Science.gov

Sample records for microbial inactivation properties

  1. Inactivation of Microbial Contaminants in Fresh Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the microbial safety of fresh produce of increasing concern, conventional sanitizing treatments need to be supplemented with effective new interventions to inactivate human pathogens. Our research group has shown that inoculation with suppressive microbial communities inhibits the growth of Sal...

  2. Inactivation of Microbial Contaminants in Fresh Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the microbial safety of fresh produce of increasing concern, conventional sanitizing treatments need to be supplemented with effective new interventions to inactivate human pathogens. The Produce Safety research project at the US Dept. Agriculture’s Eastern Regional Research Center develops and...

  3. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  4. Predicting microbial heat inactivation under nonisothermal treatments.

    PubMed

    Hassani, Mounir; Condón, Santiago; Pagán, Rafael

    2007-06-01

    The aim of this study was to develop an equation that accurately predicts microbial heat inactivation under nonisothermal treatments at constantly rising heating rates (from 0.5 to 5 degrees C/min) in media with different pH values (4.0 or 7.4). The survival curves of all bacteria (Enterococcus faecium, Escherichia coli, Listeria monocytogenes, Salmonella Senftenberg 775W, Salmonella Typhimurium, and Staphylococcus aureus) tested under isothermal treatments were nearly linear. For the most heat-resistant microorganism (E. faecium), the estimated DT-values at pH 7.4 were at least 100 times those of the second most thermotolerant microorganism (Salmonella Senftenberg 775W). The heat resistance of E. faecium was up to 30 times lower at pH 4.0 than at pH 7.4. However, E. faecium was still the most heat-resistant microorganism under nonisothermal treatments at both pH values. Inactivation under nonisothermal conditions was not accurately estimated from heat resistance parameters of isothermal treatments when microbial adaptation or sensibilization occurred during the heating up lag phases. The under-prediction of the number of survivors might be greater than 15 log CFU within the nonisothermal treatment conditions investigated. Therefore, the nonisothermal survival curves of the most heat-resistant microorganisms were fitted with the following equation: log S(t) = -(t/delta)P. This equation accurately described the survival curves of all the bacteria tested. We observed a linear relationship between the log of the scale parameter (delta) and the log of the heating rate. A p value characteristic of each microorganism and pH tested was calculated. Two equations capable of predicting the inactivation rate of all bacteria tested under nonisothermal treatments at pH 7.4, 5.5, or 4.0 were developed. The model was evaluated in skim milk and apple juice. The results of this study could be used to help minimize public health risks and to extend the shelf life of those foods

  5. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties.

    PubMed

    Almela, Luis; Nieto-Sandoval, José M; Fernández López, José A

    2002-03-13

    High-temperature short-time (HTST) treatments have been used to destroy the bioburden of paprika. With this in mind, we have designed a device to treat samples of paprika with a gas whose temperature, pressure, and composition can be selected. Temperatures and treatment times ranged from 130 to 170 degrees C and 4 to 6 s, respectively. The survival of the most commonly found microorganisms in paprika and any alteration in extractable and superficial color were examined. Data showed that the optimum HTST conditions were 145 degrees C, 1.5 kg/cm2 of overpressure, 6 s operation time, and a thermal fluid of saturated steam. No microbial growth was detected during storage after thermal treatment. To minimize the color losses, treated (HTST) paprika samples should be kept under refrigeration. PMID:11879016

  6. Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation.

    PubMed

    González-Delgado, José A; Kennedy, Patrick J; Ferreira, Marta; Tomé, João P C; Sarmento, Bruno

    2016-05-26

    Semisolid formulations, such as gels, creams and ointments, have recently contributed to the progression of photodynamic therapy (PDT) and microbial photodynamic inactivation (PDI) in clinical applications. The most important challenges facing this field are the physicochemical properties of photosensitizers (PSs), optimal drug release profiles, and the photosensitivity of surrounding tissues. By further integration of nanotechnology with semisolid formulations, very promising pharmaceuticals have been generated against several dermatological diseases (PDT) and (antibiotic-resistant) pathogenic microorganisms (PDI). This review focuses on the different PSs and their associated semisolid formulations currently found in both the market and clinical trials that are used in PDT/PDI. Special emphasis is placed on the advantages that the semisolid formulations bring to drug delivery in PDI. Lastly, some potential considerations for improvement in this field are also discussed. PMID:26569024

  7. In situ studies of microbial inactivation during high pressure processing

    NASA Astrophysics Data System (ADS)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  8. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  9. Microbial inactivation for safe and rapid diagnostics of infectious samples.

    PubMed

    Sagripanti, Jose-Luis; Hülseweh, Birgit; Grote, Gudrun; Voss, Luzie; Böhling, Katrin; Marschall, Hans-Jürgen

    2011-10-01

    The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log(10)) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost. PMID:21856830

  10. Converting visible light into UVC: microbial inactivation by Pr(3+)-activated upconversion materials.

    PubMed

    Cates, Ezra L; Cho, Min; Kim, Jae-Hong

    2011-04-15

    Herein we report the synthesis and properties of light-activated antimicrobial surfaces composed of lanthanide-doped upconversion luminescent nano- and microcrystalline Y(2)SiO(5). Unlike photocatalytic surfaces, which convert light energy into reactive chemical species, this work describes surfaces that inactivate microorganisms through purely optical mechanisms, wherein incident visible light is partially converted into germicidal UVC radiation. Upconversion phosphors utilizing a Pr(3+) activator ion were synthesized and their visible-to-ultraviolet conversion capabilities were confirmed via photoluminescence spectroscopy. Polycrystalline films were prepared on glass substrates, and the extent of surface microbial inactivation and biofilm inhibition under visible light excitation were investigated. Results show that, under normal visible fluorescent lamp exposure, a sufficient amount of UVC radiation was emitted to inhibit Pseudomonas aeruginosa biofilm formation and to inactivate Bacillus subtilis spores on the dry surfaces. This new application of upconversion luminescence shows for the first time its ability to deter microbial contamination and could potentially lead to new material strategies for disinfection of surfaces and water. PMID:21428395

  11. Effects of glycinin basic peptide on physicochemical characteristics and microbial inactivation of pasteurized milk.

    PubMed

    Zhao, Guo-Ping; Li, Ying-Qiu; Sun, Gui-Jin; Mo, Hai-Zhen

    2016-07-01

    The effects of glycinin basic peptide (GBP) on physicochemical characteristics and microbial inactivation of pasteurized milk were investigated over 21d of storage at 4°C. Sensory properties, total bacterial count, pH, alcohol levels, lactose content, and protein changes of pasteurized milk differentially treated with GBP were analyzed periodically during refrigerated storage. Compared with the control, reductions for total bacterial count and specific bacterium (Staphylococcus aureus) in pasteurized milk treated with GBP during storage were found. However, sensory scores, pH, lactose, and protein contents of pasteurized milk treated with GBP were much higher than those of the control. A concentration of 0.015% (wt/vol) GBP could effectively inhibit the growth and reproduction of bacteria in pasteurized milk, enhance its sensory and physicochemical properties, and extend its shelf life to 15d. Thus, GBP has good potential to be a natural milk preservative. PMID:27157568

  12. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  13. Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach.

    PubMed

    Drummond, Jennifer D; Davies-Colley, Robert J; Stott, Rebecca; Sukias, James P; Nagels, John W; Sharp, Alice; Packman, Aaron I

    2015-07-01

    Long-term survival of pathogenic microorganisms in streams enables long-distance disease transmission. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers. Microbes continuously immobilize and resuspend during downstream transport owing to a variety of processes including gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. We developed a stochastic model to describe these microbial transport and retention processes in rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of Escherichia coli in a small stream and the underlying streambed sediments as measured from multitracer injection experiments. The results demonstrate that the combination of laboratory experiments on sediment cores, stream reach-scale tracer experiments, and multiscale stochastic modeling improves assessment of microbial transport in streams. This study (1) demonstrates new observations of microbial dynamics in streams with improved data quality than prior studies, (2) advances a stochastic modeling framework to include microbial inactivation processes that we observed to be important in these streams, and (3) synthesizes new and existing data to evaluate seasonal dynamics. PMID:26039244

  14. Feasibility of utilizing bio-indicators for testing microbial inactivation in sweetpotato purees processed with a continuous flow microwave system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous flow microwave heating has potential in aseptic processing of various food products, including the purees from sweetpotatoes and other vegetables. Establishing the feasibility of a new processing technology for achieving commercial sterility requires evaluating microbial inactivation. Thi...

  15. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet

    PubMed Central

    Takamatsu, Toshihiro; Uehara, Kodai; Sasaki, Yota; Hidekazu, Miyahara; Matsumura, Yuriko; Iwasawa, Atsuo; Ito, Norihiko; Kohno, Masahiro; Azuma, Takeshi; Okino, Akitoshi

    2015-01-01

    Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ≥6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1–15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects. PMID:26173107

  16. Microbial Inactivation for Safe and Rapid Diagnostics of Infectious Samples ▿ †

    PubMed Central

    Sagripanti, Jose-Luis; Hülseweh, Birgit; Grote, Gudrun; Voß, Luzie; Böhling, Katrin; Marschall, Hans-Jürgen

    2011-01-01

    The high risk associated with biological threat agents dictates that any suspicious sample be handled under strict surety and safety controls and processed under high-level containment in specialized laboratories. This study attempted to find a rapid, reliable, and simple method for the complete inactivation of a wide range of pathogens, including spores, vegetative bacteria, and viruses, while preserving microbial nucleic acid fragments suitable for PCRs and proteinaceous epitopes for detection by immunoassays. Formaldehyde, hydrogen peroxide, and guanidium thiocyanate did not completely inactivate high titers of bacterial spores or viruses after 30 min at 21°C. Glutaraldehyde and sodium hypochlorite showed high microbicidal activity but obliterated the PCR or enzyme-linked immunosorbent assay (ELISA) detection of bacterial spores or viruses. High-level inactivation (more than 6 log10) of bacterial spores (Bacillus atrophaeus), vegetative bacteria (Pseudomonas aeruginosa), an RNA virus (the alphavirus Pixuna virus), or a DNA virus (the orthopoxvirus vaccinia virus) was attained within 30 min at 21°C by treatment with either peracetic acid or cupric ascorbate with minimal hindrance of subsequent PCR tests and immunoassays. The data described here should provide the basis for quickly rendering field samples noninfectious for further analysis under lower-level containment and considerably lower cost. PMID:21856830

  17. Hydrothermal treatment for inactivating some hygienic microbial indicators from food waste-amended animal feed.

    PubMed

    Jin, Yiying; Chen, Ting; Li, Huan

    2012-07-01

    To achieve the hygienic safety of food waste used as animal feed, a hydrothermal treatment process of 60-110 degrees C for 10-60 min was applied on the separated food waste from a university canteen. Based on the microbial analysis of raw waste, the inactivation of hygienic indicators of Staphylococcus aureus (SA), total coliform (TC), total aerobic plate counts (TPC), and molds and yeast (MY) were analyzed during the hydrothermal process. Results showed that indicators' concentrations were substantially reduced after hydrothermal treatment, with a greater reduction observed when the waste was treated with a higher temperature and pressure and a longer ramping time. The 110 degrees C hydrothermal treatment for 60 min was sufficient to disinfect food waste as animal feed from the viewpoint of hygienic safety. Results obtained so far indicate that hydrothermal treatment can significantly decrease microbial indicators' concentrations but does not lead to complete sterilization, because MY survived even after 60 min treatment at 110 degrees C. The information from the present study will contribute to the microbial risk control of food waste-amended animal feed, to cope with legislation on food or feed safety. PMID:22866582

  18. Microbial inactivation and shelf life of apple juice treated with high pressure carbon dioxide

    PubMed Central

    Ferrentino, Giovanna; Bruno, Mariacarmela; Ferrari, Giovanna; Poletto, Massimo; Balaban, Murat O

    2009-01-01

    Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications. PMID:19193225

  19. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. PMID:23445252

  20. Relating nanomaterial properties and microbial toxicity

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Doktycz, Mitchel John

    2013-01-01

    Nanomaterials are meeting diverse needs in consumer and industrial products. Metal and metal oxide nanoparticles are among the most commonly used materials and their potential for adversely affecting environmental systems raises concern. Complex microbial consortia underlie environmental processes, and the potential toxicity of nanoparticles to microbial systems, and the consequent impacts on trophic balances, is particularly worrisome. The diverse array of metal and metal oxides, the different sizes and shapes that can be prepared and the variety of possible surface coatings complicate toxicity assessments. Further complicating toxicity interpretations are the diversity of microbial systems and their metabolic capabilities. Here, we review various studies focused on nanoparticle-microbial interactions in an effort to correlate the physical-chemical properties of engineered metal and metal oxide nanoparticles to their biological response. Gaining a predictive understanding of nanoparticle toxicity, based on the physical-chemical properties of the material, will be key to the design and responsible use of nanotechnologies. General conclusions regarding the parent material of the nanoparticle and nanoparticle s size and shape on potential toxicity can be made. However, the surface coating of the material, which can be altered significantly by environmental conditions, can ameliorate or promote microbial toxicity. Understanding nanoparticle transformations and how the nanoparticle surface can be designed to control toxicity represents a key area for further study. Additionally, the vast array of microbial species and their intrinsic metabolic capabilities complicates extrapolations of nanoparticle toxicity. A molecular-based understanding of the various microbial responses to nanoparticle-induced stress is needed. Ultimately, to interpret the effect and eventual fate of engineered materials in the environment, an understanding of the relationship between nanoparticle

  1. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation.

    PubMed

    Gerrity, Daniel; Gamage, Sujanie; Jones, Darryl; Korshin, Gregory V; Lee, Yunho; Pisarenko, Aleksey; Trenholm, Rebecca A; von Gunten, Urs; Wert, Eric C; Snyder, Shane A

    2012-12-01

    The performance of ozonation in wastewater depends on water quality and the ability to form hydroxyl radicals (·OH) to meet disinfection or contaminant transformation objectives. Since there are no on-line methods to assess ozone and ·OH exposure in wastewater, many agencies are now embracing indicator frameworks and surrogate monitoring for regulatory compliance. Two of the most promising surrogate parameters for ozone-based treatment of secondary and tertiary wastewater effluents are differential UV(254) absorbance (ΔUV(254)) and total fluorescence (ΔTF). In the current study, empirical correlations for ΔUV(254) and ΔTF were developed for the oxidation of 18 trace organic contaminants (TOrCs), including 1,4-dioxane, atenolol, atrazine, bisphenol A, carbamazepine, diclofenac, gemfibrozil, ibuprofen, meprobamate, naproxen, N,N-diethyl-meta-toluamide (DEET), para-chlorobenzoic acid (pCBA), phenytoin, primidone, sulfamethoxazole, triclosan, trimethoprim, and tris-(2-chloroethyl)-phosphate (TCEP) (R(2) = 0.50-0.83) and the inactivation of three microbial surrogates, including Escherichia coli, MS2, and Bacillus subtilis spores (R(2) = 0.46-0.78). Nine wastewaters were tested in laboratory systems, and eight wastewaters were evaluated at pilot- and full-scale. A predictive model for OH exposure based on ΔUV(254) or ΔTF was also proposed. PMID:23062789

  2. Properties of the ribosome-inactivating proteins gelonin, Momordica charantia inhibitor, and dianthins.

    PubMed Central

    Falasca, A; Gasperi-Campani, A; Abbondanza, A; Barbieri, L; Stirpe, F

    1982-01-01

    The amino acid and sugar compositions of four ribosome-inactivating proteins (gelonin, Momordica charantia inhibitor, dianthin 30 and dianthin 32) were determined. The proteins are all basic glycoproteins (pI greater than 8) containing mannose (more abundant in gelonin), glucose, xylose, fucose (absent from gelonin) and glucosamine. The ribosome-inactivating properties of the proteins examined are not modified by pretreatment with N-ethylmaleimide. Precipitating and inactivating antibodies can be raised against ribosome-inactivating proteins; a weak cross-reaction was observed only between dianthin 30 and dianthin 32. Images Fig. 2. PMID:6819861

  3. Properties of the ribosome-inactivating proteins gelonin, Momordica charantia inhibitor, and dianthins.

    PubMed

    Falasca, A; Gasperi-Campani, A; Abbondanza, A; Barbieri, L; Stirpe, F

    1982-12-01

    The amino acid and sugar compositions of four ribosome-inactivating proteins (gelonin, Momordica charantia inhibitor, dianthin 30 and dianthin 32) were determined. The proteins are all basic glycoproteins (pI greater than 8) containing mannose (more abundant in gelonin), glucose, xylose, fucose (absent from gelonin) and glucosamine. The ribosome-inactivating properties of the proteins examined are not modified by pretreatment with N-ethylmaleimide. Precipitating and inactivating antibodies can be raised against ribosome-inactivating proteins; a weak cross-reaction was observed only between dianthin 30 and dianthin 32. PMID:6819861

  4. Feasibility of utilizing bioindicators for testing microbial inactivation in sweetpotato purees processed with a continuous-flow microwave system.

    PubMed

    Brinley, T A; Dock, C N; Truong, V-D; Coronel, P; Kumar, P; Simunovic, J; Sandeep, K P; Cartwright, G D; Swartzel, K R; Jaykus, L-A

    2007-06-01

    Continuous-flow microwave heating has potential in aseptic processing of various food products, including purees from sweetpotatoes and other vegetables. Establishing the feasibility of a new processing technology for achieving commercial sterility requires evaluating microbial inactivation. This study aimed to assess the feasibility of using commercially available plastic pouches of bioindicators containing spores of Geobacillius stearothermophilus ATCC 7953 and Bacillus subtilis ATCC 35021 for evaluating the degree of microbial inactivation achieved in vegetable purees processed in a continuous-flow microwave heating unit. Sweetpotato puree seeded with the bioindicators was subjected to 3 levels of processing based on the fastest particles: undertarget process (F(0) approximately 0.65), target process (F(0) approximately 2.8), and overtarget process (F(0) approximately 10.10). After initial experiments, we found it was necessary to engineer a setup with 2 removable tubes connected to the continuous-flow microwave system to facilitate the injection of indicators into the unit without interrupting the puree flow. Using this approach, 60% of the indicators injected into the system could be recovered postprocess. Spore survival after processing, as evaluated by use of growth indicator dyes and standard plating methods, verified inactivation of the spores in sweetpotato puree. The log reduction results for B. subtilis were equivalent to the predesigned degrees of sterilization (F(0)). This study presents the first report suggesting that bioindicators such as the flexible, food-grade plastic pouches can be used for microbial validation of commercial sterilization in aseptic processing of foods using a continuous-flow microwave system. PMID:17995721

  5. Photodynamic inactivation of microbial pathogens: disinfection of water and prevention of water-borne diseases.

    PubMed

    Jori, Giulio; Magaraggia, Michela; Fabris, Clara; Soncin, Marina; Camerin, Monica; Tallandini, Laura; Coppellotti, Olimpia; Guidolin, Laura

    2011-01-01

    Porphyrins have been shown to act as very efficient photosensitizing agents against a broad number of microbial pathogens, including bacteria, fungi, and protozoa. This property has promising applications at a clinical level for the treatment of infectious diseases by photodynamic therapy. Moreover, this technique is also being used to address environmental problems of high significance, such as the decontamination of wastewaters, the disinfection of fish-farming tanks, the protection of animal species (e.g., amphibians and reptiles) that are endangered by pathogens whose life cycle takes place largely in aqueous media, and the control of populations of noxious insects. Such diversified applications take advantage of the availability of a truly large number of porphyrin derivatives with chemical structures that can be tailored to comply with the physical and chemical properties as well as the biological features of several milieus. In addition, the property typical of porphyrins to absorb essentially all of the wavelengths in the sun emission spectrum allows the promotion of processes largely based on natural resources with significant energy savings and low impact on ecosystems. PMID:22126619

  6. Microbial effect on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  7. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed. PMID:17310729

  8. A comparative study on the pulsed UV and the low-pressure UV inactivation of a range of microbial species in water.

    PubMed

    Garvey, Mary; Thokala, Nikhil; Rowan, Neil

    2014-12-01

    Research into alternative methods of disinfecting water and wastewater has proven necessary due to the emergence of chlorine-resistant organisms and the disinfection byproducts associated with chlorine use. The use of UV light to inactivate microbial species has proven effective, however; standard UV lamps have proven to be less effective in their ability to inactivate parasites and bacterial endospores in water treatment settings. Pulsed UV (PUV) light may potentially provide a novel alternative to water and wastewater disinfection. Research outlined in this study assesses the potential of a novel PUV system for the rapid and reproducible inactivation of a range of test species including Bacillus endospores. In comparison to standard low-pressure (LP) UV lamps, this PUV system provided significantly higher levels of inactivation for all test species. Furthermore, there was a remarkable decrease in time needed to obtain significant inactivation rates following treatment with PUV compared to LP-UV. With the PUV system, a 70-second treatment time (7.65 μJ/cm2) resulted in similar inactivation rates of Bacillus endospores to that of the LP-UV inactivation of their vegetative counterpart. Also, at PUV doses exceeding 4.32 J/cm2, there was not a significant difference in the PUV inactivation of Bacillus endospores in the absence or presence of 10 ppm organic matter. However, the presence of organic matter resulted in a significant reduction in microbial inactivation for all treatment doses using the LP-UV system. The findings of this study suggest that PUV technology may provide a rapid effective method for the disinfection of water and wastewater. PMID:25654934

  9. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  10. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    NASA Astrophysics Data System (ADS)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  11. Comparison of two radio-frequency plasma sterilization processes using microspot evaluation of microbial inactivation.

    PubMed

    Lassen, Klaus S; Johansen, Jens E; Grün, Reinar

    2006-07-01

    In this study, we evaluated gas plasma surface sterilization methods in a specific sterilizer. We have introduced a new monitoring method using 0.4 microm pore size membranes, which in this study gave the information corresponding to 3000 exposed biological indicators per treatment cycle. This enabled us to compare the fraction of inoculates that showed no growth after exposure for 30 different locations in the chamber, and hereby identify weak and strong spots in the chamber with regard to sporicidal effect. Membranes were also used to expose a broad spectrum of soil bacteria for plasma treatment at four different conditions. The organisms were identified using PCR and sequencing. The test showed that Bacillus stearothermophilus spores were inactivated at the slowest rate among the tested microorganisms. Further alpha-proteobacteria (Gram negative) seemed more sensitive than the rest of the tested organisms. The microspot evaluation approach has been a most useful tool in the assessment of sterilization performance in sterilizers that do not have clear measurable parameters related to the sterilization. PMID:16362959

  12. Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic properties.

    PubMed

    Markowicz, C; Kubiak, P; Grajek, W; Schmidt, M T

    2016-01-01

    Probiotics are microorganisms that have beneficial effects on the host and are safe for oral intake in a suitable dose. However, there are situations in which the administration of living microorganisms poses a risk for immunocompromised host. The objective of this study was to evaluate the influence of several fixation methods on selected biological properties of Lactobacillus rhamnosus GG that are relevant to its probiotic action. Fixation of the bacterial cells with ethanol, 2-propanol, glutaraldehyde, paraformaldehyde, and heat treatment resulted in a significant decrease of alkaline phosphatase, peroxidase, and β-galactosidase activities. Most of the fixation procedures reduced bacterial cell hydrophobicity and increased adhesion capacity. The fixation procedures resulted in a different perception of the bacterial cells by enterocytes, which was shown as changes in gene expression in enterocytes. The results show that some procedures of inactivation allow a fraction of the enzymatic activity to be maintained. The adhesion properties of the bacterial cells were enhanced, but the response of enterocytes to fixed cells was different than to live bacteria. Inactivation allows maintenance and modification of some of the properties of the bacterial cells. PMID:26634746

  13. Microbial inactivation and shelf life comparison of 'cold' hurdle processing with pulsed electric fields and microfiltration, and conventional thermal pasteurisation in skim milk.

    PubMed

    Walkling-Ribeiro, M; Rodríguez-González, O; Jayaram, S; Griffiths, M W

    2011-01-01

    Thermal pasteurisation (TP) is the established food technology for commercial processing of milk. However, degradation of valuable nutrients in milk and its sensory characteristics occurs during TP due to substantial heat exposure. Pulsed electric fields (PEF) and microfiltration (MF) both represent emerging food processing technologies allowing gentle milk preservation at lower temperatures and shorter treatment times for similar, or better, microbial inactivation and shelf stability when applied in a hurdle approach compared to TP. Incubated raw milk was used as an inoculum for the enrichment of skim milk with native microorganisms before PEF, MF, and TP processing. Inoculated milk was PEF-processed at electric field strengths between 16 and 42 kV/cm for treatment times from 612 to 2105 μs; accounting for energy densities between 407 and 815 kJ/L, while MF was applied with a transmembrane flux of 660 L/h m². Milk was TP-treated at 75°C for 24 s. Comparing PEF, MF, and TP for the reduction of the native microbial load in milk led to a 4.6 log₁₀ CFU/mL reduction in count for TP, which was similar to 3.7 log₁₀ CFU/mL obtained by MF (P≥0.05), and more effective than the 2.5 log₁₀ CFU/mL inactivation achieved by PEF inactivation (at 815 kJ/L (P<0.05)). Combined processing with MF followed by PEF (MF/PEF) produced a 4.1 (at 407 and 632 kJ/L), 4.4 (at 668 kJ/L) and 4.8 (at 815 kJ/L) log₁₀ CFU/mL reduction in count of the milk microorganisms, which was comparable to that of TP (P≥0.05). Reversed processing (PEF/MF) achieved comparable reductions of 4.9, 5.3 and 5.7 log₁₀ CFU/mL (at 407, 632 and 668 kJ/L, respectively (P≥0.05)) and a higher inactivation of 7.1 log₁₀ (at 815 kJ/mL (P<0.05)) in milk than for TP. Microbial shelf life of PEF/MF-treated (815 kJ/L) and TP-treated milk stored at 4°C was analysed over 35 days for total aerobic; enterobacteria; yeasts and moulds; lactobacilli; psychrotroph; thermoduric psychrotroph, mesophilic

  14. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2009-12-01

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 μs) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of ˜ 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  15. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems

    PubMed Central

    Ghimire, Rajan; Norton, Jay B.; Stahl, Peter D.; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  16. Photo-catalytic inactivation of an Enterococcus biofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders.

    PubMed

    Dworniczek, Ewa; Plesch, Gustav; Seniuk, Alicja; Adamski, Ryszard; Michal, Róbert; Čaplovičová, Mária

    2016-04-01

    The control and prevention of biofilm-related infections is an important public healthcare issue. Given the increasing antibiotic resistance among bacteria and fungi that cause serious infections in humans, promotion of new strategies combating microorganisms has been essential. One attractive approach to inactivate microorganisms is the use of semiconductor photo-catalysis, which has become the subject of extensive research. In this study, the bactericidal properties of four photo-catalysts, TiO2, TiO2-S, TiO2-Eu and TiO2-Eu-S, were investigated against established 24, 48, 72 and 96 h biofilms ofEnterococcus The exposure of biofilms to the catalysts induced the production of superoxide radical anions. The best photo-catalytic inactivation was achieved with the TiO2-Eu-S and TiO2-S nanopowders and 24 h biofilms. Transmission electron microscopy images showed significant changes in the structure of the biofilm cells following photo-inactivation. The results suggest that doping with europium and modifying the surface with sulphate groups enhanced the bactericidal activity of the TiO2nanoparticles against enterococcal biofilms. PMID:26940291

  17. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  18. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation

    NASA Astrophysics Data System (ADS)

    Wang, R. X.; Nian, W. F.; Wu, H. Y.; Feng, H. Q.; Zhang, K.; Zhang, J.; Zhu, W. D.; Becker, K. H.; Fang, J.

    2012-10-01

    A direct-current, atmospheric-pressure air cold plasma microjet (PMJ) was applied to disinfect Salmonella directly deposited on fresh fruit and vegetable slices. Effective inactivation was achieved on sliced fruit and vegetables after 1 s plasma treatment. The physiochemical properties of the slices, such as water content, color parameters, and nutritional content were monitored before and after plasma treatment. It was found that the physiochemical properties changes caused by the plasma were within an acceptable range. Reactive oxygen species, which are believed to be the major bactericidal agents in the plasma, were detected by electron spin resonance spectroscopy and optical emission spectroscopy.

  19. Pathogen Inactivating Properties and Increased Sensitivity in Molecular Diagnostics by PAXgene, a Novel Non-Crosslinking Tissue Fixative

    PubMed Central

    Loibner, Martina; Buzina, Walter; Viertler, Christian; Groelz, Daniel; Hausleitner, Anja; Siaulyte, Gintare; Kufferath, Iris; Kölli, Bettina; Zatloukal, Kurt

    2016-01-01

    Background Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. Methods Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. Results All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. Conclusion PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment. PMID:26974150

  20. Hydrazine inactivates bacillus spores

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  1. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  2. Physical Properties and Microbial Activity in Forest Residual Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many growers in the horticulture industry have expressed concern that switching from a pine bark-based substrate to one with a significant wood content will increase microbial activity, resulting in nitrogen (N) immobilization. This study evaluated four growth substrates (pine bark, peat moss and tw...

  3. Statistical properties predicted by the ball and chain model of channel inactivation.

    PubMed Central

    Liebovitch, L S; Selector, L Y; Kline, R P

    1992-01-01

    It has been proposed that part of a voltage gated channel is a tethered ball and that inactivation occurs when this wandering ball binds to a site in the channel. In order to be able to quantitatively test this model by comparison to experiments we developed analytical solutions and numerical simulations of the distribution of times it takes the ball to reach the binding site when the motion of the ball is random and when it is also influenced by a directed force. If the motion of the ball is one-dimensional, at long times this distribution is a single exponential with a rate constant that is inversely proportional to the square of the length of the chain and does not depend on the starting position of the ball. This dependence on the chain length is not significantly altered if there are short range electrical forces between the ball and its binding site. These predictions suggest that to confirm the validity of this model additional experiments should be done to more precisely determine the form of this distribution and its dependence on the length of the chain. PMID:1283346

  4. Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity.

    PubMed

    Bolognesi, A; Barbieri, L; Abbondanza, A; Falasca, A I; Carnicelli, D; Battelli, M G; Stirpe, F

    1990-11-30

    Ribosome-inactivating proteins (RIPs) similar to those already known (Stirpe & Barbieri (1986) FEBS Lett. 195, 1-8) were purified from the seeds of Asparagus officinalis (two proteins, asparin 1 and 2), of Citrullus colocynthis (two proteins, colocin 1 and 2), of Lychnis chalcedonica (lychnin) and of Manihot palmata (mapalmin), from the roots of Phytolacca americana (pokeweed antiviral protein from roots, PAP-R) and from the leaves of Bryonia dioica (bryodin-L). The two latter proteins can be considered as isoforms, respectively, of previously purified PAP, from the leaves of P. americana, and of bryodin-R, from the roots of B. dioica. All proteins have an Mr at approx, 30,000, and an alkaline isoelectric point. Bryodin-L, colocins, lychnin and mapalmin are glycoproteins. All RIPs inhibit protein synthesis by a rabbit reticulocyte lysate and phenylalanine polymerization by isolated ribosomes and alter rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). PMID:2248976

  5. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    PubMed

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation. PMID:24462703

  6. Soil microbial community dynamics as influenced by composted dairy manure, soil properties and landscape position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding factors that affect plant growth, whether it is manure addition, season, or soil-type and landscape variability may also impact soil microbial activity, biomass and community structure. Thus an in situ study was conducted to evaluate microbiological properties of three different soil t...

  7. BIOGEOPHYSICS: THE EFFECTS OF MICROBIAL PROCESSES ON GEOPHYSICAL PROPERTIES OF THE SHALLOW SUBSURFACE

    EPA Science Inventory

    This chapter provides a brief review of how microbial interactions with the geologic media may translate to changes in the bulk physical properties of the subsurface

    which are potentially measurable by geophysical techniques. The results of select pioneering laboratory and...

  8. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta

    2014-05-01

    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  9. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures

    PubMed Central

    Garvey, M.; Coughlan, G.; Murphy, N.; Rowan, N.

    2016-01-01

    The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose. PMID:26862516

  10. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    PubMed

    Mulley, Geraldine; Jenkins, A Tobias A; Waterfield, Nicholas R

    2014-01-01

    There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings. PMID:24728271

  11. Inactivation of the Antibacterial and Cytotoxic Properties of Silver Ions by Biologically Relevant Compounds

    PubMed Central

    Mulley, Geraldine; Jenkins, A. Tobias A.; Waterfield, Nicholas R.

    2014-01-01

    There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1∶1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings. PMID:24728271

  12. Spatial and temporal variations of microbial properties at different scales in shallow subsurface sediments

    SciTech Connect

    Zhang, Chuanlun; Pfiffner, S.M.; Phelps, T.J.

    1997-12-31

    Microbial abundance, activity, and community-level physiological profiles (CLPP) were examined at centimeter and meter scales in the subsurface environment at a site near Oyster, VA. At the centimeter scale, variations in aerobic culturable heterotrophs (ACH) and glucose mineralization rates (GMR) were highest in the water table zone, indicating that water availability has a major effect on variations in microbial abundance and activity. At the meter scale, ACH and microaerophiles decreased significantly with depth, whereas anaerobic GMR often increased with depth; this may indicate low redox potentials at depth caused by microbial consumption of oxygen. Data of CUP indicated that the microbial community (MC) in the soybean field exhibited greater capability to utilize multiple carbon sources than MC in the corn field. This difference may reflect nutrient availability associated with different crops (soybean vs corn). By using a regression model, significant spatial and temporal variations were observed for ACH, microaerophiles, anaerobic GMR, and CLPP. Results of this study indicated that water and nutrient availability as well as land use could have a dominant effect on spatial and temporal variations in microbial properties in shallow subsurface environments. 32 refs., 3 figs., 3 tabs.

  13. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone ▿

    PubMed Central

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  14. Effects of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157:H7, native microbial loads, and quality of button mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms are prone to microbial spoilage and browning during growing and processing. Ultraviolet light (UV-C) has been used as an alternative technology to chemical sanitizers for food products. Hydrogen peroxide is classified as generally recognized as safe for use in foods as a bleaching and ant...

  15. Effect of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...

  16. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [bibliography

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1976-01-01

    Almost 600 articles and books published since 1960 about microbial and viral inactivation are listed. This bibliography is presented to facilitate literature reviews on chemical, heat, and radiation inactivation of microorganisms and viral particles.

  17. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  18. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils

    PubMed Central

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  19. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase*

    PubMed Central

    Takahashi-Íñiguez, Tóshiko; Aburto-Rodríguez, Nelly; Vilchis-González, Ana Laura; Flores, María Elena

    2016-01-01

    Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.

  20. [Soil organic pollution characteristics and microbial properties in coal mining areas of Mentougou].

    PubMed

    Jia, Jian-Li; Zhang, Yue; Wang, Chen; Li, Dong; Liu, Bo-Wen; Liu, Ying; Zhao, Le; Yang, Si-Qi

    2011-03-01

    Soil micro-ecosystem including organic pollution characteristics, basic physicochemical parameters, and microbial properties was analyzed which contaminated with organic pollutants in coal mining area. Results showed that the organic pollution level in coal mining area soils distributed from 0.4 to 1.5 mg/g dry soil, which was 1. 5-6 times as much as the background sample. Furthermore, the column chromatography and GC-MS analysis revealed that content of lightly components including saturated and aromatic hydrocarbons exceeded 40%, specifically was alkenes (> C15), hydrocarbon derivatives, and a small amount aromatic hydrocarbons. Totally, the components of organic pollutants extracted in soils were similar to which in coal gangue samples, illustrating the source of soil pollution to a certain extent in coal mining areas. The physicochemical factors such as nutrient level and moisture contents were not conducive to the growth and reproduction of microbe except pH level, which might show inhibition to microbial activities. Microbial density of pollutant soils in coal mining areas was totally low, with specific amount 10(4)-10(5) cell/g dry soil and FDA activity 2.0-2.9 mg/(g x min). Generally, the microbial density and activity were decreased as the enhancing pollution level. However, in-depth analysis was needed urgently because of the complex impact of environmental conditions like pH, moisture, and nutrition. PMID:21634191

  1. Probing the pH dependent optical properties of aquatic, terrestrial and microbial humic substances by sodium borohydride reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically reducing humic (HA) and fulvic acids (FA) provides insight into spectroscopically identifiable structural moieties generating the optical properties of HA/FA from aquatic, microbial and terrestrial sources. Sodium borohydride reduction provides targeted reduction of carbonyl groups. The...

  2. Functional Analysis of a Type-I Ribosome Inactivating Protein Balsamin from Momordica balsamina with Anti-Microbial and DNase Activity.

    PubMed

    Ajji, Parminder Kaur; Walder, Ken; Puri, Munish

    2016-09-01

    Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity was conducted using purified balsamin. DNase-like activity of balsamin towards plasmid DNA was pH, incubation time and temperature dependent. Moreover, the presence of Mg(2+) (10-50 mM) influenced the DNA cleavage activity. Balsamin also demonstrated reducing power and a capacity to scavenge free radicals in a dose dependent manner. Furthermore, the protein exhibited antibacterial activity against Staphylococcus aureus, Salmonella enterica, Staphylococcus epidermidis and Escherichia coli, which suggests potential utility of balsamin as a nutraceutical. PMID:27319013

  3. Statistical Properties of Short Subsequences in Microbial Genomes and Their Link to Pathogen Identification and Evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Meizhuo; Putonti, Catherine; Chumakov, Sergei; Gupta, Adhish; Fox, George E.; Graur, Dan; Fofanov, Yuriy

    2006-09-01

    Numerous sequencing projects have unveiled partial and full microbial genomes. The data produced far exceeds one person's analytical capabilities and thus requires the power of computing. A significant amount of work has focused on the diversity of statistical characteristics along microbial genomic sequences, e.g. codon bias, G+C content, the frequencies of short subsequences (n-mers), etc. Based upon the results of these studies, two observations were made: (1) there exists a correlation between regions of unusual statistical properties, e.g. difference in codon bias, etc., from the rest of the genomic sequence, and evolutionary significant regions, e.g. regions of horizontal gene transfer; and (2) because no two microbial genomes look statistically identical, statistical properties can be used to distinguish between genomic sequences. Recently, we conducted extensive analysis on the presence/absence of n-mers for many microbial genomes as well as several viral and eukaryotic genomes. This analysis revealed that the presence of n-mers in all genomes considered (in the range of n, when the condition M<<4n holds, where M is the genome length) can be treated as a nearly random and independent process. Thus we hypothesize that one may use relatively small sets of randomly picked n-mers for differentiating between different microorganisms. Recently, we analyzed the frequency of appearance of all 8- to 12-mers present in each of the 200+ publicly available microbial genomes. For nearly all of the genomes under consideration, we observed that some n-mers are present much more frequently than expected: from 50 to over a thousand copies. Upon closer inspection of these sequences, we found several cases in which an overrepresented n-mer exhibits a bias towards being located in the coding or being located in the non-coding region. Although the evolutionary reason for the conservation of such sequences remains unclear, in some cases it is plausible to believe that sequences

  4. Chemical, physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids.

    PubMed

    Belyaeva, O N; Haynes, R J; Sturm, E C

    2012-12-01

    The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH(4), NO(3) and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon's diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community. PMID:22770779

  5. Maple sap predominant microbial contaminants are correlated with the physicochemical and sensorial properties of maple syrup.

    PubMed

    Filteau, Marie; Lagacé, Luc; Lapointe, Gisèle; Roy, Denis

    2012-03-01

    Maple sap processing and microbial contamination are significant aspects that affect maple syrup quality. In this study, two sample sets from 2005 and 2008 were used to assess the maple syrup quality variation and its relationship to microbial populations, with respect to processing, production site and harvesting period. The abundance of maple sap predominant bacteria (Pseudomonas fluorescens group and two subgroups, Rahnella spp., Janthinobacterium spp., Leuconostoc mesenteroides) and yeast (Mrakia spp., Mrakiella spp.,Guehomyces pullulans) was assessed by quantitative PCR. Maple syrup properties were analyzed by physicochemical and sensorial methods. Results indicate that P. fluorescens, Mrakia spp., Mrakiella spp. G. pullulans and Rahnella spp. are stable contaminants of maple sap, as they were found for every production site throughout the flow period. Multiple factor analysis reports a link between the relative abundance of P. fluorescens group and Mrakia spp. in maple sap with maple and vanilla odor as well as flavor of maple syrup. This evidence supports the contribution of these microorganisms or a consortium of predominant microbial contaminants to the characteristic properties of maple syrup. PMID:22236761

  6. Human and Rat Nav1.3 Voltage-Gated Sodium Channels Differ in Inactivation Properties and Sensitivity to the Pyrethroid Insecticide Tefluthrin

    PubMed Central

    Tan, Jianguo; Soderlund, David M.

    2009-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. The pore-forming α subunits of mammalian sodium channels are encoded by a family of 9 genes, designated Nav1.1 - Nav1.9. Native sodium channels in the adult central nervous system (CNS) are heterotrimeric complexes of one of these 9 α subunits and two auxiliary (β) subunits. Here we compare the functional properties and pyrethroid sensitivity of the rat and human Nav1.3 isoforms, which are abundantly expressed in the developing CNS. Coexpression of the rat Nav1.3 and human Nav1.3 α subunits in combination with their conspecific β1 and β2 subunits in Xenopus laevis oocytes gave channels with markedly different inactivation properties and sensitivities to the pyrethroid insecticide tefluthrin. Rat Nav1.3 channels inactivated more slowly than human Nav1.3 channels during a depolarizing pulse. The rat and human channels also differed in their voltage dependence of steady-state inactivation. Exposure of rat and human Nav1.3 channels to 100 μM tefluthrin in the resting state produced populations of channels that activated, inactivated and deactivated more slowly than unmodified channels. For both rat and human channels, application of trains of depolarizing prepulses enhanced the extent of tefluthrin modification approximately twofold; this result implies that tefluthrin may bind to both the resting and open states of the channel. Modification of rat Nav1.3 channels by 100 μM tefluthrin was four-fold greater than that measured in parallel assays with human Nav1.3 channels. Human Nav1.3 channels were also less sensitive to tefluthrin than rat Nav1.2 channels, which are considered to be relatively insensitive to pyrethroids. These data provide the first direct comparison of the functional and pharmacological properties of orthologous rat and human sodium channels and demonstrate that orthologous channels with a high degree of amino acid sequence

  7. Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo.

    PubMed

    Peng, Yong; Yang, Xiaojuan; Zhang, Yizheng

    2005-11-01

    Accumulation of fibrin in the blood vessels usually results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. For thrombolytic therapy, microbial fibrinolytic enzymes have now attracted much more attention than typical thrombolytic agents because of the expensive prices and the undesirable side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus from traditional fermented foods. The physiochemical properties of these enzymes have been characterized, and their effectiveness in thrombolysis in vivo has been further identified. Therefore, microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. PMID:16211381

  8. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity.

    PubMed

    Velmourougane, Kulandaivelu

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  9. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity

    PubMed Central

    2016-01-01

    A study was undertaken with an objective of evaluating the long-term impacts of organic (ORG) and conventional (CON) methods of coffee farming on soil physical, chemical, biological, and microbial diversity. Electrical conductivity and bulk density were found to increase by 34% and 21%, respectively, in CON compared to ORG system, while water holding capacity was found decreased in both the systems. Significant increase in organic carbon was observed in ORG system. Major nutrients, nitrogen and potassium, levels showed inclination in both ORG and CON system, but the trend was much more pronounced in CON system. Phosphorus was found to increase in both ORG and CON system, but its availability was found to be more with CON system. In biological attributes, higher soil respiration and fluorescein diacetate activity were recorded in ORG system compared to CON system. Higher soil urease activity was observed in CON system, while dehydrogenase activity does not show significant differences between ORG and CON systems. ORG system was found to have higher macrofauna (31.4%), microbial population (34%), and microbial diversity indices compared to CON system. From the present study, it is accomplished that coffee soil under long-term ORG system has better soil properties compared to CON system. PMID:27042378

  10. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    PubMed Central

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  11. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition.

    PubMed

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m(-2) yr(-1) for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m(-2) yr(-1), but autotrophic respiration (Ra) was highest with 8 to 16 g N m(-2) yr(-1). Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  12. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    NASA Astrophysics Data System (ADS)

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-12-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m-2 yr-1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m-2 yr-1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m-2 yr-1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration.

  13. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.

    PubMed

    Labud, Valeria; Garcia, Carlos; Hernandez, Teresa

    2007-01-01

    The aim of this work was to ascertain the effects of different types of hydrocarbon pollution on soil microbial properties and the influence of a soil's characteristics on these effects. For this, toxicity bioassays and microbiological and biochemical parameters were studied in two soils (one sandy and one clayey) contaminated at a loading rate of 5% and 10% with three types of hydrocarbon (diesel oil, gasoline and crude petroleum) differing in their volatilisation potential and toxic substance content. Soils were maintained under controlled conditions (50-70% water holding capacity, and room temperature) for six months and several microbiological and toxicity parameters were monitored 1, 60, 120 and 180 days after contamination. The toxic effects of hydrocarbon contamination were greater in the sandy soil. Hydrocarbons inhibited microbial biomass, the greatest negative effect being observed in the gasoline-polluted sandy soil. In both soils crude petroleum and diesel oil contamination increased microbial respiration, while gasoline had little effect on this parameter, especially in the sandy soil. In general, gasoline had the highest inhibitory effect on the hydrolase activities involved in N, P or C cycles in both soils. All contaminants inhibited hydrolase activities in the sandy soil, while in the clayey soil diesel oil stimulated enzyme activity, particularly at the higher concentration. In both soils, a phytotoxic effect on barley and ryegrass seed germination was observed in the contaminated soils, particularly in those contaminated with diesel or petroleum. PMID:17083964

  14. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    NASA Astrophysics Data System (ADS)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  15. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  16. A new isoquinoline alkaloid with anti-microbial properties from Berberis jaeschkeana Schneid. var. jaeschkeana.

    PubMed

    Alamzeb, Muhammad; Khan, M Rafiullah; Mamoon-Ur-Rashid; Ali, Saqib; Khan, Ashfaq Ahmad

    2015-01-01

    One new isoquinoline alkaloid named berberidione (1) along with four new source alkaloids berberine (2), palmatine (3), jatrorrhizine (4) and chondrofoline (5) and three new source non-alkaloids syringic acid (6), β-sitosterol (7) and stigmasterol (8) was isolated and characterised from different fractions of Berberis jaeschkeana Schneid var. jaeschkeana. All the structures were determined from 1D and 2D spectroscopic data. Crude extract, sub-fractions and isolated compounds showed excellent anti-microbial properties. The toxicity level for the alkaloids was found to be very low on THP-1 cells. PMID:25424893

  17. Effects of bacterial inactivation methods on downstream proteomic analysis.

    PubMed

    Lin, Andy; Merkley, Eric D; Clowers, Brian H; Hutchison, Janine R; Kreuzer, Helen W

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation-induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography-tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α=1.71×10(-2) for E. coli, α=4.97×10(-4) for Y. pestis) and irradiation (α=9.43×10(-7) for E. coli, α=1.21×10(-5) for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation. PMID:25620019

  18. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    SciTech Connect

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  19. Effect of Inactivation of the Arg- and/or Lys-Gingipain Gene on Selected Virulence and Physiological Properties of Porphyromonas gingivalis

    PubMed Central

    Grenier, Daniel; Roy, Sophie; Chandad, Fatiha; Plamondon, Pascale; Yoshioka, Masami; Nakayama, Koji; Mayrand, Denis

    2003-01-01

    Proteolytic enzymes produced by Porphyromonas gingivalis are thought to play critical roles in the pathogenesis of periodontitis. The aim of this study was to investigate the effect of gingipain cysteine proteinase gene inactivation on selected pathological and physiological functions of P. gingivalis. Our results showed that Arg- and Lys-gingipain activities are critical components for the efficient growth of P. gingivalis in human serum. However, when the serum was supplemented with peptides provided as pancreatic casein hydrolysate, the gingipains did not appear to be essential for growth. The effect of gingipain gene inactivation on the susceptibility of P. gingivalis to serum bactericidal activity was investigated using standardized human serum. The wild-type strain, P. gingivalis ATCC 33277, was largely unaffected by the bactericidal activity of human serum complement. On the other hand, mutants lacking Arg-gingipain A, Arg-gingipain B, or Lys-gingipain activity were susceptible to complement. Since gingipains are mostly located on the outer membrane of P. gingivalis, inactivation of the genes for these enzymes may modify cell surface properties. We showed that gingipain-deficient mutants differed in their capacities to assimilate radiolabeled amino acids, cause hemolysis, express adhesins, hemagglutinate, and form biofilms. Lastly, the gingipains, more specifically Arg-gingipains, were responsible for causing major cell damage to human gingival fibroblasts. In conclusion, our study indicated that, in addition to being critical in the pathogenic process, gingipains may play a variety of physiological roles in P. gingivalis, including controlling the expression and/or processing of virulence factors. Mutations in gingipain genes thus give rise to pleiotropic effects. PMID:12874356

  20. Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice

    NASA Astrophysics Data System (ADS)

    Arjeh, Edris; Barzegar, Mohsen; Ali Sahari, Mohammad

    2015-09-01

    Recently, due to the beneficial effects of bioactive compounds, demand for minimally processed fruits and fruit juices has increased rapidly in the world. In this study, sour cherry juice (SCJ) was exposed to gamma irradiation at 0.0, 0.5, 1.5, 3.0, 4.5, and 6.0 kGy and then stored at 4 °C for 60 days. Total soluble solids (TSS), total acidity (TA), color, total phenolic content (TPC), total monomeric anthocyanin content (TMC), antioxidant activity, organic acid profile, and microbial analysis were evaluated at regular intervals during the storage. Results indicated that irradiation did not have any significant effect on TSS, while level of TA increased significantly at the dose of 6 kGy (p<0.05). Furthermore, irradiation treatment and storage time led to a significant increase in L* and b* values and a decrease in a* values. Total monomeric anthocyanin content of the irradiated SCJ was lower than that of the non-irradiated one (24% at 3.0 kGy) and also changed toward a more negative direction during the storage (63% at 3.0 kGy for 60 days). There was a significant decrease in the antioxidant activity (DPPH radical scavenging and FRAP assay) in both irradiated and stored SCJs. After irradiation (0-6 kGy), the results showed that the concentration of malic and oxalic acid significantly increased; but, the concentration of ascorbic, citric, fumaric, and succinic acids significantly decreased. Gamma irradiation with doses of ≥3 kGy resulted in overall reduction in microbial loads. Based on the results obtained from the changes of physicochemical properties, antioxidant activity, and microbial analysis, irradiation of SCJ at doses of higher than 3.0 kGy is not recommended.

  1. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  2. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation

    NASA Astrophysics Data System (ADS)

    Escobar, Indra Elena C.; Santos, Vilma M.; da Silva, Danielle Karla A.; Fernandes, Marcelo F.; Cavalcante, Uided Maaze T.; Maia, Leonor C.

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  3. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas. PMID:25822889

  4. Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium).

    PubMed

    Muzaffar, Sabeera; Ahmad, Mudasir; Wani, S M; Gani, Adil; Baba, Waqas N; Shah, Umar; Khan, Asma Ashraf; Masoodi, F A; Gani, Asir; Wani, Touseef Ahmed

    2016-06-01

    The cherry was treated with ultrasonic waves (33 kHz, 60 W) at different time intervals (10, 20, 30, 40, 60 min) and study was carried out to analyze the change in physico-chemical properties (TSS, pH, color, acidity and firmness), antioxidant potential and microbial load of the fruit during the storage period of 15 days at 4 °C. It was observed that ultrasound treatment (US) between 30 and 40 min showed better retention of color of the fruit during the storage period. The antioxidant assays (DPPH, ABTS and TPC) also increased significantly (P ≤ 0.05) up to 40 min, however the firmness of the fruit was affected and it showed a significant decrease beyond 20 min of US treatment. The sample with 40 min US treatment showed significantly less microbial load than other samples. The 20-40 min US treatment time (33 kHz, 60 W) was suggested for preservation of cherry during the storage at 4 °C. PMID:27478231

  5. Non-target effects of pretilachlor on microbial properties in tropical rice soil.

    PubMed

    Sahoo, Subhashree; Adak, Totan; Bagchi, Torit B; Kumar, Upendra; Munda, Sushmita; Saha, Sanjoy; Berliner, J; Jena, Mayabini; Mishra, B B

    2016-04-01

    The use of herbicides has been questioned in recent past for their non-target effects. Therefore, we planned to study the effect of pretilachlor on growth and activities of microbes in tropical rice soil under controlled condition at National Rice Research Institute, Cuttack, India. Three pretilachlor treatments, namely, recommended dose at 600 g a.i. ha(-1) (RD), double the recommended dose at 1200 g a.i. ha(-1) (2RD), and ten times of the recommended dose at 6000 g a.i. ha(-1) (10RD) along with control, were imposed. The initial residue (after 2 h of spray) deposits in soil were 0.174, 0.968, and 3.35 μg g(-1) for recommended, double the recommended, and ten times of the recommended doses, respectively. No residue in soil was detected in RD treatment on day 45. The half life values were 16.90, 17.76, and 36.47 days for RD, 2RD, and 10RD treatments, respectively. Application of pretilachlor at 10RD, in general, had significantly reduced the number of bacteria, actinomycetes, fungi, nitrogen fixers, and microbial biomass carbon. Pretilachlor at RD did not record any significant changes in microbial properties compared to control. The results of the present study thus indicated that pretilachlor at RD can be safely used for controlling grassy weeds in rice fields. PMID:26739987

  6. Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model.

    PubMed

    Thneibat, Amenah; Fontana, Margherita; Cochran, Michael A; Gonzalez-Cabezas, Carlos; Moore, B Keith; Matis, Bruce A; Lund, Melvin R

    2008-01-01

    The antimicrobial and anticariogenic properties of a copper varnish (experimental mixture of Doc's Best Red Copper cement and Copalite varnish, Cooley and Cooley, Ltd, Houston, TX, USA: designated in this study as "Copper Seal") on the root surface were evaluated in an in vitro microbial caries model. Fifty-six human root specimens were prepared from anterior teeth and randomly divided into four groups: Groups 1 and 3-Copper Seal; Group 2-chlorhexidine varnish, the positive control (Cervitec, Ivolcar Vivadent, Schaan, Liechtenstein) and Group 4-a negative control that received no treatment. The varnishes were painted in Groups 1, 2 and 3, then visually removed after 24 hours in Group 1. The specimens were demineralized in a microbial caries model for five days. Plaque was collected from the specimens to obtain bacterial colonization numbers, then the specimens were sectioned and analyzed for lesion extent using Confocal Laser Scanning microscopy. There were no significant differences (p>0.05) among the four groups in terms of bacterial count. Regarding caries lesion development, the group with copper varnish visually removed (Group 1) and the non-treated group (Group 4) had significantly greater total area caries lesions and total lesion fluorescence than the copper varnish without removal group (Group 3) and the chlorhexidine group (Group 2). Therefore, it was concluded that copper and chlorhexidine varnishes have anticariogenic effects on root surfaces, as tested in this model. PMID:18435187

  7. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    EPA Science Inventory

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  8. Inactivation of internalized and surface contaminated enteric viruses in green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-09-01

    With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and high pressure are effective technologies compared to traditional chlorine spray on green onions to reduce enteric viral pathogens and to determine the effect of location of the virus (surface or internalized) on the efficacy of these processes. Mature green onion plants were inoculated with murine norovirus (MNV), hepatitis A virus (HAV) and human adenovirus type 41 (Ad41) either on the surface through spot inoculation or through inoculating contaminated hydroponic solution allowing for uptake of the virus into the internal tissues. Inoculated green onions were treated with UV (240 mJ s/cm(2)), ozone (6.25 ppm for 10 min), pressure (500 MPa, for 5 min at 20°C), or sprayed with calcium hypochlorite (150 ppm, 4°C). Viral inactivation was determined by comparing treated and untreated inoculated plants using cell culture infectivity assays. Processing treatments were observed to greatly affect viral inactivation. Viral inactivation for all three viruses was greatest after pressure treatment and the lowest inactivation was observed after chlorine and UV treatment. Both surface inoculated viruses and viruses internalized in green onions were inactivated to some extent by these post-harvest processing treatments. These results suggest that ozone and high pressure processes aimed to reduce the level of microbial contamination of produce have the ability to inactivate viruses if they become localized in the interior portions of produce. PMID:23973828

  9. Microbial utilization of low molecular weight organics in soil depends on the substances properties

    NASA Astrophysics Data System (ADS)

    Gunina, Anna

    2016-04-01

    Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between

  10. Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage.

    PubMed

    Al Mijan, Mohammad; Choi, Kyung-Hoon; Kwak, Hae-Soo

    2014-01-01

    This study was carried out to investigate the possibility of adding nanopowdered eggshell (NPES) into yogurt to improve the functionality of yogurt and the effects of adding NPES on the physicochemical, microbial, and sensory properties of the products during storage. The pH and mean lactic acid bacteria counts of NPES-added (0.15-0.45%, wt/vol) yogurt ranged from 4.31 to 4.66 and from 6.56 × 10(8) to 8.56 × 10(8)cfu/mL, respectively, whereas these values ranged from 4.13 to 4.44 and 8.46 × 10(8) to 1.39 × 10(9), respectively, for the control samples during storage at 5 °C for 16d, which indicates a prolonged shelf-life with NPES-supplemented yogurt. Color analysis showed that the lightness (L*) and position between red and green (a*) values were not significantly influenced by the addition of NPES. However, the position between yellow and blue (b*) value significantly increased with the addition of the concentration (0.45%, wt/vol) of NPES at d 16 of storage. Sensory evaluation revealed that NPES-added yogurts showed a notably less sourness score and a higher astringency score than the control. An earthy flavor was higher in 0.45% NPES-supplemented yogurt compared with the control. Based on the results obtained from the current study, the concentration (0.15 to 0.30%, wt/vol) of NPES can be used to formulate NPES-supplemented yogurt without any significant adverse effects on the physicochemical, microbial, and sensory properties. PMID:24746127

  11. Interactions between properties of amended strip mine spoils and microbial activities

    SciTech Connect

    Utsalo, S.J.

    1981-01-01

    Properties of strip mine spoils before and after amendment with varying levels of carbon and nitrogen sources are characterized and compared with properties of similarly amended garden soil samples. Changes in spoils as reflected in the stimulation of microbial populations, rate of nitrate formation, the turnover of microbial biomass and the growth yields of white clover and rye grass are evaluated. Limed spoils and garden soils were fertilized and incubated at 25/sup 0/C following amendments with organic substrates. Changes in parameters related to soil fertility status were analyzed on a weekly basis. The possible identity and the toxic effects on white clover and a Rhizobium of acidity factors present in strip mine spoils were evaluated using soil experiments and pure culture studies in artificial culture media. The results indicate that acid spoils contain low numbers of viable microorganisms which readily respond to soil amendment with substrates. No nitrification occurs in acid spoils but liming and inoculation with compost infusion stimulate active nitrification. Aluminum, manganese and acidity appear to be important factors which inhibit the survival of plants and microbes in spoils. Adequate liming improves rhizobial survival and growth and nodulation of white clover in spoils. Acidity factors have greater impact on Rhizobium than on the white clover host under nutritionally independent conditions. Increase in inoculum size enhances nodulation and growth of clover at low aluminum levels. Reducing the time of exposure of rhizobia to acidity factors outside the symbiotic host does not appear to enhance the growth yield of clover under symbiotic conditions. Molds appear to contribute more to the increased aggregate stability observed in amended soils than bacteria and actinomycetes.

  12. Kinetics of Hydrothermal Inactivation of Endotoxins ▿

    PubMed Central

    Li, Lixiong; Wilbur, Chris L.; Mintz, Kathryn L.

    2011-01-01

    A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106 Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667

  13. Synthesis, spectroscopic properties and photodynamic activity of porphyrin-fullerene C60 dyads with application in the photodynamic inactivation of Staphylococcus aureus.

    PubMed

    Ballatore, M Belén; Spesia, Mariana B; Milanesio, M Elisa; Durantini, Edgardo N

    2014-08-18

    A covalently linked porphyrin-fullerene C60 dyad 5 was synthesized by 1,3-dipolar cycloaddition using 5-(4-formylphenyl)-10,15,20-tris[3-(N-ethylcarbazoyl)]porphyrin, N-methylglycine and fullerene C60. Methylation of 5 was used to obtain a cationic dyad 6. Spectroscopic properties were compared in toluene, N,N-dimethylformamide (DMF) and toluene/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Absorption spectra of the dyads were essentially a superposition of the spectra of the porphyrin and fullerene reference compounds, indicating a very weak interaction between the chromophores in the ground state. The fluorescence emission of the porphyrin moiety in the dyads was strongly quenched by the attached fullerene C60 unit. The singlet molecular oxygen, O2((1)Δg), productions (ΦΔ) were strongly dependent on the solvent polarity. Similar ΦΔ values were obtained for 5,10,15,20-tetrakis[3-(N-ethylcarbazoyl)]porphyrin (TCP) in both solvents. Also, dyad 5 showed a high O2((1)Δg) generation in toluene. However, O2((1)Δg) production mediated by 5 considerably diminished in the more polar solvent DMF. Also, a high photodynamic activity involving O2((1)Δg) was found for both dyads in a simple biomimetic system formed by AOT reverse micelles. The photoinactivation ability of these dyads was investigated in Staphylococcus aureus cell suspensions. Photosensitized inactivation of S. aureus by dyad 6 exhibits a 4.5 log decrease of cell survival (99.997% cell inactivation), when the cultures are treated with 5 μM photosensitizer and irradiated with visible light (350-800 nm) for 30 min. Under these conditions, a lower photocytotoxic effect was found for 5 (3.2 log decrease). Furthermore, photoinactivation induced by 6 was higher than those obtained with the separate moieties of the dyad. Therefore, molecular structures formed by porphyrin-fullerene C60 dyads represent interesting photosensitizers to inactivate S. aureus. PMID:25010938

  14. Conjugational hyperrecombination achieved by derepressing the LexA regulon, altering the properties of RecA protein and inactivating mismatch repair in Escherichia coli K-12.

    PubMed Central

    Lanzov, Vladislav A; Bakhlanova, Irina V; Clark, Alvin J

    2003-01-01

    The frequency of recombinational exchanges (FRE) that disrupt co-inheritance of transferred donor markers in Escherichia coli Hfr by F(-) crosses differs by up to a factor of two depending on physiological factors and culture conditions. Under standard conditions we found FRE to be 5.01 +/- 0.43 exchanges per 100-min units of DNA length for wild-type strains of the AB1157 line. Using these conditions we showed a cumulative effect of various mutations on FRE. Constitutive SOS expression by lexA gene inactivation (lexA71::Tn5) and recA gene mutation (recA730) showed, respectively, approximately 4- and 7-fold increases of FRE. The double lexA71 recA730 combination gave an approximately 17-fold increase in FRE. Addition of mutS215::Tn10, inactivating the mismatch repair system, to the double lexA recA mutant increased FRE to approximately 26-fold above wild-type FRE. Finally, we showed that another recA mutation produced as much SOS expression as recA730 but increased FRE only 3-fold. We conclude that three factors contribute to normally low FRE under standard conditions: repression of the LexA regulon, the properties of wild-type RecA protein, and a functioning MutSHL mismatch repair system. We discuss mechanisms by which the lexA, recA, and mutS mutations may elevate FRE cumulatively to obtain hyperrecombination. PMID:12702672

  15. Probing the oxidation reduction properties of terrestrially and microbially derived dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Fimmen, Ryan L.; Cory, Rose M.; Chin, Yu-Ping; Trouts, Tamara D.; McKnight, Diane M.

    2007-06-01

    Dissolved organic matter (DOM) has been shown to be an integral component in biogeochemical electron transfer reactions due to its demonstrated ability to facilitate redox reactions. While the role of DOM as a facilitator of electron transfer processes has been demonstrated, greater knowledge would lead to better understanding of the structural components responsible for redox behavior, such as quinones and nitrogen and sulfur (N/S) functional groups. This investigation uses direct scan voltammetry (DSV) coupled with fluorescence and NMR spectroscopy as well as thermochemolysis gas chromatography mass spectrometry (GC-MS) and X-ray photoelectron spectroscopy (XPS) to elucidate the organic moieties responsible for facilitating electron transfer reactions. We contrast electrochemical properties and structural details of three organic matter isolates from diverse sources; Great Dismal Swamp DOM (terrestrially derived, highly aromatic), Pony Lake DOM (microbially derived, highly aliphatic) and Toolik Lake (terrestrially derived, photochemically and microbially altered) with juglone (a redox-active model quinone). Aromatic and phenolic constituents were detected (by 13C NMR) and recovered (by thermochemolysis GC-MS) from all three fulvic acid samples, highlighting the ubiquity of these compounds and suggesting that the quinone-phenol redox couple is not limited to DOM derived from lignin precursors. The range of hydroxy-benzene and benzoic acid derivatives may explain the lack of a single pair of well-defined oxidation and reduction peaks in the DSV scans. The presence of a wide-range of hydroxylated benzoic acid isomers and other redox-active aromatic residues implies that native DOM possesses overlapping redox potentials analogous to their characteristic range of p Ka values.

  16. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS)

    PubMed Central

    Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip

    2015-01-01

    Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. From the Clinical Editor This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. PMID:24632246

  17. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and

  18. Inactivation of Caliciviruses

    PubMed Central

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  19. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH.) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media. PMID:23799081

  20. An overview on fermentation, downstream processing and properties of microbial alkaline proteases.

    PubMed

    Gupta, R; Beg, Q K; Khan, S; Chauhan, B

    2002-12-01

    Microbial alkaline proteases dominate the worldwide enzyme market, accounting for a two-thirds share of the detergent industry. Although protease production is an inherent property of all organisms, only those microbes that produce a substantial amount of extracellular protease have been exploited commercially. Of these, strains of Bacillus sp. dominate the industrial sector. To develop an efficient enzyme-based process for the industry, prior knowledge of various fermentation parameters, purification strategies and properties of the biocatalyst is of utmost importance. Besides these, the method of measurement of proteolytic potential, the selection of the substrate and the assay protocol depends upon the ultimate industrial application. A large array of assay protocols are available in the literature; however, with the predominance of molecular approaches for the generation of better biocatalysts, the search for newer substrates and assay protocols that can be conducted at micro/nano-scale are becoming important. Fermentation of proteases is regulated by varying the C/N ratio and can be scaled-up using fed-batch, continuous or chemostat approaches by prolonging the stationary phase of the culture. The conventional purification strategy employed, involving e.g., concentration, chromatographic steps, or aqueous two-phase systems, depends on the properties of the protease in question. Alkaline proteases useful for detergent applications are mostly active in the pH range 8-12 and at temperatures between 50 and 70 degrees C, with a few exceptions of extreme pH optima up to pH 13 and activity at temperatures up to 80-90 degrees C. Alkaline proteases mostly have their isoelectric points near to their pH optimum in the range of 8-11. Several industrially important proteases have been subjected to crystallization to extensively study their molecular homology and three-dimensional structures. PMID:12466877

  1. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2010-10-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  2. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2011-03-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  3. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media

    EPA Science Inventory

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  4. Spatial Shifts in Microbial Population Structure Within Poultry Litter Associated with Physicochemical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial populations within poultry litter have been largely ignored with the exception of potential human or livestock pathogens. A better understanding of the community structure and identity of the microbial populations within poultry litter could aid in the development of management practices t...

  5. By passing microbial resistance: xylitol controls microorganisms growth by means of its anti-adherence property.

    PubMed

    Ferreira, Aline S; Silva-Paes-Leme, Annelisa F; Raposo, Nádia R B; da Silva, Sílvio S

    2015-01-01

    Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action. PMID:25483720

  6. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation

    PubMed Central

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca2+, NH4+, pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate. PMID:26696978

  7. Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth

    SciTech Connect

    Clement, T.P.; Hooker, B.S.; Skeen, R.S.

    1996-09-01

    Analytical equations are developed to model changes in porosity, specific surface area, and permeability caused by biomass accumulation in porous media. The proposed equations do not assume any specific pattern for microbial growth but instead are based on macroscopic estimates of average biomass concentrations. For porous media with a pore-size distribution index value ({lambda}) equal to 3, the macroscopic model predictions of porosity, specific surface area, and permeability changes are in exact agreement with biofilm-model predictions. At other values of {lambda} between 2 and 5, simulated porosity profiles are identical and relative specific surface area and permeability profiles show minor deviations. In comparison to biofilm-based models, the macroscopic models are relatively simple to implement and are computationally more efficient. Simulations of biologically reactive flow in a one-dimensional column show that the macroscopic and biofilm approach based transport codes predict almost identical porosity and permeability profiles. The macroscopic models are simple and useful tools for estimating changes in various porous media properties during bioremediation of contaminated aquifers.

  8. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil.

    PubMed

    Kaplan, Daniel I; Xu, Chen; Huang, Shan; Lin, Youmin; Tolić, Nikola; Roscioli-Johnson, Kristyn M; Santschi, Peter H; Jaffé, Peter R

    2016-04-19

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands. PMID:27091553

  9. Some microbial, chemical and sensorial properties of gamma irradiated sesame (Sesamum indicum L.) seeds.

    PubMed

    Al-Bachir, Mahfouz

    2016-04-15

    The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p<0.05), on protein and sugar contents were recorded between irradiated and non-irradiated samples. Total acidity percentage decreased significantly (p<0.05), while total volatile basic nitrogen (TVBN) increased significantly (p<0.05) due to irradiation. During storage, total acidity increased (p<0.05) and TVBN decreased (p<0.05). Gamma irradiation reduced the microorganisms of sesame seeds. Samples treated with 3 kGy or more remained completely free of fungi throughout the storage. While, only the samples treated with 9 kGy remained completely free of bacteria at the end of storage period (after 12 months). The scores for taste, flavor, color and texture of irradiated samples were higher, but not significantly (p>0.05) than those of non-irradiated samples. PMID:26616940

  10. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    USGS Publications Warehouse

    Boot, Claudia M; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  11. Inactivation Gating of Kv4 Potassium Channels

    PubMed Central

    Jerng, Henry H.; Shahidullah, Mohammad; Covarrubias, Manuel

    1999-01-01

    Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174– 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163–174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603–626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316–2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance–voltage curve (∼5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specifc residue in the S4–S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404,406]I. However, this mutant did not exhibit

  12. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  13. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    SciTech Connect

    Scholtz, V. Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  14. Inactivation of the Antifungal and Immunomodulatory Properties of Human Cathelicidin LL-37 by Aspartic Proteases Produced by the Pathogenic Yeast Candida albicans

    PubMed Central

    Bochenska, Oliwia; Zawrotniak, Marcin; Wolak, Natalia; Trebacz, Grzegorz; Gogol, Mariusz; Ostrowska, Dominika; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej

    2015-01-01

    Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage—the LL-25 peptide—is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate. PMID:25847962

  15. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  16. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  17. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    PubMed

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. PMID:24867704

  18. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  19. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

    PubMed

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil

  20. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators

    PubMed Central

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C.; Singh, Brajesh K.

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil’s capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as ‘biomarker’ indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and

  1. Computer aided microbial safety design of food processes.

    PubMed

    Schellekens, M; Martens, T; Roberts, T A; Mackey, B M; Nicolaï, B M; Van Impe, J F; De Baerdemaeker, J

    1994-12-01

    To reduce the time required for product development, to avoid expensive experimental tests, and to quantify safety risks for fresh products and the consequence of processing there is a growing interest in computer aided food process design. This paper discusses the application of hybrid object-oriented and rule-based expert system technology to represent the data and knowledge of microbial experts and food engineers. Finite element models for heat transfer calculation routines, microbial growth and inactivation models and texture kinetics are combined with food composition data, thermophysical properties, process steps and expert knowledge on type and quantity of microbial contamination. A prototype system has been developed to evaluate changes in food composition, process steps and process parameters on microbiological safety and textual quality of foods. PMID:7703003

  2. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter.

    PubMed

    Žifčáková, Lucia; Větrovský, Tomáš; Howe, Adina; Baldrian, Petr

    2016-01-01

    Understanding the ecology of coniferous forests is very important because these environments represent globally largest carbon sinks. Metatranscriptomics, microbial community and enzyme analyses were combined to describe the detailed role of microbial taxa in the functioning of the Picea abies-dominated coniferous forest soil in two contrasting seasons. These seasons were the summer, representing the peak of plant photosynthetic activity, and late winter, after an extended period with no photosynthate input. The results show that microbial communities were characterized by a high activity of fungi especially in litter where their contribution to microbial transcription was over 50%. Differences in abundance between summer and winter were recorded for 26-33% of bacterial genera and < 15% of fungal genera, but the transcript profiles of fungi, archaea and most bacterial phyla were significantly different among seasons. Further, the seasonal differences were larger in soil than in litter. Most importantly, fungal contribution to total microbial transcription in soil decreased from 33% in summer to 16% in winter. In particular, the activity of the abundant ectomycorrhizal fungi was reduced in winter, which indicates that plant photosynthetic production was likely one of the major drivers of changes in the functioning of microbial communities in this coniferous forest. PMID:26286355

  3. Properties and use of botulinum toxin and other microbial neurotoxins in medicine.

    PubMed Central

    Schantz, E J; Johnson, E A

    1992-01-01

    Crystalline botulinum toxin type A was licensed in December 1989 by the Food and Drug Administration for treatment of certain spasmodic muscle disorders following 10 or more years of experimental treatment on human volunteers. Botulinum toxin exerts its action on a muscle indirectly by blocking the release of the neurotransmitter acetylcholine at the nerve ending, resulting in reduced muscle activity or paralysis. The injection of only nanogram quantities (1 ng = 30 mouse 50% lethal doses [U]) of the toxin into a spastic muscle is required to bring about the desired muscle control. The type A toxin produced in anaerobic culture and purified in crystalline form has a specific toxicity in mice of 3 x 10(7) U/mg. The crystalline toxin is a high-molecular-weight protein of 900,000 Mr and is composed of two molecules of neurotoxin (ca. 150,000 Mr) noncovalently bound to nontoxic proteins that play an important role in the stability of the toxic unit and its effective toxicity. Because the toxin is administered by injection directly into neuromuscular tissue, the methods of culturing and purification are vital. Its chemical, physical, and biological properties as applied to its use in medicine are described. Dilution and drying of the toxin for dispensing causes some detoxification, and the mouse assay is the only means of evaluation for human treatment. Other microbial neurotoxins may have uses in medicine; these include serotypes of botulinum toxins and tetanus toxin. Certain neurotoxins produced by dinoflagellates, including saxitoxin and tetrodotoxin, cause muscle paralysis through their effect on the action potential at the voltage-gated sodium channel. Saxitoxin used with anaesthetics lengthens the effect of the anaesthetic and may enhance the effectiveness of other medical drugs. Combining toxins with drugs could increase their effectiveness in treatment of human disease. PMID:1579114

  4. Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AM 1

    PubMed Central

    Eady, R. R.; Large, P. J.

    1971-01-01

    1. An improved procedure is reported for purification of the amine dehydrogenase from methylamine-grown Pseudomonas AM1 which yielded a product homogeneous by sedimentation and disc-electrophoretic analysis, with molecular weight of 133000. 2. The purified enzyme had absorption maxima at 280 and 430nm. On aging, a third peak appeared at 325nm, and the 430nm peak decreased in intensity. This spectrum was independent of pH. 3. Addition of 2.5mm-semicarbazide, phenylhydrazine, hydrazine or hydroxylamine produced modified spectra with maxima respectively at 400, 440, 395 and 425nm. 4. Aerobic addition of methylamine resulted in a bleaching of the 430nm peak and the appearance of a new one at 325nm. This spectral change was retained after removal of the methylamine by dialysis. The original spectrum could be restored on addition of phenazine methosulphate. 5. Addition of borohydride partially inactivated the enzyme and produced spectral changes similar to those observed with methylamine. Pre-treatment with methylamine prevented the inactivation by borohydride. The degree of inactivation could be increased by alternate phenazine methosulphate and borohydride treatments. 6. The addition of methylamine or borohydride each caused shifts in the fluorescence emission maximum from 348 to 380nm. 7. Lineweaver–Burk plots of reciprocal activity against reciprocal concentration of either of the substrates n-butylamine or phenazine methosulphate were consistent with a mechanism that involves interconversion of two free forms of the enzyme by the two substrates. 8. The enzyme, although spectrally modified, was not inactivated by dialysis against diethyldithiocarbamate, and contained about 0.27 g-atom of copper/mol, with small traces of cobalt, iron and zinc. 9. Conventional methods of resolution did not release the prosthetic group. Heat denaturation after treatment of the enzyme with methylamine liberated a yellow chromophore which did not reactivate resolved aspartate

  5. Effects of UV-C treatment on inactivation of Salmonella and Escherichia coli O157:H7 on tomato surface and steam scars, native microbial loads, and quality of grape tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effectiveness of ultraviolet-C (UV-C) light inactivation as affected by the location of pathogens on the smooth surface and at stem scars of Grape tomatoes. A bacterial cocktail containing three strains of E. coli O157:H7 (C9490, E02128 and F00475) and a three serotypes o...

  6. Microbial community structures and metabolic profiles response differently to physiochemical properties between three landfill cover soils.

    PubMed

    Long, Xi-En; Wang, Juan; Huang, Ying; Yao, Huaiying

    2016-08-01

    Landfills are always the most important part of solid waste management and bear diverse metabolic activities involved in element biogeochemical cycling. There is an increasing interest in understanding the microbial community and activities in landfill cover soils. To improve our knowledge of landfill ecosystems, we determined the microbial physiological profiles and communities in three landfill cover soils (Ninghai: NH, Xiangshan: XS, and Fenghua: FH) of different ages using the MicroResp(TM), phospholipid fatty acid (PLFA), and high-throughput sequencing techniques. Both total PLFAs and glucose-induced respiration suggested more active microorganisms occurred in intermediate cover soils. Microorganisms in all landfill cover soils favored L-malic acid, ketoglutarate, and citric acid. Gram-negative bacterial PLFAs predominated in all samples with the representation of 16:1ω7, 18:1ω7, and cy19:0 in XS and NH sites. Proteobacteria dominated soil microbial phyla across different sites, soil layers, and season samples. Canonical correspondence analysis showed soil pH, dissolved organic C (DOC), As, and total nitrogen (TN) contents significantly influenced the microbial community but TN affected the microbial physiological activities in both summer and winter landfill cover soils. PMID:27117156

  7. Variability of soil microbial properties: effects of sampling, handling and storage.

    PubMed

    Cernohlávková, Jitka; Jarkovský, Jirí; Nesporová, Michala; Hofman, Jakub

    2009-11-01

    We investigated the effect of soil spatial variability within the sampling site scale, the effects of sample sieving (1, 2 and 4mm), and storage conditions up to 32 weeks (wet at 4 degrees C, -20 degrees C and air dried) on microbial biomass C, respiration, ammonification and nitrification activities in arable, grassland and forest soil. In general, all results were dependent on soil type. Arable soil showed the highest spatial variability, followed by grassland and forest soil. Sieving did not cause large differences; however, higher biomass C and respiration activity were observed in the 1mm than in the 4mm fraction. Storage at 4 degrees C seemed to be the most appropriate up to 8 weeks showing only minor changes of microbial parameters. Freezing of soils resulted in large increase of respiration. Dried storage indicated disruption of microbial communities even after 2 weeks. PMID:19477519

  8. Alteration of microbial properties and community structure in soils exposed to napropamide.

    PubMed

    Guo, Hua; Chen, Guofeng; Lv, Zhaoping; Zhao, Hua; Yang, Hong

    2009-01-01

    The effect of pesticide napropamide (N,N-diethyl-2-(1-naphthalenyloxy) propanamide) on soil microorganisms for long-term (56 d) was assessed by monitoring changes in soil microbial biological responses. Soils were treated with napropamide at 0, 2, 10, 20, 40, and 80 mg/kg soil and sampled at intervals of 1, 3, 7, 14, 28, 42, and 56 d. The average microbial biomass C declined in napropamide-treated soils as compared to control. The same trend was observed on microbial biomass N after napropamide application. We also determined the basal soil respiration (BSR) and observed a high level in soils treated with napropamide during the first 7 d of experiment. But with the passage of incubation time, BSR with napropamide decreased relatively to control. Application of napropamide at 2-80 mg/kg soil had inhibitory effects on the activity of urease and invertase. Activity of catalase was enhanced during the initial 7 d of napropamide application, but soon recovered to the basal level. The depressed enzyme activities might be due to the toxicity of napropamide to the soil microbial populations. To further understand the effect of napropamide on microbial communities, a PCR-DGGE-based experiment and cluster analysis of 16S rDNA community profiles were performed. Our analysis revealed an apparent difference in bacterial-community composition between the napropamide treatments and control. Addition of napropamide apparently increased the number of bands during the 7-14 d of incubation. These results imply that napropamide-induced toxicity was responsible for the disturbance of the microbial populations in soil. PMID:19634425

  9. Microbial community composition and enzyme activities in cryoturbated arctic soils are controlled by environmental parameters rather than by soil organic matter properties

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Knoltsch, Anna; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2014-05-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled by environmental parameters (i.e. temperature, moisture, pH) and organic matter properties. The role of these factors as well as the role of microbial community composition and therefore the main drivers of enzymatic decomposition of SOM are largely unknown, since all of these factors are often intercorrelated. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this combination of topsoil organic matter and subsoil environmental conditions, to identify controls on microbial community composition and enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acids analysis), was similar in cryoturbated OM and in surrounding subsoil, although C and N content were similar in cryoturbated material and topsoils. These results suggest that physical conditions rather than SOM properties shaped microbial community composition. To identify direct and indirect drivers of extracellular enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) we included microbial community composition, C, N and clay content, as well as pH in structural equation models. Models for regular horizons (excluding cryoturbated material), showed that enzyme activities were mainly controlled by C or N. Microbial community composition had no effect. In contrast models for cryoturbated OM, where the microbial community was adapted to subsoil environmental conditions, showed that enzyme activities were also related to microbial community composition. This indicates enzyme activities and more general decomposition to be limited by microbial community composition in cryoturbated organic matter, rather than by the availability of the substrates. The controlling cascade of physical parameters over microbial community composition to enzyme activities

  10. Effect of Inoculation of Acacia senegal mature trees with Mycorrhiza and Rhizobia on soil properties and microbial community structure

    NASA Astrophysics Data System (ADS)

    Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.

    2012-04-01

    Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different

  11. Physicochemical and Microbial Properties of Burrows of the Deposit-feeding Thalassinidean Ghost Shrimp Biffarius arenosus (Decapoda: Callianassidae)

    NASA Astrophysics Data System (ADS)

    Bird, F. L.; Boon, P. I.; Nichols, P. D.

    2000-09-01

    The physicochemical and microbial properties of the burrows of Biffarius arenosus, a ghost shrimp common in temperate south-eastern Australia, were investigated and shown to be more similar to the surface sediments than to the surrounding subsurface sediments. The burrow walls had a similar organic carbon content to that of the surrounding sediment, a result which was consistent with their lack of a discrete mucous lining. Burrow walls, however, were lined with compacted and smoothed sediment and were coloured a distinct light yellow/brown compared with the dark grey of the surrounding subsurface sediments. Moderately reducing redox conditions were found in both the burrow wall and surface sediment (means 213 mV and 243 mV, respectively), indicative of a burrow environment regularly flushed with overlying water by the resident shrimp. Microbial activity (measured as fluorescein diacetate hydrolysis) in the burrow walls was higher than in the surrounding sediments, but there were no significant differences across sediment types in bacterial abundances (epifluorescence microscopy total counts, using DAPI) or in microbial biomasses (total phospholipid contents). Biomarker analysis of the phospholipid fatty acid (PLFA) profiles indicated that bacteria dominated the benthic community (˜80% of total PLFAs), and showed the presence of both aerobic and anaerobic bacteria in all sediment samples.

  12. Soil Microbial Community Dynamics as Influenced by Soil Properties and Landscape Position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Factors that affect plant growth, whether it is manure addition, season, or soil-type and landscape variability may provide insight on how to better manage agricultural fields through the evaluation of soil microbial activity, biomass and community structure. Thus, an in situ study was conducted to ...

  13. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    EPA Science Inventory

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  14. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes

    PubMed Central

    Borton, Hannah M.; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L. M.; Maes, Patrick W.; Mott, Brendon M.; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A. P.; Stanish, Lee F.; Walser, Olivia N.

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  15. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community

  16. Microbial properties of mine spoil materials in the initial stages of soil development

    SciTech Connect

    Machulla, G.; Bruns, M.A.; Scow, K.M.

    2005-08-01

    The early years of soil genesis during mine spoil reclamation are critical for vegetative establishment and may help predict reclamation success. Mine spoils in the Halle-Leipzig region of Germany were analyzed for microbial changes following a hay mulch-seeding treatment without topsoil or fertilizer application. Microbial biomass carbon (C{sub mic}) and dehydrogenase activity (DHA) of spoils were measured each year in the first 3 yr after treatment. In the third year, bacterial community DNA fingerprints were compared with those from a reference soil. Microbial indicators were measured at three depths in the upper 10 cm of spoils at three sites with contrasting parent materials: glacial till (sandy loam), limnic tertiary sediments (high-lignite sandy clay loam), and quaternary sand and gravel (loamy sand). Before reclamation, C{sub mic} means and standard deviations of surface spoils (0-1 cm) were 9{+-}6, 39{+-}11, and 38{+-}16 mg kg{sup -1} for the loamy sand, high-lignite sandy clay loam, and sandy loam spoils, respectively. Within one year, mean C{sub mic} at the surface increased to 148{+-}70, 229{+-}64, and 497{+-}167 mg kg{sup -1}, respectively, and was significantly higher at 0 to 1 cm than at lower depths. Highest DHA and DNA yields were obtained in the 0- to 1-cm depth of the sandy loam spoils. Microbial biomass C values exhibited significant correlations with DHA, DNA yield, and extractable C for all three mine spoils. Soil microbial indices were more responsive than plant measurements to differences in parent materials.

  17. 40 CFR 141.720 - Inactivation toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inactivation toolbox components. 141.720 Section 141.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Requirements for Microbial Toolbox Components §...

  18. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    PubMed

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations. PMID:23471558

  19. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola

    PubMed Central

    Craft, C. M.; Nelson, E. B.

    1996-01-01

    Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease

  20. Microbial Properties of Composts That Suppress Damping-Off and Root Rot of Creeping Bentgrass Caused by Pythium graminicola.

    PubMed

    Craft, C M; Nelson, E B

    1996-05-01

    Composts prepared from a variety of feedstocks were tested for their ability to suppress seedling and root diseases of creeping bentgrass caused by Pythium graminicola. Among the most suppressive materials in laboratory experiments were different batches of a brewery sludge compost and a biosolids compost from Endicott, N.Y. Batches of these composts that were initially not suppressive to Pythium damping-off became more suppressive with increasing compost age. Leaf, yard waste, food, and spent mushroom composts as well as certain biosolids, cow manure, chicken-cow manure, and leaf-chicken manure composts were not suppressive to Pythium damping-off. In some cases, turkey litter, chicken manure, chicken-leaf, and food waste composts were inhibitory to creeping bentgrass seed germination in laboratory experiments. Microbial populations varied among all of the composts tested. Bacterial populations were high in all composts except the turkey litter compost, in which populations were 1,000- to 10,000-fold lower than in the other composts tested. Among the highest populations of heterotrophic fungi and antibiotic-producing actinomycetes were those found in all batches of the brewery sludge compost, whereas the lowest populations were found in turkey litter, chicken manure, and food waste composts. Heat treatment of suppressive composts reduced populations of bacteria, fungi, and actinomycetes in all composts tested. Disease suppressiveness was also reduced or eliminated in heated composts. Amending heated composts with small amounts of nonheated compost restored suppressive properties and partially restored microbial populations to wild-type levels. A strong negative relationship between compost microbial activity (as measured by the hydrolysis of fluorescein diacetate) and Pythium damping-off severity was observed. When composts were applied to creeping bentgrass in field experiments, a significant level of suppressiveness was evident with some composts when disease

  1. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss.

    PubMed Central

    Fernandes, Jorge M O; Kemp, Graham D; Molle, M Gerard; Smith, Valerie J

    2002-01-01

    Skin exudates of rainbow trout contain a potent 13.6 kDa anti-microbial protein which, from partial internal amino acid sequencing, peptide mass fingerprinting, matrix-associated laser desorption/ionization MS and amino acid analysis, seems to be histone H2A, acetylated at the N-terminus. The protein, purified to homogeneity by ion-exchange and reversed-phase chromatography, exhibits powerful anti-bacterial activity against Gram-positive bacteria, with minimal inhibitory concentrations in the submicromolar range. Kinetic analysis revealed that at a concentration of 0.3 microM all test bacteria lose viability after 30 min incubation. Weaker activity is also displayed against the yeast Saccharomyces cerevisiae. The protein is salt-sensitive and has no haemolytic activity towards trout erythrocytes at concentrations below 0.3 microM. Reconstitution of the protein in a planar lipid bilayer strongly disturbs the membrane but does not form stable ion channels, indicating that its anti-bacterial activity is probably not due to pore-forming properties. This is the first report to show that, in addition to its classical function in the cell, histone H2A has extremely strong anti-microbial properties and could therefore help contribute to protection against bacterial invasion. PMID:12164782

  2. Changes in soil chemical properties and microbial activities in response to the fungicide Ridomil Gold plus copper.

    PubMed

    Demanou, Joseph; Monkiéjé, Adolphe; Njin, Thomas; Foto, Samuel M; Nola, Moise; Togouet, Serges H Zebaze; Kemka, Norbert

    2004-03-01

    The purpose of the study was to investigate changes of soil chemical and biological properties changes resulting from a single application of the fungicide Ridomil Gold plus copper (Ridomil Gold plus)(mefenoxam 6% + copper oxide 60%) at the following rates 0.25, 0.5, 1, 2, and 10 g m(-2). Selected chemical properties generally differed between fungicide rates over longer incubation periods. Microbial activity indices (available N, ammonification rates and specific enzymatic systems) were more sensitive indicators of change. Values of these indicators generally increased with incubation period and decreased or increased at high rates. Significant changes in P availability occurred after 90 days of incubation at rates > or = 1 g m(-2). Incorporation of the fungicide significantly increased NH4+ levels in soil after 75 days of incubation. These changes stimulated soil microbial activity as evidenced by increased ammonification rates especially at long-term exposure. Of the enzyme activities studied, dehydrogenase and beta-glucosidase activities were the most sensitive to ridomil gold plus. This sensitivity was more pronounced with the dehydrogenase activity. PMID:16696178

  3. Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Pu, Xiong; Choi, Woongchul; Choi, Mi-Jin; Ryu, Yeontack; Hou, Huijie; Lin, Furong; de Figueiredo, Paul; Yu, Choongho; Han, Arum

    2015-04-01

    In microbial fuel cells (MFCs), physical and electrochemical interactions between microbes and electrode surfaces are critical to performance. Nanomaterial-based electrodes have shown promising performances, however their unique characteristics have not been fully utilized. The developed electrodes here consist of multi-wall carbon nanotubes (MWCNTs) directly grown in the radial direction from the wires of stainless steel (SS) meshes, providing extremely large three-dimensional surfaces while ensuring minimal ohmic loss between CNTs and SS meshes, fully utilizing the advantages of CNTs. Systematic studies on how different lengths, packing densities, and surface conditions of CNTs affect MFC power output revealed that long and loosely packed CNTs without any amorphous carbon show the highest power production performance. The power density of this anode is 7.4-fold higher compared to bare carbon cloth, which is the highest reported improvement for MFCs with nanomaterial-decorated electrodes. The results of this study offer great potential for advancing the development of microbial electrochemical systems by providing a highly efficient nanomaterial-based electrode that delivers large surface area, high electrochemical activity, and minimum ohmic loss, as well as provide design principles for next-generation nanomaterial-based electrodes that can be broadly applicable for highly efficient microbial electrochemical cells.

  4. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    NASA Astrophysics Data System (ADS)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  5. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  6. Physical vapor deposited titanium thin films for biomedical applications: Reproducibility of nanoscale surface roughness and microbial adhesion properties

    NASA Astrophysics Data System (ADS)

    Lüdecke, Claudia; Bossert, Jörg; Roth, Martin; Jandt, Klaus D.

    2013-09-01

    The surface topography is of great importance for the biological performance of titanium based implants since it may influence the initial adsorption of proteins, cell response, as well as microbial adhesion. A recently described technique for the preparation of titanium thin films with an adjustable surface roughness on the nanometer scale is the physical vapor deposition (PVD). The aims of this study were to statistically evaluate the reproducibility of nanorough titanium thin films prepared by PVD using an atomic force microscopy (AFM) based approach, to test the microbial adhesion in dependence of the nanoscale surface roughness and to critically discuss the parameters used for the characterization of the titanium surfaces with respect to AFM microscope settings. No statistically significant differences were found between the surface nanoroughnesses of the PVD prepared titanium thin films. With increasing surface nanoroughness, the coverage by Escherichia coli decreased and the microbial cells were increasingly patchy distributed. The calculated roughness values significantly increased with increasing AFM scan size, while image resolution and pixel density had no influence on this effect. Our study shows that PVD is a suitable tool to reproducibly prepare titanium thin films with a well-defined surface topography on the nanometer scale. These surfaces are, thus, a suitable 2D model system for studies addressing the interaction between surface nanoroughness and the biological system. First results show that surface roughness even on the very low nanometer scale has an influence on bacterial adhesion behavior. These findings give new momentum to biomaterials research and will support the development of biomaterials surfaces with anti-infectious surface properties.

  7. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    PubMed

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. PMID:24815929

  8. Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat.

    PubMed

    Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda

    2016-06-01

    Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P < 0.05) and lower (P < 0.05) yellowness and redness. Post mortem refrigerated storage influenced oxidative and microbial stability and physico-chemical properties of goat meat. PMID:26890722

  9. Microbial, saccharifying and antioxidant properties of an Indian rice based fermented beverage.

    PubMed

    Ghosh, Kuntal; Ray, Mousumi; Adak, Atanu; Dey, Prabuddha; Halder, Suman K; Das, Arpan; Jana, Arijit; Parua Mondal, Saswati; Das Mohapatra, Pradeep K; Pati, Bikas R; Mondal, Keshab C

    2015-02-01

    Haria, a popular rice based ethnic fermented beverage, is consumed as a staple food and refreshing drink by the vast number of Indian tribal people. In this study, the composition of microbial consortia and the occurrence of some important nutraceuticals during haria preparation were investigated. The quantities of moulds and yeasts were highest at 2nd day, and then declined, but, on the contrary, the quantity of Lactic Acid Bacteria and Bifidobacterium sp. increased concurrently during the course of fermentation. Accumulation of starch hydrolytic enzymes along with different types of malto-oligosaccharides like maltotetrose (26.18μg/gm), maltotriose (28.16μg/gm), and maltose (26.94μg/gm) were also noted. Furthermore, GC-MS analysis indicated the occurrence of pyranose derivatives in the fermented products. The fermented materials showed higher free radicals scavenging activity (82.54%, 4th day) against DPPH radicals. These studies clearly demonstrated that the microbial interaction during fermentation of rice makes it more nutritious, and most likely more beneficial for health. PMID:25172700

  10. C[unk] inactivator inhibition by plasmin

    PubMed Central

    Harpel, Peter C.

    1970-01-01

    Plasmin incubated with partially purified C[unk] inactivator produced a decrease in inhibitory activity which was related to the time of incubation and to the concentration of plasmin. This effect of plasmin was not influenced by the purity of the inhibitor preparations. Soybean trypsin inhibitor and tosyl arginine methyl ester (TAMe), substances which block the active enzymic center of plasmin, prevented the plasmin-induced inactivation. Double diffusion analysis of the functionally deficient, plasmin-treated C[unk] inactivator using a specific antibody, showed a reaction of identity with the untreated inhibitor. Agarose and acrylamide gel immunoelectrophoresis of a plasmin, inhibitor mixture showed the appearance of an additional precipitin band with immunologic reactivity similar to that of the untreated inhibitor. These results demonstrate that plasmin alters both the functional and immunoelectrophoretic properties of C[unk] inactivator, and that the active proteolytic site of plasmin is necessary for this interaction. Since C[unk] inactivator has been shown to inhibit several different proteolytic enzymes including C[unk], kallikrein, PF/Dil, and plasmin, this investigation provides a theoretical relationship between the fibrinolytic, kallikrein, and complement systems which may have pathophysiologic relevance to various human disease states. Images PMID:4244455

  11. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    PubMed Central

    Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  12. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  13. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  14. Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions

    PubMed Central

    Rivas, Ariel L.; Jankowski, Mark D.; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L.; Fair, Jeanne M.; Hoogesteijn, Almira L.; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N.; Kempaiah, Prakash; Ong’echa, John M.; Diesterbeck, Ulrike S.; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B.; Hyman, James M.; Perkins, Douglas J.

    2013-01-01

    Background Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. Methods To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. Results In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. Conclusions More information can be extracted, from the same data, provided that data are

  15. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties(2011 JGI User Meeting)

    SciTech Connect

    Bork, Peer

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on "Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties(2011 JGI User Meeting)

    ScienceCinema

    Bork, Peer

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on "Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Microbial exopolysaccharides as determinants of geomorphological, hydrological and optical properties of soil crusts from the Precambrian till today

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, F.

    2012-04-01

    The presence of microbial extracellular polysaccharides (EPS) in the soil solution and/or in association with particular microbial types can impart novel properties to biological soil crust (BSC), and hence to soil surfaces. For the most part these properties are of a geobiological relevance that exceeds what one could surmise from its relatively low specific mass content. I will review some examples that range from the mundane to the unexpected. EPS associated with filamentous cyanobacteria can effectively and in the long term stabilize the soil surface against erosive forces, even after the microbes are long gone. Electrostatic interactions between EPS and blowing dust may help retain dust particles, enriching the soil with new nutrient sources. In a telltale sign of BSC presence, EPS is the agent that allows sandy soils to fold and curl-up, to form pee-tee's and elephant-skin surfaces, and to crack into polygons like clays would. EPS in large quantities in flat crusts can retain fluids (both liquid and gaseous) resulting in the alteration of hydrological flow and in the formation of internal vesicular horizons, gas bubbles, pock-marked surfaces and other characteristic structures. Yet, in some settings, EPS plays an architectural role in creating a "spongy" texture that increases hydraulic conductivity. This architectural role can indirectly result in significant increases of a crust's albedo. While the diversity of consequences of EPS presence is far from understood, evidence for its sustained role through Earth's history can be found in the form of sedimentary bio-signatures as far back as the Proterozoic.

  18. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    PubMed

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) < arylsulfatase (38-97 %) ≤ urease (1-100 %) ≤ β-galactosidase (30-100 %) < dehydrogenase (69-100 %). The high variability among soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals. PMID:23183935

  19. [Production and study of the immunogenic properties of a bivalent inactivated vaccine against mucosal disease (bovine viral diarrhea and infectious rhinotracheitis)].

    PubMed

    Tsvetkov, P; Petkova, K; Bachiĭski, L; Kharalambiev, Kh E

    1979-01-01

    Bivalent inactivated vaccine against mucous disease (MD) and infectious rhinotracheitis (IR) in cattle was produced from cell cultural MD and IR virus suspensions. The vaccine was concentrated on aluminium hydroxide, inactivated by ethanol and is without residual virus. Saponine in final 1:1500 dilution is added as supplementary adjuvant. Immunogeneity of the vaccine was tested on 10-month-old calves, which had shown full resistance against experimental infection with virulent strains of both viruses. Testing on calves for harmlessness by use of a five-fold higher vaccine dose indicated complete tolerance of the vaccine. The prophylactic effect of the vaccine applied in practical work to directly threatened with immediate MD and IR infection cows, including pregnant ones, consisted in reduced number of cases of abortion, of inborn malformations, in lower neonatal calf death-rate, etc. No disturbances were observed following two-fold vaccination of the animals, a fact proving its harmlessness. The positive results of the studied vaccine allow its further application in the combined prophylaxis of MD and IR in calf fattening and breeding complexes. PMID:232586

  20. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect. PMID:26387360

  1. Improvement of bioelectrochemical property and energy recovery by acylhomoserine lactones (AHLs) in microbial electrolysis cells (MECs)

    NASA Astrophysics Data System (ADS)

    Liu, Wenzong; Cai, Weiwei; Ma, Anzhou; Ren, Ge; Li, Zhiling; Zhuang, Guoqiang; Wang, Aijie

    2015-06-01

    Quorum sensing (QS) has been extensively studied as a cell-cell communication system, where small chemical signal molecules (acylhomoserine lactones, AHLs) can regulate the bacterial communications in bioelectrochemical systems via chemical signaling and electric signaling. In this study, electrochemical activity of bio-anode is substantially promoted by adding two kinds of AHLs with different chain length at the stage of community formation in microbial electrolysis cells (MECs). Hydrogen yield increase is observed by adding of two chain length AHLs, 3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) and 3-oxo-dodecanoyl homoserine lactone (3OC12-HSL). A higher MEC current is acquired with addition of 3OC6-HSL than 3OC12-HSL at a fixed voltage of 0.8 V (vs. SHE). The highest yield is up to 3.8 ± 0.2 mol H2 mol-1 acetate at 10 μM 3OC6-HSL, which is increased 29% over control MECs. Evaluated on applied voltage, energy efficiency is increased to 171.6 ± 21.3% with short chain AHL, however, no significant improvement is performed on energy efficiency and coulombic efficiency with long-chain AHL. The study shows that bioelectrochemical characteristics of MECs varied on the chain length of AHL signal molecules and short-chain AHLs have a more positive effect on electron transfer and energy recovery in MECs.

  2. Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet.

    PubMed

    Zarkasi, Kamarul Zaman; Taylor, Richard S; Abell, Guy C J; Tamplin, Mark L; Glencross, Brett D; Bowman, John P

    2016-04-01

    To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses. PMID:26780099

  3. Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis.

    PubMed

    Bolognesi, A; Barbieri, L; Carnicelli, D; Abbondanza, A; Cenini, P; Falasca, A I; Dinota, A; Stirpe, F

    1989-12-01

    A ribosome-inactivating protein similar to those already known (Stirpe and Barbieri (1986) FEBS Lett. 195, 1-8) was purified from the seeds of Momordica cochinchinensis. This protein, for which the name of momorcochin-S is proposed, is a glycoprotein, has an Mr of approx. 30,000, and an alkaline isoelectric point and can be considered as an iso-form of the previously purified momorcochin from the roots of M. cochinchinensis. Momorcochin-S inhibits protein synthesis by a rabbit-reticulocyte lysate and phenylalanine polymerization by isolated ribosomes, and alters rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). Momorcochin-S was linked to a monoclonal antibody (8A) against human plasma cells, and the resulting immunotoxin was selectively toxic to target cells. PMID:2597699

  4. Comparison of the chemical, physical and microbial properties of composts produced by conventional composting or vermicomposting using the same feedstocks.

    PubMed

    Haynes, R J; Zhou, Y-F

    2016-06-01

    The chemical, physical and microbial properties of thermophilic composts and vermicomposts were compared using the same municipal green waste-based feedstocks: (i) municipal green waste alone, (ii) 75 % municipal green waste/25 % green garden waste and (iii) 75 % municipal green waste/25 % cattle manure. Temperatures reached 37 °C during composting of municipal green waste alone but when garden waste or cattle manure were added, temperatures reached 47 and 52 °C, respectively. At the end of vermicomposting (using Eisenia fetida), the number of earthworms present was greater than that added for the cattle manure-amended feedstock but much less for both the garden waste and municipal green waste alone treatments. The products formed in all treatments generally fell within suggested maturity indices for composts. Greater organic matter decomposition occurred during composting than vermicomposting resulting in composts having a significantly lower organic C content and a greater content of total N, extractable Mg, K, Na, P, and mineral N, a higher EC and a lower C/N ratio than the vermicomposts. For all three feedstocks, vermicomposts had a lower bulk density and greater total porosity and macroporosity than composts. For the garden waste- and cattle manure-amended feedstocks, vermicomposts had a higher microbial biomass C than the composts and for all three feedstocks, basal respiration and metabolic quotient were greatest for vermicomposts. It was concluded that composting is a robust process suitable for treatment of a range of organic wastes but, because of the nutritional requirements of the earthworms, vermicomposting is a much less robust and was only suitable for the cattle manure-amended feedstock. PMID:26888641

  5. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    PubMed

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (p<0.05) of the variation for bacterial community structure, and Cd explained 17.5% (p<0.05), indicating Cr and Cd were the major factors related to bacterial community structure changes. PMID:27046142

  6. Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost.

    PubMed

    Pramanik, P

    2010-05-01

    In this experiment, different microorganisms viz., Trichoderma viridae, Aspergillus niger and Bacillus megaterium were inoculated in bagasse and coir with the objective to study their effect on nutrient dynamics and microbial properties, specially effect on fungal status in these waste materials. Fungal biomass (FBC) was calculated from the ergosterol content in the vermicompost samples. Inoculation of B. megaterium registered comparatively higher TP content in the final stabilized product. Vermicomposting increased microbial biomass carbon (MBC) and nitrogen (MBN) content in bagasse and coir. Microbial biomass carbon to nitrogen ratio (MBC/ MBN) was comparatively narrower in fungi inoculated vermicomposts and FBC/MBC ratio was increased up to 11.69 from 9.51 of control during vermicomposting. PMID:20061132

  7. Investigation of physico-chemical properties and microbial community during poultry manure co-composting process.

    PubMed

    Farah Nadia, Omar; Xiang, Loo Yu; Lie, Lee Yei; Chairil Anuar, Dzulkornain; Mohd Afandi, Mohammed P; Azhari Baharuddin, Samsu

    2015-02-01

    Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1 (V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis (DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks. CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both LiP and MnP activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16S rDNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting. PMID:25662242

  8. Effect of pretreatments on microbial growth and sensory properties of dry-salted olives.

    PubMed

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Değirmencioğlu, Ali; Yildiz, Semanur

    2014-09-01

    The effect of various washing solutions (acetic acid, lactic acid, and chlorine dioxide) and NaCl concentrations (2.5, 5.0, and 10.0%) on the stability of dry-salted olives (cultivars Gemlik and Edincik) during storage was studied. Vacuum-packed olives were stored at 4°C for 7 months and monitored for microbiological changes that occurred in the dry-salted olives during the dry-salting process and for their stability during storage. Microbial populations were enumerated using pour plating (for aerobic plate counts) and spread plating (for counts of lactic acid bacteria and yeasts and molds). Aerobic plate counts were <2.5 log CFU/g for olive samples washed in chlorine dioxide at all NaCl concentrations. At 4°C, the population of yeasts and molds increased steadily during the shelf life in Gemlik olive samples washed with all of the solutions, except chlorine dioxide, whereas yeast and mold counts in Edincik olives decreased depending on the increase in salt concentration. Therefore, different combinations of organic acids, NaCl, and vacuum packaging can be successfully used to control the growth of yeasts and molds in these olives. The combination of vacuum sealing (with a 10-ppm chlorine dioxide wash) and storage at 4°C was the most effective approach for controlling the growth of lactic acid bacteria and yeasts and molds. Members of the sensory panel considered saltiness to be appropriate at 2.5 and 5.0% NaCl. Softness and bitterness scores increased with reduced NaCl concentrations, but rancidity and hardness scores increased as NaCl concentration increased. PMID:25198844

  9. Chemical and microbial properties of shidal, a traditional fermented fish of Northeast India.

    PubMed

    Majumdar, Ranendra K; Roy, Deepayan; Bejjanki, Sandeep; Bhaskar, N

    2016-01-01

    Like Southeast Asian countries fermented fish is a well known strategy of food preservation in the Northeast region of India. Shidals are mostly preferred salt-free fermented fish product amongst all. Chemical and microbial composition, antioxidative potential, fatty acid profile and proteins profile in gel electrophoresis of shidals were studied. pH and total titratable acidity (TTA) have been found as 5.86 ± 0.11, 0.115 ± 0.01 and 6.62 ± 0.07, 0.092 ± 0.01 in punti and phasa shidal respectively. DPPH (·) radical scavenging activity of punti and phasa shidal was determined as 80.15 ± 5.67 and 68.30 ± 3.22 respectively. Presence of eicosapentaenoic, docosahexaenoic, arachidonic, linolenic and linoleic acid indicate the nutritional significance of shidal. However, the result showed that punti shidal was rich in omega-3 but poor in omega-6 fatty acid, whereas, reverse was observed in respect of phasa shidal. Poly acrylamide gel electrophoretic study of protein revealed disappearance of myosin head chain (MHC) in the dry puntius fish (raw material of shidal). Proteins or peptides with low molecular weight between 45 and 29 kDa and between 45 and 66 kDa were noticed in both the shidals and indicative of intensive protein degradation during fermentation. Therefore, fermented fish product, shidal could be used as a potential source of nutrients and natural antioxidants. PMID:26787959

  10. Biochemical Properties and Biological Function of a Monofunctional Microbial Biotin Protein Ligase

    PubMed Central

    Daniels, Kyle G.; Beckett, Dorothy

    2010-01-01

    Biotin protein ligases constitute a family of enzymes that catalyze biotin linkage to biotin-dependent carboxylases. In bacteria these enzymes are functionally divided into two classes; the monofunctional enzymes that only catalyze biotin addition and the bifunctional enzymes that also bind to DNA to regulate transcription initiation. Biochemical and biophysical studies of the bifunctional Escherichia coli ligase suggest that several properties of the enzyme have evolved to support its additional regulatory role. Included among these properties are the order of substrate binding and linkage between oligomeric state and ligand binding. PMID:20499837

  11. BK channel inactivation gates daytime excitability in the circadian clock

    PubMed Central

    Whitt, Joshua P.; Montgomery, Jenna R.; Meredith, Andrea L.

    2016-01-01

    Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. PMID:26940770

  12. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  13. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Muñoz, J; Raymundo, A; Sousa, I

    2016-05-01

    The influence of gum concentration and rhamsan/welan gum ratio on rheological properties, droplet size distribution and physical stability of eco-friendly O/W emulsions stabilized by an ecological surfactant were studied in the present work. The emulsions were prepared with 30wt% α-pinene, a terpenic solvent and an ecological alternative for current volatile organic compounds. Rheological properties of emulsions showed an important dependence on the two studied variables. Flow curves were fitted to the Cross model and no synergistic effect between rhamsan and welan gums was demonstrated. Emulsions with submicron mean diameters were obtained regardless of the gum concentration or the rhamsan/welan ratio used. Multiple light scattering illustrated that creaming was practically eliminated by the incorporation of polysaccharides. The use of rhamsan and welan gums as stabilizers lead to apparent enhancements in emulsion rheology and physical stability. PMID:26826979

  14. Microbial Decontamination of Dried Alaska Pollock Shreds Using Corona Discharge Plasma Jet: Effects on Physicochemical and Sensory Characteristics.

    PubMed

    Choi, Soee; Puligundla, Pradeep; Mok, Chulkyoon

    2016-04-01

    Nonthermal techniques for microbial decontamination are becoming more common for ensuring food safety. In this study, a corona discharge plasma jet (CDPJ) was used for inactivation of microbial contaminants of dried Alaska pollock shreds. Corona plasma jet was generated at a current strength of 1.5 A, and a span length of 25 mm was maintained between the electrode tip and the sample. Upon the CDPJ treatment (0 to 3 min) of dried shreds, microbial contaminants namely aerobic and marine bacteria, and Staphylococcus aureus were inactivated by 2.5, 1.5, and >1.0 log units, respectively. Also, a one-log reduction of molds and yeasts contaminants was observed. The inactivation patterns are fitted well to the pseudo-first-order kinetics or Singh-Heldman model. The CDPJ treatment did not exert statistically significant (P > 0.05) changes in physicochemical properties, namely color characteristics, volatile basic nitrogen, and peroxide value of dried fish shreds, with some exceptions, as compared to untreated controls. Furthermore, CDPJ treatment had no significant impact on the sensory characteristics of dried fish shreds. PMID:26953810

  15. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  16. Slow inactivation of Na(+) channels.

    PubMed

    Silva, Jonathan

    2014-01-01

    Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation. PMID:24737231

  17. Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev Desert ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvester ants (Messor spp.) function as an essential link between aboveground resources and belowground biota such as the microbial community. We examined changes in soil microbial biomass and functional diversity resulting from harvester ant (Messor spp.) activity in the Negev Desert, Israel. Abi...

  18. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of soil microbial communities following soil disturbances is poorly understood. The development of soil microbial communities in two restoration gradients was studied to investigate the impact of land-management regime at the W. K. Kellogg Biological Station, Michigan. The first restora...

  19. Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge.

    PubMed

    Ma, Si-Jia; Ding, Li-Li; Huang, Hui; Geng, Jin-Ju; Xu, Ke; Zhang, Yan; Ren, Hong-Qiang

    2016-08-01

    In this paper, we employ atomic force microscopy (AFM), fluorescence recovery after photobleaching (FRAP) technique, phospholipid fatty acids (PLFA) and MiSeq analysis to study the effects of traditional dissolved oxygen (DO) levels (0.71-1.32mg/L, 2.13-3.02mg/L and 4.31-5.16mg/L) on surface force, cell membrane properties and microbial community dynamics of activated sludge. Results showed that low DO level enhanced the surface force and roughness of activated sludge; the medium DO level decreased cell membrane fluidity by reducing the synthesis of branched fatty acids in the cell membrane; high DO level resulted in the highest protein content in the effluent by EEM scanning. Abundance of Micropruina, Zoogloea and Nakamurella increased and Paracoccus and Rudaea decreased with the increase of DO levels. RDA analysis suggested that saturated fatty acids (SFA), anteiso-fatty acids (AFA) and iso-fatty acids (IFA) were closely related to effluent quality as well as some genera. PMID:27187569

  20. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.

    PubMed

    Manohar, Aswin K; Bretschger, Orianna; Nealson, Kenneth H; Mansfeld, Florian

    2008-04-01

    Electrochemical impedance spectroscopy (EIS) has been used to determine several electrochemical properties of the anode and cathode of a mediator-less microbial fuel cell (MFC) under different operational conditions. These operational conditions included a system with and without the bacterial catalyst and EIS measurements at the open-circuit potential of the anode and the cathode or at an applied cell voltage. In all cases the impedance spectra followed a simple one-time-constant model (OTCM) in which the solution resistance is in series with a parallel combination of the polarization resistance and the electrode capacitance. Analysis of the impedance spectra showed that addition of Shewanella oneidensis MR-1 to a solution of buffer and lactate greatly increased the rate of the lactate oxidation at the anode under open-circuit conditions. The large decrease of open-circuit potential of the anode increased the cell voltage of the MFC and its power output. Measurements of impedance spectra for the MFC at different cell voltages resulted in determining the internal resistance (R(int)) of the MFC and it was found that R(int) is a function of cell voltage. Additionally, R(int) was equal to R(ext) at the cell voltage corresponding to maximum power, where R(ext) is the external resistance that must be applied across the circuit to obtain the maximum power output. PMID:18294928

  1. The influence of different metal ions on light scattering properties of pattern microbial fuel cells' bacteria Desulfuromonas acetoxidans

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Olexsandr I.; Getman, Vasyl'B.; Ferensovyich, Yaroslav P.; Yaremyk, Roman Y.; Hnatush, Svitlana O.

    2011-09-01

    Microbial fuel cell (MFC) technologies represent the newest approach for generating electricity - bioelectricity generation from biomass using bacteria. Desulfuromonas acetoxidans are aquatic obligatory anaerobic sulfur-reducing bacteria that possess an ability to produce electric current in the processes of organic matter oxidation and Fe3+- or Mn4+- reduction. These are pattern objects for MFC systems. They could be applied as a highly effective and self-sustaining model of wastewater treatment which contains energy in the form of biodegradable organic matter. But wastewaters contain high concentrations of xenobiotics, such as different heavy metals that have a detrimental effect towards all living organisms. The influence of different concentrations of MnCl2×4H2O, FeSO4 CuSO4, CdSO4, ZnSO4 and PbNO3 on light scattering properties of aquatic D. acetoxidans bacteria on the base of their cells' size distribution and relative content has been investigated by the new method of measurement. The cell distribution curve was in the range of 0.4 - 1.4 μm. The most crucial changes of cell concentration dependences, compared with other investigated metal ions, have been observed under the influence of copper ions. The ability of D. acetoxidans bacteria to produce electric current upon the specific cultivation conditions and the influence of Fe2+ and Mn2+ has been verified.

  2. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    PubMed

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH. PMID:23880238

  3. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  4. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts.

    PubMed

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt. PMID:27499669

  5. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts

    PubMed Central

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt. PMID:27499669

  6. A critical review on properties and applications of microbial l-asparaginases.

    PubMed

    Krishnapura, Prajna Rao; Belur, Prasanna D; Subramanya, Sandeep

    2016-09-01

    l-Asparaginase is one of the main drugs used in the treatment of acute lymphoblastic leukemia (ALL), a commonly diagnosed pediatric cancer. Although several microorganisms are found to produce l-asparaginase, only the purified enzymes from E. coli and Erwinia chrysanthemi are employed in the clinical and therapeutic applications in humans. However, their therapeutic response seldom occurs without some evidence of hypersensitivity and other toxic side effects. l-Asparaginase is also of prospective use in food industry to reduce the formation of acrylamide in fried, roasted or baked food products. This review is an attempt to compile information on the properties of l-asparaginases obtained from different microorganisms. The complications involved with the therapeutic use of the currently available l-asparaginases, and the enzyme's potential application as a food processing aid to mitigate acrylamide formation have also been reviewed. Further, avenues for searching alternate sources of l-asparaginase have been discussed, highlighting the prospects of endophytic microorganisms as a possible source of l-asparaginases with varied biochemical and pharmacological properties. PMID:25865363

  7. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation.

    PubMed

    Pereira, Luciana; Mehboob, Farrakh; Stams, Alfons J M; Mota, Manuel M; Rijnaarts, Huub H M; Alves, M Madalena

    2015-03-01

    The impact of nanotechnology in all areas of science and technology is evident. The expanding availability of a variety of nanostructures with properties in the nanometer size range has sparked widespread interest in their use in biotechnological systems, including the field of environmental remediation. Nanomaterials can be used as catalysts, adsorbents, membranes, water disinfectants and additives to increase catalytic activity and capability due to their high specific surface areas and nanosize effects. Thus, nanomaterials appear promising for new effective environmental technologies. Definitely, nanotechnology applications for site remediation and wastewater treatment are currently in research and development stages, and new innovations are underway. The synthesis of metallic nanoparticles has been intensively developed not only due to its fundamental scientific interest but also for many technological applications. The use of microorganisms in the synthesis of nanoparticles is a relatively new eco-friendly and promising area of research with considerable potential for expansion. On the other hand, chemical synthesis occurs generally under extreme conditions (e.g. pH, temperature) and also chemicals used may have associated environmental and human health impacts. This review is an overview of current research worldwide on the use of microorganisms during the biosynthesis of metallic nanoparticles and their unique properties that make them good candidates for many applications, including in biotechnology. PMID:23937251

  8. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. PMID:25303666

  9. [Microbial alpha-amylases: physicochemical properties, substrate specificity and domain structure].

    PubMed

    Avdiiuk, K V; Varbanets', L D

    2013-01-01

    The current literature data on producers, physico-chemical properties and substrate specificity of a-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of alpha-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. alpha-Amylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, pH- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, amylose, amylopectin, glycogen, maltodextrins, alpha- and beta3-cyclodextrins and other carbohydrate substrates. It is well known that alpha-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (beta/alpha)8-barrel. In addition to domain A, alpha-amylases contain two other domains: B and C, which are localized approximately on opposite sides of (beta/alpha)8-barrel. Most of the known alpha-amylases contain calcium ion, which is located on the surface between domains A and B and plays an important role in stability and activity of the enzyme. PMID:24319968

  10. Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores▿

    PubMed Central

    Stöckel, S.; Schumacher, W.; Meisel, S.; Elschner, M.; Rösch, P.; Popp, J.

    2010-01-01

    Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed. PMID:20208030

  11. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  12. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  13. INACTIVATION OF NATURALLY OCCURRING ENTEROVIRUSES

    EPA Science Inventory

    The goal of this project was to compare the kinetics of chlorine inactivation of a naturally-shed virus and its tissue culture grown counterpart. Since inactivation studies require purified preparation possessing high infectivity titer and low chlorine demand a major part of this...

  14. Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties

    PubMed Central

    Akhtar, M. Kalim; Dandapani, Hariharan; Thiel, Kati; Jones, Patrik R.

    2014-01-01

    The development of sustainable, bio-based technologies to convert solar energy and carbon dioxide into fuels is a grand challenge. A core part of this challenge is to produce a fuel that is compatible with the existing transportation infrastructure. This task is further compounded by the commercial desire to separate the fuel from the biotechnological host. Based on its fuel characteristics, 1-octanol was identified as an attractive metabolic target with diesel-like properties. We therefore engineered a synthetic pathway specifically for the biosynthesis of 1-octanol in Escherichia coli BL21(DE3) by over-expression of three enzymes (thioesterase, carboxylic acid reductase and aldehyde reductase) and one maturation factor (phosphopantetheinyl transferase). Induction of this pathway in a shake flask resulted in 4.4 mg 1-octanol L−1 h−1 which exceeded the productivity of previously engineered strains. Furthermore, the majority (73%) of the fatty alcohol was localised within the media without the addition of detergent or solvent overlay. The deletion of acrA reduced the production and excretion of 1-octanol by 3-fold relative to the wild-type, suggesting that the AcrAB–TolC complex may be responsible for the majority of product efflux. This study presents 1-octanol as a potential fuel target that can be synthesised and naturally accumulated within the media using engineered microbes. PMID:27066394

  15. Evaluation of microbial loads, physical characteristics, chemical constituents and biological properties of radiation processed Fagonia arabica

    NASA Astrophysics Data System (ADS)

    Khattak, Khanzadi Fatima

    2012-06-01

    Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.

  16. Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages.

    PubMed

    Navrátil, Marián; Gemeiner, Peter; Klein, Jaroslav; Sturdík, Ernest; Malovíková, Anna; Nahálka, Jozef; Vikartovská, Alica; Dömény, Zoltán; Smogrovicová, Daniela

    2002-05-01

    Approaches using immobilized biological materials are very promising for application in different branches of the food industry, especially in the production of fermented beverages. Materials tested by our team for the process of entrapment belong to the family of charged polysaccharides able to form beaded hydrogels by ionotropic gelation (e.g. alginate, pectate, kappa-carrageenan) and synthetic polymers (e.g. polyvinyl alcohol) forming bead- and lens-shaped hydrogels by thermal sol/gel transition. Concentration of a gel, conditions and instrumentation of gelation process, bead and size distribution, porosity, diffusion properties, mechanical, storage and operational stability, and many other parameters were followed and optimized. Our work has been oriented especially to practical applications of immobilized cells. Brewing yeast cells were successfully immobilized by entrapment materials and used in a process of batch and continual production of beer, including primary and secondary fermentation of wort. Other applications include continual production of ethanol by fermentation of different saccharide substrates (molasses, glucose syrup, wheat hydrolysate), mead and non-alcoholic beverages production. PMID:12066875

  17. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. PMID:20417070

  18. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  19. Microbial production of methylketones: properties of purified yeast secondary alcohol dehydrogenase

    SciTech Connect

    Patel, R.N.; Hou, C.T.; Laskin, A.I.; Derelanko, P.

    1981-06-01

    Secondary alcohol dehydrogenase (SADH) was purified from extracts of a methanol-grown yeast, Pichia sp. The purified enzyme was homogeneous as judged by ultracentrifugation and by polyacrylamide gel electrophoresis. The purified SADH has a molecular weight of 98,000 as determined by gel filtration and 102,000 as determined by sedimentation equilibrium analysis. The sedimentation constant s/sub 20,w/ was 6.0. The subunit size of the SADH was 48,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it consists of two subunits. The purified SADH contained two atoms of zinc per mole of enzyme protein. SADH catalyzed the oxidation of secondary alcohols. Primary alcohols (C/sub 1/ to C/sub 8/ tested) were not oxidized. The purified SADH and extracts of various yeasts and bacteria also catalyzed the reduction of methylketones to the corresponding secondary alcohols in the presence of reduced NAD/sup +/ as an electron donor. Both reactions (oxidation of secondary alcohols in the presence of NAD/sup +/ and reduction of methylketones in the presence of reduced NAD/sup +/) catalyzed by the purified SADH were inhibited by metal-chelating agents, thio reagent, and by antisera prepared against the purified enzyme. The apparent K/sub m/ values for NAD/sup +/, reduced NAD/sup +/, reduced NAD/sup +/, 2-butanol, and 2-butanone are 0.05, 0.1, 0.4, and 1 mM, respectively. The purified enzyme preferentially oxidized (-)-2-butanol and (-)-2-octanol, the rate of oxidation of (+)-2-butanol and (+)-2-octanol was 36% and 13% of that of 100% with (-)-2-butanol and (-)-2-octanol, respectively. The K/sub m/ values for (-)-2-butanol and (+)-2-butanol were 3.0 and 0.75 mM, respectively. Antisera prepared against purified Pichia SADH cross-reacted with the SADH derived from bacteria. This suggests difference in immunological properties between yeast and bacterial SADH.

  20. EFFECTS OF PHOTOCHEMICAL, MICROBIAL AND SORPTION PROCESSES ON THE OPTICAL PROPERTIES AND DEGRADATION OF DISSOLVED ORGANIC MATTER FROM COASTAL WETLANDS

    EPA Science Inventory

    The dissolved organic matter (DOM) exported from rivers and intertidal marshes to coastal oceans is rich in light-absorbing, fluorescent constituents, including humic substances and other polyphenolic moieties. Interactions between microbial and photochemical processes have impor...

  1. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (Saurida spp.) scales.

    PubMed

    Wangtueai, Sutee; Noomhorm, Athapol; Regenstein, Joe M

    2010-01-01

    The addition of microbial transglutaminase (MTGase) generally increased the gel strength of lizardfish (Saurida spp.) scale gelatin gels (P≤0.05) with an increase in gel strength with the addition of MTGase up to 0.5% (w/v). The texture profile analysis compression tests of lizardfish scale gelatin gel with and without MTGase were studied to determine their effects on gel characteristics. MTGase added to the gels decreased the band intensity of the β- and α-components with increasing concentrations of enzyme. Gel microstructures with various concentration of MTGase showed denser strands in the gels with enzyme compared with the looser stands in non-enzyme-treated gel samples. Films cast from lizardfish scale gelatin with and without 0.5% MTGase and bovine gelatin films were transparent and flexible. The lizardfish gelatin films were all slightly yellowish while the bovine gelatin films were clearer. The L value of bovine gelatin films had the highest value (P≤0.05) whereas lizardfish scale gelatin films with and without enzyme were not significantly different (P>0.05) for L, a, and b values and ΔE. The film's mechanical properties included tensile strength (TS) and elongation at break (E) were not significantly different (P > 0.05) for E and the films of lizardfish scale gelatin showed higher TS than the films without enzyme added (P ≤ 0.05). The water vapor permeability of films from lizardfish scale gelatin with and without 0.5% MTGase and bovine gelatin films were 21.0 ± 0.17, 26.3 ± 0.79, and 25.8 ± 0.09 g·mm/m(2)·d·kPa, respectively, while the oxygen transmission rate of all 3 types of films were less than 50 cc O(2)/m(2)·d. PMID:21535584

  2. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae.

    PubMed

    Stibal, Marek; Sabacká, Marie; Kastovská, Klára

    2006-11-01

    Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors

  3. Effect of a residue after evaporation from industrial vitamin C fermentation on chemical and microbial properties of alkali-saline soil.

    PubMed

    Kong, Tao; Xu, Hui; Wang, Zhenyu; Sun, Hao; Wang, Lihua

    2014-07-01

    Residue after evaporation (RAE) from industrial vitamin C fermentation is emitted as a waste product at an amount of 60,000 tons per year in China. The disposal of RAE is difficult because of its high chemical oxygen demand (1.17×10(6) mg/l) and low pH (0.27). We hypothesized that RAE could be used as an ameliorant for alkali-saline soils, and tried to verify it by carrying out a pot experiment of pakchoi cultivation and to explore its effect on soil chemical and microbial properties. The results showed that pakchoi yield was increased by 28.13% and pakchoi quality was also enhanced under RAE treatment. The improved chemical and microbial properties of treated soil were also observed: soil pH was decreased from 9.19 to 9.03; total organic carbon, available phosphorus and available potassium were increased by 49.15%, 34.91% and 42.02%, respectively; number of culturable bacteria, actinomycetes and fungi, microbial biomass carbon and enzyme activity number were improved by 52.97%, 104.05%, 79.09%, 57.82% and 31.16%, respectively. These results suggested the residue application led to an improved soil quality and subsequently a higher yield and quality of pakchoi. This study provided a strong evidence for the feasibility of RAE as an ameliorant for alkali-saline soil. PMID:25016268

  4. Free radical inactivation of pepsin

    NASA Astrophysics Data System (ADS)

    Josimović, Lj; Ruvarac, I.; Janković, I.; Jovanović, S. V.

    1994-06-01

    Alkylperoxy radicals containing one, two or three chlorine atoms, CO -2, O 2 - were reacted with pepsin in aqueous solutions. It was found that only Cl 3COO and CO -2 inactive pepsin, attacking preferentially the disulfide bridge. Transient spectra obtained upon completion of the Cl 3COO + pepsin reaction at pH 5 indicate that 20% of initially produced Cl 3COO radicals oxidizes tryptophan residues, and 40% disulfide bridges. The inactivation induced by the Cl 3COO radical increases at lower pH, and the maximal inactivation, Gin = 5.8, was observed at pH 1.5. The inactivation of pepsin by CO -2 radicals depends on the absorbed dose. The maximal inactivation, Gin = 4.5, was determined in the dose range from 38 to 53 Gy.

  5. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  6. Variability of geochemical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA

    SciTech Connect

    Strapoc, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hedges, S.W.

    2008-10-02

    This study outlines gas characteristics along the southeastern margins of the Illinois Basin and evaluates regional versus local gas variations in Seelyville and Springfield coal beds. Our findings suggest that high permeability and shallow (100–250 m) depths of these Indiana coals allowed inoculation with methanogenic microbial consortia, thus leading to widespread microbial methane generation along the eastern marginal part of the Illinois Basin. Low maturity coals in the Illinois Basin with a vitrinite reflectance Ro~0.6% contain significant amounts of coal gas (~3 m3/t, 96 scf/t) with ≥97 vol.% microbial methane. The amount of coal gas can vary significantly within a coal seam both in a vertical seam section as well as laterally from location to location. Therefore sampling of an entire core section is required for accurate estimates of coal gas reserves.

  7. Studies on the thermal inactivation of immobilized enzymes

    SciTech Connect

    Ulbrich, R.; Schellenberger, A.; Damerau, W.

    1986-04-01

    The thermal inactivation of a great number of immobilized enzymes shows a biphasic kinetics, which distinctly differs from the first-order inactivation kinetics of the corresponding soluble enzymes. As shown for ..cap alpha..-amylase, chymotrypsin, and trypsin covalently bound to silica, polystyrene, or polyacrylamide, the dependence of the remaining activities on the heating time can be well described by the sum of two exponential terms. To interpret this mathematical model function, the catalytic properties of immobilized enzymes (number of active sites in silica-bound trypsin, Km and Ea values in silica-bound ..cap alpha..-amylase and chymotrypsin) at different stages of inactivation and the influence of various factors (coupling conditions, addition of denaturants or stabilizers, etc.) on the thermal inactivation of silica-bound ..cap alpha..-amylase were studied. Furthermore, conformational alterations in the thermal denaturation of spin-labeled soluble and silica-bound ..beta..-amylase were compared by electron spin resonance (ESR) studies. The results suggest that the biphasic inactivation kinetics reflects two different pathways according to which catalytically identical enzyme molecules are predominantly inactivated. 45 references.

  8. Inactivation of Salmonella spp. in ground chicken using High Pressure Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure processing (HPP) is a safe and effective process for improving the microbial safety and shelf-life of foods. Salmonella is a common contaminant in poultry meat and is frequently responsible for foodborne illness associated with contaminated poultry meat. In this study the inactivation...

  9. Thermal and non-thermal decontamination treatments for inactivation of Salmonella on inoculated cantaloupe surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantaloupes have been implicated in six outbreaks of salmonellosis in the U.S. since 1990. Commercial washing processes for cantaloupes are limited in their ability to inactivate and/or remove this human pathogen, due to biofilm formation and inaccessibility of microbial attachment sites to washing...

  10. Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site.

    PubMed

    Foulon, Julie; Zappelini, Cyril; Durand, Alexis; Valot, Benoit; Blaudez, Damien; Chalot, Michel

    2016-10-01

    Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbial habitats, as exemplified by the dominance of Laccaria in root samples. The poplar cultivar was also an important driver, explaining 12% and 6% of the variance in the fungal and bacterial data sets, respectively. The overall dominance of saprophytic fungi, e.g. Penicillium canescens, might be related to the decomposition activities needed at the experimental site. Our data further highlighted that the mycorrhizal colonization of poplar cultivars varies greatly between the species and genotypes, which is exemplified by the dominance of Scleroderma under Vesten samples. Further interactions between fungal and bacterial functional groups stressed the potential of high-throughput sequencing technologies in uncovering the microbial ecology of disturbed environments. PMID:27481257

  11. [Effects of biochar on CO2 and N2O emissions and microbial properties of tea garden soils].

    PubMed

    Hu, Yun-fei; Li, Rong-lin; Yang, Yi-yang

    2015-07-01

    To clarify the effects of biochar addition (0.5%, 1.5%, 2.5%, 3.5%) on the emission of carbon dioxide (CO2) and nitrous oxide (N2O), pH and microbial communities of the tea garden soil, an indoor incubation experiment was conducted using the acidulated tea-planted soil. Results showed that the emissions of CO2 and N2O and the rate of C, N mineralization were increased in a short term after the addition of biochar compared with the control, while the promoting effect was weakened along with increasing the addition of biochar. The pH, dehydrogenase activity and microbial biomass carbon were increased in the biochar treatments. Phospholi-pid fatty acid (PLFA) with different markers was measured and the most PLFA was detected in the group in the 1.5% biochar treatment with significant differences (P<0.05) compared with the control. In addition, the higher levels of 16:0, 14:0 (bacteria), 18:lω9c (fungi), l0Me18:0 (actinomycetes) groups were observed and there were significant differences (P <0.05) in individual phospholipid fatty acid among the different treatments. Taken together, the acidulated tea-planted soil, soil microbial biomass and microbial number were improved after addition of biochar. PMID:26710619

  12. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Morais-Cabral, João H.; Mann, Sabine; MacKinnon, Roderick

    2001-06-01

    Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.

  13. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    PubMed

    Fineberg, Jeffrey D; Ritter, David M; Covarrubias, Manuel

    2012-11-01

    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  14. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    PubMed Central

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  15. Effect of thyme/cumin essential oils and butylated hydroxyl anisole/butylated hydroxyl toluene on physicochemical properties and oxidative/microbial stability of chicken patties.

    PubMed

    Sariçoban, Cemalettin; Yilmaz, Mustafa Tahsin

    2014-02-01

    In this study, effects of thyme/cumin essential oils (EO) and butylated hydroxyl anisole (BHA)/butylated hydroxyl toluene (BHT) on physicochemical properties and storage stability of chicken patties were compared in different storage periods (0, 3, 7, 14, 21, and 28 d). It was found that there were significant (P < 0.05) differences between physicochemical properties of patty samples treated with EO and the synthetic antioxidants. The EO showed similar performance to those of BHA and BHT in limiting TBARS values of chicken patty samples. Similarity in performance was also the case for microbial stability (total aerobic mesophilic, psychrotrophic, lactic acid, and coliform bacteria as well as molds and yeasts); namely, their effects were significant (P < 0.05). Effect of thyme EO was significant (P < 0.05) and remarkable, not allowing any coliform bacteria to grow in the samples. Given that EO were obtained from natural sources, the data suggested that the EO might be more useful than their synthetic counterparts, BHA and BHT, as additives for chicken patties to maintain oxidative/microbial stability and increase shelf life. PMID:24570469

  16. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

    PubMed Central

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2013-01-01

    The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community. PMID:23733066

  17. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste.

    PubMed

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    This study investigated the antimicrobial properties of Chinese medicinal herbal residues (CMHRs) during its co-composting with food waste (FW) in two different ratios along with a control. Inhibition on total microbial population were assessed while the numerically dominant microbes were isolated and their antagonistic effects were assessed. Results indicate that the active ingredients persist in the composting mass did not affect the microbes unspecifically as revealed from almost similar bacterial and fungal populations. Rather specific inhibitory activities against Alternaria solani and Fusarium oxysporum were observed. Apart from the CMHR-born active compounds, CMHR-induced changes in the antagonistic and mycoparasitic abilities of the bacteria and fungi also contribute to the specific inhibition against the tested pathogens. Therefore use of CMHRs during the composting of CMHRs enhances its antipathogenic property resulting in an anti-pathogenic compost. PMID:27039351

  18. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    PubMed

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. PMID:24251774

  19. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm.

    PubMed

    Kishen, Anil; Upadya, Megha; Tegos, George P; Hamblin, Michael R

    2010-01-01

    Microbial biofilm architecture contains numerous protective features, including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OG1RF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared with E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared with anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with MB (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure. PMID:20860692

  20. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  1. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India.

    PubMed

    Badhai, Jhasketan; Ghosh, Tarini S; Das, Subrata K

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58°C; pH: 7.2-7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria. PMID:26579081

  2. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    PubMed Central

    Badhai, Jhasketan; Ghosh, Tarini S.; Das, Subrata K.

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40–58°C; pH: 7.2–7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria. PMID:26579081

  3. [Construction and properties of a microbial whole-cell sensor CB10 for the bioavailability detection of Cr6+].

    PubMed

    Hou, Qi-Hui; Ma, An-Zhou; Zhuang, Xu-Liang; Zhuang, Guo-Qiang

    2013-03-01

    A microbial whole-cell biosensor CB10 for the bioavailability assessing of Cr6+ was constructed by molecular biotechnology. The regulatory gene and promoter of CB10 was from the chromium resistance system of plasmid pMOL28 from Cupriavidus metallidurans CH34, and the reporter gene of CB10 was luc which was derived from Photinus pyralis. Finally, its response characteristic was discussed under different incubation conditions e. g. pH and temperature. The results showed that a microbial whole-cell biosensor CB10 had been successfully constructed which could respond to Cr6+ within 30 min, with a LOD for Cr6+ of 2 micromol x L(-1). When the incubation concentration of Cr6+ was between 20 micromol x L(-1) and 200 micromol x L(-1), the luc activity of the CB10 biosensor was in linear correlation with the concentration of Cr6+. When the concentration of heavy metal was in the range of 10-50 micromol x L(-1), the response of CB10 was relatively more specific. Moreover, high concentrations of Pb2+, Mn2+ and Sb2+ could also induce CB10. By analyzing the response characteristic of CB10 biosensor, we could draw the conclusion that 15-30 degrees C and pH 4-7 were appropriate for CB10, and 30 degrees C and pH 7 were the optimal conditions for the incubation of the CB10 biosensor. The microbial whole-cell biosensor CB10 for the detection of Cr6+ was fast-responding, specific, sensitive and stable under various conditions. In prospective, it could be used in the fast detection of Cr6+ in water and assessment of the bioavailability of Cr6+ in soil. PMID:23745432

  4. Inactivation and reactivation of B. megatherium phage.

    PubMed

    NORTHROP, J H

    1955-11-20

    Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20 degrees C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except

  5. CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH

    EPA Science Inventory

    Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...

  6. CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS

    EPA Science Inventory

    Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...

  7. Cold plasma inactivation of chronic wound bacteria.

    PubMed

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here. PMID:27046340

  8. NVC-422 Inactivates Staphylococcus aureus Toxins

    PubMed Central

    Jekle, Andreas; Yoon, Jungjoo; Zuck, Meghan; Najafi, Ramin; Wang, Lu; Shiau, Timothy; Francavilla, Charles; Rani, Suriani Abdul; Eitzinger, Christian; Nagl, Markus; Anderson, Mark

    2013-01-01

    Bacterial pathogens have specific virulence factors (e.g., toxins) that contribute significantly to the virulence and infectivity of microorganisms within the human hosts. Virulence factors are molecules expressed by pathogens that enable colonization, immunoevasion, and immunosuppression, obtaining nutrients from the host or gaining entry into host cells. They can cause pathogenesis by inhibiting or stimulating certain host functions. For example, in systemic Staphylococcus aureus infections, virulence factors such as toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB) cause sepsis or toxic shock by uncontrolled stimulation of T lymphocytes and by triggering a cytokine storm. In vitro, these superantigens stimulate the proliferation of human peripheral blood mononuclear cells (PBMC) and the release of many cytokines. NVC-422 (N,N-dichloro-2,2-dimethyltaurine) is a broad-spectrum, fast-acting topical anti-infective agent against microbial pathogens, including antibiotic-resistant microbes. Using mass spectrometry, we demonstrate here that NVC-422 oxidizes methionine residues of TSST-1, SEA, SEB, and exfoliative toxin A (ETA). Exposure of virulence factors to 0.1% NVC-422 for 1 h prevented TSST-1-, SEA-, SEB-, and ETA-induced cell proliferation and cytokine release. Moreover, NVC-422 also delayed and reduced the protein A- and clumping factor-associated agglutination of S. aureus cultures. These results show that, in addition to its well-described direct microbicidal activity, NVC-422 can inactivate S. aureus virulence factors through rapid oxidation of methionines. PMID:23208720

  9. Effective Chemical Inactivation of Ebola Virus

    PubMed Central

    Haddock, Elaine; Feldmann, Friederike

    2016-01-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  10. Effective Chemical Inactivation of Ebola Virus.

    PubMed

    Haddock, Elaine; Feldmann, Friederike; Feldmann, Heinz

    2016-07-01

    Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504

  11. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. PMID:25863578

  12. Selection of Bacteria with Favorable Transport Properties Through Porous Rock for the Application of Microbial-Enhanced Oil Recovery

    PubMed Central

    Jang, Long-Kuan; Chang, Philip W.; Findley, John E.; Yen, Teh Fu

    1983-01-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species—Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum—potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate (∼106/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414

  13. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery.

    PubMed

    Jang, L K; Chang, P W; Findley, J E; Yen, T F

    1983-11-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species-Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum-potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate ( approximately 10/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414

  14. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Takai, Ken

    2014-12-01

    In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isotope compositions of the hydrothermal fluid are, in turn, controlled by subseafloor physical and chemical processes, including fluid-rock interactions, phase separation and partitioning of fluids, and precipitation of minerals. We hypothesized that specific physicochemical principles describe the linkages among the living ecosystems, hydrothermal fluids, and geological background in deep-sea hydrothermal systems. We estimated the metabolic energy potentially available for productivity by chemolithotrophic microorganisms at various hydrothermal vent fields. We used a geochemical model based on hydrothermal fluid chemistry data compiled from 89 globally distributed hydrothermal vent sites. The model estimates were compared to the observed variability in extant microbial communities in seafloor hydrothermal environments. Our calculations clearly show that representative chemolithotrophic metabolisms (e.g., thiotrophic, hydrogenotrophic, and methanotrophic) respond differently to geological and geochemical variations in the hydrothermal systems. Nearly all of the deep-sea hydrothermal systems provide abundant energy for organisms with aerobic thiotrophic metabolisms; observed variations in the H2S concentrations among the hydrothermal fluids had little effect on the energetics of thiotrophic metabolism. Thus, these organisms form the base of the chemosynthetic microbial community in global deep-sea hydrothermal environments. In contrast, variations in H2 concentrations in hydrothermal fluids significantly impact organisms with aerobic and anaerobic hydrogenotrophic metabolisms

  15. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage.

    PubMed

    de Almeida, Patrícia Leal; de Lima, Silvério Nepomuceno; Costa, Luciene Lacerda; de Oliveira, Cintia Cristina; Damasceno, Karina Aparecida; dos Santos, Bibiana Alves; Campagnol, Paulo Cezar Bastianello

    2015-12-01

    This study investigated the lipid oxidation and the microbiological and sensory quality of Bologna-type sausages produced with the addition of jabuticaba peel extract (JPE). Instrumental parameters of color (L*, a* and b*), pH, thiobarbituric acid reactive substance (TBARS) values, microbiological profile, and sensory properties were determined during 35 days of storage. The addition of JPE had an effect on pH and protected the samples from color changes during storage. However, JPE had no positive effect on microbial stability during storage. Samples produced with 0.5, 0.75, and 1% JPE had significantly lower TBARS values (P<0.05) compared with the control group. The addition of up to 0.5% JPE did not affect sensory quality, but prevented the decrease of sensory acceptance during storage. Therefore, due to its antioxidant effect JPE can be used in Bologna-type sausages in order to improve the oxidative stability during the shelf life. PMID:26156583

  16. Short-time effect of salvage harvesting on microbial soil properties in a Mediterranean area affected by a wildfire: preliminary results

    NASA Astrophysics Data System (ADS)

    Moltó, Jorge; Mataix-Solera, Jorge; Arcenegui, Victoria; Morugan, Alicia; Girona, Antonio; Garcia-orenes, Fuensanta

    2014-05-01

    In the Mediterranean region, wildfires are considered one of the main ecological factors, which, in addition to and in relation to changes in soil use, may cause soil loss and degradation, one of the most important environmental problems that humanity must face up to. As is well known, the soil-plant system is one of the key factors determining ecological recovery after the occurrence of a wildfire. Traditionally, a variety of forestry practices have been implemented on spanish sites after the incidence of a wildfire. Among them stands out the complete extraction of the burned wood, which consist in getting rid of the branches and other wooden debris using small controlled bonfires, splintering or mechanical extraction. This set of post-fire management practices is known as salvage logging or salvage harvesting. Despite the remarkable relevance and influence that this conjunction of techniques has on land management after a wildfire, very little experimental research focused on assessing the impact of salvage logging on the vegetal community has been done. Furthermore, even less research inquiring into the mode and grade of incidence that the salvage logging produces on soil properties has taken place. The aim of this research is to assess the effects that the salvage harvesting has on different soil microbial properties and other related properties. The study area is located in the Natural Park of the "Sierra de Mariola" in the province of Alicante, southeastern Spain. This location was affected by a wildfire whose extension reached more than 500 Ha in July 2012. Different post-fire treatments were proposed by the authorities, including salvage harvesting in some areas. Two different treatments were distinguished for the study, "control" (without any kind of burned wood removal) and "harvest" (where salvage logging was carried out), in each area three 4 m2 sampling plots were set up. These two treatments were established on the same slope with the same orography

  17. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process. PMID:26731189

  18. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  19. Glucosyltransferase inactivation reduces dental caries.

    PubMed

    Devulapalle, K S; Mooser, G

    2001-02-01

    Dental caries has been an intractable disease in spite of intense dental research. The metabolic acids produced by mutans streptococci demineralize the tooth surface and lead to dental caries. The enzyme glucosyltransferase (GTF) produced by mutans streptococci is the key factor in this process. Oral bacterial GTFs use sucrose as a substrate in synthesis of either water-soluble or insoluble glucans. In this investigation, kinetic studies with divalent metal ions revealed their strong binding affinity to GTF. The metal ions also proved to be strong inhibitors of the enzyme. Here we describe a simple method of inactivating the enzyme that actively participates in dental caries by taking advantage of a Fenton reaction which requires metal ions such as iron or copper and peroxide. The hydroxyl radical ions produced via the Fenton reaction inactivate GTF, a factor in the production of dental caries. PMID:11332534

  20. Thermal Inactivation of Phytophthora nicotianae.

    PubMed

    Coelho, L; Mitchell, D J; Chellemi, D O

    2000-10-01

    ABSTRACT Phytophthora nicotianae was added to pasteurized soil at the rate of 500 laboratory-produced chlamydospores per gram of soil and exposed to temperatures ranging from 35 to 53 degrees C for 20 days. The time required to reduce soil populations to residual levels (0.2 propagule per gram of soil or less) decreased with increasing temperatures. Addition of cabbage residue to the soil reduced the time required to inactivate chlamydospores. Temperature regimes were established to simulate daily temperature changes observed in the field, with a high temperature of 47 degrees C for 3 h/day, and were good estimators of the efficacy of soil solarization for the control of P. nicotianae in soil. Cabbage amendment reduced the time required to inactivate chlamydospores of P. nicotianae and its effect was more pronounced at lower temperature regimes. PMID:18944471

  1. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    PubMed Central

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  2. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    PubMed

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  3. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  4. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  5. Dual effectiveness of sodium chlorite for enzymatic browning inhibition and Escherichia coli inactivation on fresh-cut apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the dual effectiveness of sodium chlorite (SC) for browning inhibition and microbial inactivation on fresh-cut apples. The SC treatment exhibited a strong inhibition on browning reaction of fresh-cut Red Delicious apples during cold storage. Test results from examination of t...

  6. Microbial metabolism of amino alcohols. Purification and properties of coenzyme B12-dependent ethanolamine ammonia-lysae of Escherichia coli

    PubMed Central

    Blackwell, Carol M.; Turner, John M.

    1978-01-01

    1. The 120-fold purification of ethanolamine ammonia-lyase from Escherichia coli extracts, to apparent homogeneity, is described. Ethanolamine, dithiothreitol, glycerol and KCl protected the apoenzyme from inactivation. 2. At the optimum pH7.5, Km values for ethanolamine and coenzyme B12 were 44μm and 0.42μm respectively. The Km for ethanolamine was markedly affected by pH, transitions occurring at pH7.0 and 8.35. 3. The enzyme was specific for ethanolamine as substrate, none of the 18 analogues tested being active. l-2-Aminopropan-l-ol (Ki 0.86μm), dl-1-aminopropan-2-ol (Ki 2.2μm) and dl-1,3-diaminopropan-2-ol (Ki 88.0μm) inhibited competitively. 4. Enzyme activity was inhibited, irreversibly and non-competitively, by the coenzyme analogues methylcobalamin (Ki 1.4nm), hydroxocobalamin (Ki 2.1nm) and cyanocobalamin (Ki 4.8nm). 5. Iodoacetamide inhibited in the absence of ethanolamine, but only slightly in its presence. p-Hydroxymercuribenzoate inhibited markedly even in the presence of ethanolamine. Dithiothreitol and 2-mercaptoethanol (less effectively) restored activity to the enzyme dialysed against buffer containing ethanolamine. 6. Although K+ ions stabilized the enzyme during dialysis or storage, they were not necessary for activity. 7. Gel filtration showed the enzyme to be of high molecular weight, ultracentrifugal studies giving s20,w of 16.4 and an estimated mol.wt. 560400. The isoelectric point for the apoenzyme was approx. pH5.0. inhibited enzyme activity at concentrations above 1m (95% inhibition at 3m) and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated protein subunits of mol.wt. 61400. 8. Immunological studies showed that the E.coli enzyme was closely related to those of other enterobacteria, but only distantly to that of Clostridium sp. A double precipitin band suggested that the apoenzyme may be made up of two protein components. PMID:33657

  7. Modeling of the thermal influence of fires on the physicochemical properties and microbial activity of litter in cryogenic soils

    NASA Astrophysics Data System (ADS)

    Masyagina, O. V.; Tokareva, I. V.; Prokushkin, A. S.

    2014-08-01

    Periodic surface fires in the cryolithozone (the northern taiga subzone) are the main factor determining the qualitative and quantitative characteristics of the soil organic matter. The specific features of the changes in the physicochemical parameters and microbial activity of the organic horizons in the cryogenic soils under larch forests of the northern taiga after the impact of high temperatures were revealed. The temperatures of fires of different intensity were simulated in laboratory conditions. The thermal impact on the litter organic matter during the surface fires may increase the CO2 emission from the surface of the soil in the postfire communities due to the destruction of organic compounds only for a short time. After fires of high intensity with strong mineralization of the litters, during a period of more than 1 month, the pyrogenic effect on the organic horizons of the soils under the larch forests of the cryolithozone determined the reduction of the CO2 emissions in the freshly burned areas as compared to the intact stands.

  8. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms.

    PubMed

    Liebensteiner, Martin G; Oosterkamp, Margreet J; Stams, Alfons J M

    2016-02-01

    Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth. PMID:26104311

  9. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash.

    PubMed

    Belyaeva, O N; Haynes, R J

    2009-11-01

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase (50 degrees C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38 degrees C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil. PMID:19539464

  10. [Investigation of the properties of the soil microbial consortium as a test objects for estimation of integral toxicity].

    PubMed

    Dudchik, N V

    2012-01-01

    The properties of a consortium of microorganisms InMI/CH7 selected from of industrial effluent samples have been investigated. The ability of strains to form biofilms was shown to be correlated with their sensitivity to toxicants. PMID:23243731

  11. Inactivation of bacterial pathogens in yoba mutandabota, a dairy product fermented with the probiotic Lactobacillus rhamnosus yoba.

    PubMed

    Mpofu, Augustine; Linnemann, Anita R; Nout, Martinus J R; Zwietering, Marcel H; Smid, Eddy J; den Besten, Heidy M W

    2016-01-18

    Mutandabota is a dairy product consumed as a major source of proteins and micronutrients in Southern Africa. In this study the microbial safety of traditional and a variant of mutandabota fermented with the probiotic Lactobacillus rhamnosus yoba (yoba mutandabota) was investigated by challenging the products with five important food pathogens: Listeria monocytogenes, Salmonella spp., Campylobacter jejuni, Escherichia coli O157:H7 and Bacillus cereus. Pasteurized full-fat cow's milk was used for producing traditional and yoba mutandabota, and was inoculated with a cocktail of strains of the pathogens at an inoculum level of 5.5 log cfu/mL. Survival of the pathogens was monitored over a potential consumption time of 24h for traditional mutandabota, and over 24h of fermentation followed by 24h of potential consumption time for yoba mutandabota. In traditional mutandabota (pH3.4 ± 0.1) no viable cells of B. cereus and C. jejuni were detected 3h after inoculation, while L. monocytogenes, E. coli O157:H7 and Salmonella spp. significantly declined (P<0.05), but could still be detected (<3.5 log inactivation) at the end of the potential consumption time. This indicated that consumption of traditional mutandabota exposes consumers to the risk of food-borne microbial infections. In yoba mutandabota, L. rhamnosus yoba grew from 5.5 ± 0.1 log cfu/mL to 9.1 ± 0.4 log cfu/mL in the presence of pathogens. The pH of yoba mutandabota dropped from 4.2 ± 0.1 to 3.3 ± 0.1 after 24h of fermentation, mainly due to organic acids produced during fermentation. Only Salmonella spp. was able to grow in yoba mutandabota during the first 9h of fermentation, but then decreased in viable plate count. None of the tested pathogens were detected (>3.5 log inactivation) after 3h into potential consumption time of yoba mutandabota. Inactivation of pathogens in mutandabota is of public health significance because food-borne pathogens endanger public health upon consumption of contaminated food

  12. Capillary isoelectric focusing of native and inactivated microorganisms.

    PubMed

    Horká, M; Kubícek, O; Růzicka, F; Holá, V; Malinovská, I; Slais, K

    2007-07-01

    The research of microorganisms includes the development of methods for the inactivation of viruses and other microbes. It also means to efficiently eliminate the infectivity of microorganisms without damage of their integrity and structure. According to the results of the last 5 years the capillary electromigration techniques appear to be very perspective for the comparison of the methods applicable for inactivation in the diagnostics and study of the pathogens. In this paper we suggest the capillary isoelectric focusing of the model microorganisms, Escherichia coli, Staphylococcus epidermidis, Candida albicans and bacteriophage PhiX 174, native or inactivated by different procedures. UV detection and fluorometric detection for the dynamically modified microbes by pyrenebutanoate on the basis of the non-ionogenic tenside were used here. Isoelectric points of native and/or dynamically modified microorganisms and other properties were compared with those obtained after microorganisms inactivation. The segmental injection of the sample pulse enabled the reproducible and efficient capillary isoelectric focusing in different pH gradients. The low-molecular-weight pI markers were used for tracing of the pH gradient. PMID:17328903

  13. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    PubMed Central

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  14. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model

    PubMed Central

    Egan, Áine M.; Sweeney, Torres; Hayes, Maria; O’Doherty, John V.

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo. PMID:26636332

  15. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model.

    PubMed

    Egan, Áine M; Sweeney, Torres; Hayes, Maria; O'Doherty, John V

    2015-01-01

    The potential of natural products to prevent obesity have been investigated, with evidence to suggest that chitosan has anti-obesity effects. The current experiment investigated the anti-obesity potential of prawn shell derived chitosan on a range of variables relevant to obesity in a pig model. The two dietary treatment groups included in this 63 day study were: T1) basal diet and T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group (70 ± 0.90 kg). The parameter categories which were assessed included: performance, nutrient digestibility, serum leptin concentrations, nutrient transporter and digestive enzyme gene expression and gut microbial populations. Pigs offered chitosan had reduced feed intake and final body weight (P< 0.001), lower ileal digestibility of dry matter (DM), gross energy (GE) (P< 0.05) and reduced coefficient of apparent total tract digestibility (CATTD) of gross energy and nitrogen (P<0.05) when compared to the basal group. Fatty acid binding protein 2 (FABP2) gene expression was down-regulated in pigs offered chitosan (P = 0.05) relative to the basal diet. Serum leptin concentrations increased (P< 0.05) in animals offered the chitosan diet compared to pigs offered the basal diet. Fatness traits, back-fat depth (mm), fat content (kg), were significantly reduced while lean meat (%) was increased (P<0.05) in chitosan supplemented pigs. Pigs offered chitosan had decreased numbers of Firmicutes in the colon (P <0.05), and Lactobacillus spp. in both the caecum (P <0.05) and colon (P <0.001). Bifidobacteria populations were increased in the caecum of animals offered the chitosan diet (P <0.05). In conclusion, these findings suggest that prawn shell chitosan has potent anti-obesity/body weight control effects which are mediated through multiple biological systems in vivo. PMID:26636332

  16. Pressure Inactivation of Bacillus Endospores

    PubMed Central

    Margosch, Dirk; Gänzle, Michael G.; Ehrmann, Matthias A.; Vogel, Rudi F.

    2004-01-01

    The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores. PMID:15574932

  17. X-chromosome inactivation and escape

    PubMed Central

    DISTECHE, CHRISTINE M.; BERLETCH, JOEL B.

    2016-01-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field. PMID:26690513

  18. Recent Advances in X-Chromosome Inactivation

    PubMed Central

    Kalantry, Sundeep

    2011-01-01

    X-chromosome inactivation is a paradigmatic epigenetic phenomenon that results in the mitotically heritable transcriptional inactivation of one X-chromosome in female mammals, thereby equalizing X-linked gene dosage between the sexes. The epigenetic factors and mechanisms that execute X-inactivation overlap with those that regulate embryonic development and disease progression, thus offering a window into the epigenetic processes that regulate development and disease. Here I summarize some recent developments as well as open questions in X-inactivation research. PMID:21344379

  19. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  20. Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology.

    PubMed

    Stojković, Biljana; Sretenovic, Simon; Dogsa, Iztok; Poberaj, Igor; Stopar, David

    2015-02-01

    We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples. PMID:25650942

  1. Viscoelastic Properties of Levan-DNA Mixtures Important in Microbial Biofilm Formation as Determined by Micro- and Macrorheology

    PubMed Central

    Stojković, Biljana; Sretenovic, Simon; Dogsa, Iztok; Poberaj, Igor; Stopar, David

    2015-01-01

    We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critical value, levan started to aggregate, forming clusters of a few microns in size. Microrheology using optical tweezers enabled us to measure local viscoelastic properties within the clusters as well as in the DNA phase surrounding the levan aggregates. In phase-separated levan-DNA mixtures, the results of macro- and microrheology differed significantly. The local viscosity and elasticity of levan increased, whereas the local viscosity of DNA decreased. On the other hand, the results of bulk viscosity measurements suggest that levan clusters do not interact strongly with DNA. Upon treatment with DNase, levan aggregates dispersed. These results demonstrate the advantages of microrheological measurements compared to bulk viscoelastic measurements when the materials under investigation are complex and inhomogeneous, as is often the case in biological samples. PMID:25650942

  2. EFFECTS OF A BIOLOGICAL AMENDMENT ON CHEMICAL AND BIOLOGICAL PROPERTIES AND MICROBIAL DIVERSITY IN SOILS RECEIVING DIFFERENT ORGANIC AMENDMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological fertilizers consisting of suspensions of selected microorganisms are often used in conjunction with various organic materials for amending soils to improve soil quality and plant growth. The effects of a biological fertilizer on chemical and biological properties of soil were investigated...

  3. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

    PubMed Central

    Smith, Maria W.; Zeigler Allen, Lisa; Allen, Andrew E.; Herfort, Lydie; Simon, Holly M.

    2013-01-01

    The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1–0.8, 0.8–3, and 3–200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2–10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin

  4. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem.

    PubMed

    Smith, Maria W; Zeigler Allen, Lisa; Allen, Andrew E; Herfort, Lydie; Simon, Holly M

    2013-01-01

    The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3-200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin. PMID

  5. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-03-19

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  6. Ecology, Microbial

    SciTech Connect

    Konopka, Allan

    2009-05-15

    Microbial ecology is a relatively young discipline within the field of microbiology. Its modern history spans just the past 60 years, and the field is defined by its emphasis on understanding the interactions of microbes with their environment, rather than their behavior under artificial laboratory conditions. Because microbes are ubiquitous, microbial ecologists study a broad diversity of habitats that range from aquatic to terrestrial to plant- or animal-associated. This has made it a challenge to identify unifying principles within the field. One approach is to recognize that although the activity of microbes in nature have effects at the macroscale, they interact with their physical, chemical and biological milieu at a scale of micrometers. At this scale, several different microbial ecosystems can be defined, based upon association with particles, the presence of environmental gradients and the continuous availability of water. Principles applicable to microbial ecology reflect not only their population ecology and physiological ecology, but also their broad versatility and quantitative importance in the biosphere as biogeochemical catalysts and capacity for rapid physiological and evolutionary responses.

  7. Is gas-discharge plasma a new solution to the old problem of biofilm inactivation?

    PubMed

    Joaquin, Jonathan C; Kwan, Calvin; Abramzon, Nina; Vandervoort, Kurt; Brelles-Mariño, Graciela

    2009-03-01

    Conventional disinfection and sterilization methods are often ineffective with biofilms, which are ubiquitous, hard-to-destroy microbial communities embedded in a matrix mostly composed of exopolysaccharides. The use of gas-discharge plasmas represents an alternative method, since plasmas contain a mixture of charged particles, chemically reactive species and UV radiation, whose decontamination potential for free-living, planktonic micro-organisms is well established. In this study, biofilms were produced using Chromobacterium violaceum, a Gram-negative bacterium present in soil and water and used in this study as a model organism. Biofilms were subjected to an atmospheric pressure plasma jet for different exposure times. Our results show that 99.6 % of culturable cells are inactivated after a 5 min treatment. The survivor curve shows double-slope kinetics with a rapid initial decline in c.f.u. ml(-1) followed by a much slower decline with D values that are longer than those for the inactivation of planktonic organisms, suggesting a more complex inactivation mechanism for biofilms. DNA and ATP determinations together with atomic force microscopy and fluorescence microscopy show that non-culturable cells are still alive after short plasma exposure times. These results indicate the potential of plasma for biofilm inactivation and suggest that cells go through a sequential set of physiological and morphological changes before inactivation. PMID:19246743

  8. Meprin Metalloproteases Inactivate Interleukin 6*

    PubMed Central

    Keiffer, Timothy R.; Bond, Judith S.

    2014-01-01

    Meprins have been implicated in the pathogenesis of several inflammatory diseases, including inflammatory bowel disease, in which the cytokine IL-6 is a prominent effector molecule. Because IL-6 levels are elevated markedly in meprin α and α/β knockout mice in an experimental model of inflammatory bowel disease, the interaction between meprins and IL-6 was studied. The results demonstrate that rodent and human meprin A and B cleave IL-6 to a smaller product and, subsequently, are capable of extensive degradation of the cytokine. Analysis of the limited degradation product formed by meprin A indicated that three to five amino acids are removed from the C terminus of the cytokine. Meprin A and meprin B cleaved IL-6 with micromolar affinities (Km of 4.7 and 12.0 μm, respectively) and with high efficiencies (kcat/Km of 0.2 and 2.5 (m−1/s−1) × 106, respectively). These efficiency constants are among the highest for known meprin substrates. Madin-Darby canine kidney cells transiently transfected with meprin α or meprin β constructs also cleave exogenous IL-6. Both human and murine IL-6 cleaved by meprin A or B are inactivated, as demonstrated by their decreased capability to stimulate proliferation of B9 cells. These results are consistent with the proposition that one function of meprin metalloproteases is to modulate inflammation by inactivating IL-6. PMID:24474695

  9. GEOELECTRICAL EVIDENCE OF MICROBIAL DEGRADATION OF DIESEL CONTAMINATED SEDIMENTS

    EPA Science Inventory

    The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynami...

  10. Enhanced inactivation of Bacillus subtilis spores during solar photolysis of free available chlorine.

    PubMed

    Forsyth, Jenna E; Zhou, Peiran; Mao, Quanxin; Asato, Shelby S; Meschke, John S; Dodd, Michael C

    2013-11-19

    Aqueous free available chlorine (FAC) can be photolyzed by sunlight and/or artificial UV light to generate various reactive oxygen species, including HO(•) and O((3)P). The influence of this chemistry on inactivation of chlorine-resistant microorganisms was investigated using Bacillus subtilis endospores as model microbial agents and simulated and natural solar radiation as light sources. Irradiation of FAC solutions markedly enhanced inactivation of B. subtilis spores in 10 mM phosphate buffer; increasing inactivation rate constants by as much as 600%, shortening inactivation curve lag phase by up to 73% and lowering CTs required for 2 log10 inactivation by as much as 71% at pH 8.0 and 10 °C. Similar results were observed at pH 7.4 and 10 °C in two drinking water samples with respective DOC concentrations and alkalinities of 0.6 and 1.2 mg C/L and 81.8 and 17.1 mg/L as CaCO3. Solar radiation alone did not inactivate B. subtilis spores under the conditions investigated. A variety of experimental data indicate that the observed enhancements in spore inactivation can be attributed to the concomitant attack of spores by HO(•) and O3, the latter of which was found to accumulate to micromolar concentrations during simulated solar irradiation of 10 mM phosphate buffer (pH 8, 10 °C) containing [FAC]0 = 8 mg/L as Cl2. PMID:24191705

  11. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    SciTech Connect

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  12. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    PubMed

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. PMID:26880539

  13. Monolithic Ceramic Foams for Ultrafast Photocatalytic Inactivation of Bacteria

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian Ku

    2011-01-01

    Palladium-modified nitrogen-doped titanium dioxide (TiON/PdO) foams were synthesized by a sol-gel process on a polyurethane foam template. The TiON/PdO foam was tested for microbial killing using Escherichia coli cells as a target. Under visible-light illumination, the TiON/PdO foam displayed a strong antimicrobial effect on the bacteria cells in water. The antimicrobial effect was found to be dependent on the palladium content and the calcination temperature. In a flow-through dynamic photoreactor, the new photocatalyst efficiently inactivated E. coli within a short contact time (< 1 min), the shortest ever reported for photocatalytic killing of bacteria. The strong antimicrobial functions of the TiON/PdO foam were related to the charge trapping by PdO and to the high contact efficiency of the foam structure. PMID:21423830

  14. Effects of pH-treated Fish Sarcoplasmic Proteins on the Functional Properties of Chicken Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

    PubMed Central

    Hemung, Bung-Orn

    2014-01-01

    pH adjustment would be of advantage in improving the water holding capacity of muscle proteins. The objective of this study was to evaluate the addition of fish sarcoplasmic protein (SP) solution, which was adjusted to pH 3.0 or 12.0, neutralized to pH 7.0, and lyophilized to obtain the acid- and alkaline-treated SP samples, on the functional properties of the chicken myofibrillar protein induced by microbial transglutaminase (MTG). The solubility of alkaline-treated SP was higher than that of the acid counterpart; however, those values of the two pH-treated samples were lower than that of normal SP (p<0.05). All SP solutions were mixed with myofibrillar proteins (MP) extracted from chicken breast, and incubated with MTG. The shear stresses of MP with acid- and alkaline-treated SP were higher than that of normal SP. The thermal stability of MP mixture reduced upon adding SP, regardless of the pH treatment. The breaking force of MP gels with acid-treated SP increased more than those of alkaline-treated SP, while normal SP showed the highest value. The MP gel lightness increased, but cooking loss reduced, with the addition of SP. Smooth microstructure of the gel surface was observed. These results indicated that adjusting the pH of SP improved the water holding capacity of chicken myofibrillar proteins induced by MTG. PMID:26761171

  15. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    PubMed

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  16. Inactivation of Giardia lamblia cysts with ozone.

    PubMed Central

    Wickramanayake, G B; Rubin, A J; Sproul, O J

    1984-01-01

    Giardia lamblia cysts were inactivated in water with ozone at pH 7.0 and 5 and 25 degrees C. The concentration-time products for 99% inactivation were 0.53 and 0.17 mg-min/liter at 5 and 25 degrees C, respectively. These products were significantly lower than those reported for chlorine. PMID:6497374

  17. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  18. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  19. Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility.

    PubMed

    Achache, S; Alhussein, A; Lamri, S; François, M; Sanchette, F; Pulgarin, C; Kiwi, J; Rtimi, S

    2016-10-01

    Super-elastic Titanium based thin films Ti-23Nb-0.7Ta-2Zr-(O) (TNTZ-O) and Ti-24Nb-(N) (TN-N) (at.%) were deposited by direct current magnetron sputtering (DCMS) in different reactive atmospheres. The effects of oxygen doping (TNTZ-O) and/or nitrogen doping (TN-N) on the microstructure, mechanical properties and biocompatibility of the as-deposited coatings were investigated. Nano-indentation measurements show that, in both cases, 1sccm of reactive gas in the mixture is necessary to reach acceptable values of hardness and Young's modulus. Mechanical properties are considered in relation to the films compactness, the compressive stress and the changes in the grain size. Data on Bacterial inactivation and biocompatibility are reported in this study. The biocompatibility tests showed that O-containing samples led to higher cells proliferation. Bacterial inactivation was concomitant with the observed pH and surface potential changes under light and in the dark. The increased cell fluidity leading to bacterial lysis was followed during the bacterial inactivation time. The increasing cell wall fluidity was attributed to the damage of the bacterial outer cell which losing its capacity to regulate the ions exchange in and out of the bacteria. PMID:27434155

  20. Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties.

    PubMed

    Moradpour, Zahra; Ghasemian, Abdollah

    2016-05-01

    Cholesterol oxidase, a flavoenzyme, catalyzes two reactions in one active site: oxidation and isomerization. This enzyme has been isolated from a variety of microorganisms, mostly from actinomycetes. This enzyme has been widely used in clinical laboratories for cholesterol assays and was subsequently determined to have other potential applications. Engineering of cholesterol oxidase have enabled the identification of critical residues, and the information derived could lead to the rational development of improved types of the enzyme with increased stability and better functional properties. This review is the first that exclusively summarizes the reported results on the engineering of bacterial cholesterol oxidases aimed at improving their thermal and chemical stability, catalytic activity, and substrate specificity. PMID:27063015

  1. Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Liu, Y.; Wang, C.

    2005-12-01

    Electroless Ag-polytetrafluoroethylene (PTFE) composite coatings were prepared on stainless steel sheets. The existence and distribution of PTFE in the coatings were analysed with an energy dispersive X-ray microanalysis (EDX). The contact angle values and surface energies of the Ag-PTFE coatings, silver coating, stainless steel, titanium and E. coli Rosetta were measured. The experimental results showed that stainless steel surfaces coated with Ag-PTFE reduced E. coli attachment by 94-98%, compared with silver coating, stainless steel or titanium surfaces. The anti-bacterial mechanism of the Ag-PTFE composite coatings was explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The anticorrosion properties of the Ag-PTFE composite coatings in 0.9% NaCl solution were studied. The results showed that the corrosion resistance of the Ag-PTFE composite coatings was superior to that of stainless steel 316L.

  2. Ozone inactivation of cell-associated viruses.

    PubMed Central

    Emerson, M A; Sproul, O J; Buck, C E

    1982-01-01

    The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments. PMID:6280611

  3. Biochemical Analysis of Microbial Rhodopsins.

    PubMed

    Maresca, Julia A; Keffer, Jessica L; Miller, Kelsey J

    2016-01-01

    Ion-pumping rhodopsins transfer ions across the microbial cell membrane in a light-dependent fashion. As the rate of biochemical characterization of microbial rhodopsins begins to catch up to the rate of microbial rhodopsin identification in environmental and genomic sequence data sets, in vitro analysis of their light-absorbing properties and in vivo analysis of ion pumping will remain critical to characterizing these proteins. As we learn more about the variety of physiological roles performed by microbial rhodopsins in different cell types and environments, observing the localization patterns of the rhodopsins and/or quantifying the number of rhodopsin-bearing cells in natural environments will become more important. Here, we provide protocols for purification of rhodopsin-containing membranes, detection of ion pumping, and observation of functional rhodopsins in laboratory and environmental samples using total internal reflection fluorescence microscopy. © 2016 by John Wiley & Sons, Inc. PMID:27153387

  4. Skewed X-chromosome inactivation in women affected by Alzheimer's disease.

    PubMed

    Bajic, Vladan; Mandusic, Vesna; Stefanova, Elka; Bozovic, Ana; Davidovic, Radoslav; Zivkovic, Lada; Cabarkapa, Andrea; Spremo-Potparevic, Biljana

    2015-01-01

    X-chromosome instability has been a long established feature in Alzheimer's disease (AD). Premature centromere division and aneuploidy of the X-chromosome has been found in peripheral blood lymphocytes and neuronal tissue in female AD patients. Interestingly, only one chromosome of the X pair has been affected. These results raised a question, "Is the X-chromosome inactivation pattern altered in peripheral blood lymphocytes of women affected by AD?" To address this question, we analyzed the methylation status of androgen receptor promoter which may show us any deviation from the 50 : 50% X inactivation status in peripheral blood lymphocytes of women with AD. Our results showed skewed inactivation patterns (>90%). These findings suggest that an epigenetic alteration on the inactivation centers of the X-chromosome (or skewing) relates not only to aging, by might be a novel property that could account for the higher incidence of AD in women. PMID:25159673

  5. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.

    PubMed

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-10-01

    This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety. PMID:26187842

  6. Cyanide inactivation of hydrogenase from Azotobacter vinelandii

    SciTech Connect

    Seefeldt, L.C.; Arp, D.J. )

    1989-06-01

    The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M{sup {minus}1} min{sup {minus}1} for CN{sup {minus}}). The rate of inactivation decreased with decreasing pH. ({sup 14}C)cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state.

  7. Photochemical inactivation of pathogenic bacteria in human platelet concentrates.

    PubMed

    Lin, L; Londe, H; Janda, J M; Hanson, C V; Corash, L

    1994-05-01

    Platelet concentrates (PC) may be infrequently contaminated with low levels of bacteria that can cause septicemia and death in patients receiving transfusion therapy. We evaluated the efficacy of a photochemical decontamination (PCD) technique using 8-methoxypsoralen (8-MOP) and long wavelength UV light (UVA) to inactivate bacteria in standard therapeutic PC. Twelve phylogenetically distinct pathogenic bacteria, 5 gram-positive and 7 gram-negative organisms, were seeded into PC to a final challenge dose ranging from 10(5) to 10(7) colony-forming units (CFU)/mL. Contaminated PC were treated with 8-MOP (5 micrograms/mL) and 5 J/cm2 of UVA, a PCD treatment regimen found to adequately preserve in vitro platelet function. Greater than 10(5) CFU/mL of all 5 gram-positive (Staphylococcus aureus, Streptococcus epidermidis, Streptococcus pyogenes, Listeria monocytogenes, and Corynebacterium minutissimum) and 2 of the gram-negative (Escherichia coli and Yersinia enterocolitica) organisms were inactivated. The remaining 5 gram-negative organisms were more resistant, with less than 10(1) to 10(3.7) CFU/mL inactivated under these conditions. The inactivation efficiency for this resistant group of gram-negative organisms was improved when PC were resuspended in a synthetic storage medium with reduced plasma protein concentration (15%) and an increased 8-MOP concentration (23.4 micrograms/mL). Illumination with 3 J/cm2 of UVA in this system inactivated greater than 10(5) CFU/mL of 4 resistant gram-negative organisms (Salmonella choleraesuis, Enterobacter cloacae, Serratia marcescens, and Klebsiella pneumoniae) and 10(4.1) CFU/mL of the most resistant gram-negative organism (Pseudomonas aeruginosa). This level of PCD treatment did not adversely affect in vitro platelet function. These results demonstrate that PCD using 8-MOP (5 to 23.4 micrograms/mL) effectively inactivated high levels of pathogenic bacteria in PC with adequate preservation of in vitro platelet properties. PMID

  8. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    PubMed

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank. PMID:25938730

  9. Inactivation of Vesicular Stomatitis Virus by Disinfectants

    PubMed Central

    Wright, Herbert S.

    1970-01-01

    Twenty-four chemical disinfectants considered to be viricidal were tested. Ten disinfectants were not viricidal for vesicular stomatitis virus within 10 min at 20 C when an LD50 titer of 108.5 virus units per 0.1 ml were to be inactivated. Quantitative inactivation experiments were done with acid, alkaline, and a substituted phenolic disinfectant to determine the kinetics of the virus inactivation. Substituted phenolic disinfectants, halogens, and cresylic and hydrochloric acids were viricidal. Basic compounds such as lye and sodium metasilicate were not viricidal. PMID:4313317

  10. Photothermal inactivation of bacteria on plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Santos, Greggy M.; Ibañez de Santi Ferrara, Felipe; Zhao, Fusheng; Rodrigues, Debora F.; Shih, Wei-Chuan

    2016-03-01

    Hospital-acquired bacterial infections are frequently associated with the pathogenic biofilms on surfaces of devices and instruments used in medical procedures. The utilization of thermal plasmonic agents is an innovative approach for sterilizing hospital equipment and for in vivo therapeutic treatment of bacterial infection. A photothermal inactivation technique via array of nanoporous gold disks (NPGDs) has been developed by irradiating near infrared (NIR) light onto deposited bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium AT1B) on the surface of metal nanostructure. The physical and photothermal properties of the NPGD substrate were investigated using topographical scanning electron microscopy (SEM) and thermographic infrared imaging. Bacterial viability studies on NPGD substrates irradiated with and without NIR light were evaluated using a fluorescence-based two-component stain assay. The results show that the heat generated from the NPGD substrate promotes high cell death counts (~100%) at short exposure durations (<25 s) even for thermally-resistant bacterial strains. The photothermal effects on NPGD substrate can lead to point-of-care applications.

  11. Aβ seeds resist inactivation by formaldehyde

    PubMed Central

    Fritschi, Sarah K.; Cintron, Amarallys; Ye, Lan; Mahler, Jasmin; Bühler, Anika; Baumann, Frank; Neumann, Manuela; Nilsson, K. Peter R.; Hammarström, Per; Walker, Lary C.; Jucker, Mathias

    2014-01-01

    Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer’s disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material. PMID:25193240

  12. Insights into discharge argon mediated biofilm inactivation

    PubMed Central

    Traba, Christian; Chen, Long; Liang, Danni; Azzam, Robin; Liang, Jun F.

    2014-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in inactivation and removal of biofilms on biomaterials were studied. We found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen and nitrogen mediated decontamination was associated with strong etching effects, which can cause live bacteria relocation and thus contamination spreading. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting. PMID:24070412

  13. Aβ seeds resist inactivation by formaldehyde.

    PubMed

    Fritschi, Sarah K; Cintron, Amarallys; Ye, Lan; Mahler, Jasmin; Bühler, Anika; Baumann, Frank; Neumann, Manuela; Nilsson, K Peter R; Hammarström, Per; Walker, Lary C; Jucker, Mathias

    2014-10-01

    Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer's disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material. PMID:25193240

  14. Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis.

    PubMed

    Delgado, Susana; Leite, Analy M O; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2014-01-01

    This work characterizes a set of lactobacilli strains isolated from the stomach of healthy humans that might serve as probiotic cultures. Ten different strains were recognized by rep-PCR and PFGE fingerprinting among 19 isolates from gastric biopsies and stomach juice samples. These strains belonged to five species, Lactobacillus gasseri (3), Lactobacillus reuteri (2), Lactobacillus vaginalis (2), Lactobacillus fermentum (2) and Lactobacillus casei (1). All ten strains were subjected to a series of in vitro tests to assess their functional and technological properties, including acid resistance, bile tolerance, adhesion to epithelial gastric cells, production of antimicrobial compounds, inhibition of Helicobacter pylori, antioxidative activity, antibiotic resistance, carbohydrate fermentation, glycosidic activities, and ability to grow in milk. As expected, given their origin, all strains showed good resistance to low pH (3.0), with small reductions in counts after 90 min exposition to this pH. Species- and strain-specific differences were detected in terms of the production of antimicrobials, antagonistic effects toward H. pylori, antioxidative activity and adhesion to gastric epithelial cells. None of the strains showed atypical resistance to a series of 16 antibiotics of clinical and veterinary importance. Two L. reuteri strains were deemed as the most appropriate candidates to be used as potential probiotics against microbial gastric disorders; these showed good survival under gastrointestinal conditions reproduced in vitro, along with strong anti-Helicobacter and antioxidative activities. The two L. reuteri strains further displayed appropriated technological traits for their inclusion as adjunct functional cultures in fermented dairy products. PMID:25642213

  15. Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis

    PubMed Central

    Delgado, Susana; Leite, Analy M. O.; Ruas-Madiedo, Patricia; Mayo, Baltasar

    2015-01-01

    This work characterizes a set of lactobacilli strains isolated from the stomach of healthy humans that might serve as probiotic cultures. Ten different strains were recognized by rep-PCR and PFGE fingerprinting among 19 isolates from gastric biopsies and stomach juice samples. These strains belonged to five species, Lactobacillus gasseri (3), Lactobacillus reuteri (2), Lactobacillus vaginalis (2), Lactobacillus fermentum (2) and Lactobacillus casei (1). All ten strains were subjected to a series of in vitro tests to assess their functional and technological properties, including acid resistance, bile tolerance, adhesion to epithelial gastric cells, production of antimicrobial compounds, inhibition of Helicobacter pylori, antioxidative activity, antibiotic resistance, carbohydrate fermentation, glycosidic activities, and ability to grow in milk. As expected, given their origin, all strains showed good resistance to low pH (3.0), with small reductions in counts after 90 min exposition to this pH. Species- and strain-specific differences were detected in terms of the production of antimicrobials, antagonistic effects toward H. pylori, antioxidative activity and adhesion to gastric epithelial cells. None of the strains showed atypical resistance to a series of 16 antibiotics of clinical and veterinary importance. Two L. reuteri strains were deemed as the most appropriate candidates to be used as potential probiotics against microbial gastric disorders; these showed good survival under gastrointestinal conditions reproduced in vitro, along with strong anti-Helicobacter and antioxidative activities. The two L. reuteri strains further displayed appropriated technological traits for their inclusion as adjunct functional cultures in fermented dairy products. PMID:25642213

  16. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  17. Microbial biotechnology.

    PubMed

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  18. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    PubMed Central

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  19. Elimination of Rapid Potassium Channel Inactivation by Phosphorylation of the Inactivation Gate

    PubMed Central

    Covarrubias, Manuel; Wei, Aguan; Salkoff, Lawrence; Vyas, Tapan B.

    2008-01-01

    Summary The effect of protein kinase C (PKC) on rapid N-type inactivation of K+ channels has not been reported previously. We found that PKC specifically eliminates rapid inactivation of a cloned human A-type K+ channel (hKv3.4), converting this channel from a rapidly inactivating A type to a noninactivating delayed rectifier type. Biochemical analysis showed that the N-terminal domain of hKv3.4 is phosphorylated in vitro by PKC, and mutagenesis experiments revealed that two serines within the inactivation gate at the N-terminus are sites of direct PKC action. Moreover, mutating one of these serines to aspartic acid mimics the action of PKC. Serine phosphorylation may thus prevent rapid inactivation by shielding basic residues known to be critical to the function of the inactivation gate. The regulatory mechanism reported here may have substantial effects on signal coding in the nervous system. PMID:7993631

  20. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  1. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  2. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins. PMID:27556443

  3. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  4. The inactivation of lipoxygenase-1 from soybeans by amidrazones.

    PubMed

    Clemens, F; Drutkowski, G; Wiese, M; Frohberg, P

    2001-09-10

    Several compounds containing an amidrazone moiety are known to be potent inhibitors of lipoxygenase-1 activity from soybeans (L-1) with IC(50)-values in the range of 10 microM to 38 nM. Recently it was proposed that phenylhydrazones act as irreversible mechanism-based inhibitors of lipoxygenases. Because of the structural similarities between both compounds it was assumed for the amidrazones to affect the lipoxygenase reaction in the same suicide manner. Cyclisation of the amidrazone moiety to the corresponding triazoline should yield compounds without substrate properties. However, they are still able to inactivate the enzyme. The inhibition of L-1 from soybeans by two representative compounds of a series of amidrazones and triazolines has been characterised as a slow, tight-binding interaction via a two-step mechanism. Dialysis experiments indicate the reversible nature of interaction of the amidrazone with the ferrous enzyme while the ferric enzyme was irreversibly inactivated. In contrast, the interaction of the triazoline with both the ferric and ferrous species of the enzyme was completely reversible which demonstrates the noncovalent and reversible mode of binding and inactivation. The triazoline was found not to be a substrate of the dioxygenase reaction of lipoxygenase whereas the amidrazone is only a very poor substrate of the enzymatic oxidation reaction. The presented results point out the inhibition of L-1 by amidrazones and triazolines to fall into the same kinetic classification. Therefore it is obvious that the inhibition of L-1 by these compounds cannot be attributed to a truly mechanism-based inactivation. PMID:11566371

  5. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.

    PubMed

    Hijnen, W A M; Beerendonk, E F; Medema, G J

    2006-01-01

    UV disinfection technology is of growing interest in the water industry since it was demonstrated that UV radiation is very effective against (oo)cysts of Cryptosporidium and Giardia, two pathogenic micro-organisms of major importance for the safety of drinking water. Quantitative Microbial Risk Assessment, the new concept for microbial safety of drinking water and wastewater, requires quantitative data of the inactivation or removal of pathogenic micro-organisms by water treatment processes. The objective of this study was to review the literature on UV disinfection and extract quantitative information about the relation between the inactivation of micro-organisms and the applied UV fluence. The quality of the available studies was evaluated and only high-quality studies were incorporated in the analysis of the inactivation kinetics. The results show that UV is effective against all waterborne pathogens. The inactivation of micro-organisms by UV could be described with first-order kinetics using fluence-inactivation data from laboratory studies in collimated beam tests. No inactivation at low fluences (offset) and/or no further increase of inactivation at higher fluences (tailing) was observed for some micro-organisms. Where observed, these were included in the description of the inactivation kinetics, even though the cause of tailing is still a matter of debate. The parameters that were used to describe inactivation are the inactivation rate constant k (cm(2)/mJ), the maximum inactivation demonstrated and (only for bacterial spores and Acanthamoeba) the offset value. These parameters were the basis for the calculation of the microbial inactivation credit (MIC="log-credits") that can be assigned to a certain UV fluence. The most UV-resistant organisms are viruses, specifically Adenoviruses, and bacterial spores. The protozoon Acanthamoeba is also highly UV resistant. Bacteria and (oo)cysts of Cryptosporidium and Giardia are more susceptible with a fluence

  6. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    PubMed

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  7. Inactivation of Helicobacter pylori by chlorination.

    PubMed Central

    Johnson, C H; Rice, E W; Reasoner, D J

    1997-01-01

    Three strains of Helicobacter pylori were studied to determine their resistance to chlorination. The organisms were readily inactivated by free chlorine and should therefore be controlled by disinfection practices normally employed in the treatment of drinking water. PMID:9406419

  8. Thermal Inactivation of Newcastle Disease Virus I. Coupled Inactivation Rates of Hemagglutinating and Neuraminidase Activities

    PubMed Central

    Pierce, John S.; Haywood, A. M.

    1973-01-01

    The thermal stability of Newcastle disease virus has been characterized in terms of the rate constants for inactivation of hemagglutinating activity (HA), neuraminidase activity (NA), and infectivity. Inactivation of HA results in the concomitant loss of NA. Infectivity, however, is much more thermolabile. Disintegration of the virus particle is not responsible for the identical rate constants for inactivation of HA and NA, nor is their parallel inactivation uncoupled in envelope fragments produced by pretreating the virus with phospholipase-C. The data indicate that a common envelope factor(s) can influence the thermal stability of both activities. PMID:4734647

  9. Pressure inactivation of microorganisms at moderate temperatures

    NASA Astrophysics Data System (ADS)

    Butz, P.; Ludwig, H.

    1986-05-01

    The inactivation of bacteria, bacterial spores, yeasts and molds by high hydrostatic pressure was investigated over a pressure range up to 3000 bar. Survival curves were measured as a function of temperature and pressure applied on the microorganisms. Conditions are looked for under which heat or radiation sensitive pharmaceutical preparations can be sterilized by high pressure treatment at moderate temperatures. All organisms tested can be inactivated in the range of 2000-2500 bar and between 40-60 degrees.

  10. Inactivation of viruses by benzalkonium chloride.

    PubMed

    Armstrong, J A; Froelich, E J

    1964-03-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  11. Inactivation of Viruses by Benzalkonium Chloride

    PubMed Central

    Armstrong, J. A.; Froelich, E. J.

    1964-01-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  12. The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli.

    PubMed

    Ng, Tsz Wai; An, Taicheng; Li, Guiying; Ho, Wing Kei; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-08-01

    Inactivation of Escherichia coli K-12 was conducted by applying a continuous supplying of commercial H2O2 to mimic the H2O2 production in a photocatalytic system, and the contribution of H2O2 in photocatalytic inactivation was investigated using a modified "partition system" and five E. coli mutants. The concentration of exogenous H2O2 required for complete inactivation of bacterial cells was much higher than that produced in-situ in common photocatalytic system, indicating that H2O2 alone plays a minor role in photocatalytic inactivation. However, the concentration of exogenously produced H2O2 required for effective inactivation of E. coli K-12 was much lower when the light irradiation was applied. To further investigate the possible physiological changes, inactivation of E. coli BW25113 (the parental strain), and its corresponding isogenic single-gene deletion mutants with light pretreatment was compared. The results indicate that light irradiation increases the bacterial intracellular Fe(2+) level and favors hydroxyl radical (OH) production via the catalytic reaction of Fe(2+), leading to increase in DNA damage. Moreover, the results indicate that the properties of light source, such as intensity and major emission wavelength, may alter the physiology of bacterial cells and affect the susceptibility to in-situ resultant H2O2 in the photocatalytic inactivation processes, leading to significant influence on the photocatalytic inactivation efficiencies of E. coli K-12. PMID:26083904

  13. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  14. Alkyl isocyanates as active site-directed inactivators of guinea pig liver transglutaminase.

    PubMed

    Gross, M; Whetzel, N K; Folk, J E

    1975-10-10

    Alkyl isocyanates are effective inactivators of guinea pig liver transglutaminase. Based on the specificity of the reaction the protection against inactivation by glutamine substrate, and the essential nature of calcium for the inactivation reaction, it is concluded that these reagents act as amide substrate analogs and, thus function in an active site-specific manner. Support for the contention that inactivation results from alkyl thiocarbamate ester formation through the single active site sulfhydryl group of the enzyme is (a) the loss of one free--SH group and the incorporation of 1 mol of reagent/mol of enzyme in the reaction, (b) similarity in chemical properties of the inactive enzyme derivative formed to those previously reported for another alkyl thiocarbamoylenzyme and an alkyl thiocarbamoylcysteine derivative, and (c) the finding that labeled peptides from digests of [methyl-14C]thiocarbamoyltransglutaminase and those from digests of iodoacetamide-inactivated enzyme occupy similar positions on peptide maps. Transglutaminase was found to be inactivated neither by urethan anlogs of its active ester substrates nor by urea analogs of its amide substrates. It is concluded on the basis of these findings that inactive carbamoylenzyme derivatives are formed only by direct addition of the transglutaminase active--SH group to the isocyanate C--N double bond, and not, like several serine active site enzymes, by nucleophilic displacement with urethan analogs of substrate, or by nucleophilic displacement with urea analogs of substrate. PMID:240837

  15. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  16. Effectiveness of ultrasound, UV-C, and photocatalysis on inactivation kinetics of Aeromonas hydrophila.

    PubMed

    Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D

    2015-01-01

    In this study, bactericidal effects of 24 kHz ultrasound, ultraviolet (UV-C) irradiation, and titanium dioxide (TiO2) photocatalyst were studied on inactivation of Aeromonas hydrophila, an emerging pathogen listed on the US Environmental Protection Agency's (US EPA) candidate contaminant list. Metabolic activity (using the AlamarBlue dye) assays were performed to assess the residual activity of the microbial cells after the disinfection treatments along with culture-based methods. A faster inactivation rate of 1.52 log min(-1) and inactivation of 7.62 log10 was observed within 5 min of ultrasound exposure. Ultrasound treated cells repaired by 1.4 log10 in contrast to 5.3 log10 repair for UV-C treated cells. Ultrasound treatment significantly lowered the reactivation of Aeromonas hydrophila in comparison to UV-C- and UV-C-induced photocatalysis. Ultrasound appeared to be an effective means of inactivating Aeromonas hydrophila and could be used as a potential disinfection method for water and wastewater reuse. PMID:26301848

  17. Photodynamic-induced inactivation of Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Teschke, M.; Eick, Stephen G.; Pfister, W.; Meyer, Herbert; Halbhuber, Karl-Juergen

    1998-05-01

    We report on photodynamically induced inactivation of the skin bacterium Propionibacterium acnes (P. acnes) using endogenous as well as exogenous photosensitizers and red light sources. P. acnes is involved in the pathogenesis of the skin disease acne vulgaris. The skin bacterium is able to synthesize the metal-free fluorescent porphyrins protoporphyrin IX (PP) and coproporphyrin (CP) as shown by in situ spectrally-resolved detection of natural autofluorescence of human skin and bacteria colonies. These naturally occurring intracellular porphyrins act as efficient endogenous photosensitizers. Inactivation of P. acnes suspensions was achieved by irradiation with He-Ne laser light in the red spectral region (632.8 nm). We monitored the photodynamically-induced death of single bacteria using a fluorescent viability kit in combination with confocal laser scanning microscopy. In addition, the photo-induced inactivation was calculated by CFU (colony forming units) determination. We found 633 nm-induced inactivation (60 mW, 0.12 cm2 exposure area, 1 hour irradiation) of 72% in the case of non-incubated bacteria based on the destructive effect of singlet oxygen produced by red light excited endogenous porphyrins and subsequent energy transfer to molecular oxygen. In order to achieve a nearly complete inactivation within one exposure procedure, the exogenous photosensitizer Methylene Blue (Mb) was added. Far red exposure of Mb-labeled bacteria using a krypton ion laser at 647 nm and 676 nm resulted in 99% inactivation.

  18. Ammonia inactivation of Ascaris ova in ecological compost by using urine and ash.

    PubMed

    McKinley, James W; Parzen, Rebecca E; Mercado Guzmán, Álvaro

    2012-08-01

    Viable ova of Ascaris lumbricoides, an indicator organism for pathogens, are frequently found in feces-derived compost produced from ecological toilets, demonstrating that threshold levels of time, temperature, pH, and moisture content for pathogen inactivation are not routinely met. Previous studies have determined that NH(3) has ovicidal properties for pathogens, including Ascaris ova. This research attempted to achieve Ascaris inactivation via NH(3) under environmental conditions commonly found in ecological toilets and using materials universally available in an ecological sanitation setting, including compost (feces and sawdust), urine, and ash. Compost mixed with stored urine and ash produced the most rapid inactivation, with significant inactivation observed after 2 weeks and with a time to 99% ovum inactivation (T(99)) of 8 weeks. Compost mixed with fresh urine and ash achieved a T(99) of 15 weeks, after a 4-week lag phase. Both matrices had relatively high total-ammonia concentrations and pH values of >9.24 (pK(a) of ammonia). In compost mixed with ash only, and in compost mixed with fresh urine only, inactivation was observed after an 11-week lag phase. These matrices contained NH(3) concentrations of 164 to 173 and 102 to 277 mg/liter, respectively, when inactivation occurred, which was below the previously hypothesized threshold for inactivation (280 mg/liter), suggesting that a lower threshold NH(3) concentration may be possible with a longer contact time. Other significant results include the hydrolysis of urea to ammonia between pH values of 10.4 and 11.6, above the literature threshold pH of 10. PMID:22582051

  19. Ammonia Inactivation of Ascaris Ova in Ecological Compost by Using Urine and Ash

    PubMed Central

    Parzen, Rebecca E.; Mercado Guzmán, Álvaro

    2012-01-01

    Viable ova of Ascaris lumbricoides, an indicator organism for pathogens, are frequently found in feces-derived compost produced from ecological toilets, demonstrating that threshold levels of time, temperature, pH, and moisture content for pathogen inactivation are not routinely met. Previous studies have determined that NH3 has ovicidal properties for pathogens, including Ascaris ova. This research attempted to achieve Ascaris inactivation via NH3 under environmental conditions commonly found in ecological toilets and using materials universally available in an ecological sanitation setting, including compost (feces and sawdust), urine, and ash. Compost mixed with stored urine and ash produced the most rapid inactivation, with significant inactivation observed after 2 weeks and with a time to 99% ovum inactivation (T99) of 8 weeks. Compost mixed with fresh urine and ash achieved a T99 of 15 weeks, after a 4-week lag phase. Both matrices had relatively high total-ammonia concentrations and pH values of >9.24 (pKa of ammonia). In compost mixed with ash only, and in compost mixed with fresh urine only, inactivation was observed after an 11-week lag phase. These matrices contained NH3 concentrations of 164 to 173 and 102 to 277 mg/liter, respectively, when inactivation occurred, which was below the previously hypothesized threshold for inactivation (280 mg/liter), suggesting that a lower threshold NH3 concentration may be possible with a longer contact time. Other significant results include the hydrolysis of urea to ammonia between pH values of 10.4 and 11.6, above the literature threshold pH of 10. PMID:22582051

  20. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  1. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  2. Cell wall as a target for bacteria inactivation by pulsed electric fields

    PubMed Central

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  3. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  4. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  5. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence.

    PubMed

    Cox, D H; Dunlap, K

    1994-08-01

    We have studied the inactivation of high-voltage-activated (HVA), omega-conotoxin-sensitive, N-type Ca2+ current in embryonic chick dorsal root ganglion (DRG) neurons. Voltage steps from -80 to 0 mV produced inward Ca2+ currents that inactivated in a biphasic manner and were fit well with the sum of two exponentials (with time constants of approximately 100 ms and > 1 s). As reported previously, upon depolarization of the holding potential to -40 mV, N current amplitude was significantly reduced and the rapid phase of inactivation all but eliminated (Nowycky, M. C., A. P. Fox, and R. W. Tsien. 1985. Nature. 316:440-443; Fox, A. P., M. C. Nowycky, and R. W. Tsien. 1987a. Journal of Physiology. 394:149-172; Swandulla, D., and C. M. Armstrong. 1988. Journal of General Physiology. 92:197-218; Plummer, M. R., D. E. Logothetis, and P. Hess. 1989. Neuron. 2:1453-1463; Regan, L. J., D. W. Sah, and B. P. Bean. 1991. Neuron. 6:269-280; Cox, D. H., and K. Dunlap. 1992. Journal of Neuroscience. 12:906-914). Such kinetic properties might be explained by a model in which N channels inactivate by both fast and slow voltage-dependent processes. Alternatively, kinetic models of Ca-dependent inactivation suggest that the biphasic kinetics and holding-potential-dependence of N current inactivation could be due to a combination of Ca-dependent and slow voltage-dependent inactivation mechanisms. To distinguish between these possibilities we have performed several experiments to test for the presence of Ca-dependent inactivation. Three lines of evidence suggest that N channels inactivate in a Ca-dependent manner. (a) The total extent of inactivation increased 50%, and the ratio of rapid to slow inactivation increased approximately twofold when the concentration of the Ca2+ buffer, EGTA, in the patch pipette was reduced from 10 to 0.1 mM. (b) With low intracellular EGTA concentrations (0.1 mM), the ratio of rapid to slow inactivation was additionally increased when the extracellular Ca2

  6. Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites.

    PubMed

    Deng, Can-Hui; Gong, Ji-Lai; Zeng, Guang-Ming; Niu, Cheng-Gang; Niu, Qiu-Ya; Zhang, Wei; Liu, Hong-Yu

    2014-07-15

    The challenge to achieve efficient disinfection and microbial control without harmful disinfection byproducts calls for developing new technologies. Magnetic-graphene oxide (M-GO) with magnetic iron oxide nanoparticles well dispersed on graphene oxide (GO) nanosheets exerted excellent antibacterial activity against Escherichia coli. The antibacterial performance of M-GO was dependent on the concentration and the component mass ratio of M/GO. The synergetic antibacterial effect of M-GO was observed with M/GO mass ratio of 9.09. TEM images illustrated the interaction between E. coli cells and M-GO nanocomposites. M-GO nanomaterials were possible to deposit on or penetrate into cells leading to leakage of intercellular contents and loss of cell integrity. The inactivation mechanism of E. coli by M-GO was supposed to result from both the membrane stress and oxidation stress during the incubation period. M-GO with excellent antibacterial efficiency against E. coli and separation-convenient property from water could be potent bactericidal nanomaterials for water disinfection. PMID:24862470

  7. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  8. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4).

    PubMed

    Shaltiel, Lior; Paparizos, Christos; Fenske, Stefanie; Hassan, Sami; Gruner, Christian; Rötzer, Katrin; Biel, Martin; Wahl-Schott, Christian A

    2012-10-19

    Cav1.4 L-type Ca(2+) channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca(2+)-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca(2+)-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease. PMID:22936811

  9. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Yaoi, Katsuro

    2015-11-01

    A putative glycoside hydrolase family 43 β-xylosidase/α-arabinofuranosidase (CoXyl43) that promotes plant biomass saccharification was isolated via functional screening of a compost microbial metagenomic library and characterized. CoXyl43 promoted the saccharification of plant biomasses, including xylans (xylan and arabinoxylan), rice straw, and Erianthus, by degrading xylooligosaccharide residues to monosaccharide residues. The recombinant CoXyl43 protein exhibited both β-xylosidase and α-arabinofuranosidase activities for chromogenic substrates, with optimal activity at pH 7.5 and 55 °C. Both of these activities were inactivated by ethanol, dimethylsulfoxide, and zinc and copper ions but were activated by manganese ions. Only the β-xylosidase activity of recombinant CoXyl43 was enhanced in the presence of calcium ions. These results indicate that CoXyl43 exhibits unique enzymatic properties useful for biomass saccharification. PMID:25971196

  10. Physiology and Pathophysiology of Sodium Channel Inactivation.

    PubMed

    Ghovanloo, M-R; Aimar, K; Ghadiry-Tavi, R; Yu, A; Ruben, P C

    2016-01-01

    Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications. PMID:27586293

  11. Persistently Active Microbial Molecules Prolong Innate Immune Tolerance In Vivo

    PubMed Central

    Lu, Mingfang; Varley, Alan W.; Munford, Robert S.

    2013-01-01

    Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases. PMID:23675296

  12. Microbial effects

    SciTech Connect

    Lamborg, M.R.; Hardy, R.W.F.; Paul, E.A.

    1983-01-01

    The postulated doubling of atmospheric CO/sub 2/ is not likely to have direct effect on soil microbial activity because during the growing season, the concentration of CO/sub 2/ in the soil atmosphere is already ten to fifty times higher than existing atmospheric CO/sub 2/. Based on all available experimental information, it is estimated that a doubling of atmospheric CO/sub 2/ will cause an increase in primary productivity of 10 to 40% depending on locale. The increase in biomass will, in turn, produce a limitation of available soil nutrients, especially nitrogen and phosphorus. Increased organic carbon together with nitrogen and/or phosphorus limitation will result in a preferential increase in nitrogen fixation and mycorrhizal activities as the expedient means for supplying required nutrients to sustain the predicted increase in primary productivity. Therefore, increased emphasis should be placed on fundamental research related to soil microbiology with special reference to nitrogen-fixing, nitrifying and denitrifying bacteria, and to the mycorrhizal fungi. 111 references, 2 figures.

  13. Microbial resistance to disinfectants: mechanisms and significance

    SciTech Connect

    Hoff, J.C.; Akin, E.W.

    1986-11-01

    Drinking water disinfection provides the final barrier to transmission of a wide variety of potentially waterborne infectious agents including pathogenic bacteria, viruses, and protozoa. These agents differ greatly in their innate resistance to inactivation by disinfectants, ranging from extremely sensitive bacteria to highly resistant protozoan cysts. The close similarity between microorganism inactivation rates and the kinetics of chemical reactions has long been recognized. Ideally, under carefully controlled conditions, microorganism inactivation rates simulate first-order chemical reaction rates, making it possible to predict the effectiveness of disinfection under specific conditions. In practice, changes in relative resistance and deviations from first-order kinetics are caused by a number of factors, including microbial growth conditions, aggregation, and association with particulate materials. The net effect of all these factors is a reduction in the effectiveness and predictability of disinfection processes. To ensure effective pathogen control, disinfectant concentrations and contact times greater than experimentally determined values may be required. Of the factors causing enhanced disinfection resistance, protection by association with particulate matter is the most significant. Therefore, removal of particulate matter is an important step in increasing the effectiveness of disinfection processes.

  14. Microbial resistance to disinfectants: mechanisms and significance.

    PubMed Central

    Hoff, J C; Akin, E W

    1986-01-01

    Drinking water disinfection provides the final barrier to transmission of a wide variety of potentially waterborne infectious agents including pathogenic bacteria, viruses, and protozoa. These agents differ greatly in their innate resistance to inactivation by disinfectants, ranging from extremely sensitive bacteria to highly resistant protozoan cysts. The close similarity between microorganism inactivation rates and the kinetics of chemical reactions has long been recognized. Ideally, under carefully controlled conditions, microorganism inactivation rates simulate first-order chemical reaction rates, making it possible to predict the effectiveness of disinfection under specific conditions. In practice, changes in relative resistance and deviations from first-order kinetics are caused by a number of factors, including microbial growth conditions, aggregation, and association with particulate materials. The net effect of all these factors is a reduction in the effectiveness and predictability of disinfection processes. To ensure effective pathogen control, disinfectant concentrations and contact times greater than experimentally determined values may be required. Of the factors causing enhanced disinfection resistance, protection by association with particulate matter is the most significant. Therefore, removal of particulate matter is an important step in increasing the effectiveness of disinfection processes. Images FIGURE 6. PMID:3816738

  15. Plasma-Mediated Inactivation of Pseudomonas aeruginosa Biofilms Grown on Borosilicate Surfaces under Continuous Culture System

    PubMed Central

    Vandervoort, Kurt G.; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturabilty are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  16. Microbial Safety and Shelf Life of UV-C Treated Freshly Squeezed White Grape Juice.

    PubMed

    Unluturk, Sevcan; Atilgan, Mehmet R

    2015-08-01

    The effects of UV-C irradiation on the inactivation of Escherichia coli K-12 (ATCC 25253), a surrogate of E. coli O157:H7, and on the shelf life of freshly squeezed turbid white grape juice (FSWGJ) were investigated. FSWGJ samples were processed at 0.90 mL/s for 32 min by circulating 8 times in an annular flow UV system. The UV exposure time was 244 s per cycle. The population of E. coli K-12 was reduced by 5.34 log cycles after exposure to a total UV dosage of 9.92 J/cm(2) (1.24 J/cm(2) per cycle) at 0.90 mL/s flow rate. The microbial shelf life of UV-C treated FSWGJ was extended up to 14 d at 4 °C. UV exposure was not found to alter pH, total soluble solid, and titratable acidity of juice. There was a significant effect (P < 0.05) on turbidity, absorbance coefficient, color, and ascorbic acid content. Furthermore, all physicochemical properties were altered during refrigerated storage. The microbial shelf life of FSWGJ was doubled after UV-C treatment, whereas the quality of juice was adversely affected similarly observed in the control samples. PMID:26177986

  17. Tuning of EAG K+ channel inactivation: Molecular determinants of amplification by mutations and a small molecule

    PubMed Central

    Garg, Vivek; Sachse, Frank B.

    2012-01-01

    Ether-à-go-go (EAG) and EAG-related gene (ERG) K+ channels are close homologues but differ markedly in their gating properties. ERG1 channels are characterized by rapid and extensive C-type inactivation, whereas mammalian EAG1 channels were previously considered noninactivating. Here, we show that human EAG1 channels exhibit an intrinsic voltage-dependent slow inactivation that is markedly enhanced in rate and extent by 1–10 µM 3-nitro-N-(4-phenoxyphenyl) benzamide, or ICA105574 (ICA). This compound was previously reported to have the opposite effect on ERG1 channels, causing an increase in current magnitude by inhibition of C-type inactivation. The voltage dependence of 2 µM ICA-induced inhibition of EAG1 current was half-maximal at −73 mV, 62 mV negative to the half-point for channel activation. This finding suggests that current inhibition by the drug is mediated by enhanced inactivation and not open-channel block, where the voltage half-points for current inhibition and channel activation are predicted to overlap, as we demonstrate for clofilium and astemizole. The mutation Y464A in the S6 segment also induced inactivation of EAG1, with a time course and voltage dependence similar to that caused by 2 µM ICA. Several Markov models were investigated to describe gating effects induced by multiple concentrations of the drug and the Y464A mutation. Models with the smallest fit error required both closed- and open-state inactivation. Unlike typical C-type inactivation, the rate of Y464A- and ICA-induced inactivation was not decreased by external tetraethylammonium or elevated [K+]e. EAG1 channel inactivation introduced by Y464A was prevented by additional mutation of a nearby residue located in the S5 segment (F359A) or pore helix (L434A), suggesting a tripartite molecular model where interactions between single residues in S5, S6, and the pore helix modulate inactivation of EAG1 channels. PMID:22930803

  18. Tuning of EAG K(+) channel inactivation: molecular determinants of amplification by mutations and a small molecule.

    PubMed

    Garg, Vivek; Sachse, Frank B; Sanguinetti, Michael C

    2012-09-01

    Ether-à-go-go (EAG) and EAG-related gene (ERG) K(+) channels are close homologues but differ markedly in their gating properties. ERG1 channels are characterized by rapid and extensive C-type inactivation, whereas mammalian EAG1 channels were previously considered noninactivating. Here, we show that human EAG1 channels exhibit an intrinsic voltage-dependent slow inactivation that is markedly enhanced in rate and extent by 1-10 µM 3-nitro-N-(4-phenoxyphenyl) benzamide, or ICA105574 (ICA). This compound was previously reported to have the opposite effect on ERG1 channels, causing an increase in current magnitude by inhibition of C-type inactivation. The voltage dependence of 2 µM ICA-induced inhibition of EAG1 current was half-maximal at -73 mV, 62 mV negative to the half-point for channel activation. This finding suggests that current inhibition by the drug is mediated by enhanced inactivation and not open-channel block, where the voltage half-points for current inhibition and channel activation are predicted to overlap, as we demonstrate for clofilium and astemizole. The mutation Y464A in the S6 segment also induced inactivation of EAG1, with a time course and voltage dependence similar to that caused by 2 µM ICA. Several Markov models were investigated to describe gating effects induced by multiple concentrations of the drug and the Y464A mutation. Models with the smallest fit error required both closed- and open-state inactivation. Unlike typical C-type inactivation, the rate of Y464A- and ICA-induced inactivation was not decreased by external tetraethylammonium or elevated [K(+)](e). EAG1 channel inactivation introduced by Y464A was prevented by additional mutation of a nearby residue located in the S5 segment (F359A) or pore helix (L434A), suggesting a tripartite molecular model where interactions between single residues in S5, S6, and the pore helix modulate inactivation of EAG1 channels. PMID:22930803

  19. Role of oxyradicals in the inactivation of catalase by ozone

    SciTech Connect

    Whiteside, C.; Hassan, H.M. )

    1988-01-01

    The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.

  20. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    PubMed Central

    Lenz, Christian A.; Reineke, Kai; Knorr, Dietrich; Vogel, Rudi F.

    2015-01-01

    Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We investigated the inactivation of C. botulinum type E spores by (near) isothermal HPT treatments at 300–1200 MPa at 30–75°C for 1 s to 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone), large heat susceptible (HPT-induced germinated) or lysozyme-dependently germinable (damaged coat layer) spore fractions were not detected. Inactivation followed first order kinetics. Dipicolinic acid release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective) physiologic-like (similar to nutrient-induced) germination at ≤450 MPa/≤45°C and non-physiological germination at >500 MPa/>60–70°C. Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores compared with the resistance of spores from other C. botulinum types could allow for the implementation of

  1. Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma

    NASA Astrophysics Data System (ADS)

    Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

    2011-10-01

    Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 107 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

  2. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs

    PubMed Central

    Yin, Rui; Agrawal, Tanupriya; Khan, Usman; Gupta, Gaurav K; Rai, Vikrant; Huang, Ying-Ying; Hamblin, Michael R

    2015-01-01

    The relentless advance of drug-resistance among pathogenic microbes, mandates a search for alternative approaches that will not cause resistance. Photodynamic inactivation (PDI) involves the combination of nontoxic dyes with harmless visible light to produce reactive oxygen species that can selectively kill microbial cells. PDI can be broad-spectrum in nature and can also destroy microbial cells in biofilms. Many different kinds of nanoparticles have been studied to potentiate antimicrobial PDI by improving photosensitizer solubility, photochemistry, photophysics and targeting. This review will cover photocatalytic disinfection with titania nanoparticles, carbon nanomaterials (fullerenes, carbon nanotubes and graphene), liposomes and polymeric nanoparticles. Natural polymers (chitosan and cellulose), gold and silver plasmonic nanoparticles, mesoporous silica, magnetic and upconverting nanoparticles have all been used for PDI. PMID:26305189

  3. Soil health, plant-microbial interactions and relationships with herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil biological properties critical for successful crop production include microbial diversity and soil carbon content and quality. Soil microbial diversity, or soil biodiversity, may be the most valuable property of any ecosystem because greater diversity provides a greater range of pathways for pr...

  4. Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons?

    PubMed

    Krafft, Marie Pierre

    2015-08-14

    In many pulmonary conditions serum proteins interfere with the normal adsorption of components of the lung surfactant to the surface of the alveoli, resulting in lung surfactant inactivation, with potentially serious untoward consequences. Here, we review the strategies that have recently been designed in order to counteract the biophysical mechanisms of inactivation of the surfactant. One approach includes protein analogues or peptides that mimic the native proteins responsible for innate resistance to inactivation. Another perspective uses water-soluble additives, such as electrolytes and hydrophilic polymers that are prone to enhance adsorption of phospholipids. An alternative, more recent approach consists of using fluorocarbons, that is, highly hydrophobic inert compounds that were investigated for partial liquid ventilation, that modify interfacial properties and can act as carriers of exogenous lung surfactant. The latter approach that allows fluidisation of phospholipid monolayers while maintaining capacity to reach near-zero surface tension definitely warrants further investigation. PMID:26110877

  5. Mechanisms of closed-state inactivation in voltage-gated ion channels

    PubMed Central

    Bähring, Robert; Covarrubias, Manuel

    2011-01-01

    Inactivation of voltage-gated ion channels is an intrinsic auto-regulatory process necessary to govern the occurrence and shape of action potentials and establish firing patterns in excitable tissues. Inactivation may occur from the open state (open-state inactivation, OSI) at strongly depolarized membrane potentials, or from pre-open closed states (closed-state inactivation, CSI) at hyperpolarized and modestly depolarized membrane potentials. Voltage-gated Na+, K+, Ca2+ and non-selective cationic channels utilize both OSI and CSI. Whereas there are detailed mechanistic descriptions of OSI, much less is known about the molecular basis of CSI. Here, we review evidence for CSI in voltage-gated cationic channels (VGCCs) and recent findings that shed light on the molecular mechanisms of CSI in voltage-gated K+ (Kv) channels. Particularly, complementary observations suggest that the S4 voltage sensor, the S4S5 linker and the main S6 activation gate are instrumental in the installment of CSI in Kv4 channels. According to this hypothesis, the voltage sensor may adopt a distinct conformation to drive CSI and, depending on the stability of the interactions between the voltage sensor and the pore domain, a closed-inactivated state results from rearrangements in the selectivity filter or failure of the activation gate to open. Kv4 channel CSI may efficiently exploit the dynamics of the subthreshold membrane potential to regulate spiking properties in excitable tissues. PMID:21098008

  6. Batrachotoxin uncouples gating charge immobilization from fast Na inactivation in squid giant axons.

    PubMed Central

    Tanguy, J; Yeh, J Z

    1988-01-01

    The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel. PMID:2852036

  7. High-pressure inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum at subzero temperatures.

    PubMed

    Perrier-Cornet, Jean-Marie; Tapin, Sandra; Gaeta, Serenella; Gervais, Patrick

    2005-02-23

    High hydrostatic pressure is a new technology in the food processing industry, and is used for cold pasteurization of food products. However, the pressure inactivation of food-borne microorganisms requires very high pressures (generally more than 400 MPa) and long pressure holding times (5 min or more). Carrying out pressure processing at low temperatures without freezing can reduce these parameters, which presently limit the application of this technology, in keeping the quality of fresh raw product. The yeast, Saccharomyces cerevisiae and the bacterium, Lactobacillus plantarum were pressurized for 10 min at temperatures between -20 and 25 degrees C and pressure between 100 and 350 MPa. Pressurization at subzero temperatures without freezing significantly enhanced the effect of pressure. For example, at a pressure of 150 MPa, the decrease in temperature from ambient to -20 degrees C allowed an increase in the pressure-induced inactivation from less than 1 log up to 7-8 log for each microorganism studied. However, for comparable inactivation levels, the kinetics of microorganism inactivation did not differ, which suggests identical inactivation mechanisms. Implications of water thermodynamical properties like compression, protein denaturation, as well as membrane phase transitions, are discussed. PMID:15639102

  8. High gas pressure: an innovative method for the inactivation of dried bacterial spores.

    PubMed

    Colas de la Noue, A; Espinasse, V; Perrier-Cornet, J-M; Gervais, P

    2012-08-01

    In this article, an original non-thermal process to inactivate dehydrated bacterial spores is described. The use of gases such as nitrogen or argon as transmission media under high isostatic pressure led to an inactivation of over 2 logs CFU/g of Bacillus subtilis spores at 430 MPa, room temperature, for a 1 min treatment. A major requirement for the effectiveness of the process resided in the highly dehydrated state of the spores. Only a water activity below 0.3 led to substantial inactivation. The solubility of the gas in the lipid components of the spore and its diffusion properties was essential to inactivation. The main phenomenon involved seems to be the sorption of the gas under pressure by the spores' structures such as residual pores and plasma membranes, followed by a sudden drop in pressure. Observation by phase-contrast microscopy suggests that internal structures have been affected by the treatment. Some parallels with polymer permeability to gas and rigidity at various water activities offer a few clues about the behavior of the outer layers of spores in response to this parameter and provide a good explanation for the sensitivity of spores to high gas pressure discharge at low hydration levels. Specificity of microorganisms such as size, organization, and composition could help in understanding the differences between spores and yeast regarding the parameters required for inactivation, such as pressure or maintenance time. PMID:22362566

  9. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS).

    PubMed

    Pyrgiotakis, Georgios; Vasanthakumar, Archana; Gao, Ya; Eleftheriadou, Mary; Toledo, Eduardo; DeAraujo, Alice; McDevitt, James; Han, Taewon; Mainelis, Gediminas; Mitchell, Ralph; Demokritou, Philip

    2015-03-17

    Foodborne diseases caused by the consumption of food contaminated with pathogenic microorganisms or their toxins have very serious economic and public health consequences. Here, we explored the effectiveness of a recently developed intervention method for inactivation of microorganisms on fresh produce, and food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) produced by electrospraying of water vapor. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS) and have very strong surface charge (on average 10 e/structure). Here, their efficacy in inactivating representative foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfaces and on organic tomatoes, was assessed. The inactivation was facilitated using two different exposure approaches in order to optimize the delivery of EWNS to bacteria: (1) EWNS were delivered on the surfaces by diffusion and (2) a "draw through" Electrostatic Precipitator Exposure System (EPES) was developed and characterized for EWNS delivery to surfaces. Using the diffusion approach and an EWNS concentration of 24,000 #/cm3, the bacterial concentrations on the surfaces were reduced, depending on the bacterium and the surface type, by values ranging between 0.7 to 1.8 logs. Using the EPES approach and for an aerosol concentration of 50,000 #/cm3 at 90 min of exposure, results show a 1.4 log reduction for E. coli on organic tomato surfaces, as compared to the control (same conditions in regards to temperature and Relative Humidity). Furthermore, for L. innocua, the dose-response relationship was demonstrated and found to be a 0.7 and 1.2 logs removal at 12,000 and 23,000 #/cm3, respectively. The results presented here indicate that this novel, chemical-free, and environmentally friendly intervention method holds potential for development and application in the

  10. Inactivation of prion infectivity by ionizing rays

    NASA Astrophysics Data System (ADS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J. C.

    2007-11-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  11. Monochloramine inactivation of bacterial select agents.

    PubMed

    Rose, Laura J; Rice, Eugene W; Hodges, Lisa; Peterson, Alicia; Arduino, Matthew J

    2007-05-01

    Seven species of bacterial select agents were tested for susceptibility to monochloramine. Under test conditions, the monochloramine routinely maintained in potable water would reduce six of the species by 2 orders of magnitude within 4.2 h. Bacillus anthracis spores would require up to 3.5 days for the same inactivation with monochloramine. PMID:17400782

  12. Inactivation of Bacillus atrophaeus by OH radicals

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He–H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  13. Origin and evolution of X chromosome inactivation.

    PubMed

    Gribnau, Joost; Grootegoed, J Anton

    2012-06-01

    Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals. PMID:22425180

  14. Inactivation of human norovirus using chemical sanitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10 percent stool filtrate. One min free chlorine treatments at concentrat...

  15. Inactivation of human interferon by body fluids

    NASA Technical Reports Server (NTRS)

    Cesario, T. C.; Mandell, A.; Tilles, J. G.

    1973-01-01

    Description of the effects of human feces, bile, saliva, serum, and cerebrospinal fluid on interferon activity. It is shown that crude interferon is inactivated by at least 50% more than with the control medium used, when incubated for 4 hr in vitro in the presence of serum, saliva, or cerebrospinal liquid, and by close to 100% when incubated with stool extract or bile.

  16. Temperature Tolerance and Inactivation of Chikungunya Virus.

    PubMed

    Huang, Yan-Jang S; Hsu, Wei-Wen; Higgs, Stephen; Vanlandingham, Dana L

    2015-11-01

    In late 2013, chikungunya virus (CHIKV) was introduced to the New World and large outbreaks occurred in the Caribbean islands causing over a million suspected and over 20,000 laboratory-confirmed cases. Serological analysis is an essential component for the diagnosis of CHIKV infection together with virus isolation and detection of viral nucleic acid. Demonstrating virus neutralizing by serum antibodies in a plaque reduction neutralization test (PRNT) is the gold standard of all serological diagnostic assays. Prior to the testing, heat inactivation of serum at 56°C for 30 min is required for the inactivation of complement activity and adventitious viruses. The presence of adventitious contaminating viruses may interfere with the results by leading to a higher number of plaques on the monolayers and subsequent false-negative results. This procedure is widely accepted for the inactivation of flaviviruses and alphaviruses. In this study, the thermostability of CHIKV was evaluated. Heat inactivation at 56°C for 30 min was demonstrated to be insufficient for the complete removal of infectious CHIKV virions present in the samples. This thermotolerance of CHIKV could compromise the accuracy of serum tests, and therefore longer treatment for greater than 120 min is recommended. PMID:26565772

  17. High Pressure Inactivation of HAV within Mussels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  18. Effects of Administration of Live or Inactivated Virulent Rhodococccus equi and Age on the Fecal Microbiome of Neonatal Foals

    PubMed Central

    Bordin, Angela I.; Suchodolski, Jan S.; Markel, Melissa E.; Weaver, Kaytee B.; Steiner, Jörg M.; Dowd, Scot E.; Pillai, Suresh; Cohen, Noah D.

    2013-01-01

    Background Rhodococcus equi is an important pathogen of foals. Enteral administration of live, virulent R. equi during early life has been documented to protect against subsequent intrabronchial challenge with R. equi, indicating that enteral mucosal immunization may be protective. Evidence exists that mucosal immune responses develop against both live and inactivated micro-organisms. The extent to which live or inactivated R. equi might alter the intestinal microbiome of foals is unknown. This is an important question because the intestinal microbiome of neonates of other species is known to change over time and to influence host development. To our knowledge, changes in the intestinal microbiome of foals during early life have not been reported. Thus, the purpose of this study was to determine whether age (during the first month of life) or administration of either live virulent R. equi (at a dose reported to protect foals against subsequent intrabronchial challenge, viz., 1×1010 colony forming units [CFU]) or inactivated virulent R. equi (at higher doses, viz., 2×1010 and 1×1011 [CFU]) altered the fecal microbiome of foals. Methodology/Principal Findings Fecal swab samples from 42 healthy foals after vaccination with low-dose inactivated R. equi (n = 9), high-dose inactivated R. equi (n = 10), live R. equi (n = 6), control with cholera toxin B (CTB, n = 9), and control without CTB (n = 8) were evaluated by 454-pyrosequencing of the 16S rRNA gene and by qPCR. No impact of treatment was observed among vaccinated foals; however, marked and significant differences in microbial communities and diversity were observed between foals at 30 days of age relative to 2 days of age. Conclusions The results suggest age-related changes in the fecal microbial population of healthy foals do occur, however, mucosal vaccination does not result in major changes of the fecal microbiome in foals. PMID:23785508

  19. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants.

    PubMed

    Campagna, Céline; Villion, Manuela; Labrie, Simon J; Duchaine, Caroline; Moineau, Sylvain

    2014-02-01

    Many commercial sanitizers and disinfectants have been used over the years to control microbial contamination but their efficacy on phages is often unknown. Here, 23 commercial chemical products, including 21 food-grade sanitizers were tested against virulent dairy phages. These food-grade chemicals included oxidizing agents, halogenated agents, alcohols, quaternary ammonium compounds, anionic acids, iodine-based acids, and an amphoteric chemical. Phage P008 was first exposed to each sanitizer for 2 and 15min at room temperature and at two different concentrations, namely the lowest and highest no-rinse sanitizing concentrations. Organic matter (whey or milk) was also added to the testing solutions. At the end of the exposure period, the test solution was neutralized and the number of infectious phages was determined by plaque assays. The five most efficient sanitizers against phage P008 (<4 log of inactivation) were then tested against virulent lactococcal phages P008, CB13, AF6, P1532 of the 936 group, P001 (c2), Q54, and 1358 as well as Lactobacillus plantarum phage B1 and Streptococcus thermophilus phage 2972 using the same protocol. The oxidizing agents and the quaternary ammonium compounds were the most efficient against all phages although phages CB13 and P1532 were less sensitive to these chemicals than the other phages. This study may help in the selection of appropriate chemicals for controlling phage contamination in industrial factories and research laboratories. PMID:24321601

  20. High-pressure inactivation of dried microorganisms.

    PubMed

    Espinasse, V; Perrier-Cornet, J-M; Marecat, A; Gervais, P

    2008-01-01

    Dried microorganisms are particularly resistant to high hydrostatic pressure effects. In this study, the survival of Saccharomyces cerevisiae was studied under pressure applied in different ways. Original processes and devices were purposely developed in our laboratory for long-term pressurization. Dried and wet yeast powders were submitted to high-pressure treatments (100-150 MPa for 24-144 h at 25 degrees C) through liquid media or inert gas. These powders were also pressurized after being vacuum-packed. In the case of wet yeasts, the pressurization procedure had little influence on the inactivation rate. In this case, inactivations were mainly due to hydrostatic pressure effects. Conversely, in the case of dried yeasts, inactivation was highly dependent on the treatment scheme. No mortality was observed when dried cells were pressurized in a non-aqueous liquid medium, but when nitrogen gas was used as the pressure-transmitting fluid, the inactivation rate was found to be between 1.5 and 2 log for the same pressure level and holding time. Several hypotheses were formulated to explain this phenomenon: the thermal effects induced by the pressure variations, the drying resulting from the gas pressure release and the sorption and desorption of the gas in cells. The highest inactivation rates were obtained with vacuum-packed dried yeasts. In this case, cell death occurred during the pressurization step and was induced by shear forces. Our results show that the mechanisms at the origin of cell death under pressure are strongly dependent on the nature of the pressure-transmitting medium and the hydration of microorganisms. PMID:17573691

  1. Decontamination methods for cytotoxic drugs. 1. Use of a bioluminescent technique to monitor the inactivation of methotrexate with chlorine-based agents.

    PubMed

    Wren, A E; Melia, C D; Garner, S T; Denyer, S P

    1993-04-01

    A new microbial bioluminescence assay has been used to monitor the loss of mutagenicity on inactivation of methotrexate by active chlorine-based agents. The drug was degraded to products that were non-active in this mutagen detection system, in agreement with previously described work. Presept granules appear to be a suitable alternative to sodium hypochlorite for inactivating solutions and surface spills of methotrexate. The bioluminescence assay appears to have potential for monitoring clean-up and decontamination procedures in areas where cytotoxic agents are used. PMID:8458881

  2. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions.

    PubMed

    Sun, Peizhe; Tyree, Corey; Huang, Ching-Hua

    2016-04-19

    Ultraviolet light (UV) combined with peroxy chemicals, such as H2O2 and peroxydisulfate (PDS), have been considered potentially highly effective disinfection processes. This study investigated the inactivation of Escherichia coli, bacteriophage MS2, and Bacillus subtilis spores as surrogates for pathogens under UV/H2O2 and UV/PDS conditions, with the aim to provide further understanding of UV-based advanced disinfection processes (ADPs). Results showed that one additional log of inactivation of E. coli was achieved with 0.3 mM H2O2 or PDS at 5.2 × 10(-5) Einstein·L(-1) photo fluence (at 254 nm) compared with UV irradiation alone. Addition of H2O2 and PDS greatly enhanced the inactivation rate of MS2 by around 15 folds and 3 folds, respectively, whereas the inactivation of B. subtilis spores was slightly enhanced. Reactive species responsible for the inactivation were identified to be •OH, SO4(·-), and CO3(·-) based on manipulation of solution conditions. The CT value of each reactive species was calculated with respect to each microbial surrogate, which showed that the disinfection efficacy ranked as •OH > SO4(·-) > CO3(·-) ≫ O2(·-)/HO2(·). A comprehensive dynamic model was developed and successfully predicted the inactivation of the microbial surrogates in surface water and wastewater matrices. The concepts of UV-efficiency and EE/O were employed to provide a cost-effective evaluation for UV-based ADPs. Overall, the present study suggests that it will be beneficial to upgrade UV disinfection to UV/H2O2 ADP for the inactivation of viral pathogens. PMID:27014964

  3. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    NASA Astrophysics Data System (ADS)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  4. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound.

    PubMed

    Ferrario, Mariana; Alzamora, Stella Maris; Guerrero, Sandra

    2015-04-01

    The aim of this study was to evaluate the effect of ultrasound (US) (600 W, 20 kHz and 95.2 μm wave amplitude; 10 or 30 min at 20, 30 or 44 ± 1 °C) and pulsed light (PL) (Xenon lamp; 3 pulses/s; 0.1 m distance; 2.4 J/cm(2)-71.6 J/cm(2); initial temperature 2, 30, 44 ± 1 °C) on the inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores and Saccharomyces cerevisiae KE162 inoculated in commercial (pH: 3.5; 12.5 °Brix) and natural squeezed (pH: 3.4; 11.8 °Brix) apple juices. Inactivation depended on treatment time, temperature, microorganism and matrix. Combination of these technologies led up to 3.0 log cycles of spore reduction in commercial apple juice and 2.0 log cycles in natural juice; while for S. cerevisiae, 6.4 and 5.8 log cycles of reduction were achieved in commercial and natural apple juices, respectively. In natural apple juice, the combination of US + 60 s PL at the highest temperature build-up (56 ± 1 °C) was the most effective treatment for both strains. In commercial apple juice, US did not contribute to further inactivation of spores, but significantly reduced yeast population. Certain combinations of US + PL kept on good microbial stability under refrigerated conditions for 15 days. PMID:25475338

  5. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review

    PubMed Central

    2013-01-01

    Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of. PMID:22694189

  6. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels.

    PubMed

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2014-10-15

    At depolarized membrane potentials, the conductance of some voltage-gated K(+) channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K(+) channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the

  7. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels

    PubMed Central

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2014-01-01

    At depolarized membrane potentials, the conductance of some voltage-gated K+ channels is reduced by C-type inactivation. This gating process is voltage independent in Kv1 and involves a conformational change in the selectivity filter that is mediated by cooperative subunit interactions. C-type inactivation in hERG1 K+ channels is voltage-dependent, much faster in onset and greatly attenuates currents at positive potentials. Here we investigate the potential role of subunit interactions in C-type inactivation of hERG1 channels. Point mutations in hERG1 known to eliminate (G628C/S631C), inhibit (S620T or S631A) or enhance (T618A or M645C) C-type inactivation were introduced into subunits that were combined with wild-type subunits to form concatenated tetrameric channels with defined subunit composition and stoichiometry. Channels were heterologously expressed in Xenopus oocytes and the two-microelectrode voltage clamp was used to measure the kinetics and steady-state properties of inactivation of whole cell currents. The effect of S631A or T618A mutations on inactivation was a graded function of the number of mutant subunits within a concatenated tetramer as predicted by a sequential model of cooperative subunit interactions, whereas M645C subunits increased the rate of inactivation of concatemers, as predicted for subunits that act independently of one another. For mutations located within the inactivation gate proper (S620T or G628C/S631C), the presence of a single subunit in a concatenated hERG1 tetramer disrupted gating to the same extent as that observed for mutant homotetramers. Together, our findings indicate that the final step of C-type inactivation of hERG1 channels involves a concerted, all-or-none cooperative interaction between all four subunits, and that probing the mechanisms of channel gating with concatenated heterotypic channels should be interpreted with care, as conclusions regarding the nature of subunit interactions may depend on the specific

  8. Microbial mineral recovery

    SciTech Connect

    Ehrlich, H.L.; Brierly, C.L.

    1989-01-01

    This book presents the scientific basis for using microbial biomass to remove metals from solution. Reports on current and potential microbial technology, including bioleaching of ores, bio-benefication of ores and fossil fuels, metal recovery from solution, and microbial EOR. Examines how microorganisms used in these technologies might improve through genetic engineering.

  9. Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeff T.; Newcombe, David A.; Venkateswaran, Kasthuri

    2006-03-01

    Seven Bacillus spp. were exposed to simulations of Mars-normal UV fluence rates in order to study the effects of UV irradiation on microbial survival. A UV illumination system was calibrated to deliver 9.78 W m -2 (35.2 kJ m -2 h -1) of UVC + UVB irradiation (200-320 nm) to microbial samples, thus creating a clear-sky simulation (0.5 optical depth) of equatorial Mars. The Bacillus spp. studied were: B. licheniformis KL-196, B. megaterium KL-197, B. nealsonii FO-092, B. pumilus FO-36B, B. pumilus SAFR-032, B. subtilis 42HS1, and B. subtilis HA101. The bacteria were prepared as thin monolayers of endospores on aluminum coupons in order to simulate contaminated spacecraft surfaces. Bacterial monolayers were exposed to Mars UV irradiation for time-steps of 0, 0.25, 0.5, 1, 5, 15, 30, 60, 120, or 180 min. The surviving endospores were then assayed with a Most Probable Numbers (MPN) procedure and with a culture-based assay that utilized a bacillus spore germination medium. Results indicated that B. pumilus SAFR-032 was the most resistant, and B. subtilis 42HS-1 and B. megaterium were the most sensitive of the seven strains exposed to martian UV fluence rates. Bacillus subtilis 42HS1 and B. megaterium were inactivated after 30 min exposure to Mars UV, while B. pumilus SAFR-032 required 180 min for full inactivation in both assays. Spores of B. pumilus SAFR-032 exhibited significantly different inactivation kinetics suggesting that this wild type isolate also was more resistant than the standard dosimetric strain, B. subtilis HA101. Although the various Bacillus spp. exhibited diverse levels of UV resistance, none were immune to UV irradiation, and, thus, all species would be expected to be inactivated on Sun-exposed spacecraft surfaces within a few tens-of-minutes to a few hours on sol 1 under clear-sky conditions on equatorial Mars. The inactivation kinetics of all seven Bacillus spp. support the conclusion that significant levels of bioload reductions are possible on

  10. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  11. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  12. Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride.

    PubMed

    Kraut, D; Goff, H; Pai, R K; Hosea, N A; Silman, I; Sussman, J L; Taylor, P; Voet, J G

    2000-06-01

    Acetylcholinesterase (AChE), a serine hydrolase, is potentially susceptible to inactivation by phenylmethylsulfonyl fluoride (PMSF) and benzenesulfonyl fluoride (BSF). Although BSF inhibits both mouse and Torpedo californica AChE, PMSF does not react measurably with the T. californica enzyme. To understand the residue changes responsible for the change in reactivity, we studied the inactivation of wild-type T. californica and mouse AChE and mutants of both by BSF and PMSF both in the presence and absence of substrate. The enzymes investigated were wild-type mouse AChE, wild-type T. californica AChE, wild-type mouse butyrylcholinesterase, mouse Y330F, Y330A, F288L, and F290I, and the double mutant T. californica F288L/F290V (all mutants given T. californica numbering). Inactivation rate constants for T. californica AChE confirmed previous reports that this enzyme is not inactivated by PMSF. Wild-type mouse AChE and mouse mutants Y330F and Y330A all had similar inactivation rate constants with PMSF, implying that the difference between mouse and T. californica AChE at position 330 is not responsible for their differing PMSF sensitivities. In addition, butyrylcholinesterase and mouse AChE mutants F288L and F290I had increased rate constants ( approximately 14 fold) over those of wild-type mouse AChE, indicating that these residues may be responsible for the increased sensitivity to inactivation by PMSF of butyrylcholinesterase. The double mutant T. californica AChE F288L/F290V had a rate constant nearly identical with the rate constant for the F288L and F290I mouse mutant AChEs, representing an increase of approximately 4000-fold over the T. californica wild-type enzyme. It remains unclear why these two positions have more importance for T. californica AChE than for mouse AChE. PMID:10825396

  13. Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform.

    PubMed

    Yeung, C William; Lee, Kenneth; Cobanli, Susan; King, Tom; Bugden, Jay; Whyte, Lyle G; Greer, Charles W

    2015-11-01

    Hibernia is Canada's largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first organisms to respond to changes in their environment. The objectives were to characterize the microbial communities and the chemical composition in the produced water and to characterize changes in the seawater bacterial community around the platform. The results from chemical, physicochemical, and microbial analyses revealed that the discharge did not have a detectable effect on the surrounding seawater. The seawater bacterial community was relatively stable, spatially. Unique microorganisms like Thermoanaerobacter were found in the produced water. Thermoanaerobacter-specific q-PCR and nested-PCR primers were designed, and both methods demonstrated that Thermoanaerobacter was present in seawater up to 1000 m from the platform. These methods could be used to track the dispersion of produced water into the surrounding ocean. PMID:26154038

  14. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    PubMed Central

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology. PMID:17468278

  15. Mechanism-Based Inactivation of Cytochrome P450 2C9 by Tienilic Acid and (±)-Suprofen: A Comparison of Kinetics and Probe Substrate Selection

    PubMed Central

    Hutzler, J. Matthew; Balogh, Larissa M.; Zientek, Michael; Kumar, Vikas; Tracy, Timothy S.

    2009-01-01

    In vitro experiments were conducted to compare kinact, KI and inactivation efficiency (kinact/KI) of cytochrome P450 (P450) 2C9 by tienilic acid and (±)-suprofen using (S)-flurbiprofen, diclofenac, and (S)-warfarin as reporter substrates. Although the inactivation of P450 2C9 by tienilic acid when (S)-flurbiprofen and diclofenac were used as substrates was similar (efficiency of ∼9 ml/min/μmol), the inactivation kinetics were characterized by a sigmoidal profile. (±)-Suprofen inactivation of (S)-flurbiprofen and diclofenac hydroxylation was also described by a sigmoidal profile, although inactivation was markedly less efficient (∼1 ml/min/μmol). In contrast, inactivation of P450 2C9-mediated (S)-warfarin 7-hydroxylation by tienilic acid and (±)-suprofen was best fit to a hyperbolic equation, where inactivation efficiency was moderately higher (10 ml/min/μmol) and ∼3-fold higher (3 ml/min/μmol), respectively, relative to that of the other probe substrates, which argues for careful consideration of reporter substrate when mechanism-based inactivation of P450 2C9 is assessed in vitro. Further investigations into the increased inactivation seen with tienilic acid relative to that with (±)-suprofen revealed that tienilic acid is a higher affinity substrate with a spectral binding affinity constant (Ks) of 2 μM and an in vitro half-life of 5 min compared with a Ks of 21 μM and a 50 min in vitro half-life for (±)-suprofen. Lastly, a close analog of tienilic acid with the carboxylate functionality replaced by an oxirane ring was devoid of inactivation properties, which suggests that an ionic binding interaction with a positively charged residue in the P450 2C9 active site is critical for recognition and mechanism-based inactivation by these close structural analogs. PMID:18838506

  16. Rust preventive oil additives based on microbial fats

    SciTech Connect

    Salenko, V.I.; Fedorov, V.V.; Kazantsev, Yu.E.

    1983-03-01

    This article investigates the composition and lubricating properties of microbial fats obtained from microorganisms grown on various hydrocarbon substrates (n-paraffins, alcohols, natural gas, petroleum distillates, etc.). Focuses on the protective functions of the 4 main fractions (unsaponifiables, free fatty acids, glycerides, and phospholipids) which comprise the microbial fat from a yeast grown on purified liquid n-paraffins. Concludes that neutralized microbial fats can be used as preservative additives; that the principal components of the microbial fats have the properties necessary for oil-soluble corrosion inhibitors; that the phospholipids of the microbial fat can fulfill the functions of not only preservative additives, but also highly effective operational/ preservative additives; and that fats of microbial origin can be used in the development of multipurpose polyfunctional additives.

  17. Synergistic and Antagonistic Effects of Combined Subzero Temperature and High Pressure on Inactivation of Escherichia coli

    PubMed Central

    Moussa, Marwen; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2006-01-01

    The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm. PMID:16391037

  18. Synergistic and antagonistic effects of combined subzero temperature and high pressure on inactivation of Escherichia coli.

    PubMed

    Moussa, Marwen; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2006-01-01

    The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (-20 degrees C without freezing and 25 degrees C) and three water activity levels (a(w)) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at -20 degrees C (in the liquid state) were more than 100 MPa less than those required at 25 degrees C, at pressures in the range of 100 to 300 MPa with an a(w) of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the a(w) was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm. PMID:16391037

  19. X chromosome inactivation: how human are mice?

    PubMed

    Vasques, L R; Klöckner, M N; Pereira, L V

    2002-01-01

    Mammals perform dosage compensation of X-linked gene products between XY males and XX females by transcriptionally silencing all but one X chromosome per diploid cell, a process called X chromosome inactivation (XCI). XCI involves counting X chromosomes in a cell, random or imprinted choice of one X to remain active, initiation and spread of the inactivation signal in CIS throughout the other X chromosomes, and maintenance of the inactive state of those X chromosomes during cell divisions thereafter. Most of what is known of the molecular mechanisms involved in the different steps of XCI has been studied in the mouse. In this review we compare XCI in mouse and human, and discuss how much of the murine data can be extrapolated to humans. PMID:12900542

  20. Female meiotic sex chromosome inactivation in chicken.

    PubMed

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  1. Radiation-induced inactivation of proteolytic enzymes

    NASA Astrophysics Data System (ADS)

    Orlova, M. A.

    1993-05-01

    Data on the mechanism of the inactivation of proteases under various conditions and the possible applications of these processes are surveyed. Serine, sulfhydryl, acid, and metal containing proteases are considered. Attention is concentrates on the conformation changes in radiolytic processes: their dependence on the pH of the medium and the correlations with the change in the aminoacid composition of the enzymes. The bibliography includes 90 references.

  2. Inactivation of Anandamide Signaling: A Continuing Debate

    PubMed Central

    Khairy, Hesham; Houssen, Wael E.

    2010-01-01

    Since the first endocannabinoid anandamide was identified in 1992, extensive research has been conducted to characterize the elements of the tightly controlled endocannabinoid signaling system. While it was established that the activity of endocannabinoids are terminated by a two-step process that includes cellular uptake and degradation, there is still a continuing debate about the mechanistic role of these processes in inactivating anandamide signals.

  3. Recurrent inactivating RASA2 mutations in melanoma

    PubMed Central

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S.; Gartner, Jared J.; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia; Waddell, Nicola; Hill, Victoria K.; Lin, Jimmy C.; Hevroni, Yael; Rosenberg, Steven A.; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y.; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A.; Hayward, Nicholas K.; Samuels, Yardena

    2016-01-01

    Analysis of 501 melanoma exomes revealed RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings reveal RASA2 inactivation as a melanoma driver and highlight the importance of Ras GAPs in cancer. PMID:26502337

  4. Female Meiotic Sex Chromosome Inactivation in Chicken

    PubMed Central

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W.; Laven, Joop S. E.; Grootegoed, J. Anton; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, γH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of γH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses γH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis. PMID:19461881

  5. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  6. Sodium channel inactivation in the crayfish giant axon. Must channels open before inactivating

    SciTech Connect

    Bean, B.P.

    1981-09-01

    Experiments on sodium channel inactivation kinetics were performed on voltage-clamped crayfish giant axons. The primary goals was to investigate whether channels must open before activating. Voltage-clamp artifacts were minimized by the use of low-sodium solutions and full series resistance compensation, and the spatial uniformity of the currents was checked with a closely spaced pair of electrodes used to measure local current densities. For membrane potentials between -40 and +40 mV, sodium currents decay to zero with a single exponential time-course. The time constant for decay is a steep function of membrane potential. The time-course of inactivation measured with the double-pulse method is very similar to the decay of current at the same potential. Steady-state inactivation curves measured with different test pulses are identical. The time-course of doubling pulse inactivation shows a lag that roughly correlates with the opening of sodium channels, but it is not strictly necessary for channels to open before inactivating. Measurements of the potential dependence of the integral of sodium conductance are also inconsistent with the simplest cases of models in which channels must open before activating.

  7. Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1

    USGS Publications Warehouse

    Anders, R.; Chrysikopoulos, C.V.

    2006-01-01

    Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.

  8. Aladapcin, a new microbial metabolite that enhances host resistance against bacterial infection. Production, isolation, physico-chemical properties and biological activities.

    PubMed

    Shiraishi, A; Nakajima, M; Katayama, T; Matsuda, T; Niwa, T; Okazaki, T; Takamatsu, Y; Nagaki, H; Kinoshita, T; Takatsu, T

    1990-06-01

    We have constructed a new screening system for detecting microbial products that enhance host resistance against bacterial infection. It was found that a new compound with such activity is produced by a soil isolate classified as Nocardia sp. SANK 60484. The compound was isolated from the culture filtrate of the organism and named aladapcin after its amino acid composition. Aladapcin was obtained as an amphoteric white amorphous powder with the molecular formula, C13H25N5O5. It consists of 2 mol of D-alanine and 1 mol of meso-diaminopimelic acid. From the analysis of IR, 1H NMR and FAB-MS spectra, the structure was assigned to be a tripeptide. Aladapcin enhanced host resistance against an experimental Escherichia coli infection in mice at doses ranging between 1 and 100 micrograms/kg. PMID:2199420

  9. Anti microbial and anti-oxidant properties of the isolated compounds from the methanolic extract from the leaves of Tectona grandis.

    PubMed

    Nayeem, Naira; Karvekar, Md

    2011-09-01

    The compounds Gallic acid (GA), rutin(R), quercitin (Q), ellagic acid (EA) and sitosterol(S) were isolated from the methanolic extract of the leaves of Tectona grandis. These compounds were subjected to antimicrobial and antioxidant activity. The zone of inhibition of isolated compounds was evaluated by cup plate method against bacteria i.e. Staphylococcus aureus, Bacillus subtilis, Eschericia coli, Klebsiella pneumoniae and fungi Candida albicans. The anti oxidant activity of the extract and the isolated compounds were evaluated by using 1, 1-Diphenyl-2-picryl-hydrazyl (DPPH). Rutin has shown significant anti microbial activity against both the gram positive and gram negative bacteria when compared to the other compounds. The results of the anti oxidant activity revealed that quercitin showed good activity followed by rutin gallic acid, ellagic acid and sitosterol. The difference in both these activities of the isolated compounds was attributed to the number and position of the phenolic OH groups. PMID:24826018

  10. Sensing Microbial RNA in the Cytosol

    PubMed Central

    Vabret, Nicolas; Blander, J. Magarian

    2013-01-01

    The innate immune system faces the difficult task of keeping a fine balance between sensitive detection of microbial presence and avoidance of autoimmunity. To this aim, key mechanisms of innate responses rely on isolation of pathogens in specialized subcellular compartments, or sensing of specific microbial patterns absent from the host. Efficient detection of foreign RNA in the cytosol requires an additional layer of complexity from the immune system. In this particular case, innate sensors should be able to distinguish self and non-self molecules that share several similar properties. In this review, we discuss this interplay between cytosolic pattern recognition receptors and the microbial RNA they detect. We describe how microbial RNAs gain access to the cytosol, which receptors they activate and counter-strategies developed by microorganisms to avoid this response. PMID:24400006

  11. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.

    PubMed

    Zhao, Shuang; Chen, Xi; Deng, Shiping; Dong, Xuena; Song, Aiping; Yao, Jianjun; Fang, Weimin; Chen, Fadi

    2016-01-01

    Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC), the soil fumigant dazomet (DAZ), the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist) enhanced bio-organic fertilizer (BOF), and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F) ratios, Shannon-Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum. PMID:27110753

  12. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature. PMID:25604523

  13. High-Pressure Inactivation of Rotaviruses: Role of Treatment Temperature and Strain Diversity in Virus Inactivation.

    PubMed

    Araud, Elbashir; DiCaprio, Erin; Yang, Zhihong; Li, Xinhui; Lou, Fangfei; Hughes, John H; Chen, Haiqiang; Li, Jianrong

    2015-10-01

    Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent. PMID:26187961

  14. Impact of Fast Sodium Channel Inactivation on Spike Threshold Dynamics and Synaptic Integration

    PubMed Central

    Platkiewicz, Jonathan; Brette, Romain

    2011-01-01

    Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may modulate the threshold, one strong candidate is Na channel inactivation, because it specifically impacts spike initiation without affecting the membrane potential. We collected voltage-clamp data from the literature and we found, based on a theoretical criterion, that the properties of Na inactivation could indeed cause substantial threshold variability by itself. By analyzing simple neuron models with fast Na inactivation (one channel subtype), we found that the spike threshold is correlated with the mean membrane potential and negatively correlated with the preceding depolarization slope, consistent with experiments. We then analyzed the impact of threshold dynamics on synaptic integration. The difference between the postsynaptic potential (PSP) and the dynamic threshold in response to a presynaptic spike defines an effective PSP. When the neuron is sufficiently depolarized, this effective PSP is briefer than the PSP. This mechanism regulates the temporal window of synaptic integration in an adaptive way. Finally, we discuss the role of other potential mechanisms. Distal spike initiation, channel noise and Na activation dynamics cannot account for the observed negative slope-threshold relationship, while adaptive conductances (e.g. K+) and Na inactivation can. We conclude that Na inactivation is a metabolically efficient mechanism to control the temporal resolution of synaptic integration. PMID:21573200

  15. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2012-02-29

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  16. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  17. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.

    PubMed

    Nieto-Juarez, Jessica I; Kohn, Tamar

    2013-09-01

    Advanced oxidation processes (AOPs) have emerged as a promising alternative to conventional disinfection methods to control microbial water quality, yet little is known about the fate of viruses in AOPs. In this study, we investigated the fate of MS2 coliphage in AOPs that rely on heterogeneous Fenton-like processes catalyzed by iron (hydr)oxide particles. Both physical removal of viruses from solution via adsorption onto particles as well as true inactivation were considered. Virus fate was studied in batch reactors at circumneutral pH, containing 200 mg L(-1) of four different commercial iron (hydr)oxide particles of similar mesh sizes: hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and amorphous iron(iii) hydroxide (Fe(OH)3). The effect of adsorption and sunlight exposure on the survival of MS2 was considered. On a mass basis, all particles exhibited a similar virus adsorption capacity, whereas the rate of adsorption followed the order FeOOH > Fe2O3 > Fe3O4 ≈ Fe(OH)3. This adsorption behavior could not be explained by electrostatic considerations; instead, adsorption must be governed by other factors, such as hydrophobic interactions or van der Waals forces. Adsorption to three of the particles investigated (α-FeOOH, Fe3O4, Fe(OH)3) caused virus inactivation of 7%, 22%, and 14%, respectively. Exposure of particle-adsorbed viruses to sunlight and H2O2 resulted in efficient additional inactivation, whereas inactivation was negligible for suspended viruses. The observed first-order inactivation rate constants were 6.6 × 10(-2), 8.7 × 10(-2), 0.55 and 1.5 min(-1) for α-FeOOH, α-Fe2O3, Fe3O4 and Fe(OH)3 respectively. In the absence of sunlight or H2O2, no inactivation was observed beyond that caused by adsorption alone, except for Fe3O4, which caused virus inactivation via a dark Fenton-like process. Overall our results demonstrate that heterogeneous Fenton-like processes can both physically remove viruses from water as well as inactivate them via

  18. Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice.

    PubMed

    Demirdöven, Aslıhan; Baysal, Taner

    2014-09-01

    Ohmic heating (OH) which is among to electro-thermal methods and helps to inactivate microorganisms and enzymes was used in this study as thermal treatment on orange juice production for pectin methylesterase (PME) inactivation. Response surface methodology (RSM) was used for optimization of OH conditions. The effects of voltage gradient and temperature (independent variables) were investigated on PME activity (response) of orange juice. After optimization orange juice was produced and compared with untreated control juices and conventional thermally heated juices on the aspect of PME inactivation and some quality characteristics. Reduction of PME activities was found approximately 96 % in OH groups where conventional thermally heated juice has 88.3 % reduction value. Total pectin content was increased 1.72-2 % after OH applications. Ascorbic acid contents of OH samples were found between 43.08-45.20 mg/100 mL where conventional thermally heated juice has 42.9 mg/100 mL. As a result, it was determined that OH can be applied as a thermal treatment on orange juice production in moderate temperatures for PME inactivation and may improve functional properties of orange juice. PMID:25190836

  19. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2010-09-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  20. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2011-02-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  1. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  2. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  3. Inactivation of human norovirus using chemical sanitizers.

    PubMed

    Kingsley, David H; Vincent, Emily M; Meade, Gloria K; Watson, Clytrice L; Fan, Xuetong

    2014-02-01

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10% stool filtrate. One-minute free chlorine treatments at concentrations of 33 and 189 ppm reduced virus binding in the PGM-MB assay by 1.48 and 4.14 log₁₀, respectively, suggesting that chlorine is an efficient sanitizer for inactivation of human norovirus (HuNoV). Five minute treatments with 5% trisodium phosphate (pH~12) reduced HuNoV binding by 1.6 log₁₀, suggesting that TSP, or some other high pH buffer, could be used to treat food and food contact surfaces to reduce HuNoV. One minute treatments with 350 ppm chlorine dioxide dissolved in water did not reduce PGM-MB binding, suggesting that the sanitizer may not be suitable for HuNoV inactivation in liquid form. However a 60-min treatment with 350 ppm chlorine dioxide did reduce human norovirus by 2.8 log₁₀, indicating that chlorine dioxide had some, albeit limited, activity against HuNoV. Results also suggest that peroxyacetic acid has limited effectiveness against human norovirus, since 1-min treatments with up to 195 ppm reduced human norovirus binding by <1 log₁₀. Hydrogen peroxide (4%) treatment of up to 60 min resulted in minimal binding reduction (~0.1 log₁₀) suggesting that H₂O₂ is not a good liquid sanitizer for HuNoV. Overall this study suggests that HuNoV is remarkably resistant to several commonly used disinfectants and advocates for the use of chlorine (sodium hypochlorite) as a HuNoV disinfectant wherever possible. PMID:24334094

  4. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice.

    PubMed

    Bhat, Rajeev; Stamminger, Rainer

    2015-07-01

    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254 nm) at room temperature (25 ℃ ± 1 ℃) for 15, 30 and 60 min with 0 min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice. PMID:24867944

  5. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans.

    PubMed

    Bernardeau, M; Vernoux, J-P

    2013-04-01

    For many years, microbial adjuncts have been used to supplement the diets of farm animals and humans. They have evolved since the 1990s to become known as probiotics, i.e. functional food with health benefits. After the discovery of a possible link between manipulation of gut microflora in mice and obesity, a focus on the use of these beneficial microbes that act on gut microflora in animal farming was undertaken and compared with the use of probiotics for food. Beneficial microbes added to feed are classified at a regulatory level as zootechnical additives, in the category of gut flora stabilizers for healthy animals and are regulated up to strain level in Europe. Intended effects are improvement of performance characteristics, which are strain dependent and growth enhancement is not a prerequisite. In fact, increase of body weight is not commonly reported and its frequency is around 25% of the published data examined here. However, when a Body Weight Gain (BWG) was found in the literature, it was generally moderate (lower than or close to 10%) and this over a reduced period of their short industrial life. When it was higher than 10%, it could be explained as an indirect consequence of the alleviation of the weight losses linked to stressful intensive rearing conditions or health deficiency. However, regulations on feed do not consider the health effects because animals are supposed to be healthy, so there is no requirement for reporting healthy effects in the standard European dossier. The regulations governing the addition of beneficial microorganisms to food are less stringent than for feed and no dossier is required if a species has a Qualified Presumption of Safety status. The microbial strain marketed is not submitted to any regulation and its properties (including BWG) do not need to be studied. Only claims for functional or healthy properties are regulated and again growth effect is not included. However, recent studies on probiotic effects showed that BWG

  6. [Current topics on inactivation of norovirus].

    PubMed

    Noda, Mamoru; Uema, Masashi

    2011-01-01

    Human norovirus is the most important foodborne virus in Japan. According to the statistics of food poisoning by the Ministry of Health, Labour, and Welfare (MHLW), the number of patients infected with norovirus has accounted for half of all the patients with food poisoning in recent years. One of the most important measures for the control of infectious diseases is establishing of techniques for inactivating pathogens. For the prevention of food poisoning caused by norovirus, MHLW recommends that foods be subjected to heat treatment at 85 degrees C for 1 min or more; moreover, it recommends the use of sodium hypochlorite to inactivate (disinfect) this virus. However, application of these treatments is not always feasible because heat results in denaturation and sodium hypochlorite can be toxic to the human body and can cause discoloration. Therefore, it is necessary to develop and improve the efficacy of disinfectants and physiochemical treatments against the virus. Human norovirus cannot be propagated in cell culture or in a small animal. This matter is the greatest hindrance for testing the stability of this virus in environments or for evaluating the efficacy of disinfectants, heat treatment, pH treatment, ultraviolet or gamma irradiation, high hydrostatic pressure treatment, and other methods for the inactivation of the virus. Hence, some viruses such as human enterovirus, feline calicivirus, or mouse norovirus have been used as surrogates of human norovirus. The data on inactivation and stability of surrogate viruses are exclusively used as the data of human noroviruses. In recent years, some attempts to distinguish between infectious and noninfectious virus particles by genetic methods such as polymerase chain reaction have been made. These methods include pretreatments by RNase for digesting viral RNAs from non-intact or destroyed virus particles, or addition of a reagent such as ethidium monoazide for inhibiting PCR amplification of viral RNAs from them

  7. Recurrent inactivating RASA2 mutations in melanoma.

    PubMed

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S; Gartner, Jared J; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia L; Waddell, Nicola; Hill, Victoria K; Lin, Jimmy C; Hevroni, Yael; Rosenberg, Steven A; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A; Hayward, Nicholas K; Samuels, Yardena

    2015-12-01

    Analysis of 501 melanoma exomes identified RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings identify RASA2 inactivation as a melanoma driver and highlight the importance of RasGAPs in cancer. PMID:26502337

  8. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  9. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  10. Heat inactivation of beta-lactam antibiotics in milk.

    PubMed

    Zorraquino, M A; Roca, M; Fernandez, N; Molina, M P; Althaus, R

    2008-06-01

    The presence of residues of antimicrobial substances in milk is one of the main concerns of the milk industry, as it poses a risk of toxicity to public health, and can seriously influence the technological properties of milk and dairy products. Moreover, the information available on the thermostability characteristics of these residues, particularly regarding the heat treatments used in control laboratories and the dairy industry, is very scarce. The aim of the study was, therefore, to analyze the effect of different heat treatments (40 degrees C for 10 min, 60 degrees C for 30 min, 83 degrees C for 10 min, 120 degrees C for 20 min, and 140 degrees C for 10 s) on milk samples fortified with three concentrations of nine beta-lactam antibiotics (penicillin G: 3, 6, and 12 microg/liter; ampicillin: 4, 8, and 16 microg/liter; amoxicillin: 4, 8, and 16 microg/liter; cloxacillin: 60, 120, and 240 microg/liter; cefoperazone: 55, 110, and 220 microg/liter; cefquinome: 100, 200, and 400 microg/liter; cefuroxime: 65, 130, and 260 microg/liter; cephalexin: 80, 160, and 220 microg/ liter; and cephalonium: 15, 30, and 60 microg/liter). The method used was a bioassay based on the inhibition of Geobacillus stearothermophilus var. calidolactis. The results showed that heating milk samples at 40 degrees C for 10 min hardly produced any heat inactivation at all, while the treatment at 83 degrees C for 10 min caused a 20% loss in penicillin G, 27% in cephalexin, and 35% in cefuroxime. Of the three dairy industry heat treatments studied in this work, low pasteurization (60 degrees C for 30 min) and treatment at 140 degrees C for 10 s only caused a small loss of antimicrobial activity, whereas classic sterilization (120 degrees C for 20 min) showed a high level of heat inactivation of over 65% for penicillins and 90% for cephalosporins. PMID:18592745

  11. Phthalocyanine-assisted photodynamic inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Angelov, Ivan; Borissova, Ekaterina; Avramov, Latchezar; Kussovski, Vesselin

    2007-03-01

    The phthalocyanine zinc(II) and aluminum (III) complexes were studied to photoinactivate the bacterial strains, Staphylococcus aureus, methacillin-sensitive and methacillin-resistant, Pseudomonas aeruginosa and one yeast Candida albicans. The binding of phthalocyanines to bacteria and fungi cells was evaluated by the means of laserinduced fluorescence technique. The fluorescent spectra of dyes (650 - 800 nm) after direct excitation (635 nm) were measured as follows: 1. for the aqua supernatants obtained after 10 min cell incubation with the respected phthalocyanines (1.6 μmol.l -1), 2. for the washed from the unbound dye cells, and 3. for the organic extracts from the three times washed cells. Fluorescent intensities at the emission maximum (~690 nm) were compared to the spectra of the phthalocyanines in organic solutions. The phthalocyanines uptake data for bacteria and fungi were determined at different cell densities. Nevertheless the better fluorescence properties of AlPc (fluorescent quantum yield of 0.4 towards 0.3 for ZnPcs) the lower drug accumulation in microorganisms was obtained. PDI results indicated an intensive lowering of the bacterial survival of both strains of S. aureus treated with cationic ZnPcMe followed by the anionic ZnPcS, at irradiance of 100 mW cm -2 and fluence rate of 60 J cm -2. More resistant to phototreatment P. aeruginosa and morphologically complicated yeast C. albicans were successfully inactivated only with cationic ZnPcMe. These data indicate the promising future application of cationic phthalocyanine in photodynamic inactivation of pathogenic microorganisms.

  12. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    NASA Astrophysics Data System (ADS)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  13. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect

    Song, Hyun-Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  14. A Novel N-terminal Motif of Dipeptidyl Peptidase-like Proteins Produces Rapid Inactivation of Kv4.2 Channels by a Pore-blocking Mechanism

    PubMed Central

    Jerng, Henry H.; Dougherty, Kevin; Covarrubias, Manuel; Pfaffinger, Paul J.

    2010-01-01

    The somatodendritic subthreshold A-type K+ current in neurons (ISA) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the Kv4 channel complex underlying ISA are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to Kv4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the Kv4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the Kv4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K+ concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing ISA inactivation and reducing neuronal excitability. PMID:19901547

  15. Inflight microbial analysis technology

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Brown, Harlan D.

    1987-01-01

    This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.

  16. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    PubMed

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles <5 microm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the

  17. Microbial surface thermodynamics and applications.

    PubMed

    Strevett, Keith A; Chen, Gang

    2003-06-01

    Microbial surface thermodynamics is the reflection of microbial physicochemical and biological characteristics and it bridges micro-scale structures with macro-scale biological functions. Microbial surface thermodynamics is theoretically based on colloid surface thermodynamics using the classical theory of colloidal stability, Derjauin-Landau-Verwey-Overbeek (DLVO) theory. An extended DLVO theory is applied to for the hydration forces not considered in the classical DLVO theory. Herein, a review of current application of microbial surface thermodynamic theory is presented. Microbial surface thermodynamic theory is the fundamental theory in interpreting microbial hydrophilicity or hydrophobicity, microbial attachment, and microbial biofilm development. PMID:12837508

  18. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality

    PubMed Central

    2012-01-01

    Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR) system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour) under high solar irradiance conditions (980–1100 W m-2), at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low. PMID:23194331

  19. Synthetic microbial communities☆

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2014-01-01

    While natural microbial communities are composed of a mix of microbes with often unknown functions, the construction of synthetic microbial communities allows for the generation of defined systems with reduced complexity. Used in a top-down approach, synthetic communities serve as model systems to ask questions about the performance and stability of microbial communities. In a second, bottom-up approach, synthetic microbial communities are used to study which conditions are necessary to generate interaction patterns like symbiosis or competition, and how higher order community structure can emerge from these. Besides their obvious value as model systems to understand the structure, function and evolution of microbial communities as complex dynamical systems, synthetic communities can also open up new avenues for biotechnological applications. PMID:24632350

  20. Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.; Clarke, Jonathan; Direito, Susana O. L.; Blake, David; Martin, Kevin R.; Zavaleta, Jhony; Foing, Bernard

    2011-07-01

    We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4>>CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0×106 and 1.8×107 cells ml-1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.

  1. Virus inactivation in aluminum and polyaluminum coagulation.

    PubMed

    Matsui, Yoshihiko; Matsushita, Taku; Sakuma, Satoru; Gojo, Takahito; Mamiya, Teppei; Suzuoki, Hiroshi; Inoue, Takanobu

    2003-11-15

    Inorganic aluminum salts, such as aluminum sulfate, are coagulants that cause small particles, such as bacteria and viruses as well as inorganic particles, to destabilize and combine into larger aggregates. In this investigation, batch coagulation treatments of water samples spiked with Qbeta, MS2, T4, and P1 viruses were conducted with four different aluminum coagulants. The total infectious virus concentration in the suspension of floc particles that eventually formed by dosing with coagulant was measured after the floc particles were dissolved by raising the pH with an alkaline beef extract solution. The virus concentrations were extremely reduced after the water samples were dosed with aluminum coagulants. Viruses mixed with and adsorbed onto preformed aluminum hydroxide floc were, however, completely recovered after the floc dissolution. These results indicated that the aluminum coagulation process inactivates viruses. Virucidal activity was most prominent with the prehydrolyzed aluminum salt coagulant, polyaluminum chloride (PACl). Virucidal activity was lower in river water than in ultrapure water--natural organic matter in the river water depressed the virucidal activity. Mechanisms and kinetics of the virus inactivation were discussed. Our results suggest that intermediate polymers formed during hydrolysis of the aluminum coagulants sorbed strongly to viruses, either rendering them inactive or preventing infectivity. PMID:14655704

  2. Photodynamic inactivation of pathogens causing infectious keratitis

    NASA Astrophysics Data System (ADS)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations < 1 mM were sufficient to reach a penetration depth of 500 μm. Liquid cultures of microorganisms were irradiated using a specially constructed illumination chamber made of Spectralon(R) (reflectance: 99 %), which was equipped with high power light emitting diodes (λ = 670 nm). Clinical isolates of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) from keratitis patients were tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  3. Pulvinar inactivation disrupts selection of movement plans

    PubMed Central

    Wilke, Melanie; Turchi, Janita; Smith, Katy; Mishkin, Mortimer; Leopold, David A.

    2010-01-01

    The coordinated movement of the eyes and hands under visual guidance is an essential part of goal directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here we used reversible inactivation to investigate the role of the dorsal pulvinar in the selection and execution of visually guided manual and saccadic eye movements in macaque monkeys. We found that unilateral pulvinar inactivation resulted in a spatial neglect syndrome accompanied by visuo-motor deficits including optic ataxia during visually guided limb movements. Monkeys were severely disrupted in their visually guided behavior regarding space contralateral to the side of the injection in several domains, including: (1) target selection in both manual and oculomotor tasks, (2) limb usage in a manual retrieval task, and (3) spontaneous visual exploration. In addition, saccades into the ipsilesional field had abnormally short latencies and tended to overshoot their mark. None of the deficits could be explained by a visual field defect or primary motor deficit. These findings highlight the importance of the dorsal aspect of the pulvinar nucleus as a critical hub for spatial attention and selection of visually guided actions. PMID:20573910

  4. Pulvinar inactivation disrupts selection of movement plans.

    PubMed

    Wilke, Melanie; Turchi, Janita; Smith, Katy; Mishkin, Mortimer; Leopold, David A

    2010-06-23

    The coordinated movement of the eyes and hands under visual guidance is an essential part of goal-directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here, we used reversible inactivation to investigate the role of the dorsal pulvinar in the selection and execution of visually guided manual and saccadic eye movements in macaque monkeys. We found that unilateral pulvinar inactivation resulted in a spatial neglect syndrome accompanied by visuomotor deficits including optic ataxia during visually guided limb movements. Monkeys were severely disrupted in their visually guided behavior regarding space contralateral to the side of the injection in several domains, including the following: (1) target selection in both manual and oculomotor tasks, (2) limb usage in a manual retrieval task, and (3) spontaneous visual exploration. In addition, saccades into the ipsilesional field had abnormally short latencies and tended to overshoot their mark. None of the deficits could be explained by a visual field defect or primary motor deficit. These findings highlight the importance of the dorsal aspect of the pulvinar nucleus as a critical hub for spatial attention and selection of visually guided actions. PMID:20573910

  5. X-changing information on X inactivation

    SciTech Connect

    Barakat, Tahsin Stefan; Jonkers, Iris; Monkhorst, Kim; Gribnau, Joost

    2010-03-10

    In female somatic cells of mammalian species one X chromosome is inactivated to ensure dosage equality of X-encoded genes between females and males, during development and adulthood. X chromosome inactivation (XCI) involves various epigenetic mechanisms, including RNA mediated gene silencing in cis, DNA methylation, and changes in chromatin modifications and composition. XCI therefore provides an attractive paradigm to study epigenetic gene regulation in a more general context. The XCI process starts with counting of the number of X chromosomes present in a nucleus, and initiation of XCI follows if this number exceeds one per diploid genome. Recently, X-encoded RNF12 has been identified as a dose-dependent activator of XCI. In addition, other factors, including the pluripotency factors OCT4, SOX2 and Nanog, have been implicated to play a role in suppression of initiation of XCI. In this review, we highlight and explain these new and old findings in the context of a stochastic model for X chromosome counting and XCI initiation.

  6. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice

    PubMed Central

    Barroso, Shana P. C.; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V.; Couceiro, José Nelson S. S.; Bozza, Fernando A.; Ferreira, Ana M. A.; Ferreira, Davis F.; Palatnik-de-Sousa, Clarisa B.; Souza, Thiago Moreno L.; Gomes, Andre M. O.; Silva, Jerson L.; Oliveira, Andréa C.

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus. PMID:26056825

  7. Chlorhexidine prevents hypochlorous acid-induced inactivation of alpha1-antitrypsin.

    PubMed

    Montecucco, Fabrizio; Bertolotto, M; Ottonello, L; Pende, A; Dapino, P; Quercioli, A; Mach, F; Dallegri, F

    2009-11-01

    1. Chlorhexidine digluconate has been used as a topical antiseptic in the treatment of acne vulgaris and periodontitis. The acute phase of these diseases involves neutrophilic infiltration. Neutrophil activation and recruitment to inflammatory sites are crucial in both protection against bacterial infection and the induction of hystotoxic damage. Activated neutrophils release several enzymes, including elastase and myeloperoxidase (MPO), which contribute to tissue injury via direct toxic actions, the generation of oxidants and inactivation of protective factors, such as alpha1-antitrypsin (alpha1-AT). In the present study, we investigated whether chlorhexidine can modulate neutrophil-mediated histotoxicity. 2. Human primary neutrophils were isolated from healthy donors. Inactivation of alpha1-AT by neutrophils or hypochlorous acid (HOCl) was evaluated by spectrophotometry and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of its capacity to complex with porcine pancreatic elastase (PPE). Neutrophil generation of HOCl, superoxide anion and MPO release were assessed spectrophometrically. 3. Chlorhexidine (0, 0.5, 1, 5 and 10 micromol/L) dose-dependently prevented HOCl-induced inactivation of alpha1-AT and reduced HOCl recovery from phorbol myristate acetate (PMA)-treated human neutrophils, but did not inhibit superoxide anion and MPO release. Chlorhexidine directly inhibited HOCl recovery from neutrophils and HOCl-induced inactivation of alpha1-AT in a cell-free assay. Accordingly, chlorhexidine reversed HOCl-mediated inhibition of alpha1-AT capacity to complex with PPE. 4. These data suggest that chlorhexidine prevents neutrophil-induced alpha1-AT inactivation via a direct inhibitory action on HOCl. Although highly speculative, the present study indicates that chlorhexidine may protect inflamed tissues not only through its antimicrobial properties, but also via a direct anti-inflammatory effect on neutrophil toxic products. PMID:19671069

  8. Inactivation of calcium current in bull-frog atrial myocytes.

    PubMed Central

    Campbell, D L; Giles, W R; Hume, J R; Shibata, E F

    1988-01-01

    1. A single-microelectrode technique has been used to study the voltage dependence and the kinetics of inactivation and reactivation of a tetrodotoxin-resistant inward current (ICa) in single cells from bull-frog atrium. 2. In most cases the kinetics of both inactivation and reactivation can be well described as a single-exponential process. 3. Several different observations indicate that inactivation of ICa in these cells is controlled by both voltage-dependent and current-dependent processes, as has been demonstrated previously in heart (Kass & Sanguinetti, 1984; Lee, Marban & Tsien, 1985) and in other tissues (Hagiwara & Byerly, 1981; Tsien, 1983; Eckert & Chad, 1984). 4. Evidence in favour of a voltage-dependent inactivation mechanism included: (a) In paired-pulse measurements of steady-state inactivation ('f infinity') a 'conventional' steady-state f infinity vs. membrane potential (Vm) relationship was obtained in the range of membrane potentials from -60 to 0 mV. (b) Increasing [Ca2+]o from 2.5 to 7.5 mM, which resulted in a 2-3-fold increase in ICa, did not produce any significant increase in the amount of inactivation. (c) Using a 'gapped' double-pulse protocol non-monotonic U-shaped inactivation relationships were obtained, i.e. positive to approximately +20 mV some removal of inactivation occurred. However, f never approached a value near 1.00 at very depolarized potentials; it reached a maximum between 0.5 and 0.6. (d) In constant [Ca2+]o and at fixed Vm, the kinetics of ICa inactivation were independent of peak size of ICa. This was demonstrated by: (i) varying the holding potential (-90 to -30 mV), (ii) using paired-pulse 'recovery' protocols, and (iii) partial block by La3+ (1-10 microM) and Cd2+ (0.1 mM). (e) Influx of Ca2+ ions was not an obligatory prerequisite for development of inactivation. In all ionic conditions (Ca2+, Sr2+, Ba2+, Na+-free and Ca2+-free Ringer solutions) currents displayed inactivation phenomena, although the extent and

  9. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    EPA Science Inventory

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  10. Microbial biofilms on building stone

    NASA Astrophysics Data System (ADS)

    Hoppert, M.; Kemmling, A.; Kämper, M.

    2003-04-01

    Microbial biofilms are ubiquitous in aquatic and terrestric ecosystems as well as on man-made material. The organisms take part in biogenic weathering on natural rocks as well as on building stone [1]. Though the presence of biofilms on stone monuments exposed to the outdoor environment is obvious, thin films also occur on monuments under controllable indoor environment conditions. Numerous biofilm organisms produce large volumes of extracellular polymer (EP), mainly polysaccharides. Hydrated, gel-like EP acts as glue between the organisms and the material surface and forms a protected environment for the microbial cells. The contact zone between EP and the material surface is the crucial reactive interface of the bio-organic cover and the underlying building material. At this interface, all hazardous compounds (e.g. organic acids), after diffusion transfer via EP, react with the material surface. Upon dehydration, volume of EP greatly decreases. The thin, varnish-like EP layer still protects the dormant cells from irreversible inactivation. Periodic shrinking and swelling of the EP induces mechanical stress on the stone surface, epecially when the polymer penetrates small pores and cavities in the underlying material surface. Thus, monitoring and structure/functional analysis of EP and EP production by organisms is important to understand biogenic weathering phenomena and building stone deterioration. The study presented here describes biofilms on the surfaces of building material in outdoor and indoor environments. The application of marker techniques and visualization of samples with light and electron microscopy illustrates the role of EP at microscale. EP forms the matrix that encloses microorganisms, dust particles and mineral grains in a rigid film. EP penetrates small pore spaces of the underlying substratum and may also facilitate subsequent penetration of the microorganisms into the material. EP seals the material surface and cements the superficial layer

  11. Larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and the microbial insecticide Metarhizium anisopliae (Metsch.) against lymphatic filarial vector, Culex quinquefasciatus..

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the mosquitocidal properties of Acalypha alnifolia leaf extract combined with the use of Metarizhium anisopliae spores for control of the lymphatic filariasis vector Culex quinquefasciatus. The methanolic leaf extract showed larvicidal and pupicidal effects after 24...

  12. Chronic impact of sulfamethoxazole on acetate utilization kinetics and population dynamics of fast growing microbial culture.

    PubMed

    Kor-Bicakci, G; Pala-Ozkok, I; Rehman, A; Jonas, D; Ubay-Cokgor, E; Orhon, D

    2014-08-01

    The study evaluated the chronic impact of sulfamethoxazole on metabolic activities of fast growing microbial culture. It focused on changes induced on utilization kinetics of acetate and composition of the microbial community. The experiments involved a fill and draw reactor, fed with acetate and continuous sulfamethoxazole dosing of 50 mg/L. The evaluation relied on model evaluation of the oxygen uptake rate profiles, with parallel assessment of microbial community structure by 454-pyrosequencing. Continuous sulfamethoxazole dosing inflicted a retardation effect on acetate utilization in a way commonly interpreted as competitive inhibition, blocked substrate storage and accelerated endogenous respiration. A fraction of acetate was utilized at a much lower rate with partial biodegradation of sulfamethoxazole. Results of pyrosequencing with a replacement mechanism within a richer more diversified microbial culture, through inactivation of vulnerable fractions in favor of species resistant to antibiotic, which made them capable of surviving and competing even with a slower metabolic response. PMID:24908607

  13. One-pot microbial production, mechanical properties, and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and its copolymer with (R)-lactate.

    PubMed

    Matsumoto, Ken'ichiro; Terai, Satsuki; Ishiyama, Ayako; Sun, Jian; Kabe, Taizo; Song, Yuyang; Nduko, John Masani; Iwata, Tadahisa; Taguchi, Seiichi

    2013-06-10

    P[(R)-2-hydroxybutyrate] [P((R)-2HB)] is an aliphatic polyester analogous to poly(lactic acid) (PLA). However, little has been known for its properties because of a high cost of commercially available chiral 2HB as a starting substance for chemical polymer synthesis. In this study, P[(R)-2HB] and P[(R)-2HB-co-(R)-lactate] [P((R)-2HB-co-(R)-LA)] with a new monomer combination were successfully synthesized in recombinant Escherichia coli LS5218 from less-expensive racemic 2HB using an R-specific polyester synthase. The cells expressing an engineered polyhydroxyalkanoate synthase from Pseudomonas sp. 61-3 and propionyl-CoA transferase from Megasphaera elsdenii were grown on LB medium containing 2HB and glucose in a shake flask and accumulated up to 17 wt % of P[(R)-2HB] with optical purity of >99.1%. In addition, the same cells cultured in a jar-fermentor produced P(86 mol % 2HB-co-LA) copolymer. Notably, the molecular weights (Mw) of P(2HB) (27000) and P(2HB-co-LA) (39000) were 2- and 3-fold higher than that of P(2HB) previously synthesized by chemical polycondensation. P(2HB) was processed into a transparent film by solvent-casting and it had flexible properties with elongation at break of 173%, which was contrast to the rigid PLA. Regarding mechanical properties, P(2HB-co-LA) was tougher but less stretchy than P(2HB). These results demonstrated that P(2HB) has useful properties and LA units in 2HB-based polymers can act as a controllable modulator of the material properties. In addition, P[(R)-2HB] was efficiently degraded by treatment of Novozym 42044 (lipase) but not Savinase 16L (protease), indicating that the degrading behavior of the polymer was similar to that of P[(R)-LA]. PMID:23688291

  14. Impact-induced microbial endolithic habitats

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.; Lee, P.; Osinski, G.; Horneck, G.; Broady, P.

    2002-10-01

    Asteroid and comet impacts on Earth are commonly viewed as agents of ecosystem destruction, be it on local or global scales. However, for some microbial communities, impacts may represent an opportunity for habitat formation as some substrates are rendered more suitable for colonization when processed by impacts. We describe how heavily shocked gneissic crystalline basement rocks exposed at the Haughton impact structure, Devon Island, Nunavut, Arctic Canada, are hosts to endolithic photosynthetic microorganisms in significantly greater abundance than lesser-shocked or unshocked gneisses. Two factors contribute to this enhancement: (a) increased porosity due to impact fracturing and differential mineral vaporization, and (b) increased translucence due to the selective vaporization of opaque mineral phases. Using biological ultraviolet radiation dosimetry, and by measuring the concentrations of photoprotective compounds, we demonstrate that a covering of 0.8 mm of shocked gneiss can provide substantial protection from ultraviolet radiation, reducing the inactivation of Bacillus subtilis spores by 2 orders of magnitude. The colonisation of the shocked habitat represents a potential mechanism for pioneer microorganisms to invade an impact structure in the earliest stages of post-impact primary succession. The communities are analogous to the endolithic communities associated with sedimentary rocks in Antarctica, but because they occur in shocked crystalline rocks, they illustrate a mechanism for the creation of microbial habitats on planetary surfaces that do not have exposed sedimentary units. This might have been the case on early Earth. The data have implications for the microhabitats in which biological signatures might be sought on Mars.

  15. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.

    In this chapter on decisions made by federal and state courts during 1983 concerning school property it is noted that no new trends emerged during the year. Among the topics addressed are the extent of school board authority over property use and other property matters; the attachment and detachment of land from school district holdings; school…

  16. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  17. Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants

    PubMed Central

    Almeida, Adelaide; Cunha, Ângela; Gomes, Newton C.M.; Alves, Eliana; Costa, Liliana; Faustino, Maria A.F.

    2009-01-01

    Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy. PMID:19841715

  18. Research on the chemical inactivation of antibiotic activity in assays of sterility and contamination of pharmaceuticals.

    PubMed

    Negretti, F; Casetta, P

    1991-01-01

    Membrane filtration, frequently used for removing antibacterial activity in assays of sterility and contamination of the antibiotics, presents the drawback of adsorption of antibiotic to membrane. The washing with large volumes of peptone water removes partially interferences with microbial growth. We evaluated the inactivating action of some chemical substances (albumin, calcium pantothenate, heparin, hydroxylamine, tri-valent iron) on the antimicrobial activity of membranes employed for antibiotic filtration. The results are not positive for the use of chemical substances in the antibiotic activity neutralization. In fact the per cent reduction of inhibition zones ranges from -61.5% to +20.0% and the inhibiting activity on the growth of colony forming units (CFU) oscillates from 89.6% to 100%. Discovery of new neutralizing substances and severe measures of asepsis in pharmaceutical production are recommended. PMID:12041793

  19. Microbial Cell Imaging

    SciTech Connect

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  20. Enhanced inactivation of adenovirus under polychromatic UV lamps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adenovirus is recognized as the most UV-resistant waterborne pathogen of concern to public health microbiologists. The US EPA has stipulated that a UV fluence (dose) of 186 mJ cm-2 is required for 4-log inactivation credit in water treatment. However, all adenovirus inactivation data to date publi...

  1. Mechanism of Inactivation in Voltage-Gated Na(+) Channels.

    PubMed

    Gawali, V S; Todt, H

    2016-01-01

    Voltage-gated Na(+) channels (VGSCs) initiate action potentials thereby giving rise to rapid transmission of electrical signals along cell membranes and between cells. Depolarization of the cell membrane causes VGSCs to open but also gives rise to a nonconducting state termed inactivation. Inactivation of VGSCs serves a critical physiologic function as it determines the extent of excitability of neurons and of muscle cells. Depending on the time course of development and removal of inactivation both "fast-" and "slow"-inactivated states have been described. Evidence from mutagenesis studies suggests that fast inactivation is produced by a block of the internal vestibule by a tethered inactivation particle that has been mapped to the internal linker between domains III and IV. The motion of this linker may be regulated by parts of the internal C-terminus. The molecular mechanism of slow inactivation is less clear. However, aside from a high number of mutagenesis studies, the recent availability of 3D structures of crystallized prokaryotic VGSCs offers insights into the molecular motions associated with slow inactivation. One possible scenario is that slow movements of the voltage sensors are transmitted to the external vestibule giving rise to a conformational change of this region. This molecular rearrangement is transmitted to the S6 segments giving rise to collapse of the internal vestibule. PMID:27586291

  2. Cysteine-dependent inactivation of hepatic ornithine decarboxylase.

    PubMed Central

    Murakami, Y; Kameji, T; Hayashi, S

    1984-01-01

    When rat liver homogenate or its postmitochondrial supernatant was incubated with L-cysteine, but not D-cysteine, ornithine decarboxylase (ODC) lost more than half of its catalytic activity within 30 min and, at a slower rate, its immunoreactivity. The inactivation correlated with production of H2S during the incubation. These changes did not occur in liver homogenates from vitamin B6-deficient rats. A heat-stable inactivating factor was found in both dialysed cytosol and washed microsomes obtained from the postmitochondrial supernatant incubated with cysteine. The microsomal inactivating factor was solubilized into Tris/HCl buffer, pH 7.4, containing dithiothreitol. Its absorption spectrum in the visible region resembled that of Fe2+ X dithiothreitol in Tris/HCl buffer. On the other hand FeSO4 inactivated partially purified ODC in a similar manner to the present inactivating factor. During the incubation of postmitochondrial supernatant with cysteine, there was a marked increase in the contents of Fe2+ loosely bound to cytosolic and microsomal macromolecules. Furthermore, the content of such reactive iron in the inactivating factor preparations was enough to account for their inactivating activity. These data suggested that H2S produced from cysteine by some vitamin B6-dependent enzyme(s) converted cytosolic and microsomal iron into a reactive loosely bound form that inactivated ODC. PMID:6696745

  3. MECHANISM OF INACTIVATION OF ENTERIC VIRUSES IN FRESH WATER

    EPA Science Inventory

    Methods developed in the laboratory were used to measure inactivation rates of enteric viruses seeded into freshwaters from a variety of sources. All freshwater samples caused a decrease in poliovirus-1 infectivity of less than 98% within 4 days at 27 deg C. Virus inactivation wa...

  4. Microbial risk assessment in heterogeneous aquifers: 1. Pathogen transport

    NASA Astrophysics Data System (ADS)

    Molin, S.; Cvetkovic, V.

    2010-05-01

    Pathogen transport in heterogeneous aquifers is investigated for microbial risk assessment. A point source with time-dependent input of pathogens is assumed, exemplified as a simple on-site sanitation installation, intermingled with water supply wells. Any pathogen transmission pathway (realization) to the receptor from a postulated infection hazard is viewed as a random event, with the hydraulic conductivity varying spatially. For aquifers where VAR[lnK] < 1 and the integral scale is finite, we provide relatively simple semianalytical expressions for pathogen transport that incorporate the colloid filtration theory. We test a wide range of Damkohler numbers in order to assess the significance of rate limitations on the aquifer barrier function. Even slow immobile inactivation may notably affect the retention of pathogens. Analytical estimators for microbial peak discharge are evaluated and are shown to be applicable using parameters representative of rotavirus and Hepatitis A with input of 10-20 days duration.

  5. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  6. A study on the inactivation of micro-organisms and enzymes by high pressure CO2.

    PubMed

    Bertoloni, Giulio; Bertucco, Alberto; De Cian, Veronica; Parton, Tiziana

    2006-09-01

    This study addresses some microbial inactivation phenomena induced by high pressure CO2 over micro-organisms and enzymes. The activity of four selected enzymes was measured before and after treatment with CO2 under pressure in both buffer solutions and natural cellular environment (E. coli cells and tomato paste). Results are reported for acid phosphatase, alkaline phosphatase, ATPase, and pectinase at different conditions of temperature, CO2 pressure, and treatment time (32-40 degrees C, 85-150 bar, 30-70 min). The results obtained show that the high pressure CO2 treatment induces an inactivation of cellular enzymatic activity higher than the one caused on the same enzymes in solution. However, the measured activity difference is not caused by a damage at the enzymes molecular level but is a consequence of the permeabilization of the cellular envelopes which leads to a release of unmodified enzymes from the cells with simultaneous drop of enzymatic cellular activity. The reported data suggest that the bacterial cell death is probably due not to a selective effect of high pressure CO2 treatment but to simultaneous detrimental action of CO2 on cellular membrane and cell wall. PMID:16732596

  7. Bacterial Imaging and Photodynamic Inactivation Using Zinc(II)-Dipicolylamine BODIPY Conjugates†

    PubMed Central

    Rice, Douglas R.; Gan, Haiying; Smith, Bradley D.

    2015-01-01

    Targeted imaging and antimicrobial photodynamic inactivation (PDI) are emerging methods for detecting and eradicating pathogenic microorganisms. This study describes two structurally related optical probes that are conjugates of a zinc(II)-dipicolylamine targeting unit and a BODIPY chromophore. One probe is a microbial targeted fluorescent imaging agent, mSeek, and the other is an oxygen photosensitizing analogue, mDestroy. The conjugates exhibited high fluorescence quantum yield and singlet oxygen production, respectively. Fluorescence imaging and detection studies examined four bacterial strains: E. coli, S. aureus, K. pneumonia, and B. thuringiensis vegetative cells and purified spores. The fluorescent probe, mSeek, is not phototoxic and enabled detection of all tested bacteria at concentrations of ~100 CFU/mL for B. thuringiensis spores, ~1000 CFU/mL for S. aureus and ~10,000 CFU/mL for E. coli. The photosensitizer analogue, mDestroy, inactivated 99–99.99% of bacterial samples and selectively killed bacterial cells in the presence of mammalian cells. However, mDestroy was ineffective against B. thuringiensis spores. Together, the results demonstrate a new two-probe strategy to optimize PDI of bacterial infection/contamination. PMID:26063101

  8. Preparation and Mechanism of Cu-Decorated TiO2-ZrO2 Films Showing Accelerated Bacterial Inactivation.

    PubMed

    Rtimi, Sami; Pulgarin, Cesar; Sanjines, Rosendo; Nadtochenko, Victor; Lavanchy, Jean-Claude; Kiwi, John

    2015-06-17

    Antibacterial robust, uniform TiO2-ZrO2 films on polyester (PES) under low intensity sunlight irradiation made up by equal amounts of TiO2 and ZrO2 exhibited a much higher bacterial inactivation kinetics compared to pure TiO2 or ZrO2. The TiO2-ZrO2 matrix was found to introduce a drastic increase in the Cu-dopant promoter enhancing bacterial inactivation compared to Cu sputtered in the same amount on PES. Furthermore, the bacterial inactivation was accelerated by a factor close to three, by Cu- on TiO2-ZrO2 at extremely low levels ∼0.01%. Evidence is presented by X-ray photoelectron spectroscopy for redox catalysis taking place during bacterial inactivation. The TiO2-ZrO2-Cu band gap is estimated and the film properties were fully characterized. Evidence is provided for the photogenerated radicals intervening in the bacterial inactivation. The photoinduced TiO2-ZrO2-Cu interfacial charge transfer is discussed in term of the electronic band positions of the binary oxide and the Cu TiO2 intragap state. PMID:26023896

  9. Explicit numerical solutions of a microbial survival model under nonisothermal conditions.

    PubMed

    Zhu, Si; Chen, Guibing

    2016-03-01

    Differential equations used to describe the original and modified Geeraerd models were, respectively, simplified into an explicit equation in which the integration of the specific inactivation rate with respect to time was numerically approximated using the Simpson's rule. The explicit numerical solutions were then used to simulate microbial survival curves and fit nonisothermal survival data for identifying model parameters in Microsoft Excel. The results showed that the explicit numerical solutions provided an easy way to accurately simulate microbial survival and estimate model parameters from nonisothermal survival data using the Geeraerd models. PMID:27004117

  10. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts.

    PubMed

    Prodduk, Vara; Annous, Bassam A; Liu, Linshu; Yam, Kit L

    2014-11-01

    Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces. PMID:25364920

  11. X-inactivation patterns in monozygotic and dizygotic female twins

    SciTech Connect

    Goodship, J.; Carter, J.; Burn, J.

    1996-01-22

    We have tested the hypothesis that contrasting X-inactivation patterns could be a trigger for monozygotic twinning in females. X-inactivation patterns were studied in umbilical cord tissue in 43 monozygotic twin pairs and 24 dizygotic twin pairs. Very skewed or non-random X-inactivation patterns were observed in both twins in six of the monozygotic twin pairs and in one of the dizygotic twin pairs. Contrasting X-inactivation patterns occurred in only one of the six monozygotic twin pairs. This does not support the original hypothesis. There is a trend to extreme skewing of X-inactivation pattern occurring more frequently in monozygotic twins. 21 refs., 1 fig., 2 tabs.

  12. Inactivation of DDT deposits on mud surfaces*†

    PubMed Central

    Bordas, E.; Downs, W. G.; Navarro, L.

    1953-01-01

    The problem of the inactivation of DDT deposits on dry mud surfaces is presented and its causes outlined. The phenomenon is found to be due to adsorption of the DDT crystals present on the surface; this adsorption appears to be the initial step in the catalytic decomposition of DDT by the iron oxides present in soils, since there is a direct relation between the amount of oxides present and their capacity to inactivate DDT deposits. The DDT-inactivating capacity of soils can be determined by testing them for catalytic activity in the thermal decomposition of DDT. The adsorption of DDT by soil is influenced by environmental relative humidity. Inactivated deposits may be reactivated by increase of the atmospheric humidity. Several substances proposed for the protection of the DDT deposit from inactivation were tested without success. Reference is made, however, to the encouraging findings of some other workers. Limewashing is recommended for the protection of DDT deposits. PMID:13082389

  13. Expansion of Microbial Forensics.

    PubMed

    Schmedes, Sarah E; Sajantila, Antti; Budowle, Bruce

    2016-08-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746

  14. Microbial quality and physical-chemical characteristics of thermal springs.

    PubMed

    Fazlzadeh, Mehdi; Sadeghi, Hadi; Bagheri, Pari; Poureshg, Yusef; Rostami, Roohollah

    2016-04-01

    Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect. PMID:26072426

  15. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  16. Electron spin resonance studies of urea-ferricyanide inactivated spinach photosystem I particles

    SciTech Connect

    Golbeck, J.H.; Warden, J.T.

    1981-09-01

    The photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea-ferricyanide. The chemical analysis of iron and sulfur and the ESR properties of centers A, B, and X are consistent with the participation of three iron-sulfur centers in photosystem I. A differential decrease in centers A, B, and X is observed under conditions which induce S= ..-->.. S/sup 0/ conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center X is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in photosystem I does not occur sequentially from X ..-->.. B ..-->.. A since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X.

  17. Inactivation of mitochondrial ATPase by ultraviolet light

    SciTech Connect

    Chavez, E.; Cuellar, A.

    1984-05-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation.

  18. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  19. Protein inactivations during novel bioseparation techniques.

    PubMed

    Sadana, A

    1994-02-01

    An analysis is presented for the quantitative and qualitative inactivation of proteins and other bioproducts during their separation utilizing the reverse micellar and the aqueous two-phase extraction techniques. Information on the influence of different parameters on the quantitative yields of the bioproducts separated is available, and more information is being gathered to provide further physical insights into improving the quantitative yields. However, very little information is available on the qualitative nature of the bioproducts separated utilizing either the reverse micelle or the aqueous two-phase extraction technique. More information is definitely required on the qualitative nature of the bioproducts separated by the above techniques to assist in their proper evaluation as effective bioseparation techniques. PMID:7764586

  20. UV inactivation of pathogenic and indicator microorganisms

    SciTech Connect

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  1. Inactivation of Coxiella burnetti by gamma irradiation

    SciTech Connect

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0-64 to 1.2 kGy depending on the phase of hte micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing C. burnetti was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.

  2. Induction of Heterosubtypic Cross-Protection against Influenza by a Whole Inactivated Virus Vaccine: The Role of Viral Membrane Fusion Activity

    PubMed Central

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A.; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    Background The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. Methodology/Principal Findings In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. Conclusion/Significance The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity

  3. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  4. Microbial Monitoring of the International Space Station

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Botkin, Douglas J.; Bruce, Rebekah J.; Castro, Victoria A.; Smith, Melanie J.; Oubre, Cherie M.; Ott, C. Mark

    2013-01-01

    microbial growth. Air filtration can dramatically reduce the number of airborne bacteria, fungi, and particulates in spacecraft breathing air. Waterborne bacteria can be reduced to acceptable levels by thermal inactivation of bacteria during water processing, along with a residual biocide, and filtration at the point of use can ensure safety. System design must include onboard capability to achieve recovery of the system from contamination. Robust housekeeping procedures that include periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Food for consumption in space must be thoroughly tested for excessive microbial content and pathogens before launch. Thorough preflight examination of flight crews, consumables, payloads, and the environment can greatly reduce pathogens in spacecraft. Many of the lessons learned from the Space Shuttle and previous programs were applied in the early design phase of the International Space Station, resulting in the safest space habitat to date. This presentation describes the monitoring program for the International Space Station and will summarize results from preflight and on-orbit monitoring.

  5. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities.

    PubMed

    Cavani, Luciano; Manici, Luisa M; Caputo, Francesco; Peruzzi, Elisabetta; Ciavatta, Claudio

    2016-11-01

    This study aimed at investigating the degree of interference of high soil copper (Cu) contamination when an old vineyard is converted into a protected area. This study was performed within an intensive agricultural system; it was organized into a two-factorial nested design to analyze the impact of management (conventional vs re-naturalized orchard) and position within each orchard (tree-rows and strips). Chemical and biochemical properties along with bacterial and fungal communities, evaluated with PCR-DGGE starting from total soil DNA, were analyzed. Total Cu was localized in tree rows in the old vineyard at 1000 mg kg(-1) of soil, whereas it did not exceed 80 mg kg(-1) soil in the other treatments. Total organic carbon and all biochemical properties significantly improved in re-naturalized compared to conventionally cultivated site, while no significant differences were observed between tree row and strip. Moreover, a higher extractable carbon-extractable nitrogen (Cext-to-Next) ratio in the re-naturalized (19.3) site than in the conventionally managed site (10.2) indicated a shift of soil system from C-limited to N-limited, confirming a successful ecological restoration. Deep improvement of soil biochemical properties exceeded the negative impact of Cu contamination. A shift of bacterial community composition as well as increased bacterial diversity in Cu contaminated treatment indicated a bacterial response to Cu stress; to the contrary, soil fungi were less susceptible than bacteria, though an overall reduction of fungal DNA was detected. Findings suggest that ecological restoration of highly polluted agricultural soils leads to overcoming the reduction of soil functionalities linked to Cu contamination and opens interesting perspectives for mitigating Cu stress in agricultural soils with strategies based on conservative agriculture. PMID:27454095

  6. Control of microbial contamination.

    NASA Technical Reports Server (NTRS)

    Mcdade, J. J.

    1971-01-01

    Two specific applications are discussed of microbial contamination control in planetary quarantine. Under the first concept, using the clean room to control environmental microorganisms, the objective is to reduce the microbial species and keep the numbers of microorganisms within an enclosure at a low level. The clean room concept is aimed at obtaining a product that has a controlled and reduced level of microbial contamination. Under the second concept, using the microbiological barrier to control microbial contamination of a specific product, the barrier techniques are designed to prevent the entry of any microorganisms into a sterile work area. Thus the assembly of space flight hardware within the confines of a microbiological barrier is aimed at obtaining a sterile product. In theory and practice, both approaches are shown to be applicable to the planetary quarantine program.

  7. Microbial safety in space

    NASA Astrophysics Data System (ADS)

    Krooneman, Janneke; Harmsen, Hermie; Landini, Paolo; Zinn, Manfred; Munaut, Françoise; van der Meer, Walter; Beimfohr, Claudia; Reichert, Bas; Preuß, Andrea

    2005-10-01

    Microbial hygiene is important in our daily lives; preventing and combating microbial infections is increasingly important in society. In hospitals, strict monitoring and control is exercised for people and infrastructure alike. In modern buildings, air-conditioning system are screened for harmful bacteria such as Legionella. More recently, concerns about SARS (virus) and anthrax (bacteria) have added pressure on the scientific community to come up with adequate monitoring and control techniques to assure microbial hygiene. Additionally, the use of biotechnological recycling and cleaning processes for sustainability brings the need for reliable monitoring tools and preventive or riks-reducing strategies. In the manned space environment, similar problems need to be solved and efforts have already been made to study the behaviour of micro-organisms and microbial hygiene onboard space stations.

  8. Two-stage microbial community experimental design.

    PubMed

    Tickle, Timothy L; Segata, Nicola; Waldron, Levi; Weingart, Uri; Huttenhower, Curtis

    2013-12-01

    Microbial community samples can be efficiently surveyed in high throughput by sequencing markers such as the 16S ribosomal RNA gene. Often, a collection of samples is then selected for subsequent metagenomic, metabolomic or other follow-up. Two-stage study design has long been used in ecology but has not yet been studied in-depth for high-throughput microbial community investigations. To avoid ad hoc sample selection, we developed and validated several purposive sample selection methods for two-stage studies (that is, biological criteria) targeting differing types of microbial communities. These methods select follow-up samples from large community surveys, with criteria including samples typical of the initially surveyed population, targeting specific microbial clades or rare species, maximizing diversity, representing extreme or deviant communities, or identifying communities distinct or discriminating among environment or host phenotypes. The accuracies of each sampling technique and their influences on the characteristics of the resulting selected microbial community were evaluated using both simulated and experimental data. Specifically, all criteria were able to identify samples whose properties were accurately retained in 318 paired 16S amplicon and whole-community metagenomic (follow-up) samples from the Human Microbiome Project. Some selection criteria resulted in follow-up samples that were strongly non-representative of the original survey population; diversity maximization particularly undersampled community configurations. Only selection of intentionally representative samples minimized differences in the selected sample set from the original microbial survey. An implementation is provided as the microPITA (Microbiomes: Picking Interesting Taxa for Analysis) software for two-stage study design of microbial communities. PMID:23949665

  9. Principles for designing synthetic microbial communities.

    PubMed

    Johns, Nathan I; Blazejewski, Tomasz; Gomes, Antonio Lc; Wang, Harris H

    2016-06-01

    Advances in synthetic biology to build microbes with defined and controllable properties are enabling new approaches to design and program multispecies communities. This emerging field of synthetic ecology will be important for many areas of biotechnology, bioenergy and bioremediation. This endeavor draws upon knowledge from synthetic biology, systems biology, microbial ecology and evolution. Fully realizing the potential of this discipline requires the development of new strategies to control the intercellular interactions, spatiotemporal coordination, robustness, stability and biocontainment of synthetic microbial communities. Here, we review recent experimental, analytical and computational advances to study and build multi-species microbial communities with defined functions and behavior for various applications. We also highlight outstanding challenges and future directions to advance this field. PMID:27084981

  10. Microbial Enzymes: Tools for Biotechnological Processes

    PubMed Central

    Adrio, Jose L.; Demain, Arnold L.

    2014-01-01

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi. PMID:24970208

  11. Microbial dysbiosis in periodontitis

    PubMed Central

    Nath, Sameera G.; Raveendran, Ranjith

    2013-01-01

    Periodontitis is a biofilm-associated inflammatory disease of the periodontium. This disease appears to have multiple etiologies with microbial factor contributing to initiation of the disease and immunological factor of the host propagating the disease. This review is on the concept of “microbial dysbiosis” and molecular nature of periodontitis, and the scope of traditional and emerging technologies for treating this disease. PMID:24174742

  12. Ocean microbial metagenomics

    NASA Astrophysics Data System (ADS)

    Kerkhof, Lee J.; Goodman, Robert M.

    2009-09-01

    Technology for accessing the genomic DNA of microorganisms, directly from environmental samples without prior cultivation, has opened new vistas to understanding microbial diversity and functions. Especially as applied to soils and the oceans, environments on Earth where microbial diversity is vast, metagenomics and its emergent approaches have the power to transform rapidly our understanding of environmental microbiology. Here we explore select recent applications of the metagenomic suite to ocean microbiology.

  13. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China.

    PubMed

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  14. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  15. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  16. Microbial Fuel Cells and Microbial Electrolyzers

    SciTech Connect

    Borole, Abhijeet P

    2015-01-01

    Microbial Fuel Cells and microbial electrolyzers represent an upcoming technology for production of electricity and hydrogen using a hybrid electrocatalytic-biocatalytic approach. The combined catalytic efficiency of these processes has potential to make this technology highly efficient among the various renewable energy production alternatives. This field has attracted electrochemists, biologists and many other disciplines due to its potential to contribute to the energy, water and environment sectors. A brief introduction to the technology is provided followed by current research needs from a bioelectrochemical perspective. Insights into the operation and limitations of these systems achieved via cyclic voltammetry and impedance spectroscopy are discussed along with the power management needs to develop the application aspects. Besides energy production, other potential applications in bioenergy, bioelectronics, chemical production and remediation are also highlighted.

  17. Predictive modeling for hot water inactivation of planktonic and biofilm-associated Sphingomonas parapaucimobilis to support hot water sanitization programs.

    PubMed

    Kaatz Wahlen, Laura; Parker, Al; Walker, Diane; Pasmore, Mark; Sturman, Paul

    2016-08-01

    Hot water sanitization is a common means to maintain microbial control in process equipment for industries where microorganisms can degrade product or cause safety issues. This study compared the hot water inactivation kinetics of planktonic and biofilm-associated Sphingomonas parapaucimobilis at temperatures relevant to sanitization processes used in the pharmaceutical industry, viz. 65, 70, 75, and 80°C. Biofilms exhibited greater resistance to hot water than the planktonic cells. Both linear and nonlinear statistical models were developed to predict the log reduction as a function of temperature and time. Nonlinear Michaelis-Menten modeling provided the best fit for the inactivation data. Using the model, predictions were calculated to determine the times at which specific log reductions are achieved. While ≥80°C is the most commonly cited temperature for hot water sanitization, the predictive modeling suggests that temperatures ≥75°C are also effective at inactivating planktonic and biofilm bacteria in timeframes appropriate for the pharmaceutical industry. PMID:27319816

  18. Microbial biofilms in intertidal systems: an overview

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.

    2000-07-01

    Intertidal marine systems are highly dynamic systems which are characterized by periodic fluctuations in environmental parameters. Microbial processes play critical roles in the remineralization of nutrients and primary production in intertidal systems. Many of the geochemical and biological processes which are mediated by microorganisms occur within microenvironments which can be measured over micrometer spatial scales. These processes are localized by cells within a matrix of extracellular polymeric secretions (EPS), collectively called a "microbial biofilm". Recent examinations of intertidal systems by a range of investigators using new approaches show an abundance of biofilm communities. The purpose of this overview is to examine recent information concerning the roles of microbial biofilms in intertidal systems. The microbial biofilm is a common adaptation of natural bacteria and other microorganisms. In the fluctuating environments of intertidal systems, biofilms form protective microenvironments and may structure a range of microbial processes. The EPS matrix of biofilm forms sticky coatings on individual sediment particles and detrital surfaces, which act as a stabilizing anchor to buffer cells and their extracellular processes during the frequent physical stresses (e.g., changes in salinity and temperature, UV irradiation, dessication). EPS is an operational definition designed to encompass a range of large microbially-secreted molecules having widely varying physical and chemical properties, and a range of biological roles. Examinations of EPS using Raman and Fourier-transform infared spectroscopy, and atomic-force microscopy suggest that some EPS gels possess physical and chemical properties which may hasten the development of sharp geochemical gradients, and contribute a protective effect to cells. Biofilm polymers act as a sorptive sponge which binds and concentrates organic molecules and ions close to cells. Concurrently, the EPS appear to localize

  19. Systems Biology of Microbial Exopolysaccharides Production

    PubMed Central

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  20. Systems Biology of Microbial Exopolysaccharides Production.

    PubMed

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  1. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  2. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  3. Property.

    ERIC Educational Resources Information Center

    Goldblatt, Steven M.; Piele, Philip K.

    This chapter reviews 1982 cases related to school property. Cases involving citizen efforts to overturn school board decisions to close schools dominate the property chapter, and courts continue to uphold school board authority to close schools, transfer students, and sell or lease the buildings. Ten cases involving detachment and attachment of…

  4. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  5. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    SciTech Connect

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  6. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    SciTech Connect

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  7. Virus-specific thermostability and heat inactivation profiles of alphaviruses.

    PubMed

    Park, So Lee; Huang, Yan-Jang S; Hsu, Wei-Wen; Hettenbach, Susan M; Higgs, Stephen; Vanlandingham, Dana L

    2016-08-01

    Serological diagnosis is a critical component for disease surveillance and is important to address the increase in incidence and disease burden of alphaviruses, such as the chikungunya (CHIKV) and Ross River (RRV) viruses. The gold standard for serological diagnosis is the plaque reduction neutralization test (PRNT), which demonstrates the neutralizing capacity of serum samples after the removal of complement activity and adventitious viruses. This procedure is normally performed following inactivation of the virus at 56°C for 30min. Although this protocol has been widely accepted for the inactivation of envelope RNA viruses, recent studies have demonstrated that prolonged heat inactivation is required to completely inactivate two alphaviruses, Western equine encephalitis virus and CHIKV. Incomplete inactivation of viruses poses a laboratory biosafety risk and can also lead to spurious test results. Despite its importance in ensuring the safety of laboratory personnel as well as test integrity, systematic investigation on the thermostability of alphaviruses has not been performed. In this study, the temperature tolerance and heat inactivation profiles of RRV, Barmah Forest, and o'nyong-nyong viruses were determined. Variations in thermostability were observed within the Semliki forest serocomplex. Therefore, evidence-based heat inactivation procedures for alphaviruses are recommended. PMID:27079828

  8. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    PubMed Central

    Du, ChangMing; Liu, Ya; Huang, YaNi; Li, ZiMing; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation. PMID:26732987

  9. Application of gaseous ozone for inactivation of Bacillus subtilis spores.

    PubMed

    Aydogan, Ahmet; Gurol, Mirat D

    2006-02-01

    The effectiveness of gaseous ozone (O3) as a disinfectant was tested on Bacillus subtilis spores, which share the same physiological characteristics as Bacillus anthracis spores that cause the anthrax disease. Spores dried on surfaces of different carrier material were exposed to O3 gas in the range of 500-5000 ppm and at relative humidity (RH) of 70-95%. Gaseous O3 was found to be very effective against the B. subtilis spores, and at O3 concentrations as low as 3 mg/L (1500 ppm), approximately 3-log inactivation was obtained within 4 hr of exposure. The inactivation curves consisted of a short lag phase followed by an exponential decrease in the number of surviving spores. Prehydration of the bacterial spores has eliminated the initial lag phase. The inactivation rate increased with increasing O3 concentration but not >3 mg/L. The inactivation rate also increased with increase in RH. Different survival curves were obtained for various surfaces used to carry spores. Inactivation rates of spores on glass, a vinyl floor tile, and office paper were nearly the same. Whereas cut pile carpet and hardwood flooring surfaces resulted in much lower inactivation rates, another type of carpet (loop pile) showed significant enhancement in the inactivation of the spores. PMID:16568801

  10. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation.

    PubMed

    Du, ChangMing; Liu, Ya; Huang, YaNi; Li, ZiMing; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation. PMID:26732987

  11. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    NASA Astrophysics Data System (ADS)

    Du, Changming; Liu, Ya; Huang, Yani; Li, Ziming; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation.

  12. X chromosome inactivation and X-linked mental retardation

    SciTech Connect

    Willard, H.F. |

    1996-07-12

    The expression of X-linked genes in females heterozygous for X-linked defects can be modulated by epigenetic control mechanisms that constitute the X chromosome inactivation pathway. At least four different effects have been found to influence, in females, the phenotypic expression of genes responsible for X-linked mental retardation (XLMR). First, non-random X inactivation, due either to stochastic or genetic factors, can result in tissues in which one cell type (for example, that in which the X chromosome carrying a mutant XLMR gene is active) dominates, instead of the normal mosaic cell population expected as a result of random X inactivation. Second, skewed inactivation of the normal X in individuals carrying a deletion of part of the X chromosome has been documented in a number of mentally retarded females. Third, functional disomy of X-linked genes that are expressed inappropriately due to the absence o