Science.gov

Sample records for microbial communities potentially

  1. Bioengineering microbial communities: Their potential to help, hinder and disgust.

    PubMed

    Sivasubramaniam, Diane; Franks, Ashley E

    2016-04-01

    The bioengineering of individual microbial organisms or microbial communities has great potential in agriculture, bioremediation and industry. Understanding community level drivers can improve community level functions to enhance desired outcomes in complex environments, whereas individual microbes can be reduced to a programmable biological unit for specific output goals. While understanding the bioengineering potential of both approaches leads to a wide range of potential uses, public acceptance of such technology may be the greatest hindrance to its application. Public perceptions and expectations of "naturalness," as well as notions of disgust and dread, may delay the development of such technologies to their full benefit. We discuss these bioengineering approaches and draw on the psychological literature to suggest strategies that scientists can use to allay public concerns over the implementation of this technology. PMID:27221461

  2. Nitrogen Cycling Potential of a Grassland Litter Microbial Community.

    PubMed

    Nelson, Michaeline B; Berlemont, Renaud; Martiny, Adam C; Martiny, Jennifer B H

    2015-10-01

    Because microorganisms have different abilities to utilize nitrogen (N) through various assimilatory and dissimilatory pathways, microbial composition and diversity likely influence N cycling in an ecosystem. Terrestrial plant litter decomposition is often limited by N availability; however, little is known about the microorganisms involved in litter N cycling. In this study, we used metagenomics to characterize the potential N utilization of microbial communities in grassland plant litter. The frequencies of sequences associated with eight N cycling pathways differed by several orders of magnitude. Within a pathway, the distributions of these sequences among bacterial orders differed greatly. Many orders within the Actinobacteria and Proteobacteria appeared to be N cycling generalists, carrying genes from most (five or six) of the pathways. In contrast, orders from the Bacteroidetes were more specialized and carried genes for fewer (two or three) pathways. We also investigated how the abundance and composition of microbial N cycling genes differed over time and in response to two global change manipulations (drought and N addition). For many pathways, the abundance and composition of N cycling taxa differed over time, apparently reflecting precipitation patterns. In contrast to temporal variability, simulated global change had minor effects on N cycling potential. Overall, this study provides a blueprint for the genetic potential of N cycle processes in plant litter and a baseline for comparisons to other ecosystems. PMID:26231641

  3. Nitrogen Cycling Potential of a Grassland Litter Microbial Community

    PubMed Central

    Berlemont, Renaud; Martiny, Adam C.; Martiny, Jennifer B. H.

    2015-01-01

    Because microorganisms have different abilities to utilize nitrogen (N) through various assimilatory and dissimilatory pathways, microbial composition and diversity likely influence N cycling in an ecosystem. Terrestrial plant litter decomposition is often limited by N availability; however, little is known about the microorganisms involved in litter N cycling. In this study, we used metagenomics to characterize the potential N utilization of microbial communities in grassland plant litter. The frequencies of sequences associated with eight N cycling pathways differed by several orders of magnitude. Within a pathway, the distributions of these sequences among bacterial orders differed greatly. Many orders within the Actinobacteria and Proteobacteria appeared to be N cycling generalists, carrying genes from most (five or six) of the pathways. In contrast, orders from the Bacteroidetes were more specialized and carried genes for fewer (two or three) pathways. We also investigated how the abundance and composition of microbial N cycling genes differed over time and in response to two global change manipulations (drought and N addition). For many pathways, the abundance and composition of N cycling taxa differed over time, apparently reflecting precipitation patterns. In contrast to temporal variability, simulated global change had minor effects on N cycling potential. Overall, this study provides a blueprint for the genetic potential of N cycle processes in plant litter and a baseline for comparisons to other ecosystems. PMID:26231641

  4. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    PubMed

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  5. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    NASA Astrophysics Data System (ADS)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  6. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession

    PubMed Central

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-01-01

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth’s biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P < 0.05) higher than those of CF and MBF, rendering their microbial community compositions markedly different. Consistently, microbial functional diversity was also highest in the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession. PMID:25943705

  7. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    SciTech Connect

    Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; Lu, Ying; Brodie, Eoin L.; Martiny, Jennifer B. H.; Martiny, Adam C.

    2014-11-25

    In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.

  8. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    DOE PAGESBeta

    Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; Lu, Ying; Brodie, Eoin L.; Martiny, Jennifer B. H.; Martiny, Adam C.

    2014-11-25

    In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of natural variation. Fungal andmore » bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.« less

  9. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition

    PubMed Central

    Carvalho, Sabrina; van der Putten, Wim H.; Hol, W. H. G.

    2016-01-01

    Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial

  10. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition.

    PubMed

    Carvalho, Sabrina; van der Putten, Wim H; Hol, W H G

    2016-01-01

    Reliable information on soil status and crop health is crucial for detecting and mitigating disasters like pollution or minimizing impact from soil-borne diseases. While infestation with an aggressive soil pathogen can be detected via reflected light spectra, it is unknown to what extent hyperspectral reflectance could be used to detect overall changes in soil biodiversity. We tested the hypotheses that spectra can be used to (1) separate plants growing with microbial communities from different farms; (2) to separate plants growing in different microbial communities due to different land use; and (3) separate plants according to microbial species loss. We measured hyperspectral reflectance patterns of winter wheat plants growing in sterilized soils inoculated with microbial suspensions under controlled conditions. Microbial communities varied due to geographical distance, land use and microbial species loss caused by serial dilution. After 3 months of growth in the presence of microbes from the two different farms plant hyperspectral reflectance patterns differed significantly from each other, while within farms the effects of land use via microbes on plant reflectance spectra were weak. Species loss via dilution on the other hand affected a number of spectral indices for some of the soils. Spectral reflectance can be indicative of differences in microbial communities, with the Renormalized Difference Vegetation Index the most common responding index. Also, a positive correlation was found between the Normalized Difference Vegetation Index and the bacterial species richness, which suggests that plants perform better with higher microbial diversity. There is considerable variation between the soil origins and currently it is not possible yet to make sufficient reliable predictions about the soil microbial community based on the spectral reflectance. We conclude that measuring plant hyperspectral reflectance has potential for detecting changes in microbial

  11. Microbial communities in karst groundwater and their potential use for biomonitoring

    NASA Astrophysics Data System (ADS)

    Pronk, Michiel; Goldscheider, Nico; Zopfi, Jakob

    2009-02-01

    The structure, diversity and dynamics of microbial communities from a swallow hole draining agricultural land and two connected karst springs (Switzerland) were studied using molecular microbiological methods and related to hydrological and physicochemical parameters. Storm responses and an annual hydrological cycle were monitored to determine the short- and long-term variability, respectively, of bacterial communities. Statistical analysis of bacterial genetic fingerprints (16S rDNA PCR-DGGE) of spring water samples revealed several clusters that corresponded well with different levels of the allochthonous swallow hole contribution. Microbial communities in spring water samples highly affected by the swallow hole showed low similarities among them, reflecting the high temporal variability of the bacterial communities infiltrating at the swallow hole. Conversely, high similarities among samples with low allochthonous contribution provided evidence for a stable autochthonous endokarst microbial community. Three spring samples, representative for low, medium and high swallow hole contribution, were analysed by cloning/sequencing in order to identify the major bacterial groups in the communities. The autochthonous endokarst microbial community was mainly characterized of δ-Proteobacteria, Acidobacteria and Nitrospira species. A high percentage of unknown sequences suggested further that many karst aquifer bacteria are still undiscovered. Finally, the potential use of groundwater biomonitoring using microbial communities is discussed.

  12. Effects of constant or dynamic low anode potentials on microbial community development in bioelectrochemical systems.

    PubMed

    Yan, Hengjing; Yates, Matthew D; Regan, John M

    2015-11-01

    In bioelectrochemical systems, exoelectrogenic bacteria respire with anode electrodes as their extracellular electron acceptor; therefore, lower anode potentials can reduce the energy gain to each microbe and select against ones that are not able to respire at a lower potential range. Often fully developed anode communities are compared across bioelectrochemical systems with set anode potentials or fixed external resistances as different operational conditions. However, the comparative effect of the resulting constantly low versus dynamically low anode potentials on the development of anode microbial communities as well as the final cathode microbial communities has not been directly demonstrated. In this study, we used a low fixed anode potential of -250 mV and a higher-current control potential of -119 mV vs. Standard Hydrogen Electrode to approximately correspond with the negative peak anode potential values obtained from microbial fuel cells operated with fixed external resistances of 1 kΩ and 47 Ω, respectively. Pyrosequencing data from a 2-month time series show that a lower set anode potential resulted in a more diverse community than the higher- and variable-potential systems, likely due to the hindered enrichment of a Geobacter-dominated community with limited energy gain at this set potential. In this case, it appears that the selective pressure caused by the low set potential was counteracted by the low energy gain over a 2-month time scale. The air cathode microbial community with constant low anode potentials showed delayed enrichment of denitrifiers or perchlorate-reducing bacteria compared to the fixed external resistance condition. PMID:26286510

  13. The functional gene composition and metabolic potential of coral-associated microbial communities

    PubMed Central

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems. PMID:26536917

  14. An Integrated Study to Analyze Soil Microbial Community Structure and Metabolic Potential in Two Forest Types

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Yang, Caiyun; Yang, Yunfeng; Zhou, Jizhong; Li, Diqiang

    2014-01-01

    Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (P<0.05) at natural secondary forest site. The regression analysis showed that a strong positive (P<0.05) correlation was existed between the soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (P<0.05) to the relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the

  15. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil

    PubMed Central

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas. PMID:27446035

  16. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    PubMed

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas. PMID:27446035

  17. Potential drivers of microbial community structure and function in Arctic spring snow

    PubMed Central

    Maccario, Lorrie; Vogel, Timothy M.; Larose, Catherine

    2014-01-01

    The Arctic seasonal snowpack can extend at times over a third of the Earth’s land surface. This chemically dynamic environment interacts constantly with different environmental compartments such as atmosphere, soil and meltwater, and thus, strongly influences the entire biosphere. However, the microbial community associated with this habitat remains poorly understood. Our objective was to investigate the functional capacities, diversity and dynamics of the microorganisms in snow and to test the hypothesis that their functional signature reflects the snow environment. We applied a metagenomic approach to nine snow samples taken over 2 months during the spring season. Fungi, Bacteroidetes, and Proteobacteria were predominant in metagenomic datasets and changes in community structure were apparent throughout the field season. Functional data that strongly correlated with chemical parameters like mercury or nitrogen species supported that this variation could be explained by fluctuations in environmental conditions. Through inter-environmental comparisons we examined potential drivers of snowpack microbial community functioning. Known cold adaptations were detected in all compared environments without any apparent differences in their relative abundance, implying that adaptive mechanisms related to environmental factors other than temperature may play a role in defining the snow microbial community. Photochemical reactions and oxidative stress seem to be decisive parameters in structuring microbial communities inside Arctic snowpacks. PMID:25147550

  18. Microbial community responses to temperature increase the potential for soil carbon losses under climate change.

    NASA Astrophysics Data System (ADS)

    Hartley, Iain; Karhu, Kristiina; Auffret, Marc; Hopkins, David; Prosser, Jim; Singh, Brajesh; Subke, Jens-Arne; Wookey, Philip; Ågren, Göran

    2014-05-01

    There are concerns that global warming may stimulate decomposition rates in soils, with the extra CO2 released representing a positive feedback to climate change. However, there is growing recognition that adaptation of soil microbial communities to temperature changes may alter the potential rate of carbon release. Critically, recent studies have produced conflicting results in terms of whether the medium-term soil microbial community response to temperature reduces (compensatory thermal adaptation) or enhances (enhancing thermal adaptation) the instantaneous direct positive effects of temperature on microbial activity. This lack of understanding adds considerably to uncertainty in predictions of the magnitude and direction of carbon-cycle feedbacks to climate change. In this talk, I present results from one of the most extensive investigations ever undertaken into the role that microbial adaptation plays in controlling the temperature sensitivity of decomposition. Soils were collected from a range of ecosystem types, representing a thermal gradient from the Arctic to the Amazon. Our novel soil-cooling approach minimises issues associated with substrate depletion in warming studies, but still tests whether adaptation enhances or reduces the direct impact of temperature changes on microbial activity. We also investigated the mechanisms underlying changes in microbial respiration by quantifying changes in microbial community composition, microbial biomass, mass-specific activity, carbon-use efficiency, and enzyme activities. Our results indicate that enhancing responses are much more common than compensatory thermal acclimation, with the latter being observed in less than 10% of cases. However, identifying the mechanisms underlying enhancing and compensatory adaptation remained elusive. No consistent changes were observed in terms of mass-specific activity, biomass or enzyme activity, indicating that current theory is inadequate in explaining observed patterns

  19. Vertical Distribution of Functional Potential and Active Microbial Communities in Meromictic Lake Kivu.

    PubMed

    İnceoğlu, Özgul; Llirós, Marc; Crowe, Sean A; García-Armisen, Tamara; Morana, Cedric; Darchambeau, François; Borges, Alberto V; Descy, Jean-Pierre; Servais, Pierre

    2015-10-01

    The microbial community composition in meromictic Lake Kivu, with one of the largest CH4 reservoirs, was studied using 16S rDNA and ribosomal RNA (rRNA) pyrosequencing during the dry and rainy seasons. Highly abundant taxa were shared in a high percentage between bulk (DNA-based) and active (RNA-based) bacterial communities, whereas a high proportion of rare species was detected only in either an active or bulk community, indicating the existence of a potentially active rare biosphere and the possible underestimation of diversity detected when using only one nucleic acid pool. Most taxa identified as generalists were abundant, and those identified as specialists were more likely to be rare in the bulk community. The overall number of environmental parameters that could explain the variation was higher for abundant taxa in comparison to rare taxa. Clustering analysis based on operational taxonomic units (OTUs at 0.03 cutoff) level revealed significant and systematic microbial community composition shifts with depth. In the oxic zone, Actinobacteria were found highly dominant in the bulk community but not in the metabolically active community. In the oxic-anoxic transition zone, highly abundant potentially active Nitrospira and Methylococcales were observed. The co-occurrence of potentially active sulfur-oxidizing and sulfate-reducing bacteria in the anoxic zone may suggest the presence of an active yet cryptic sulfur cycle. PMID:25912922

  20. Microbial communities acclimate to recurring changes in soil redox potential status

    SciTech Connect

    DeAngelis, Kristen M.; Silver, Whendee; Thompson, Andrew; Firestone, Mary K.

    2010-12-03

    Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA-based) and active (RNA-based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO{sub 2} respiration, methanogenesis, N{sub 2}O production and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4-day redox potential fluctuations did not. Using RNA: DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbialcommunity adapted to fluctuating redox potential.

  1. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  2. Skin microbiota: Microbial community structure and its potential association with health and disease

    PubMed Central

    Rosenthal, Mariana; Goldberg, Deborah; Aiello, Allison; Larson, Elaine; Foxman, Betsy

    2011-01-01

    Skin, the largest human organ, is a complex and dynamic ecosystem inhabited by a multitude of microorganisms. Host demographics and genetics, human behavior, local and regional environmental characteristics, and transmission events may all potentially drive human skin microbiota variability, resulting in an alteration of microbial community structure. This alteration may have important consequences regarding health and disease outcomes among individuals. More specifically, certain diversity patterns of human microbiota may be predictive or diagnostic of disease. The purpose of this review is to briefly describe the skin microbiota, outline the potential determining factors driving its variability, posit the likelihood of an association between the resulting microbial community structure on the skin with disease outcomes among individuals, and finally, to present some challenges and implications for studying the skin microbiota. PMID:21463709

  3. Potential of the microbial community present in an unimpacted beach sediment to remediate petroleum hydrocarbons.

    PubMed

    Almeida, C Marisa R; Reis, Izabela; Couto, M Nazaré; Bordalo, Adriano A; Mucha, Ana P

    2013-05-01

    The potential of the microbial communities present in the intertidal zone of an unimpacted beach (a beach that did not suffer any significant oil spill) to degrade hydrocarbons was investigated. For that, laboratory-based microcosms (50-ml flasks) were set up with sandy beach sediment spiked with crude oil and incubated with local seawater for 15 days in the dark. Three bioremediation treatments were tested (biostimulation (BS), autochthonous bioaugmentation (AB), and combined treatment of biostimulation + bioaugmentation (BS + AB)) and the results were compared with natural attenuation (NA). Visual inspection showed clearly an oil solubility increase (confirmed by a higher hydrocarbons concentration in supernatant solutions) for all tested treatments when compared to NA. Significant degradation of the oil, shown by different profiles of petroleum hydrocarbons, was also observed for the different treatments particularly for BS + AB. Therefore, the microbial community of this unimpacted beach sediment could respond to an oil spill, degrading hydrocarbons. But to increase the natural attenuation pace, obtained results indicated that BS + AB is an appropriate approach for the bioremediation of beaches recently impacted by an oil spill. The autochthonous microbial cultures can be obtained "before" or "after" the contamination of the target site, being inoculated into the site right after it contamination. PMID:23054799

  4. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. PMID:26403720

  5. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  6. Vikodak - A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets

    PubMed Central

    Nagpal, Sunil; Haque, Mohammed Monzoorul; Mande, Sharmila S.

    2016-01-01

    Background The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated) information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (re)constructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile). In this study, we present Vikodak—a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak. Results Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a) deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b) functional resolution of distinct metagenomic environments, (c) inferring patterns of functional interaction between resident microbes, and (d) automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions. Conclusions With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction. Availability and Implementation A web implementation of Vikodak

  7. Microbial community in the potential gas hydrate area Kaoping Canyon bearing sediment at offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, S. Y.; Hung, C. C.; Lai, S. J.; Ding, J. Y.; Lai, M. C.

    2015-12-01

    The deep sub-seafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass plays a potentially important role in long-term controls of global biogeochemical cycles. The research team from Taiwan, supported by the Central Geological Survey (CGS), has been demonstrated at SW offshore Taiwan that indicated this area is potential gas hydrate region. Therefore, the Gas Hydrate Master Program (GHMP) was brought in the National Energy Program-Phase II (NEP-II) to continue research and development. In this study, the microbial community structure of potential gas hydrate bearing sediments of giant piston core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan were investigated. This core was found many empty spaces and filling huge methane gas (>99.9 %) that might dissociate from solid gas hydrate. 16S rRNA gene clone libraries and phylogenetic analysis showed that the dominant members of Archaea were ANME (13 %), SAGMEG (31 %) and DSAG (20 %), and those of Bacteria were Chloroflexi (13 %), Candidate division JS1 (40 %) and Planctomycetes (15 %). Among them, ANME-3 is only distributed at the sulfate-methane interface (SMI) of 750 cmbsf, and sharing similarity with the Hydrate Ridge clone HydBeg92. ANME-1 and SAGMEG distributed below 750 cmbsf. In addition, DSAG and Candidate division JS1 are most dominant and distributed vertically at all tested depths from 150-3600 cmbsf. Combine the geochemical data and microbial phylotype distribution suggests the potential of gas hydrate bearing sediments at core MD-178-10-3291 (KP12N) from the Kaoping Canyon offshore SW of Taiwan.

  8. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    NASA Astrophysics Data System (ADS)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  9. Shifts in Microbial Community Structure with Changes in Cathodic Potential in Marine Sediment Microcosms

    NASA Astrophysics Data System (ADS)

    Lam, B. R.; Rowe, A. R.; Nealson, K. H.

    2014-12-01

    Microorganisms comprise more than 90% of the biomass of the ocean. Their ability to thrive and survive in a wide range of environments from oligotrophic waters to the deep subsurface stems from the great metabolic versatility that exists among them. This metabolic versatility has further expanded with the discovery of extracellular electron transport (EET). EET is the capability of microorganisms to transfer electrons to and from insoluble substrates outside of the cell. Much of what is known about EET comes from studies of model metal reducing microorganisms in the groups Shewanellaceae and Geobacteraceae. However, EET is not limited to these metal reducing microorganisms, and may play a large role in the biogeochemical cycling of several elements. We have developed an electrochemical culturing technique designed to target microorganisms with EET ability and tested these methods in marine sediments. The use of electrodes allows for greater control and quantification of electrons flowing to insoluble substrates as opposed to insoluble substrates such as minerals that are often difficult to measure. We have recently shown that poising electrodes at different redox potentials will enrich for different microbial groups and thus possible metabolisms. In marine sediment microcosms, triplicate electrodes were poised at different cathodic (electron donating) potentials (-300, -400, -500 and -600 mV) and incubated for eight weeks. Community analysis of the 16S rRNA revealed that at lower negative potentials (-500 and -600 mV), more sulfate reducing bacteria in the class Deltaproteobacteria were enriched in comparison to the communities at -300 and -400 mV being dominated by microorganisms within Alphaproteobacteria, Gammaproteobacteria, and Clostridia. This can be explained by sulfate (abundant in seawater) becoming a more energetically favorable electron acceptor with lower applied potentials. In addition, communities at higher potentials showed greater enrichment of the

  10. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill.

    PubMed

    Kappell, Anthony D; Wei, Yin; Newton, Ryan J; Van Nostrand, Joy D; Zhou, Jizhong; McLellan, Sandra L; Hristova, Krassimira R

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  11. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill

    PubMed Central

    Kappell, Anthony D.; Wei, Yin; Newton, Ryan J.; Van Nostrand, Joy D.; Zhou, Jizhong; McLellan, Sandra L.; Hristova, Krassimira R.

    2014-01-01

    The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are

  12. Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens.

    PubMed

    Fürnkranz, Michael; Lukesch, Birgit; Müller, Henry; Huss, Herbert; Grube, Martin; Berg, Gabriele

    2012-02-01

    Recent and substantial yield losses of Styrian oil pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) are primarily caused by the ascomycetous fungus Didymella bryoniae but bacterial pathogens are frequently involved as well. The diversity of endophytic microbial communities from seeds (spermosphere), roots (endorhiza), flowers (anthosphere), and fruits (carposphere) of three different pumpkin cultivars was studied to develop a biocontrol strategy. A multiphasic approach combining molecular, microscopic, and cultivation techniques was applied to select a consortium of endophytes for biocontrol. Specific community structures for Pseudomonas and Bacillus, two important plant-associated genera, were found for each microenvironment by fingerprinting of 16S ribosomal RNA genes. All microenvironments were dominated by bacteria; fungi were less abundant. Of the 2,320 microbial isolates analyzed in dual culture assays, 165 (7%) were tested positively for in vitro antagonism against D. bryoniae. Out of these, 43 isolates inhibited the growth of bacterial pumpkin pathogens (Pectobacterium carotovorum, Pseudomonas viridiflava, Xanthomonas cucurbitae); here only bacteria were selected. Microenvironment-specific antagonists were found, and the spermosphere and anthosphere were revealed as underexplored reservoirs for antagonists. In the latter, a potential role of pollen grains as bacterial vectors between flowers was recognized. Six broad spectrum antagonists selected according to their activity, genotypic diversity, and occurrence were evaluated under greenhouse conditions. Disease severity on pumpkins of D. bryoniae was significantly reduced by Pseudomonas chlororaphis treatment and by a combined treatment of strains (Lysobacter gummosus, P. chlororaphis, Paenibacillus polymyxa, and Serratia plymuthica). This result provides a promising prospect to biologically control pumpkin diseases. PMID:21947430

  13. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    PubMed

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota. PMID:27090902

  14. Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport

    SciTech Connect

    Moser, Duane P; Hamilton-Brehm, Scott D; Fisher, Jenny C; Bruckner, James C; Kruger, Brittany; Sackett, Joshua; Russell, Charles E; Onstott, Tullis C; Czerwinski, Ken; Zavarin, Mavrik; Campbell, James H

    2014-06-01

    Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17 boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and

  15. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

    PubMed Central

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong

    2015-01-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904

  16. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    PubMed

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-01-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904

  17. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem

    NASA Astrophysics Data System (ADS)

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; van Nostrand, Joy D.; Zhou, Jizhong

    2015-03-01

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  18. In-Drift Microbial Communities

    SciTech Connect

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  19. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    PubMed

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  20. Exploring the Metabolic Potential of Microbial Communities in Ultra-basic Reducing Spring at The Cedars, CA: Evidence of Microbial Methanogenesis and Heterotrophic Acetogenesis

    NASA Astrophysics Data System (ADS)

    Kohl, L.; Cummings, E.; Cox, A.; Suzuki, S.; Morrrissey, L.; Lang, S. Q.; Richter, A.; Nealson, K. H.; Morrill, P. L.

    2015-12-01

    The Cedars is a complex of ultra-basic, reducing springs located in the Coastal Range Ophiolite (CA, USA), a site of present day serpentinization. Similar to other serpentinization-associated fluids, the groundwaters discharging at The Cedars contain elevated concentrations of C1-C6 alkanes and volatile organic acids (VOAs) which may originate from abiotic or thermogenic processes but can also be produced, consumed, or transformed by microbial activity. In contrast to other continental sites of serpentinization, geochemical indicators (δ13CCH4, δ2HCH4, CH4/C2-C6 alkanes) are consistent with a partial microbial origin of methane at The Cedars. These indicators, however, can provide only indirect evidence of microbial methanogenesis. To further explore the metabolic potential of the indigenous microbial communities at The Cedars, we conducted a series of microcosm experiments in which fluids and sediments collected at The Cedars were incubated with 13C labeled substrates (formate, acetate, bicarbonate, methanol) under anaerobic conditions. 13C from all amended substrates was incorporated into CH4 demonstrating that these microbial communities can convert both organic and inorganic substrates to CH4. The apparent fractionation of 13C between methane and potential substrates indicated that carbonate reduction was the dominant pathway of methanogenesis, and 16S rDNA based community profiling revealed the presence of an OTU closest related to Methanobacterium sp., an autotrophic (CO2/H2) methanogen. Concentrations of C1-C4 VOAs increased 5-fold over the course of the experiment indicating the microbial production of VOAs. This acetogenesis occurred heterotrophically as autotrophic acetogenesis can be excluded because (a) δ13C values of acetate were similar to those of inorganic carbon (inconsistent with the strong discrimination against 13C observed in autotrophic acetogenesis) and (b) no incorporation of 13C from labeled bicarbonate was into acetate was observed.

  1. General Microbial Community Flexibility in Biochemical Methane Potential Assay is Highly Correlated to Initial Biogas Production Rates.

    PubMed

    Novak, Domen; Stres, Blaž; Osojnik, Gasan; Skrjanec, Igor; Marinšek-Logar, Romana

    2011-03-01

    Degradation of brewery spent grain as a novel test substrate was explored in routine biochemical methane potential assays (BMP) using three different inocula. Significant differences in the initial biogas production rates from spent grain, methane yield coefficients and final spent grain degradation were observed between inocula. Initial and developed communities degrading novel substrate showed significant differences in archaeal community fingerprints. Differences were observed irrespective of substrate identity (no substrate, glucose, spent grain) providing evidence of a significant general influence of BMP incubation on the microbial phylotypes. A linear relationship between microbial community flexibility in BMP assay and corresponding initial biogas production rates was identified as a novel parameter to diagnose anaerobic processes, particularly under dynamic conditions like start-up. PMID:24061959

  2. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard

    PubMed Central

    2014-01-01

    Background The persistence of microbial communities and how they change in indoor environments is of immense interest to public health. Moreover, hospital acquired infections are significant contributors to morbidity and mortality. Evidence suggests that, in hospital environments agent transfer between surfaces causes healthcare associated infections in humans, and that surfaces are an important transmission route and may act as a reservoir for some of the pathogens. This study aimed to evaluate the diversity of microorganisms that persist on noncritical equipment and surfaces in a main hospital in Portugal, and are able to grow in selective media for Pseudomonas, and relate them with the presence of Pseudomonas aeruginosa. Results During 2 years, a total of 290 environmental samples were analyzed, in 3 different wards. The percentage of equipment in each ward that showed low contamination level varied between 22% and 38%, and more than 50% of the equipment sampled was highly contaminated. P. aeruginosa was repeatedly isolated from sinks (10 times), from the taps’ biofilm (16 times), and from the showers and bedside tables (two times). Two ERIC clones were isolated more than once. The contamination level of the different taps analyzed showed correlation with the contamination level of the hand gels support, soaps and sinks. Ten different bacteria genera were frequently isolated in the selective media for Pseudomonas. Organisms usually associated with nosocomial infections as Stenotrophomonas maltophilia, Enterococcus feacalis, Serratia nematodiphila were also repeatedly isolated on the same equipment. Conclusions The environment may act as a reservoir for at least some of the pathogens implicated in nosocomial infections. The bacterial contamination level was related to the presence of humidity on the surfaces, and tap water (biofilm) was a point of dispersion of bacterial species, including potentially pathogenic organisms. The materials of the equipment

  3. Exploring the metabolic potential of microbial communities in ultra-basic, reducing springs at The Cedars, CA, USA: Experimental evidence of microbial methanogenesis and heterotrophic acetogenesis

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Cumming, Emily; Cox, Alison; Rietze, Amanda; Morrissey, Liam; Lang, Susan Q.; Richter, Andreas; Suzuki, Shino; Nealson, Kenneth H.; Morrill, Penny L.

    2016-04-01

    Present-day serpentinization generates groundwaters with conditions (pH > 11, Eh < -550 mV) favorable for the microbial and abiotic production of organic compounds from inorganic precursors. Elevated concentrations of methane, C2-C6 alkanes, acetate, and formate have been detected at these sites, but the microbial or abiotic origin of these compounds remains unclear. While geochemical data indicate that methane at most sites of present-day serpentinization is abiogenic, the stable carbon, hydrogen, and clumped isotope data as well as the hydrocarbon gas composition from The Cedars, CA, USA, are consistent with a microbial origin for methane. However, there is no direct evidence of methanogenesis at this site of serpentinization. We report on laboratory experiments in which the microbial communities in fluids and sediments from The Cedars were incubated with 13C labeled substrates. Increasing methane concentrations and the incorporation of 13C into methane in live experiments, but not in killed controls, demonstrated that methanogens converted methanol, formate, acetate (methyl group), and bicarbonate to methane. The apparent fractionation between methane and potential substrates (α13CCH4-CO2(g) = 1.059 to 1.105, α13CCH4-acetate = 1.042 to 1.119) indicated that methanogenesis was dominated by the carbonate reduction pathway. Increasing concentrations of volatile organic acid anions indicated microbial acetogenesis. α13CCO2(g)-acetate values (0.999 to 1.000), however, were inconsistent with autotrophic acetogenesis, thus suggesting that acetate was produced through fermentation. This is the first study to show direct evidence of microbial methanogenesis and acetogenesis by the native microbial community at a site of present-day serpentinization.

  4. SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES

    EPA Science Inventory

    Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213).

    Seagrasses ...

  5. Radiochemically-supported microbial communities. A potential mechanism for biocolloid production of importance to actinide transport

    SciTech Connect

    Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.; Bruckner, James C.; Kruger, Brittany; Sackett, Joshua; Russell, Charles E.; Onstott, Tullis C.; Czerwinski, Ken; Zavarin, Mavrik; Campbell, James H.

    2015-03-20

    The work described here revealed the presence of diverse microbial communities located across 19 subsurface sites at the NNSS/NTTR and nearby locations. Overall, the diversity of microorganisms was high for subsurface habitats and variable between sites. As of this writing, preparations are being made to combine the Illumina sequences and 16S rRNA clone libraries with other non-NNSS/NTTR well sites of Southern Nevada Regional Flow System for a publication manuscript describing our very broad landscape scale survey of subsurface microbial diversity. Isolates DRI-13 and DRI-14 remain to be fully characterized and named in accordance with the conventions established by Bergey's Manual of Systematic Bacteriology. In preparation to be published, these microorganisms will be submitted to the American Type Culture Collection (ATCC) and the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ).It is anticipated that the data resulting from this study in combination with other data sets that will allow us to produce a number of publications that will be impactful to the subsurface microbiology community.

  6. Microbial communities associated with human decomposition and their potential use as postmortem clocks.

    PubMed

    Finley, Sheree J; Benbow, M Eric; Javan, Gulnaz T

    2015-05-01

    Most forensic research that is used to better understand how to estimate the postmortem interval (PMI) entails the study of the physiochemical characteristics of decomposition and the effects that environmental factors have on the decomposition process. Forensic entomology exploits the life cycles of arthropods like Diptera (blow flies or flesh flies) and Coleoptera (beetles) deposited on the decaying carcass to determine PMI. Forensic taphonomy, from the Greek word taphos meaning burial, studies the creation of the fossils of decomposed cadavers to ascertain information as to the nature and time of death. Compared to other areas of taphonomy, there have been relatively few forensic science studies that have investigated the impact of human decomposition on the microbial changes occurring on or in a corpse or in the soil communities underneath a body. Such research may facilitate the critical determination of PMI. Therefore, the scope of this review is to provide a concise summary of the current progress in the newly emerging field of microbial diversity and the next-generation metagenomic sequencing approaches for assessing these communities in humans and in the soil beneath decomposing human. PMID:25129823

  7. Connecting Metabolic Potential with Thermodynamic Reality: Lithotrophic Microbial Communities of the Frasassi Cave System

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Macalady, J. L.; Schaperdoth, I.

    2013-12-01

    If Martian life evolved during the Noachian period, it likely would have retreated to liquid water refuges where redox chemistry provided metabolically viable substrates. Present-day Mars appears to have such a refuge with data suggesting that liquid water may persist in the subsurface, however limited data is available with regards to subsurface Martian geochemistry and hydrogeology. On Earth, we find microbial communities thriving in subsurface environments utilizing a multitude of lithoautotrophic metabolisms. The Frasassi cave system in Italy hosts many such lithotrophic microbial communities, which are isolated from surface carbon, sunlight, and oxygen similar to possible Martian microbial populations. By studying the community structure, geochemistry and thermodynamics of the system, as well as the metabolic capabilities using metagenomics, we hope to discover microbes are capable of thriving in so-called 'energy-limited' environments and inform the search for life in the solar system. Two subsurface cave lakes in the Frasassi cave system, Lago Infinito and Lago dell'Orsa, have anoxic waters that host rope-like biofilm communities dominated by Deltaproteobacteria, Chloroflexi, and Planctomycetes clades. Thermodynamic calculations based on in situ geochemistry of waters surrounding the biofilms suggest very few metabolisms are energetically-feasible including: 1) anaerobic oxidation of methane (AOM) coupled with sulfate reduction 2) anaerobic ammonia oxidation (anammox) coupled with sulfate reduction 3) methanogenesis (Lago dell'Orsa only) 4) chemotrophic sulfate reduction AOM and anammox were only recently discovered and appear to have low energy yields associated with slow growth rates. AOM coupled with sulfate reduction has been shown to occur in a syntrophy between sulfate-reducing bacteria (SRB) and methanotrophic Archaea. However, these rope-like biofilms have a small (<10%) Archaeal population, which are not closely related to the syntrophic

  8. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Shimamura, Shigeru; Kakuta, Jungo; Kazama, Hiromi; Hirai, Miho; Masui, Noriaki; Tomaru, Hitoshi; Morono, Yuki; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken

    2016-06-01

    Subseafloor pelagic sediments with high concentrations of organic matter form habitats for diverse microorganisms. Here, we determined depth profiles of genes for SSU rRNA, mcrA, dsrA and amoA from just beneath the seafloor to 363.3 m below the seafloor (mbsf) using core samples obtained from the forearc basin off the Shimokita Peninsula. The molecular profiles were combined with data on lithostratigraphy, depositional age, sedimentation rate and pore-water chemistry. The SSU rRNA gene tag structure and diversity changed at around the sulfate-methane transition zone (SMTZ), whereas the profiles varied further with depth below the SMTZ, probably in connection with the variation in pore-water chemistry. The depth profiles of diversity and abundance of dsrA, a key gene for sulfate reduction, suggested the possible niche separations of sulfate-reducing populations, even below the SMTZ. The diversity and abundance patterns of mcrA, a key gene for methanogenesis/anaerobic methanotrophy, suggested a stratified distribution and separation of anaerobic methanotrophy and hydrogenotrophic or methylotrophic methanogensis below the SMTZ. This study provides novel insights into the relationships between the composition and function of microbial communities and the chemical environment in the nutrient-rich continental margin subseafloor sediments, which may result in niche separation and variability in subseafloor microbial populations. PMID:26486095

  9. GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage▿ †

    PubMed Central

    Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou

    2011-01-01

    Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602

  10. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  11. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

    PubMed

    Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J

    2015-07-01

    A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage. PMID:25947246

  12. Microbial communities in a chlorinated solvent contaminated tidal freshwater wetland: molecular techniques for assessing potentially important biodegrading organisms

    NASA Astrophysics Data System (ADS)

    Kirshtein, J. D.; Voytek, M. A.; Lorah, M m

    2001-05-01

    Aberdeen Proving Ground MD (APG) is a hazardous waste site where a chlorinated solvent plume discharges into anaerobic sediments in a tidal freshwater wetland. Wetlands can be ideal sites for intrinsic remediation of chlorinated volatile organic compounds (VOCs) due to availability of organic substrates and the wide range of redox zones. And indeed natural attenuation of these compounds appears to be an important process at this site. The biodegradation of chlorinated VOCs such as PCA can follow several pathways: 1) sequential hydrogenolysis of PCA to ethane or ethene via TCA 2) dichloroelimation of TCA to vinyl chloride (VC) or 3) dichloroelimination of PCA to DCE, and hydrogenolysis of DCE to VC. Pathways 2 and 3 can result in the accumulation of VC which is considered more hazardous than the original parent compounds. Identifying microbial components involved in the series of degradation steps of each pathway can provide a better understanding of factors controlling the intrinsic bioremediation of these compounds. PCA-amended microcosm experiments were conducted during two seasons, March-April, and July-August 1999 at APG using wetland sediments collected from two distinct sites (one is methanogenic and one is both iron reducing and methanogenic). During the course of the experiments, VOCs, methane, ferrous iron and sulfate were measured. Terminal restriction fragment polymorphism (tRFLP) analysis provides a molecularly-derived microbial "fingerprint" and was used to document the total microbial abundance and characterize the diversity of the bacterial and methanogen communities. Higher rates of degradation observed during the spring sampling were associated with higher biomass and microbial diversity. As the microcosm proceeded, shifts in redox conditions and associated degradation rates and pathways were observed. These shifts were tracked by changes in the microbial community. Three phylotypes were identified that appear to be important in controlling the

  13. Electrochemical response of a biofilm community to changes in electron-acceptor redox potential elucidated using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2012-12-01

    Currently, we have limited insight into how mineral properties affect dissimilatory metal-reducing bacteria (DMRB) or the microbial communities that contain them. Advances in our understanding of DMRB metabolism have been achieved using microbial fuel cells (MFCs), which exploit the ability of these organisms to transfer electrons extracellularly. By replacing the mineral electron acceptor with a conductive electrode under potentiostat control, the activity of microorganisms capable of interfacial electron transfer can be quantified by the current flowing through the electrode and related to the thermodynamics of respiration. We seek to understand how communities and their individual members respond to changes in mineralogy, and expect mineral redox potential to be a primary control. The ability to precisely control the redox potential of the electron-accepting anodic electrode is our primary motivation for using MFCs. We inoculated duplicate MFCs containing 10 mM acetate in phosphate buffered media with a slurry of subsurface sediment and groundwater obtained from the Integrated Field-Scale Research Challenge Site at Rifle, CO. Electroactive biofilms were established on graphite anodes poised at a favorable potential (0.0 V vs. SHE) before poising at -0.2 V—a potential representative of natural iron reduction. The current was stable across both anodes over more than 100 days of operation, and the percentage of the electrons in acetate recovered as current ("Coulombic efficiency") was typically 70 to >90%. Current density reached 0.4 A/m2 at -0.2 V, to a max of over 1.0 A/m2 at or above ~0.0 V (based on geometric electrode surface area). Media exchanges and biofilm cyclic voltammetry (CV) experiments indicate that electrode-attached microbial communities were responsible for primary electron transfer. Cryo-electron and confocal fluorescence microscopies of the biofilm reveal numerous morphologies of viable microorganisms that are currently being characterized

  14. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  15. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    PubMed

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution. PMID:26078113

  16. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes.

    PubMed

    Obi, Chioma C; Adebusoye, Sunday A; Ugoji, Esther O; Ilori, Mathew O; Amund, Olukayode O; Hickey, William J

    2016-01-01

    Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa's largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH

  17. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes

    PubMed Central

    Obi, Chioma C.; Adebusoye, Sunday A.; Ugoji, Esther O.; Ilori, Mathew O.; Amund, Olukayode O.; Hickey, William J.

    2016-01-01

    Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH

  18. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.

    PubMed

    Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian

    2016-01-01

    Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment. PMID:27527164

  19. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives

    PubMed Central

    Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian

    2016-01-01

    Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment. PMID:27527164

  20. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  1. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  2. Interchange of entire communities: microbial community coalescence.

    PubMed

    Rillig, Matthias C; Antonovics, Janis; Caruso, Tancredi; Lehmann, Anika; Powell, Jeff R; Veresoglou, Stavros D; Verbruggen, Erik

    2015-08-01

    Microbial communities are enigmatically diverse. We propose a novel view of processes likely affecting microbial assemblages, which could be viewed as the Great American Interchange en miniature: the wholesale exchange among microbial communities resulting from moving pieces of the environment containing entire assemblages. Incidental evidence for such 'community coalescence' is accumulating, but such processes are rarely studied, likely because of the absence of suitable terminology or a conceptual framework. We provide the nucleus for such a conceptual foundation for the study of community coalescence, examining factors shaping these events, links to bodies of ecological theory, and we suggest modeling approaches for understanding coalescent communities. We argue for the systematic study of community coalescence because of important functional and applied consequences. PMID:26111582

  3. Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill.

    PubMed

    Acosta-González, Alejandro; Rosselló-Móra, Ramon; Marqués, Silvia

    2013-01-01

    could be delimited, a considerable overlap in the use of electron acceptors was observed, confirming that each selected zone could be influenced by more than one respiratory metabolism. Altogether, our results evidence the presence in these sediments of a microbial community with potential to respond against hydrocarbon contamination, consistent with the long pollution history of the site. PMID:22626032

  4. Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential.

    PubMed

    Pommier, Thomas; Merroune, Asmaa; Bettarel, Yvan; Got, Patrice; Janeau, Jean-Louis; Jouquet, Pascal; Thu, Thuy D; Toan, Tran D; Rochelle-Newall, Emma

    2014-12-01

    While considered as sustainable and low-cost agricultural amendments, the impacts of organic fertilizers on downstream aquatic microbial communities remain poorly documented. We investigated the quantity and quality of the dissolved organic matter leaching from agricultural soil amended with compost, vermicompost or biochar and assessed their effects on lake microbial communities, in terms of viral and bacterial abundances, community structure and metabolic potential. The addition of compost and vermicompost significantly increased the amount of dissolved organic carbon in the leachate compared with soil alone. Leachates from these additions, either with or without biochar, were highly bioavailable to aquatic microbial communities, although reducing the metabolic potential of the community and harbouring more specific communities. Although not affecting bacterial richness or taxonomic distributions, the specific addition of biochar affected the original lake bacterial communities, resulting in a strongly different community. This could be partly explained by viral burst and converging bacterial abundances throughout the samples. These results underline the necessity to include off-site impacts of agricultural amendments when considering their cascading effect on downstream aquatic ecosystems. PMID:25195703

  5. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    PubMed

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. PMID:24183561

  6. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  7. High-resolution phylogenetic microbial community profiling.

    PubMed

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-08-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  8. Systems biology of Microbial Communities

    SciTech Connect

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  9. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  10. Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals

    PubMed Central

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  11. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments

    NASA Technical Reports Server (NTRS)

    Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.

    2001-01-01

    A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.

  12. Utilization of microbial community potential for removal of chlorpyrifos: a review.

    PubMed

    Yadav, Maya; Shukla, Awadhesh Kumar; Srivastva, Navnita; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2016-08-01

    Chlorpyrifos (CP) is the most commonly used pesticide in agricultural fields worldwide. Exposure to CP and its metabolites creates severe neuron-disorders in human beings. Improper handling and uncontrolled application of CP by farmers have lead to the contamination of surface and ground water bodies. Biodegradation offers an efficient and cost effective method for the removal of CP and other toxic organophosphorus pesticides from the contaminated environment. The degradation of CP by various microorganisms has been investigated by several researchers over the past few years. This review presents a critical summary of the recent published results on the biodegradation of CP. A diverse range of bacterial species such as Agrobacterium sp., Alcaligenes faecalis, Enterobacter sp. Arthrobacter sp. Bacillus pumilus, Pseudomonas sp. etc., fungal species like Trichoderma viridae, Aspergillus niger, Verticillium sp., Acremonium sp. Cladosporium cladosporiodes, etc. and certain algal species viz. Chlorella vulgaris, Spirulina platensis, Synechocystis sp., etc., have been shown to degrade CP. The efficacy of these communities for CP degradation in batch and continuous modes has also been discussed but more studies are required on continuous reactors. Also, the available published information on kinetics of biodegradation of CP along with the available results on molecular biological approaches are discussed in this work. PMID:25782532

  13. Synthetic networks in microbial communities

    NASA Astrophysics Data System (ADS)

    Suel, Gurol

    2015-03-01

    While bacteria are single celled organisms, they predominantly reside in structured communities known as biofilms. Cells in biofilms are encapsulated and protected by the extracellular matrix (ECM), which also confines cells in space. During biofilm development, microbial cells are organized in space and over time. Little is known regarding the processes that drive the spatio-temporal organization of microbial communities. Here I will present our latest efforts that utilize synthetic biology approaches to uncover the organizational principles that drive biofilm development. I will also discuss the possible implications of our recent findings in terms of the cost and benefit to biofilm cells.

  14. Principles for designing synthetic microbial communities.

    PubMed

    Johns, Nathan I; Blazejewski, Tomasz; Gomes, Antonio Lc; Wang, Harris H

    2016-06-01

    Advances in synthetic biology to build microbes with defined and controllable properties are enabling new approaches to design and program multispecies communities. This emerging field of synthetic ecology will be important for many areas of biotechnology, bioenergy and bioremediation. This endeavor draws upon knowledge from synthetic biology, systems biology, microbial ecology and evolution. Fully realizing the potential of this discipline requires the development of new strategies to control the intercellular interactions, spatiotemporal coordination, robustness, stability and biocontainment of synthetic microbial communities. Here, we review recent experimental, analytical and computational advances to study and build multi-species microbial communities with defined functions and behavior for various applications. We also highlight outstanding challenges and future directions to advance this field. PMID:27084981

  15. Gut microbial communities of social bees.

    PubMed

    Kwong, Waldan K; Moran, Nancy A

    2016-06-01

    The gut microbiota can have profound effects on hosts, but the study of these relationships in humans is challenging. The specialized gut microbial community of honey bees is similar to the mammalian microbiota, as both are mostly composed of host-adapted, facultatively anaerobic and microaerophilic bacteria. However, the microbial community of the bee gut is far simpler than the mammalian microbiota, being dominated by only nine bacterial species clusters that are specific to bees and that are transmitted through social interactions between individuals. Recent developments, which include the discovery of extensive strain-level variation, evidence of protective and nutritional functions, and reports of eco-physiological or disease-associated perturbations to the microbial community, have drawn attention to the role of the microbiota in bee health and its potential as a model for studying the ecology and evolution of gut symbionts. PMID:27140688

  16. Health care workers' mobile phones: a potential cause of microbial cross-contamination between hospitals and community.

    PubMed

    Ustun, Cemal; Cihangiroglu, Mustafa

    2012-01-01

    This study evaluated the microbial contamination of health care workers' (HCWs) mobile phones. The study was conducted at a secondary referral hospital in July 2010. Samples were taken from all surfaces of the mobile phones using a sterile swab, and incubated on Brain Heart Infusion agar at 37.5°C for 24 hr. Any isolated microorganisms were grown aerobically on 5% sheep blood agar and eosin methylene-blue agar medium at 37.5°C for 24-48 hr. The Sceptor microdilution system was used to identify the microorganisms, together with conventional methods. The oxacillin disc diffusion test and double-disc synergy test were used to identify methicillin-resistant Staphylococcus aureus (MRSA) and expanded-spectrum beta-lactamase (ESBL)-producing Gram-negative bacilli, respectively. The mobile phones were also categorized according to whether the HCWs used them in the intensive care unit (ICU). Overall, 183 mobile phones were screened: 94 (51.4%) from nurses, 32 (17.5%) from laboratory workers, and 57 (31.1%) from health care staff. In total, 179 (97.8%) culture-positive specimens were isolated from the 183 mobile phones, including 17 (9.5%) MRSA and 20 (11.2%) ESBL-producing Escherichia coli, which can cause nosocomial infections. No statistical difference was observed in the recovery of MRSA (p = 0.3) and ESBL-producing E. coli (p = 0.6) between the HCW groups. Forty-four (24.6%) of the 179 specimens were isolated from mobile phones of ICU workers, including two MRSA and nine ESBL-producing E. coli. A significant (p = 0.02) difference was detected in the isolation of ESBL-producing E. coli between ICU workers and non-ICU workers. HCWs' mobile phones are potential vectors for transferring nosocomial pathogens between HCWs, patients, and the community. PMID:22793671

  17. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  18. Microbial communities evolve faster in extreme environments

    PubMed Central

    Li, Sheng-Jin; Hua, Zheng-Shuang; Huang, Li-Nan; Li, Jie; Shi, Su-Hua; Chen, Lin-Xing; Kuang, Jia-Liang; Liu, Jun; Hu, Min; Shu, Wen-Sheng

    2014-01-01

    Evolutionary analysis of microbes at the community level represents a new research avenue linking ecological patterns to evolutionary processes, but remains insufficiently studied. Here we report a relative evolutionary rates (rERs) analysis of microbial communities from six diverse natural environments based on 40 metagenomic samples. We show that the rERs of microbial communities are mainly shaped by environmental conditions, and the microbes inhabiting extreme habitats (acid mine drainage, saline lake and hot spring) evolve faster than those populating benign environments (surface ocean, fresh water and soil). These findings were supported by the observation of more relaxed purifying selection and potentially frequent horizontal gene transfers in communities from extreme habitats. The mechanism of high rERs was proposed as high mutation rates imposed by stressful conditions during the evolutionary processes. This study brings us one stage closer to an understanding of the evolutionary mechanisms underlying the adaptation of microbes to extreme environments. PMID:25158668

  19. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  20. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  1. Characterizing microbial communities through space and time

    PubMed Central

    Gonzalez, Antonio; King, Andrew; Robeson, Michael S.; Song, Sejin; Shade, Ashley; Metcalf, Jessica; Knight, Rob

    2011-01-01

    Until recently, the study of microbial diversity has mainly been limited to descriptive approaches, rather than predictive model-based analyses. The development of advanced analytical tools and decreasing cost of high-throughput multi-omics technologies has made the later approach more feasible. However, consensus is lacking as to which spatial and temporal scales best facilitate understanding of the role of microbial diversity in determining both public and environmental health. Here, we review the potential for combining these new technologies with both traditional and nascent spatio-temporal analysis methods. The fusion of proper spatio-temporal sampling, combined with modern multi-omics and computational tools, will provide insight into the tracking, development and manipulation of microbial communities. PMID:22154467

  2. Impact of soil matric potential on the fine-scale spatial distribution and activity of specific microbial degrader communities.

    PubMed

    Monard, Cécile; Mchergui, Chokri; Nunan, Naoise; Martin-Laurent, Fabrice; Vieublé-Gonod, Laure

    2012-09-01

    The impact of the soil matric potential on the relationship between the relative abundance of degraders and their activity and on the spatial distribution of both at fine scales was determined to understand the role of environmental conditions in the degradation of organic substrates. The mineralization of (13) C-glucose and (13) C-2,4-dichlorophenoxyacetic acid (2,4-D) was measured at different matric potentials (-0.001, -0.01 and -0.316 MPa) in 6 × 6 × 6 mm(3) cubes excised from soil cores. At the end of the incubation, total bacterial and 2,4-D degrader abundances were determined by quantifying the 16S rRNA and the tfdA genes, respectively. The mineralization of 2,4-D was more sensitive to changes in matric potential than was that of glucose. The amount and spatial structure of 2,4-D mineralization decreased with matric potential, whilst the spatial variability increased. On the other hand, the spatial variation of glucose mineralization was less affected by changes in matric potential. The relationship between the relative abundance of 2,4-D degraders and 2,4-D mineralization was significantly affected by matric potential: the relative abundance of tfdA needed to be higher to reach a given level of 2,4-D mineralization in dryer than in moister conditions. The data show how microbial interactions with their microhabitat can have an impact on soil processes at larger scales. PMID:22531018

  3. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep.

    PubMed

    Heijs, Sander K; Haese, Ralf R; van der Wielen, Paul W J J; Forney, Larry J; van Elsas, Jan Dirk

    2007-04-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22-34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0-6 cm). Communities in the middle layer (6-22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study. PMID:17431711

  4. Wetland Microbial Community Response to Restoration

    NASA Astrophysics Data System (ADS)

    Theroux, S.; Hartman, W.; Tringe, S. G.

    2015-12-01

    Wetland restoration has been proposed as a potential long-term carbon storage solution, with a goal of engineering geochemical dynamics to accelerate peat accretion and encourage greenhouse gas (GHG) sequestration. However, wetland microbial community composition and metabolic rates are poorly understood and their predicted response to wetland restoration is a veritable unknown. In an effort to better understand the underlying factors that shape the balance of carbon flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater tidal marshes to hypersaline ponds in the San Francisco Bay-Delta region. Using 16S rRNA gene sequencing and shotgun metagenomics, coupled with greenhouse gas measurements, we sampled sixteen sites capturing a range in salinity and restoration status. Seawater delivers sulfate to wetland ecosystems, encouraging sulfate reduction and discouraging methane production. As expected, we observed the highest rates of methane production in the freshwater wetlands. Recently restored wetlands had significantly higher rates of methane production compared to their historic counterparts that could be attributed to variations in trace metal and organic carbon content in younger wetlands. In contrast, our sequencing results revealed an almost immediate return of the indigenous microbial communities following seasonal flooding and full tidal restoration in saline and hypersaline wetlands and managed ponds. Notably, we found elevated methane production rates in hypersaline ponds, the result of methylotrophic methane production confirmed by sequence data and lab incubations. Our study links belowground microbial communities and their aboveground greenhouse gas production and highlights the inherent complexity in predicting wetland microbial response in the face of both natural and unnatural disturbances.

  5. Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea

    PubMed Central

    Ansari, Mohd Ikram; Harb, Moustapha; Jones, Burton; Hong, Pei-Ying

    2015-01-01

    Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48–2.18 mg/L) and nitrogen (TN, 0.15–0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality. PMID:25758166

  6. Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea.

    PubMed

    Ansari, Mohd Ikram; Harb, Moustapha; Jones, Burton; Hong, Pei-Ying

    2015-01-01

    Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality. PMID:25758166

  7. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  8. Fundamentals of Microbial Community Resistance and Resilience

    PubMed Central

    Shade, Ashley; Peter, Hannes; Allison, Steven D.; Baho, Didier L.; Berga, Mercè; Bürgmann, Helmut; Huber, David H.; Langenheder, Silke; Lennon, Jay T.; Martiny, Jennifer B. H.; Matulich, Kristin L.; Schmidt, Thomas M.; Handelsman, Jo

    2012-01-01

    Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability. PMID:23267351

  9. Hydrolytic microbial communities in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina

    2014-05-01

    Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional

  10. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  11. Reciprocal influences of microbial community and hydrogeomorphology in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, C.; Federlein, L. L.; Frossard, A.; Gessner, M. O.; Knie, M.; Mutz, M.

    2015-12-01

    Stream hydrogeomorphology is a strong determinant of streambed microbial community activity, which in turn influences stream biogeochemistry. Whether this influence is unidirectional or whether microbial communities can also modulate biogeochemical processes by affecting hydrogeomorphology is an emerging question in research on sediment-water interfaces. Using experimental flumes simulating sandy streams, we tested whether such influences can occur through altered water exchange across the sediment-water interface. Results show that microbial communities in sandy streambeds can indeed affect hydrogeomorphology by producing gas bubbles. Specifically, gas bubbles accumulating in microbial biofilms can alter the water exchange by (i) reducing sediment pore space or (ii) provoking the detachment of the microbial biofilm detachment and thus altering streambed topography. Additionally, results indicate that water exchange is the major for the structure and activity of the microbial community. Our data also indicate that the potential of microbial communities to influence water exchange can be modulated by factors such as light intensity and discharge fluctuations. These biological-physical interactions and their effects on the influence of microbial communities on hydrogeomorphology is a source of spatiotemporal variability in water exchange across the sediment-water interface. Heterogeneity in water exchange is known to increase biogeochemical pathways and, thus, ecosystem functions. These results suggest that a holistic understanding of vertical connectivity in running waters requires consideration of biological-physical interactions at the water-sediment interface.

  12. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  13. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. PMID:22465599

  14. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    DOE PAGESBeta

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.; Forster, Robert J.

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsiblemore » for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less

  15. The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing

    PubMed Central

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection. PMID:25338024

  16. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    PubMed

    Mohan, Arvind Murali; Bibby, Kyle J; Lipus, Daniel; Hammack, Richard W; Gregory, Kelvin B

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection. PMID:25338024

  17. Emergent Biosynthetic Capacity in Simple Microbial Communities

    PubMed Central

    Chiu, Hsuan-Chao; Levy, Roie; Borenstein, Elhanan

    2014-01-01

    Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity – instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a “Goldilocks” principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together, our results

  18. Patterns and Processes of Microbial Community Assembly

    PubMed Central

    Schmidt, Steven K.; Fukami, Tadashi; O'Neill, Sean P.; Bilinski, Teresa M.; Stanish, Lee F.; Knelman, Joseph E.; Darcy, John L.; Lynch, Ryan C.; Wickey, Phillip; Ferrenberg, Scott

    2013-01-01

    SUMMARY Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183–206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity. PMID:24006468

  19. A trait-based approach for examining microbial community assembly

    NASA Astrophysics Data System (ADS)

    Prest, T. L.; Nemergut, D.

    2015-12-01

    Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.

  20. Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Wu, Li-Wei; Cheng, Ting-Wen; Tu, Wei-Xain; Lin, Ji-Rong; Yang, Tsanyao F.; Chen, Po-Chun; Wang, Yunshuen; Wang, Pei-Ling

    2014-10-01

    Assessing the impacts of methane released from hydrate-bearing environments on global carbon cycling would require detailed insights into the distributions and capacities of microbial communities at different horizons of sediment column. In this study, we conducted geochemical, gene abundance and diversity analyses for a sediment core retrieved from a potential hydrate-bearing region off southwestern Taiwan. Geochemical profiles were characterized by a sulfate-to-methane transition with decreasing total organic carbon and nitrogen in sediments, and increasing dissolved inorganic carbon, ammonium and total sulfur in sediments. Bacterial and archaeal 16S rRNA and amoA gene abundances decreased with depth. In contrast, ANME-1 and -2 16S rRNA gene abundances increased significantly across the sulfate-to-methane transition and peaked at different horizons below this interface. A total of 124,379 bacterial and 130,351 archaeal reads were recovered through tag-pyrosequencing of 16S rRNA genes and categorized into 9014 bacterial and 6394 archaeal operational taxonomic units on the basis of 97% sequence similarity, respectively. Major bacterial phyla/divisions and archaeal groups (>5% of the total reads) detected included Chloroflexi, Planctomycetes, OP9, Deltaproteobacteria, BHI80-139, MBG-B, Halobacteria, MCG, Thermoplasmata, ANME-1 and MG-I. The abundance variations of most major OTUs (>0.5% of the total reads) were statistically correlated with those of geochemical parameters. These lines of evidence suggest that the populations represented by the major OTUs or detected by group-specific primers were compartmentalized into different horizons and involved directly or indirectly in the cycling of methane, sulfate, organic carbon and nitrogen. Overall, this study demonstrates that the deep sequencing coverage combined with the quantification of gene abundance and geochemical characterization would enable to uncover the detailed distributions and potential metabolic

  1. Microbial interactions in building of communities

    PubMed Central

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  2. Human and Environmental Impacts on River Sediment Microbial Communities

    PubMed Central

    Gibbons, Sean M.; Jones, Edwin; Bearquiver, Angelita; Blackwolf, Frederick; Roundstone, Wayne; Scott, Nicole; Hooker, Jeff; Madsen, Robert; Coleman, Maureen L.; Gilbert, Jack A.

    2014-01-01

    Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (∼65,000 microbial ‘species’ identified) and most novel (93% of OTUs do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices. PMID:24841417

  3. Human and environmental impacts on river sediment microbial communities.

    PubMed

    Gibbons, Sean M; Jones, Edwin; Bearquiver, Angelita; Blackwolf, Frederick; Roundstone, Wayne; Scott, Nicole; Hooker, Jeff; Madsen, Robert; Coleman, Maureen L; Gilbert, Jack A

    2014-01-01

    Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (∼ 65,000 microbial 'species' identified) and most novel (93% of OTUs do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices. PMID:24841417

  4. Resistance, resilience, and redundancy in microbial communities

    PubMed Central

    Allison, Steven D.; Martiny, Jennifer B. H.

    2008-01-01

    Although it is generally accepted that plant community composition is key for predicting rates of ecosystem processes in the face of global change, microbial community composition is often ignored in ecosystem modeling. To address this issue, we review recent experiments and assess whether microbial community composition is resistant, resilient, or functionally redundant in response to four different disturbances. We find that the composition of most microbial groups is sensitive and not immediately resilient to disturbance, regardless of taxonomic breadth of the group or the type of disturbance. Other studies demonstrate that changes in composition are often associated with changes in ecosystem process rates. Thus, changes in microbial communities due to disturbance may directly affect ecosystem processes. Based on these relationships, we propose a simple framework to incorporate microbial community composition into ecosystem process models. We conclude that this effort would benefit from more empirical data on the links among microbial phylogeny, physiological traits, and disturbance responses. These relationships will determine how readily microbial community composition can be used to predict the responses of ecosystem processes to global change. PMID:18695234

  5. Seasonal variation of postmortem microbial communities.

    PubMed

    Carter, David O; Metcalf, Jessica L; Bibat, Alexander; Knight, Rob

    2015-06-01

    Body-associated microbes were recently shown to change significantly during decomposition, undergoing an ecological succession in experimental conditions using rodent and swine models. We investigated microbial succession in soils associated with swine carcasses under experimental field conditions in summer and winter. We demonstrate that these postmortem microbial communities change in a specific, reproducible fashion, and that soil microbes represent a significant component of the postmortem microbial community, contrary to widespread belief in forensic science. However, the effects of decomposition on soil microbial communities were different in summer and winter. We suggest that the microbial ecological succession will be useful in medicolegal death investigation; however, observations in winter might not be applicable to summer, which indicates a need for a greater understanding of the seasonality of decomposition. PMID:25737335

  6. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    PubMed

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems. PMID:26509157

  7. Two-stage microbial community experimental design.

    PubMed

    Tickle, Timothy L; Segata, Nicola; Waldron, Levi; Weingart, Uri; Huttenhower, Curtis

    2013-12-01

    Microbial community samples can be efficiently surveyed in high throughput by sequencing markers such as the 16S ribosomal RNA gene. Often, a collection of samples is then selected for subsequent metagenomic, metabolomic or other follow-up. Two-stage study design has long been used in ecology but has not yet been studied in-depth for high-throughput microbial community investigations. To avoid ad hoc sample selection, we developed and validated several purposive sample selection methods for two-stage studies (that is, biological criteria) targeting differing types of microbial communities. These methods select follow-up samples from large community surveys, with criteria including samples typical of the initially surveyed population, targeting specific microbial clades or rare species, maximizing diversity, representing extreme or deviant communities, or identifying communities distinct or discriminating among environment or host phenotypes. The accuracies of each sampling technique and their influences on the characteristics of the resulting selected microbial community were evaluated using both simulated and experimental data. Specifically, all criteria were able to identify samples whose properties were accurately retained in 318 paired 16S amplicon and whole-community metagenomic (follow-up) samples from the Human Microbiome Project. Some selection criteria resulted in follow-up samples that were strongly non-representative of the original survey population; diversity maximization particularly undersampled community configurations. Only selection of intentionally representative samples minimized differences in the selected sample set from the original microbial survey. An implementation is provided as the microPITA (Microbiomes: Picking Interesting Taxa for Analysis) software for two-stage study design of microbial communities. PMID:23949665

  8. Microbial community modeling using reliability theory.

    PubMed

    Zilles, Julie L; Rodríguez, Luis F; Bartolerio, Nicholas A; Kent, Angela D

    2016-08-01

    Linking microbial community composition with the corresponding ecosystem functions remains challenging. Because microbial communities can differ in their functional responses, this knowledge gap limits ecosystem assessment, design and management. To develop models that explicitly incorporate microbial populations and guide efforts to characterize their functional differences, we propose a novel approach derived from reliability engineering. This reliability modeling approach is illustrated here using a microbial ecology dataset from denitrifying bioreactors. Reliability modeling is well-suited for analyzing the stability of complex networks composed of many microbial populations. It could also be applied to evaluate the redundancy within a particular biochemical pathway in a microbial community. Reliability modeling allows characterization of the system's resilience and identification of failure-prone functional groups or biochemical steps, which can then be targeted for monitoring or enhancement. The reliability engineering approach provides a new perspective for unraveling the interactions between microbial community diversity, functional redundancy and ecosystem services, as well as practical tools for the design and management of engineered ecosystems. PMID:26882268

  9. Surface reflectance degradation by microbial communities

    DOE PAGESBeta

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  10. Surface reflectance degradation by microbial communities

    SciTech Connect

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  11. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  12. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  13. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  14. Characterization of the microbial community in a lotic environment to assess the effect of pollution on nitrifying and potentially pathogenic bacteria.

    PubMed

    Medeiros, J D; Araújo, L X; da Silva, V L; Diniz, C G; Cesar, D E; Del'Duca, A; Coelho, C M

    2014-08-01

    This study aimed to investigate microbes involved in the nitrogen cycle and potentially pathogenic bacteria from urban and rural sites of the São Pedro stream. Water samples were collected from two sites. A seasonal survey of bacterial abundance was conducted. The dissolved nutrient content was analysed. PCR and FISH analysis were performed to identify and quantify microbes involved in the nitrogen cycle and potentially pathogenic bacteria. The seasonal survey revealed that the bacterial abundance was similar along the year on the rural area but varied on the urban site. Higher concentration of dissolved nutrients in the urban area indicated a eutrophic system. Considering the nitrifying microbes, the genus Nitrobacter was found, especially in the urban area, and may act as the principal bacteria in converting nitrite into nitrate at this site. The molecular markers napA, amoA, and nfrA were more accumulated at the urban site, justifying the higher content of nutrients metabolised by these enzymes. Finally, high intensity of amplicons from Enterococcus, Streptococcus, Bacteroides/Prevotella/Porphyromonas, Salmonella, S. aureus, P. aeruginosa and the diarrheagenic lineages of E. coli were observed at the urban site. These results indicate a change in the structure of the microbial community imposed by anthrophic actions. The incidence of pathogenic bacteria in aquatic environments is of particular importance to public health, emphasising the need for sewage treatment to minimise the environmental impacts associated with urbanisation. PMID:25296210

  15. Interspecies Interactions within Oral Microbial Communities

    PubMed Central

    Kuramitsu, Howard K.; He, Xuesong; Lux, Renate; Anderson, Maxwell H.; Shi, Wenyuan

    2007-01-01

    Summary: While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning “system thinking” and “holism.” Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name “dental plaque,” oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios. PMID:18063722

  16. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  17. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    SciTech Connect

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan

    2014-10-17

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.

  18. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    SciTech Connect

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.; Forster, Robert J.

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  19. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  20. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade.

    PubMed

    Hodgson, Douglas M; Smith, Ann; Dahale, Sonal; Stratford, James P; Li, Jia V; Grüning, André; Bushell, Michael E; Marchesi, Julian R; Avignone Rossa, C

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  1. Metabolic interactions and dynamics in microbial communities

    NASA Astrophysics Data System (ADS)

    Segre', Daniel

    Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.

  2. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  3. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon.

    PubMed

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  4. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  5. Does iron inhibit cryptoendolithic microbial communities?

    NASA Technical Reports Server (NTRS)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.

  6. Does iron inhibit cryptoendolithic microbial communities?

    PubMed

    Johnston, C G; Vestal, J R

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community. PMID:11538332

  7. Microbial Communities Model Parameter Calculation for TSPA/SR

    SciTech Connect

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  8. Predominant Acidilobus-like populations from geothermal environments in yellowstone national park exhibit similar metabolic potential in different hypoxic microbial communities.

    PubMed

    Jay, Z J; Rusch, D B; Tringe, S G; Bailey, C; Jennings, R M; Inskeep, W P

    2014-01-01

    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems. PMID:24162572

  9. Predominant Acidilobus-Like Populations from Geothermal Environments in Yellowstone National Park Exhibit Similar Metabolic Potential in Different Hypoxic Microbial Communities

    PubMed Central

    Jay, Z. J.; Rusch, D. B.; Tringe, S. G.; Bailey, C.; Jennings, R. M.

    2014-01-01

    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems. PMID:24162572

  10. Stable microbial community composition on the Greenland Ice Sheet.

    PubMed

    Musilova, Michaela; Tranter, Martyn; Bennett, Sarah A; Wadham, Jemma; Anesio, Alexandre M

    2015-01-01

    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered 'hot spots' for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ(13)C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers. PMID:25852658

  11. Method for analyzing microbial communities

    DOEpatents

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  12. Microbial Communities of Pavilion Lake Microbialites

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Biddle, J.; Pointing, S.; Cardman, Z.; Brady, A. L.; Slater, G. F.; Lim, D. S.

    2011-12-01

    Fossilized remnants of microbial mat growth, called stromatolites, are found in the rock record and are thought to be some of the earliest evidence for life on Earth. On the modern Earth, living versions of these stromatolites, called microbialites, are found in few environments across the globe. Pavilion Lake in British Columbia was found to host these microbialites, even though conditions are not extreme in the lake and grazers exist amongst the microbial growths. The Pavilion Lake Research Project, funded by NASA, the CSA and others, has developed the lake into an analog research site for the exploration of extraplanetary bodies since 2004. Pavilion Lake began to be explored for microbial ecology in 2007 to attempt to determine how the microbial communities change over time, location and depth to build these microbialite structures. DNA extracted from microbialites at two different locations and 3 depths at each location were analyzed by T-RFLP patterns. Significant differences were seen in the total communities from each location. Additional samples were taken in the summer and budding seasons, and significant differences were seen by season. A survey performed on just the cyanobacterial populations show less differences between taxa between sites, but significant differences with depth above and below the chemocline and between mineralized and non-mineralized mats. Differences were also examined between purple and green nodules, which are thought to be the growth forms of the microbialites. Detailed sequence analysis shows that Pavilion Lake microorganisms are similar, yet different, from microbial communities seen in other microbialite systems. In 2011, the research project moved to Kelly Lake, a lake nearby Pavilion Lake, that also contain microbialite structures. Similar morphologies were seen in Kelly Lake with an approximate 20 ft. offset in the typical depths where morphologies were seen. Continued analysis of Kelly Lake microbialites will be performed

  13. Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential.

    PubMed

    López-Miras, M; Piñar, G; Romero-Noguera, J; Bolívar-Galiano, F C; Ettenauer, J; Sterflinger, K; Martín-Sánchez, I

    2013-06-01

    In this study, we investigated and compared the microbial communities adhering to the obverse and the reverse sides of an oil painting on canvas exhibiting signs of biodeterioration. Samples showing no visible damage were investigated as controls. Air samples were also analysed, in order to investigate the presence of airborne microorganisms suspended in the indoor atmosphere. The diversity of the cultivable microorganisms adhering to the surface was analysed by molecular techniques, such as RAPD analysis and gene sequencing. DGGE fingerprints derived from DNA directly extracted from canvas material in combination with clone libraries and sequencing were used to evaluate the non-cultivable fraction of the microbial communities associated with the material. By using culture-dependent methods, most of the bacterial strains were found to be common airborne, spore-forming microorganisms and belonged to the phyla Actinobacteria and Firmicutes, whereas culture-independent techniques identified sequenced clones affiliated with members of the phyla Actinobacteria and Proteobacteria. The diversity of fungi was shown to be much lower than that observed for bacteria, and only species of Penicillium spp. could be detected by cultivation techniques. The selected strategy revealed a higher microbial diversity on the obverse than on the reverse side of the painting and the near absence of actively growing microorganisms on areas showing no visible damage. Furthermore, enzymatic activity tests revealed that the most widespread activities involved in biodeterioration were esterase and esterase lipase among the isolated bacterial strains, and esterase and N-acetyl-β-glucosaminidase among fungi strains. PMID:23576841

  14. Microbial interactions and community assembly at microscales.

    PubMed

    Cordero, Otto X; Datta, Manoshi S

    2016-06-01

    In most environments, microbial interactions take place within microscale cell aggregates. At the scale of these aggregates (∼100μm), interactions are likely to be the dominant driver of population structure and dynamics. In particular, organisms that exploit interspecific interactions to increase ecological performance often co-aggregate. Conversely, organisms that antagonize each other will tend to spatially segregate, creating distinct micro-communities and increased diversity at larger length scales. We argue that, in order to understand the role that biological interactions play in microbial community function, it is necessary to study microscale spatial organization with enough throughput to measure statistical associations between taxa and possible alternative community states. We conclude by proposing strategies to tackle this challenge. PMID:27232202

  15. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members.

    PubMed

    Tan, Boonfei; Dong, Xiaoli; Sensen, Christoph W; Foght, Julia

    2013-10-01

    A microbial community (short-chain alkane-degrading culture, SCADC) enriched from an oil sands tailings pond was shown to degrade C6-C10 alkanes under methanogenic conditions. Total genomic DNA from SCADC was subjected to 454 pyrosequencing, Illumina paired-end sequencing, and 16S rRNA amplicon pyrotag sequencing; the latter revealed 320 operational taxonomic units at 5% distance. Metagenomic sequences were subjected to in-house quality control and co-assembly, yielding 984 086 contigs, and annotation using MG-Rast and IMG. Substantial nucleotide and protein recruitment to Methanosaeta concilii, Syntrophus aciditrophicus, and Desulfobulbus propionicus reference genomes suggested the presence of closely related strains in SCADC; other genomes were not well mapped, reflecting the paucity of suitable reference sequences for such communities. Nonetheless, we detected numerous homologues of putative hydrocarbon succinate synthase genes (e.g., assA, bssA, and nmsA) implicated in anaerobic hydrocarbon degradation, suggesting the ability of the SCADC microbial community to initiate methanogenic alkane degradation by addition to fumarate. Annotation of a large contig revealed analogues of the ass operon 1 in the alkane-degrading sulphate-reducing bacterium Desulfatibacillum alkenivorans AK-01. Despite being enriched under methanogenic-fermentative conditions, additional metabolic functions inferred by COG profiling indicated multiple CO(2) fixation pathways, organic acid utilization, hydrogenase activity, and sulphate reduction. PMID:24237341

  16. Carbon Accumulation and Microbial Community Structure in Reclaimed Mine Soils

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Palumbo, A. V.; Tarver, J. D.; Fisher, S.; Cantu, J.; Brandt, C. C.

    2002-12-01

    The objective of this study was to investigate the potential for soil amendments to increase accumulation of carbon in reclaimed soils and the relationship between carbon and microbial community structure. Changes in community structure were determined by signature lipid biomarkers (SLBs) or phospholipid fatty acid methyl esters. PLFA provide estimates of the viable biomass, diversity of prokaryotic and eukaryotic diversity, and indications of physiological stress to the microbial community. Artificial neural network (ANN) analysis has been used to examine the relationship between microbial community structure and soil geochemistry. It was hypothesized that (1) soil amendments would cause changes in the structure of the microbial community and carbon content (2) changes in the structure of the microbial community would be vary between the types of amendments, and (3) analysis of the SLB with an artificial neural network (ANN) would distinguish treatment and provide a insight in to the relationship between changes in soil geochemistry and microbial community. Twenty soils samples from different field plots and at different soil horizon depths were analyzed. Biomass as estimated by PLFA analysis, ranged from 1.9 to 265 nmol/g, which corresponded to cell densities of 4.8 x107 to 6.6 x109 cells/g. In the Wall's Farm and Jenkin's Farm samples the microbial biomass decreased with depth. A horizon soils had biomass values of greater or equal to 120 nmol/g, followed by the A2 horizon,(70 to 100 nmol/g) and the weak B horizon at and (40 to 80 nmo/g). The A2 and B horizon samples showed higher relative abundance of mid-chain branched saturates that are indicative of gram positive prokaryotes and actinomycetes. At Well's Farm, the polyunsaturates indicative of eukaryotes were observed at higher abundances. These changes were related to both the prokaryotic and eukaryotic influences in the microbial community in response to the soil amendments. The correlation between

  17. From microbial communities to cells

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1985-01-01

    The eukraotic cell, the unit of structure of protoctists, plants, fungi, and animals, is not at all homologous to prokaryotic cells. Instead the eukaryotic cell is homologous to communities of microorganisms such as those of the sulfuretum. This research is based on the hypothesis that at least four different interacting community members entered the original associations that, when stabilized, led to the emergence of eukaryotic cells. These are: (1) host nucleocytoplasm (thermoplasma like archaebacteria); (2) mitochrondria (paracoccus or bdellovibryo like respiring bacteria; and (3) plastids (cyanobacteria) and undulipodia. Tubulin like protein was found in the free living spirochete Spirochaeta bajacaliforniensis and in several other spirochetes. The amino acid sequence was to see if the spirochete protein is homologous to the tubulin of undulipodial and mitotic spindle microtubules.

  18. Can Transgenic Maize Affect Soil Microbial Communities?

    PubMed Central

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  19. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  20. Microbial communities in acid mine drainage.

    PubMed

    Baker, Brett J; Banfield, Jillian F

    2003-05-01

    The dissolution of sulfide minerals such as pyrite (FeS2), arsenopyrite (FeAsS), chalcopyrite (CuFeS2), sphalerite (ZnS), and marcasite (FeS2) yields hot, sulfuric acid-rich solutions that contain high concentrations of toxic metals. In locations where access of oxidants to sulfide mineral surfaces is increased by mining, the resulting acid mine drainage (AMD) may contaminate surrounding ecosystems. Communities of autotrophic and heterotrophic archaea and bacteria catalyze iron and sulfur oxidation, thus may ultimately determine the rate of release of metals and sulfur to the environment. AMD communities contain fewer prokaryotic lineages than many other environments. However, it is notable that at least two archaeal and eight bacterial divisions have representatives able to thrive under the extreme conditions typical of AMD. AMD communities are characterized by a very limited number of distinct species, probably due to the small number of metabolically beneficial reactions available. The metabolisms that underpin these communities include organoheterotrophy and autotrophic iron and sulfur oxidation. Other metabolic activity is based on anaerobic sulfur oxidation and ferric iron reduction. Evidence for physiological synergy in iron, sulfur, and carbon flow in these communities is reviewed. The microbial and geochemical simplicity of these systems makes them ideal targets for quantitative, genomic-based analyses of microbial ecology and evolution and community function. PMID:19719632

  1. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  2. Modeled carbon respiration of microbial communities with explicit enzyme representation

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Allison, S. D.

    2009-12-01

    Most carbon cycling models do not represent microbial biomass and extracellular enzymes directly. We previously introduced a partial differential equation and agent-based model to investigate dynamics of microbial decomposers and carbon respiration. In this model we explored the respiration rate of a microbial community comprised of producers (microbes that secrete foraging enzymes) and cheaters (microbes that do not secrete enzymes but benefit from them) The inclusion of cheaters reduced the producer population, which in turn reduced the amount of enzyme in the system and slowed the conversion of substrate into product. This limited the overall biomass and reduced the amount of CO2 released by the system. Here we introduce an analogous ordinary differential equation model for well-mixed systems, such as chemostats and aquatic or marine environments. We tested this model against experimental data from communities of Pseudomonas bacteria that produce protease enzymes. We found that the new model matches the experimental data and hypothesize that diffusion would reduce the expected respiration rate in diffusion-limited systems, such as soils or agar plates,. Our models suggest that enzyme producers grow more slowly due to the added energetic burden of enzyme production. Furthermore, mixed cheater/producer communities are less efficient at mineralizing carbon substrates than pure producer populations. Diffusion of enzymes through the system plays a key role in reducing the overall respiration rate. These results have potential implications for soil and aquatic carbon models, suggesting that both microbial biomass and community composition should be explicitly represented. If community composition is ignored, then there could be a systematic overestimation of the carbon respired from the system. Our results emphasize that mechanistic modeling of microbial communities can improve prediction of carbon cycling under varying environmental conditions.

  3. Geological Sources of Hydrogen for Subsurface Microbial Communities

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.

    2008-12-01

    Subsurface microbial communities can be conveniently divided into two general types: heterotrophic communities that rely primarily on input of photosynthetically derived organic matter, and autotrophic communities that rely on inorganic chemical sources of energy. In situ production of H2 has been proposed to support subsurface autotrophic microbial communities within basalts and ultramafic rocks in both subaerial and submarine settings. The extent and activity of such communities, and even their very ability to inhabit subsurface environments, depends largely on the balance between the supply of H2 for metabolic energy and the energetic costs of existence (T. Hoehler, Geobiology, 2004). As a consequence, the capacity for H2 generation in basaltic and ultramafic environments places significant constraints on the distribution and productivity of microbial populations. At present, however, geochemical reactions that might generate H2 in basaltic and ultramafic systems at temperatures sufficiently low to allow life to exist (<~150 ° C) remain very poorly known. I will summarize the currently available experimental data on H2 production during low-temperature alteration of basaltic and ultramfic rocks, including ongoing laboratory studies to refine the chemical reactions responsible for H2 generation. In addition, potential thermodynamic constraints on H2 production will be considered. Overall, the presently available data indicate that H2-based communities are likely to be considerably more productive in basaltic than ultramafic systems.

  4. The dynamic genetic repertoire of microbial communities

    PubMed Central

    Wilmes, Paul; Simmons, Sheri L; Denef, Vincent J; Banfield, Jillian F

    2009-01-01

    Community genomic data have revealed multiple levels of variation between and within microbial consortia. This variation includes large-scale differences in gene content between ecosystems as well as within-population sequence heterogeneity. In the present review, we focus specifically on how fine-scale variation within microbial and viral populations is apparent from community genomic data. A major unresolved question is how much of the observed variation is due to neutral vs. adaptive processes. Limited experimental data hint that some of this fine-scale variation may be in part functionally relevant, whereas sequence-based and modeling analyses suggest that much of it may be neutral. While methods for interpreting population genomic data are still in their infancy, we discuss current interpretations of existing datasets in the light of evolutionary processes and models. Finally, we highlight the importance of virus–host dynamics in generating and shaping within-population diversity. PMID:19054116

  5. Investigating the Response of Microbial Communities to Cyclodextrin

    NASA Astrophysics Data System (ADS)

    Szponar, N.; Slater, G.; Smith, J.

    2009-05-01

    Recent studies have found applications of hydroxypropyl-β-cyclodextrin (HPβCD) to be highly effective in removing DDT from soils in situ. However, the persistence of HPβCD within the soil and its impact on soil microbial communities is still unclear. It has been suggested that cyclodextrin might provide a substrate for microbial communities resulting in changes in the ongoing effectiveness of remediation and/or soil hydraulic properties. The potential exists that stimulation of the soil microbial community may contribute to removal of DDT, along with the solubilization effects normally associated with cyclodextrin treatment. This study investigated the response of soil microbial communities from a site undergoing remediation of DDT with HPβCD through microcosm and bench scale column studies. Phospholipid fatty acid (PLFA) analysis and their natural abundance 13C signatures can be used to identify in situ microbial metabolism of HPβCD. Heterotrophic organisms have PLFA with 13C signatures 3 to 6‰ depleted from their carbon source. Cyclodextrin was found to have a δ13C of -16‰ resulting from its formation via enzymatic degradation of cornstarch. In contrast, soil organic matter, had a predominantly C3 plant derived signature and a δ13C of -25‰. Incorporation of HPβCD by soil microbial communities would therefore cause a shift to a more enriched isotopic value. While microcosm studies demonstrated no noticeable change in biomass and few changes in PLFA distribution, column studies treated with a 10% solution of HPβCD demonstrated an approximate doubling of microbial biomass after 6 weeks of application based on PLFA concentrations. Concurrent changes in PLFA distribution further indicated a response to cyclodextrin. Changes in PLFA concentration and distribution were concurrent with isotopic enrichment of PLFA in treated columns. This isotopic enrichment provided direct evidence for microbial consumption of cyclodextrin. Incorporation of 13C enriched

  6. Metabarcoding of the kombucha microbial community grown in different microenvironments.

    PubMed

    Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O

    2015-12-01

    Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding. PMID:26061774

  7. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats. PMID:19020556

  8. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    EPA Science Inventory

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  9. Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

    SciTech Connect

    van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

    2012-05-01

    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to

  10. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect

    Song, Hyun-Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  11. Response of microbial community composition and function to soil climate change

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak-grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their "life history" envelopes. ?? 2006 Springer Science+Business Media, Inc.

  12. Microbial Communities in Pre-Columbian Coprolites

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Narganes-Storde, Yvonne M.; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A.; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J.

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  13. Microbial communities in pre-columbian coprolites.

    PubMed

    Santiago-Rodriguez, Tasha M; Narganes-Storde, Yvonne M; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an "unaltered" composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  14. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  15. Functional analysis of natural microbial consortia using community proteomics

    SciTech Connect

    Verberkmoes, Nathan C; Denef, Vincent; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    It is widely accepted that microbial communities, not individual microorganisms, are the relevant ecological units, yet what we know about metabolic functioning of microbial communities could be written on a postage stamp. The recent developments in comprehensive molecular methods promise to gain a better understanding of how organisms within communities interact and how communities and their populations evolve. Here we highlight recent advances and insights gathered by the application of proteogenomics to microbial communities. We explore the history of how unrelated fields of microbial ecology, genomics, biological mass spectrometry and informatics converge to the development of a new field of metaproteomics.

  16. Microbial community composition in sediments resists perturbation by nutrient enrichment

    PubMed Central

    Bowen, Jennifer L; Ward, Bess B; Morrison, Hilary G; Hobbie, John E; Valiela, Ivan; Deegan, Linda A; Sogin, Mitchell L

    2011-01-01

    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. PMID:21412346

  17. Metaproteomics of complex microbial communities in biogas plants

    PubMed Central

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-01-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed. PMID:25874383

  18. Microbial community assembly, theory and rare functions.

    PubMed

    Pholchan, Mujalin K; Baptista, Joana de C; Davenport, Russell J; Sloan, William T; Curtis, Thomas P

    2013-01-01

    Views of community assembly have traditionally been based on the contrasting perspectives of the deterministic niche paradigm and stochastic neutral models. This study sought to determine if we could use empirical interventions conceived from a niche and neutral perspective to change the diversity and evenness of the microbial community within a reactor treating wastewater and to see if there was any associated change in the removal of endocrine disrupting compounds (EDCs). The systematic removal of EDCs and micropollutants from biological treatment systems is a major challenge for environmental engineers. We manipulated pairs of bioreactors in an experiment in which "niche" (temporal variation in resource concentration and resource complexity) and "neutral" (community size and immigration) attributes were changed and the effect on the detectable diversity and the removal of steroidal estrogens was evaluated. The effects of manipulations on diversity suggested that both niche and neutral processes are important in community assembly. We found that temporal variation in environmental conditions increased diversity but resource complexity did not. Larger communities had greater diversity but attempting to increase immigration by adding soil had the opposite effect. The effects of the manipulations on EDC removal efficiency were complex. Decreases in diversity, which were associated with a decrease in evenness, were associated with an increase in EDC removal. A simple generalized neutral model (calibrated with parameters typical of wastewater treatment plants) showed that decreases in diversity should lead to the increase in abundance of some ostensibly taxa rare. We conclude that neither niche and neutral perspectives nor the effect of diversity on putative rare functions can be properly understood by naïve qualitative observations. Instead, the relative importance of the key microbial mechanisms must be determined and, ideally, expressed mathematically. PMID

  19. Microbial community assembly, theory and rare functions

    PubMed Central

    Pholchan, Mujalin K.; Baptista, Joana de C.; Davenport, Russell J.; Sloan, William T.; Curtis, Thomas P.

    2013-01-01

    Views of community assembly have traditionally been based on the contrasting perspectives of the deterministic niche paradigm and stochastic neutral models. This study sought to determine if we could use empirical interventions conceived from a niche and neutral perspective to change the diversity and evenness of the microbial community within a reactor treating wastewater and to see if there was any associated change in the removal of endocrine disrupting compounds (EDCs). The systematic removal of EDCs and micropollutants from biological treatment systems is a major challenge for environmental engineers. We manipulated pairs of bioreactors in an experiment in which “niche” (temporal variation in resource concentration and resource complexity) and “neutral” (community size and immigration) attributes were changed and the effect on the detectable diversity and the removal of steroidal estrogens was evaluated. The effects of manipulations on diversity suggested that both niche and neutral processes are important in community assembly. We found that temporal variation in environmental conditions increased diversity but resource complexity did not. Larger communities had greater diversity but attempting to increase immigration by adding soil had the opposite effect. The effects of the manipulations on EDC removal efficiency were complex. Decreases in diversity, which were associated with a decrease in evenness, were associated with an increase in EDC removal. A simple generalized neutral model (calibrated with parameters typical of wastewater treatment plants) showed that decreases in diversity should lead to the increase in abundance of some ostensibly taxa rare. We conclude that neither niche and neutral perspectives nor the effect of diversity on putative rare functions can be properly understood by naïve qualitative observations. Instead, the relative importance of the key microbial mechanisms must be determined and, ideally, expressed mathematically

  20. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  1. Microbial Communities Initiative: Melding Technology, Experimentation, and Theory

    SciTech Connect

    Konopka, Allan

    2009-10-09

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Konopka describes PNNLs Microbial Communities Initiative. The MCI will integrate biological/ecological experimentation, analytical chemistry, and simulation modeling to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities.

  2. Biochar addition impacts soil microbial community in tropical soils

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel

    2014-05-01

    Studies on the effect of biochar on soil microbial activity and community structure in tropical areas are scarce. In this study we report the effect of several types of biochar (sewage sludge biochar, paper mill waste biochar, miscanthus biochar and pinewood biochar) in the soil microbial community of two tropical soils, an Acrisol and an Oxisol. In addition we study the effect of the presence or absence of earthworms in soil microbial community. Soil microbial community was more strongly affected by biochar than by the presence or absence of macrofauna.

  3. Microbial Communities Initiative: Melding Technology, Experimentation, and Theory

    ScienceCinema

    Konopka, Allan

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Konopka describes PNNLs Microbial Communities Initiative. The MCI will integrate biological/ecological experimentation, analytical chemistry, and simulation modeling to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities.

  4. Medusahead: available soil N and microbial communities in native and invasive soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand why medusahead (Taeniatherum caput-medusae) is invasive, we quantified soil N availability and characterized soil microbial communities between native and invasive populations. No consistent differences in soil N mineralization potentials were noted between native medusahead sit...

  5. Antibiotic effects on microbial community characteristics in soils under conservation management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotics (VAs) administered to livestock are introduced to agroecosystems via land application of manure, posing a potential human and environmental health risk. These Antibiotics may adversely affect soil microbial communities. The objectives of this research were to investigate poten...

  6. Environmental controls on microbial community cycling in modern marine stromatolites

    NASA Astrophysics Data System (ADS)

    Bowlin, Emily M.; Klaus, James S.; Foster, Jamie S.; Andres, Miriam S.; Custals, Lillian; Reid, R. Pamela

    2012-07-01

    Living stromatolites on the margins of Exuma Sound, Bahamas, are the only examples of modern stromatolites forming in open marine conditions similar to those that may have existed on Precambrian platforms. Six microbial mat types have previously been documented on the surfaces of stromatolites along the eastern side of Highborne Cay (Schizothrix, Solentia, heterotrophic biofilm, stalked diatom, tube diatom and Phormidium mats). Cycling of these communities create laminae with distinct microstructures. Subsurface laminae thus represent a chronology of former surface mats. The present study documents the effects of environmental factors on surface microbial communities of modern marine stromatolites and identifies potential causes of microbial mat cycling. Mat type and burial state at 43 markers along a stromatolitic reef on the margin of Highborne Cay were monitored over a two-year period (2005-2006). Key environmental parameters (i.e., temperature, light, wind, water chemistry) were also monitored. Results indicated that the composition of stromatolite surface mats and transitions from one mat type to another are controlled by both seasonal and stochastic events. All six stromatolite mat communities at Highborne Cay showed significant correlations with water temperature. Heterotrophic biofilms, Solentia, stalked diatom and Phormidium mats showed positive correlations with temperature, whereas Schizothrix and tube diatom communities showed negative correlations. A significant correlation with light (photosynthetically active radiation, PAR) was detected only for the heterotrophic biofilm community. No significant correlations were found between mat type and the monitored wind intensity data, but field observations indicated that wind-related events such as storms and sand abrasion play important roles in the transitions from one mat type to another. An integrated model of stromatolite mat community cycling is developed that includes both predictable seasonal

  7. Carbon availability structures microbial community composition and function in soil aggregate fractions

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bach, E.; Williams, R.; Howe, A.

    2014-12-01

    Identifying the microbial metabolic pathways that most strongly influence ecosystem carbon (C) cycling requires a deeper understanding of the availability and accessibility of microbial substrates. A first step towards this goal is characterizing the relationships between microbial community function and soil C chemistry in a field context. For this perspective, soil aggregate fractions can be used as model systems that scale between microbe-substrate interactions and ecosystem C cycling and storage. The present study addresses how physicochemical variation among soil aggregate fractions influences the composition and functional potential of C cycling microbial communities. We report variation across soil aggregates using plot scale biological replicates from biofuel agroecosystems (fertilized, reconstructed, tallgrass prairie). Our results suggest that C and nitrogen (N) chemistry significantly differ among aggregate fractions. This leads to variation in microbial community composition, which was better characterized among aggregates than by using the whole soil. In fact by considering soil aggregation, we were able to characterize almost 2000 more taxa than whole soil alone, resulting in 65% greater community richness. Availability of C and N strongly influenced the composition of microbial communities among soil aggregate fractions. The normalized abundance of microbial functional guilds among aggregate fractions correlated with C and N chemistry, as did functional potential, measured by extracellular enzyme activity. Metagenomic results suggest that soil aggregate fractions select for functionally distinct microbial communities, which may significantly influence decomposition and soil C storage. Our study provides support for the premise that integration of soil aggregate chemistry, especially microaggregates that have greater microbial richness and occur at spatial scales relevant to microbial community functioning, may be necessary to understand the role of

  8. Reaction Progress and the Changing Diversity of Chemolithotrophic Microbial Communities

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyd, E.

    2012-12-01

    Is there a correlation between the abundance and diversity of geochemical energy sources and the diversity of chemolithotrophic microbial communities? The available data are suggestive, but not yet conclusive owing to a general lack of models and sampling strategies that integrate microbial, molecular, and geochemical data from microbially dominated ecosystems. While improvements are being made in sampling and analytical strategies, there is an opportunity to examine the underlying thermodynamic framework and generate hypotheses that can lead to quantitate tests of how reaction progress drives microbial diversity. Such quantitative approaches would allow accurate forecasts of the response of microbial communities, the base of all food webs, to environmental change, and development of strategies to deal with shifts in ecosystem function. As a first order consideration, chemolithotrophs require sources of chemical energy, which are provided by oxidation-reduction (redox) reactions that are far from equilibrium. Larger energy supplies can be expected to support larger populations of microbes unless nutrient supply (e.g., phosphate limitation) or other physiological limitations (e.g., thermal limits) are encountered. In geochemical systems, the magnitudes of disequilibria can be evaluated by quantifying how far from equilibrium individual reactions are. As reactions progress, fluctuations in disequilibria can be monitored by explicitly assessing values of reaction-progress variables. Such approaches are commonly used to develop dynamic models of weathering, diagenesis, hydrothermal alteration, and other geochemical processes involving mass transfer. The same framework applied to overall reactions capable of supporting chemolithotrophic populations enables dynamic predictions of changes in the predominant metabolic strategies capable of supporting microbial communities during geochemical processes. These predictions are not limited to changes in microbial biomass and

  9. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the drill hole ~16°C), where petrographic evidence suggested the presence of microbial alteration. Archaeal 16S rRNA genes were amplified, cloned, and twelve clones representing the most abundant groups were sequenced. Eleven out of the twelve clones were 97 to 99% similar to Group I marine Crenarchaeota, while the remaining clone was 95% similar to Euryarchaeota, based on BLAST searches of the GenBank database. Our community-level approach to studying microbes living in volcanic glasses has provided a greater understanding of the microbial communities that potentially alter these materials.

  10. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    PubMed

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level. PMID:26150308

  11. Microbial Communities of the Okinawa Backarc Basin Subvent Biosphere

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; House, C. H.

    2014-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 m. Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 m. Site C0014 is a unique location to study changes in microbial communities with depth, as the hydrothermal system generates a thermally and geochemically restrictive subvent biosphere. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data suggests that Archaea represent a significant proportion of the indigenous community throughout the top 15 m of sediment, where Archaea then abruptly disappear. Furthermore, a deeper classification of Archaeal sequences suggests a transition from a mesophilic community to a potentially thermophilic one, where there is an increasingly stronger signal of Miscellaneous Crenarchaeotic Group (MCG) followed by Terrestrial Hot Spring Crenarchaeotic Group (THSCG). Additionally, there are several horizons in which methanotrophy is likely supported, indicated by peaks in anaerobic methanotrophic Archaea. The cessation of Archaea as well as Chloroflexi, a common marine subsurface bacterial phylum, at approximately 15 meters below seafloor (mbsf) is suggestive of a potential boundary within Site C0014 in which the environmental conditions have become too restrictive

  12. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    PubMed

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  13. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  14. Microbial communities and SOM dynamics along a precipitation gradient

    NASA Astrophysics Data System (ADS)

    Tiemann, Lisa; Billings, Sharon

    2014-05-01

    Many microbial communities are not resistant to changes in their environment, and the subsequently new and structurally distinct communities are not always functionally redundant with their predecessors. As a result, environmental change can lead to long-term changes in microbially-mediated ecosystem processes. More specifically, changes in soil moisture regimes can alter microbial physiology and resource demands, and therefore alter how microbes process soil organic matter (SOM). To better understand how current and future precipitation regimes can influence microbial communities and SOM transformations, we assessed microbial community structure and activity in soils reciprocally transplanted across four sites within a grassland precipitation gradient of 485 to 1003 mm y-1. We show that the soil microbial communities residing at these sites are compositionally distinct from each other, and C mineralization rates and microbial biomass C are highly correlated with contemporary site soil moisture. After sols had been subjected to altered precipitation regimes for1.5 and 2.5 years, microbial community structure shifted. Copiotrophs were more abundant relative to oligotrophs in soils experiencing the largest shifts from their native precipitation regimes, and oligotrophs were more dominant in the soils under the most severe soil moisture stress. In general, microbial community structure, in soils from the driest site, was more resistant to change when subjected to novel precipitation regimes. SOM processing rates were distinct in all transplanted soils from their native controls. These changes were dependent on a significant interaction between the initial microbial community structure and the degree of change in precipitation regime, suggesting the importance of initial microbial community structure as a determinant of future structural trajectories, which can drive SOM transformations. Soils transplanted to drier sites with more variable precipitation exhibited lower

  15. An ecosystem analysis of the activated sludge microbial community.

    PubMed

    Yiannakopoulou, Trissevyene V

    2010-01-01

    This study was undertaken (i) to investigate the interactions of the activated sludge microbial community in a chemostat with the "environment", such as the substrate composition and variations, (ii) to investigate how these interactions affect the quality of the treated effluent and (iii) to determine the limits or applicability conditions to the indicators and to the prediction potential of the treated effluent quality. This work presents (a) the experimental results obtained from a reactor fed municipal wastewater (Data Set2-DS2) concerning the reactor's operating conditions and the microbial community of the sludge (b) comparisons between DS2 and an older Data Set (DS1) obtained when the reactor was fed synthetic substrate, all other experimental conditions being identical, and (c) simulation results and sensitivity analyses of two model runs (R1 and R2, corresponding to DS1 and DS2). The first trophic level (P(1)) of the DS2 microbial community consisted of bacteria, the second trophic level (P(2)) of bacteria-eating protozoa, rotifers and nematodes and the third trophic level (P(3)) of carnivorous protozoa and arthropods. Rotifers were an important constituent of the DS2 microbial community. The DS1 and DS1 communities differed in total size, trophic level sizes and species composition. Correlations between the major microbial groups of DS2 community and either loading rates or effluent quality attributes were generally low, but the correlation of bacteria with SVI and ammonia in the effluent was better. Also, the ratio of rotifers to protozoa in P(2) was correlated to BOD in the effluent. The results of this work indicate that predictions of the treated effluent quality based only on protozoa may not be safe. Sensitivity analysis of R2 run indicate that, when variation in Y and K(d) biokinetic coefficients of the sludge are combined with fluctuations in composition and quality of municipal wastewater entering the reactor, then sufficient significant

  16. Correlative microscopy for phylogenetic and ultrastructural characterization of microbial communities

    PubMed Central

    Knierim, Bernhard; Luef, Birgit; Wilmes, Paul; Webb, Richard I.; Auer, Manfred; Comolli, Luis R.; Banfield, Jillian F.

    2014-01-01

    Transmission electron microscopy (TEM) can provide ultrastructural information for cells in microbial community samples and phylogenetic information can be recovered via molecular surveys. Here we report an approach to link these datasets by coupling fluorescence in situ hybridization (FISH) with either conventional biological or cryogenic TEM. The method could revolutionize understanding of the organization and functioning of microbial communities in natural systems. PMID:23757227

  17. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  18. Soil amendments yield persisting changes in the microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  19. Response of soil microbial communities during changes in land management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of soil microbial communities to restoration following disturbances is poorly understood. We studied the soil microbial communities in a forest disturbance-restoration series comprising a native deciduous forest (DF), conventionally tilled cropland (CT) and mid-succession forest (SF) re...

  20. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  1. Community proteomics of a natural microbial biofilm.

    PubMed

    Ram, Rachna J; Verberkmoes, Nathan C; Thelen, Michael P; Tyson, Gene W; Baker, Brett J; Blake, Robert C; Shah, Manesh; Hettich, Robert L; Banfield, Jillian F

    2005-06-24

    Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation. PMID:15879173

  2. Community Proteomics of a Natural Microbial Biofilm

    SciTech Connect

    Ram, Rachna J.; Verberkmoes, Nathan C; Thelen, Michael P.; Tyson, Gene W.; Baker, Brett J.; Shah, Manesh B; BlakeII, Robert C.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2005-06-01

    Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation.

  3. Characterization Of Sponge-Associated Microbial Communities

    NASA Astrophysics Data System (ADS)

    Bailey, K. L.; Weisz, J.; Lindquist, N.

    2004-12-01

    To more fully understand the endosymbiotic relationship between sponges and microorganisms, it is necessary to characterize the microbial communities of the sponges. In this study, DNA was extracted from each of three individual sponges from four sponge species collected in a shallow mangrove cut in Florida Bay near Key Largo, Florida. A fragment of the 16S rRNA gene from sponge-associated bacteria was amplified using the polymerase chain reaction (PCR). The resulting PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE), which separates DNA fragments based on their sequence differences. Some 16S sequences appeared to be shared by each of the four sponge species, while other fragments found in only particular species likely represent unique bacterial strains that play a role in sponge nutrition.

  4. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe

    PubMed Central

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J.; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L. M.; Krüger, Dirk

    2014-01-01

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function. PMID:25388562

  5. Controls on soil microbial community stability under climate change

    PubMed Central

    de Vries, Franciska T.; Shade, Ashley

    2013-01-01

    Soil microbial communities are intricately linked to ecosystem functioning because they play important roles in carbon and nitrogen cycling. Still, we know little about how soil microbial communities will be affected by disturbances expected with climate change. This is a significant gap in understanding, as the stability of microbial communities, defined as a community's ability to resist and recover from disturbances, likely has consequences for ecosystem function. Here, we propose a framework for predicting a community's response to climate change, based on specific functional traits present in the community, the relative dominance of r- and K-strategists, and the soil environment. We hypothesize that the relative abundance of r- and K-strategists will inform about a community's resistance and resilience to climate change associated disturbances. We also propose that other factors specific to soils, such as moisture content and the presence of plants, may enhance a community's resilience. For example, recent evidence suggests microbial grazers, resource availability, and plant roots each impact on microbial community stability. We explore these hypotheses by offering three vignettes of published data that we re-analyzed. Our results show that community measures of the relative abundance of r- and K-strategists, as well as environmental properties like resource availability and the abundance and diversity of higher trophic levels, can contribute to explaining the response of microbial community composition to climate change-related disturbances. However, further investigation and experimental validation is necessary to directly test these hypotheses across a wide range of soil ecosystems. PMID:24032030

  6. Redox-driven regulation of microbial community morphogenesis

    PubMed Central

    Okegbe, Chinweike; Price-Whelan, Alexa; Dietrich, Lars E.P.

    2014-01-01

    During growth on surfaces, diverse microbial communities display topographies with captivating patterns. The quality and quantity of matrix excreted by resident cells play major roles in determining community architecture. Two current publications indicate that the cellular redox state and respiratory activity are important parameters affecting matrix output in the divergent bacteria Pseudomonas aeruginosa and Bacillus subtilis. These and related studies have identified regulatory proteins with the potential to respond to changes in redox state and respiratory electron transport and modulate the activity of the signal transduction pathways that control matrix production. These developments hint at the critical mechanistic links between environmental sensing and community behavior, and provide an exciting new context within which to interpret the molecular details of biofilm structure determination. PMID:24607644

  7. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  8. Alpine Microbial Community Responses to Summer Warming

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.

    2011-12-01

    Remote alpine ecosystems of the western US are vulnerable to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to novel temperature regimes. We asked whether terrestrial microbes, specifically nitrifiers that may contribute to already high lake and stream NO3- concentrations, may be responding to changes in important controls of community development and activity associated with a changing climate, namely temperature and moisture. In August 2010 we sampled three soils from the Loch Vale Watershed in Rocky Mountain National Park which fell along a gradient of succession commonly represented in deglaciated alpine catchments. These included well-developed meadow soils, poorly vegetated talus substrate, and newly-exposed glacial outwash. Outwash, talus, and meadow samples were all N-rich and contained NH4-N concentrations ~7 times higher than NO3-N. Soils were incubated for 45 days at 2.5, 10, and 25oC and three moisture levels based on initial field conditions. Nitrifier concentrations were greatest in outwash, intermediate in talus, and lowest in meadow samples. Bacterial nitrifier abundance greatly surpassed archaeal nitrifier levels. Net nitrification was also greatest in outwash, followed by meadow and talus respectively. Moisture, rather than temperature, was a dominant control over both nitrifier abundance and activity. Linking the influence of temperature and moisture on alpine microbial communities will provide insight into control thresholds, optima, and synergistic interactions. This research is part of a larger study of controls on headwater stream and lake NO3-. Characterizing microbial NO3- production in the alpine will help us evaluate the importance of biological, as opposed to physical, sources of stream NO3-. It will also inform our ability to forecast and mitigate consequences of anthropogenic drivers of change on these systems.

  9. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.

    PubMed

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Wu, Angela; Yamanaka, Yuko; Nealson, Kenneth H; Bretschger, Orianna

    2013-12-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as "biocatalysts" to recover energy from organic matter in the form of electricity. MFCs have been explored as possible energy neutral wastewater treatment systems; however, fundamental knowledge is still required about how MFC-associated microbial communities are affected by different operational conditions and can be optimized for accelerated wastewater treatment rates. In this study, we explored how electricity-generating microbial biofilms were established at MFC anodes and responded to three different operational conditions during wastewater treatment: 1) MFC operation using a 750 Ω external resistor (0.3 mA current production); 2) set-potential (SP) operation with the anode electrode potentiostatically controlled to +100 mV vs SHE (4.0 mA current production); and 3) open circuit (OC) operation (zero current generation). For all reactors, primary clarifier effluent collected from a municipal wastewater plant was used as the sole carbon and microbial source. Batch operation demonstrated nearly complete organic matter consumption after a residence time of 8-12 days for the MFC condition, 4-6 days for the SP condition, and 15-20 days for the OC condition. These results indicate that higher current generation accelerates organic matter degradation during MFC wastewater treatment. The microbial community analysis was conducted for the three reactors using 16S rRNA gene sequencing. Although the inoculated wastewater was dominated by members of Epsilonproteobacteria, Gammaproteobacteria, and Bacteroidetes species, the electricity-generating biofilms in MFC and SP reactors were dominated by Deltaproteobacteria and Bacteroidetes. Within Deltaproteobacteria, phylotypes classified to family Desulfobulbaceae and Geobacteraceae increased significantly under the SP condition with higher current generation; however those phylotypes were not found in the OC reactor. These analyses suggest that species

  10. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. PMID:26397455

  11. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    PubMed

    Xu, Zhuofei; Hansen, Martin Asser; Hansen, Lars H; Jacquiod, Samuel; Sørensen, Søren J

    2014-01-01

    As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment) and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function. PMID:24691166

  12. Bioinformatic Approaches Reveal Metagenomic Characterization of Soil Microbial Community

    PubMed Central

    Xu, Zhuofei; Hansen, Martin Asser; Hansen, Lars H.; Jacquiod, Samuel; Sørensen, Søren J.

    2014-01-01

    As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment) and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function. PMID:24691166

  13. Microbial Community and Chemical Characteristics of Swine Manure during Maturation.

    PubMed

    Trabue, Steven L; Kerr, Brian J; Bearson, Bradley L; Hur, Manhoi; Parkin, Timothy; Wurtele, Eve S; Ziemer, Cherrie J

    2016-07-01

    Swine diet formulations have the potential to lower animal emissions, including odor and ammonia (NH). The purpose of this study was to determine the impact of manure storage duration on manure chemical and microbial properties in swine feeding trials. Three groups of 12 pigs were fed a standard corn-soybean meal diet over a 13-wk period. Urine and feces were collected at each feeding and transferred to 12 manure storage tanks. Manure chemical characteristics and headspace gas concentrations were monitored for NH, hydrogen sulfide (HS), volatile fatty acids, phenols, and indoles. Microbial analysis of the stored manure included plate counts, community structure (denaturing gradient gel electrophoresis), and metabolic function (Biolog). All odorants in manure and headspace gas concentrations were significantly ( < 0.01) correlated for length of storage using quadratic equations, peaking after Week 5 for all headspace gases and most manure chemical characteristics. Microbial community structure and metabolic utilization patterns showed continued change throughout the 13-wk trial. Denaturing gradient gel electrophoresis species diversity patterns declined significantly ( < 0.01) with time as substrate utilization declined for sugars and certain amino acids, but functionality increased in the utilization of short chain fatty acids as levels of these compounds increased in manure. Studies to assess the effect of swine diet formulations on manure emissions for odor need to be conducted for a minimum of 5 wk. Efforts to determine the impact of diets on greenhouse gas emissions will require longer periods of study (>13 wk). PMID:27380061

  14. Electrosynthesis of Commodity Chemicals by an Autotrophic Microbial Community

    PubMed Central

    Marshall, Christopher W.; Ross, Daniel E.; Fichot, Erin B.; Norman, R. Sean

    2012-01-01

    A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at −590 mV versus the standard hydrogen electrode (SHE) with CO2 as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day−1 (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day−1 (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day−1 (versus 0.045 mM day−1 abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of −460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility. PMID:23001672

  15. Proteogenomic approaches for the molecular characterization of natural microbial communities.

    PubMed

    Banfield, Jillian F; Verberkmoes, Nathan C; Hettich, Robert L; Thelen, Michael P

    2005-01-01

    genetic potential of the associated populations. Thus, it is necessary to develop bioinformatics approaches to generate relatively comprehensive gene inventories for each organism type. These inventories are critical for expression and functional analyses. In proteomic studies, for example, peptides that differ from those predicted from gene sequences can be measured, but they generally cannot be identified by database matching, even if the difference is only a single amino acid residue. Furthermore, many of the identified proteins have no known function. We propose that these challenges can be addressed by development of proteogenomic, biochemical, and geochemical methods that will be initially deployed in a simple, natural model ecosystem. The resulting approach should be broadly applicable and will enhance the utility and significance of genomic data from isolates and consortia for study of organisms in many habitats. Solutions draining pyrite-rich deposits are referred to as acid mine drainage (AMD). AMD is a very prevalent, international environmental problem associated with energy and metal resources. The biological-mineralogical interactions that define these systems can be harnessed for energy-efficient metal recovery and removal of sulfur from coal. The detailed understanding of microbial ecology and ecosystem dynamics resulting from the proposed work will provide a scientific foundation for dealing with the environmental challenges and technological opportunities, and yield new methods for analysis of more complex natural communities. PMID:16402891

  16. Proteogenomic Approaches for the Molecular Characterization of Natural Microbial Communities

    SciTech Connect

    Banfield, Jillian F.; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Thelen, Michael P.

    2005-01-01

    potential of the associated populations. Thus, it is necessary to develop bioinformatics approaches to generate relatively comprehensive gene inventories for each organism type. These inventories are critical for expression and functional analyses. In proteomic studies, for example, peptides that differ from those predicted from gene sequences can be measured, but they generally cannot be identified by database matching, even if the difference is only a single amino acid residue. Furthermore, many of the identified proteins have no known function. We propose that these challenges can be addressed by development of proteogenomic, biochemical, and geochemical methods that will be initially deployed in a simple, natural model ecosystem. The resulting approach should be broadly applicable and will enhance the utility and significance of genomic data from isolates and consortia for study of organisms in many habitats. Solutions draining pyrite-rich deposits are referred to as acid mine drainage (AMD). AMD is a very prevalent, international environmental problem associated with energy and metal resources. The biological-mineralogical interactions that define these systems can be harnessed for energy-efficient metal recovery and removal of sulfur from coal. The detailed understanding of microbial ecology and ecosystem dynamics resulting from the proposed work will provide a scientific foundation for dealing with the environmental challenges and technological opportunities, and yield new methods for analysis of more complex natural communities.

  17. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia)

    PubMed Central

    2014-01-01

    Background Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Results Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. Conclusions In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed. PMID:25563397

  18. Microbial ribonucleases (RNases): production and application potential.

    PubMed

    Hameş, E Esin; Demir, Tuğçe

    2015-12-01

    Ribonuclease (RNase) is hydrolytic enzyme that catalyzes the cleavage of phosphodiester bonds in RNA. RNases play an important role in the metabolism of cellular RNAs, such as mRNA and rRNA or tRNA maturation. Besides their cellular roles, RNases possess biological activity, cell stimulating properties, cytotoxicity and genotoxicity. Cytotoxic effect of particular microbial RNases was comparable to that of animal derived counterparts. In this respect, microbial RNases have a therapeutic potential as anti-tumor drugs. The significant development of DNA vaccines and the progress of gene therapy trials increased the need for RNases in downstream processes. In addition, RNases are used in different fields, such as food industry for single cell protein preparations, and in some molecular biological studies for the synthesis of specific nucleotides, identifying RNA metabolism and the relationship between protein structure and function. In some cases, the use of bovine or other animal-derived RNases have increased the difficulties due to the safety and regulatory issues. Microbial RNases have promising potential mainly for pharmaceutical purposes as well as downstream processing. Therefore, an effort has been given to determination of optimum fermentation conditions to maximize RNase production from different bacterial and fungal producers. Also immobilization or strain development experiments have been carried out. PMID:26433394

  19. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    PubMed Central

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  20. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    PubMed

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  1. Microbial Diversity and Potential Pathogens in Ornamental Fish Aquarium Water

    PubMed Central

    Smith, Katherine F.; Schmidt, Victor; Rosen, Gail E.; Amaral-Zettler, Linda

    2012-01-01

    Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species. PMID:22970112

  2. Microbial diversity and potential pathogens in ornamental fish aquarium water.

    PubMed

    Smith, Katherine F; Schmidt, Victor; Rosen, Gail E; Amaral-Zettler, Linda

    2012-01-01

    Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species. PMID:22970112

  3. Comparative Metagenomics of Freshwater Microbial Communities

    SciTech Connect

    Hemme, Chris; Deng, Ye; Tu, Qichao; Fields, Matthew; Gentry, Terry; Wu, Liyou; Tringe, Susannah; Watson, David; He, Zhili; Hazen, Terry; Tiedje, James; Rubin, Eddy; Zhou, Jizhong

    2010-05-17

    Previous analyses of a microbial metagenome from uranium and nitric-acid contaminated groundwater (FW106) showed significant environmental effects resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biodiversity, accumulation of toxin resistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To better understand these results in an ecological context, a second metagenome from a pristine groundwater system located along the same geological strike was sequenced and analyzed (FW301). It is hypothesized that FW301 approximates the ancestral FW106 community based on phylogenetic profiles and common geological parameters; however, even if is not the case, the datasets still permit comparisons between healthy and stressed groundwater ecosystems. Complex carbohydrate metabolism has been almost entirely lost in the stressed ecosystem. In contrast, the pristine system encodes a wide diversity of complex carbohydrate metabolism systems, suggesting that carbon turnover is very rapid and less leaky in the healthy groundwater system. FW301 encodes many (~;;160+) carbon monoxide dehydrogenase genes while FW106 encodes none. This result suggests that the community is frequently exposed to oxygen from aerated rainwater percolating into the subsurface, with a resulting high rate of carbon metabolism and CO production. When oxygen levels fall, the CO then serves as a major carbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly acetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for energy production. FW301 encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy production in the healthy groundwater community. Overall

  4. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  5. Adaptation of Aquatic Microbial Communities to Quaternary Ammonium Compounds

    PubMed Central

    Ventullo, Roy M.; Larson, Robert J.

    1986-01-01

    The effects of long-chain (C12 to C18) quaternary ammonium compounds (QACs) on the density, heterotrophic activity, and biodegradation capabilities of heterotrophic bacteria were examined in situ in a lake ecosystem. Monoalkyl and dialkyl substituted QACs were tested over a range of concentrations (0.001 to 10 mg/liter) in both acute (3 h) and chronic (21 day) exposures. In general, none of the QACs tested had significant adverse effects on bacterial densities in either acute or chronic studies. However, significant decreases in bacterial heterotrophic activity were noted in acute studies at QAC concentrations from 0.1 to 10 mg/liter. Chronic exposure of lake microbial communities to a specific monoalkyl QAC resulted in an adaptive response and recovery of heterotrophic activity. No-observable-effect level in the adapted populations was >10 mg/liter. Chronic exposure also resulted in significant increases in the number and activity of bacteria capable of biodegrading the material. The increase in biodegradation capability was observed at low (microgram per liter) concentrations which are approximately the same as realistic environmental levels. In general, our studies indicated that exposure of lake microbial communities to QACs results in the development of adapted communities which are less sensitive to potential toxic effects and more active in the biodegradation of these materials. PMID:16346991

  6. Denitrification and the denitrifier community in coastal microbial mats.

    PubMed

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J

    2015-03-01

    Denitrification was measured in three structurally different coastal microbial mats by using the stable isotope technique. The composition of the denitrifying community was determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries and the GeoChip. The highest potential rate of denitrification (7.0 ± 1.0 mmol N m(-2) d(-1)) was observed during summer at station 1 (supra-littoral). The rates of denitrification were much lower in the stations 2 (marine) and 3 (intermediate) (respectively 0.1 ± 0.05 and 0.7 ± 0.2 mmol N m(-2) d(-1)) and showed less seasonality when compared to station 1. The denitrifying community at station 1 was also more diverse than that at station 2 and 3, which were more similar to each other than either of these stations to station 1. In all three stations, the diversity of both nirS and nirK denitrifiers was higher in summer when compared to winter. The location along the tidal gradient seems to determine the composition, diversity and activity of the denitrifier community, which may be driven by salinity, nitrate/nitrite and organic carbon. Both nirS and nirK denitrifiers are equally present and therefore they are likely to play a role in the denitrification of the microbial mats studied. PMID:25764561

  7. Temporal variation in the nitrogen uptake competition between plant community and soil microbial community

    NASA Astrophysics Data System (ADS)

    Legay, N.; Lavorel, S.; Personeni, E.; Bataillé, M. P.; Robson, T. M.; Clément, J. C.

    2012-04-01

    1. Subalpine grasslands are characterized by important seasonal variations and like in others cold environments, the existence of seasonal variations of nitrogen (N) dynamics is strongly plausible. It has been shown that plants and microbes were in competition for nitrogen acquisition mainly during the growing season and particularly at plant biomass peak. During snowmelt, plants could benefit from a decrease in competition potential by microbes given a greater N uptake and freeze-thaw cycles restricting microbial growth. In managed grasslands, these probable interactions are furthermore influenced by recent changes in management, and associated modifications in plant and microbial communities. A previous isotope tracing experiment during the biomass peak suggested that in more intensely managed grasslands, plants exerted a greater control over N cycling than microorganisms, and that soil N availability was stimulated by a greater nitrogen uptake by plants and microbes allowing nutrients to be more readily returned to the soil. 2. A pulse of 15N was added to estimate if the dynamics of N uptake between plants and microbes observed at the biomass peak was applicable at snowmelt. We also asked if the modifications of N dynamics observed depend on management activities across four different grassland types representing decreasing management intensities, from formerly cultivated terraces, either mown or only lightly grazed to unterraced permanent grasslands, either mown or only very lightly grazed. 3. In all grasslands, N pools of aboveground plants were smaller in May than in July while root N pools were greater, and the intrinsic plant uptake was 2 at 5 times weaker in May. N microbial pools were higher in May that in July, while microbial N uptake was 10 to 100 times smaller during snowmelt than at the biomass peak. In spite of the fact that microbial N pools were still larger than the plant N pool, in terms of plants vs microbes competition for N, a microbe N

  8. Mangrove succession enriches the sediment microbial community in South China

    PubMed Central

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  9. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  10. Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities

    PubMed Central

    Song, Hyun-Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-01-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community's functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities. PMID:26648912

  11. Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China.

    PubMed

    Zhang, Fan; She, Yue Hui; Ma, Sha Sha; Hu, Ji Ming; Banat, Ibrahim M; Hou, Du Jie

    2010-12-01

    Microbial plugging, a microbial enhancement of oil recovery (MEOR) technique, has been applied in a candidate oil reservoir of Daqing Oil Field (China). The goal of this study is to monitor the survival of injected bacteria and reveal the response of microbial communities in field trial of microbial plugging through injection of selected microbial culture broth and nutrients. Culture-dependent enrichment and culture-independent 16S rDNA clone library methods were used. The results show that it was easy to activate targeted biopolymer-producing bacteria in a laboratory environment, and it was difficult for injected exogenous bacteria to survive. In addition, microbial communities in the oil reservoir also changed before and after the field trial. However, microbial communities, activated by fermentative medium for biopolymer-producing bacteria, appeared to show greater differences in the laboratory than in the natural reservoir. It was concluded that microbial populations monitoring was important to MEOR; results of response of microbial communities could provide a guide for the future field trials. PMID:20803140

  12. Marine microbial community dynamics and their ecological interpretation.

    PubMed

    Fuhrman, Jed A; Cram, Jacob A; Needham, David M

    2015-03-01

    Recent advances in studying the dynamics of marine microbial communities have shown that the composition of these communities follows predictable patterns and involves complex network interactions, which shed light on the underlying processes regulating these globally important organisms. Such 'holistic' (or organism- and system-based) studies of these communities complement popular reductionist, often culture-based, approaches for understanding organism function one gene or protein at a time. In this Review, we summarize our current understanding of marine microbial community dynamics at various scales, from hours to decades. We also explain how the data illustrate community resilience and seasonality, and reveal interactions among microorganisms. PMID:25659323

  13. Characterization of chlorinated and chloraminated drinking water microbial communities in a distribution system simulator using pyrosequencing data analysis

    EPA Science Inventory

    The molecular analysis of drinking water microbial communities has focused primarily on 16S rRNA gene sequence analysis. Since this approach provides limited information on function potential of microbial communities, analysis of whole-metagenome pyrosequencing data was used to...

  14. Microbial community dynamics alleviate stoichiometric constraints during litter decay

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-01-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  15. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  16. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  17. The gastric microbial community, Helicobacter pylori colonization, and disease

    PubMed Central

    Martin, Miriam E; Solnick, Jay V

    2014-01-01

    Long thought to be a sterile habitat, the stomach contains a diverse and unique community of bacteria. One particular inhabitant, Helicobacter pylori, colonizes half of the world’s human population and establishes a decades-long infection that can be asymptomatic, pathogenic, or even beneficial for the host. Many host and bacterial factors are known to influence an individual’s risk of gastric disease, but another potentially important determinant has recently come to light: the host microbiota. Although it is unclear to what extent H. pylori infection perturbs the established gastric microbial community, and H. pylori colonization seems generally resistant to disturbances in the host microbiota, it can modulate H. pylori pathogenicity. Interactions between H. pylori and bacteria at non-gastric sites are likely indirect—via programming of the pro-inflammatory vs. regulatory T lymphocytes—which may have a significant impact on human health. PMID:24642475

  18. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  19. Spatial variation in microbial community structure, richness, and diversity in an alluvial aquifer.

    PubMed

    Medihala, P G; Lawrence, J R; Swerhone, G D W; Korber, D R

    2012-09-01

    Relatively little is known regarding the spatial variability of microbial communities in aquifers where well fouling is an issue. In this study 2 water wells were installed in an alluvial aquifer located adjacent to the North Saskatchewan River and an associated piezometer network developed to facilitate the study of microbial community structure, richness, and diversity. Carbon utilization data analysis revealed reduced microbial activity in waters collected close to the wells. Functional PCR and quantitative PCR analysis indicated spatial variability in the potential for iron-, sulphate-, and nitrate-reducing activity at all locations in the aquifer. Denaturing gradient gel electrophoresis analysis of aquifer water samples using principal components analyses indicated that the microbial community composition was spatially variable, and denaturing gradient gel electrophoresis sequence analysis revealed that bacteria belonging to the genera Acidovorax , Rhodobacter , and Sulfuricurvum were common throughout the aquifer. Shannon's richness (H') and Pielou's evenness (J') indices revealed a varied microbial diversity (H' = 1.488-2.274) and an even distribution of microbial communities within the aquifer (J' = 0.811-0.917). Overall, these analyses revealed that the aquifer's microbial community varied spatially in terms of composition, richness, and metabolic activity. Such information may facilitate the diagnosis, prevention, and management of fouling. PMID:22913282

  20. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    PubMed

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M; Gunsch, Claudia K

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  1. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A

    PubMed Central

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M.

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  2. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis

    PubMed Central

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V.; Garcia-Trejo, Juan F.; Guevara-Gonzalez, Ramon G.

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the “Omic” technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. “Omic” technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current “Omic” tools to characterize the microbial community in aquaponic systems. PMID:26509157

  3. Integrating ecological and engineering concepts of resilience in microbial communities

    DOE PAGESBeta

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less

  4. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  5. Which Microbial Communities Are Present? Sequence-Based Metagenomics

    NASA Astrophysics Data System (ADS)

    Caffrey, Sean M.

    The use of metagenomic methods that directly sequence environmental samples has revealed the extraordinary microbial diversity missed by traditional culture-based methodologies. Therefore, to develop a complete and representative model of an environment's microbial community and activities, metagenomic analysis is an essential tool.

  6. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  7. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    SciTech Connect

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  8. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neill, K.; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  9. Microbial community transitions across the deep sediment-basement interface

    NASA Astrophysics Data System (ADS)

    Labonté, J.; Lever, M. A.; Orcutt, B.

    2015-12-01

    Previous studies of microbial abundance and geochemistry in deep marine sediments indicate a stimulation of microbial activity near the sediment-basement interface; yet, the extent to which microbial communities in bottom sediments and underlying crustal habitats interact is unclear. We conducted tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement samples to try to identify patterns in microbial community shifts across sediment-basement interfaces, focusing on samples from the subsurface of the Juan de Fuca Ridge flank (IODP Expedition 327). Our results demonstrate that sediment and the basaltic crust harbor microbial communities that are phylogenetically connected, but the eveness is characteristic of the environment. We will discuss the microbial community transitions that occur horizontally along fluid flow pathways and vertically across the sediment basement interface, as well as the possible implications regarding the controls of microbial community composition along deep sediment-basement interfaces in hydrothermal systems. We will also highlight efforts to overcome sample contamination in crustal subsurface samples.

  10. Effect of warming and drought on grassland microbial communities.

    PubMed

    Sheik, Cody S; Beasley, William Howard; Elshahed, Mostafa S; Zhou, Xuhui; Luo, Yiqi; Krumholz, Lee R

    2011-10-01

    The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40-150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50-80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations. PMID:21451582

  11. The viability of native microbial communities in martian environment (model)

    NASA Astrophysics Data System (ADS)

    Vorobyova, Elena; Cheptcov, Vladimir; Pavlov, Anatolyi; Vdovina, Mariya; Lomasov, Vladimir

    For today the important direction in astrobiology is the experimental simulation of extraterrestrial habitats with the assessment of survivability of microorganisms in such conditions. A new task is to investigate the resistance of native microbial ecosystems which are well adapted to the environment and develop unique protection mechanisms that enable to ensure biosphere formation. The purpose of this research was to study the viability of microorganisms as well as viability of native microbial communities of arid soils and permafrost under stress conditions simulating space environment and martian regolith environment, estimation of duration of Earth like life in the Martian soil. The experimental data obtained give the proof of the preservation of high population density, biodiversity, and reproduction activity under favorable conditions in the Earth analogues of Martian soil - arid soils (Deserts of Israel and Morocco) and permafrost (East Siberia, Antarctica), after the treatment of samples by ionizing radiation dose up to 100 kGy at the pressure of 1 torr, temperature (- 50oC) and in the presence of perchlorate (5%). It was shown that in simulated conditions close to the parameters of the Martian regolith, the diversity of natural bacterial communities was not decreased, and in some cases the activation of some bacterial populations occurred in situ. Our results allow suggesting that microbial communities like those that inhabit arid and permafrost ecosystems on the Earth, can survive at least 500 thousand years under conditions of near surface layer of the Martian regolith. Extrapolation of the data according to the intensity of ionizing radiation to the open space conditions allows evaluating the potential lifespan of cells inside meteorites as 20-50 thousand years at least. In this work new experimental data have been obtained confirming the occurrence of liquid water and the formation of wet soil layer due to sublimation of ice when the temperature of the

  12. A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens

    PubMed Central

    Zozaya-Valdes, Enrique; Egan, Suhelen; Thomas, Torsten

    2015-01-01

    Microorganisms are increasingly being recognized as the causative agents in the diseases of marine higher organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a common, temperate red macroalga, which suffers from a bleaching disease. Two bacterial strains, Nautella italica R11 and Phaeobacter gallaeciensis LSS9, have been shown in vitro to cause bleaching symptoms, but previous work has failed to detect them during a natural bleaching event. To provide a link between in vitro observations and natural occurrences of the disease, we employ here deep-sequencing of the 16S rRNA gene to comprehensively analyze the community composition of healthy and diseased D. pulchra samples from two separate locations. We observed operational taxonomic units (OTUs) with 100% identity and coverage to the 16S RNA gene sequence of both in vitro pathogens, but only the OTU with similarity to strain LSS9 showed a statistically significant higher abundance in diseased samples. Our analysis also reveals the existence of other bacterial groups within the families Rhodobacteraceae and Flavobacteriaceae that strongly contribute to difference between diseased and healthy samples and thus these groups potentially contain novel macroalgal pathogens and/or saprophytes. Together our results provide evidence for the ecological relevance of one kind of in vitro pathogen, but also highlight the possibility that multiple opportunistic pathogens are involved in the bleaching disease of D. pulchra. PMID:25759688

  13. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  14. Community Analysis of Dynamic Microbial Mat Communities from Actively Erupting Seamounts (Invited)

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B.; Moyer, C. L.

    2009-12-01

    The actively erupting deep-sea volcanoes NW Rota-1 and W Mata have multiple diffuse low-temperature (Tmax= 20-30 degrees) vent sites which harbor dense populations of microbial mat communities driven by chemoautotrophy. These microbial mats were often composed of white filamentous bacteria growing in close proximity to focused hydrothermal flow. Eight microbial mats were sampled from discrete hydrothermal vents on NW Rota-1 and W Mata volcanoes in 2009. The microbial mat communities were analyzed with quantitative PCR (Q-PCR) and terminal-restriction fragment length polymorphism (T-RFLP) community fingerprinting. All of the sampled microbial mats were dominated by the class Epsilonproteobacteria. The microbial mat at Iceberg Vent contained 13.5% Archaea, while all other microbial mats contained less than 1% Archaea. Bacterial community fingerprints from NW Rota-1 and W Mata formed distinct clusters that were well separated from clusters formed by hydrothermal communities from Axial and Eifuku Seamounts that were also dominated by Epsilonproteobacteria. Iceberg vent communities from NW Rota-1 have transitioned from being dominated by Caminibacter phylotypes to Sulfuimonas group phylotypes since 2004. These data suggest that microbial communities found on actively erupting volcanoes are geographically distinct and provide a natural laboratory to study microbial colonization and community succession at hydrothermal systems.

  15. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    PubMed Central

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  16. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    PubMed

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  17. The Influence of Ecological Isolation on the Structural and Functional Stability of Complex Microbial Communities

    NASA Technical Reports Server (NTRS)

    Franklin, R. B.; Garland, J. L.; Mills, A. L.

    2005-01-01

    To help understand how the behavior of microorganisms and microbial communities in insular space habitats may differ from the behavior of these groups on Earth, long-term incubations (100+ days) were conducting using wastewater bioreactors (batch fed) designed to mimic "closed" and "open" ecological systems. The issue of immigration was considered, and the goal of the research was to determine whether the stability of microbial communities in space is reduced due to their prolonged isolation. Bioreactors were established by inoculating flasks of sterile synthetic wastewater with the microbial community obtained from a local treatment facility; each day, one-third of the medium in the flask was replaced with an equal volume of sterile artificial wastewater. Flasks were divided into two treatments: "closed" and "open" to recruitment of additional microorganisms. "Closed" flasks were maintained as described above, while the medium used to feed the "open" flasks was supplemented daily with a small amount of raw sewage (which provided a continuous source of new potential community members). Significant differences in microbial community structure and function developed in the two sets of communities, and the results suggest that the open community was more stable and better able to adjust to changing environmental conditions. Each community's resistance to environmental (temperature fluctuations) and biological stresses (starvation and invasion by an opportunistic pathogen Pseudomonas aeruginosa) was monitored. Experiments were also conducted to determine whether the effect of isolation changes depending on the microbial communities' initial diversity or composition; communities with a low(er) initial diversity were less stable. Overall, the results indicate that isolation will be an important factor influencing the activity of microbial communities on board spacecraft. A possible way of mitigating these effects would be to include communities with high initial

  18. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, Jeffrey S.; Schmidt-Küntzel, Anne; Nghikembua, Matti; Maul, Jude E.; Marker, Laurie

    2016-03-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  19. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, J. S.; Schmidt-Küntzel, A.; Nghikembua, M.; Maul, J. E.; Marker, L.

    2015-12-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  20. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based. PMID:27401925

  1. Defining the normal core microbiome of conjunctival microbial communities.

    PubMed

    Huang, Y; Yang, B; Li, W

    2016-07-01

    Bacterial ocular infections are common. Traditional culture and molecular biological methods have obvious limitations to identify the conjunctival microbiota, while metagenomic studies can avoid the defects of these methods. We used the Illumina high-throughput sequencing technology (MiSeq Illumina Sequencing Platform) to sequence the 16S rDNA V3-V4 hypervariable region of all bacteria in conjunctival swab samples. The operational taxonomic units were obtained from the sequences. The bioinformatic analyses of taxonomy, abundance and alpha diversity were performed. A total of 840 373 high-quality sequencing reads were generated from 31 conjunctival samples. The number of the species operational taxonomic units ranged from 159 to 2042, indicating high microbial diversity. The combined bacterial community was classified into 25 phyla and 526 distinct genera. At the genus level, Corynebacterium (28.22%), Pseudomonas (26.75%), Staphylococcus (5.28%), Acinetobacter (4.74%), Streptococcus (2.85%), Millisia (2.16%), Anaerococcus (1.86%), Finegoldia (1.68%), Simonsiella (1.48%) and Veillonella (1.00%) accounted for over 76% of the microbial community, possibly representing the core genera in normal conjunctival microbiota. The composition and diversity of microbiota in the normal adult human conjunctiva were characterized using high-throughput sequencing. A framework for investigating potential roles played by the diverse microbiota in disease related with the ocular surface was provided. PMID:27102141

  2. Similar Microbial Communities Found on Two Distant Seafloor Basalts

    PubMed Central

    Singer, Esther; Chong, Lauren S.; Heidelberg, John F.; Edwards, Katrina J.

    2015-01-01

    The oceanic crust forms two thirds of the Earth’s surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō’ihi Seamount, Hawai’i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō’ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. PMID:26733957

  3. Similar Microbial Communities Found on Two Distant Seafloor Basalts.

    PubMed

    Singer, Esther; Chong, Lauren S; Heidelberg, John F; Edwards, Katrina J

    2015-01-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. PMID:26733957

  4. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  5. Microbial Community Succession During Lactate Amendment of Chromium Contaminated Groundwater Reveals a Predominance of Pelosinus spp.

    SciTech Connect

    Mosher, Jennifer J; Phelps, Tommy Joe; Drake, Meghan M; Campbell, James H; Moberly, James G; Schadt, Christopher Warren; Podar, Mircea; Brown, Steven D; Hazen, Terry; Arkin, Adam; Palumbo, Anthony Vito; Faybishenko, Boris A; Elias, Dwayne A

    2012-01-01

    Microbial community structure and metabolism in contaminated ecosystems are potentially controlled not only by the different populations within the community, but a myriad of dynamic physicochemical parameters as well. The goal of the current work was to determine the impact of organic acid enrichment, in this case lactate, on the succession of the native microbial community from a contaminated groundwater aquifer. Triplicate anaerobic, continuous-flow glass reactors were inoculated with Hanford 100-H groundwater and incubated for 95 days to obtain a stable, enriched community. The microbial community experienced a shift in the population dynamics over time to eventually form a community with far less diversity than the original. The final community was dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp. with small amounts of other bacteria and archaea including methanogens. The resultant diversity was far decreased from 63 genera within 12 phyla to 11 bacterial genera (from three phyla) and 2 archaeal genera (from one phylum). Isolation efforts were successful in attaining new species of Pelosinus and known members of Methanosarcina barkerii along with several sulfate- and Fe(III)- reducing consortia members. The continuous-flow reactors allowed for testing physiochemical factors with microbial community dynamics on a smaller, replicable, scale while also facilitating the isolation of several previously uncultured community members. These lab-scale simulations will presumably allow for a deeper understanding of the community metabolism with specific carbon amendments that can inform future in situ efforts.

  6. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities

    SciTech Connect

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert {Bob} L

    2014-01-01

    Contemporary microbial ecology studies usually employ one or more omics approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other meta-omic approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool.

  7. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    PubMed

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-01-01

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. PMID:24939130

  8. Succession in a microbial mat community - A Gaian perspective

    NASA Technical Reports Server (NTRS)

    Stolz, J. F.

    1984-01-01

    The contribution of prokaryotes to Gaian control systems is discussed. The survival of the Microcoleus-dominated stratified microbial community at Laguna Figueroa, after heavy rains flooded the evaporite flat with up to 3 m of water and deposited 5-10 cm of allocthonous sediment, demonstrates the resiliency of these communities to short-term perturbations while the microbial fossil record attests to their persistence over geologic time. It is shown that the great diversity of microbial species and their short generation time make them uniquely suited for Gaian mechanisms.

  9. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    PubMed

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  10. Potential Activity, Size, and Structure of Sulfate-Reducing Microbial Communities in an Exposed, Grazed and a Sheltered, Non-Grazed Mangrove Stand at the Red Sea Coast

    PubMed Central

    Balk, Melike; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in mangrove soils is influenced by the size of net primary production, and hence negatively affected by mangrove degradation and exploitation, as well as by carbon-exporting waves. To test this, we compared quantitative and qualitative traits of sulfate-reducing communities in two Saudi-Arabian mangrove stands near Jeddah, where co-occurring differences in camel-grazing pressure and tidal exposure led to a markedly different stand height and hence primary production. Potential sulfate reduction rates measured in anoxic flow-through reactors in the absence and presence of additional carbon sources were significantly higher in the samples from the non-grazed site. Near the surface (0–2 cm depth), numbers of dsrB gene copies and culturable cells also tended to be higher in the non-grazed sites, while these differences were not detected in the sub-surface (4–6 cm depth). It was concluded that sulfate-reducing microbes at the surface were indeed repressed at the low-productive site as could be expected from our hypothesis. At both sites, sulfate reduction rates as well as numbers of the dsrB gene copies and viable cells increased with depth suggesting repression of sulfate reduction near the surface in both irrespective of production level. Additionally, sequence analysis of DNA bands obtained from DGGE gels based on the dsrB gene, showed a clear difference in dominance of sulfate-reducing genera belonging to the Deltaproteobacteria and the Firmicutes between sampling sites and depths. PMID:26733999