cees

    2010-01-01

    Purpose: To examine the role of power in interactive policymaking settings. Design/Methodology/Approach: A literature study is combined with four case studies relating to citizen participation in natural resource management and rural development in the Netherlands. Findings: Many of the identified problems and dilemmas of interactive policymaking